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Abstract

The concept of partial metric p on a nonempty set X was introduced by

Matthews [8]. One of the most interesting properties of a partial metric

is that p(x, x) may not be zero for x ∈ X. Also, each partial metric p

on a nonempty set X generates a T0 topology on X. By omitting the

small self-distance axiom of partial metric, Heckmann [7] defined the

weak partial metric space. In the present paper, we give some fixed

point results on weak partial metric spaces.
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1. Introduction

The notion of partial metric space was introduced by Matthews [8] as a
part of the study of denotational semantics of data flow networks. It is widely
recognized that partial metric spaces play an important role in constructing
models in the theory of computation. In a partial metric spaces, the distance of
a point in the self may not be zero. After the definition of partial metric space,
Matthews proved a partial metric version of Banach’s fixed point theorem.
Then, Valero [11], Oltra and Valero [9] and Altun et al [1], [3] gave some
generalizations of the result of Matthews. Recently, Romaguera [10] proved
the Caristi type fixed point theorem on this space.

First, we recall some definitions of partial metric space and some properties
of theirs. See [2, 7, 8, 9, 10, 11] for details.
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A partial metric on a nonempty set X is a function p : X × X → R
+

(nonnegative reals) such that for all x, y, z ∈ X :

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y) (T0-separation axiom),
(p2) p(x, x) ≤ p(x, y) (small self-distance axiom),
(p3) p(x, y) = p(y, x) (symmetry),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z) (modified triangular inequality).

A partial metric space (for short PMS) is a pair (X, p) such that X is a
nonempty set and p is a partial metric on X . It is clear that, if p(x, y) = 0,
then, from (p1) and (p2), x = y. But if x = y, p(x, y) may not be 0. A
basic example of a PMS is the pair (R+, p), where p(x, y) = max{x, y} for
all x, y ∈ R

+. For another example, let I denote the set of all intervals [a, b]
for any real numbers a ≤ b. Let p : I × I → R

+ be the function such that
p([a, b], [c, d]) = max{b, d} −min{a, c}. Then (I, p) is a PMS. Other examples
of PMS which are interesting from a computational point of view may be found
in [5], [8].

Each partial metric p on X generates a T0 topology τp on X which has as a
base the family open p-balls

{Bp(x, ε) : x ∈ X, ε > 0},

where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}

for all x ∈ X and ε > 0.

It is easy to see that, a sequence {xn} in a PMS (X, p) converges with respect
to τp to a point x ∈ X if and only if p(x, x) = limn→∞ p(x, xn).

If p is a partial metric on X , then the functions dp, dw : X ×X → R
+ given

by

(1.1) dp(x, y) = 2p(x, y)− p(x, x) − p(y, y)

and

dw(x, y) = max{p(x, y)− p(x, x), p(x, y) − p(y, y)}(1.2)

= p(x, y)−min{p(x, x), p(y, y)}

are ordinary metrics on X .

Remark 1.1. Let {xn} be a sequence in a PMS (X, p) and x ∈ X , then

lim
n→∞

dw(xn, x) = 0

if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Proposition 1.2. Let (X, p) be a PMS, then dp and dw are equivalent metrics
on X.
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Proof. We obtain

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

= p(x, y)− p(x, x) + p(x, y)− p(y, y)

≤ 2dw(x, y).(1.3)

Again we obtain

dw(x, y) = p(x, y)−min{p(x, x), p(y, y)}

≤ p(x, y)−min{p(x, x), p(y, y)}

+p(x, y)−max{p(x, x), p(y, y)}

= 2p(x, y)− p(x, x)− p(y, y)

= dp(x, y).(1.4)

From (1.3) and (1.4) we have

1

2
dp(x, y) ≤ dw(x, y) ≤ dp(x, y).

�

Definition 1.3. (i) A sequence {xn} in a PMS (X, p) is called a Cauchy
sequence if there exists (and is finite) limn,m→∞ p(xn, xm).

(ii) A PMS (X, p) is said to be complete if every Cauchy sequence {xn}
in X converges, with respect to τp, to a point x ∈ X such that p(x, x) =
limn,m→∞ p(xn, xm).

The following lemma plays an important role to give fixed point results on
a PMS.

Lemma 1.4 ([8], [9]). Let (X, p) be a PMS.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy se-
quence in the metric space (X, dw).

(b) (X, p) is complete if and only if (X, dw) is complete.

Remark 1.5. Since dp and dw are equivalent, we can take dp instead of dw in
Lemma 1.4.

2. Weak partial metric

Heckmann [7] introduced the concept of weak partial metric space (for short
WPMS), which is a generalized version of Matthews’ partial metric space by
omitting the small self-distance axiom. That is, the function p : X ×X → R

+

is called weak partial metric on X if the conditions (p1),(p3) and (p4) are
satisfied. Also, Heckmann shows that, if p is a weak partial metric on X , then
for all x, y ∈ X, we have the following weak small self-distance property

p(x, y) ≥
p(x, x) + p(y, y)

2
.

Weak small self-distance property shows that WPMS are not far from small-self
distance axiom. It is clear that every PMS is a WPMS, but the converse may
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not be true. A basic example of a WPMS but not a PMS is the pair (R+, p),
where p(x, y) = x+y

2
for all x, y ∈ R

+. For another example, let I denote the
set of all intervals [a, b] for any real numbers a ≤ b. Let p : I × I → R

+ be the
function such that p([a, b], [c, d]) = b+d−a−c

2
. Then (I, p) is a WPMS but not a

PMS.

Remark 2.1. If (X, p) be a WPMS, but not a PMS, then the function dp as
in (1.1) may not be an ordinary metric on X . For example, let X = R

+

and let p : X × X → R
+ defined by p(x, y) = x+y

2
. Then it is clear that

dp(x, y) = 0 for all x, y ∈ X , so dp is not a metric on X . Note that, in this case
dw(x, y) =

1
2
|x− y|.

Proposition 2.2. Let a, b, c ∈ R
+, then we have

min{a, c}+min{b, c} ≤ min{a, b}+ c.

Proposition 2.3. Let (X, p) be a WPMS, then dw : X ×X → R defined as in
(1.2) is an ordinary metric on X.

Proof. Since p is a weak partial metric, then we have

2p(x, y) ≥ p(x, x) + p(y, y)

≥ 2min{p(x, x), p(y, y)}.

Therefore p(x, y)−min{p(x, x), p(y, y)} ≥ 0. Again it is clear that, dw(x, y) = 0
if and only if x = y and dw(x, y) = dw(y, x) for all x, y ∈ X . Now, let
x, y, z ∈ X , then from Proposition 2.2, we have

dw(x, z) = p(x, z)−min{p(x, x), p(z, z)}

≤ p(x, y) + p(y, z)− p(y, y)−min{p(x, x), p(z, z)}

≤ p(x, y)−min{p(x, x), p(y, y)}

+p(y, z)−min{p(y, y), p(z, z)}

= dw(x, y) + dw(y, z).

�

In a WPMS, the convergence of a sequence, Cauchy sequence, completeness
and continuity of a function are defined as PMS. To give some fixed point
results on a WPMS, we need to prove Lemma 1.4 by omitting the small-self
distance axiom.

Lemma 2.4. Let (X, p) be a WPMS.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy se-
quence in the metric space (X, dw).

(b) (X, p) is complete if and only if (X, dw) is complete.

Proof. First we show that every Cauchy sequence in (X, p) is a Cauchy sequence
in (X, dw). Let {xn} be a Cauchy sequence in (X, p), then there exists a ∈ R
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such that, given ε > 0, there is n0 ∈ N with |p(xn, xm)− a| < ε
2

for all
n,m ≥ n0. Hence

dw(xn, xm) = p(xn, xm)−min{p(xn, xn), p(xm, xm)}

= p(xn, xm)− a+ a−min{p(xn, xn), p(xm, xm)}

≤ |p(xn, xm)− a|+ |a−min{p(xn, xn), p(xm, xm)}|

<
ε

2
+

ε

2
= ε

for all n,m ≥ n0. Therefore {xn} is a Cauchy sequence in (X, dw).
Next we prove that completeness of (X, dw) implies completeness of (X, p).

Indeed, if {xn} is a Cauchy sequence in (X, p), then it is also a Cauchy sequence
in (X, dw). Since (X, dw) is complete we deduce that there exists x ∈ X

such that limn→∞ dw(xn, x) = 0. Now we show that limn,m→∞ p(xn, xm) =
p(x, x). Since {xn} is a Cauchy sequence in (X, p) it is sufficient to show that
limn→∞ p(xn, xn) = p(x, x). Let ε > 0, then there exists n0 ∈ N such that
dw(xn, x) <

ε
2
for all n ≥ n0. Thus

|p(xn, xn)− p(x, x)| = max{p(xn, xn), p(x, x)} −min{p(xn, xn), p(x, x)}

= 2

{

max{p(xn, xn), p(x, x)} +min{p(xn, xn), p(x, x)}

2

−min{p(xn, xn), p(x, x)}
}

= 2[
p(xn, xn) + p(x, x)

2
−min{p(xn, xn), p(x, x)}]

≤ 2[p(xn, x)−min{p(xn, xn), p(x, x)}]

= 2dw(xn, x) < ε

whenever n ≥ n0. This shows that (X, p) is complete.
Now we prove that every Cauchy sequence {xn} in (X, dw) is a Cauchy

sequence in (X, p). Let ε = 1
2
. Then there exists n0 ∈ N such that dw(xn, xm) <

1
2
for all m,n ≥ n0. Therefore we have

p(xn, xn) = p(xn, xn)− p(xn0
, xn0

) + p(xn0
, xn0

)

≤ |p(xn, xn)− p(xn0
, xn0

)|+ p(xn0
, xn0

)

≤ 2dw(xn, xn0
) + p(xn0

, xn0
)

< 1 + p(xn0
, xn0

).

Consequently the sequence {p(xn, xn)} is bounded in R and so there exists
a ∈ R such that a subsequence {p(xnk

, xnk
)} is convergent to a. On the other

hand, since {xn} is a Cauchy sequence in (X, dw), given ε > 0 there exists
nε ∈ N such that dw(xn, xm) < ε

2
for all m,n ≥ nε. Thus we have

|p(xn, xn)− p(xm, xm)| ≤ 2dw(xn, xm) < ε.

That is, the sequence {p(xn, xn)} is Cauchy in R. Therefore

lim
n→∞

p(xn, xn) = a.
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On the other hand, since

|p(xn, xm)− a| ≤ |p(xn, xm)−min{p(xn, xn), p(xm, xm)}|+

|min{p(xn, xn), p(xm, xm)} − a|

= dw(xn, xm) + |min{p(xn, xn), p(xm, xm)} − a| ,

we have limn,m→∞ p(xn, xm) = a and so {xn} is a Cauchy sequence in (X, p).
Now we prove that completeness of (X, p) implies completeness of (X, dw).

Indeed, if {xn} is a Cauchy sequence in (X, dw), then it is also a Cauchy
sequence in (X, p). Since (X, p) is complete we deduce that there exists x ∈ X

such that limn,m→∞ p(xn, xm) = limn→∞ p(xn, x) = p(x, x). Then, given ε >

0, there exists nε ∈ N such that

max{|p(xn, x)− p(xn, xn)| , |p(xn, x)− p(x, x)|} < ε

whenever n ≥ nε. As a consequence we have

dw(xn, x) = p(xn, x)−min{p(xn, xn), p(x, x)}

= |p(xn, x)−min{p(xn, xn), p(x, x)}|

< ε

whenever n ≥ nε. Therefore (X, dw) is complete. �

Remark 2.5. Remark 1.1 is still true for WPMS.

3. Fixed point results

In this section we give some fixed point results on weak partial metric spaces.
We begin by giving Hardy and Rogers type [6] fixed point theorem.

Theorem 3.1. Let (X, p) be a complete WPMS and let F : X → X be a map
such that

p(Fx, Fy) ≤ ap(x, y) + bp(x, Fx) + cp(y, Fy) +

dp(x, Fy) + ep(y, Fx)(3.1)

for all x, y ∈ X, where a, b, c, d, e ≥ 0 and, if d ≥ e, then a+ b+ c+ 2d < 1, if
d < e, then a+ b+ c+ 2e < 1. Then F has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point. Define a sequence {xn} in X by
xn = Fxn−1 for n = 1, 2, · · · . Now if xn0

= xn0+1 for some n0 = 0, 1, 2, · · · ,
then it is clear that xn0

is a fixed point of F . Now assume xn 6= xn+1 for all
n. Then we have from (3.1)

p(xn+1, xn) = p(Fxn, Fxn−1)

≤ ap(xn, xn−1) + bp(xn, Fxn) + cp(xn−1, Fxn−1) +

dp(xn, Fxn−1) + ep(xn−1, Fxn)

= ap(xn, xn−1) + bp(xn, xn+1) + cp(xn−1, xn) +

dp(xn, xn) + ep(xn−1, xn+1)

≤ (a+ c+ e)p(xn, xn−1) + (b + e)p(xn, xn+1) +

(d− e)p(xn, xn).(3.2)
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Now if d ≥ e, then adding the term (d−e)p(xn+1, xn+1) or (d−e)p(xn−1, xn−1)
in the right side of (3.2) and using weak small self distance axiom, we have

(3.3) p(xn+1, xn) ≤ max{
a+ c+ e

1− b− 2d+ e
,
a+ c+ 2d− e

1− b− e
}p(xn, xn−1)

for all n. If d < e, then from (3.2) by omitting the term (d − e)p(xn, xn), we
have

(3.4) p(xn+1, xn) ≤
a+ c+ e

1− b− e
p(xn, xn−1).

Hence from (3.3) and (3.4) we have for n = 1, 2, · · ·

p(xn+1, xn) ≤ λnp(x1, x0),

where

λ =







max{ a+c+e
1−b−2d+e

, a+c+2d−e
1−b−e

} , d ≥ e

a+c+e
1−b−e

, d < e

.

It is clear that λ ∈ [0, 1), thus we have

(3.5) lim
n→∞

p(xn+1, xn) = 0.

On the other hand, since

dw(xn+1, xn) = p(xn+1, xn)−min{p(xn, xn), p(xn+1, xn+1)}

≤ p(xn+1, xn)

≤ λnp(x1, x0)

we have limn→∞ dw(xn, xn+1) = 0. Therefore we have for k = 1, 2, · · ·

dw(xn+k, xn) ≤ dw(xn+k, xn+k−1) + · · ·+ dw(xn+1, xn)

≤ λn+k−1p(x1, x0) + · · ·+ λnp(x1, x0)

= [λn+k−1 + · · ·+ λn]p(x1, x0)

≤
λn

1− λ
p(x1, x0).

This shows that {xn} is a Cauchy sequence in the metric space (X, dw). Since
(X, p) is complete then from Lemma 2.4, the sequence {xn} converges in the
metric space (X, dw), say limn→∞ dw(xn, x) = 0. Again from Lemma 2.4, we
have

(3.6) p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Moreover since {xn} is a Cauchy sequence in the metric space (X, dw), we have
limn,m→∞ dw(xn, xm) = 0. On the other hand since

p(xn, xn) + p(xn+1, xn+1) ≤ 2p(xn, xn+1)

we obtain by (3.5)

lim
n→∞

p(xn, xn) = 0.
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Therefore from the definition dw we have

p(xn, xm) = dw(xn, xm) + min{p(xn, xn), p(xm, xm)}

and so limn,m→∞ p(xn, xm) = 0. Thus from (3.6) we have

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm) = 0.

Now we show that p(x, Fx) = 0. Assume this is not true, then from (3.1) we
obtain

p(x, Fx) ≤ p(x, Fxn) + p(Fxn, Fx)− p(Fxn, Fxn)

≤ p(x, xn+1) + p(Fxn, Fx)

≤ p(x, xn+1) + ap(x, xn) + bp(x, Fx) + cp(xn, xn+1) +

dp(x, xn+1) + ep(xn, Fx)

≤ p(x, xn+1) + ap(x, xn) + bp(x, Fx) + cp(xn, xn+1) +

dp(x, xn+1) + ep(xn, x) + ep(x, Fx)

letting n → ∞, we have

p(x, Fx) ≤ (b+ e)p(x, Fx),

which is a contradiction. Thus p(x, Fx) = 0 and so x = Fx. Moreover p(x, x) =
0.

For the uniqueness, suppose y is another fixed point of F . Then we have

p(y, y) = p(Fy, Fy)

≤ (a+ b + c+ d+ e)p(y, y).

This shows that p(y, y) = 0. Now, if p(x, y) > 0, then we have

p(x, y) = p(Fx, Fy) ≤ (a+ d+ e)p(x, y),

which is a contradiction. Therefore, the fixed point is unique. �

We can have the following corollaries from Theorem 3.1.

Corollary 3.2 (Banach type). Let (X, p) be a complete WPMS and let F :
X → X be a map such that

p(Fx, Fy) ≤ αp(x, y)

for all x, y ∈ X, where 0 ≤ α < 1. Then F has a unique fixed point.

Corollary 3.3 (Kannan type). Let (X, p) be a complete WPMS and let F :
X → X be a map such that

p(Fx, Fy) ≤ βp(x, Fx) + γp(y, Fy)

for all x, y ∈ X, where β, γ ≥ 0 and β + γ < 1. Then F has a unique fixed
point.
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Corollary 3.4 (Reich type). Let (X, p) be a complete WPMS and let F : X →
X be a map such that

p(Fx, Fy) ≤ αp(x, y) + βp(x, Fx) + γp(y, Fy)

for all x, y ∈ X, where α, β, γ ≥ 0 and α + β + γ < 1. Then F has a unique
fixed point.

Next we state a nonlinear contractive type fixed point theorem.

Let φ : [0,∞) → [0,∞) be a function. In the connection with the function
φ we consider the following properties:

(i) φ is nondecreasing,

(ii) φ(t) < t for all t > 0,

(iii) φ(0) = 0,

(iv) φ is continuous,

(v) limn→∞ φn(t) = 0 for all t ≥ 0,

(vi)
∑

∞

n=0 φ
n(t) convergent for all t > 0.

It is easy to see that, (i) and (ii) imply (iii), (ii) and (iv) imply (iii), (i) and
(v) imply (ii).

Definition 3.5 ([4]). A function φ satisfying (i) and (v) is said to be a compari-
son function and a function φ satisfying (i) and (vi) is said to be (c)-comparison
function.

It is clear that, any (c)-comparison function is a comparison function and
any comparison function satisfies (iii).

Theorem 3.6. Let (X, p) be a complete WPMS and let F : X → X be a map
such that

p(Fx, Fy) ≤ φ(max{p(x, y), p(x, Fx), p(y, Fy),

1

2
[p(x, Fy) + p(y, Fx)]})(3.7)

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a (c)-comparison function. Then
F has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point. Define a sequence {xn} in X by
xn = Fxn−1 for n = 1, 2, · · · . Now if xn0

= xn0+1 for some n0 = 0, 1, 2, · · · ,
then it is clear that xn0

is a fixed point of F . Now assume xn 6= xn+1 for all
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n. In this case p(xn, xn+1) > 0 for all n. Then we have from (3.7)

p(xn+1, xn) = p(Fxn, Fxn−1)

≤ φ(max{p(xn, xn−1), p(xn, Fxn), p(xn−1, Fxn−1),

1

2
[p(xn, Fxn−1) + p(xn−1, Fxn)]})

≤ φ(max{p(xn, xn−1), p(xn, xn+1),

1

2
[p(xn−1, xn) + p(xn, xn+1)]})

= φ(max{p(xn, xn−1), p(xn, xn+1)}),(3.8)

since

p(xn, xn) + p(xn−1, xn+1) ≤ p(xn−1, xn) + p(xn, xn+1)

and φ is nondecreasing. Now if

max{p(xn, xn−1), p(xn, xn+1)} = p(xn, xn+1)

for some n, then from (3.8) we have

p(xn+1, xn) ≤ φ(p(xn, xn+1)) < p(xn+1, xn)

which is a contradiction since p(xn, xn+1) > 0. Thus

max{p(xn, xn−1), p(xn, xn+1)} = p(xn, xn−1)

for all n. Then from (3.8) we have

p(xn+1, xn) ≤ φ(p(xn, xn−1))

and hence

(3.9) p(xn+1, xn) ≤ φn(p(x1, x0)).

This shows that

(3.10) lim
n→∞

p(xn, xn+1) = 0.

On the other hand, since

dw(xn+1, xn) = p(xn+1, xn)−min{p(xn, xn), p(xn+1, xn+1)}

≤ p(xn+1, xn)

≤ φn(p(x1, x0))

we have limn→∞ dw(xn, xn+1) = 0. Therefore we have for m > n

dw(xm, xn) ≤ dw(xm, xm−1) + · · ·+ dw(xn+1, xn)

≤ φm−1(p(x1, x0)) + · · ·+ φn(p(x1, x0))

≤

∞
∑

k=n

φk(p(x1, x0)).

Since φ is (c)-comparison function, then {xn} is a Cauchy sequence in the metric
space (X, dw). Since (X, p) is complete then from Lemma 2.4, the sequence
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{xn} converges in the metric space (X, dw), say limn→∞ dw(xn, x) = 0. Again
from Lemma 2.4, we have

(3.11) p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Moreover since {xn} is a Cauchy sequence in the metric space (X, dw), we have
limn,m→∞ dw(xn, xm) = 0. On the other hand since

p(xn, xn) + p(xn+1, xn+1) ≤ 2p(xn, xn+1)

we obtain by (3.10)

lim
n→∞

p(xn, xn) = 0.

Therefore from the definition dw we have

p(xn, xm) = dw(xn, xm) + min{p(xn, xn), p(xm, xm)}

and so limn,m→∞ p(xn, xm) = 0. Thus from (3.11) we have

(3.12) p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm) = 0.

Nowwe show that p(x, Fx) = 0. Suppose that p(x, Fx) > 0, as limn→∞ p(xn+1, xn) =
0 and limn→∞ p(xn, x) = 0, there exists n0 ∈ N such that for n > n0,

(3.13) p(xn+1, xn) <
1

3
p(x, Fx)

and there exist n1 ∈ N such that for n > n1,

(3.14) p(xn, x) <
1

3
p(x, Fx).

If we take n > max{n0, n1} then, by (3.13), (3.14) and triangular inequality,
we have

1

2
[p(xn, Fx) + p(x, Fxn)] ≤

1

2
[p(xn, x) + p(x, Fx)− p(x, x) + p(x, Fxn)]

≤
1

2
[
1

3
p(x, Fx) + p(x, Fx) +

1

3
p(x, Fx)]

=
5

6
p(x, Fx).(3.15)

Now for n > max{n0, n1}, then, by (3.13), (3.14) and (3.15), we have

p(xn+1, Fx) = p(Fxn, Fx)

≤ φ(max{p(xn, x), p(xn, Fxn), p(x, Fx),

1

2
[p(xn, Fx) + p(x, Fxn)]})

≤ φ(p(x, Fx)).

Letting n → ∞ in the last inequality, we have p(x, Fx) ≤ φ(p(x, Fx)), which
is a contradiction. Thus p(x, Fx) = 0 and so x is a fixed point of F . Moreover
by (3.12) p(x, x) = 0. The uniqueness follows easily from (3.7). �
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Example 3.7. Let X = {0, 1, · · · , 10} and p(x, y) = x+y

2
, then dw(x, y) =

1
2
|x− y|. Therefore, since (X, dw) is complete, then by Lemma 2.4 (X, p) is

complete WPMS. Let F : X → X ,

Fx =







x− 1 , x 6= 0

0 x = 0
.

We claim that the condition (3.7) of Theorem 3.6 is satisfied with φ(t) = 9
10
t.

For this, we consider the following cases.
Case 1. If x = y = 0, then

p(Fx, Fy) = 0 ≤
9

10
p(x, y).

Case 2. If x = y > 0, then

p(Fx, Fy) = p(x− 1, x− 1) = x− 1

≤
9

10
x =

9

10
p(x, y)

Case 3. If x > y = 0, then

p(Fx, Fy) = p(x− 1, 0) =
x− 1

2

≤
9

10

x

2
=

9

10
p(x, y).

Case 4. If x > y > 0, then

p(Fx, Fy) = p(x− 1, y − 1) =
x+ y − 2

2

≤
9

10

x+ y

2
=

9

10
p(x, y).

This shows that all conditions of Theorem 3.6 are satisfied and so F has a
unique fixed point in X . Note that, if we use the usual metric on X , then the
contractive condition is not satisfied.
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