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Camı́ de Vera s/n, 46022 Valencia, Spain

E-mail: calegre@mat.upv.es, jomarinm@mat.upv.es

Abstract

In this paper we introduce the notion of modified w-distance (mw-distance) on
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1. Introduction and preliminaries

In [12] Kada, Suzuki and Takahashi introduced the notion of w-distance
on a metric space and improved the nonconvex minimization theorem of Taka-
hashi [18], the Ekeland variational principle [8] and the Caristi-Kirk fixed point
theorem [5], [6], among other results. Later Park [17] extended the notion of
w−distance and generalized several results from [12] to quasi-metric spaces.
Since then, the w-distance has been used in some directions in order to obtain
fixed point results on complete metric and quasi-metric spaces ([1], [2], [3], [14],
[15]).

In this paper we introduce a new notion of w-distance on a quasi-metric
spaces which generalizes the concept of quasi-metric and we obtain a fixed point
theorem for generalized contraction with respect to this new notion on complete
quasi-metric spaces.

Throughout this paper the letters R, R+, N and ω will denote the set of
real numbers, the set of non-negative real numbers, the set of positive integer
numbers and the set of non-negative integer numbers, respectively. Our basic
references for quasi-metric spaces are [10], [13] and [7].

A quasi-pseudo-metric on a set X is a function d : X ×X → R+ such that
for all x, y, z ∈ X: (i) d(x, x) = 0; (ii) d(x, y) ≤ d(x, z) + d(z, y).
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Following the modern terminology, a quasi-pseudo-metric d on X satisfying
(i’) d(x, y) = d(y, x) = 0 if and only if x = y, is called a quasi-metric on X.

Each quasi-metric d on a set X induces a T0 topology τd on X which has as
a base the family of open balls {Bd(x, ε) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈
X : d(x, y) < ε} for all x ∈ X and ε > 0.

Given a quasi-metric d on X, the function d−1 defined by d−1(x, y) = d(y, x)
for all x, y ∈ X, is also a quasi-metric on X, called conjugate quasi-metric, and
the function ds defined by ds(x, y) = max{d(x, y), d(y, x)} for all x, y ∈ X, is a
metric on X.

There are a lot of completeness notions in quasi-metric spaces, all agreeing
with the usual notion of completeness in the case metric (see e.g. [13]), each
of them having its advantages and weaknesses. In this paper we shall use the
following general notion.

A quasi-metric space (X, d) is called complete if every Cauchy sequence
(xn)n∈ω in the metric space (X, ds) converges with respect to the topology τd−1

(i.e., there exists z ∈ X such that d(xn, z)→ 0).

By an asymmetric norm on a real vector space X we mean a nonnegative
real-valued function p on X such that for all x, y ∈ X and r ≥ 0: (i) p(x) =
p(−x) = 0⇔ x = 0, (ii) p(rx) = rp(x), and (iii) p(x+ y) ≤ p(x) + p(y).

Each asymmetric norm p on a real vector space X induces a quasi-metric dp
on X defined by dp(x, y) = p(y − x).

2. mw-distances on a quasi-metric space

Let us recall the definitions of w-distance for metric and quasi-metric spaces.

Definition 1. ([12]) A w-distance on a metric space (X, d) is a function
q : X ×X → R+ satisfying the following three conditions:
(W1) q(x, y) ≤ q(x, z) + q(z, y), for all x, y, z ∈ X;
(W2) q(x, ·) : X → R+ is lower semicontinuous on (X, τd) for all x ∈ X;
(W3) for each ε > 0 there exists δ > 0 such that if q(x, y) ≤ δ and q(x, z) ≤ δ
then d(y, z) ≤ ε.

Definition 2. ([3], [17]) A w-distance on a quasi-metric space (X, d) is a
function q : X ×X → R+ satisfying the following three conditions:
(W1) q(x, y) ≤ q(x, z) + q(z, y), for all x, y, z ∈ X;
(W2) q(x, ·) : X → R+ is lower semicontinuous on (X, τd−1) for all x ∈ X;
(W3) for each ε > 0 there exists δ > 0 such that if q(x, y) ≤ δ and q(x, z) ≤ δ
then d(y, z) ≤ ε (and also d(z, y) ≤ ε).

Remark 1. It is clear that if d is a metric on X, d is a w-distance on the metric
space (X, d). Unfortunately, if d is a quasi-metric on X, d is not necessarily
a w-distance on the quasi-metric space (X, d) as we can see in the following
paradigmatic examples.

Example 1. Let (R, dS) the Sorgenfrey line, where dS is the quasi-metric
defined by dS(x, y) = y − x if x ≤ y, and dS(x, y) = 1 if x > y. Then, dS does
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not satisfy condition (W3). Indeed, taking ε = 1/2 and δ > 0, then if y = x+δ/2
and z = x + δ/3, it satisfies that dS(x, y) = δ/2 < δ, dS(x, z) = δ/3 < δ, and
dS(y, z) = 1 > ε.

Example 2. Consider the quasi-metric space (R, d) where d(x, y) = (y−x)∨0.
Then d is not w-distance, because the condition (W3) does not hold. Indeed,
given ε > 0, and x, y, z ∈ R such that 0 < z < y < x and ε < y−z, then for every
δ > 0 we have that d(x, y) = d(x, z) = 0 and d(z, y) = (y − z) ∨ 0 = y − z > ε.

Motivated from above remark, we give the following definition:

Definition 3. A modified w−distance(mw−distance, in short) on a quasi-
metric space (X, d) is a function q : X × X → R+ satisfying the following
conditions:
(W1) q(x, y) ≤ q(x, z) + q(z, y) for all x, y, z ∈ X;
(W2) q(x, ·) : X → R+ is lower semicontinuous on (X, τd−1) for all x ∈ X;
(mW3) for each ε > 0 there exists δ > 0 such that if q(y, x) ≤ δ and q(x, z) ≤ δ
then d(y, z) ≤ ε.

Remark 2. Note that every quasi-metric d on X is an mw-distance on the
quasi-metric space (X, d).

Definition 4. A strong-mw-distance on a quasi-metric space (X, d) is a
mw-distance q : X ×X → R+ satisfying the following condition:
(mW2) q(·, x) : X → R+ is lower semicontinuous on (X, τd−1) for all x ∈ X.

In the remainder of this section we give some examples of mw-distances.

Example 3. Let (X, d) be a quasi-metric space and let c ∈ R+. The function
q(x, y) = c is a strong-mw-distance on X.

Example 4. Let (R, dS) the Sorgenfrey line (see Example 1). Then q(x, y) =
dS(x, y) is a strong mw-distance on the quasi-metric space (R, dS). Indeed, fix
y ∈ X and let (xn)n∈N be a sequence in R such that limn dS(xn, x) = 0. Then,
given 0 < ε < 1 there is n0 ∈ N such that for n ≥ n0, dS(xn, x) = x − xn < ε
and xn ≤ x.

If x ≤ y, then

dS(x, y)− dS(xn, y) = (y − x)− (y − xn) = xn − x < 0 < ε.

If y < x, then there is n1 ∈ N, n1 ≥ n0, such that for all n ≥ n1,

dS(xn, x) = x− xn < x− y,

so that y < xn. Then for all n ≥ n1

dS(x, y)− dS(xn, y) = 1− 1 = 0 < ε.

Therefore the function q(·, y) is lower semicontinuous on (X, τd−1) for all y ∈ X.

Example 5. Let (X,�, ‖.‖) be a normed lattice. Denote by X+ the positive
cone of X, i.e., X+ := {x ∈ X : 0 � x}, and we define the asymmetric norm on
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X (see e.g. [9], Theorem 3.1) give by ‖.‖+ : X → R+ as ‖x‖+ = ‖x ∨ 0‖ for all
x ∈ X. Then the function d defined by d(x, y) = ‖y − x‖+ for allx, y ∈ X, is a
quasi-metric on X. Hence (X+, d+) is a quasi-metric space, where d+ denotes
the restriction of d to X+.

We show that the function q defined by q(x, y) = ‖y‖ for all x, y ∈ X+, is
a mw-distance on (X+, d+). Indeed, condition (W1) is trivially satisfied. Now
fix x ∈ X+ and let (yn)n∈ω be a sequence in X+ such that lim d+(yn, y) = 0 for
some y ∈ X+. Since

q(x, y) = ‖y‖ = ‖y‖+ = ‖y − yn + yn‖+ ≤

≤ ‖y − yn‖+ + ‖yn‖+ = d+(yn, y) + q(x, yn) ⇒

⇒ q(x, y)− q(x, yn) ≤ d+(yn, y)

for all n ∈ ω, we deduce that q(x, ·) is lower semicontinuous for (X+, τ(d+ )−1),
and condition (W2) is satisfied.

On the other hand, choose ε > 0 and put δ = ε. Suppose that there are
x, y, z ∈ X+ such that q(y, x) = ‖x‖+ = ‖x‖ ≤ δ and q(x, z) = ‖z‖+ = ‖z‖ ≤ δ.
Therefore

d+(y, z) = ‖z − y‖+ ≤ ‖z‖+ + ‖−y‖+ = ‖z‖+ ≤ δ = ε.

Consequently, the condition (mW3) is also satisfied.
Finally, for every z ∈ X+ we have that

q(y, z)− q(yn, z) = ‖z‖ − ‖z‖ = 0 < ε.

Therefore, q(·, z) is lower semicontinuous function on (X+, τ(d+ )−1) and we con-

clude that q is a strong-mw-distance on (X+, d+).

Example 6. Consider the quasi-metric space (R, d) where d(x, y) = (y−x)∨ 0
(see Example 2). Then q = d is a mw-distance but q is not strong-mw-distance,
because the condition (mW2) does not hold. Indeed, if we consider the sequence
{n}n∈N, this sequence converges to zero in (R, d−1) because d(n, 0) = (−n)∨0 =
0. Nevertheless, if y > 0 and n > y, then

d(0, y)− d(n, y) = (y ∨ 0)− (y − n) ∨ 0 = y − 0 = y.

Therefore, the function d(·, y) : R→ R+ is not lower semicontinuous on (R, τd−1).

Now we give an example of an mw−distance q on a quasi-metric space (X, d)
such that q 6= d and q is not a w−distance.

Example 7. Let (X, p) be an asymmetric normed space. Let dp the quasi-
metric induced by p, namely dp(x, y) = p(y−x). Then q : X ×X → R+ defined
by

q(x, y) = p(−x) + p(y)

is an mw−distance on the quasi-metric space (X, dp).
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The condition (W1) holds because

q(x, y) = p(−x) + p(y) ≤ p(−x) + p(z) + p(−z) + p(y) = q(x, z) + q(z, y).

To prove condition (W2) we take a sequence (yn)n∈N ⊂ X such that (yn)n∈N
converges to y in (X, τd−1

p
), i.e., dp(yn, y) converges to zero. Then

q(x, y)− q(x, yn) = p(−x) + p(y)− p(−x)− p(yn)

= p(y)− p(yn) ≤ p(y − yn) = dp(yn, y).

Hence q(x, ·) is lower semicontinuous on (X, τd−1
p

).

Finally, given ε > 0 put δ = ε/2. Then if q(x, y) < δ and q(y, z) < δ, we have
that

dp(x, z) ≤ dp(x, y) + dp(y, z) = p(y − x) + p(z − y)

≤ p(y) + p(−x) + p(z) + p(−y) = q(x, y) + q(y, z) < ε/2 + ε/2 = ε.

Therefore q satisfies the condition (mW3).

In general, q is not a w−distance on (X, d). Indeed, taking X = R and
p(x) = x ∨ 0, we have that q(x,−3ε) = 0 < δ, q(x,−ε) = 0 < δ, for all x ≥ 0
and for all δ > 0. Nevertheless, d(−3ε,−ε) = 2ε > ε, for all ε > 0. So q does
not satisfies (W3).

The following example shows that there are w-distances which are not mw-
distances.

Example 8. Let d be the usual metric on R, that is, d(x, y) = |y − x|. It
is easy to prove that the function q : R × R → R+ defined by q(x, y) = |y| is
w-distance in the quasi-metric space (X, d). Nevertheless, q is not mw-distance
in the quasi-metric space (X, d). Indeed, the condition (mW3) does not hold
because given ε > 0, then for every δ > 0 we have that q(2ε, 0) < δ, q(0, 0) < δ
and d(2ε, 0) = 2ε > ε.

3. A fixed point theorem involving mw-distances

Recently, Alegre, Maŕın and Romaguera [2] have obtained a fixed point
theorem for generalized contractions with respect to w-distances on complete
quasi-metric spaces from which they deduce w-distance versions of Boyd and
Wong’s fixed point theorem [4] and of Matkowski’s fixed point theorem [16]. Its
approach uses a kind of functions considered by Jachymski in [11, Corollary of
Theorem 2] and that generalizes the notion of function of Meir-Keeler type [1].

Definition 5. ([2]) A function φ : R+ → R+ is said to be a Jachymski func-
tion if:
(Ja1) φ(0) = 0,
(Ja2) for each ε > 0 there exists δ > 0 such that for t > 0 with ε < t < ε + δ,
we have φ(t) ≤ ε.
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Theorem 1. ( [2, Theorem 2]) Let f be a self-map of a complete quasi-metric
space (X, d). If there exist a w-distance q on (X, d) and a Jachymski function
φ : R+ → R+ such that φ(t) < t for all t > 0, and

q(fx, fy) ≤ φ(q(x, y)), (1)

for all x, y ∈ X, then f has a unique fixed point z ∈ X. Moreover q(z, z) = 0.

Now we prove that Theorem 1 remains true if condition (1) is satisfied by a
strong mw-distance on X.

Theorem 2. Let f be a self-map of a complete quasi-metric space (X, d). If
there exists a strong-mw-distance q on (X, d) and a Jachymski function φ :
R+ → R+ such that φ(t) < t for all t > 0, and

q(fx, fy) ≤ φ(q(x, y)), (2)

for all x, y ∈ X, then f has a unique fixed point z ∈ X. Moreover q(z, z) = 0.

Proof. Fix x0 ∈ X and let xn = fnx0 for each each n ∈ N.
Let us first prove that (xn)n∈ω is a Cauchy sequence in (X, ds).
Let an = q(xn, xn+1) and bn = q(xn+1, xn) for all n ∈ ω. Since

an+1 = q(xn+1, xn+2) ≤ φ(q(xn, xn+1)) ≤ q(xn, xn+1) = an (3)

and
bn+1 = q(xn+2, xn+1) ≤ φ(q(xn+1, xn)) ≤ q(xn+1, xn) = bn, (4)

for all n ∈ ω, then (an)n∈ω converges to some a ∈ R+ and (bn)n∈ω converges to
some b ∈ R+.

Now we prove that a = b = 0.
If there exists n0 ∈ ω such that an0

= 0 then, by (3), an = 0 for all n ≥ n0.
Therefore a = 0.

Suppose that an 6= 0, for all n ∈ ω. This implies that φ(an) < an, so that,
by (3), an+1 < an for all n ∈ ω. Then a < an for all n ∈ ω.

If we suppose that a > 0, by (Ja2), there exists δ = δ(a) such that

a < t < a+ δ ⇒ φ(t) ≤ a.

Take nδ ∈ N such that an < a + δ for all n ≥ nδ. Then φ(an) ≤ a, so that, by
condition (3), an+1 ≤ a for all n ≥ nδ, a contradiction. Consequently a = 0.

In a similar way it is proved that b = 0.
Now choose an arbitrary ε > 0. Then there is δ ∈ (0, ε) for which (mW3)

holds and
ε < t < ε+ δ ⇒ φ(t) ≤ ε. (5)

For δ/2 > 0 there is µ ∈ (0, δ/2) such that

δ/2 < t < δ/2 + µ⇒ φ(t) ≤ δ/2 (6)

Because limn→∞ an = 0 and limn→∞ bn = 0 there exists k0 = k0(ε) ∈ N
such that
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(C1) an = q(xn, xn+1) < µ/2,
(C2) bn = q(xn+1, xn) < µ/2,
(C3) q(xn, xn) ≤ q(xn, xn+1) + q(xn+1, xn) < µ,

for all n ≥ k0,
By using a similar technique to the one given by Jachymski in [11, Theorem

2] and [2] we shall prove, by induction, that for all n ∈ N and k ≥ k0 that

q(xk, xk+n) < µ+
δ

2
(7)

and

q(xk+n, xk) < µ+
δ

2
. (8)

Let k ≥ k0. Since q(xk, xk+1) < µ/2, condition (7) follows for n = 1.
Suppose that (7) is true for n ∈ N. We shall study two cases.

• Case 1: q(xk, xn+k) > δ/2. Then we deduce from the induction hypothesis
and (6) that φ(q(xk, xn+k)) ≤ δ/2. Then

q(xk+1, xn+k+1) ≤ φ(q(xk, xn+k)) ≤ δ/2

and by (W1),

q(xk, xn+k+1) ≤ q(xk, xk+1) + q(xk+1, xn+k+1) <
µ

2
+
δ

2
< µ+

δ

2
.

• Case 2: q(xk, xn+k) ≤ δ/2.

If q(xk, xn+k) = 0, we deduce that q(xk+1, xn+k+1) = 0 by (2). So, by
(W1),

q(xk, xn+k+1) ≤ q(xk, xk+1) + q(xk+1, xn+k+1) <
µ

2
< µ+

δ

2
.

If q(xk, xn+k) > 0, we deduce that φ(q(xk, xn+k)) < q(xk, xn+k) ≤ δ/2.
Then

q(xk, xn+k+1) ≤ q(xk, xk+1) + q(xk+1, xn+k+1) ≤

≤ q(xk, xk+1) + φ(q(xk, xn+k)) <
µ

2
+
δ

2
< µ+

δ

2
.

The inequality (8) can be proved similarly.
Now let i, j ∈ Nwith j ≥ i ≥ k0. Then i = n+ k0 and j = m+ k0 for some

n,m ∈ ω, with m ≥ n. Hence, by (mW3) and (C3),

q(xk0 , xj) = q(xk0, xm+k0) < µ+ δ
2 < δ

q(xi, xk0) = q(xn+k0, xk0) < µ+ δ
2 < δ

 =⇒ d(xi, xj) ≤ ε
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and
q(xk0 , xi) = q(xk0, xn+k0) < µ+ δ

2 < δ

q(xj , xk0) = q(xm+k0, xk0) < µ+ δ
2 < δ

 =⇒ d(xj , xi) ≤ ε.

Therefore (xn)n∈N is a Cauchy sequence in (X, ds). Since (X, d) is complete,
there exists z ∈ X such that d(xn, z)→ 0.

Now we shall prove that q(xn, z)→ 0 and q(xn, fz)→ 0.
Indeed, let ε > 0. By (7), there exist µ < ε/2 and n0 ∈ N such that

q(xn, xm) < µ+ ε/2

for n ≥ n0 and for all m ≥ n.
Let n ∈ N such that n ≥ n0. Since q(xn, ·) is lower semicontinuous on

(X, τd−1) and d(xm, z)→ 0, there exists m0 ∈ N, m0 ≥ n0, such that

q(xn, z)− q(xn, xm) < ε,

for all m ≥ m0.
Therefore, if n ≥ n0 and m ≥ n then

q(xn, z) < q(xn, xm) + ε < µ+ ε/2 + ε < 2ε,

so that q(xn, z)→ 0.
Since

q(xn+1, fz) ≤ φ(q(xn, z)) ≤ q(xn, z),

we have that q(xn, fz)→ 0.
Next we prove that d(z, fz) = d(fz, z) = 0.
By (mW2), the function q(·, fz) is lower semicontinuous on (X, τd−1). Then,

since d(xn, z) → 0, we have that given ε > 0 there exists n1 ∈ N such that if
n ≥ n1 then

q(z, fz)− q(xn, fz) < ε,

implying
q(z, fz) < q(xn, fz) + ε.

Therefore q(z, fz) = 0.
Since q(xn, z)→ 0 and q(z, fz) = 0, by (mW3), we have that d(xn, fz)→ 0.

Then, because q(·, z) is lower semicontinuous on (X, τd−1), given ε > 0 there
exists n2 ∈ N such that if n ≥ n2 then

q(fz, z)− q(xn, z) < ε

that is
q(fz, z) < q(xn, z) + ε.

Then q(fz, z) = 0. Taking to account (W1), we have that q(z, z) = q(fz, fz) =
0. Therefore, by (mW3), we obtain

d(z, fz) = d(fz, z) = 0.
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Consequently z = f(z), i.e., is a fixed point of f .
Finally, let u ∈ X such that u = fu. If q(u, z) > 0, then

q(u, z) = q(fu, fz) ≤ φ(q(u, z)) < q(u, z),

a contradiction. So that q(u, z) = 0. In a similar way we obtain that q(u, u) = 0
and q(z, z) = 0. Therefore, by (mW3), d(u, z) = d(z, u) = 0. Consequently
u = z and we conclude that z is the unique fixed point of f .

Now we give an example where it is possible to apply Theorem 2 but not
Theorem 1.

Example 9. Let (R, dS) the Sorgenfrey line (see Example 1). (R, dS) is com-
plete because if (xn)n∈N is a Cauchy sequence in (X, dsS), then there exists
n0 ∈ N such that xn = xn0

for all n ≥ n0. Hence, (xn)n∈N converges in (R, d−1S ).
Taking q = dS , we have that q is a strong-mw-distance (see Example 4).

Let c ∈ R and let f : R→ R defined by fx = c, for all x ∈ R.
If we define φ : R+ → R+ such that φ(t) = t

2 , φ is a Jachymski function and
φ(t) < t for all t > 0. Moreover, q(fx, fy) = 0 ≤ φ(q(x, y)) for all x, y ∈ X.

Therefore, all conditions of Theorem 2 are satisfied. In fact, z = c is the
unique fixed point of f. Nevertheless, q is not a w-distance (see Example 1), so
we cannot apply Theorem 1.

The following example shows that in Theorem 2 the strong condition for the
mw-distance cannot be omitted.

Example 10. Let X = {1/n : n ∈ N} and let d be the quasi-metric on X
given by d(x, x) = 0, and d(x, y) = x. (X, d) is a complete quasi-metric space.
Indeed, let {xn} be a Cauchy sequence in (X, ds). If there exists k ∈ N such
that xn = xk for all n ≥ k, obviously {xn} converges to xk in (X, d−1). If for
all n ∈ N there exists kn ≥ n such that xn 6= xkn , then given ε > 0 there exists
n0 ∈ N such that d(xn, xkn) = xn < ε for every n ≥ n0. Therefore d(xn, x) < ε
for every n ≥ n0 and for every x ∈ X. So that {xn} converges to x in (X, d−1).

The function q(x, y) = d(x, y) is an mw−distance and it is not strong.
Indeed, the sequence {1/n} converges to 1 in (X, d−1) but if y 6= 1, then
limn→∞(q(1, y) − q(1/n, y)) = 1. Hence, q(·, y) is not lower semicontinuous on
(X, τd−1).

Let f : X → X given by fx = x/3 and let φ : R+ → R+ given by φ(t) = t/2.
Then φ is a Jachymski function such that φ(t) < t, for all t > 0 and

q(fx, fy) = fx = x/3 < x/2 = φ(x) = φ(q(x, y).

Nevertheless, f has not a fixed point in X.

The following example shows that Theorem 2 is not fulfilled if the hypothesis
φ(t) < t for all t > 0 is replaced by the condition φ(t) ≤ t for all t > 0.

Example 11. Let X = R+ and let d be the quasi-metric on X defined as
d(x, y) = (y − x) ∨ 0. Clearly (X, d) is complete (observe that d(xn, 0) = 0 for
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all sequence {xn} ⊂ X). Let q be the strong-mw-distance given by q(x, y) = y
for all x, y ∈ X (see Example 5).

Let f : X → X defined by fx = 0 if x ∈ [0, 1/2) and fx = 1/2 otherwise.
Now we define φ = f. Then φ is a Jachymski function. Indeed, if ε < 1/2,

taking δ > 0 such that ε + δ < 1/2 from ε < t < ε + δ it follows φ(t) = 0 ≤ ε.
If ε ≥ 1/2, then for all δ > 0 from ε < t < ε + δ it follows φ(t) = 1/2 ≤ ε.
Furthermore, q(fx, fy) = fy = φ(y) = φ(q(x, y)).

In this example the condition φ(t) < t is not satisfied for all t > 0 and f has
two fixed points 0 and 1/2.

The next is an example where we can apply Theorem 2 for an appropriate
strong mw-distance q on a complete quasi-metric space (X, d) but not for d.

Example 12. Let (R+, d) the complete quasi-metric space of Example 11 and
let q be the strong-mw-distance given by q(x, y) = y for all x, y ∈ X.

Lef f : R+ → R+ such that fx = x/2 if x ≥ 1 and f(x) = 0 otherwise.
Now we define φ = f. Then φ is a Jachymski function. Indeed, if ε < 1,

taking δ > 0 such that ε + δ < 1 from ε < t < ε + δ it follows φ(t) = 0 ≤ ε. If
ε ≥ 1, taking δ = ε from ε < t < ε+ δ it follows φ(t) = t/2 ≤ ε. Moreover,

q(fx, fy) = fy = φ(y) = φ(q(x, y)).

Therefore the conditions of Theorem 2 are satisfied. In fact z = 0 is the
unique fixed point of f.

Nevertheless, the contraction condition of Theorem 2 is not satisfied for d.
Indeed,

d(f
1

2
, f1) = d(0, 1/2) = 1/2 > 0 = φ(d(

1

2
, 1)).
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