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Abstract: As the analysis of electrical loads is reaching data measured 

from low voltage power distribution networks, there is a need for the 

main agents involved in the operation and management of the power grids 

to segment the end users as a function of their shapes of daily energy 

consumption or load profiles, and to obtain patterns that allow to 

classify the users in groups based on how they consume the energy. 

 

However, this analysis is usually limited to the analysis of single days. 

Since the smart metering data are time series formed by sequential 

measurements of energy through each hour or quarter of hour of the day, 

and also through each day, thanks to the implementation of Advanced 

Metering Infrastructure (AMI) and the Smart Grid technologies, it becomes 

clear that the analysis of the data needs to be extended to consider the 

dynamic evolution of the consumption patterns through days, weeks, 

months, seasons, and even years. 

 

This is the objective of the present work. A new framework is presented 

that addresses the dynamic clustering, visualization and identification 

of temporal patterns in load profiles time series, fulfilling the 

detected gap in this area. The present development is a generic framework 

that allows the clustering and visualization of load profiles time series 

applying different classical clustering algorithms. A novel dynamic 

clustering algorithm is also presented, based on an initial segmentation 

of the energy consumption time series data in smaller surfaces, and the 

computation of a similarity measure among them applying the Hausdorff 

distance. Following, these developments are presented and tested on two 

dataset of energy consumption load profiles from a sample of residential 

users in Spain and London. 
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BRIEF INTRODUCTION AND OBJECTIVES: 

The question arises on how the large amounts of smart metering data can be used in a way to 

be profitable to an interested party or agent. Data mining techniques can provide the tools to 

achieve this objective. 

Clustering and classification techniques are among the descriptive objectives of the data 

mining, whereas prediction is included in the predictive objective. The evolution analysis is also 

an objective of the data mining. In the evolution analysis, the trend of the series and the 

temporal evolution of the data is a key factor in the objective of the analysis. Most of the 

objectives described for the static analysis can be extended in the evolution analysis. 

The objective is to capture the evolution in time of the load profiles. It allows the obtention of 

patterns that evolve through time, in a time frame defined by the expert. This allows an 

interpretation of the results that depicts the full dynamic behavior of all the objects, therefore 

providing a much more complete (and also complex) information, from where conclusions can 

be obtained and actions can be determined, to fulfill the purposes of the data mining process. 

Issues such as identifying specific groups with special trends or shapes in time, or comparing 

clusters' differences according to their entire behavior in the time frame, can now be 

considered. 

 

INNOVATION AND PREVIOUS WORKS FROM THE AUTHORS: 

Concerning the analysis of load curves of energy consumption, all the works found in the 

literature correspond to static clustering. Realizing that no specific development had been 

found addressing the dynamic clustering and visualization of energy consumption load profiles 

time series data, the authors of the present work presented a previous paper: 
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where a dynamic K-means clustering algorithm was developed, by modifying the static K-

means algorithm to obtain the similarity distances among objects taking into account all the 

Euclidean distances between each pair of objects from their coincident time stamps. 

The new approach presented in this work applies the concept of Type 3 dynamic clustering. In 

this case the feature or dimension trajectories of the objects are clustered. The dimensions of 

two objects are compared as sequences of n samples, and a final distance is obtained as the 

average of all the comparisons of features at the 24 dimensions. 

The similarity measure proposed can be seen as an ``augmented'' distance, in the sense 

described by Izakian et al.:  

 Izakian, H.; Pedrycz, W. & Jamal, I. Clustering Spatiotemporal Data: An Augmented 

Fuzzy C-Means Fuzzy Systems, IEEE Transactions on, 2013, 21, 855-868. 

 

or Izakian and Pedrycz: 

 Izakian, H. & Pedrycz, W. Agreement-based fuzzy C-means for clustering data with 

blocks of features Neurocomputing , 2014, 127, 266 – 280. 

 

since the similarity in static or Type 1 clustering is augmented to process time instants in n 

features or dimensions. It can also be seen as a development based on the description of the 

membership function of a time series object to a class made by Weber in the FFCM algorithm: 

 de Oliveira, J. V. & Pedrycz, W. (Eds.) Advances in Fuzzy Clustering and its Applications 

John Wiley & Sons, Ltd., 2007. 

 

The distance function operator d is replaced by specific distance functions able to compare 

two time series and yield a value of similarity. None of the previous works presented, however, 

have been developed to analyze and visualize the resulting clusters in the form of n or, in this 

case, 24 dimensions of dynamic data objects. 

Moreover, a new dynamic clustering procedure is presented, as a modification of the static K-

means algorithm, but applying an initial decomposition of the data object in smaller linear 

surfaces and comparing them applying a Hausdorff-based similarity distance. 

 



CONCLUSIONS: 

The results obtained provide a feasible and valuable analysis for the different experts and 

agents involved in the management of power systems, and can serve for different purposes, 

such as predictive maintenance, evaluation of consumption trends, detection of non-typical 

patterns of consumption, or identification of groups of customers with specific characteristics 

for the provision of energy. 

 



Highlights 

 

Dynamic clustering is applied on load profiles of energy consumption. 

The dynamic evolution of energy at each hour of the day can be observed. 

A new dynamic clustering technique based on Hausdorff distance is presented. 
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Ignacio Beńıteza, José-Luis Dı́ezb, Alfredo Quijanoa, Ignacio Delgadoa

aInstituto Tecnológico de la Enerǵıa
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Abstract

As the analysis of electrical loads is reaching data measured from low voltage
power distribution networks, there is a need for the main agents involved in
the operation and management of the power grids to segment the end users
as a function of their shapes of daily energy consumption or load profiles,
and to obtain patterns that allow to classify the users in groups based on
how they consume the energy.

However, this analysis is usually limited to the analysis of single days.
Since the smart metering data are time series formed by sequential measure-
ments of energy through each hour or quarter of hour of the day, and also
through each day, thanks to the implementation of Advanced Metering In-
frastructure (AMI) and the Smart Grid technologies, it becomes clear that
the analysis of the data needs to be extended to consider the dynamic evolu-
tion of the consumption patterns through days, weeks, months, seasons, and
even years.

This is the objective of the present work. A new framework is presented
that addresses the dynamic clustering, visualization and identification of tem-
poral patterns in load profiles time series, fulfilling the detected gap in this
area. The present development is a generic framework that allows the clus-
tering and visualization of load profiles time series applying different clas-
sical clustering algorithms. A novel dynamic clustering algorithm is also
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presented, based on an initial segmentation of the energy consumption time
series data in smaller surfaces, and the computation of a similarity measure
among them applying the Hausdorff distance. Following, these developments
are presented and tested on two dataset of energy consumption load profiles
from a sample of residential users in Spain and London.

Keywords:
dynamic clustering, data mining, load profiles

1. Introduction

The European Technology Platform on Smart Grids (ETP SG) has issued
a report in 2015 [1] on the research and development needs foreseen by the
platform for the EC Horizon 2020 Research and Innovation Programme [2],
for the years 2016 and 2017. One of the main challenges identified by the
ETP SG is the utilization of smart metering data. According to the ETP
SG, “a very large amount of data is being collected whose potential has been
untapped”.

The question arises on how the large amounts of smart metering data can
be used in a way to be profitable to an interested party or agent. Data mining
techniques can provide the tools to achieve this objective. The term “data
mining” gathers a number of different algorithms and techniques which have
as objective the analysis and extraction of useful information from large sets
of data [3].

Han and Kamber [3] define two main objectives of the data mining pro-
cess, as a function of the data mined and the kind of knowledge sought. These
objectives are the static analysis, or the analysis of static data, and the evo-
lution analysis, where the trend of the series and the temporal evolution of
the data is a key factor in the objective of the analysis.

The development presented in this paper allows to obtain patterns that
evolve through time, in a time frame defined by the expert. This allows
an interpretation of the results that depicts the full dynamic behavior of all
the objects, therefore providing a much more complete (and also complex)
information, from where conclusions can be obtained and actions can be
determined, to fulfill the purposes of the data mining process. Issues such as
identifying specific groups with special trends or shapes in time, or comparing
clusters’ differences according to their entire behavior in the time frame, can
now be considered.
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Nomenclature

X̄ik , V̄jk average values of the Xik and Vjk time series

µij membership value of object i to cluster j

εi residual or model error at time or instant i

B norm matrix

c number of clusters or classes

d(Xi, Vj) distance or similarity function between Xi and Vj

m degree of fuzziness of the clusters (usually a value higher than 1)

n number of features or characteristics of the data

p total number of time samples or instants

Vj, Vk centroids or prototypes of the classes or clusters j and k

Xi feature vector of object i

W=[w0 w1 w2]
t vector of coefficients of a linear surface model

First, a state of the art is presented, regarding dynamic clustering algo-
rithms found in the literature and previous clustering analyses regarding the
segmentation of load profiles. Following, the development made is presented
and tested on two different datasets of load profiles from a sample of residen-
tial low voltage consumers, in Spain and London. The results are described
and discussed. Finally a conclusions section is included.

2. State of the art on dynamic clustering techniques applied on
load profiles

With respect to the dynamic nature of the data and the cluster analysis,
Weber [4] classifies the cluster analysis in four types or categories, according
to the dynamic nature of the data and the clusters:
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• Type 1. The data is treated as static and the clustering process is also
static.

• Type 2. The data is treated as static but the number of clusters may
vary at each new computation. In this system, issues such as clusters
formation, collapse, split or fusion must be considered.

• Type 3. The data is treated as dynamic, evolving through time, as
trajectories of the different data features or dimensions through time.
The number of clusters is fixed. The resulting centroids or patterns are
therefore defined by feature trajectories that evolve through time. The
present work approaches this type of dynamic clustering analysis.

• Type 4. The data is also treated as dynamic, as in type 3, becoming
feature trajectories that evolve through time, and the number of clus-
ters varies dynamically at each iteration. Clusters and patterns can,
therefore, as in type 2, merge or split.

Liao [5] makes a differentiation of clustering types for time series data
based on three main approaches: clustering on the raw data, clustering on
a feature-based transformation of the data, and clustering on a model-based
transformation of the data. The clustering algorithms presented in this paper
are based on the analysis of the raw time series data, therefore a brief review
on the current state of the art in this field is described next.

A number of time series clustering algorithms are based on modifications
of the K-means [6] or Fuzzy c-means or FCM [7] algorithms. Weber [4]
describes the algorithm called Functional Fuzzy C-means or FFCM, as a time
series generalization of the FCM. The FFCM algorithm presents a modified
calculation of the membership value at each iteration, indicated in Eq. (1),
where the distance function d is based on fuzzy inference.

µij =
1∑c

k=1

(
d(Xi,Vj)

d(Xi,Vk)

) 2
m−1

(1)

Regarding recent years, Izakian et al. [8] present a clustering algorithm
for spatiotemporal data where the Euclidean distance is replaced by an “aug-
mented” distance, which is the weighted sum of two Euclidean distances: the
comparison of the spatial components and the comparison of the temporal
features. This modification is later extended by Izakian and Pedrycz [9] to
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n features or dimensions with the concept of blocks or groups of similar fea-
tures, computing a weighted sum of Euclidean distances where the different
weights are obtained by Particle Swarm Optimization (PSO) [10].

Concerning the analysis of load curves of energy consumption, all the
works found in the literature correspond to static or Type 1 clustering. Re-
alizing that no specific development had been found addressing the dynamic
clustering and visualization of energy consumption load profiles time series
data, the authors of the present work presented a previous paper [11] where
a dynamic K-means clustering algorithm was developed, by modifying the
static K-means algorithm to obtain the similarity distances among objects
taking into account all the Euclidean distances between each pair of objects
from their coincident time stamps.

3. Development of algorithms and techniques to perform dynamic
clustering on load profiles time series data

The new approach presented in this work applies the concept of Type 3
dynamic clustering described. In this case the feature or dimension trajecto-
ries of the objects are clustered. The dimensions of two objects are compared
as sequences of n samples, and a final distance is obtained as the average of
all the comparisons of features at the 24 dimensions. Although the two ap-
proaches may deal similar mathematical results, they are quite different and,
depending on the operators and similarity measures used, may produce very
different outcomes. The first approach can be seen as a succession of Type
1 static clustering calculated for n times and clustered together. The second
approach is designed as a Type 3 dynamic clustering of dynamic trajectories
through time, with a fixed number of classes.

The similarity measure proposed can be seen as an “augmented” distance,
in the sense described by Izakian et al. [8] or Izakian and Pedrycz [9], since
the similarity in static or Type 1 clustering is augmented to process time
instants in n features or dimensions. It can also be seen as a development
based on the description of the membership function of a time series object
to a class made by Weber in the FFCM algorithm [4]. The distance function
operator d is replaced by specific distance functions able to compare two time
series and yield a value of similarity. None of the previous works presented,
however, have been developed to analyze and visualize the resulting clusters
in the form of n or, in this case, 24 dimensions of dynamic data objects.
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Moreover, a new dynamic clustering procedure is presented, as a modifi-
cation of the static K-means algorithm, but applying an initial decomposition
of the data object in smaller linear surfaces and comparing them applying a
Hausdorff-based similarity distance. These developments are presented next.

3.1. Development of cluster validity indices for the evaluation of dynamic
clustering on time series n-dimensional data

A number of cluster validity indices are used for the comparison of the
results of dynamic clustering algorithms on time series data. The indices de-
scribed are extensions for the dynamic analysis of common static clustering
validity indices. The clustering validity indices were initially described to
assess the initial selection of a number of clusters for partitional clustering
algorithms [12]. Different authors, however, [13][14], have used them to com-
pare the results of different clustering algorithms applied on the same data
sets, to evaluate the performance of the different algorithms. They will also
be used in this work for this purpose. The indices used are three: DB or
Davies-Bouldin index [15], SD or Scatter - Distance index [14] and the XB
or Xie - Beni index [16]. All of them indicate a good partition of clusters if
their values are low.

The indices have been modified to evaluate partitions of dynamic objects
in Type 3 clustering, by replacing the static similarity distances used (Eu-
clidean distance) by a generic distance d between dynamic objects, which can
be any of the similarity measures described for the dynamic cluster analysis.

3.2. Development of a common framework for the dynamic clustering and
visualization of daily load profile time series

A general framework is presented for Type 3 dynamic clustering analysis,
called the Equal N - Dimensional (END) Time series Clustering Framework.
Within this framework, this work presents the development of partitional dy-
namic clustering algorithms, obtained as an extension of the classical, static
techniques, where the 2D data and patterns are extended to 3D time se-
ries data and patterns. The way to perform this extension is based on the
description of the FFCM by Weber, where other similarity measures have
been used instead of defining fuzzy inference to compute the distances. For
doing so, the END framework developed envelops the partitional clustering
algorithm and modifies it in order to obtain the similarity distances among
objects taking into account the distances between their feature or dimension
trajectories. Applying this method, two different static clustering techniques,
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K-means and Fuzzy C-means or FCM, have been extended to dynamic clus-
tering. Two different similarity measures, based on the Euclidean distance
and on the correlation measure, have been used. The resulting dynamic
clustering techniques have been called: END-FCME (END FCM Euclidean-
based), END-FCMC (END FCM Correlation-based), END-KME (END K-
Means Euclidean-based) and END-KMC (END K-Means Correlation-based).
This method, however, can be extended to most of the partitional clustering
techniques found in the literature.

All the objects are assigned the same number of time samples or instants.
The missing samples in this case have been filled with the average of the pre-
ceding and forthcoming values. Once all the data objects are harmonized,
the distance between each cluster and the object is computed between fea-
ture trajectories. Two different techniques for obtaining this distance have
been applied: Euclidean distance and correlation. In the case of Euclidean
distance, the computation is shown in Eq. (2), where the identity matrix has
been used as the norm B.

d(Xi, Vj) =
1

n

n∑
k=1

‖Xik − Vjk‖2B =
1

n

n∑
k=1

((Xik − Vjk)TB(Xik − Vjk)) (2)

In the case of correlation, the Pearson correlation coefficient between two
series is computed between each pair of feature trajectories, as can be seen in
Eqs. (3) and (4). The result is an index between [−1, 0,+1], which yields the
linear relationship degree between the two series, which is later conveniently
transformed to a distance measure, applying the expression in Eq. (5). The
procedure to perform the dynamic clustering with the END framework can
be summarized in the following steps:

1. Initialize the C matrix of centroids with random values, or other meth-
ods.

2. Obtain all the distances of the objects to the centroids of the clusters,
by the formula indicated in Eq. (2) for Euclidean distance, or Eq. (5)
for correlation-based distance, or any other suitable for time series.

3. Compute membership matrix U , applying Eq. (1), in the case of END
FCM, or assigning each object to the cluster with the smallest distance,
in the case of END K-means.

4. Compute the cluster centroids according to the formulas for K-means
or FCM in each case.
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5. Repeat steps 2 to 4 until a termination condition is met, such as reach-
ing a maximum number of iterations.

corr(Xi, Vj) =
1

n

n∑
k=1

corr(Xik , Vjk) (3)

corr(Xik , Vjk) =

∑p
m=1(Xikm

− X̄ik)(Vjkm − V̄jk)√∑p
m=1(Xikm

− X̄ik)2
√∑p

m=1(Vjkm − V̄jk)2
(4)

d(Xi, Vj) =
1− corr(Xi, Vj)

2
(5)

3.3. Development of a two-step time series clustering algorithm with a Hausdorff-
based similarity distance for the dynamic clustering of daily load profile
time series

A specific development is presented in this document, being a dynamic
clustering algorithm which applies a similarity measure to compare two en-
ergy consumption load profiles time series, as two dynamic surfaces, based on
a two-step sequence. The energy consumption profiles from residential users
are seen as 3D surfaces, defined by the 24 hours load profile, where each hour
is considered as a feature or dimension of the data. Then, all the shapes are
decomposed in a number of linear surfaces, by applying least squares regres-
sion. The number of surfaces and the vertices is predefined, based on the
expert’s knowledge of the typical behavior from residential users regarding
energy consumption. Then, the resulting surfaces are compared by comput-
ing the Hausdorff distance between them, and a global similarity value is
obtained, given by the average value of all the Hausdorff distances between
the different surfaces. The procedure of the two-step dynamic clustering
algorithm described is the following:

1. Compute centroids

2. Partition all the data objects and centroids in n x m linear surfaces

3. Compute the n x m Hausdorff distances

4. Obtain the similarity measure as the average of the n x m distances

5. Compute membership for all the objects and reassign to clusters

6. Go to first step until termination condition is met
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The shapes of energy consumption are decomposed in a number of linear
surfaces, applying least squares regression to model the surfaces according to
the formula described in Eq. (6).

zi = w0 + w1xi1 + w2xi2 + εi (6)

In order to obtain the coefficients that fit the observations to the desired
function, the formula for least squares regression is used, expressed in matrix
form in Eq. (7).

W = (X tX)−1X tZ (7)

The Hausdorff distance was described by Felix Hausdorff in his founda-
tional book on Set theory [17]. The distance from a generic point x to a
closed subset A, both x and A belonging to the p-dimensional subset of the
closed subsets in <, is defined as the minimum of the distances of x to all
the points that belong to A, as seen in Eq. (8).

d(x,A) = minã∈A(d(x, ã)) (8)

The Hausdorff metric between two non-empty closed subsets, A and B,
is defined as the maximum of all possible distances d(ã, B), as seen in Eq.
(9). Since this metric is not necessarily symmetric, the Hausdorff distance
dH(A,B) between the two subsets is obtained as the maximum of their two
Hausdorff metrics, h(A,B) and h(B,A), as seen in Eq. (10).

h(A,B) = maxã∈A(d(ã, B)) (9)

dH(A,B) = max(h(A,B), h(B,A)) (10)

4. Analysis and results

4.1. Description of the first dataset and the analysis performed

The first database analyzed comprises hourly energy consumption data
from smart meters of a sample of 708 residential customers in Spain during
two consecutive years, 2009 and 2010. The data to be clustered are com-
prised, therefore, of 708 objects, each one having 24 features or dimensions,
and 729 daily measures. In order to validate the patterns obtained, a subset
of 36 customers, representing the 5% of the sample, is extracted from the
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Table 1: Type 3 dynamic clustering algorithms tested.

No. Static cluster-
ing technique

Dynamic objects simi-
larity measure

Dynamic clustering algorithm

1 K-means Euclidean distance END-KME (present work)
2 K-means Correlation END-KMC (present work)
3 K-means Hausdorff distance END-KMH (present work)
4 K-means Euclidean distance by

the same time instant
Extended static clustering (previ-
ous work by authors [11])

5 FCM Euclidean distance END-FCME (present work)
6 FCM Correlation END-FCMC (present work)
7 FCM Hausdorff distance END-FCMH (present work)
8 FCM Fuzzy membership

functions
FFCM (described by Weber [4])

database and will be later used for classification on the resulting patterns.
The resulting set of 672 customers is used to obtain the clusters and the
patterns.

The first dynamic K-means algorithm described by the authors in a pre-
vious work [11], the common framework for dynamic clustering described in
the present work, including the two-step dynamic clustering algorithm with
a Hausdorff-based similarity distance described also in the present work, and
the FFCM dynamic clustering algorithm [4] are implemented and tested. As
a result, the combination of the dynamic clustering algorithms described in
Table 1 is tested on the same data set.

These 8 algorithms have been tested 10 times each, and all the resulting
clustering validity indices’ values have been recorded. The maximum number
of iterations that each dynamic clustering algorithm is running until it stops
(if no other convergence criterion is reached) has been also set to 10. These
values have been chosen due to the computational effort needed to process
matrices which have 729 rows and 24 columns (the complete analysis took
almost four days to complete, in a workstation with a dual-core Intel proces-
sor with 12 GB of RAM). The analysis has been developed with MATLAB
software.

The number of clusters to be found is set to 10, based on a previous
work from Beńıtez et al. [18], where clustering and classification techniques
are applied on a data set of energy consumption daily load profiles and the
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DB index [15] is computed for a scope of cluster numbers. The value of
10 clusters is seen by the authors as a good representative value to capture
the main groups of energy consumption users and also some small groups of
customers with unexpected or unusual energy consumption profiles, at least
for the Spanish case, since the dataset analyzed is a sample that represents
the Spanish domestic energy users population. However, further studies could
be made in this sense, comparing the values from different cluster validity
indices. For instance 6, 8, or 12 clusters may also be a proper selection. As the
number of clusters increases, there is more room for the clustering algorithm
to identify new patterns that otherwise may be buried in the average pattern
of bigger groups. Another factor to take into account is human perception:
10 clusters is still a reasonable number to observe global results at a glance
and extract conclusions from the resulting patterns. Since one of the main
objectives of the analysis is to aid in decision support, the number of clusters
cannot be too big. On the other hand, if the number of clusters is too low,
the capacity of the algorithm to identify small groups with uncommon load
shapes is lost.

Regarding the Hausdorff distance-based algorithms, as indicated in Sec-
tion 3.3, the data objects are first decomposed in a smaller number of linear
surfaces and then compared by applying Hausdorff distance between them.
The number of regions or surfaces to decompose the energy consumption
shapes have been chosen based on previous knowledge of the behavior of the
residential load profiles in Spain. The daily load profile has been divided
in seven regions, according to the expected trends in a typical consumption
profile of one day for the low voltage residential consumer: the first region
is from 0:00 to 5:00 hours; the second from 5:00 to 8:00 hours, when the
first peak of the morning is expected (getting up for going to work); the
third from 8:00 to 10:00 hours, when the consumption decreases; the fourth
from 10:00 to 15:00 hours, when the second peak of energy consumption is
expected (due to lunchtime in Spain); the fifth is from 15:00 to 18:00 hours;
when the energy consumption decreases again; the sixth is from 18:00 to
22:00 hours, when the third (and maximum) peak of energy consumption in
Spanish dwellings is reached; and finally the seventh is from 22:00 to 24:00
hours. The time axis has been divided in 24 sections equal in length, which
would approximately correspond to the 24 months during two consecutive
years.

11



Table 2: Spanish data test results, DB modified index.

Cycle END-
KME

END-
KMC

END-
KMH

Extended
K-means

END-
FCME

END-
FCMC

END-
FCMH

FFCM

1 2.397 5.735 3.269 NaN 3.844 NaN 4.119 NaN
2 2.234 5.897 2.971 2.154 18.850 NaN 7.056 NaN
3 2.320 6.734 2.851 NaN 3.201 NaN 3.866 NaN
4 2.756 5.764 3.154 2.385 2.768 NaN 4.154 7.220
5 2.731 5.490 3.157 1.799 3.010 NaN 12.271 8.305
6 3.132 5.197 2.793 2.162 3.001 NaN 5.256 4.768
7 2.058 6.396 3.147 2.945 5.990 NaN 4.744 NaN
8 2.666 5.670 3.050 1.473 6.438 NaN 11.417 NaN
9 2.615 5.889 3.164 2.535 2.561 NaN 4.376 NaN
10 2.834 5.374 2.667 1.865 11.999 NaN 6.822 5.696

4.2. Results of the cluster analysis

The following Tables display the results obtained for the clustering valid-
ity indices DB (Table 2), SD (Table 3) and XB (Table 4). From the DB index
values’ Table (Table 2) it can be observed that the best results are obtained
by the END-KME and the END-KMH algorithms, in all the 10 cycles. The
worst result is obtained for the END-FCMC algorithm, where a NaN value in
all the cycles indicates a division by zero or an error in numerical precision,
probably due to the inability of the algorithm to produce well defined and sep-
arated clusters. The FCM-based algorithms, END-FCME and END-FCMH
algorithms provide worse results than K-means. Finally, the FFCM and the
Extended K-means yield NaN values in some cycles, therefore their reliabil-
ity would be less trustworthy than the clustering algorithms with no NaN
values. It can be concluded that, regarding the DB index, K-means-based
dynamic clustering algorithms with Euclidean or Hausdorff-based distances
provide the best results.

The analysis of the remaining Tables for the SD and XB (Table 3 and
Table 4) yields similar conclusions: the best values are obtained with K-
means or FCM Euclidean or Hausdorff-based distances. The FFCM and the
END-KMC provide worse results, and the END-FCMC is the worst of all.
These results indicate that correlation is not a good similarity measure for
the dynamic clustering of load profiles time series in the way it is used in the
present approach.

12



Table 3: Spanish data test results, SD modified index.

Cycle END-
KME

END-
KMC

END-
KMH

Extended
K-means

END-
FCME

END-
FCMC

END-
FCMH

FFCM

1 26.584 32.616 26.931 27.347 26.758 35.713 26.992 43.948
2 26.460 32.829 26.734 26.739 26.904 35.238 27.138 39.742
3 26.483 32.936 26.842 27.373 26.779 83.618 26.941 30.717
4 26.406 32.715 26.954 27.052 26.997 34.251 27.065 31.305
5 26.571 32.743 26.851 27.557 26.688 34.718 27.019 42.022
6 26.610 32.866 27.007 27.017 26.799 34.200 27.051 31.097
7 26.357 32.883 26.797 26.861 26.995 34.195 27.071 30.831
8 26.336 32.678 27.056 27.113 26.844 34.268 27.071 30.566
9 26.497 32.936 26.867 27.062 26.785 34.311 27.019 30.197
10 26.822 32.826 26.645 26.885 26.929 115.194 27.025 31.098

Table 4: Spanish data test results, XB modified index.

Cycle END-
KME

END-
KMC

END-
KMH

Extended
K-means

END-
FCME

END-
FCMC

END-
FCMH

FFCM

1 2.309 5.366 3.665 2.508 1.181 24882.341 1.591 2.960
2 2.086 4.498 3.651 1.706 17.037 19283.439 4.529 1.681
3 2.033 6.830 3.295 2.633 1.237 588970.7592.259 3.273
4 2.274 5.160 3.304 1.497 1.339 7671.673 1.585 6.549
5 2.601 4.805 3.130 0.994 1.271 13170.104 8.718 5.259
6 2.421 4.526 3.304 1.811 1.072 7062.314 2.448 2.185
7 2.148 6.032 3.451 2.428 3.410 7005.073 2.743 2.198
8 2.455 4.832 3.845 1.034 2.750 7872.360 5.187 2.386
9 2.350 5.051 3.336 1.922 0.991 8368.214 2.173 1.696
10 1.988 5.568 3.500 1.367 7.310 960752.4744.092 2.583

Following, the resulting patterns for each dynamic clustering algorithm
are analyzed. In each case, the patterns with the best DB modified index
from the 10 cycles have been chosen, however, as has been seen from the
previous Tables, values from the validity indices obtained do not differ much
along the 10 cycles for each algorithm, therefore any of the 10 cycles could
have been used.

The resulting clusters and how the partition should be is unknown. The
expected results, however, should follow previous experiences concerning the
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classification of load profiles from residential or domestic electric energy users
in Spain [18]. There are mainly three types of low voltage residential energy
consumption users in Spain according to their load profile patterns or proto-
types:

• The first type of client represents the majority of energy consumption
residential users in Spain. It is represented by a daily profile of energy
consumption with three ascending peaks of energy consumption: one
in the morning (around 8 h.), another one at lunchtime (around 15 h.)
and the highest one at night, around 22 h.

• The second type of clients represents a minority of users with a high
level of energy consumption through the day. There are two different
patterns in this type of clients: one with the typical shape of energy
consumption, described above, but with higher energy levels (from 2500
to 7000 Wh), and another group of users that present a (more or less)
flat shape of elevated energy consumption through the day, or other
non-typical patterns of energy use.

• The third type comprehends a small group of clients with a higher
consumption of energy at night, due to thermal energy accumulators
that are used mainly at night, or in valley hours where the price of the
energy is cheaper.

In all the resulting patterns for each dynamic clustering algorithm, a
study is performed in order to match the clusters obtained to one of the types
mentioned. To do this, first the previously described types are categorized
in the following five groups or labels:

1. Common profile of residential energy consumption, with low average of
daily consumption (around 500 Wh).

2. Common profile of residential energy consumption, with medium aver-
age of daily consumption (around 1500 Wh).

3. Uncommon profile, with the typical shape but with elevated average or
maximum of daily energy consumption (from 2500 to 7000 Wh).

4. Uncommon profile, more or less flat through the day (or other non-
typical shape) and with elevated average of daily energy consumption.

5. Peak consumption mainly at night, or shifted to other valley hours.
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Table 5: Assignment of clusters from dynamic clustering algorithms to expected groups,
Spanish data.

Dynamic
clustering
algorithm

Group 1 Group 2 Group 3 Group 4 Group 5

END-
KME

3 clusters,
571 users

1 cluster,
76 users

0 clusters 3 clusters,
15 users

3 clusters,
10 users

END-
KMC

5 clusters,
439 users

0 clusters 0 clusters 4 clusters,
229 users

1 cluster, 4
users

END-
KMH

3 clusters,
436 users

2 clusters,
197 users

1 cluster, 5
users

2 clusters,
20 users

2 clusters,
14 users

Extended
K-means

2 clusters,
572 users

2 clusters,
71 users

1 cluster, 3
users

2 clusters,
9 users

3 clusters,
17 users

END-
FCME

3 clusters,
621 users

1 cluster,
28 users

0 clusters 1 cluster, 4
users

5 clusters,
19 users

END-
FCMC

1 cluster,
672 users

0 clusters 0 clusters 0 clusters 0 clusters

END-
FCMH

5 clusters,
574 users

2 clusters,
64 users

0 clusters 1 cluster,
14 users

2 clusters,
20 users

FFCM 3 clusters,
652 users

3 clusters,
18 users

0 clusters 2 clusters,
2 users

0 clusters

Table 5 displays this assignment. Either the results from the Table and
the visualization of the obtained patterns support the conclusions obtained in
the analysis of the clustering validity indices: K-means or FCM - based, with
Euclidean or Hausdorff - based distances provide the best defined and well-
balanced clusters and patterns. The visualization of the resulting patterns
for the END-KMH (Fig. 1) algorithm is provided for visual comparison.

4.3. Classification and validation

A classification is performed of the remaining 16 users on the resulting
patterns, by the computation of the Euclidean distance, as described in Eq.
(2), between each user consumption data and each of the 10 patterns, and
assigning each user to the cluster with the minimum distance. The clustering
validity indices have been applied on the results of this classification. The
values, that can be observed in Table 6, support the results obtained in the
clustering process: K-means or FCM based algorithms with Euclidean or
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Table 6: Validity indices on the classification results, Spanish data.

Index END-
KME

END-
KMC

END-
KMH

Extended
K-means

END-
FCME

END-
FCMC

END-
FCMH

FFCM

DB 1.931 6.359 2.655 1.320 2.024 5173.027 3.753 3.645
SD 1.410 1.531 1.400 1.461 1.445 3.871 1.388 1.475
XB 2.358 4.323 3.771 1.142 1.642 2670.530 4.109 2.380

Haudorff - based distances provide better quantitative results.

4.4. Description of the second dataset and the results obtained

The same analysis has been applied on a second dataset, “SmartMeter
Energy Consumption Data in London Households” from the London Data
Store site. The same parameters have been used for this analysis. In this case,
there is no previous experience when analyzing these data and, therefore, how
the resulting patterns should be is totally unknown. For this reason, only
the quantitative results are displayed in Tables 7, 8 and 9, and the resulting
patterns for the END- KME algorithm are displayed as an example in Fig.
2.

Although the dataset contains a sample of 5.567 users from households in
London, only the first 1.000 users of the dataset, through the year 2013, have
been used in the analysis. The results obtained support the main conclusions
from the previous analysis. The algorithms that apply K-means or FCM with
Euclidean or Hausdorff - based similarity measures appear to quantitatively
provide better results. However, in this case there is also another conclusion:
for this specific dataset, 10 clusters is not a good choice of clusters number.
As can be seen in the Tables, there are similar values in the ten cycles for
the non-fuzzy algorithms; this is due to the presence of empty clusters in the
results. This can be appreciated in the visualization of the resulting patterns
for the case of the END-KME algorithm in Fig. 2. There is one pattern
with one user with zero value of energy consumption, i.e., a client with no
data, and an empty cluster. A lower number of clusters therefore, probably
8 or 6, should have been chosen instead for the analysis of these data. These
possibilities will be explored in further analyses.

5. Conclusions

The development made has been tested with two different data sets. The
results show that a selection of the algorithms developed provide an appro-
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Table 7: London data test results, DB modified index.

Cycle END-
KME

END-
KMC

END-
KMH

Extended
K-means

END-
FCME

END-
FCMC

END-
FCMH

FFCM

1 2.457 6.860 2.292 1.114 14.690 198.103 10.289 4.807
2 2.457 7.798 2.292 1.114 15.185 274.766 19.961 15.473
3 2.457 6.017 2.292 1.114 23.700 360.493 211.358 6.944
4 2.457 6.440 2.292 1.114 10.693 3303.798 17.991 11.001
5 2.457 6.419 2.292 1.114 22.007 713.202 34.459 6.812
6 2.457 8.002 2.292 1.114 263.688 291.929 13.772 9.817
7 2.457 7.552 2.292 1.114 23.579 681.747 54.445 12.027
8 2.457 7.196 2.292 1.114 11.466 7628.787 126.092 7.048
9 2.457 7.164 2.292 1.114 27.592 235.322 10.681 5.252
10 2.457 6.268 2.292 1.114 10.001 357.123 12.643 13.952

Table 8: London data test results, SD modified index.

Cycle END-
KME

END-
KMC

END-
KMH

Extended
K-means

END-
FCME

END-
FCMC

END-
FCMH

FFCM

1 49.467 49.705 52.216 45.551 46.456 1257.251 43.452 40.260
2 49.467 50.444 52.216 45.551 45.564 1724.442 57.374 54.206
3 49.467 50.124 52.216 45.551 49.997 2246.869 327.492 42.086
4 49.467 50.057 52.216 45.551 44.802 20183.564 50.077 45.610
5 49.467 49.887 52.216 45.551 63.059 4396.303 81.620 41.706
6 49.467 51.141 52.216 45.551 218.593 1829.037 47.082 45.207
7 49.467 50.023 52.216 45.551 60.807 4204.610 129.051 49.097
8 49.467 50.360 52.216 45.551 45.087 46540.341 377.216 41.697
9 49.467 50.505 52.216 45.551 62.200 1484.068 45.754 40.887
10 49.467 50.158 52.216 45.551 43.909 2226.333 50.608 50.736

priate segmentation in temporal patterns, either visually and numerically.
The quantitative analysis, by means of specifically modified clustering valid-
ity indices, and a qualitative study, by observing the resulting patterns ad
assigning them to one of five groups defined for typical profiles of residential
energy consumption in Spain, are coincident in their results: the K-means
or FCM - based algorithms, with Euclidean or Hausdorff - based distances,
provide the best defined and well-balanced clusters and patterns.

The Extended K-means algorithm has not provided a similar performance
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Table 9: London data test results, XB modified index.

Cycle END-
KME

END-
KMC

END-
KMH

Extended
K-means

END-
FCME

END-
FCMC

END-
FCMH

FFCM

1 13.440 4.896 16.063 0.455 4.003 990.513 3.001 1.950
2 13.440 5.996 16.063 0.455 3.900 1373.830 10.552 13.104
3 13.440 4.835 16.063 0.455 7.241 1802.465 168.239 2.324
4 13.440 4.620 16.063 0.455 3.063 16518.988 6.478 4.245
5 13.440 4.361 16.063 0.455 12.065 3566.012 24.452 2.020
6 13.440 5.692 16.063 0.455 90.884 1459.647 4.724 5.269
7 13.440 4.674 16.063 0.455 10.285 3408.734 53.559 6.797
8 13.440 5.543 16.063 0.455 4.054 38143.937 197.590 2.452
9 13.440 5.338 16.063 0.455 12.900 1176.610 4.021 2.127
10 13.440 4.384 16.063 0.455 2.581 1785.616 6.909 9.413

in all the cycles and does not provide a good segmentation of the customers.
The algorithm is mixing profiles with different trends, since only the values
from each dimension are compared at each instant of time. The resulting
features are not dynamic trajectories, but an alignment of independently
computed distances. Therefore this algorithm is not a good option for dy-
namic clustering.

Correlation is not a good similarity measure for the dynamic clustering
of load profiles time series either, as stated previously, probably due to the
non-linearity in the features or dimensions’ trends. This measure, however,
can be appropriate for other data sets.

The FFCM algorithm obtains worse results than Euclidean or Hausdorff-
based distances. The reasons for these results could be in the definition of
the membership function used to define the proximity between features.

Finally, as has been discussed, the appropriate selection of the number
of clusters to be found is also a challenging issue. A low number of clusters
will skip minority patterns, but a high value will produce empty or duplicate
clusters.

The present analysis is intended to serve as a tool that may help in deci-
sion support, as a way to quickly identify the main patterns in consumption
from a number of consumers, allowing to observe the evolution of the con-
sumption through the day and also how this consumption evolves through
the days. These results provide a new way of analyzing the load profiles of
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energy consumption.
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developed in the Spanish R&D project GAD. The GAD or “Active Demand
Management” (in Spanish) project was a project financed by the INGENIO
2010 program and supported by the CDTI (Technological Development Cen-
tre of the Ministry of Science and Innovation of Spain).

References

[1] Consolidated View of the ETP SG on Research, Development & Demon-
stration Needs in the Horizon 2020 Work Programme 2016–2017, Tech.
rep., ETP SG (European Technology Platform on Smart Grids) (2015).

[2] EC, Horizon 2020 - the framework programme for research and innova-
tion, Communication (November 2011).

[3] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan
Kaufmann, 2006.

[4] J. V. de Oliveira, W. Pedrycz (Eds.), Advances in Fuzzy Clustering and
its Applications, John Wiley & Sons, Ltd., 2007.

[5] T. W. Liao, Clustering of time series data - a survey, Pattern Recognition
38 (11) (2005) 1857 – 1874.

[6] J. B. MacQueen, Some methods for classification and analysis of mul-
tivariate observations, in: Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, University of California, Berke-
ley, CA, 1967, pp. 281–297.

[7] J. C. Bezdek, Fuzzy mathematics in pattern classification, Ph.D. thesis,
Faculty of the Gradual School of Cornell University, Ithaca, NY (1973).

[8] H. Izakian, W. Pedrycz, I. Jamal, Clustering spatiotemporal data: An
augmented fuzzy c-means, Fuzzy Systems, IEEE Transactions on 21 (5)
(2013) 855–868.

19



[9] H. Izakian, W. Pedrycz, Agreement-based fuzzy c-means for clustering
data with blocks of features, Neurocomputing 127 (2014) 266 – 280,
advances in Intelligent SystemsSelected papers from the 2012 Brazilian
Symposium on Neural Networks (SBRN 2012).

[10] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Neural Net-
works, 1995. Proceedings., IEEE International Conference on, Vol. 4,
1995, pp. 1942–1948 vol.4.
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Figure 1: Results from END-KMH dynamic clustering algorithm, Spanish data.
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Figure 2: Results from END-KME dynamic clustering algorithm, London data.
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