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ABSTRACT: Mesoporous silica nanoparticles (MSNs) are highly attractive supports for the 

design of controlled delivery systems able to act as containers for the encapsulation of 

therapeutic agents overcoming common issues such as poor water solubility and poor stability of 

some drugs and also enhancing their bioavailability. In this context, we describe herein the 

development of polyglutamic acid (PGA)-capped MSNs able to selectively deliver rhodamine B 
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and doxorubicin. PGA-capped MSNs remained closed in an aqueous environment yet are able to 

deliver the cargo in the presence of pronase due to the hydrolysis of the peptide bonds in PGA. 

The solids prepared released less than 20% of the cargo in one day, whereas they were able to 

reach 90% of the maximum release of the entrapped guest in ca. 5 h in the presence of pronase. 

Studies of the PGA-capped nanoparticles with SK-BR-3 breast cancer cells was also tested. 

Rhodamine-loaded nanoparticles were not toxic, while doxorubicin-loaded nanoparticles were 

able to kill efficiently more than 90% of cancer cells at a concentration of 100 µg/ml. 

 

Introduction  

 Despite notable improvements in recent years in the development of new therapeutic 

approaches, due to a better knowledge about drugs physicochemical properties and the 

mechanisms of their cellular uptake, many of the antitumor drugs commonly used in 

chemotherapy still present significant adverse effects and, often, a poor efficacy.1-5 These usual 

issues for drugs in oncologic treatments normally resulted in lack of specificity. Moreover some 

drugs show poor solubility, stability or are rapidly eliminated.6-8 In this context nanomedicine 

attempts to offer a broad variety of tools aimed to improve conventional therapeutic and 

diagnostic strategies, being a landmark purpose the development of more effective and safer 

treatments, reducing toxicity of drugs to non-target organs.9-13 

 In this scenario a large variety of drug nanocarriers with different size, structure and 

surface features, such as liposomes,14-16 polymeric nanoparticles17-19 or inorganic nanoparticles 

has been developed over the last few decades.20,21 Among them mesoporous silica nanoparticles 

(MSNs) have gained great attention due to their unique features such as stability, 
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biocompatibility, large load capacity and the possibility of easy functionalizing their surface to 

obtain targeting and drug release-controlling nanodevices.22,23 In particular, the MCM-41 

material with an hexagonal arrangement of cylindrical mesopores has been extensively studied, 

since its first use as a drug nanocarrier in 2001.24 Since then, many MCM-41-based nanoparticles 

have been developed, most of them including different molecules attached on MSNs surface 

acting as specific stimuli-responsive gates, thus allowing “zero premature release” and delivery 

only upon application of a specific stimulus.25,26,27 These concepts have allowed researchers to 

design on-command delivery carriers that can be triggered by stimuli such as changes in pH,28-37 

light,38-45 temperature46-50 or ultrasound,51,52 and the presence of given enzymes53,54 or of 

complementary oligonucleotides.55-58 

 In particular, the enzymatic degradation of gatekeepers in MSNs represents an interesting 

way to achieve controlled release of drugs in target cells. In fact, the use of tailor-made capping 

derivatives and enzymes is envisioned to have a large potential in providing selectivity in 

advanced gated devices for delivery of drugs and biomolecules at-will in biological 

environments. In particular, when combined with the unique properties of MSNs, enzyme-

responsive systems can be designed to perform target functions with high specificity which is 

controlled by the triggering enzyme. Moreover, the use of enzymes for selective release 

applications opens up a wide range of new perspectives in the design of bio-compatible release 

systems. In fact, and despite some reported enzyme-responsive nanomaterials for programmed 

drug release, examples of enzyme-induced delivery using capped MSNs are still relatively 

limited. In this subfield of gated nanochemistry examples that use esterases,59-61 glycosidases,62-64 

peptidases,65-68 reductases,69,70 and DNases71,72 have been reported. In relation to caps, small 

molecules, certain oligomers, polymers, peptides and DNA sequences able to be hydrolysed in 
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the presence of target enzymes have been used.25 In relation to polymers, we have focused our 

attention to poly-L-glutamic acid (PGA) as a suitable polymer to be used as gatekeeper in gated 

mesoporous materials due to its firm stability in plasma and easy degradation by lysosomal 

enzyme cathepsin B.73,74 In addition, PGA is a non-toxic and non-immunogenic molecule that for 

instance has already been employed in a phase III trial polymer-anticancer drug conjugate, 

Opaxio, consisting of paclitaxel conjugated to glutamic acid residues applied to ovarian or 

fallopian tube cancer treatment.75 In fact the use of PGA nanoparticles as carriers to encapsulate 

drugs has been extensively explored.76 However, as far as we know, the combined use of PGA 

and MSNs is rare. Moreover MSNs are easy to poly-functionalize. For instance, this poly-

functionalization allows the incorporation of gating entities (that could control the release of the 

cargo at will upon application of external stimuli), targeting ligands or 

dyes/fluorophores/metallic nanoparticles for diagnostic purposes. Moreover, nanoporous silica 

scaffolds can be loaded with a number of different cargoes. 

 In this context, and taking into account our interest in the development of gated MSNs for 

mass transport and controlled delivery,25,77 it was in our aim to design a PGA gated material, 

based on MSNs, as a simple to prepare and stable delivery systems of cytotoxic agents. In 

particular we described herein the preparation of two hybrid mesoporous silica nanoparticles 

loaded with rhodamine B (S1) or doxorubicin (S2) and functionalised with PGA. Cargo delivery 

studies in the absence and presence of pronase were carried out. Moreover the use of the 

nanoparticles as suitable systems to deliver the cargo in breast cancer cells is demonstrated.  

Experimental 
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Reagents. The chemicals tetraethylorthosilicate (TEOS), n-cetyltrimethylammonium bromide 

(CTAB), sodium hydroxide (NaOH),  (3-aminopropyl)triethoxysilane (APTES), poly-L-glutamic 

acid (PGA) sodium salt (MW 6300), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), 

D6046 DMEM medium and pronase from S. griseus were provided by Aldrich. The cell 

proliferation reagent WST-1 was obtained from Roche Applied Science and SK-BR-3 human 

breast carcinoma cells from American Type Culture Collection. Doxorubicin hydrochloride was 

provided by Sequoia Research Products, Ltd. All products were used as received. 

General Techniques. Powder X-ray measurements were performed on a Seifert 3000TT 

diffractometer using CuKα radiation. Thermogravimetric analyses were carried out on a 

TGA/SDTA 851e Mettler Toledo balance, using an oxidant atmosphere (air, 80 mL/ min) with a 

heating program consisting of a heating ramp of 10°C per minute from 393 to 1273 K and an 

isothermal heating step at this temperature for 30 min. Elemental analysis was performed in a CE 

Instrument EA-1110 CHN Elemental Analyzer. Transmission electron microscopy (TEM) 

images were obtained with a 100 kV Philips CM10 microscope. N2 adsorption-desorption 

isotherms were recorded with a Micromeritics ASAP2010 automated sorption analyzer. The 

samples were degassed at 120°C in vacuum overnight. The specific surface areas were calculated 

from the adsorption data in the low pressure range using the Brunauer-Emmett-Teller (BET) 

model. Pore size was determined following the Barrett-Joyner-Halenda(BJH) method. 

Fluorescence measurements were carried out in a JASCO FP-8500 Spectrophotometer.  Confocal 

microscopy imaging was performed using a Zeiss LSM 710 microscope. Cell viability 

measurements were carried out with a Multiskan Microplate Photometer by Thermo Scientific.  

Synthesis of MCM-41 mesoporous silica nanoparticles. The MCM-41 mesoporous 

nanoparticles were synthesized using the following procedure: n-cetyltrimethylammonium 
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bromide (CTAB, 1.00 g, 2.74 mmol) was first dissolved in 480 mL of deionized water. Then 

NaOH (3.5 mL, 2.00 mol L-1) in deionized water was added to the CTAB solution, followed by 

adjusting the solution temperature to 80°C. TEOS (5.00 mL, 2.57×10-2 mol) was then added 

dropwise to the surfactant solution. The mixture was allowed to stir for 2h to give a white 

precipitate. Finally the solid product was centrifuged, washed with deionized water and dried at 

60°C. To prepare the final porous material (calcined MCM-41), the as-synthesized solid was 

calcined at 550°C using an oxidant atmosphere for 5h in order to remove the template phase. 

Synthesis of solid S1. 400 mg of calcined MCM-14 and 200 mg of rhodamine B dye were 

suspended in 17.5 ml of anhydrous acetonitrile. The mixture was stirred for 24h at room 

temperature, in order to achieve the maximum loading of dye in the mesopores, and then was 

filtered and dried under vacuum. 200 mg of the loaded solid were resuspended in 8.5 ml of 

acetonitrile in presence of APTES (1.875 ml) and of an excess of rhodamine B (60 mg). The 

suspension was stirred for 5.5h at room temperature. The resulting solid was centrifuged and 

washed with acetonitrile to remove the dye molecules present outside the pores and then was 

dried under vacuum. Finally 100 mg of the solid and 354 mg of PGA (0.03 mol) were suspended 

in 16 ml of 0.1 M PBS in presence of an excess of rhodamine B and EDC (191.7 mg, 0.5 mmol). 

The mixture was stirred at room temperature for 24h and the final S1 material was obtained, 

washed with abundant water and dried under vacuum.  

 

Synthesis of solid S2. Solid S2 was prepared following the same procedure described for S1 but, 

in this case, the MCM-41 material was loaded with doxorubicin. 200 mg of calcined MCM-14 

and 40 mg of doxorubicin were suspended in 1.6 ml of deionised water and stirred for 24h at 

room temperature. Then the mixture was filtered and dried under vacuum. The doxorubicin 
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loaded solid (200 mg) was then resuspended in 8.5 ml of acetonitrile in presence of an excess of 

doxorubicin and APTES (1.88 ml). The suspension was stirred for 5.5 h at room temperature. 

The obtained solid was isolated by centrifugation, washed with acetonitrile and dried under 

vacuum. Afterward, this functionalized solid (100 mg) was suspended in 0.1 M PBS with 354 

mg of PGA in the presence of an excess of doxorubicin and EDC (191.7 mg, 0.5 mmol). The 

mixture was stirred at room temperature for 24h and finally the S2 solid was isolated by 

centrifugation and washed with abundant water followed by drying under vacuum.  

Cargo Release Studies. In a typical experiment, 1 mg of S1 or S2 were suspended in 1 mL of 

distilled water at pH 8.0 and sonicated. Then, each suspension was divided into two aliquots of 

500 µL and 2.5 mL of distilled water at pH 8.0 or 1 mL of pronase solution (0.12 mg/ml in 

distilled water at pH 8.0) was added. Dye or drug delivery was monitored through the emission 

band of rhodamine B or doxorubicin centred at 610 nm (λexc = 453 nm) or 557 nm (λexc = 480 

nm), respectively.  

 

Cell Culture Conditions. SK-BR-3 human breast cancer cells were cultured at 37°C in DMEM 

medium containing 1000 mg/L glucose, phenol red, 10% fetal calf serum and 2 mM glutamine.  

 

Confocal Microscopy Imaging. SK-BR3 cells were seeded on 24 mm glass coverslips in 6-well 

plates in triplicate at a seeding density of 8×105 cells/well.  After 48h, cells were treated with S1 

or S2 at a final concentration of 50 µg/mL during 48h more.   

 

WST-1 Cells Viability Assay. Quantitation of cell viability rates was determined using Cell 

Proliferation Reagent WST-1 following supplier’s instructions. Cells were cultured in sterile 96-
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well microtiter plates (25×103 cells/well) in triplicate and were allowed to settle for 48h. Then 

solid S1 or S2 were added at the final concentration of 100, 50, 25, 12.5 and 6.25 µg/mL during 

48h. Then, DMEM medium was removed and replaced with PBS with 1000 mg/L glucose to 

avoid phenol red interference with the absorbance reading, WST-1 was added and the plates 

were incubated for 1h at 37°C. Finally, the absorbance at 490 nm was measured.  

 

Results and Discussion  

Design and synthesis of gated materials  

 The delivery system we have designed is depicted in Scheme 1. PGA molecules are 

expected to block the mesopores and to prevent cargo release until cellular uptake of the 

nanoparticles and their consequent endosomal/lysosomal internalization. We speculated that 

lysosomal proteolytic enzymes would degrade PGA by cleaving the peptide bonds, thus inducing 

the uncapping of the pores and the release of the cargo. 
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Scheme 1. MSNs capped with PGA. Cargo delivery is selectively observed in the presence of 

lysosomal enzymes.   

 Mesoporous silica MCM-41 nanoparticles are suitable scaffolds for the development of 

hybrid materials for controlled delivery applications due to their remarkable properties as the 

presence of homogeneous mesopores of ca. 2-3 nm, large loading ability and easy-

functionalizable surface for the anchoring of (bio)molecules able to act as molecular caps. In the 

present work, MSNs were synthesized following a well-known procedure, using n-

cetyltrimethylammonium bromide (CTAB) as a structure directing agent and tetraethyl 

orthosilicate (TEOS) as hydrolyzable precursor. After the synthesis the surfactant was removed 

by calcination in air at high temperature to finally obtain mesoporous inorganic nanoparticles, 

which were then loaded with rhodamine B (for solid S1) or doxorubicin (for solid S2). The 

loaded solids were functionalized with APTES and capped with PGA (through an amidation 

reaction using EDC as coupling agent). 

Materials Characterization 

 Once obtained, nanoparticles S1 and S2 were characterized by standard procedures. 

Figure 1 shows the powder XRD spectrum of MCM-41 as-synthesized, the calcined MCM-41 

and S1 material. MCM-41 as-synthesized spectrum (Figure 1a) shows the typical low angle 

reflections of a hexagonal ordered array which can be indexed as (100), (110), (200) and (210) 

Bragg peaks. In case of calcined MCM-41 (Figure 1b), a significant displacement of the (100) 

reflection and broadening of (110) and (200) peaks was observed, which is related with a cell 

contraction of ca. 6-8 Å due to the condensation of the silanol groups as consequence of the 

calcination step. Figure 1c shows the XRD pattern for solid S1. In this case the reflections (110) 
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and (200) are not observed most likely because of a loss of contrast due to the filling of the pores 

with rhodamine B. However, the clear presence of the (100) reflection indicates that the process 

of pore loading and further functionalization with PGA did not transform the mesoporous 

structure of the nanoparticles. 

 The mesoporous structure of the final functionalized solid S1 was also confirmed by 

transmission electron microscopy (TEM). Figure 2 shows the spherical morphology of the 

obtained materials and the typical channels of the MCM-41 matrix are visualized as a 

pseudohexagonal array of pore voids or as alternate black and white strips. As it can be seen, the 

prepared MSNs have a diameter of ca. 100 nm (Figure 2a) and the final solid S1 keeps the initial 

morphology of the MCM-41 matrix despite the loading and functionalization processes (Figure 

2c).   

 

Figure 1. X-Ray diffraction pattern of (a) MCM-41 as synthesized, (b) calcined MCM-41 and 
(c) S1 solid containing rhodamine B. 
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Figure 2. TEM images of (a) MCM-41 as synthesized, (b) calcined MCM-41 and (c) solid S1.  

 

 

 

Figure 3. Nitrogen adsorption-desorption isotherms for (a) calcined MCM-41 (insets: pore-size 
distribution) and (b) solid S1.  
 

 The N2 adsorption- desorption isotherm of calcined MCM-41 (Figure 3a) shows an 

adsorption step at medium P/P0 values (0.2-0.4), typical of this family of mesoporous solids, 

which corresponds to nitrogen condensation inside the mesoporous by capillarity. Moreover, 

there is an absence of a hysteresis loop in this interval. This together with the narrow BJH pore 

distribution suggested the presence of uniform cylindrical mesopores. A pore diameter of 2.5 nm 
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and pore volume of 0.91 cm3g-1, calculated by using BJH model on the adsorption branch of the 

isotherm, were observed. Application of the BET model resulted in a total specific surface of 

1081.6 m2g-1 for the starting calcined MSNs. In addition to this first adsorption step, a second 

feature appears in the isotherm at a higher relative pressure (P/P0 > 0.8). This adsorption 

corresponds to the filling of the large voids among the particles and therefore must be considered 

as textural-like porosity. A pore diameter of 47.0 nm and pore volume of 0.24 cm3g-1 was 

calculated in this interval. In contrast, adsorption-desorption isotherms for S1 and S2 are typical 

of MSNs systems with filled mesopores (Figure 3b) and a considerable reduction of specific 

surface area was observed. In particular BET areas of 56.5 and 39.9 m2g-1 were calculated for S1 

and S2, respectively (see Table 1).  

Table 1. BET Specific surface values, pore volumes and pore sizes calculated from the N2 
adsorption-desorption isotherms for selected materials. 

 SBET   

(m2g-1) 

Pore volume  

(cm3g-1) 

Pore size  

(nm) 

Calcined MCM-41 1081.6 0.91 2.54 

S1 56.5 - - 

S2 39.9 - - 

 

 The content of rhodamine B/doxorubicin and grafted PGA in solids S1 and S2 was 

determined by elemental and thermogravimetric analysis and by UV-measurements. Contents of 

organic components for solids S1 and S2 are listed in Table 2. 
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Table 2. Content (mg/g of solid) of the different loading and functionalization moieties in S1 and 
S2. 

 

 

 

 

Delivery Studies 

As stated above, it was our aim the design of release MSNs triggered by the presence of 

proteases in cells. In a first step delivery assays in aqueous solution were carried out using S1 

and S2. For instance, in a typical experiment S1 nanoparticles were suspended in water at pH 8.0 

both, in the absence and presence of pronase. At certain scheduled times, aliquots were 

separated, centrifuged and the delivery of rhodamine B dye from the pore voids was determined 

through monitoring the emission band of rhodamine B at 610 nm (λex= 453 nm) in the aqueous 

phase (see Figure 4). Solid S1 displayed a poor release profile (curve a) in water, whereas it 

delivered the dye in the presence of pronase. In particular, S1 nanoparticles were able to release 

less than 20% of the cargo at least for 25 h in the absence of the enzyme, whereas cargo delivery 

was observed achieving 90% of the maximum release of the entrapped guest in ca. 5 h in the 

presence of pronase. These results indicate that anchored PGA chains form a barrier that inhibits 

release of rhodamine B efficiently. However, when pronase is present, the peptide bonds in the 

anchored PGA are hydrolyzed resulting in the release of the entrapped cargo. 

Using a similar experimental protocol, cargo release studies from solid S2, containing the 

drug doxorubicin, in the absence and presence of pronase were carried out. In this case cargo 

 
Rhodamine B 

(mg/g solid) 

Doxorubicin 

(mg/g solid) 

PGA 

(mg/g solid) 

S1 181.9 - 34.6 

S2 - 180.5 57.1 
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delivery was monitored through the fluorescence band of doxorubicin at 557 nm (λexc = 480 nm). 

The obtained experimental results are also shown in Figure 4. As for S1, a poor cargo release 

was found in the absence of pronase, whereas a clear doxorubicin delivery was observed in the 

presence of this enzyme. 

 

Figure 4. a) Kinetics of release of rhodamine B from solid S1 in absence and presence of 
pronase. b) Kinetics of release of doxorubicin from solid S2 in absence and presence of pronase. 
 
 

Confocal Microscopy Imaging and Viability Assays 

After the in vitro characterization, the gated MSNs S1 and S2 were also used for further 

ex vivo assays. For these experiments SK-BR-3 breast cancer cells overexpressing the human 

epidermal growth factor receptor2 (HER2) were used.78 HER2 is overexpressed in 20% of 

invasive breast cancers, that results in more aggressive disease with a worse prognosis. In the last 

decades, the development of immunotherapeutic strategies based on a recombinant humanized 

anti-HER2 monoclonal antibody, Trastuzumab, has allowed the improvement of the disease-free 

and overall survival in both primary and metastatic breast HER2 enriched tumors. Nevertheless, 
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this approach is not always effective, indicating the existence of resistant tumours and underlying 

the urgent need to develop new therapies.79,80 

To study the penetrability of the developed nanodevices, cells were seeded in 6-well 

culture plates at a density of 150000 cells per well and allowed to adhere for 24h. After that time, 

cells were incubated with solid S1 at a final concentration of 50 µg/mL for additional 48h. The 

cellular uptake and intracellular release of S1 was determined by confocal laser scanning 

microscopy (CLSM) by tracking rhodamine B associated fluorescence. As shown in Figure 5a, 

rhodamine B fluorescence (red) was clearly observed in the cellular cytosolic compartment 

indicating the internalization of nanoparticles, the hydrolysis of the peptidic bonds by the 

lysosomes and the subsequent delivery of the entrapped dye. 

Further studies with S1 were performed to exclude any toxic effect of these nanoparticles. 

In a typical experiment SK-BR-3 breast cancer cells were treated with S1 for 48h at final 

concentrations from 6.25 to 100 μg/mL. After that time, cell viability assays using WST-1 were 

carried out. WST-1 reagent can be reduced by mitochondrial enzymes to give a soluble orange 

product (formazan salt), however this transformation only happens in viable cells. Therefore, 

after treatment measuring absorbance at 450 nm against a background control allowed an 

accurate determination of the number of metabolically active cells in the culture.81 Treatment of 

cells with S1 showed a low toxicity in concentrations up to 100 µg/ml after 48h (Figure 5b). 

Once studied the intracellular uptake and performance of the gated material S1, SK-BR-3 

breast cancer cells were also used to demonstrate cellular internalization of S2 and its capability 

to delivery loaded doxorubicin. Doxorubicin treatment causes malfunctioning of the 

mitochondria by non-specific oxidative damage to the outer and the inner membranes, and by 
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direct interaction with the mitochondrial DNA or enzymes involved in cell respiration. In 

addition, doxorubicin inhibits the activity of the nuclear enzyme DNA topoisomerase II, 

inducing double-stranded DNA breakage.82,83 Doxorubicin release from S2 in cells was expected 

to result in a decrease of cell viability. CLSM images of SK-BR-3 cells incubated with S2 at a 

concentration of 50 µg/mL for 48h displayed a dotted fluorescent pattern, strongly suggesting 

internalization of nanoparticles and protease-triggered release of doxorubicin (see Figure 5a). In 

addition, images showed that doxorubicin reached the nuclei producing their fragmentation, thus 

suggesting cargo release. Furthermore, the cytotoxic effect of S2 was also found through changes 

in cell morphology and cells detachment, when compared with the untreated control cells (see 

Figure 5a). Moreover, toxicity of S2 nanoparticles was studied through WST-1 assays. SK-BR-3 

breast cancer cells were treated with different concentration of nanoparticles in the 6.25-100 

µg/ml range for 48h and the cytotoxic effect of released doxorubicin was evaluated. A clear 

concentration-dependent decrease of living cells was found when compared to the untreated cells 

or cells treated with S1. For instance when SK-BR-3 breast cancer cells were treated with S2 at a 

concentration of 100 µg/ml, more of 90% of cells were effectively killed.  
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Figure 5. a) Internalization and release of rhodamine B or doxorubicin by S1 and S2 
nanoparticles, respectively, in SK-BR-3 cells. Cells were treated with 50 μg/ml of S1 or S2 
nanoparticles during 48h. Representative phase contrast (PhC), rhodamine B (Rh), doxorubicin 
(Dox) and combined (Merge) images are shown. White symbols indicate cells apoptotic 
degradation (nuclei fragmentation). b) Cells were treated with varying concentrations (from 6.25 
to 100 μg/mL) of S1 or S2 nanoparticles during 48h and viability was determined by WST-1 
assay. S2 nanoparticles, loaded with doxorubicin chemotherapeutic drug and gated with PGA, 
showed a high cytotoxicity, leading to an almost total loss of viability in SK-BR-3 cells.  

 

Conclusions  
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 In summary, we have described herein a new enzyme-responsive delivery system based 

in PGA-capped MSNs. In particular, hybrid silica mesoporous nanoparticles loaded with the dye 

rhodamine B or the drug doxorubicin as cargoes and functionalized with PGA on the external 

surface were prepared. The solids were characterized using well-known characterization 

techniques that allowed to found that mesostructure in the final materials S1 and S2 was 

preserved after the loading and functionalization processes. The anchored PGA polymer forms a 

compact cap that inhibits cargo release effectively. However, in the presence of pronase the 

peptide bonds are hydrolyzed allowing the release of the entrapped cargo. Typically, S1 and S2 

nanoparticles deliver less than 20% of the cargo at least for 25h, whereas they are able to reach 

90% of the maximum release of the entrapped guest in ca. 5 h in the presence of pronase. The 

performance of solids S1 and S2 in a cellular context was also tested. The uptake of the gated 

nanoparticles by SK-BR-3 breast cancer cells, their aperture and their ability to deliver the cargo 

was confirmed. S1 was not toxic, whereas doxorubicin-loaded S2 nanoparticles at a 

concentration of 100 µg/ml are able to kill efficiently more than 90% of SK-BR-3 cells. The 

results reported herein confirms that the use of simple, biocompatible polymers such as PGA is a 

straightforward way to prepared gated MSNs that remain closed until the presence of enzymes 

able to hydrolyze peptide bonds.  
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