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Abstract. Two new classes of functions, called ‘almost z-
supercontinuous functions’ and ‘almost Dδ-supercontinuous functions’
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16 (1980), 161-166). Characterizations and basic properties of almost
z-supercontinuous functions and almost Dδ-supercontinuous functions
are discussed and their place in the hierarchy of variants of continu-
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functions are investigated and sufficient conditions for almost strongly
θ-continuous functions to have uθ-closed (θ-closed) graph are formu-
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1. Introduction

Among several of the variants of continuity in the literature, some are stronger
than continuity and some are weaker than continuity and yet others are inde-
pendent of continuity. In this paper we introduce two new variants of conti-
nuity which represent generalizations of the notions of z-supercontinuity and
Dδ -supercontinuity and are independent of continuity and coincide with z-
supercontinuity and Dδ-supercontinuity, respectively if the range is a semireg-
ular space. The class of almost z-supercontinuous functions besides containing
the class of z-supercontinuos functions contains the class of almost clopen (≡
almost cl-supercontinuous [34]) functions defined by Ekici [4].
Characterizations and basic properties of almost z-supercontinuous (almost
Dδ-supercontinuous) functions are elaborated in Section 3 and their place in
the hierarchy of variants of continuity is discussed. Section 4 is devoted to the
study of the behaviour of separation axioms under almost z-supercontinuous
(almost Dδ-supercontinuous) functions. In Section 5, characterizations and
properties of almost strongly θ-continuous functions are elaborated. Section 6
is devoted to separation axioms and sufficient conditions for almost strongly
θ-continuous functions to have uθ-closed (θ-closed) graphs are obtained.

2. Preliminaries and Basic Definitions

A subset S of a space X is said to be an H-set [36] or quasi H-closed relative to
X [28] (respectively N -closed relative to X [1]) if for every cover { Uα|α∈Λ} of S
by open sets of X , there exists a finite subset Λo of Λ such that S⊂∪{Uα|α∈Λo}
(respectively S⊂∪{(Uα)o|α∈Λo}). A space X is said to be quasi H-closed [28]
(respectively nearly compact [32]) if the set X is quasi H-closed relative to X
(respectively N -closed relative to X). A space X is said to be quasicompact [5]
if every cover of X by cozero sets admits a finite subcover.
A space X is said to be δ-completely regular [13] (almost completely regular
[31]) if for each regular Gδ -set (regularly closed set) F and a point x not in
F there exists a continuous function f : X→[0, 1] such that f(x) = 0 and
f(F ) = 1.
A subset A of a space X is called a regular Gδ-set [21] if A is an intersection of a

sequence of closed sets whose interiors contain A, i.e., if A =
∞⋂

n=1

Fn =
∞⋂

n=1

F o
n ,

where each Fn is a closed subset of X . The complement of a regular Gδ-set is
called a regular Fσ-set.
A space X is called a Dδ-completely regular ([15], [16]) if it has a base of regular
Fσ-sets.

Definition 2.1. A function f : X→Y from a topological space X into a topo-
logical space Y is said to be almost z-supercontinuous (almost Dδ-supercontinuous)
if for each x∈X and each open set V containing f(x), there exists a cozero set
(regular Fσ-set) U containing x such that f(U)⊂(V )o.
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Definition 2.2. A set G is said to be δ-open [36] (dδ-open [13], z-open [12])
if for each x∈G, there exists a regular open set (regular Fσ-set, cozero set) H
such that x∈H⊂G, or equivalently, G can be obtained as an arbitrary union of
regular open sets (regular Fσ-sets, cozero sets). The complement of a δ -open
(dδ-open, z-open) set will be referred to as a δ-closed (dδ-closed, z-closed) set.

Definition 2.3. Let X be a topological space and let A⊂X. A point x∈X is
called a δ-adherent [36] ( θ-adherent [36], uθ-adherent ([9], [10]), dδ-adherent
[13], z-adherent [12]) point of A if every regular open set (closed neighborhood,
θ-open set, regular Fσ-set, cozero set) containing x has non-empty intersection
with A. Let Aδ denote the set of all δ-adherent points (clθA the set of all
θ-adherent points, Auθ

the set of all uθ-adherent points, [A]dδ
the set of all dδ-

adherent points, Az the set of all z-adherent points) of a set A. The set A is
δ-closed (θ-closed, dδ-closed, z-closed) if A = Aδ (A = clθA or A = Auθ

, A =
[A]dδ

, A = Az).

Lemma 2.4 ([8], [11]). A subset A of a topological space X is θ-open if and
only if for each x∈A, there is an open set U such that x∈U⊂U⊂A.

Definition 2.5. A space X is called θ-compact [10] (Dδ-compact [14]) if every
θ-open cover (cover by regular Fσ -sets) of X has a finite subcover.

Definitions 2.6. A function f : X→Y from a topological space X into a
topological space Y is said to be

(a) strongly continuous [18] if f(A) ⊂ f(A) for each subset A of X.
(b) perfectly continuous( [25], [26]) if f−1(V ) is clopen in X for every open

set V ⊂Y .
(c) almost perfectly continuous (≡ regular set connected [3]) if f−1(V ) is

clopen for every regular open set V in Y .
(d) cl-supercontinuous [34] (≡ clopen continuous [29]) if for each open set V

containing f(x) there is a clopen set U containing x such that f(U)⊂V .
(e) almost cl-supercontinuous[17] (≡ almost clopen continuous[4]) if for each

x∈X and each regular open set V containing f(x) there is a clopen set U
containing x such that f(U)⊂V .

(f) z-supercontinuous [12] if for each x∈X and for each open set V containing
f(x), there exists a cozero set U containing x such that f(U)⊂V .

(g) strongly θ-continuous [24] if for each x∈X and for each open set V con-
taining f(x), there exists an open set U containing x such that f(U)⊂V .

(h) supercontinuous [22] if for each x∈X and for each open set V containing
f(x), there exists an open set U containing x such that f(U)o⊂V .

(i) almost strongly θ-continuous [27] if for each x∈X and for each open set
V containing f(x), there exists an open set U containing x such that
f(U)⊂(V )o.

(j) δ-continuous [24] if for each x∈X and for each open set V containing f(x),
there exists an open set U containing x such that f(U)o⊂(V )o.

(k) almost continuous [33] if for each x∈X and for each open set V containing
f(x), there exists an open set U containing x such that f(U)⊂(V )o.
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(l) faintly continuous [20] if for each x∈X and for each θ-open set V contain-
ing f(x), there exists an open set U containing x such that f(U)⊂V .

(m) Dδ-supercontinuous [13] if for each x∈X and for each open set V contain-
ing f(x), there exists a regular Fσ set U containing x such that f(U)⊂V .

The following diagram well illustrates the relationships that exist among almost
z-supercontinuous functions, almost Dδ -supercontinuous functions and various
variants of continuity defined above.

However, none of the above implications in general is reversible. Kohli and Ku-
mar [12] showed that a strongly θ-continuous function need not be z-supercontinuous
function. Noiri and Kang [27] gave examples to show that a δ-continuous
function need not be almost strongly θ-continuous and that almost strongly
θ-continuous function need not be strongly θ-continuous. Moreover, Noiri [24]
showed that an almost continuous function need not be δ-continuous.

Example 2.7. Let X = N = Y be the set of positive integers equipped with
cofinite topology. The identity function on X is almost z-supercontinuous but
not Dδ-supercontinuous.

Example 2.8. Let X = Y be the mountain chain space due to Heldermann
[6] which is a regular space. The identity map from X onto Y is strongly
θ-continuous but not almost Dδ-supercontinuous.

Example 2.9. Let X = {x1, x2, x3, x4} and Γ = {X, φ, {x3}, {x1, x2}, {x1, x2, x3}}
Let Y = {y1, y2, y3, y4} and σ = {Y, φ, {y1}, {y3}, {y1, y2}, {y1, y3}, {y1, y2, y3},
{y1, y3, y4}}
Define a function f : (X, Γ) → (Y, σ) as follows: f(x1) = f(x2) = y2 and
f(x3) = f(x4) = y1 Then f is an almost z-supercontinuous functions but not
continuous.
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Example 2.10. Let A = K∪{a+,a−} be the space due to Hewitt [7] which is
Dδ-completely regular. The identity function defined on A is Dδ-supercontinuous
but not almost z-supercontinuous.

Example 2.11. Let X denote the real line endowed with usual topology. The
identity function defined on X is almost z-supercontinuous but not almost cl-
supercontinuous (=almost clopen).

Examples 2.8 and 2.9 show that the notions of almost z-supercontinuous func-
tion (almost Dδ-supercontinuous function) and continuous function are inde-
pendent of each other.

3. Characterizations and Basic Properties of almost

z-Supercontinuous and Dδ-Supercontinuous Functions

Proposition 3.1. For a function f : X→Y from a topological space X into a
topological space Y , the following statements are equivalent:

(a) f is almost z-supercontinuous (almost Dδ-supercontinuous).
(b) The inverse image of every regular open subset of Y is z-open (dδ-open) in

X.
(c) The inverse image of every regular closed subset of Y is z-closed (dδ-closed)

in X.
(d) The inverse image of every δ-open subset of Y is z-open (dδ-open) in X.
(e) The inverse image of every δ-closed subset of Y is z-closed (dδ-closed) in

X.

Proof. It is easy using definitions. �

Theorem 3.2. For a function f : X→Y the following statement are equivalent.

(a) f is almost z-supercontinuous.
(b) f(Az)⊂(f(A))δ for every A⊂X.
(c) (f−1(B))z⊂f−1(Bδ) for every B⊂Y .

Proof. (a)⇒(b). Let y = f(x) for some x∈Az. To show that f(x)∈(f(A))δ , let
V be any regular open set containing f(x). Then there exists a cozero set U
containing x such that f(U)⊂V . Since x∈Az , U∩A6=φ and so f(U∩A)6=φ which
in turn implies that f(U)∩f(A)6=φ and hence V ∩f(A)6=φ. Thus f(x)∈(f(A))δ.
Hence f(Az)⊂(f(A))δ for every A⊂X .
(b)⇒(c). Let B⊂Y . Then f((f−1(B))z)⊂(f(f−1(B)))δ⊂Bδ and so it follows
that (f−1(B))z⊂f−1(Bδ).
(c)⇒(a). let F be any δ-closed set in Y . Then (f−1(F ))z⊂f−1(Fδ) = f−1(F ).
Since f−1(F )⊂(f−1(F ))δ⊂(f−1(F ))z , so f−1(F ) = (f−1(F ))z which in turn
implies that f is almost z-supercontinuous. �

Theorem 3.3. For a function f : X→Y the following statement are equivalent.

(a) f is almost Dδ-supercontinuous.
(b) f([A]dδ

)⊂(f(A))δ for every A⊂X.
(c) [f−1(B)]dδ

⊂f−1(Bδ) for every B⊂Y .
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Proof. (a)⇒(b). Let y = f(x) for some x∈[A]dδ
. To show that y∈(f(A))δ , let

V be a regular open set containing f(x). Since f is almost Dδ-supercontinuous,
there is a regular Fσ-set U containing x such that f(U)⊂V . Since x∈[A]dδ

, U∩A6=φ
and hence f(U∩A)6=φ which in turn implies that f(U)∩f(A)6=φ. Thus V ∩f(A)6=φ
and so y∈(f(A))δ for every A⊂X .

(b)⇒(c). Let B⊂Y . Then f([f−1(B)]dδ
)⊂(f(f−1(B)))δ⊂Bδ and so it follows

that [f−1(B)]dδ
⊂f−1(Bδ).

(c)⇒(a). let F be any δ-closed set in Y . Then [f−1(F )]dδ
⊂f−1(Fδ) = f−1(F ).

Since f−1(F )⊂[f−1(F )]dδ
, f−1(F ) = [f−1(F )]dδ

and so f−1(F ) is dδ-closed. It
follows that f is almost Dδ-supercontinuous. �

Definition 3.4. A filterbase F is said to z-converge[12] ( dδ-converge[13], δ-

converge[36]) to a point x, written as F
z
→ x(F

dδ→ x,F
δ
→ x), if every cozero

set (regular Fσ-set, regular open set) containing x contains a member of F .

Theorem 3.5. A function f : X→Y is almost z-supercontinuous (almost Dδ-

supercontinuous) if and only if f(F)
δ
→ f(x) for each x∈X and each filter F

in X that z-converges (dδ-converges) to x.

Proof. We shall prove the result in the case of almost z-supercontinuous func-
tions only. Suppose that f is almost z-supercontinuous and let F be a filter
in X that z-converges to x. Let W be a regular open set containing f(x).
Then x∈f−1(W ) and f−1(W ) is z-open. Let H be a cozero set such that
x∈H⊂f−1(W ) and so f(H)⊂W . Since F z-converges to x, there exists U∈F

such that U⊂H and hence f(U)⊂f(H)⊂W . Thus, f(F)
δ
→ f(x).

Conversely, let W be a regular open set containing f(x). Now, the filter F
generated by the filterbase Bx consisting of cozero sets containing x, z-converges

to x. Since by hypothesis f(F)
δ
→ f(x), there exists a member f(F ) of f(F)

such that f(F )⊂W . Choose B∈Bx such that B⊂F . Since B is a cozero set
containing x and since f(B)⊂f(F )⊂W, f is almost z-supercontinuous. �

Remark 3.6. It is routine to verify that almost z-supercontinuity (almost
Dδ-supercontinuity) is invariant under restrictions and composition of func-
tions and enlargement of range. Moreover, the composition gof is almost
z-supercontinuous whenever f : X→Y is almost z-supercontinuous and g :
Y →Z is δ-continuous. Furthermore, if gof is almost z-supercontinuous and
f is a surjection which maps z-open sets to z-open sets, then g is almost z-
supercontinuous.

The following lemma is due to Singal and Singal [33] and will be used in the
sequel.

Lemma 3.7 (Singal and Singal [33]). Let {Xα : α∈I} be a family of spaces and
let X =

∏
Xα be the product space. If x = (xα)∈X and V is a regular open

subset of X containing x, then there exists a basic regular open set ΠVα such
that x∈ΠVα⊂V , where Vα is regular open in Xα for each α∈I and Vα = Xα

for all α∈I except for a finite number of indices αi, i = 1, 2, . . . , n.
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Theorem 3.8. Let {fα : Xα→Yα} be a family of almost z-supercontinuous (al-
most Dδ -supercontinuous) functions. Let X = ΠXα and Y = ΠYα. Then f :
X→Y defined by f((xα)) = (fα(xα)) for each (xα)∈X is almost z-supercontinuous
( almost Dδ-supercontinuous).

Proof. Let (xα)∈X and W be a regular open set in Y containing f((xα)).
By Lemma 3.7 there exists a basic regular open set V = ΠVα such that
f(x)∈V ⊂W , where each Vα is a regular open set in Yα and Vα = Yα for
α∈∆ except for α = α1, α2, . . . , αn. For each i = 1, 2, . . . , n, in view of almost
z-supercontinuity (almost Dδ-supercontinuity) of fαi

there exists a cozero set
(regular Fδ-set) Uαi

containing xαi
such that fαi

(Uαi
)⊂Vαi

. Let U =
∏

Uα,
where Uα = Xα for α 6= αi, (i = 1, 2, . . . , n). Then U is a cozero set (reg-
ular Fδ-set) in X such that (xα)∈U and f(U)⊂V ⊂W . Thus f is almost z-
supercontinuous (almost Dδ -supercontinuous). �

Theorem 3.9. Let f : X→Y be any function. If {Uα : α∈∆} is a cover
of X by cozero sets (regular Fδ-sets) and for each α, fα = f |Uα : Uα→Y
is almost z-supercontinuous (almost Dδ-supercontinuous), then f is almost z-
supercontinuous (almost Dδ-supercontinuous).

Proof. Let V be a regular open set in Y . Then f−1(V ) = ∪{f−1
α (V ) : α∈∆}

and since each fα is almost z-supercontinuous (almost Dδ-supercontinuous),
each f−1

α (V ) is z-open (dδ-open) in Uα and hence in X . Thus f−1(V ) being
the union of z-open (dδ -open) sets is z-open (dδ-open). Thus f is almost
z-supercontinuous (almost Dδ-supercontinuous). �

Theorem 3.10. Let f : X→Y be a function and g : X→X×Y , defined by
g(x) = (x, f(x)) for each x∈X, be the graph function. Then g is almost z-
supercontinuous if and only if f is almost z-supercontinuous and X is an almost
completely regular space.

Proof. Suppose that g is almost z-supercontinuous. Let V be a regular open
set in Y . Then p−1

y (V ) = X×V is a regular open set in X×Y , where py

is the projection from X×Y onto Y . Therefore f−1(V ) = (pyog)−1(V ) =
g−1(p−1

y (V )) = g−1(X×V ) is z-open and so f is almost z-supercontinuous.
To prove that X is an almost completely regular space, let F be a regular
closed set and suppose that x/∈F . Then x∈X \ F and g(x)∈(X\F )×Y which
is a regularly open set in X×Y . So there exists a cozero set W in X such
that g(W )⊂(X\F )×Y . Hence x∈W⊂X\F . Thus X is an almost completely
regular space.
To prove sufficiency, let x∈X and let W be a regular open set containing
g(x). By Lemma 3.7 there exist regular open sets U⊂X and V ⊂Y such
that (x, f(x))∈U×V ⊂W . Since X is almost completely regular, there ex-
ists a cozero set G1 in X containing x such that x∈G1⊂U . Since f is al-
most z-supercontinuous, there exists a cozero set G2 in X containing x such
that f(G2)⊂V . Let G = G1 ∩ G2. Then G is a cozero set containing x and
g(G)⊂U×V ⊂W . This proves that g is almost z-supercontinuous. �
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Proposition 3.11. Let f : X→Y be a function defined on a δ-completely
regular space X. Then the graph function G(f) is almost Dδ-supercontinuous
if and only if f is almost Dδ-upercontinuous.

Proof. It is easy using definitions. �

4. separation axioms related to almost z-supercontinuous

functions and Dδ-supercontinuous functions

Theorem 4.1. An almost z-supercontinuous (almost Dδ -supercontinuous) im-
age of a quasicompact (Dδ-compact) space is nearly compact.

Proof. Let f : X→Y be an almost z-supercontinuous (almost Dδ -supercontinuous)
surjection from a quasicompact (Dδ -compact) space X onto a space Y . Let
V = {Vα : α∈Λ} be a cover of Y by regularly open sets (regular Fδ-sets) in
Y . Since f is almost z-supercontinuous (almost Dδ -supercontinuous), each
f−1(Vα) is z-open (dδ-open) in X and so is a union of cozero sets (regular
Fδ-sets). This in turn yields a cover G of X consisting of cozero sets (reg-
ular Fδ-sets). Since X is quasicompact (Dδ-compact), there is a finite sub-
collection {C1, . . . , Cn} of G which covers X . Suppose Ci⊂f−1(Vαi

) for some
αi∈Λ(i = 1, . . . , n). Then {Vα1

, . . . , Vαn
} is a finite subcollection of V which

covers Y . Thus Y is nearly compact. �

Corollary 4.2. Let f : X→Y be an almost z-supercontinuous (almost Dδ -
supercontinuous) surjection from a quasicompact (Dδ -compact) space onto a
semiregular space Y . Then Y is compact.

Proof. A semiregular nearly compact space is compact. �

Definition 4.3 ([30]). A space X is said to be almost regular if for each regular
closed set A and each point x/∈A, there exist disjoint open sets U and V such
that x∈U, A⊂V .

Theorem 4.4. Let f : X→Y be an almost Dδ-supercontinuous open bijec-
tion onto a space Y . Then Y is an almost regular space. Further, if Y is a
semiregular space, then Y is a regular space.

Proof. Let B be any regularly closed set in Y and let y/∈B. Then f−1(B)∩f−1(y) =
φ. Since f is almost Dδ-supercontinuous, by Proposition 3.1 f−1(B) is dδ-closed
and so f−1(B) =

⋂

α∈Λ

Zα, where each Zα is a regular Gδ-set. Since f is one-one,

f−1(y) is a singleton and so there exists αo∈Λ, such that f−1(y)/∈Zαo
. Since

Zαo
is a regular Gδ-set, Zαo

=
∞⋂

i=1

Hi =
∞⋂

i=1

Ho
i , where each Hi is a closed set.

So there exists an integer j such that f−1(y) /∈ Hj . Then X \ Hj and Ho
j are

disjoint open sets containing f−1(y) and f−1(B), respectively. Since f is an
open bijection, f(X\Hj) and f(Ho

j ) are disjoint open sets containing y and B,
respectively. Thus Y is an almost regular space. Since a semiregular almost
regular space is regular, the last assertion is immediate. �
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5. Characterizations and some basic properties of almost

strongly θ-continuous functions

Proposition 5.1. A function f : X→Y is almost strongly θ-continuous if and
only if for each x∈X and each regular open set V containing f(x), there exists
a θ-open set U containing x such that f(U)⊂V .

Proof. It is easy using definitions. �

Theorem 5.2. For a function f : X→Y the following statement are equivalent.

(1) f is almost strongly θ-continuous.
(2) f(Auθ

)⊂(f(A))δ for each A⊂X.
(3) (f−1(B))uθ

⊂f−1(Bδ) for every B⊂Y .

Proof. (a)⇒(b). Since (f(A))δ is δ-closed in Y , by [27, Theorem 3.1, (f)],
f−1((f(A))δ) is θ-closed in X . Again, since A⊂f−1((f(A))δ),
Auθ

⊂(f−1(f(A))δ)uθ
= f−1((f(A))δ) and so f(Auθ

)⊂(f(A))δ.
(b)⇒(c). Let B⊂Y . Then, by hypothesis f((f−1(B))uθ

)⊂(f(f−1(B))δ⊂Bδ

and so it follows that (f−1(B))uθ
⊂f−1(Bδ).

(c)⇒(a). Let F be any δ-closed set in Y . Then (f−1(F ))uθ
⊂f−1(Fδ) = f−1(F )

which implies that f−1(F ) = (f−1(F ))uθ
and so f−1(F ) is θ-closed. This

proves that f is almost strongly θ-continuous. �

Definition 5.3. ( [9], [10] ): A filter F is said to uθ-converge to a point x,

written as F
uθ→ x, if every θ-open set containing x contains a member of F .

Theorem 5.4. A function f : X→Y is almost strongly θ-continuous if and

only if f(F)
δ
→ f(x) for each x∈X and each filter in X which uθ-converges to

a point x.

Proof. Suppose that f is almost strongly θ-continuous and let F
uθ→ x. Let W

be a regular open set in Y containing f(x). Then by Proposition 5.1, f−1(W )

is a θ-open set in X . Since F
uθ→ x, there exists F∈F such that F⊂f−1(W )

and so f(F )⊂W . This shows that f(F)
δ
→ f(x).

Conversely, let V be a regular open subset of Y containing f(x). Now let F be
the filter generated by the filterbase Vx consisting of all θ-open sets containing

x. By hypothesis f(F)
δ
→ f(x) and so there exists a member f(F ) of f(Vx) such

that f(F )⊂V . Choose U∈Vx such that U⊂F which implies that f(U)⊂f(F )
and f(F )⊂V and so f(U)⊂V . Hence f is almost strongly θ-continuous. �

Theorem 5.5. If f : X→Y is faintly continuous and g : Y →Z be almost
strongly θ-continuous. Then gof is almost continuous.

Proof. Let V be a regular open set in Z. By almost strongly θ-continuity of
g, g−1(V ) is θ-open in Y . So (gof)−1(V ) = f−1(g−1(V )) is open in X , since f
is faintly continuous. Hence gof is almost continuous. �

Theorem 5.6. Let f : X→Y be an almost continuous function defined on a
completely regular space X. Then f is almost z-supercontinuous.
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Proof. Let V be a regular open set containing f(x). Since f is almost contin-
uous, f−1(V ) is open. Again since X is completely regular space, f−1(V ) is
z-open. Hence f is almost z-supercontinuous. �

Corollary 5.7. If f : X→Y is a δ-continuous function defined on a completely
regular space X, then f is almost z-supercontinuous.

Proof. A δ-continuous function is almost continuous. �

Corollary 5.8. Let f : X→Y be an almost strongly θ-continuous function
defined on a completely regular space X, then f is almost z-supercontinuous.

Proof. An almost strongly θ-continuous function is a δ -continuous function
and hence almost continuous. �

6. separation axioms and almost strongly θ-continuous functions

Definition 6.1 ([2], [10]). A subset S of a space X is said to be θ-set if for
every cover {Uα|α∈Λ} of S by θ-open subsets of X, there exists a finite subset
Λo of Λ such that S⊂∪{Uα|α∈Λo}.

Theorem 6.2. If f : X→Y is almost strongly θ-continuous and A is a θ-set
in X, then f(A) is N -closed relative to Y .

Proof. Let {Uα : α∈Λ} be a cover of f(A) by regular open sets in Y . Since f is
almost strongly θ-continuous, {f−1(Uα) : α∈Λ} is a cover of A, by θ-open sets
in X . Since A is θ-set in X , so A⊂∪{f−1(Uα) : α∈Λo} for some finite subset
Λo of Λ. Thus f(A)⊂∪{Uα : α∈Λo}. Hence f(A) is N -closed relative to Y . �

Corollary 6.3. An almost strongly θ-continuous image of a θ-compact space
is nearly compact.

Corollary 6.4. An almost strongly θ-continuous image of an almost compact
space is nearly compact.

Definition 6.5 ([2], [35]). A topological space X is said to be θ-Hausdorff if
each pair of distinct points are contained in disjoint θ-open sets.

Theorem 6.6. Let f : X→Y be an almost strongly θ-continuous injection into
a Hausdorff space Y . Then X is θ-Hausdorff.

Proof. Let x6=y be two points in X . Since f is one-one, f(x)6=f(y). Since
Y is Hausdorff, there exist disjoint open sets U and V containing f(x) and
f(y), respectively. Now, U∩V = φ which implies that U∩V = φ and so
(U)o∩V = φ which in turn implies that (U)o∩V = φ and thus, (U)o∩(V )o = φ.
Let V1 = (U)o and V2 = (V )o, which are regular open sets such that V1∩V2 = φ.
By almost strongly θ-continuity of f, f−1(V1) and f−1(V2) are disjoint θ-open
sets containing x and y, respectively. Hence X is θ-Hausdorff. �

Definition 6.7. A space X is said to be a δT0-space [17] if for each pair of
distinct points x and y in X there exists a regular open set containing one of
the points x and y but not the other.
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Theorem 6.8. Let f : X→Y be an almost strongly θ-continuous injection into
a δT0-space. Then X is a Hausdorff space.

Proof. Let x1 and x2 be two distinct points in X . Then f(x1) 6= f(x2). Since
Y is a δT0-space, there exists a regular open set V containing one of the points
f(x1) or f(x2) but not the other. To be precise, assume that f(x1)∈V . Since
any union of θ-open sets is θ-open, in view of Proposition 5.1 it follows that
f−1(V ) is a θ-open set containing x1. By Lemma 2.4 there exists an open set
U such that x1∈U ⊂ U ⊂ f−1(V ). Then U and X\U are disjoint open sets
containing x1 and x2, respectively and so X is Hausdorff. �

Functions with closed graphs are important in functional analysis and several
other areas of mathematics. Several variants of closed graphs occur in literature
(see for example [19], [23]).

Definition 6.9 ([19]). The graph G(f) of f : X→Y is called θ-closed with
respect to X if for each (x, y)/∈G(f) there exist open sets U and V containing
x and y, respectively such that (U × V )∩G(f) = φ.

Definition 6.10 ([19]). The graph G(f) of f : X→Y is called θ-closed with
respect to X × Y if for each (x, y)/∈G(f), there exist open sets U and V con-
taining x and y, respectively such that (U × V )∩G(f) = φ

Definition 6.11. The graph G(f) of f : X→Y is called uθ-closed with respect
to X × Y if for each (x, y)/∈G(f), there exist θ-open sets U and V containing
x and y, respectively such that (U × V )∩G(f) = φ.

Theorem 6.12. Let f : X→Y be a function whose graph is uθ-closed with
respect to X × Y . If K is a θ-set in Y , then f−1(K) is θ-closed in X.

Proof. Let f : X→Y be a function whose graph G(f) is uθ-closed with respect
to X × Y . Let x∈X\f−1(K). For each y∈K, (x, y)/∈G(f), there exist θ-open
sets Uy and Vy containing x and y, respectively such that f(Uy)∩Vy = φ. The
family {Vy|y∈K} is a cover of K by θ-open sets of Y . Since K is a θ-set, so
K⊂∪{Vy|y∈Ko} for some finite subset Ko of K. Let U = ∩{Uy|y∈Ko}. Then
U is θ-open set containing x and f(U)∩K = φ which implies that U∩f−1(K) =
φ and hence x/∈(f−1(K))uθ

. This shows that f−1(K) is θ-closed in X . �

Corollary 6.13 ([27]). Let f : X→Y be a function whose graph is θ-closed
with respect to X × Y . If K is quasi H-closed relative to Y , then f−1(K) is
θ-closed in X.

Proof. Since K is quasi H-closed relative to Y , it is a θ-set in Y (see [10]). �

Theorem 6.14. If f : X→Y is an almost strongly θ-continuous function and
Y is a Hausdorff space, then G(f), the graph of f is θ-closed with respect to
X × Y .

Proof. Let x∈X and let y 6=f(x). Since Y is Hausdorff, there exist disjoint
open sets V and W containing y and f(x), respectively. So V and (W )o are
disjoint sets containing y and f(x), respectively. Since f is almost strongly
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θ-continuous, so there is an open set U containing x such that f(U)⊂(W )o.
Then f(U)⊂(W )o⊂Y \V . Consequently, U × V contains no point of G(f).
Hence G(f) is θ-closed with respect to X × Y . �

Corollary 6.15. If f : X→Y is an almost strongly θ-continuous function and
Y is Hausdorff, then G(f), the graph of f is θ-closed with respect to X.

Theorem 6.16. If f : X→Y is an almost strongly θ-continuous function and
Y is an almost regular Hausdorff space, then G(f), the graph of f is uθ-closed
with respect to X × Y .

Proof. Let x∈X and let y 6=f(x). Since Y is Hausdorff, there exist disjoint
open sets V1 and W1 containing y and f(x), respectively. Thus, there exist
disjoint regular open sets V = (V 1)

o and W = (W 1)
o containing y and f(x),

respectively. Since f is almost strongly θ-continuous, by Proposition 5.1, there
exists a θ-open set U containing x such that f(U)⊂W and so f(U)⊂W⊂Y \V .
Thus U ×V contains no point of G(f). Since Y is almost regular, V is a θ-open
set. Thus U × V is a θ-open set and (U × V )∩G(f) = φ. Hence G(f) is uθ

-closed with respect to X × Y . �
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