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Duality-based Nonlinear Quadratic Control: Application to Mobile
Robot Trajectory-following

Leopoldo Armesto, Vicent Girbés, Antonio Sala, Miroslav Zima, and Václav Šmı́dl

Abstract—This paper presents non-iterative linearization-based
controllers for nonlinear unconstrained systems, coined as Ex-
tended Rauch-Tung-Striebel (ERTS) and Unscented Rauch-
Tung-Striebel (URTS) controllers, derived from the duality be-
tween optimal control and estimation. The proposed controllers
use a Rauch-Tung-Striebel forward-backward smoother as an
state estimator in order to compute the original optimal control
problem. The new controllers are applied to trajectory-following
problems of differential-drive mobile robots and compared with
iterative iLQR controller, nonlinear model predictive control and
approximate inference approaches. Simulations show that ERTS
and URTS controllers produce almost-optimal solutions with a
significantly lower computing time, avoiding initialization issues
in the other algorithms (in fact, they can be used to initialize
them). The paper validates ERTS controller with an experiment
of a Pioneer 3DX mobile robot.

I. INTRODUCTION
Optimal control is widely used in control practice due

to its advantages regarding the individual tuning of actuator
amplitudes and control goals for each output, with well-
known solutions for the linear case, both unconstrained (LQR)
and constrained [1], [2]. However, it is limited to a narrow
spectrum of applications because many systems in practice are
inherently nonlinear. Nonlinear optimal control strategies are
computationally more demanding, see [3]–[5] for some model-
based approaches to handling it.

The goal of model-based optimal control is designing a
stabilizing control while minimizing a given performance
criterion, usually in a quadratic form, assuming a deterministic
plant model is available. Closed-loop solutions can not be
found analytically in a general nonlinear case since it involves
obtaining the solution of the corresponding Hamilton Jacobi-
Bellman equations [6]. One approach to avoid this problem is
the iterative solution of a finite-horizon optimal control pro-
blem for a given state with a receding horizon implementation;
control approaches using this strategy are referred to as model
predictive control (MPC, [1]) and nonlinear model predictive
control (NMPC, [5]). These approaches can deal with the
unconstrained and constrained problems, where both states
and control inputs must satisfy particular conditions. MPC
is restricted to quadratic cost functions, linear systems and
linear constraints, while NMPC can optimize non-quadratic
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cost functions for nonlinear systems restricted to general
nonlinear constraints. Another well-accepted solution for the
nonlinear case is the iterative linear quadratic regulator (iLQR)
[7], which linearizes the cost function at given (non-optimal)
state and control input trajectories and then computes optimal
increments based on the linearized model. The algorithm
converges with appropriate jumps on the direction of control
input gradient and Hessian based on Levenberg-Marquardt
approach.

The main drawback of existing approaches is the computa-
tional cost required to provide optimal solutions. Since all-
known methods are iterative, they may take a large number of
iterations to converge to the optimal solution depending on the
chosen algorithm’s initialization parameters (i.e., initial non-
optimal trajectory): the choice of linearization points (gradient
computations) are key for obtaining an optimal control policy
for nonlinear systems; if fact, the optimal choice would be
linearising around the (not yet known) optimal trajectory.

Recent contributions propose solving the above determi-
nistic optimal control problems by embedding them into a
generic stochastic optimal control (SOC) framework [8]–[10].
Indeed, in [8], the well-known duality in the Riccati equations
arising in the LQR and Kalman filter setups is extended to
other nonlinear control cases by reformulating the problem
in terms of the Kullback-Leibler divergence. In particular,
Todorov proposes a forward-backward smoothing approach,
different from the classic forward-only prediction in Kalman’s
observer. A related approach, denoted as Approximate Infer-
ence Control (AICO), appears in [9]. The author proposes a
probability distribution over a binary variable, based on the
exponential of the cost index, and solves the resulting SOC
setting. In particular, he proves equivalence between the SOC
problem and estimation of the marginal distribution of the state
conditioned to the binary variable readings, the latter addressed
via message-passing algorithm [11]. The resulting algorithm,
when applied to nonlinear control problems, is iterative; it is
non-iterative for the linear LQR case.

Based on these ideas, this paper proposes the use of non-
iterative controllers based on the duality between optimal con-
trol and estimation under certain assumptions [8] for nonlinear
systems, extending our preliminary conference version [12].
In this sense, this work proposes an Extended Rauch-Tung-
Striebel (ERTS) controller for nonlinear systems, which is de-
rived from the duality between optimal control and estimation
as an extension of Todorov’s work. The proposed controller
uses non-linear extensions of the Rauch-Tung-Striebel (RTS)
forward-backward smoother for the dual estimation problem
for nonlinear systems. It is a two-pass technique that allows to
compute linearization points based on the Extended Kalman
Filter (EKF) in the first step and then to smooth such trajectory



using a backward RTS smoother. The computed estimate
of the next state is then used for the computation of the
optimal control within a receding horizon policy. This results
in an efficient controller with complexity O(N2) in state
dimensions. The controller is optimal for LQ systems and the
extension to non-linear settings is done by linearization along
predicted trajectory where results are slightly suboptimal, as
discussed later. An alternative to linearization at a single
point as used in EKF is the Unscented Transform [13], which
computes linearization at multiple points and thus further
reduce linearization errors. Application of this transform to the
smoothing problem yields the Unscented Rauch-Tung-Striebel
(URTS) controller..

In this paper, motivated by the wide range of applications
of the trajectory-following problem [14]–[18], a comparative
study of performance and computational cost has been carried
out in such specific application: despite of the fact that ERTS
(and URTS) use a non-iterative algorithm, their solution is
only around 25% (and 24%) worse than the best solution,
respectively, with lower execution time in the case of ERTS.
They can, too, be used as seed for iterative algorithms, such
as iLQR.

The paper is organized as follows: Preliminaries can be
found in Section II, section III states the problem and sec-
tion IV focuses on the duality between optimal control and
estimation and particularizes the ideas from previous sections
to Gaussian distributions and presents ERTS and URTS
controllers. The controllers are analysed in Section V and
compared against iLQR, NMPC and AICO algorithms. In
addition to this, we show some experimental results for the
ERTS trajectory following problem using a Pioneer 3DX
mobile robot platform in Section V. Conclusions are drawn
in Section VI.

II. PROBLEM DEFINITION

We are concerned with the problem of optimal control of
a stochastic nonlinear dynamic system with state xt and the
deterministic control action ut with known model:

xt+1 ∼ p(xt+1|xt,ut) (1)

We seek an optimal control policy ut = πt(xt, st:N ), πt
which optimizes the expected value of the following additive
cost function:

L(x0, s0:N,u0:N−1)=qN (xN , sN)+

N−1∑
t=0

lt(xt, st,ut) (2)

where sequence s0:N , s0, . . . , sN stands for the desired
quantities related to states (actually, reference trajectories for
some outputs), qN (xN ,sN) is an arbitrary function for the final
cost and the intermediate cost is lt(xt, st,ut). Design of the
control policy is a classical problem of dynamic programming

Jt(xt, st:N ) = min
πt

E {lt(xt, st,ut) + Jt+1(xt+1, st+1:N )}
(3)

where E is the expected value over distribution of xt+1 and Jt
is the Bellman function. Analytical solution of (3) exists only

for limited cases such as the linear quadratic systems. For non-
linear systems, the evaluation has to be approximated. Here,
we focus on reformulation of this problem into a dual problem
of stochastic smoothing [8] and its relations with alternative
approaches.

A. Duality of estimation and control

As demonstrated in [8], the optimization problem (3) can be
translated into the language of probability calculus and solved
as an optimal smoothing problem. This is possible if there
exist probability distributions p̄(xt+1|xt), p(st|xt) such that
the cost index can be written as

lt(xt, st,ut)=qt(xt, st)+KL
(
p(xt+1|xt,ut)||p̄(xt+1|xt)

)
(4)

where KL is the Kullback Leibler divergence [19]

KL(p(xt+1|xt,ut)||p̄(xt+1|xt)) =

=

∫
Rnx
log

[
p(xt+1|xt,ut)
p̄(xt+1|xt)

]
p(xt+1|xt,ut) dxt+1 (5)

and p̄(xt+1|xt) is a reference dynamics, and

p(st|xt) ∝ e−qt(xt,st) (6)

Under these assumptions, it can be proved that the optimal
control problem (3) is dual to the problem of marginal predic-
tion of the state [8], [12]; with general solution of the Bellman
function

Jt+1(xt+1, st+1:N ) = − log p(st+1:N |xt+1) + ζt+1, (7)

where ζt+1 is a constant (i.e., independent of xt) and

p(st+1:N |xt+1) =

∫
Rnx

p(xt+2:N , st+1:N |xt+1)dxt+2:N (8)

is the marginal predictive model, which can be computed
recursively using equation (33).

The optimal policy is then defined as a minimizer of :

π∗t =arg min
πt

KL((p(xt+1|xt,ut)||pπ(xt+1|xt,st+1:N )) (9)

pπ(xt+1|xt, st+1:N ) ∝ e−Jt+1(xt+1,st+1:N )p̄(xt+1|xt) (10)

under the assumption that such a minimizer exists and the
minimum of (9) is independent of xt. Here, ∝ denotes equality
up to a multiplicative constant. We note that after substitution
of (7) into (10) the result is the Bayes rule and thus a
definition of the optimum smoothing problem. This problem
is commonly studied and many methods has been developed
for its solution.

The duality can be used to establish duality between the clas-
sical LQR design and the Rauch-Tung-Striebel (RTS) smoother
[20] for linear model (1) with quadratic cost. Appendices A
and B detail the main developments in order to establish such
duality. Appendix C derives LQR controller form KL cost for
linear-time variant (LTV) systems.



B. Iterative linearisation-based optimal control

As nonlinear optimal control problems are hard problems,
linearisation around a trajectory is often used, so the systems
appear as:

δxt+1 = At(xt)δxt + Bt(xt)δut (11)

where δxt, δut are increments over a chosen linearisation
trajectory.

The basic problem of linearisation approaches is, of course,
choosing the points in which to linearise the system. Actually,
it is clear that the optimal linearisation points would be those
of the optimal trajectory; however, as they depend on the to-
be-computed control and the control depends on such points,
iterative algorithms are needed (linearise around first trajectory
estimate, compute control, compute new trajectory, repeat).
Current iterative linearisation-based options in literature for
finding solutions to nonlinear optimal control problems are:

a) Iterative LQR (iLQR): If the result of the standard
LQR algorithm is used to compute a new optimal increment
of control action (and the ensuing state trajectory), the system
can be re-linearised around the new trajectory and this can
be iterated until convergence. This is the basis of the iLQR
approach proposed in [7], and of a generalisation involving
linearisation of nonlinear (but affine in noise) models coined
as iLQG in [21].

b) Nonlinear Model Predictive control (NMPC): Nonli-
near model-predictive control minimises a finite-time quadratic
cost based on open-loop predictions using standard nonlinear
optimization algorithms. Most NMPC implementations com-
pute gradients and Hessians of the quadratic cost function
which, ultimately, depend on the model gradient (i.e., lineari-
sation) at a candidate solution to be iteratively improved. It
can deal with non-linear cost functions and state and control
input constraints. The reader is referred, for instance, to [5]
for ample information on the topic.

c) Approximate Inference Control (AICO): The approach
in [9] proposes an artificial binary random variable zt such
that P (zt = 1|xt,ut) = e−lt(xt,st,ut). In this way, the control
problem can be posed as a determining a trajectory which
maximizes the probability of zt = 1 for all times, transformed
to an estimation problem via Bayes’ rule. The proposed
solution to the problem uses the message-passing algorithm
[11], and in the LQR case it needs a single forward-backward
pass, actually being a message-passing implementation of
the RTS smoother, instead of the original Riccati one. For
nonlinear systems, AICO uses a iterative approach to compute
linearization points (with iterations of the message-passing
algorithm which, themselves, include nested iterations to find
suitable linearization points for Gaussian belief propagation) .

C. Problem statement

The objective of this work is to investigate efficiency of
the existing tools for non-linear stochastic smoothing to the
problem of optimal control via duality. We will focus on
smoothing approaches with Gaussian posterior, namely the

Extended Rauch-Tung-Striebel (RTS) smoother and the Un-
scented RTS [22]. Both smoothers are analogous to the non-
linear extensions of the Kalman filter, the Extended Kalman
filter [23] and the Unscented Kalman filter [13], respectively.

The distinction from the alternative linearization approaches
is that the ERTS linearise the trajectory using not only
the system dynamic model, but also the covariance matrices
representing penalizations of the cost function. The resulting
algorithm use only two passes of the horizon without any
further iterations.

A preliminary conference version of this work appears
in [12]. In the present paper, more detailed account of the
root ideas is provided, and a deeper analysis and discussion
with alternative options in literature is carried out. Given the
upfront good accuracy of the non-iterative ERTS algorithm, its
viability as an initialiser of iLQR setups will be also discussed
in next sections.

Implementation details and experimental results with a
Pioneer 3DX mobile robot using ROS (Robotic Operating
System) [24] are also provided within the context of trajectory-
following of a closed trajectory.

III. NON-LINEAR QUADRATIC CONTROL VIA ESTIMATION

Consider a nonlinear model with affine control input and
Gaussian disturbance

p(xt+1|xt,ut) , N (f(xt) + Bt(xt)ut,Vt) (12)

for a known vector-valued function f(xt), matrix Bt(xt), Bt.
Consider a quadratic cost (2):

Lt =
1

2
eTNQNeN +

1

2

N−1∑
t=0

(eTt Qtet + uTt Rtut) (13)

for et = st − h(xt) and known Qt, Rt and known vector-
valued function h(xt).

Dual formulation of quadratic cost (13) in the sense of
Section II.A is established for the following distributions:

p̄(xt+1|xt) , N (f(xt), V̄t), V̄t = BtR
−1
t BT

t (14)

p(st|xt) , N (h(xt),Q
−1
t ) (15)

The result of substitution of these distributions into (4) via
(6), is the quadratic cost (13) plus constant terms without any
influence on the optimal control policy.

A. Solution of the dual problem

Distributions (14) and (15) form a definition of the problem
of stochastic filtering, where the former is the model of system
dynamics, and the latter is known as the observation model.
Note that in the dual formulation, the requested values st act
as observations.

The first task is to find solution of the integral (8). Just like
the optimal control problem (3), solution of this equation is
analytically tractable for linear systems (i.e. f(xt) = Atxt)



with Gaussian noise via algorithm known as the Rauch-Tung-
Striebel (RTS) smoother, [20]. The resulting distribution is
Gaussian

p(xt+1|xt, st+1:N ) = N (x̂t+1|N ,Pt+1|N )

which corresponds to quadratic Bellman function (7).
The RTS smoother uses the following steps, given a known

xt by assumption:
• forward pass of Kalman filter computing p(xτ |xt, st:τ )

for τ = t, . . . , N .
• backward pass computing the p(xτ |xt, st:N ) for τ =

N − 1, . . . , t+ 1.

B. Rauch-Tung-Striebel Nonlinear Controller
If functions f(xt),h(xt) are nonlinear, the RTS can be used

for the linearized model at each trajectory point; however,
optimality of the proposed estimate is no longer guaranteed.
Notwithstanding, this is analog to the Extended Kalman filter,
successfully used in many control and robotics applications.

Inspired on that success, we propose to approximate the
non-linear dual problem by nonlinear extensions of the RTS
smoother, such as the Extended RTS (ERTS) [25] which is
based on linearization at the point of the expected value. It
is well known that Unscented Kalman Filter and smoothers
[22] provides more accurate results than EKF, by propagating
lower errors, due to linearization at multiple points given by
the Unscented Transform. The Unscented RTS version (URTS)
also requires a forward-backward pass and thus, assumptions
done for ERTS will be also extended to URTS. Simulations
and experiments later in this paper will show that, indeed, good
performance in practice can be achieved using the duality via
ERTS or URTS framework in the algorithms to be discussed
next. In next section, a comparative analysis of accuracy and
computational time will be discussed in the context of a robotic
application example.

A receding horizon implementation of the above
ERTS/URTS control laws will be pursued; thus, at any
arbitrary instant t, with known state xt, the needed estimate
distribution will be a Gaussian distribution

pπ = p(xt+1|xt, st+1:t+N ) = N (x̂t+1|t+N ,Pt+1|t+N ) (16)

with mean value x̂t+1|t+N and covariance matrix Pt+1|t+N ,
1) Computation of nonlinear control law: Once the estima-

tion problem has been solved by either of the two above pro-
posals, duality indicates that the optimal control action should
fulfill the implicit equation (9). The Gaussian approximation of
the smoother (16) defines the second argument of the KL cost
(9) yielding the implicit function to be defined as a minimizer
of quadratic loss KL(p||pπ) = etP

−1
t+1|t+Net plus constants

with:
et = f(xt) + Btut − x̂t+1|t+N (17)

The minimizer is found to be

ut = (BT
t P−1

t+1|t+NBt)
−1BT

t P−1
t+1|t+N (x̂t+1|t+N − f(xt))

(18)
using standard minimization of quadratic functions.

Remark 3.1 (Computational simplification): We note that
for invertible matrices Bt, et can be trivially made zero and
hence, the variance of the smoother is irrelevant and does not
need to be evaluated.

This is also the case for LTV systems or when using
linearisation-based approaches such as ERTS, because the
smoother with perfect knowledge of xt provides an estimation
such that f(xt)− x̂t+1|t+N always lies in the space of Btut,
so (17) can always be solved for ut, hence (18) gives the same
result than

ut = (BT
t Bt)

−1BT
t (x̂t+1|t+N − f(xt)) (19)

2) ERTS control algorithm: From the above considerations,
the resulting control algorithm (Algorithm 1), denoted as
Extended Rauch-Tung-Striebel (ERTS) controller, is composed
of two parts: 1) computing x̂t+1|t+N via the ERTS smoother,
and 2) obtaining the approximation of the optimal control
(19). The state xt is assumed to be known, so the proposed
controller is a deterministic state feedback one.

Algorithm 1 ERTS Controller
[Initialization]

1: x̂t|t = xt, Pt|t = 0
[Prediction]

2: for τ = t+ 1, . . . , t+N do
3: x̂τ |τ−1 = f(x̂τ−1|τ−1)

[linearization]
4: Aτ−1 = ∂f

∂xτ−1

∣∣∣
xτ−1=x̂τ−1|τ−1

5: Hτ = ∂h
∂xτ

∣∣∣
xτ=x̂τ|τ−1

6: Pτ |τ−1 = Aτ−1Pτ−1|τ−1A
T
τ−1 +Bτ−1R

−1
τ−1B

T
τ−1

7: Kτ = Pτ |τ−1H
T
τ (HτPτ |τ−1H

T
τ +Q−1

τ )−1

8: Pτ |τ = (I−KτHτ )Pτ |τ−1

9: x̂τ |τ = x̂τ |τ−1 +Kτ (sτ − h(x̂τ |τ−1))
10: end for

[Smoothing]
11: for τ = t+N − 1, t+N − 2, . . . , t+ 1 do
12: Lτ = Pτ |τA

T
τ P
−1
τ+1|τ

13: x̂τ |t+N = x̂τ |τ + Lτ (x̂τ+1|t+N − x̂τ+1|τ )
14: end for

[Control computation]
15: ut = (BT

t Bt)
−1BT

t (x̂t+1|t+N − f(xt))

Due to simplification (19) evaluation of Pτ |t+N can be
ommitted in the smoothing algorithm. Also, note that in
order to provide a valid solution for the smoothing algo-
rithm, matrix Pτ+1|τ must be full-rank, otherwise, its Moore-
Penrose pseudo-inverse should be used in line 12. Indeed, the
pseudo-inverse would provide zero correction in line 13 of
the algorithm in the state directions in which the reference
dynamics noise does have zero variance. From a duality point
of view, that amounts to requiring zero control action effect
on uncontrollable states, as intuitively expected.

3) URTS control algorithm: Algorithm 2 implements the
Unscented RTS (URTS) controller as an alternative to the
ERTS one. The steps are the same with the difference that
it uses the Unscented Transform (UT) on lines 5, 8 and 16
to compute the mean and covariance. The UT accepts the



mean and covariance of a variable x and returns the mean
and covariance of s and (optionally as third argument) cross-
covariance between x and s passed through a given function
s = f(x), where α, β and κ are well-known parameters used
to spread sigma-points [22].

Algorithm 2 URTS Controller
[Initialization]

1: x̂t|t = xt, Pt|t = 0, α = 1, β = 0, κ = 3− dim(xt)
[Prediction]

2: for τ = t+ 1, . . . , t+N do
[Augmented State (system noise)]

3: xaτ−1|τ−1=
[
x̂Tτ−1|τ−1 0T

]T
4: Pa

τ−1|τ−1= block diag
(
Pτ−1|τ−1,Bτ−1R

−1
τ−1B

T
τ−1

)
[Unscented Transform & Predict]

5: [x̂τ |τ−1,Pτ |τ−1] = UT(xaτ−1|τ−1,P
a
τ−1|τ−1, f , α, β, κ)

[Augmented State (measurement noise)]
6: xaτ |τ−1=

[
x̂Tτ |τ−1 0T

]T
7: Pa

τ |τ−1= block diag
(
Pτ |τ−1,Q

−1
τ

)
[Unscented Transform & Update]

8: [̂sτ |τ−1,P
ss
τ |τ−1,P

xs
τ |τ−1] = UT(xaτ |τ−1,P

a
τ |τ−1,h, α, β, κ)

9: Kτ =Pxs
τ |τ−1(P

ss
τ |τ−1)

−1

10: Pτ |τ =Pτ |τ−1−KτP
ss
τ |τ−1K

T
τ

11: x̂τ |τ = x̂τ |τ−1+Kτ (sτ−ŝτ |τ−1)
12: end for

[Smoothing]
13: for τ = t+N − 1, t+N − 2, . . . , t+ 1 do

[Augmented State (system noise)]
14: xaτ |τ =

[
x̂Tτ |τ 0T

]T
15: Pa

τ |τ = block diag
(
Pτ |τ ,BτR

−1
τ BT

τ

)
[Unscented Transform & Smooth]

16: [x̂τ+1|τ ,Pτ+1|τ ,Cτ+1|τ ] = UT(xaτ |τ ,P
a
τ |τ , f , α, β, κ)

17: Lτ = Cτ+1|τP
−1
τ+1|τ

18: x̂τ |t+N = x̂τ |τ+Lτ (x̂τ+1|t+N − x̂τ+1|τ )
19: Pτ+1|t+N =Pτ |τ + Lτ (Pτ+1|t+N −Pτ+1|τ )L

T
τ

20: end for
[Control computation]

21: ut = (BT
t P
−1
t+1|t+NBt)

−1BT
t P
−1
t+1|t+N (x̂t+1|t+N − f(xt))

IV. APPLICATION EXAMPLE: TRAJECTORY TRACKING IN
WHEELED ROBOTS

In this section, we analyse and discuss the benefits of the
proposed algorithms compared to iLQR, NMPC and AICO.
The study carried on is based on the application to kinematic
control of non-holonomic wheeled mobile robot [26].

A vehicle state xt=(xt, yt, θt, vt, ωt)
T in time instant t is

characterized by coordinates (xt, yt), orientation (θt), linear
velocity (vt) and angular velocity (ωt) and it evolves through
input ut = (at, αt)

T given by linear acceleration (at) and
angular acceleration (ωt) as

xt+1 = f(xt) + B(xt)ut (20)
xt+1

yt+1

θt+1

vt+1

ωt+1

 =


xt + vt∆t cos θt
yt + vt∆t sin θt
θt + ωt∆t

vt
ωt

+


0 0
0 0
0 0

∆t 0
0 ∆t


[
at
αt

]
(21)

The transition matrix of linearized system is:

A(xt) =
∂f

∂xt
=


1 0 −vt∆t sin θt ∆t cos θt 0
0 1 vt∆t cos θt ∆t sin θt 0
0 0 1 0 ∆t
0 0 0 1 0
0 0 0 0 1


being ∆t = 0.05s the simulation step (Euler integration).

Let us discuss the detailed setting of each of the compared
control strategies, all of them geared towards minimising the
quadratic cost (13) with ht(xt) =xt. The aim is to drive a
vehicle around a desired trajectory s0:N . The trajectory is given
by a reference speed of v̄t = 0.5ms−1, the reference positions,
x̄t = v̄tt, ȳt = 0m, orientation θ̄t = 0rad and angular velocity
ω̄t = 0rads−1, with

st = (x̄t ȳt θ̄t v̄t ω̄t)
T (22)

Penalization matrices have been set to Qt =
diag(25, 25, 1, 1, 1) and Rt = diag(0.5, 1). The tracking
problem will be set up with a horizon N = 60, assuming
that the whole the trajectory is known in advance. Note that,
intentionally, due to the weights in absolute speeds (4th and
5th states) and accelerations (input variables) the optimal
trajectory will have some tracking position error (small, as
the position error weight is high). A comparative between
ERTS and iLQR in a case with abrupt reference changes can
be found in [12].

The following strategies will be compared:
1) Iterative Linear Quadratic controller (iLQR). This algo-

rithm initializes with u0:N−1 = 0 and uses the open-
loop trajectory xt+1 = f(xt) + B(xt)ut with x0 as
initial linearization point. This algorithm computes on
every iteration a variation of control input δut based
on a Hessian approximation with Levenberg-Marquardt
(LM) method and re-linearizes the process at the new
trajectory as indicated in [21] (and implemented in
[27]).

2) ERTS approach, in two settings:
• Non-iterative (standalone) ERTS. Algorithm 1.
• Iterative Linear Quadratic controller (iLQR) ini-

tialized with ERTS solution, denoted as ERTS+.
Obviously, the cost for iteration 1 equals the non-
iterative ERTS cost.

3) URTS approach. Similar to ERTS approach but using
Algorithm 2 instead, in the two above settings. The
iterative version is denoted as URTS+.

4) Non-linear Model Predictive Control. This algorithm
performs the open-loop optimization of performance
index using non-linear model (of course, using itera-
tions in order to compute gradients and Hessians at
the optimal points). Initialization u0:N−1 = 0 is used
(implementation based on [5]).

5) Approximate Inference Control (AICO). The iterative
forward-backward message passing algorithm imple-
mentation is Algorithm 2 in [9]. AICO tuning parame-
ters are set to α = 0.9 and θ = 0.1, as used in [9].



A. Analysis setup
A set of L = 100 simulations have been considered with

a uniformly distributed random initialization over robot state
xi0 ∼ U(0, [−1, 1], [−π2 ,

π
2 ], [−0.5, 0.5], [−0.5, 0.5]), for i =

1, . . . , L. For each experiment i and optimizer iteration k, the
achieved performance for each of the five strategies will be
denoted as Js(i, k), for s = 1, . . . , 5.

On each iteration k, the method with the best cost is taken
as reference Jbest(i, k) to compare against other methods, i.e.,
Jbest(i, k) = min1≤s≤5(Js(i, k)),

A cost-ratio for each experiment and iteration is defined as:

Rs(i, k) =
Js(i, k)

Jbest(i, k)
, s = 1, . . . , 5 (23)

Based on the definition of the cost-ratio, some useful metrics
will be also defined:
• Mean cost-ratio (MCR) per iteration, i.e., average

of cost ratio over all simulations: MCRs(k) =
1
L

∑L
i=1Rs(i, k).

• Worst cost-ratio (WCR) per iteration: WCRs(k) =
max1≤i≤L(Rs(i, k)).

In order to suitably compare the five algorithms, some
unifying conditions must be also set up:
• Note that ERTS, URTS and AICO produce an estimated

optimal state trajectory whereas iLQR and NMPC pro-
duce a whole batch of N future inputs. In order to
compare the finite-horizon cost estimates from a partic-
ular initial condition x0, trajectory {x̂1|N , . . . , x̂N |N} is
computed for strategies #2, #3 and #5, and future inputs
u0:N−1 for the #1, #4 ones. Then, the optimal smoothed
state trajectory (#2, #3, #5) is taken as “reference” to
compute control inputs u0:N−1 via the Least-Squares fit
(18) (or simplification (19) in ERTS) and the open-loop
model (20). Obviously, due to linearization errors, the
actual forward simulation will not be exactly coincident
with the original estimated state trajectory but, anyway,
performance indices will be computed with such input
and state sequences.

• The maximum number of iterations will be fixed to
30, and cost indices are evaluated at each iteration to
assess convergence speed. Here the concept of iteration
means carrying out the necessary computations such that
the cost is monotonically reduced (which, in a general
case, does involve nested iterations to assess suitable
step sizes).

• Convergence (in iterative strategies) is achieved when
the relative performance improvement is below a given
relative threshold value

∣∣∣Js(i,k)−Js(i,k−1)
Js(i,k−1)

∣∣∣ < 10−4.

B. Mean-cost and Worst-cost ratios
Figures 1 and 2 depict the above-defined mean-cost ratio

MCRs(k) and worst-cost ratio WCRs(k), respectively, in
logarithmic scale for first 10 iterations. It can be clearly
appreciated that strategies #2, #3 and #5 provide an initial
solution (k = 1) with a significantly lower cost over strategies
#1 and #4. This was expected, due to the approximately
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Fig. 1. Mean-cost ratio (MCR) per iteration.

optimal output of the proposed non-iterative ERTS, URTS and
the first iteration of message-passing algorithm in AICO (#5).
It can be seen that AICO (k = 1) shows worse performance
than ERTS and URTS, likely because mean and covariance of
Gaussian messages use a linearized approach (recall that ERTS
use the non-linear system to predict states and linearization to
predict covariances and URTS uses the UT to account non-
linearities). After 10 iterations, iLQR initialized with ERTS or
URTS provides the best performance (actually, they converge
in around 4 iterations). Table I shows the numeric results of the
analysis for the convergence values for different performance.
Some remarks about particular numeric values of Table I can
be made:
• The mean cost ratio of (non-iterative) ERTS algorithm

is 1.25, and the worst cost is 2.48. Interestingly, 45% of
cases yield a performance cost nearly optimal.

• The mean cost ratio of URTS algorithm is 1.24, and
the worst cost is 2.41, providing only marginally better
accuracy than ERTS. In this case, 48% of cases provide
a cost nearly optimal.

• The mean cost ratio for ERTS+ and URTS+ is 1.03,
providing even better accuracy than iLQR due to its
initialization. Table I shows that 90%−91% of cases are
below 10% penalty after convergence, which is achieved
in 4 iterations (in mean).

• AICO is able to improve over ERTS only in 54% of
cases, while NMPC gets stuck in 18% of cases (or needs
more iterations to converge).

C. Computational resources
Table II shows the mean computational effort for every

strategy and simulation relative to ERTS. It can be clearly
shown that ERTS computational costs is significantly lower
for the same performance with respect to iterative approaches.
URTS and iLQR have a computational cost 2.6 and 2.65 times
higher than ERTS, respectively.
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Fig. 2. Worst-cost ratio (WCR) per iteration.

The ERTS+ also improves the computational cost with
respect to iLQR in 6.75

5.41 → 23%, providing even more accurate
results.

As a consequence, ERTS can be considered a computation-
ally efficient way of obtaining near-optimal results in practice,
either by itself or as a “seed” for other iterative approaches.

In addition to this, ERTS+ is also an attractive option
considering cost/computational time trade-off. In this sense,
under real-time deadlines with we can iterate ERTS+ until
deadline hit or with just very few iterations. The performance,
in terms of accuracy, robustness and computational time is
expected to be better than iLQR. URTS didn’t outperforms
ERTS in any meaningful way, and the other options required
far more computing time and parameter tweaking to obtain the
best results.

TABLE I. MEAN AND WORST-CASE COST RATIO WITH RESPECT TO
BEST RESULT; PERCENTAGE OF CASES BETTER THAN SOME

PERFORMANCE LEVELS

ERTS URTS iLQR ERTS+ URTS+ NMPC AICO
MCR 1.25 1.24 1.07 1.03 1.03 1.15 1.28
WCR 2.48 2.41 2.11 1.5 1.49 3.05 2.81

≤ERTS − 100% 96% 100% 100% 91% 54%
≤URTS 0% − 96% 93% 100% 91% 52%

≈Best† 45% 48% 89% 90% 91% 82% 29%
† Percentage of cases with an overcost below 10% w.r.t. Jbest.

TABLE II. MEAN EXECUTION TIME RATIO WITH RESPECT TO ERTS
FOR SOME PERFORMANCE LEVELS

ERTS URTS iLQR ERTS+ URTS+ NMPC AICO
≤ERTS 1 2.6 2.65 1 2.6 77.6 4
≤URTS − 2.6 2.68 1.29 2.6 79.3 4.1

Converged − − 6.75 5.41 7.04 175.5 19.6

D. Experiment: path following with Pioneer 3DX

In this section, a trajectory following experiment using a
Pioneer 3DX mobile robotic platform [28], see Figure 4,
has been developed in order to validate the ERTS controller.
The implementation was carried out with a receding horizon
policy. Actual performance was stable as, indeed, the finite-
time horizon was chosen long enough, so the resulting control
actions were not significantly modified by variations on such
horizon (indeed, stability for short horizons might have needed
additional tweaks with the terminal cost [29]).

The Pioneer P3-DX has differential configuration. An em-
bedded board, Odroid-U2, with 1.7GHz ARM Quad-Core
(Cortex-A9) processor and 2GB RAM is mounted inside
the Pioneer robot. Results obtained are based on our im-
plementation of ERTS algorithm using ROS Hydro [24] in
Ubuntu 13.10. Our C++ code implementation of ERTS takes
approximately 11.28 ms with horizon N = 60. Obviously,
computing time increases linearly with N .

The robot includes a Hokuyo URG 04LX range laser which
has been used jointly with odometry measurements using an
AMCL particle filter [30] to estimate the robot position and
speed without the drift that odometry-only sensing would have
produced. The sensory system operates at a sampling period of
0.1 s. This is also the sampling period for the controller, which
accepts linear and angular reference velocities and internally
regulates wheels velocities based on a PID control. As our
cost index intentionally includes acceleration weighting, the
integrators of linear and angular accelerations to get velocities
in the model (21) were actually included in the controller
equations.

The goal is driving the P3-DX robot around an ∞-shape
path:

x̄t = A cos(αt) (24)
ȳt = B sin(2αt) (25)

where αt = 2π
T t ∈ [0, 2π] rad is the angle parametrizing curve,

with T = 50 being the trajectory period (the time closing
the ∞-shape). In our experimentation, the ellipsoid major and
minor semiaxis containing the ∞-shape have been set to A =
3m and B = 1m, respectively. From this path, references for
angles and speeds are easily computed as:

θ̄t = arctan( ˙̄yt/ ˙̄xt) (26)

v̄t =
√

˙̄x2
t + ˙̄y2

t (27)

ω̄t =
¨̄yt ˙̄xt − ˙̄yt ¨̄xt

v̄2
t

(28)

so the overall state reference trajectory st in (22) is available.
The chosen penalization matrices and horizon for the experi-
mentation are identical to the ones in the previous section, as
well as h(xt).

Figure 3 shows a screenshot at time instant t1 = 3s produced
by Rviz software in ROS, where the robot is still far from the
reference trajectory. This figure shows the reference trajectory
(the yellow dot indicates current value x̄t1 , ȳt1 ; magenta line
indicates the future values until t2 = t1+N ·∆t = 9s and cyan



Fig. 3. Screenshot of experiment at time t∗ = 3s. Yellow dot, magenta line
and cyan line are current , futuer and full reference values, respectively; blue
and green are predicted and smoothed trajectories; red arrows are position
estimates; gray and black is the map; white are laser dots.

line is the full reference), the predicted and smoothed ERTS
Cartesian trajectories (blue and green, respectively), AMCL
particle position estimates (red arrows) and the map (in gray
and black) and laser scan over-imposed dots (in white).

Figures 4 to 6 show the results obtained from the experimen-
tation of the robot following the above described trajectory.

In Figure 5(a) the XY-trace is depicted, superimposed with
the map used for positioning. An actual set of frames (super-
imposed photographs) appears in Figure 4. Figure 5(b) shows
system’s states along time: x and y positions, orientation,
linear and angular speeds. Computed inputs are shown in
Figure 6 (linear and angular accelerations depicted in black
solid line), together with robot accelerations (in red) estimated
from measurements by suitable differentiation and filtering of
odometry data.

As a conclusion of the experiments, the ERTS successfully
performs the trajectory control as expected. As error figures are
quite low, given that ERTS is a non-iterative algorithm with
predictable computation time, it is a viable alternative to other
iterative approaches whose execution time might depend on
initialization and stop conditions so their real-time suitability
is harder to assess beforehand.

V. CONCLUSIONS
A duality-based Extended Rauch-Tung-Striebel (ERTS) has

been presented. The ERTS controller solves the control task
via the transformation of the original problem to a dual
estimation problem, which uses future reference states as
observations. The dual problem is solved via a Rauch-Tung-
Striebel smoother for linearized system (non-iterative). In a
linear time-varying case, the algorithm would be equivalent to
the well-known unconstrained LQR control.

An extension using Unscented Transform has been also
presented, coined as URTS. However, the performance im-
provement over ERTS was almost unnoticeable and the com-
putational cost was almost 3 times higher.

Fig. 4. Screenshots of the trajectory following experiment with AMCL filter
(driftless position system).
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Fig. 5. States of the system when following an infinite trajectory, (a) XY
reference trajectory and robot trace, (b) reference and measured states. In both
subfigures, references are depicted in black solid line and measured states in
red solid line.
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Fig. 6. Applied control inputs (black solid line) and accelerations estimated
from measurements (red solid line).

The performance of the proposed controllers is studied on
a trajectory-following problem of a 5th-order mobile robot
and compared with nonlinear iterative linearization-based al-
gorithms such as iLQR, NMPC and AICO. Simulations show
that ERTS proposes nearly the same control as iLQR controller
do after convergence, but with a significant computational cost
reduction. In fact, ERTS can be considered a good choice for
initialization of the above iterative algorithms. Hence, accuracy
and reduced computational cost makes ERTS an interesting
option for real-time control. Experimental implementation with
a Pioneer P3-DX robot confirms these conclusions.

APPENDIX

A. Nonlinear Stochastic Optimal Control Problem

Results from Section II.A on duality of estimation and
control is now elaborated in detail. Substituting (4) into (3) and
using simplified notation p(xt+1|xt,ut) , p, p̄(xt+1|xt) , p̄,
qt(xt, st) , qt, πt(xt, st:N ) , πt and Jt(xt, st:N ) , Jt we
obtain

Jt = qt + min
πt

∫
Rnx

[
Jt+1+log

p

p̄

]
p dxt+1

= qt − log ct +min
πt

KL
(
p|| 1
ct
e−Jt+1 p̄

)
(29)

where the normalizer ct,ct(xt, st+1:N ) is equal to

ct(xt, st+1:N ) =

∫
Rnx
e−Jt+1(xt+1,st+1:N )p̄(xt+1|xt)dxt+1

The second argument of the KL divergence (29) is thus a
proper probability density pπ (10).

If there exists a control policy πt such that KL(p||pπ) = ζt,
where ζt is a constant independent of xt,ut, then (29) can be
rewritten as:

e−Jt ∝ eζt−qtct = eζte−qt
∫
Rnx
e−Jt+1 p̄ dxt+1 (30)

B. Dual estimation problem
Assume now a state-space model in the form

xt+1 ∼ p̄(xt+1|xt) (31)
st ∼ p(st|xt) (32)

where (31) stands for the reference dynamics from the original
control problem and (32) is an observation model.

The marginal predictive distribution is:

p(st:N |xt) = p(st|xt)p(st+1:N |xt)

= p(st|xt)
∫
Rnx

p(st+1:N |xt+1)p̄(xt+1|xt)dxt+1(33)

Comparing (33) with (30) we can establish duality for

p(st|xt) ∝ e−qt(xt,st) (34)

p(st+1:N |xt+1) ∝ e−Jt+1(xt+1,st+1:N ) (35)

establishing a duality between the Bellman function and
marginal prediction.

Moreover, we note that

p(xt+1|xt, st+1:N ) ∝ p(st+1:N |xt+1)p̄(xt+1|xt) (36)

establishing duality

pπ(xt+1|xt, st+1:N ) ∝ p(xt+1|xt, st+1:N ), (37)

where the normalization constants absorb the constant terms
in the Bellman function (i.e. the ζt term in (30)). The dual
estimation problem is defined as the smoothing problem of
xt+1 knowing xt and the whole observation sequence st+1:N ,
[8].

C. Linear quadratic regulator from KL cost
Let us consider the LTV system with Gaussian noise (1)

and its reference dynamics (14), for a special case of linear
system f(xt) = Atxt. The KL divergence (5) is

KL(p(xt+1|xt,ut)||p̄(xt+1|xt)) =

=
1

2
uTt BT

t V̄−1
t Btut + cKL, (38)

cKL =
1

2

(
tr(V̄−1

t Vt)− dim(xt)− ln
det(Vt)

det(V̄t)

)
, (39)

where dim() denotes dimension of a vector. Matching the
quadratic term in (38) with uTt Rtut in the loss function (13)
establishes the choice of V̄t in (14).

Without loss of generality, let us assume a reference trajec-
tory s0:N = 0.

Let us now show that, indeed, both the duality-based result
and the standard Riccati equations give coincident control
laws. Consider Bellman function JN = 1

2xTNSNxN with
SN = QN , for t = N−1 the following holds:

pπ(xt+1|xt) ∝ e−x
T
NSNxNN (AN−1xN−1, V̄N−1) (40)

= N (x̂π,Σπ), (41)

with moments x̂π = Σ−1
π V̄−1

N−1AN−1xN−1,Σπ = (SN +

V̄−1
N−1)−1



The KL divergence (9) to minimize is then:

KL(p||pπ) =
1

2
eN−1Σ

−1
π eN−1 + cKL (42)

eN−1 = AN−1xN−1+BN−1uN−1−Σ−1
π V̄−1

N−1AN−1xN−1,
(43)

which is minimized for

BN−1uN−1 =−BN−1KN−1xN−1

KN−1 =
(
RN−1 + BT

N−1SNBN−1

)−1
BT
N−1SNAN−1

with minimum min KL(p||pπ) = cKL which is independent
of the state and input. Here, KN−1 was obtained using the
matrix inversion lemma.

Because the KL divergence term in (29) is constant, the
cost-to-go is equal to

JN−1 =
1

2
xN−1QN−1xN−1 − log cN−1(xN−1) + cKL

where cN−1(xN−1) ∝ e−
1
2x

T
N−1A

T
N−1(SN+V̄−1

N−1)AN−1xN−1 . This
implies that the cost-to-go remains quadratic JN−1 =
1
2xTN−1SN−1xN−1 +C ′ with some additional terms that do not
affect the minimization and SN−1 takes the form of the well-
known Riccati equation:

SN−1 =QN+AT
N−1

(
S−1
N +V̄N−1

)−1
AN−1

=QN+AT
N−1(SN [I−BN−1KN−1]) AN−1 (44)

The recursion for t = N − 2, . . . leads to the standard LQR
control law.
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