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New matrix partial order based on spectrally
orthogonal matrix decomposition

Alexander Guterman Alicia Herrero Néstor Thome

Abstract

We investigate partial orders on the set of complex square matrices and introduce
a new order relation based on spectrally orthogonal matrix decompositions. We also
establish the relation of this concept with the known orders.

Keywords. Spectrum, sharp order, minus order, spectrally orthogonal matrix decom-
position

1 Introduction

The spectral theorem is a well-known technique mainly used in the literature for working
with diagonalizable matrices. However, for general matrices (that is, diagonalizable or
not) this tool (see [13, pp. 603]) has not been so much exploited in relation to partial
orders. In this paper we apply matrix canonical forms defined in [4], namely spectrally
orthogonal matrix decompositions, which are useful for general matrices. This gives us
the possibility to introduce and investigate some new partial orders.

Let C be the field of complex numbers and Mn(C) be the set of n×n matrices over C.
We denote by In the identity matrix of size n and by On the n × n zero matrix. We omit
the subscripts for In and On if their size is clear from the context. Let Eij be the matrix
with 1 in (i, j)-th position and zeros elsewhere. Two matrices A,B ∈ Mn(C) are said to
be orthogonal, and denoted by A ⊥ B, if AB = BA = O. The symbols rk and Spec will
stand for the rank and the spectrum of a square matrix, respectively.
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We recall that a matrix M ∈ Mn(C) has index ` (Ind M = `) if rk M ` = rk M `+1 and
` is the smallest nonnegative integer with this property. The core-nilpotent decomposition
of an arbitrary matrix M ∈ Mn(C) is given by the sum M = CM + NM , where CM ⊥

NM , Ind CM ≤ 1, and NM = O or NM is a nilpotent matrix. By convention, if M = O,
we set CM = NM = O. This decomposition always exists and is unique (see [3, Chapter
4.8]).

Let M ∈ Mn(C). A matrix X ∈ Mn(C) is called a g-inverse of M if it satisfies
MXM = M and will be denoted by X = M−. If X is a g-inverse of M that satisfies
XMX = X and MX = XM , it is called a group inverse of M and is denoted by
X = M#. If X satisfies XMX = X , MX = XM , and M `+1X = M `, with Ind M = `,
it is called a Drazin inverse of M and is denoted by X = MD. The Drazin inverse is
unique and its existence is guaranteed for every square matrix [3]. In the particular case
Ind M ≤ 1, the Drazin inverse becomes the group inverse.

Some generalized inverse matrices provide a method to define partial orders (see [15]
and references therein, [1, 2, 8, 9, 10, 11, 12, 17]).

Definition 1.1. [6, 16] The minus partial order on Mn(C) is defined by A
−

≤ B if and
only if A−A = A−B and AA− = BA− for some g-inverse A− of A.

Definition 1.2. [14] Let A,B ∈ Mn(C) of index less than or equal to 1. It is said that A is

below B under the sharp partial order, and denoted by A
]

≤ B, if and only if A]A = A]B

and AA] = BA].

When the Drazin inverse is used, the corresponding binary relation (ADA = ADB

and AAD = BAD) does not give a partial order but a pre-order. However, using the
core-nilpotent decomposition of both A and B, the following notion is recalled.

Definition 1.3. [7] Let A,B ∈ Mn(C). It is said that A is below B under the cn-order,

and denoted by A
cn
≤ B, if and only if CA

]

≤ CB and NA

−

≤ NB.

Alternative ways to define the minus and the sharp orders are the following:

Lemma 1.4. [14, 16] Let A,B ∈ Mn(C). The following statements hold:

(a) A
−

≤ B if and only if rk (B − A) = rk B − rk A.

(b) A
]

≤ B if and only if A2 = BA = AB, for A and B being of index at most 1.

This paper is organized as follows. In Section 2 we present the spectrally orthogonal
matrix decompositions and introduce two new binary relations based on these decompo-

sitions, namely
1

≤ and
2,3

≤. We prove that both relations are partial orders on Mn(C). In

2



Section 3, we establish that
1

≤ is equivalent to the cn-order, which gives a characteriza-
tion for the latter via a spectrally orthogonal decomposition. Also this section contains

various examples, among them, there is an example showing that
2,3

≤ indeed provides a
new relation on Mn(C), in particular, it is different from the cn-order and other known
order relations. In Section 4, sets of matrices which are majorized by an idempotent are

considered. Finally, we establish that the
2,3

≤-order on Mn(C) is not G-based for any n > 1.

2 Partial orders and spectrally orthogonal decomposi-
tions

The notion of spectrally orthogonal matrix decompositions was introduced in [4]. These
decompositions are used in the present paper, so we recall below some basic definitions
and properties.

We consider the counting function kM : C × N → N ∪ {0} defined by the following
rule: for λ ∈ C and r ∈ N the value kM(λ, r) equals to the number of Jordan blocks of
M ∈ Mn(C) of size r, corresponding to the eigenvalue λ. If there are no Jordan blocks of
M with λ of size r then kM(λ, r) = 0.

Moreover, the function KM : C → N ∪ {0}, given by KM(λ) =
∞∑

r=1

kM(λ, r), deter-

mines the total number of Jordan blocks of M , corresponding to the eigenvalue λ.
Observe that Spec M = {λ ∈ C | KM(λ) > 0}. Now we are ready to define the

following matrix functions:

Definition 2.1. Let M = CM +NM be the core-nilpotent decomposition of M ∈ Mn(C).
We define the maps Si

M : C → Mn(C), i = 1, 2, 3, by

(i) S1
M(0) = NM and for any λ 6= 0 the matrix S1

M(λ) = Xλ where Xλ is the unique
(by [4, Lemma 2.14]) matrix such that the following three conditions hold

a) X]
λXλ = X]

λM = MX]
λ,

b) KXλ
(λ) = KM(λ),

c) KXλ
(µ) = 0 for all µ ∈ C \ {0, λ}.

(ii) S2
M(λ) = S1

M+I(λ + 1) − S1
M(λ) for all λ ∈ C.

(iii) S3
M(λ) = S1

M(λ) − λS2
M(λ) for all λ ∈ C.

In the sequel we need several properties of these decompositions proved in [4], see
also [5]:

Theorem 2.2. [4, Remark 2.16, Theorem 2.17] Let M ∈ Mn(C).

3



(i) If λ /∈ Spec M then Si
M(λ) = O for i = 1, 2, 3.

(ii) rk (S2
M(λ)) = degχM

(z − λ) is the multiplicity of λ in the characteristic polynomial
χM .

(iii) Si
M(λ) ⊥ Sj

M(µ) for all λ 6= µ, i, j = 1, 2, 3.

(iv) Si
P−1MP (λ) = P−1Si

M(λ)P for all λ ∈ C, M ∈ Mn(C), P ∈ GLn(C), and i =

1, 2, 3.

(v) The matrix S2
M(λ) is idempotent for all λ ∈ C.

(vi) The matrix S3
M(λ) is nilpotent or null for all λ ∈ C.

(vii) M =
∑
λ∈C

S1
M(λ) =

∑
λ∈C

(λS2
M(λ) + S3

M(λ)), I =
∑
λ∈C

S2
M(λ).

These matrix functions and their properties allow us to give the following definition.

Definition 2.3. The decompositions M =
∑
λ∈C

S1
M(λ) and M =

∑
λ∈C

(λS2
M(λ) + S3

M(λ))

stated in Theorem 2.2 are called the spectrally orthogonal matrix decompositions of M ∈

Mn(C).

The following property of the matrix S2
M(λ) is very important.

Lemma 2.4. Let M ∈ Mn(C). Then for λ ∈ C it holds that λ ∈ Spec (M) if and only if
S2

M(λ) 6= O.

Proof. Let S2
M(λ) 6= O. Hence, by item (ii) of Theorem 2.2, degχM

(z − λ) > 0. Then
λ ∈ Spec (M). The converse follows similarly.

From now on, we introduce and investigate the following binary relations on matrices
based on spectrally orthogonal matrix decompositions.

Definition 2.5. For A,B ∈ Mn(C) it is said that A
1

≤ B if S1
A(0)

−

≤ S1
B(0) and S1

A(λ)
]

≤

S1
B(λ) for all λ ∈ C \ {0}.

Definition 2.6. For A,B ∈ Mn(C) it is said that A
2,3

≤ B if S2
A(λ)

]

≤ S2
B(λ) for all

λ ∈ C \ {0} and S3
A(λ)

−

≤ S3
B(λ) for all λ ∈ C.

It is clear that the cn-order coincides with the sharp partial order for matrices of index
at most 1 and also coincides with the minus partial order for nilpotent matrices. This leads
to the following lemmas.

Lemma 2.7. Let A,B ∈ Mn(C). Then A
1

≤ B if and only if S1
A(λ)

cn
≤ S1

B(λ) for all
λ ∈ C.
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Proof. Follows directly from the definition of the cn-order and from the fact that S1
M(0)

is nilpotent and S1
M(λ) is of index at most 1 for all λ ∈ C \ {0} and for any M ∈ Mn(C).

In particular, apply this reasoning to M ∈ {A,B}.

Lemma 2.8. Let A,B ∈ Mn(C). Then A
2,3

≤ B if and only if S2
A(λ)

−

≤ S2
B(λ) for all

λ ∈ C \ {0} and S3
A(λ)

−

≤ S3
B(λ) for all λ ∈ C.

Proof. Since S2
A(λ) and S2

B(λ) are idempotent matrices, S2
A(λ)

]

≤ S2
B(λ) is equivalent to

S2
A(λ)

−

≤ S2
B(λ).

Now, we can prove that these new binary relations are indeed partial orders.

Theorem 2.9.
1

≤ and
2,3

≤ are partial order relations on Mn(C).

Proof. It is straightforward that A
1

≤ A and A
2,3

≤ A for all A ∈ Mn(C).

Let A
1

≤ B and B
1

≤ A. Then S1
A(λ) = S1

B(λ) for all λ ∈ C. Hence, A = B by the
first decomposition from Definition 2.3.

Let A
2,3

≤ B and B
2,3

≤ A. Then S3
A(λ) = S3

B(λ) for all λ ∈ C and S2
A(λ) = S2

B(λ)

for all λ ∈ C \ {0}. However, S2
M(0) is included to the decomposition of M given by

Definition 2.3 with the 0 coefficient. Thus, again A = B.

Let A
1

≤ B
1

≤ C. Then for any λ ∈ C it holds that S1
A(λ)

cn
≤ S1

B(λ)
cn
≤ S1

C(λ). Hence,

S1
A(λ)

cn
≤ S1

C(λ) since
cn
≤ is a partial order relation. Thus, by Lemma 2.7, A

1

≤ C.

Let A
2,3

≤ B
2,3

≤ C. Then for any λ ∈ C it holds that S3
A(λ)

−

≤ S3
B(λ)

−

≤ S3
C(λ) and for

any λ ∈ C \ {0} it holds that S2
A(λ)

]

≤ S2
B(λ)

]

≤ S2
C(λ). Hence, A

2,3

≤ C by definition

since
−

≤ and
]

≤ are partial order relations.

It is well known that if A
cn
≤ B then Spec A ⊆ Spec B ∪ {0} (see [15, Theorem

4.4.18]). Similar relations are valid for
1

≤- and
2,3

≤-orders.

Lemma 2.10. Let A,B ∈ Mn(C) such that A
1

≤ B or A
2,3

≤ B. Then Spec A ⊆ Spec B ∪

{0}. Moreover, if 0 /∈ Spec A or A has a Jordan cell of size k ≥ 2 with 0 eigenvalue, then
Spec A ⊆ Spec B.

Proof. Let λ ∈ Spec A \ {0}. If A
1

≤ B or A
2,3

≤ B then Si
A(λ)

]

≤ Si
B(λ) for i = 1, 2,

respectively. If we suppose λ /∈ Spec B then O 6= S i
A(λ)

]

≤ Si
B(λ) = O, which is not

possible. Hence, Spec A ⊆ Spec B ∪{0}. In addition, if A has a Jordan cell of size k ≥ 2

with 0 eigenvalue then S1
A(0) 6= O and S3

A(0) 6= O. Hence, considering the minus order,
we have S1

B(0) 6= O and S3
B(0) 6= O. Thus, 0 ∈ Spec B.

5



The introduced orders are invariant under similarities.

Lemma 2.11. Let A,B ∈ Mn(C). For all nonsingular P ∈ Mn(C), it follows that

(a) A
1

≤ B implies PAP−1
1

≤ PBP−1.

(b) A
2,3

≤ B implies PAP−1
2,3

≤ PBP−1.

Proof. It is straightforward using item (iv) of Theorem 2.2 and the fact that minus, sharp
and cn-orders are invariant under similarities.

3 Relationships with other orders

In this section we show that a matrix A is below another matrix B under the cn-order
if and only if A is below B under the

1

≤ order. We will also prove that although this

equivalence does not occur between the cn-order and the
2,3

≤-order, the implication

A
cn
≤ B =⇒ A

2,3

≤ B

remains valid.
We quote here the following result which is useful for our considerations.

Theorem 3.1. [15, Theorem 4.4.18] Let A,B ∈ Mn(C). Then A
cn
≤ B if and only if

there exist invertible matrices P ∈ Mn(C), C1 ∈ Mk1
(C), C2 ∈ Mk2

(C) and nilpotent
matrices N1, N2 ∈ Mn−(k1+k2), such that

A = P




C1

O
N1


 P−1 and B = P




C1

C2

N2


 P−1

with N1

−

≤ N2.

Now, we show that
1

≤-order follows from
cn
≤-order.

Lemma 3.2. Let A,B ∈ Mn(C). If A
cn
≤ B then A

1

≤ B.

Proof. Let A
cn
≤ B. Clearly, the result is trivial for A = O. Hence, assume further that

A 6= O, so B 6= O. Then by Theorem 3.1

A = P




C1

O
N1


 P−1 and B = P




C1

C2

N2


 P−1

6



with N1

−

≤ N2 and C1, C2 invertible. Then from the uniqueness of the core-nilpotent
decomposition of a matrix it follows that

CA = P




C1

O
O


 P−1, NA = P




O
O

N1


 P−1,

CB = P




C1

C2

O


 P−1, and NB = P




O
O

N2


 P−1

are the core-nilpotent decompositions of A and B, correspondingly, and we have CA

]

≤

CB and NA

−

≤ NB.

In order to see that A
1

≤ B holds we have to demonstrate the inequalities S1
A(λ)

]

≤

S1
B(λ) for all λ ∈ C \ {0} and S1

A(0)
−

≤ S1
B(0). By definition, S1

A(0) = NA and S1
B(0) =

NB, thus

S1
A(0)

−

≤ S1
B(0) (3.1)

is obtained directly.

Since similarities preserves the
]

≤ order, it follows from CA

]

≤ CB that




C1

O
O


 ]

≤




C1

C2

O


 .

Let us compute the Jordan canonical forms of C1 and C2, that is, C1 = S1J1S
−1
1 and

C2 = S2J2S
−1
2 . Hence,




S1J1S
−1
1

O
O


 ]

≤




S1J1S
−1
1

S2J2S
−1
2

O


 ,

which can be re-written as

(
S1

S2

I

) (
J1

O
O

) (
S−1

1

S−1

2

I

)
]

≤
(

S1

S2

I

) (
J1

J2

O

) (
S−1

1

S−1

2

I

)

and is equivalent to

A′ =




J1

O
O


 ]

≤




J1

J2

O


 = B′. (3.2)
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We consider the diagonal concatenation of blocks with the same eigenvalue in the
Jordan form:

J1 =




A1 . . . O
... . . . ...
O . . . Ap


 , J2 =




B1 . . . O O . . . O
... . . . ...

... . . . ...
O . . . Bp O . . . O
O . . . O Bp+1 . . . O
... . . . ...

... . . . ...
O . . . O . . . . . . Bq




. (3.3)

Here, for i, j = 1, . . . , p, we have Spec Ai = {λi}, 0 /∈ Spec Ai, and Spec Ai∩Spec Aj =

∅ if i 6= j. Analogously, for i = 1, . . . , p, we have Spec Bi = {λi} and moreover, for
i, j = 1, . . . , q, Spec Bi ∩ Spec Bj = ∅ if i 6= j and for k = p + 1, . . . , q, 0 /∈ Spec Bk.
We observe that some (or even all) of the blocks Bk, k = p + 1, . . . , q, may be absent.
Also, the size of Bi, i = 1, . . . , p, and the one of Ai may not be the same.

We get by (3.2) and (3.3) that




A1 . . . O

...
. . .

...
O . . . Ap

O

O

O




]

≤




A1 . . . O

...
. . .

...
O . . . Ap

B1 . . . O

...
. . .

...
O . . . Bp

Bp+1 . . . O

...
. . .

...
O . . . Bq

O




(3.4)

Note that, by definition, for each i = 1, . . . , p,

S1
A′(λi) =




O

. . .
O

Ai

O

. . .
O

O
O




and S1
B′(λi) =




O

. . .
O

Ai

O

. . .
O

Bi

O




,

that is, in S1
B′(λi) the block Ai is located exactly at the same place as in S1

A′(λi).

Then it is straightforward to check that for each i = 1, . . . , p it holds that S1
A′(λi)

]

≤

S1
B′(λi). Therefore,

S1
A(λi)

]

≤ S1
B(λi), (3.5)

since the
]

≤-order is preserved under similarities (see item (iv) of Theorem 2.2).
For any λ ∈ C \ {0, λ1, . . . , λp},

S1
A(λ) = O

]

≤ S1
B(λ). (3.6)
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Combining (3.1), (3.5), and (3.6), we get A
1

≤ B.

The following lemma establishes that the cn-order also follows from the
1

≤-order.

Lemma 3.3. Let A,B ∈ Mn(C). If A
1

≤ B then A
cn
≤ B.

Proof. By Lemma 2.7, A
1

≤ B is equivalent to S1
A(λ)

cn
≤ S1

B(λ) for all λ ∈ C. Hence,

S1
A(0)

−

≤ S1
B(0), i.e. NA

−

≤ NB.

We have to prove now that S1
A(λ)

]

≤ S1
B(λ) for all λ ∈ C \ {0} implies CA

]

≤ CB , i.e.

∑

λ∈C\{0}

S1
A(λ)

]

≤
∑

λ∈C\{0}

S1
B(λ).

It follows from the proof of Lemma 3.2 that for any λ 6= 0 and for any X ∈ Mn(C),

S1
X(λ) = S1

CX
(λ). By definition, S1

X(λ)
]

≤ X for any λ. It then follows that S1
A(λ)

]

≤

S1
B(λ) = S1

CB
(λ)

]

≤ CB for any λ 6= 0, i.e., S1
A(λ)

]

≤ CB for any λ 6= 0. Denote by
λ1, . . . , λp the set of nonzero eigenvalues of A. Since S1

A(λi) ⊥ S1
A(λj) (see Theorem 2.2),

it follows by [4, Theorem 2.22] that S1
A(λ1) + S1

A(λ2)
]

≤ CB. In addition, S1
A(λ1) +

S1
A(λ2) ⊥ S1

A(λ3). Hence, (S1
A(λ1) + S1

A(λ2)) + S1
A(λ3)

]

≤ CB. Arguing in the same way

we obtain that (S1
A(λ1) + . . . + S1

A(λp−1)) + S1
A(λp)

]

≤ CB. Using that CA = S1
A(λ1) +

. . . + S1
A(λp), we arrive at CA

]

≤ CB and the result follows.

From Lemmas 3.2 and 3.3 we derive the following result which provides a characteri-
zation of the cn-order in terms of the spectrally orthogonal decomposition.

Theorem 3.4. Let A,B ∈ Mn(C). Then A
1

≤ B if and only if A
cn
≤ B.

In what follows, the relationship between the
cn
≤- and

2,3

≤-partial orders is analyzed.

Theorem 3.5. Let A,B ∈ Mn(C). If A
cn
≤ B then A

2,3

≤ B.

Proof. Suppose that A
cn
≤ B. Clearly, S3

A(0) = S1
A(0) = NA

−

≤ NB = S1
B(0) = S3

B(0).
Moreover, as we have obtained in the proof of Lemma 3.2, we can also get the expression
(3.4). Then, for i = 1, . . . , p,

S2
A′(λi) =




0
. . .

0
Ili

0
. . .


 and S2

B′(λi) =




0
. . .

0
Ili

0
. . .

0
I

0




.
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In both matrices, the block Ili is located exactly at the same place, i.e., is a successor of the

l1+. . .+li−1 square zero block. Hence, it is straightforward to see that S2
A′(λi)

]

≤ S2
B′(λi).

Similarly,

S3
A′(λi) =




0
. . .

0
Nli

0
. . .


 and S3

B′(λi) =




0
. . .

0
Nli

0
. . .

0
Ñi

0




have both nonzero nilpotent blocks in the position of Ai and, additionally, S3
B′(λi) may

have also some other nonzero diagonal block Ñi, which is not located on the position

occupied by Ai. Hence, S3
A′(λi)

−

≤ S3
B′(λi).

Since minus and sharp partial orders are preserved under similarity transformations,

S2
A(λi)

]

≤ S2
B(λi) and S3

A(λi)
−

≤ S3
B(λi).

3.1 Examples and counterexamples

Below we provide a number of examples showing that the
2,3

≤-order introduced in this

paper is essentially different from the extensions of the
]

≤-order. In particular, it is different
from the cn-order.

We start with an example showing that in general the
cn
≤-order does not follow from

the
2,3

≤-order.

Example 3.6. Let A ∈ Mn(C) be a Jordan cell with 1 on the main diagonal, i.e.

A = Jn(1) = I + E12 + E23 + . . . + En−1,n.

Then it follows from Theorem 3.1, that A is a minimal element of Mn(C) \ {O} with

respect to the
]

≤- and
cn
≤-orders. Indeed, a Jordan cell can not be similar to a block matrix of

type
(

C1

C2

Ok

)
, k > 0, with invertible blocks C1 and C2. So, there is no nonzero B 6= A

such that B
cn
≤ A. However Eii

2,3

≤ A for all i = 1, . . . , n. Indeed, S2
A(λ) = S3

A(λ) = O

for all λ ∈ C \ {1},

S2
A(1) = In, and S3

A(1) = Jn(0) = E12 + E23 + . . . + En−1,n.

For any i, 1 ≤ i ≤ n, we have S2
Eii

(1) = Eii, S2
Eii

(λ) = O for all λ ∈ C\{0, 1} and S3
Eii

(λ) =

O for all λ ∈ C. Since Eii

]

≤ In and O
−

≤ S3
A(λ) for all λ ∈ C, it follows that Eii

2,3

≤ A

for all i = 1, . . . , n.
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Example 3.7. In the previous example it was shown that Eii

2,3

≤ Jn(1). Observe that Eii

is not below Jn(1) with respect to the minus order. This shows that the
2,3

≤-order does not
imply the minus order, in contrast with sharp and cn-orders.

Let us show that the
2,3

≤-order also does not follow from the minus order. We provide
two different examples of matrices of different sizes in order to show that it is a general
situation.

Example 3.8. 1) Consider the matrices

A =

(
0 1
0 0

)
and B =

(
0 1
1 1

)
.

It is not hard to see that A
−

≤ B but A is not below B under the
2,3

≤-order because S3
A(0) =

A is not below S3
B(0) = O under the minus order.

2) Similarly, the matrices

A =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 and B =




0 −1 −2 0
2 0 −2 0
0 0 0 0

−2 2 4 0


 ,

satisfy that A
−

≤ B but A is not below B under the
2,3

≤-order because

S3
A(0) = A, S3

B(0) = −2E43,

and rk (S3
B(0) − S3

A(0)) 6= rk S3
B(0) − rk S3

A(0).

A well-known property for the minus, sharp and cn-orders is that if A is strictly below
B with respect to one of these orders then rk A < rk B. The following example remarks

that the
2,3

≤-order does not satisfy such a property.

Example 3.9. It is not hard to see that In

2,3

≤ Jn(1) but rk In = rk Jn(1) = n.

Remark 3.10. The above examples show that in contrast to all known extensions of the

sharp order, see [15], the
2,3

≤-order is unrelated with the minus order and has nonstandard
behavior with respect to the rank function.

Observe that some properties of the
2,3

≤-order introduced in this paper are just opposite
to the properties of the sharp and cn-orders.
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Example 3.11. In Example 3.6, the matrix A has been pointed out to be a minimal ele-

ment of Mn(C) \ {O} with respect to the
]

≤- and
cn
≤-orders. Now, we establish that A is a

maximal element of Mn(C) with respect to the
2,3

≤-order. Indeed, if there exists a matrix

B ∈ Mn(C) such that A
2,3

≤ B then S2
B(1) = In (that is, λ = 1 is the only eigenvalue of

B) and S2
B(λ) = O for all λ 6= 1. Moreover, from S3

A(1) = A− In

−

≤ S3
B(1) and S3

B(1) is
nilpotent we get rk S3

B(1) = n − 1. Hence, S3
B(1) = A − In since rk (A − In) = n − 1.

Consequently, B = S2
B(1) + S3

B(1) = A.

4 Some algebraic properties of the introduced order

We start with the investigation of the behavior of the class of idempotent matrices under
the considered orders.

Theorem 4.1. Let A,B ∈ Mn(C) such that A
2,3

≤ B. If B is idempotent then A is idem-
potent.

Proof. It is clear that B2 = B assures the existence of a nonsingular P ∈ Mn(C) such that
B = P (I⊕O)P−1. By Lemma 2.10, we obtain that Spec (A) ⊆ Spec (B)∪{0} ⊆ {0, 1}.

On the other hand, A
2,3

≤ B also implies S2
A(1)

]

≤ S2
B(1) = B, S3

A(1)
−

≤ S3
B(1) = O and

S3
A(0)

−

≤ S3
B(0) = O. Thus, S3

A(0) = O and S3
A(1) = O. From items (v) and (vii) of

Theorem 2.2, we arrive at A = S2
A(1), which is idempotent.

However, the converse of the previous theorem is not valid. Indeed, Example 3.6 shows

that Eii

2,3

≤ Jn(1) where Eii is idempotent and Jn(1) is not.
We can say even more.

Theorem 4.2. Let A,B ∈ Mn(C) be idempotent. The following conditions are equiva-
lent:

(a) A
2,3

≤ B.

(b) A
cn
≤ B.

(c) A
]

≤ B.

Proof. It is straightforward from [15, Theorem 4.2.8(iii)].

The most studied orders in the literature, namely minus, star, sharp, are G-based. This

means that A
G
≤ B if and only if there exists a g-inverse G ∈ Mn(C) of A such that

AG = BG and GA = GB.
Note that, since the

1

≤-order is equivalent to the cn-order, it is not G-based. We close

this paper showing that, in general, the
2,3

≤-partial order is not G-based on Mn(C) as well.
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Remark 4.3. The order
2,3

≤ is not G-based for any n > 1. We consider the matrices

A =

(
1 0
0 0

)
⊕ On−2 and B =

(
1 1
0 1

)
⊕ On−2,

where X⊕Y denotes the block diagonal matrix with the blocks X and Y on the diagonal.

It is straightforward to check that A
2,3

≤ B. Suppose that there is a g-inverse G ∈ Mn(C)

of A such that AG = BG and GA = GB. Let T = 1
2
(A + B). Then T − A = 1

2
(B − A)

and so, AG = TG and GA = GT . Hence, A
2,3

≤ T , which is a contradiction due to S2
A(1)

is not below S2
T (1) under the sharp order.
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