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Abstract. The connectivity in Alexandroff topological spaces is

equivalent to the path connectivity. This fact gets some specific prop-

erties to Z
2, equipped with the Khalimsky topology. This allows a

sufficiently precise description of the curves in Z
2 and permit to prove

a digital Jordan curve theorem in Z
2.
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1. Introduction

The computer sciences, the medical imagery, the robotic sciences and other
applied sciences, make more and more useful the study of discrete sets. There
is an approach where the graph theory takes place, it permits to check some
results as the Jordan curve theorem: If Γ is an n-connected closed curve in
Z

2, then Z
2 \ Γ has two and only two n-connectivity components (n + n = 12,

n = 4, 8) (see [8]).
This result is a kind of generalization of the classical Jordan curve theorem

in R
2 stating that: If Γ is a simple closed curve in R

2, then R
2 \Γ has two and

only two connectivity components.
A generalization of this theorem to the discrete sets needs to define topolo-

gies on this kind of sets. On Z
2, more than one is developed (Khalimsky,

Marcus, Wyse), see [5, 9]. Nowadays, the Khalimsky’s one is one of the most
important concepts of the digital topology. It is well known that a criterion of
the convenience of a topology on Z

2 is the validity of an analogue of the Jordan
curve theorem.

In [5] Kopperman, Khalimsky and Meyer stated a generalization in Z
2

equipped with the Khalimsky topology.
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Our purpose in this note is to present a new proof of the Khalimsky’s Jordan
curve theorem using the specificity of the Khalimsky’s plane as an Alexandroff
topological space and the specific properties of connectivity on these spaces.

First of all, we present the result about the connectivity in Alexandroff
spaces useful for our purpose: It is proved that in an Alexandroff topologi-
cal space that the connectivity is equivalent to the C.O.T.S-arc-connectivity
which is equivalent to the C.O.T.S-path-connectivity [1, 3, 9]. The C.O.T.S
(connected ordered topological space) is described in [5, 8]. Here our C.O.T.S
is an interval of Z equipped with the Khalimsky topology. Following this, we
present the Khalimsky plane and we describe the specialization order, our aim
is to understand the behaviour of the line-complex of an arc. This leads to
a geometric description of arcs and simple closed curves. The specificity of
the Khalimsky topology gives us some properties of the points in (Z2, κ) and
there adjacency sets. This allows a sufficiently precise description of the arcs
in (Z2, κ) and permit to prove the digital Jordan curve theorem.

2. Alexandroff Topological spaces

Definition 2.1. Let (X, τ) be a topological space, (X, τ) is said to be an Alexan-
droff topological space , or shortly an A-space if any intersection of elements of
τ is an element of τ .

It is well known that a topological space (X, τ) is an A-space if and only if
every point x ∈ X has a smallest open neighborhood denoted by N(x). The
set B = {N(x); x ∈ X} is a base for the topology τ .

Recall that, given an Alexandroff topology τ on a set X , the specialization
preorder (�) on X , associated to τ is defined by:

∀(x, y) ∈ X × X, (x � y ⇔ y ∈ N(x) ⇔ x ∈ {y})

Where {y} is the closure of the point {y}.
It is proved in [2] (see [1, 5]) that:

Theorem 2.2. On a given set X the specialization preorder determines a one
to one correspondence between the T0-Alexandroff Topologies and the partial
orders.

In what follows, we present some terminologies and definitions necessary for
understanding the results of the next section.

Recall that a topological space (X, τ) is a T0-space if for each pair of distinct
points of X , there exist a neighborhood of one of them not containing the other.

A topological space, (X, τ), is said to be connected if it is a non empty set
and the only subsets which are both open and closed are the empty set ∅ and
X . A subset A of a topological space (X, τ) is called connected if it is connected
as a topological space with the induced topology, equivalently: A is non empty
and for all non empty open subsets U and V of X , we have:

(U ∩ A 6= ∅, V ∩ A 6= ∅) ⇒ U ∩ V ∩ A 6= ∅.
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A connectivity component (or shortly a component) of a topological space
is a connected subset which is maximal with respect to the inclusion. A com-
ponent is always closed.

In an A-space (X, τ), a subset of distinct points {x, y}, is connected if and
only if either x ∈ N(y) or y ∈ N(x). We say that x and y are adjacent or y is
adjacent to x.

Let x and y be two points in a topological space (X, τ), a path (resp. an
arc) linking x and y is a couple (I, γ) where I = [a, b] is a compact interval
of R equipped with the usual topology and γ a continuous map (resp. an
homeomorphism) of I onto X such that γ(a) = x and γ(b) = y.

A topological space (X, τ) is said to be path (resp. arc) connected if for any
two points x and y in (X, τ), there exists a path (resp. an arc) linking x and
y.

When (X, τ) is a point set, the path (resp. arc) connectivity is generalized,
by the C.O.T.S connectivity, see [2, 9]. A connected ordered topological space
(C.O.T.S) is a connected topological space L with the property: for any x1,
x2, x3 distinct points in L, there is an i such that xj and xk lie in different
components of L \ {xi} where {i, j, k} = {1, 2, 3}.

A C-path (resp. C-arc) in the topological space (X, τ) is a couple (I, γ)
where I is a C.O.T.S and γ is a continuous map (resp. an homeomorphism)
from I onto X . The space (X, τ) (resp. a nonempty subset A of X ) is said to
be C.O.T.S path connected (C.P.C) (resp. C.O.T.S arc connected (C.A.C)) if
for any two points x and y in (X, τ) (resp. in A) there exists a C-path (resp.
C-arc) in X (resp. in A) joining x and y. We recall from [1, 3, 5, 9], the next
result.

Theorem 2.3. Let (X, τ) be an Alexandroff topological space and A ⊆ X a
subset. Then the following conditions are equivalent.

(i) A is path-wise connected (P.C).
(ii) A is C.O.T.S-path-wise connected (C.P.C).
(iii) A is C.O.T.S-arc-wise connected (C.A.C).
(iv) A is connected.

The following proposition, (see [7, 8]), establishes the relationship between
continuity in A-spaces and preorders. As a consequence, the rich theory of
preordered sets can be put to work here.

Proposition 2.4. Let X and Y be two T0-Alexandroff topological spaces and
f : X → Y be an application, the following conditions are equivalent.

(i) f is a continuous map.
(ii) f is an increasing map for the specialization pre-orders of X and Y .

3. The Khalimsky plane

Let B = {{2n + 1}, {2n− 1, 2n, 2n + 1}, n ∈ Z} be a subset of P(Z); B is
a basis of a topology κ on Z. The topological space (Z, κ) is a T0-Alexandroff
topological space called the Khalimsky or the digital line. In (Z, κ), the point
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set {x} is open (resp. closed) if and only if x is odd (resp. even), N(2n + 1) =
{2n + 1}, N(2n) = {2n − 1, 2n, 2n + 1}. A half line is open if and only if its
end point is open. The specialization order is as follows:

... − 3 � −2 � −1 � 0 � 1 � 2 � 3...

A pair {x, y}, x 6= y, is a connected subset of (Z, κ) if and only if y = x + 1.
In this note the Khalimsky plane (Z2, κ) is the cartesian product (Z, κ) ×

(Z, κ) equipped with the product topology. Let (x, y) be a point in (Z2, κ),
(x, y) is an open (resp. closed) point if both x and y are odd (resp. even),
(x, y) is said to be a pure point. Otherwise (x, y) is said to be a mixed point,
open-closed (resp. closed-open) if x is odd (resp. even) and y is even (resp.
odd). The smallest neighborhood N(x, y) of the point (x, y) of (Z2, κ) is:

– N(x, y) = {(x, y)} when (x, y) is an open point.
– N(x, y) = {(x, y − 1), (x, y), (x, y + 1)} when (x, y) is an open-closed

point.
– N(x, y) = {(x − 1, y), (x, y), (x + 1, y)} when (x, y) is a closed-open

point.
– N(x, y) = {(x − 1, y − 1), (x − 1, y), (x − 1, y + 1), (x, y − 1), (x, y),

(x, y + 1), (x + 1, y − 1), (x + 1, y), (x + 1, y + 1)}
= {(a, b) ∈ Z

2, ‖(a, b) − (x, y)‖∞ ≤ 1} when (x, y) is a closed point.

We denote by A(x, y) the adjacency set of (x, y) and we have:

– If (x, y) is a pure point

A(x, y) = {(x − 1, y − 1), (x − 1, y), (x − 1, y + 1), (x, y − 1),

(x, y + 1), (x + 1, y − 1), (x + 1, y), (x + 1, y + 1)}

– If (x, y) is a mixed point

A(x, y) = {(x − 1, y), (x, y + 1), (x + 1, y), (x, y − 1)}

The specialization order � on Z
2 is as follow:

∀(x, y) ∈ Z
2, (x, y) � (x, y)

If (x, y) is a closed point, we have (x, y) ≺ (a, b) for all (a, b) such that
‖(a, b) − (x, y)‖∞ = 1.

If (x, y) is a open point, we have (a, b) ≺ (x, y) for all (a, b) such that
‖(a, b) − (x, y)‖∞ = 1.

If (x, y) is a open-closed point, (x, y) ≺ (x, y + 1), (x, y) ≺ (x, y − 1),
(x, y) ≻ (x − 1, y) and (x, y) ≻ (x + 1, y).

If (x, y) is a closed-open point, (x, y) ≺ (x − 1, y), (x, y) ≺ (x + 1, y),
(x, y) ≻ (x, y + 1) and (x, y) ≻ (x, y − 1).

The connectivity graph of (Z2, κ) has all the points of Z
2 as vertices. Two

vertices (x, y) and (a, b) are connected if and only if ‖(a, b)− (x, y)‖∞ = 1 and
(x, y) and (a, b) are not simultaneously mixed points. We note that two edges
can not cross.

The following remark is useful to imagine the geometric behaviour of various
lines in Z

2.
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Remark 3.1. If (p + q) is even, the connectivity graph is invariant under the
action of the translation T(p,q) .

If p and q are even, then, the Hass diagram (graph of the order) of (Z2,�)
is invariant under the action T(p,q).

If p and q are odd and (p + q) is even, then T(p,q) transforms (Z2,�) in

(Z2,�).
The connectivity graph and the Hass diagram on Z

2 ar invariant under a
rotation by π

2 .

4. Paths, arcs and curves in the Khalimsky plane

The spaces (Z, κ) and (Z2, κ) are equipped with the Khalimsky topology.
An interval I = [a, b] = {a, a + 1, a + 2, ..., a + n = b} is a C.O.T.S. Thus give
the following:

Definition 4.1. A path (resp. an arc) in (Z2, κ) is a couple (I, γ), where
I = [a, b] = {a, a + 1, a + 2, ..., a + n = b} is an interval in (Z, κ) and γ is a
continuous map (resp. an homeomorphism) from I into (Z2, κ).

It is obvious that the image γ(I) = Γ is connected. Denoting by Γ̂ the line-

complex of γ, Γ̂ is the broken line in R
2 having the points of Γ as vertices and

completed with the edges linking the consecutive vertices of Γ.
Among the several interesting consequences of Proposition (2.4), one can

check the following:

Proposition 4.2. Let Γ̂ be the line-complex of an arc (I = [a, b] = {a, a +
1, a + 2, ..., a + n = b}, γ) in (Z2, κ) and denote by γa, γa+1, ...γa+n the vertices

of Γ̂. Then the following hold:

(i) For all i ∈ {a, a+1, a+2, ..., a+n = b}, we have, either γi−1 � γi � γi+1

or γi−1 � γi � γi+1.

(ii) If the vertex γi is a mixed point of (Z2, κ), then Γ̂, remains a straight
line at this point.

(iii) If the vertex γi is a pure point of (Z2, κ), then Γ̂, can rotate by π
4 , π

2 , 3π
2 , 7π

4

or 2π (that means Γ̂ can’t have an acute angle π
4 ).

Proof. The map γ is one-to-one, thus Γ don’t have double points.
(i) Without loss of generality, we can suppose that a ∈ 2Z, so a � a + 1 �

a+2 � a+3 � a+4.... Since the map γ is continuous, it is strictly increasing.
Hence: γa � γa+1 � γa+2 � γa+3 � ....

(ii) Let γi be a mixed point (closed-open for example) in Γ. According to
the parity of i, we have, i− 1 � i � i + 1 or i− 1 � i � i + 1. So we must have
γi−1 � γi � γi+1 or γi−1 � γi � γi+1. In the first case, the three points must
have the same second coordinate and in the second case, they must have the
same first coordinate. This implies that Γ̂ still straight.

The same argument can be used when γi is open-closed
(iii) Let γi be a pure point in Γ, then γi is comparable (smaller or greater) to

P for all P in {P ∈ Z
2, ‖P −γi‖∞ = 1}. Thus γi+1 ∈ {P ∈ Z

2, ‖P −γi‖∞ = 1}.
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This ables Γ̂ to turn at P by the angle α = 0 or π
4 or π

2 or 3π
4 or π or 5π

4 or 3π
2 or

7π
4 or 2π. Assume α = π, then we have γi−1 = γi+1 which is forbidden. Now if

α = 3π
4 or 5π

4 , then the points γi−1 and γi+1 are adjacent and we get γi+1 � γi−1

or γi+1 � γi−1. The map γ−1 is continuous, so (γi+1 � γi−1 ⇒ i + 1 � i − 1)
and (γi+1 � γi−1 ⇒ i + 1 � i − 1) which is impossible. �

It follows readily from the previous Proposition, that we have the following
remarks.

Remark 4.3. Let (I = [a, b], γ) be an arc, γ(I) = Γ and Γ̂ its line-complex.

(i) When we follow Γ̂, we don’t meet an acute angle. We can turn only on
the pure vertices.

These restrictions disappear if (I = [a, b], γ) is only a path. To see
this, consider the map γ : {0, 1, 2, 3} → Z

2, γ(0) = (0, 0),
γ(1) = (0, 1) = γ(2), γ(3) = (1, 1). One can check easily that γ is

continuous and Γ̂ rotate at (0, 1) which is a mixed point.

(ii) If Pi (a + 1 ≤ i ≤ a + n− 1) is a vertex in Γ̂, then Pi has two adjacent
points in Γ.

(iii) It is forbidden to have two mixed points in consecutive positions in Γ̂.

5. The Jordan curve theorem

This section is mainly concerned with the Jordan curve theorem. The pur-
pose of this section is to prove the Jordan curve theorem. We start with the
following definitions.

Definition 5.1. A simple closed curve (S.C.C) in (Z2, κ) is the image of an
interval I = [a, a + n] = {a, a + 1, ..., a + n} by a continuous map γ in (Z2, κ)
such that γ(a) = γ(a+n) and any connected subset of Γ is the image of an arc.

Remark 5.2. Our definition of the closed simple curve meets the Kiselmann’s
one for the Khalimsky Jordan curve which is a homeomorphic image of a Khal-
imsky circle Z/mZ, where m is an even integer ≥ 4.

As an initial step toward understanding the structure of (S.C.C), we check
the following.

Proposition 5.3. If Γ is a simple closed curve (S.C.C) in (Z2, κ), then Card(Γ)
is an even integer ≥ 4.

Proof. Assume that Γ = {P1, P2, P3}, Γ̂ is a triangle in the connectivity graph

of (Z2, κ). Thus, two of the angles of Γ̂ are π
4 which is in contradiction with

the definition of an arc. Thus Card(Γ) ≥ 4.
Assume now that Γ = {P1, P2, P3, P4}. If one of the Pi, (1 ≤ i ≤ 4) is a

mixed point, then, Γ̂ can not rotate at this Pi. To be closed, Γ needs to be
a triangle with acute angles. Thus {P1, P2, P3, P4} are pure points. The line-

complex Γ̂ of Γ is a square , two of its vertices are closed points and the others
are open points and we have the following order:
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...P1 � P2 � P3 � P4 � P1 � P2 � P3 � P4...

or

...P1 � P2 � P3 � P4 � P1 � P2 � P3 � P4...

Assume that Γ = {P1, P2, P3, P4, P5}. The fact that any subset of Γ is the
image of an arc yields:

...P1 � P2 � P3 � P4 � P5 � P1 � P2 � P3...

or

...P1 � P2 � P3 � P4 � P5 � P1 � P2 � P3...

which is incoherent in the both cases. This incoherence disappears when
Card(Γ) is even. �

Let Γ be a (S.C.C) in (Z2, κ), we denote by A the subset of Z
2 interior to Γ̂

and B the subset of Z
2 exterior to Γ̂. Our aim is to prove that A and B are

connectivity components of Z
2 \ Γ.

We start our search with the case where Card(Γ) ≤ 8.

Proposition 5.4. Let Γ be a (S.C.C) in (Z2, κ) and Card(Γ) ≤ 8. Denote by

A the subset of Z
2 interior to Γ̂ and B the subset of Z

2 exterior to Γ̂.Then A
and B are two connectivity components of Z

2 \ Γ.

Proof. If Card(Γ) = 4, the unique curve (modulo the geometric translations
and the rotation mentioned in Remark(0.3.1)) is the square where the four
vertices are pure points and A is a mixed point P . The smaller neighborhood
of P is N(P ) = {P1, P, P3} where P1 and P3 are the two open vertices in Γ.
The set {P2, P, P4} is closed in (Z2, κ), thus A is a component of Z

2 \ Γ.
An example of such Γ is

Γ = {P1 = (−1, 1), P2 = (0, 2), P3 = (1, 1), P4 = (0, 0)},

here A = {P} = {(0, 1)}.
If M and N are two pure points in B, we can avoid (Γ ∪ A) by the line-

complex of a path JN
M where all its vertices are pure points.

If M is a mixed point in B, M has an adjacent pure point M1 in B otherwise
M = P . Let N be a pure point in B (N 6= M), we can avoid (Γ ∪ A) by the
line-complex of a path JN

M1
where all the vertices are pure points. We add

to JN
M1

the point M and we have JN
M ⊂ B a path joining M and N , so B is

(C.P.C). Hence B is a connectivity component of Z
2 \ Γ.

Assume Card(Γ) = 6, Γ̂ can not turn at a mixed point, can not have an acute
angle and each point of Γ has two and only two adjacent points in Γ. These
constraints get off the possibility of closed simple curve Γ with Card(Γ) = 6.

Modulo the geometric translation and the rotation mentioned in Remark(0.3.1)),
there is four type of closed simple curves Γ with Card(Γ) = 8. It is easy to
verify directly that in the four cases A and B are connectivity components of
Z

2 \ Γ. �
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To prove the general case we need the following lemmas:

Lemma 5.5. Let Γ be a (S.C.C) in (Z2, κ). Let Γ̂, A, and B defined as before,
we have:

(i) If P ∈ A, then A(P ) ⊂ A ∪ Γ.
(ii) If P ∈ B, then A(P ) ⊂ B ∪ Γ.
(iii) If P is a pure point in A and A 6= {P}, then P has an adjacent mixed

point in A.
(iv) If P is a mixed point in A and A 6= {P}, then P has an adjacent pure

point in A.

Proof. (i) Let P be a mixed point in A, A(P ) = {P1, P2, P3, P4}, where Pi, 1 ≤
i ≤ 4 are pure points. P1 and P3 have the same second coordinate with P , and

P2 and P4 have the same first coordinate with P . If Pi ∈ B then Γ̂ must run
between Pi and P , which is impossible, so A(P ) ⊂ A ∪ Γ.

Let P be a pure point in A,

A(P ) = {P1, P2, P3, P4, M1, M2, M3, M4}

where Mi is a mixed point and Pi is a pure point (i = 1, 2, 3, 4). M1 and
M3 have the same second coordinate with P , M2 and M4 have the same first
coordinate with P , P1 and P2 have the same second coordinate with M2, P3

and P4 have the same second coordinate with M4.
If Mi ∈ B, then Γ̂ must run between Mi and P , which is impossible. Thus

Mi ∈ A ∪ Γ.
If Pi ∈ B, then Γ̂ links Mi and Mi+1, which is impossible too, thus A(P ) ⊂

A ∪ Γ.
(ii) The same Proof as in (i).
(iii) If P is a pure point in A, then A(P ) ⊂ A ∪ Γ, and Card(A(P )) = 8.

The assumption A(P ) ⊂ Γ leads to Γ = A(P ) and A = {P}, a contradiction.
Thus we get A(P ) ∩ A 6= ∅. If one of the Mi’s belong to A(P ) ∩ A, we obtain
the desired conclusion. If one of the Pi’s belong to A(P ) ∩ A, the two mixed

points Mi and Mi+1 are in A too, otherwise Γ̂ turns in a mixed point, thus P
has an adjacent mixed point in A.

(iv) Let P be a mixed point in A, then A(P ) = {P1, P2, P3, P4}. If A(P ) ⊂ Γ,
then Γ = A(P ) and A = {P} which contradict the hypothesis A 6= {P}, so
A(P ) ∩ A 6= ∅. �

Lemma 5.6. Let Γ be a (S.C.C) in (Z2, κ) such that Card(Γ) > 8, and let γ1

and γ2 be two successive points in Γ, (‖γ1−γ2‖∞ = 1), then A(γ1)∩A(γ2)∩A 6=
∅ and A(γ1) ∩ A(γ2) ∩ B 6= ∅.

Proof. Modulo the geometric translation and the rotation mentioned in re-
mark(0.3.1), four cases may occur:

First case: γ1 and γ2 are successive points in a straight line parallel to one
of the coordinates axes on Γ̂, then one of the two points is pure (suppose it γ1),
and the other is mixed. We denote A(γ1) = {P1, P2, P3, P4, M1, M2, M3, M4}
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and A(γ2) = {P ′

1, P
′

2, P
′

3, P
′

4}, A(γ1) ∩ A(γ2) ∩ A = {P ′

3 = P2} or {P ′

1 = P1},
A(γ1) ∩ A(γ2) ∩ B = {P ′

1 = P1} or {P ′

3 = P2}.

Second case:γ1 and γ2 are successive points in a straight diagonal line on Γ̂,
then the two points are pure. We denote A(γ1) = {P1, P2, P3, P4, M1, M2, M3, M4}
and A(γ2) = {P ′

1, P
′

2, P
′

3, P
′

4, M
′

1, M
′

2, M
′

3, M
′

4}, A(γ1)∩A(γ2)∩A = {M ′

4 = M3}
or {M ′

2 = M1}, A(γ1) ∩ A(γ2) ∩ B = {M ′

2 = M1} or {M ′

4 = M3}.

Third case: The line-complex Γ̂ rotate at γ1 by π
4 , in this case γ2 is a

pure point and we have: A(γ1) ∩ A(γ2) ∩ A = {M ′

4 = M3} or {M ′

2 = M1},
A(γ1) ∩ A(γ2) ∩ B = {M ′

2 = M1} or {M ′

4 = M3}.

Fourth case: The line-complex Γ̂ rotate at γ1 by π
2 , in this case γ2 is a

mixed point and we have: A(γ1) ∩ A(γ2) ∩ A = {P ′

4 = P4} or {P ′

2 = P1},
A(γ1) ∩ A(γ2) ∩ B = {P ′

2 = P1} or {P ′

4 = P4}.
Thus A(γ1) ∩ A(γ2) ∩ A 6= ∅ and A(γ1) ∩ A(γ2) ∩ B 6= ∅. �

As a consequence of the previous lemma, we get:

Corollary 5.7. Let Γ be as in the previous lemma and let P and Q two points
in Γ, then, there exists a path in A linking A(P ) to A(Q).

Proposition 5.8. Let Γ be a (S.C.C) in (Z2, κ), and let Γ̂, A, and B defined
as before. If U and V are two points of A, then, there exists a path JV

U linking
U and V .

Proof. Let U ∈ A, If A(U) ∩ Γ 6= ∅, we choose γ(U) ∈ A(U) ∩ Γ. Otherwise,
consider a point U1 ∈ A(U). If A(U1) ∩ Γ 6= ∅, we choose γ(U) ∈ A(U1) ∩ Γ,
otherwise we consider A(U2) where U2 ∈ A(U1), etc...After finite steps, we

obtain γ(U) ∈ Γ and a path in A, J
γ(U)
U linking U and γ(U).

Let V ∈ A, (U 6= V ), and consider J
γ(V )
V .

Now, using the previous corollary, we obtain a path in A, J
γ(U)
γ(V ) , linking

A(γ(U)) and A(γ(V )). The needed path is:

JV
U = {J

γ(U)
U \ γ(U)} ∪ J

γ(V )
γ(U) ∪ {JV

γ(V ) \ γ(V )}.

�

Corollary 5.9. Let Γ be a (S.C.C) in (Z2, κ), and let Γ̂, A, and B defined as
in the previous proposition. If U and V are two points of B, there exists a path
JV

U linking U and V .

We close this section by the following results.

Theorem 5.10. Let Γ be a (S.C.C) in (Z2, κ), then Γ share Z
2 in two com-

ponents, both of them is (C.P.C).

Corollary 5.11 (Khalimsky Jordan curve theorem). Let Γ be a (S.C.C) in
((Z2, κ), then Z

2 \ Γ has exactly two and only two connectivity components.
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