
Constraint Programming for Random

Testing of a Trading System

Roberto Castañeda Lozano

Master’s thesis. Stockholm, January 28, 2010.

School of Information and Communication Technology
KTH Royal Institute of Technology

School of Engineering in Computer Science
Polytechnic University of Valencia

Reference: II-C2-DSIC- 24/09

Constraint Programming for Random Testing of a Trading System

Roberto Castañeda Lozano

Supervisors

Christian Schulte
(Royal Institute of Technology, Sweden)

Lars Wahlberg
(Cinnober Financial Technology AB, Sweden)

Federico Barber
(Polytechnic University of Valencia, Spain)

Examiner

Federico Barber

This master’s thesis has been developed in the context of an exchange pro-
gram between the School of Engineering in Computer Science at the Poly-
technic University of Valencia and the School of Information and Com-
munication Technology at the Royal Institute of Technology, Sweden.
The thesis was defended and examined in January 2010 at the Royal Insti-
tute of Technology, obtaining a grade of A in the ECTS grading scale. The
project has also been awarded the Swedish Artificial Intelligence Society
(SAIS) Best AI Master’s Thesis Award 2010.

Abstract

Financial markets use complex computer trading systems whose failures can
cause serious economic damage, making reliability a major concern. Automated
random testing has been shown to be useful in finding defects in these systems,
but its inherent test oracle problem (automatic generation of the expected system
output) is a drawback that has typically prevented its application on a larger scale.

Two main tasks have been carried out in this thesis as a solution to the test
oracle problem. First, an independent model of a real trading system based on
constraint programming, a method for solving combinatorial problems, has been
created. Then, the model has been integrated as a true test oracle in automated ran-
dom tests. The test oracle maintains the expected state of an order book throughout
a sequence of random trade order actions, and provides the expected output of ev-
ery auction triggered in the order book by generating a corresponding constraint
program that is solved with the aid of a constraint programming system.

Constraint programming has allowed the development of an inexpensive, yet
reliable test oracle. In 500 random test cases, the test oracle has detected two
system failures. These failures correspond to defects that had been present for
several years without being discovered neither by less complete oracles nor by the
application of more systematic testing approaches.

The main contributions of this thesis are: (1) empirical evidence of both the
suitability of applying constraint programming to solve the test oracle problem and
the effectiveness of true test oracles in random testing, and (2) a first attempt, as
far as the author is aware, to model a non-theoretical continuous double auction
using constraint programming.

Keywords: constraint programming, random testing, trading system, test oracle,
continuous double auction.

Programación con restricciones aplicado a la prueba aleatoria de
sistemas de comercio electrónico

Roberto Castañeda Lozano

Resumen

Los mercados financieros emplean sistemas de comercio electrónico complejos,
en los que fallos de ejecución pueden acarrear graves perjuicios económicos: su fi-
abilidad es, por lo tanto, un objetivo principal. La ejecución de pruebas aleatorias
ha demostrado ser útil en la detección de defectos en estos sistemas, pero el prob-
lema del oráculo (cómo generar automáticamente la salida esperada del sistema) ha
impedido una implantación mayor de esta técnica.

Este proyecto plantea una solución al problema del oráculo que consta de dos
fases: en primer lugar, utilizando programación con restricciones se ha creado un
modelo de un sistema real de comercio electrónico. Posteriormente, el modelo se ha
integrado como un oráculo en pruebas aleatorias automáticas. El oráculo mantiene
el estado esperado de un libro de órdenes durante una secuencia de acciones aleato-
rias y, para cada subasta ejecutada, proporciona la salida esperada, a través de la
resolución de un problema de satisfacción de restricciones.

El uso de programación con restricciones ha posibilitado el desarrollo de un
oráculo de prueba fiable a la vez que económico. En 500 pruebas aleatorias, el
oráculo ha detectado dos fallos en el sistema. Estos fallos corresponden a defectos
que hab́ıan estado presentes en el sistema sin ser descubiertos por oráculos menos
completos ni por otros enfoques más sistemáticos.

Las principales contribuciones de este proyecto son: (1) la demostración emṕırica
de la idoneidad de usar programación con restricciones como solución al problema del
oráculo y de la efectividad de utilizar oráculos completos en las pruebas aleatorias,
y (2) el primer modelo documentado de una doble subasta continua de un sistema
real utilizando programación con restricciones.

Palabras clave: programación con restricciones, pruebas aleatorias, sistemas de
comercio electrónico, oráculos, doble subasta continua.

Programació amb restriccions aplicat a la prova aleatòria de sistemes de
comerç electrònic

Roberto Castañeda Lozano

Resum

Els mercats financers empren sistemes de comerç electrònic complexos, en els
quals fallades d’execució poden implicar greus perjudicis econòmics: la seua fiabilitat
és, per tant, un objectiu principal. L’execució de proves aleatòries ha demostrat ser
útil en la detecció de defectes en aquests sistemes, però el problema de l’oracle (com
generar automàticament l’eixida esperada del sistema) ha impedit una implantació
major d’aquesta tècnica.

Aquest projecte planteja una solució al problema de l’oracle que consta de dues
fases: en primer lloc, utilitzant programació amb restriccions s’ha creat un model
d’un sistema real de comerç electrònic. Posteriorment, el model s’ha integrat com un
oracle en proves aleatòries automàtiques. L’oracle manté l’estat esperat d’un llibre
d’ordres durant una seqüència d’accions aleatòries i, per a cada subhasta executada,
proporciona l’eixida esperada, mitjançant la resolució d’un problema de satisfacció
de restriccions.

L’ús de programació amb restriccions ha possibilitat el desenvolupament d’un
oracle de prova fiable alhora que econòmic. En 500 proves aleatòries, l’oracle ha
detectat dues fallades en el sistema. Aquestes fallades corresponen a defectes que
havien estat presents en el sistema sense ser descoberts per oracles menys complets
ni per altres enfocaments més sistemàtics.

Les principals contribucions d’aquest projecte són: (1) la demostració emṕırica
de la idonëıtat d’usar programació amb restriccions com a solució al problema de
l’oracle i de l’efectivitat d’utilitzar oracles complets en les proves aleatòries, i (2) el
primer model documentat d’una doble subhasta cont́ınua d’un sistema real utilitzant
programació amb restriccions.

Paraules clau: programació amb restriccions, proves aleatòries, sistemes de comerç
electrònic, oracles, doble subhasta cont́ınua.

Acknowledgements

This master’s thesis has benefited from the advice, guidance and deep knowledge
of my supervisors Christian Schulte, Lars Wahlberg and Federico Barber, who are
truly experts in their respective fields. I am profoundly grateful to them.

I am indebted to my girlfriend Eleonore Lövgren and my good friend and col-
league Carles Tomás Mart́ı for providing valuable feedback on earlier versions of
this report.

Finally, I wish to thank my parents and my little brother for their support and
love, which I strongly feel despite the long distance that keeps us apart.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Previous work at Cinnober . 2
1.3 Problem statement . 3
1.4 Proposed solution . 3
1.5 Related research . 5
1.6 Report overview . 6

2 Random testing 7
2.1 Introduction . 7
2.2 Input . 8
2.3 Oracles . 9
2.4 Test output . 12

3 Constraint programming 15
3.1 Introduction . 15
3.2 Constraint problem modeling . 16
3.3 Constraint problem solving . 18
3.4 Available systems . 22

4 The trading system 25
4.1 Introduction . 25
4.2 Structure . 26
4.3 Trade orders . 28
4.4 Order matching . 31
4.5 The testing framework . 34

5 Development of the test system 37
5.1 Introduction . 37
5.2 System overview . 38
5.3 Requirements . 38

5.4 Design specification . 41
5.5 Computation of the expected trades 49
5.6 Implementation . 56
5.7 Practical aspects of the development process 59

6 Results and analysis 63
6.1 Introduction . 63
6.2 Characteristics of the order book oracle 64
6.3 Random test cases . 67
6.4 Problems found in the trading system 69
6.5 Impact of the order book oracle . 71

7 Conclusion and further work 73
7.1 Conclusion . 73
7.2 Further work . 75

References 77

Glossary 81

A Java code documentation 85
A.1 OrderBookActor . 85
A.2 OrderBookOracle . 87
A.3 OrderBookModel . 88

B Test cases for the order matching 91
B.1 Test cases for the order matcher . 91
B.2 Test cases for the order re-matcher 97

List of Figures

2.1 Random testing model with an oracle 10

3.1 Search tree for the Send More Money problem 21
3.2 Search tree for the constrained Send Most Money problem 22

4.1 Basic architecture of TRADExpress 27
4.2 Usual structure of an order book representation 28
4.3 Order book after consecutively inserting b4, b3, b2, b0 and b1 31
4.4 UML activity diagram of an order insertion/update in TRADExpress 33
4.5 Architecture of the TRADExpress testing framework 35
4.6 Basic components of a simulation 36

5.1 Main components and interactions of the system 38
5.2 UML sequence diagram of an action performed on TRADExpress . 42
5.3 Simplified UML class diagram of the test system 43
5.4 Trade orders taxonomy for the input domain modeling 44
5.5 UML sequence diagram of the calculation of the expected trade events 46
5.6 Example of a test script with one oracle and one actor 58
5.7 Timeline of the development process 60

List of Tables

2.1 Main characteristics of a test oracle 10

3.1 Possible values in each propagation step for Send More Money . . . 20

4.1 Main order attributes in TRADExpress 29
4.2 Main order types in TRADExpress 30

5.1 Modelling of TRADExpress orders for the order matching problem . 50

6.1 LOC of the test oracle and the analogous TRADExpress components 66
6.2 Actors, actions and probabilities in the executed test cases 67
6.3 Total match and re-match hits and expected trades in the test runs 68
6.4 MTBF of each failure detected in the random test cases 69

Chapter 1

Introduction

1.1 Background

A financial market is a system that allows buyers and sellers to trade and exchange
items of value of different types. Financial markets have existed since very early in
the history of humanity, having their origin in the trading of traditional commodi-
ties such as agricultural products. Trading of more abstract instruments, such as
equities, futures and options appear in Europe at the beginning of the seventeenth
century. Since then, new and more complex instruments such as structured financial
products have been progressively added to the financial markets [34].

During the last decades, many major regulatory changes have been introduced as
a result of different economic and social factors. Furthermore, the constant growth
of computer systems and the development of the Internet are revolutionizing the
way in which financial markets operate. The traditional way of trading in which
traders meet in a physical space to exchange their items (called floor trading) is
disappearing. At the same time, computer trading agents are substituting gradually
the human ones, because of the better responsiveness and precision that is obtained.
These facts are increasing the need for more stable, flexible and efficient computer-
based trading systems [34, 7].

As a consequence of this need, many recently created financial software compa-
nies are appearing. One of them is Cinnober Financial Technology AB (hereinafter
called just Cinnober), a Swedish company founded in 1998 that is specialized in
the development of computer trading systems, using as a base their TRADExpress
system [5]. Cinnober employs currently over 140 people, and has delivered solutions
to different customers around the world, such as London Metal Exchange, Chicago
Board Options Exchange or Hong Kong Mercantile Exchange.

In this environment, systems that handle the daily exchange of millions of highly
heterogeneous trade orders, performed by different market participants over many

1

2 CHAPTER 1. INTRODUCTION

different kinds of financial instruments are necessarily complex. Furthermore, the
fact that failures can cause serious economic damage makes them critical. Cin-
nober’s TRADExpress Trading System is a such computer system developed in
Java that comprises millions of lines of code, several layers of abstraction and a
fully redundant architecture with several replicated components [5]. Because of
both the complexity and criticality of TRADExpress, a high importance is given to
the testing process.

Cinnober is constantly looking for the most efficient way to find defects in the
developed systems. One of the latest explored techniques that has shown to be very
effective for this purpose, always in combination with more systematic approaches,
is random testing. Its general idea is to test the system using randomly generated
data as input and an independent source from which it is possible to decide the
correctness of the system’s output [12]. The company is currently studying the
most accurate way to apply this technique to its systems, in order to improve the
reliability in those parts where it is specially hard to anticipate failures by applying
more traditional test approaches.

1.2 Previous work at Cinnober

There are some previous master’s theses developed at Cinnober that deal with the
test environment and the application of random testing techniques. The frameworks
available at Cinnober for automated testing of TRADExpress, among other systems,
are carefully studied and evaluated in [24]. The master’s thesis reported in [19]
examines in great detail the theory around random testing and proposes a practical
study, where a random trading simulation framework is developed together with a
basic failure detection system, and the results of different runs are presented and
analyzed. This work is refined by [21], which uses a more realistic input data model
for the random trading simulations, based on the application of statistical methods
to real trading data.

A big part of the work done by [19] and [21] is developed around the order book,
a core component of trading systems in general, and of TRADExpress in partic-
ular, where different trade orders referring to a certain instrument are stored and
matched. Due to the huge order type variety that TRADExpress allows nowadays,
and the complex logic that their process requires, the order book gets a high priority
in the Cinnober’s test planning.

1.3. PROBLEM STATEMENT 3

1.3 Problem statement

Despite the great progress made by the previous work performed at Cinnober, the
developed trading simulation system currently lacks a fully satisfactory way of au-
tomatically evaluating the output generated by the order book. This problem is
commonly known as the oracle problem [9]. The failures that can be currently de-
tected in simulation time are rather trivial to observe, such as system crashes or
negative prices in trades [19]. Both [19] and [21] agree that this represents an im-
portant limitation in their developed simulation system with respect to the capacity
of detecting system defects. Consequently, the development of a system that can
automatically predict the correct system’s output during the trading simulation is
suggested as further work in both cases. Since the order book is the main object of
the trading simulation, the core of the problem is to develop a system that is able to
calculate the expected output of the order book throughout the trading simulation.

The development of a such system following an imperative programming para-
digm similar to the one used in TRADExpress could become as complex as for the
original system. There is a need, therefore, to find a less costly and error prone
modeling and implementation technique, which might give up some benefits of the
TRADExpress approach, such as run-time efficiency, in return.

1.4 Proposed solution

The object of this master’s thesis is to study, design, implement and evaluate a
prototype solution as a response to the problem defined in Section 1.3. More specif-
ically, the following two main basic tasks will be carried out:

1. Design and implement a model for the order book as it is defined in Cinnober’s
TRADExpress.

2. Integrate the implemented model into the existing trading simulation frame-
work, as a way to evaluate the correctness of the order book’s output.

A test oracle is a source that determines expected results from the system under
test [11]. The aim is to use the order book model as a test oracle in the trading
simulations, reusing as much as possible the work performed by [19] and [21] at
Cinnober. The existing trading simulation framework will be adapted to introduce
the test oracle, and the benefits will be examined by collecting results of different
simulation runs and comparing them to the ones obtained in the previous work
introduced in Section 1.2.

Constraint programming is a declarative programming paradigm where con-
straints over variables are defined, and a general purpose constraint system is used

4 CHAPTER 1. INTRODUCTION

to solve them [30]. This paradigm will be applied for designing and implement-
ing the order book model that will serve as a test oracle. Constraint programming
contributes to the solution by offering a pure declarative technique to model and im-
plement the test oracle, allowing to perform the modeling task in a notation that is
much closer to our understanding and removing a great part of the implementation
effort [8].

1.4.1 Goals

This master’s thesis contains a large practical component. The work performed
can be seen as a practical experiment, where two techniques with very different
backgrounds and areas of application such as constraint programming and random
testing are combined with the initial purpose of helping to increase the reliability of
a trading system. Two main goals are set, analogously to the tasks defined above:

1. Evaluate the suitability of constraint programming as a modeling technique
for complex existing systems such as TRADExpress.

2. Evaluate the improvement in the testing process caused by the addition of a
more complete test oracle to the random trading simulation.

1.4.2 Success criteria

In the ideal case, a single performance measure determines the degree in which a
project succeeds with respect to the defined goals. In the case of this master’s thesis,
the heterogeneity of the combined concepts, and the dual nature of the set goal make
it more feasible to define a combination of measures, which can be divided into two
main groups according to the goal whose achievement is measured:

1. Suitability of constraint programming as a modeling technique for the trading
system’s order book:

• Number of order attributes that are successfully modeled (that is, which
make the test oracle calculate the correct system’s expected behavior).

• Number of functional requirements reflected on the order book model.

• Number of lines of code of the order book model with respect to the
number of lines of code of the system’s order book.

2. Improvement in the random trading simulation framework and benefits of
using a more complete test oracle in the test process:

• Number of defects found in the system as a result of running the random
trading simulation with the order book model acting as a test oracle.

1.5. RELATED RESEARCH 5

• Number of order attributes that can take random values as input in the
simulation and whose effect in the system can be anticipated by the test
oracle.

1.5 Related research

I am not aware of the existence of previous work where constraint programming has
been used in support of testing a trading system. However, some research effort has
been identified in the combination of each pair of areas: random testing applied to
trading systems, constraint programming applied to random testing and constraint
programming applied to trading systems.

1.5.1 Random testing and trading systems

Because of the high complexity and criticality of current trading systems, it is rea-
sonable to suppose that hard testing efforts are applied to them. However, these
efforts are usually carried out by the industry and so far do not seem to have
attracted the attention of the research community. Moreover, the generated docu-
mentation, if any, is generally not widely accessible. The identified work is limited
therefore to what is cited in Section 1.2, together with another master’s thesis that
deals with the development of random tests for the trading system developed at
OMX Technology [12].

1.5.2 Constraint programming and random testing

There is a significant research activity in the application of constraint programming
techniques to automatic test data generation. In this application, test input is
generated based either on the structure of some piece of code, with the aim of
maximizing some coverage criteria [28, 10], or directly on formal specifications [1,
25]. In the second case, expected results can be automatically generated, together
with the test input.

Section 1.4 states that constraint programming will be used in this project to
construct a system model to be used in random tests. The use of constraint pro-
gramming as a technique to model existing systems, not necessarily well-defined, for
testing purposes does not seem to have been thoroughly explored by the research
community, although there exist some remarkable efforts, for example, in the field
of hardware testing [2].

6 CHAPTER 1. INTRODUCTION

1.5.3 Constraint programming and trading systems

The system to be modeled in this project can be seen as a continuous double auc-
tion (which is the term typically used in the research literature). The study of this
problem has attracted much interest from different areas. Several articles present
theoretical models formulated using constraint programming [31, 23] or closely re-
lated techniques such as integer programming [20].

Unlike the work presented above, this project aims to create a model of an
existing trading system, which is used in several financial markets around the world.
Aspects like order priority or visibility, which are usual issues in most of the existent
trading systems [14, Ch. 2, Appx.], do not seem to have been previously considered
in research constraint programming models.

1.6 Report overview

This report can be clearly divided into two main blocks: the first four chapters
introduce the problem that the thesis deals with and its proposed goals, as well as
the basic knowledge that the reader may need to understand the developed work; the
rest of the chapters explain the development of the proposed solution, its evaluation
and the drawn conclusions. The most frequent terms related to the main concepts
used in this work are compiled in a glossary at the end of the report.

Chapter 2 deals with the foundations of automated random testing of software
systems, with a focus on the test design process.

Chapter 3 shows the main principles of constraint programming: how problems
can be specified, and how they are typically solved by constraint programming
systems.

Chapter 4 includes an overview of Cinnober’s TRADExpress system, with a
focus on those aspects that are relevant for the aim of this project.

Chapter 5 contains a description of the design process of the order book model
and the way it is introduced into the trading simulation framework. The chapter
explains and justifies the main implementation decisions.

Chapter 6 shows results related to each goal presented above and discusses in
which degree the chosen solution approach solves the presented problem.

Chapter 7 presents the drawn conclusions and proposes possible further work in
the area.

Chapter 2

Random testing

2.1 Introduction

The development of a software system is constantly exposed to errors, understood
as human actions that produce incorrect results. As a consequence of an error, a
software system may contain defects, also called bugs : flaws that may cause the
system to fail to perform its required function. The execution of a software system
that contains defects may finally cause deviations from its expected behavior, called
failures [11].

A desirable goal for all software systems is to reduce their number of defects, so
that less failures are experienced when using it. Another important goal is to ensure
that a system meets the specified requirements and serves the purpose for which it
has been created. These goals are achieved in software development by applying
testing: software testing is the process of both detecting defects in a system and
determining if it meets the requirements and fits its purpose [11].

Software testing can be roughly classified into functional and non-functional
testing. Functional testing analyzes the specification of the system’s functionality,
while non-functional testing analyzes the system’s quality characteristics, such as its
performance or its usability. Functional testing is often also referred to as black-box
testing, because it does not refer to the system’s internal structure (even though
black-box testing can be also applied to non-functional testing) [11].

Software testing can be classified as well into manual testing (performed man-
ually) and automated testing (performed with the help of a computer system).
Because of its flexibility, manual testing can be very effective in finding system fail-
ures, but when tests are too time consuming or require high precision, it might be
a better option to automate them. In this way, the cost of running several times
a test case is reduced, and greater consistency and repeatability can be achieved,
which is very important, for example, for regression testing purposes [11].

7

8 CHAPTER 2. RANDOM TESTING

An automated test case that does not change from one execution to another
is considered to be only at a first stage of automation [17]. A more advanced
level in test automation includes auto-generation of test cases, and mechanisms to
automatically detect system failures. Random testing is a black-box technique that
can be found on this level: in random testing, the test cases are selected randomly
over a pre-selected domain, and a so-called oracle is typically used to automatically
detect failures in the system. By randomizing automatic tests, a greater coverage
is obtained, and new errors can be found in every new test run [17].

The following sections in this chapter deal with three main aspects that are
critical for a successful application of random testing: Section 2.2 explains how
the input data can be designed and generated, Section 2.3 shows how oracles are
integrated in the testing model and which types of oracles can be designed, and
Section 2.4 discusses different aspects related with the management of the output
obtained from the application of random testing.

2.2 Input

There are three main characteristics that determine the input in random tests: the
domain from which the input is extracted, the distribution that the input data
follows, and the size of the input. How these characteristics are designed is a key
decision in random testing. A poor design of any of them will lead to poor results,
regardless of the quality of the oracle or the output analysis that is performed [18].

2.2.1 Domain

The input domain of a complex system can be considered practically infinite, and
the selection of a meaningful subset strongly depends on each system and the testing
goals. A common approach is to partition the domain into sub-domains correspond-
ing to different functionalities of the system, defining thus clusters of similar input
actions. This makes it possible to assign a different probability or weight to each
action, making a so-called operational profile, which can be used as a model for the
test input domain [13].

2.2.2 Distribution

The distribution for the input data is determined by assigning probabilities to the
operational profile, whose structure is determined by the considered domain. Two
fundamental approaches can be applied, depending on the testing goals: the oper-
ational profile can be chosen so that it models realistic system input, helping thus
to asses the reliability of the system (see Subsection 2.4.2); or it can be chosen so

2.3. ORACLES 9

that it represents completely unrealistic system input, making it possible to detect
low frequency defects whose failures would be hard to cause with more systematic
testing [12].

Creating a realistic input model for a complex system is not trivial. Different
techniques can be applied in order to create an operational profile that matches the
expected system usage. A common one is to apply statistical methods to historical
data of the software system in order to create a model that is representable as
an operational profile. Operational profiles for newly created functionality require
alternative estimation methods. Further detail about how to develop operational
profiles can be found in [27].

2.2.3 Size

A complex system usually requires that a test case comprises a sequence of actions,
specially if it includes persistent state [13]. The question that immediately arises
then is how many actions, or long running time is enough for making a meaningful
test case? The answer depends, once again, on the testing goals and the structure
of the system:

• If the intention is to make a realistic simulation, the running time should be
long enough to reproduce a typical sequence of actions that depend on each
other. There is usually no need to reproduce a whole typical system session,
if such concept exists in the system under test [27, p. 22]. In this case, the
running time could be modeled from analysis on real input data.

• If the intention is instead to deliberately create unrealistic random tests, the
length can be chosen in an ad-hoc manner. For example, the input size can
be determined from experience from previous projects, coverage vs. running
length optimization, or even randomly as well.

2.3 Oracles

A test oracle can be generally defined as a source to determine expected output to
compare with the actual output of the software under test [11]. In the context of
automated testing, a test oracle is an alternate program or mechanism that provides
that information [16]. There is a broad range of test oracles, from basic routines
that check essential properties of the system to duplicates of the system under test
that are able to generate the expected output for all possible inputs. The basic
model used in random testing with an oracle is shown in Figure 2.1.

A critical success factor in random testing is to have a good mechanism to verify
the system output. Without applying oracles in random testing only spectacular

10 CHAPTER 2. RANDOM TESTING

failures can be detected [15]. This strategy can still be convenient in systems where
inconsistent or erroneous states frequently lead to system crashes (see [19] for an
example).

Random input

Test
oracle

System

under test

Actual
output

Expected
output

= ?
Test result

Figure 2.1: Random testing model with an oracle

2.3.1 Characteristics

As mentioned above, many different types of oracles can be used in random testing.
Oracles vary widely in attributes such as complexity, completeness or independence
from the system under test. Table 2.1 lists the main characteristics that must be
considered in the design of an oracle together with a brief description in the form
of some questions that each characteristic proposes.

Characteristic Description

Completeness Which input is covered? Which failures can be detected?

Accuracy How similar is to the system under test? How independent?

Usability How is the information given? Does it fit the intended use?

Maintainability How complex is the oracle? How costly is it to update it?

Performance How fast does it generate output? How often must be run?

Cost How much does it cost to make it? How much to execute it?

Table 2.1: Main characteristics of a test oracle (source: [18])

As in every software system, many trade-offs must be taken into account in
the design of a test oracle. The more complete and accurate an oracle is, the
more complex (and therefore less maintainable and more expensive) it will be. A
complex oracle is more likely to contain defects and thus lead to false alarms in the
comparison between expected and actual output. A complex oracle is generally more
sensitive to changes in the system under test, and therefore harder to maintain. If

2.3. ORACLES 11

the test oracle shares components with the system under test, defects can be missed
because of both the oracle and the system under test generating the same wrong
output due to a defect in the shared component.

2.3.2 Types of oracles

Although different test oracles vary widely in the characteristics discussed in Sub-
section 2.3.1, four main types can be identified: true oracle, consistent oracle, self-
referential oracle and heuristic oracle. Not using a test oracle at all, as discussed
at the beginning of this section, is sometimes identified as a strategy as well. For a
more detailed taxonomy of test oracles, see [15].

The decision of which test oracle type to use depends on many factors, such as
the nature of the system under test and the testing goals, the availability of existing
oracles, the cost of creating a new oracle and the recognition of useful heuristics.
Many times, a combination of different oracle strategies can be the most effective
way of making the most of random testing.

True oracle

A true oracle is an independent implementation of the system under test that re-
produces the output that is expected from it. The independence can be achieved
by, for example, using different algorithms or development platforms, and ensures
that the same design defects will not appear in both systems. This type of oracle
can be very expensive to implement and maintain, so completeness is not usually
achieved. Instead, true oracles are usually applied to test the system for specific
input sub-domains.

Consistent oracle

A consistent oracle uses the system output from a previous test run as the expected
out for the next one. Therefore, differences in the system output from two con-
secutive runs are considered as failures by the test oracle. This type of oracle is
especially useful for regression testing. Because the correctness of the output from
the system under test is not being directly evaluated, a broad range of the input
domain can be used. On the other hand, historical defects are likely to remain
undetected, as the potential wrong output does not change over the different runs.

Self-referential oracle

A self-referential oracle embeds expected system output within the input data.
When using this type of oracle, the random generator seed is usually included in the
test input, in order to be able to repeat a specific test run. An independent analysis

12 CHAPTER 2. RANDOM TESTING

is usually run at the end to identify system failures. In this way, the test execution
(which is performed first) and the system’s output verification are decoupled. A
great advantage of this is that post-test analysis can be applied extensively, and it
can be always extended without the need of modifying the tests.

Heuristic oracle

A heuristic oracle verifies some characteristics of the system output by exploiting
detected patterns in it. Unlike the true oracle, a heuristic oracle cannot decide if
a certain system output is correct, but it can be very effective in detecting system
failures in cases where there are simple and predictable relationships between input
and output. In comparison with the true oracle, a heuristic oracle is simple to
develop and maintain (because of its lower complexity), and fast to run. On the
other hand, because of its simplicity, it can fail to detect those system failures which
break complex patterns and which often respond to the most “interesting” system
defects.

2.4 Test output

In order to make it possible to find the defects that exist behind failures detected by
random tests, some post-processing is usually needed. But the output of a random
test is not only useful to find system failures: some common reliability models can
be estimated by applying statistical analysis to it.

2.4.1 Test case reduction

One of the main goals of every kind of software testing is, as discussed at the
beginning of this chapter, to find failures in the system under test. When a failure
is encountered, the defect that causes it still needs to be found. The process of
looking for the defect that causes a certain failure in a system is commonly called
debugging . Even though debugging falls out of the scope of the testing activities [11],
it can be facilitated by simplifying the output of a failed test case.

As discussed in 2.2.3, random test cases for systems with persistent state are
usually in the form of sequences of actions, which depending on the system’s nature
may necessarily be long. When such a test case detects a failure, it can be very
hard to find the defect that is causing it, because of the length and complexity of
the action sequence. It is usual, therefore, to apply test case reduction to the failed
test case in order to find a simpler one that causes the same failure.

A reduction process for a random test case can be very tedious, so automation is
very desirable. Delta debugging, for example, is a general automatic technique that

2.4. TEST OUTPUT 13

obtains minimal equivalent test cases. The algorithm takes as input the test case
and a function that tells whether the test has passed or not. The test case is run
then over and over again under changed circumstances until the minimum instance
that still causes the system failure is found. Further detail is given in [36, Ch. 13].

2.4.2 Reliability estimation

Software reliability can be defined as the ability of a software system to perform
its required functions for a specified period of time or number of operations [11].
Reliability assessment is often included in the list of goals of software testing. By
analyzing the output from several random tests applied to a system, various reli-
ability models can be built. A basic measure that is used in many of them is the
failure rate, which can be defined as the number of expected failures per time unit
and is usually represented by the symbol λ.

A class of models that is widely used in software reliability estimation describes
failure processes by non-homogeneous Poisson processes [35, Ch. 4]. By simply
calculating the average time between failures from the test output, the Mean Time
Between Failures (MTBF) can be obtained, and thus the failure rate λ = 1

MTBF
.

The number of failures in a period of time is modelled as a variable X ∼ Pois(λ).
The probability that k failures will occur in a time T can be then calculated in the
following way [19]:

P{X = k} =
(λT)k

k!
e−λT

The application of reliability models usually require some assumptions, whose
validity may depend on the special circumstances of each system. Some of the most
usual ones required in times between failure models are [19]:

• Times between failures are independent.

• No new defects are introduced during the defect removal process.

• Each defect has equal probability of exposure.

• The system is immediately repaired after a failure.

• Failure rate is proportional to the number of remaining defects.

The accuracy of a model obtained from random testing output depends not only
on the validity of the required assumptions and the statistical confidence of the
estimated measures, but also on how realistic the test input is designed.

14 CHAPTER 2. RANDOM TESTING

Chapter 3

Constraint programming

3.1 Introduction

Constraint programming is a programming paradigm used to model and solve prob-
lems with a discrete set of solutions. A big part of its power lies in its declarative
nature, summarized in this quote:

Constraint Programming represents one of the closest approaches com-
puter science has yet made to the Holy Grail of programming: the user
states the problem, the computer solves it. (Eugene C. Freuder [8])

In constraint programming, the model of a problem is given by a set of variables
with finite domains (so they can take a finite number of different values) and a
set of relations between these variables, called constraints, that must hold in every
solution [22]. Such a model is called constraint satisfaction problem (CSP), or simply
constraint problem. The solutions to this problem (all possible combination of values
for the defined variables for which the given constraints hold) are automatically
solved by a constraint programming system. Optionally, a cost function (also called
objective function) over the variables can be added to the model in order to express
preference between several solutions. The solutions become, in this case, the subset
of the solutions to the former problem where the cost function is minimized or
maximized.

Constraint programming is a particularly useful technique for dealing with com-
binatorial, typically NP-complete, real life problems. One of its most successful
application areas is probably scheduling and planning problems, but there are many
others, such as power networks and bioinformatics. Some other areas where con-
straint programming has recently started to be applied are, for example, formal
software verification and optimization of computer programs [30, 33]. In the soft-
ware testing area, the technique is mainly used to generate test data in automated
testing (see Subsection 1.5.2).

15

16 CHAPTER 3. CONSTRAINT PROGRAMMING

This chapter aims to introduce constraint programming without assuming previ-
ous knowledge of it, working with illustrative examples instead of formal notations.
Section 3.2 explains how constraint problems are modeled, and Section 3.3 deals
with how they can be automatically solved. Last, Section 3.4 lists some of the
available constraint programming systems together with their basic characteristics.

3.2 Constraint problem modeling

As mentioned above, a constraint satisfaction problem is defined by a set of vari-
ables, the finite domain of each variable –typically integers, booleans, floating point
numbers or sets of one of these domains–, and a set of constraints. Constraint
programming reduces the programming task to the definition of a CSP, which in
some cases can be trivial while in some others can be hard, depending mainly on
the nature of the problem to model. Currently, there is a great research effort
on finding and developing support for new constraints that capture relations be-
tween a non-fixed number of variables (called global constraints). The application
of these constraints gives two main benefits: the programming task becomes easier,
and the constraint programing system can be more efficient in solving the specified
problem [30, Ch. 6].

Many times, a CSP model leads to several solutions from which only a subset is
preferred. This is quite natural if we think in terms of economics, for example (the
benefits should be maximized, the costs minimized). In that case, the CSP model
can be extended, as explained above, by adding a cost or objective function and
stating if it should be maximized or minimized. The cost function, defined over the
variables of the model, helps to distinguish the desired solution from those that are
not as good as possible.

3.2.1 A classic problem: Send More Money

The easiest way to understand how problems are defined in constraint programming
is, perhaps, to directly study a case that can be modeled in a natural way as
a constraint satisfaction problem. Send More Money is a classic mathematical
problem published in the early 20th century. The problem defines a combination of
words that forms an equation where each letter represents a digit:

S E N D

+ M O R E

M O N E Y

3.2. CONSTRAINT PROBLEM MODELING 17

The goal of the problem is to find a different digit for each letter with no leading
zeros in the arithmetic expression. The problem, generalized to arbitrary bases, is
shown to be NP-complete [6].

3.2.2 CSP formulation

Variables and domain

The variables for this problem are, as one could expect, the different letters that
appear in the addition. In this case, all variables have the same (finite) domain.
Note that this is not a general requirement for CSP formulations:

D,E,M,N,O,R, S, Y ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Constraints

Three groups of constraints can be defined for modeling this problem, derived almost
directly from its formulation:

Arithmetic expression: the digits represented by the letters must satisfy the
algebraic equation:

1000× S + 100× E + 10×N + D

+ 1000×M + 100×O + 10×R + E

= 10000×M + 1000×O + 100×N + 10× E + Y

All letters different: each letter x must represent a different digit:

xi 6= xj , ∀i, j : 0 ≤ i, j ≤ 9, i 6= j

No leading zeros: leading zeros are not allowed in the numbers represented
by each word:

S 6= 0,M 6= 0

3.2.3 The optimization version: Send Most Money

The problem

The Send Most Money problem can be defined in a similar way as for Send More
Money. Each letter represents a different digit, leading zeros are not allowed and
the solutions must satisfy the suggested algebraic equation:

18 CHAPTER 3. CONSTRAINT PROGRAMMING

S E N D

+ M O S T

M O N E Y

The difference in this case is that only the value combination that satisfy the
constraints and maximizes the number formed by the digits represented by the word
MONEY is accepted as solution.

The cost function

Having defined the variables, domains and constraints in an analogous way to the
Send Most Money problem, the only new element that must be introduced is the
cost function:

maximize 10000×M + 1000×O + 100×N + 10× E + Y

3.3 Constraint problem solving

As Section 3.1 mentions, constraint problems can be automatically solved by com-
puter systems. The main elements used in the computation of the solutions are
called constraint propagation and search, and are respectively discussed in subsec-
tions 3.3.1 and 3.3.2. The procedure can be summarized as follows: the possible
values for each variable in the model are stored in sets. Values that are forbidden by
the problem constraints are discarded from these sets by applying constraint propa-
gation. If a single possible value is obtained for each variable after the propagation,
those values are marked as a solution to the problem. If there is some variable with
more than one possible value, the problem is decomposed into simpler subproblems
and the process is repeated recursively in these.

In order to compute the solutions of a constraint problem with optimization,
the same strategy can be used. When the set of solutions is obtained, the one(s)
that optimize the cost function can be selected. This trivial model is, however, too
inefficient in most cases, because all possible solutions must be found in order to
determine which one(s) is the best. Subsection 3.3.2 illustrates a search variant that
offers higher performance.

3.3.1 Constraint propagation

Constraint propagation is the kernel operation in constraint programming: without
it, constraint programming could be seen as a simple brute-force search. As men-
tioned above, its mission is to discard the values that cannot appear in a solution,

3.3. CONSTRAINT PROBLEM SOLVING 19

reducing the number of possible values for the problem variables. This operation is
performed by independent functions called propagators, which can be seen as oper-
ational representations of the constraints provided in the problem specification. A
constraint does not necessarily need to correspond to a propagator in a one-to-one
relationship.

In each step of the solution search, the constraint programming system applies
iteratively the propagators to the sets of possible values until there is a simultaneous
fixpoint (that is, no propagator is expected to discard possible values for some
variable). In order to illustrate informally the procedure, we can recall the Send
More Money example introduced in Section 3.2. A typical constraint programming
system might replace the specified constraints with the following propagators:

• Arithmetic expression → linear equality propagator

• All letters different → all-different propagator

• No leading zeros → two simple inequality propagators

Because of the properties of the propagators, the order in which they are se-
lected for performing propagation does not change the final result of the constraint
propagation [30, Ch. 3]. Let us assume that the following arbitrary sequence is
executed:

1. The two simple inequality propagators remove the value 0 from the sets of
possible values of S and M .

2. The all-different propagator is executed but no value can be removed.

3. The linear equality propagator is executed:

• M cannot be greater than 1, because there is no combination of values
that can cause the sum to be greater or equal to 20000. M must be,
therefore, equal to 1.

• Because M = 1, it follows directly that S = 9 and O ∈ {0, 1}.

4. The all-different propagator is executed again. The corresponding values from
the assignments inferred in the previous steps (1 and 9) are removed from the
set of possible values of all the other variables. O is thus assigned the value 0.

5. The linear equality propagator is executed again. In order to satisfy the
arithmetic expression, E must be in the range between 4 and 7. N , in its
turn, must be greater than E.

6. All mentioned propagators are executed again, but no one can discard more
possible values. Thus, there is a simultaneous fixpoint and the propagation

20 CHAPTER 3. CONSTRAINT PROGRAMMING

is finished. Table 3.1 shows the sets of possible values after each of the given
steps.

Step D E M N O R S Y

0 {0..9} {0..9} {0..9} {0..9} {0..9} {0..9} {0..9} {0..9}
1 {0..9} {0..9} {1..9} {0..9} {0..9} {0..9} {1..9} {0..9}
2 {0..9} {0..9} {1..9} {0..9} {0..9} {0..9} {1..9} {0..9}
3 {0..9} {0..9} 1 {0..9} {0, 1} {0..9} 9 {0..9}
4 {2..8} {2..8} 1 {2..8} 0 {2..8} 9 {2..8}
5 {2..8} {4..7} 1 {5..8} 0 {2..8} 9 {2..8}

Table 3.1: Possible values in each propagation step for Send More Money

3.3.2 Search

In most of the problems targeted by constraint programming, propagation is not
enough for finding the set of solutions. In those cases, search must be applied by
decomposing the problem into simpler subproblems in which propagation is recur-
sively applied. This operation is called branching, and is performed by adding new
propagators to the subproblems in a way such that the number of possible values in
every subproblem decreases. An example of a typical branching strategy could be to
select the variable with least possible values (first-fail) and define two subproblems
with new propagators that split the possible values of the variable.

The recursive application of propagation and branching forms a search tree,
which can be constructed by following different search strategies, depending on the
desired number of solutions and the existence of optimization criteria. Typically,
depth-first search is used in order to limit the memory cost [22].

The rest of this section shows search examples for problems with and without
optimization criteria. The representation of search trees follows this convention:
circles represent nodes that require branching (some variable has more than one
possible value), squares represent failed nodes (that is, nodes where some variable
has run out of possible values), and diamonds represent solutions. The nodes are
labeled by exploration order.

Search for Send More Money

In constraint problems without optimization specifications, such as the Send More
Money problem introduced in Subsection 3.2.1, depth-first search is typically used
for enumerating all possible solutions. Figure 3.1 shows the search tree and the
possible values in each non-failed node when solving the Send More Money problem.

3.3. CONSTRAINT PROBLEM SOLVING 21

The propagators behave like those introduced in Subsection 3.3.1 (note that the
possible values in the root node coincide with the ones listed in the last row of
Table 3.1), and the branching strategy is first-fail with smallest value selection.

1

3

5

76

4

2

Node D E M N O R S Y

1 {2..8} {4..7} 1 {5..8} 0 {2..8} 9 {2..8}
3 {2..8} {5..7} 1 {6..8} 0 {2..8} 9 {2..8}
4 7 5 1 6 0 8 9 2
5 {2..8} {6, 7} 1 {7, 8} 0 {2..8} 9 {2..8}

Figure 3.1: Search tree and possible values for the Send More Money problem

As the figure shows, the problem has a single solution, found in the node 4:

{D 7→ 7, E 7→ 5, M 7→ 1, N 7→ 6, O 7→ 0, R 7→ 8, S 7→ 9, Y 7→ 2}

Branch-and-bound: search for the constrained Send Most Money

As pointed out at the beginning of this section, the same model as for solving
the Send Most Money problem could be applied to solve constraint problems with
optimization, by defining a search strategy that returns all possible solutions to the
problem and then selecting the ones that minimize the cost function. In practice,
this is usually too costly, and a search strategy called branch-and-bound is applied
instead.

Branch-and-bound is a strategy for solving optimization problems. Branch-and-
bound performs a search in which whenever a solution is obtained, tree branches
that can be shown (with the help of a cost function f) to not contain a better
solution are discarded (pruned). This strategy fits very naturally in the structure
of the defined model: the search is performed as in a modified version of the depth-
first strategy. Whenever a solution a is found, a propagator allowing only solutions
with better cost than f(a) is added to the set of propagators of the problem. This
procedure guarantees that the optimal solution is obtained [30, Ch. 4].

Figure 3.2 shows the search tree and the possible values in each non-failed node
when solving a constrained version of Send Most Money problem, where the addi-
tional basic constraint:

E = 7

22 CHAPTER 3. CONSTRAINT PROGRAMMING

has been added in order to generate a simpler search tree. The same propagators and
search strategy as in the previous example has been used. As it can be seen, the first
valid combination of values, with cost 10875, is found in the node 3. Immediately
after the solution is detected, a propagator representing the following constraint is
added:

10000×M + 1000×O + 100×N + 10× E + Y > 10875

The next explored node (4) gives a new solution that satisfies this constraint, be-
cause its cost is 10876. Therefore, the propagator is updated with the new maximum
found cost:

10000×M + 1000×O + 100×N + 10× E + Y > 10876

Because the maximum possible value for the cost function under the node 5 is 10876,
this node is pruned and the search finishes.

1

52

43

Node D E M N O S T Y

1 [2..4] 7 1 8 0 9 [2..4] [4..6]
2 2 7 1 8 0 9 [3..4] [5..6]
3 2 7 1 8 0 9 3 5
4 2 7 1 8 0 9 4 6

Figure 3.2: Search tree and possible values for the constrained Send Most Money
problem

As mentioned above, the solution that maximizes the cost function is given by
the node 4:

{D 7→ 2, E 7→ 7, M 7→ 1, N 7→ 8, O 7→ 0, S 7→ 9, T 7→ 4, Y 7→ 6}

3.4 Available systems

A constraint programming system is a computer system that provides a set of
reusable services, such as propagation and search (see Section 3.3), for solving con-
straint problems. The early existence of mature constraint programming systems
is one of the most important causes for the width of the application field of this
technique [30, Ch. 14]. In this section, a very brief survey of some of the main
available constraint programming systems will be given.

3.4. AVAILABLE SYSTEMS 23

The existent systems can be classified depending on if they are standalone (that
is, programming languages, typically extensions of some declarative language such
as Prolog, or programs by themselves), or they are delivered as libraries written in
a mainstream, imperative language such as Java or C++.

3.4.1 Standalone constraint programming systems

The traditional approach to build constraint programming systems has been to
extend Prolog systems with constraint capabilities. Two examples of this approach
are SICStus Prolog, and ECLiPSe, which are respectively proprietary and licensed
under a variation of the MPL license. It is possible to adapt both systems to perform
parallel search, although none of them formally supports it at the time of writing
this report.

An alternative approach to the Prolog extension is that of Minion, a system
built in C++ that takes a file describing a CSP problem and returns its solution.
This lack of interface flexibility allows Minion to be efficient and simple at the same
time. Minion is licensed under the GPL license.

3.4.2 Library constraint programming systems

The constraint system that pioneered the idea of a constraint programming library
is ILOG Solver [30, Ch. 14], a proprietary system owned by IBM which is accessible
from several mainstream imperative languages, such as Java, C++, and .NET.

In the free software category, several libraries such as Choco and JaCoP (im-
plemented in Java) or Gecode (implemented in C++) can be mentioned. While
both Choco and JaCoP (licensed respectively under the BSD and AGPL license)
set their main focus on ease of use, Gecode (licensed under the MIT license) has
openness and efficiency as its main goals, supporting parallel search and showing
good performance results in its website.

24 CHAPTER 3. CONSTRAINT PROGRAMMING

Chapter 4

The trading system

4.1 Introduction

A financial market is, as mentioned in the introduction of this report, a system that
allows buyers and sellers to trade and exchange items of value such as commodi-
ties and equity shares. Financial markets have been revolutionized during the last
decades by the fast development of computer systems and networks and the intro-
duction of important regulatory changes. Today, almost all financial markets in the
world use electronic trading systems, which are subject to challenging requirements
in terms of efficiency, flexibility and reliability [34].

TRADExpress, the target system of this master’s thesis, is a trading system de-
veloped by a Swedish company called Cinnober that aims to meet the demanding
requirements of nowadays’ financial markets. TRADExpress is a complex system
developed entirely in Java that supports many different market structures and mod-
els, and comprises several components that sum up to millions of lines of code [5].

In this chapter, an overview of the most essential aspects of TRADExpress
is given, with a focus on those parts that are targeted by the developed ran-
dom tests. Section 4.2 introduces the essential business modules and architec-
ture of TRADExpress. Section 4.3 explains the different types of trade orders that
TRADExpress allows, and how they are organized in the system. Section 4.4 deals
with how trade orders are matched against each other in different trading mech-
anisms. Finally, Section 4.5 gives an overview of the framework that is used in
Cinnober for testing TRADExpress at the system level.

25

26 CHAPTER 4. THE TRADING SYSTEM

4.2 Structure

4.2.1 Instruments

A financial instrument (usually called in this context just instrument) can be de-
scribed as an item of value, not necessarily physical, on which trades can be per-
formed. A financial market usually offers different instruments of a specific type
to trade with [34]. TRADExpress makes it possible to manage several markets,
where instruments of different types can be organized in a hierarchical structure
with different depth levels [5].

4.2.2 Market participants

Market participants can be defined as the people and institutions that interact in a
financial market. Their structure and organization depends on each type of market,
but it is generally possible to identify four main types of participants [34]:

• Customers: invest or disinvest their money by buying and/or selling negotiable
instruments.

• Brokers: act as agents on behalf of customers, in order to facilitate the access
to markets.

• Dealers: trade on own behalf, assuming thus the risk of their operations.

• Market makers: make money by selling to a higher price than they buy to.
Add continuity to the market trade flow by ensuring that there is always a
counterpart to trade with.

TRADExpress offers an abstract participant model that supports many different
configurations. In TRADExpress, all participants belong to some member. The
type of participant is defined by its user roles, which state the allowed actions
and the information access rights. The market administrators are just defined as
participants with special roles. By combining different roles, this model makes it
possible to define a rich set of participant types [5].

4.2.3 System architecture

TRADExpress has a complex architecture, designed to deal with demanding re-
liability, flexibility and performance requirements. From the user’s perspective,
TRADExpress can be seen as a system that follows a classical client-server model,
where the whole system acts as a service provider to connected clients. However,
the system itself is made up of several servers, which can be in its turn replicated.

4.2. STRUCTURE 27

Furthermore, the architecture of each server is divided into three abstraction layers:
the base layer acts as a platform, and includes middleware and persistence services.
Above this, the generic trading engine is built with all the standard business compo-
nents. On top of the system, a customization layer allows to add customer specific
business rules and trading strategies [4].

Even though TRADExpress comprises many different servers, four main ones
provide the basic functionality that this project needs to consider (see Figure 4.1):

• Trading Application multipleXer (TAX): handles connections with clients,
converts protocols and routes transactions.

• Matching Engine (ME): handles the business functionality of the system, in-
cluding the processing of trade orders and the information dissemination to
different connections.

• Query Server (QS): maintains a copy of the state for different instruments,
and serves some client queries in order to lower the load of the ME.

• Common Data (CD): acts as a repository for the system’s reference data,
containing information, for example, about the defined users and instruments.

TAX

CD

ME

QS

Server sideClient side

Figure 4.1: Basic architecture of TRADExpress (adapted from [4])

TRADExpress can be accessed by clients by using two main protocols: External
Messaging Application programming interface (EMAPI) and Financial Information
eXchange (FIX). EMAPI is a proprietary protocol which is explicitly designed to
access TRADExpress, providing low latency and full functionality [4]. FIX is a
standard, widely used protocol for trading systems maintained by FIX Protocol
Ltd. In both cases, TCP/IP is used at the transport layer when connecting to
TRADExpress.

28 CHAPTER 4. THE TRADING SYSTEM

4.3 Trade orders

4.3.1 Order books

The main aim of a trading system is to store and match trade orders placed by
different participants. This function is performed in a component called order book,
which is already identified as a core component of every trading system at the
introduction of this report. The order book can be seen as a register of the orders
that are placed in a certain instrument and have not been matched yet. It is usual
to represent it as a table with two columns, respectively containing the buy orders
(bid side), and the sell orders (ask side). In both cases, the orders are sorted by
priority, having the top order the highest priority (see Figure 4.2).

Bid orders Ask orders

b0 : bid order with highest priority a0 : ask order with highest priority
...

...
bn : bid order with lowest priority am : ask order with lowest priority

Figure 4.2: Usual structure of an order book representation

Depending on the scope, two main types of order books can be defined [34]:

• Public order books: show the orders from all participants anonymously.

• Private order books: show the orders that a specific participant has placed,
and contains information that belongs to the private scope of those orders.

In TRADExpress, several order books can be defined for an instrument. When
using the EMAPI protocol, information about the state of an order book is obtained
by participants by setting subscriptions on the message dissemination flows that are
of interest. The following flows are considered in this project [3]:

• Order book event flow: contains events with information about the state of
an order book, such as order placements, updates and cancellations.

• Trade flow: contains events with information about the trades which occur
(that is, which are executed) as a result of order matchings in the order book.

Both flows have public and private versions, containing the private ones extra
information about the disseminated events.

4.3. TRADE ORDERS 29

4.3.2 Order attributes

The wide range of trading strategies that are applied in financial markets nowadays
calls for orders where many different conditions and preferences can be expressed.
This is modeled in TRADExpress by defining several attributes that can be attached
to an order. The main ones are shown in Table 4.1.

Attribute Description

Order book Specifies the order book where the order will be placed.
Side Specifies if the order must be placed in the bid or ask side of the

order book, i.e., if it is a buy or sell order.
Quantity Specifies the amount of instrument units that it is desired to trade

with. It is possible to specify a minimum quantity, as well as the
part of the quantity that is shown in the public order book.

Price condition Specifies which prices are accepted for trading and how they should
be formed:

• Market price: the order will be executed at the price set by
the market.

• Limit price: the order will be executed if the trade price is
as good or better than a given one.

• Pegged price: the accepted execution price of the order de-
pends on other prices.

Visibility Specifies if the order is transparent (visible in the public order
book), or dark (visible only in the private order book).

Validity period Specifies the start and end of the period when an order is allowed
to match.

Table 4.1: Main order attributes in TRADExpress (source: [34])

4.3.3 Order types

The combination of the attributes mentioned in Subsection 4.3.2 provides the user
of TRADExpress with a wide range of available order types, which make it possible
to apply different trading strategies. The most common order types are shown
in Table 4.2. Besides the attributes mentioned in this table, a trade order in
TRADExpress must always specify the order book, side and quantity q.

30 CHAPTER 4. THE TRADING SYSTEM

Type Description Characteristic values

Market Executed at the price set by the
market and then cancelled.

Price condition: market price
Validity period: first match only

Limit Executed if the price is equal or
better than p.

Price condition: limit price
Limit price: p

Fill-or-kill
(FoK)

Either executed at the whole
quantity q when inserted or can-
celled.

Minimum quantity: q
Validity period: first match only

Fill-and-kill
(FaK)

Executed when inserted, the re-
maining quantity (if any) is can-
celled.

Validity period: first match only

All-or-none
(AoN)

Executed only at the whole quan-
tity q.

Minimum quantity: q

Iceberg Executed considering the quan-
tity q, but just showing the public
quantity qp.

Public quantity: qp, qp < q

Pegged Executed at the best price in its
side plus some price offset po.
Cancelled if there are no orders
to peg to.

Price condition: pegged price
Price offset: po

Table 4.2: Main order types in TRADExpress (source: [3, 34])

In order to simplify and avoid ambiguity in the following chapters, the following
notation will be applied to the studied order types: a market order with quantity
q will be simply represented as q. A limit order with quantity q and limit price
p will be represented as q @ p. A minimum quantity limit order with quantity q,
minimum quantity qm and limit price p will be represented as q (≥ qm) @ p. More
special attribute values will be explicitly mentioned next to the order. Note that
an all-or-none order with quantity q and limit price p can be thus represented as
q (≥ q) @ p.

It is worth noting that the mentioned types of orders are just some of the most
used attribute combinations. The number of possible combinations in TRADExpress
is practically infinite, and makes the order book a complex system from the design
and verification points of view.

4.3.4 Order priority

A common requirement for a trading system is to encourage “generous” prices,
high quantities and transparency in the trade orders. In order to guarantee these

4.4. ORDER MATCHING 31

principles, TRADExpress prioritizes the orders in an order book side by applying
the following criteria, sorted by precedence [3]:

1. Price (limit price for limit orders): more generous orders get higher priority

2. Visibility: transparent orders get higher priority

3. Minimum quantity: orders without minimum quantity get higher priority

4. Time: orders inserted before get higher priority

Figure 4.3 shows an example of how the order priority algorithm is applied in
TRADExpress. In the example, the bid orders b4, b3, b2, b0 and b1 are inserted
consecutively, and the ask side is empty so they are stored in the order book.
Even though it is the first inserted order, b4 obtains the lowest priority because its
price limit is the less generous one. b2 obtains higher priority than b3 because it
is transparent. b0 and b1 obtain higher priority than b2 because they do not have
minimum quantity constraints. Last, b0 obtains higher priority than b1 because it
is inserted before.

→Bid orders Ask orders

b0 : 100 @ 10.1
→ b1 : 100 @ 10.1
b2 : 100 (≥ 100) @ 10.1
b3 : 100 @ 10.1 (dark)
b4 : 100 @ 10

Figure 4.3: Order book after consecutively inserting b4, b3, b2, b0 and b1

4.4 Order matching

An order book in TRADExpress offers several mechanisms to organize the way in
which orders match each other to form trades. Matching mechanisms are applied to
individual order books, and can be changed during the trading day. The continuous
limit order mechanism, called auto-matching in TRADExpress, is probably the most
predominant mechanism used nowadays in financial markets [14, Ch. 2], and for
this reason it often concentrates the test efforts and it is as well the target of this
project.

From a computational point of view, it is well known that the order matching
problem where orders can have minimum quantity constraints is NP-complete [20].
This complexity class includes all matching mechanisms in TRADExpress where
minimum quantity orders are accepted, auto-matching being among them.

32 CHAPTER 4. THE TRADING SYSTEM

4.4.1 General rules in auto-matching

In auto-matching, trade orders can be inserted and executed on a continuous basis.
If the constraints are satisfied, an incoming order is directly matched against the
orders that are already inserted in the order book, called resting orders. Otherwise,
if the incoming order is still valid, it is stored in the order book, becoming a resting
order [34].

Match eligibility

The most basic rule which applies to every order matching mechanism is that orders
in one side can only be matched against orders placed in the opposite side. While
market orders (see Section 4.3) do not impose any price constraint for the counter-
orders, orders that specify a limit price can only match when the bid limit price is
equal or greater than the ask limit price, that is, the bid participant is willing to
pay at least the minimum price at which the ask participant is willing to sell [3].

Besides the side and the price limit rule, other constraints can be optionally
specified by a trade order. A limit price order with a minimum quantity constraint,
for example, cannot match with other orders unless these satisfy the limit price and
add quantity enough to satisfy the minimum quantity constraint.

Application of the order priority

In addition to the match constraints that are directly specified in the trade orders,
TRADExpress defines a priority between orders (see Subsection 4.3.4). This priority
is applied in auto-matching: an incoming order is allowed to match only if it has
higher priority than the other orders resting in its side. More generally, if an order
is matched then all orders with higher priority must also have been matched.

A notable exception to the priority rule occurs when orders with minimum quan-
tity constraints are placed in the order book, because orders with less priority can
bypass them, that is, can be matched first, if the minimum quantity constraint
cannot be satisfied [3].

Order validity

Some order types are only valid under certain circumstances. For example, pegged
orders are only valid as long as there are orders to peg to in their side, and mar-
ket orders are only valid during the first match attempt. TRADExpress cancels
automatically an order as soon as it becomes invalid [3].

4.4. ORDER MATCHING 33

4.4.2 General auto-matching procedure

As mentioned above, in auto-matching trade orders are allowed to be executed
immediately after being inserted. Every time a trade order is inserted or updated,
a two-step matching procedure is triggered: first, a match attempt is performed,
where the incoming or updated order is compared with the resting orders, and
possibly matched. Then, if TRADExpress detects that there are potential matches
in the order book, a second match attempt called re-match is performed, where all
orders from both sides participate. Figure 4.4 illustrates the described execution
flow.

Match Re-match
[Potential matches]

[No potential match]

Figure 4.4: UML activity diagram of an order insertion/update in TRADExpress

An order cancellation might cause a reconfiguration of the order book such
that matches become possible. Because of this, TRADExpress always executes a
re-match after an order cancellation. Furthermore, changes caused by a single user
operation might trigger several order events due, for example, to the recalculation of
the limit price of pegged orders. These events are enqueued and generally processed
as order updates, following the flow described in Figure 4.4.

The following subsections (4.4.3 and 4.4.4) give further detail about each match-
ing step. Appendix B contains an extensive collection of examples of how individual
match and re-match situations are solved, which work as a complement for the ex-
planations given here. In the subsequent discussions, as well as in the mentioned
examples, a trade between orders bi and aj of quantity q at price p will be repre-
sented with the following notation:

bi ↔ aj : q @ p

4.4.3 Match

In a match, the incoming order is the only one that is considered from its side. The
system applies a greedy algorithm, iterating through the resting side in descending
order, in order to calculate which resting orders, if any, match the incoming order.
The algorithm has a linear complexity, but it does not guarantee to maximize the to-
tal traded quantity in order books where orders with minimum quantity constraints
are placed.

The basic rule used to determine the price at which a trade is executed is that
the resting order sets the price. For example, if an incoming order b0 : 10 @ 25

34 CHAPTER 4. THE TRADING SYSTEM

matches a resting order a0 : 10 @ 22, the execution price of the trade b0 ↔ a0 is set
to 22. The execution price of a trade is not allowed to fall out of the visible Market
Best Bid and Offer (MBBO) of the order book, which is defined as the highest
limit price of a resting transparent bid order and the lowest limit price of a resting
transparent ask order, excluding orders with minimum quantity constraints. Thus,
the execution price of a trade whose resting side would set a price out of the visible
MBBO is corrected to the most generous price allowed within it [3].

4.4.4 Re-match

As Figure 4.4 shows, a re-match is performed when a match leaves trade orders
which can still potentially match, and after order cancellations. The re-match is a
more complex algorithm than the match, because it considers all orders from both
sides (there is no definition of incoming order) and, unlike the match, it guarantees
that the maximum total quantity will be traded, given some constraints.

The main constraint that the system applies in a re-match is that all orders that
are matched must have a better or equal price than a reference price called equi-
librium price, which is is set to the level that maximizes the total traded quantity.
The orders that satisfy this constraint are classified into three groups [3]:

• Must trade orders: non-minimum quantity orders with limit price better than
the equilibrium price.

• Can trade orders: non-minimum quantity orders with limit price equal to the
equilibrium price.

• Minimum quantity orders.

As their name implies, all must trade orders must be completely filled. If two
different combinations of orders lead to the same total traded quantity, the one with
less absolute imbalance (defined as the absolute value of the difference between the
total can trade quantity in the bid and ask side) is preferred. Unlike for the match
algorithm, the execution price of a trade is always set by the resting side, without
requiring it to be inside the visible MBBO.

4.5 The testing framework

4.5.1 The general testing framework

In order to be able to develop automatic tests for TRADExpress at a system level, a
test automation framework is used at Cinnober. The TRADExpress testing frame-
work is developed on top of JUnit, a standard Java testing framework, and provides

4.5. THE TESTING FRAMEWORK 35

support for easily creating participant sessions for both EMAPI and FIX protocols
(see Subsection 4.2.3), as well as tools for performing standard actions (such as
inserting usual trade order types) and verifying the system’s response. Figure 4.5
illustrates the layered architecture of the TRADExpress testing framework.

Simulation framework

Testing framework

JUnit

EMAPI interface FIX interface

TRADExpress

Figure 4.5: Architecture of the TRADExpress testing framework

4.5.2 The random testing framework

The facilities offered by the general testing framework are oriented towards the
creation of deterministic, systematic test cases. As shown in Figure 4.5, a simulation
framework is built on top of it. This framework provides a basic structure and
random generation tools to construct simulations and random tests. The basic
components of a simulation in this framework are the following ones (see Figure 4.6):

• Actors: an actor is defined as a collection of actions, where an action comprises
always some interaction with TRADExpress, like inserting a trade order. Dif-
ferent probabilities can be defined for each action and actor, so that certain
actions are more likely to happen than others. An actor usually corresponds
(but does not have to) to a TRADExpress test participant.

• Oracles: an oracle is defined, in the context of the simulation framework, as
a component that is able to anticipate expected results for the system given
a certain input. An oracle can receive the system output either directly from
the system or be triggered by the actors.

• Simulation core: it is in charge of selecting the actor that must perform an
action in each simulation step and keeping track of the duration of the test,
which can be defined either in simulation steps or in time.

36 CHAPTER 4. THE TRADING SYSTEM

Actor 1 Actor n. . .

Oracle 1 Oracle m. . .

Simulation core

Figure 4.6: Basic components of a simulation

A simulation step in this simulation framework comprises the following sequence:

1. The simulation core chooses the actor that will perform the step action.

2. The chosen actor picks and performs one of its available actions, considering
the defined probabilities.

3. Each oracle, triggered either by the chosen actor or by the system’s response,
calculates the expected system result.

4. The actual system response is compared to the expectations generated by the
oracles, and if a failure is detected, it is immediately reported to the simulation
core, which stops the simulation and reports the failure to the tester.

Chapter 5

Development of the test system

5.1 Introduction

Chapter 1 exposes the need in the Cinnober’s testing process of a system that au-
tomatically calculates the expected order book output through trading simulations.
The solution to this problem (to develop a random test system with an order book
test oracle) is also outlined there, together with the main involved techniques. These
techniques, as well as the trading system to test, have been examined in chapters
2, 3 and 4, forming a background framework for discussing the development of the
purposed solution with further level of detail.

The fact that this project has been carried out by only one person has made
it possible to choose the development methodology with a relatively high degree of
freedom. In the first stage, the requirements have been captured and documented.
Then, an initial design specification according to the stated requirements has been
produced. Finally, the test system has been implemented iteratively, where each
iteration comprises adding a new feature, testing the different components indi-
vidually, integrating them into the test system, executing the test system against
TRADExpress, and reviewing the design specification.

The following sections of this chapter describe each of the development activ-
ities of the prototype random test system. Section 5.2 gives an overview of the
components that the purposed solution comprises, and shows their main interac-
tions. Section 5.3 lists and motivates the functional and quality requirements stated
for the system. Section 5.4 gives more detail about the final system architecture and
the expected behavior of each component. Section 5.5 shows the formal model used
by the order book oracle for the computation of the expected trades. Section 5.6
discusses the main implementation decisions and how they relate to the require-
ments. Last, Section 5.7 describes practical aspects of the development process and
activities that are not covered in the previous sections.

37

38 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

5.2 System overview

The structure of the developed random test system is mainly based in an integration
of the random testing model shown in Figure 2.1 into the existing random testing
framework outlined in Figure 4.6. This scheme comprises the two main components
of the test system (the order book actor and the order book oracle), plus the system
under test (TRADExpress), as shown in Figure 5.1. These two main components
are driven, in their turn, by the simulation core, which decides which actor is to
perform the action in each simulation step, according to the sequence given at the
end of Section 4.5. The main roles of each component are:

• Order book actor: Picks randomly pre-defined actions to perform on a spe-
cific order book of TRADExpress and verifies that the trades calculated by
TRADExpress are the same as the order book oracle expects.

• Order book oracle: keeps the state of a specific order book with the input
provided by each actor associated with that order book and calculates which
trades correspond to a specific state on request of an actor.

OrderBookActor 1

OrderBookActor n

...

TRADExpress

Bid Ask

...
...

OrderBookOracle

Bid Ask

...
...

Figure 5.1: Main components and interactions of the system

Although Figure 5.1 shows, for the sake of simplicity, a system where a single
order book is tested with the help of an oracle, the developed system supports testing
an arbitrary number of order books in the same simulation, by simply partitioning
the set of actors and defining a new oracle that generates expected results for each
order book under test. This allows to reproduce a situation that is closer to the real
use of the system and therefore more interesting for testing purposes.

5.3 Requirements

As Section 1.4 states, the main aim of this project is to model the business logic that
controls the trade order matching in TRADExpress to be able to verify its output

5.3. REQUIREMENTS 39

through randomly generated trading sequences. This high-level goal is decomposed
in this section into several requirements, stated in a solution-independent manner,
and prioritized in a must-should-could scale. Subsection 5.3.1 lists the main func-
tional requirements, and Subsection 5.3.2 lists the main quality or non-functional
requirements.

5.3.1 Functionality

1. Verification of the TRADExpress output

(a) The test system must be able to calculate the expected trade events and
verify that they are received in the TRADExpress ’ public trade flow (see
Subsection 4.3.1) after each random action performed on it. For each
trade event, at least the following fields will be calculated and verified:

• Traded quantity

• Price at which the trade is executed

(b) The test system could be able to calculate the expected order events and
verify that they are received in the TRADExpress ’ public and/or private
order book event flow after each random action performed on it.

2. Action types

The test system must be able to perform the following actions on a specific
TRADExpress order book, by sending the corresponding request message:

• Insert a new trade order

• Update an existing trade order

• Cancel an existing trade order

The test system should ensure that every generated insert, update and cancel
order request is valid according to the TRADExpress specification.

3. Order attributes

The test system must be able to generate random valid values from a uniform
distribution for, at least, the following order attributes (see Subsection 4.3.2)
of an insert or update order request:

• Side

• Quantity

40 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

• Minimum quantity (in fill-or-kill and all-or-none orders)

• Limit price (if the order has a limit price condition)

• Price offset (if the order has a pegged price condition)

The test system should allow the user to specify the range in which random
prices and quantities are generated.

4. Order types

The test system must be able to insert and update at least 80 % of the order
types listed in 4.2.

5.3.2 Quality

1. Accuracy

(a) The test system must be designed without reference to the code or in-
ternal structure of TRADExpress.

(b) The test system should use a declarative programming paradigm for the
computation of the expected trades.

(c) The test system should use a different programming platform than the
one used by TRADExpress for the computation of the expected trades.

2. Usability

(a) The test system must display information enough about each simulation
step so that a simulation sequence can be unambiguously reconstructed
by the user.

(b) The test system must adhere to the style of the automated tests that
already exist at Cinnober.

(c) The test system must provide a mechanism to repeat deterministically a
specific simulation sequence.

(d) The test system should follow the notation introduced in Chapter 4 when
displaying information to the user.

3. Maintainability

(a) The test system must be developed in less than 5000 lines of source code
(excluding comments and blank lines).

5.4. DESIGN SPECIFICATION 41

(b) The test system’s source code should include a comment for each sub-
routine that defines its input, purpose and result of calling it.

(c) The test system should include a suite of automated test cases covering
its own calculation of expected trades for the order attributes and types
specified in 5.3.1.

5.4 Design specification

Two main approaches have been used in the design process: the test system has
been designed in an object-oriented fashion both at its highest abstraction level and
at a component level for those components that interact with the existing random
testing framework. The part of the system that deals with the order matching
has been approached in a declarative way, by using constraint programming (see
Chapter 3), and its design specification, detailed in Section 5.5, consists therefore
of a constraint problem.

The object-oriented design methodology has been chosen due to two main rea-
sons:

• The requirement of adhering to the automated test development style used
in Cinnober (see Subsection 5.3.2), and the ease of interfacing the existing
random testing framework.

• The well-known benefits that object-oriented offers, particularly modularity
and simplicity to map the concepts introduced in Chapter 2 such as test oracle.

In its turn, constraint programming has been chosen for the design and imple-
mentation of the trade calculation logic because, as mentioned in the introduction,
it allows to model this complex problem in a formal mathematical notation that
helps to close the gap between requirements and implementation, and removes a big
part of the implementation effort, which is shifted to the constraint programming
system. The constraint programming models are encapsulated in object-oriented
classes, and are specified in Section 5.5.

The rest of the section is organized as follows: Subsection 5.4.1 shows the de-
sign of the test system by describing the main classes and their interactions and
responsibilities. Then, the design is specified for the three main aspects of ran-
dom testing identified in Chapter 2: the input (Subsection 5.4.2), the test oracle
(Subsection 5.4.3) and the output (Subsection 5.4.4).

42 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

5.4.1 Overview of the test system

Section 5.2 identifies the actor and the order book oracle as the main components
of the test system. The behavior of both of them is driven by the simulation core,
which is in charge, as mentioned in the overview, of selecting the actor to perform an
action in each simulation step. The order book actor gets the expected trade events
from the oracle, and compares them to what it actually gets from TRADExpress.
Figure 5.2 shows a sequence diagram specified in Unified Modeling Language (UML)
with the sequence that each simulation step follows.

:Simulation :OrderBookActor :OrderBookOracle TE

act()

order action request

order action response

getExpectedTradeEvents()

expected trade events

trade event 1
...

trade event m

assert {trade event 1 . . . m} = expected trade events

LoopLoop [until end of simulation]

Figure 5.2: UML sequence diagram of an action performed on TRADExpress (TE)

The order book oracle relies on an inner component, the order book model, to
hold a representation of the order book under test and to calculate the expected
trade events in a given state. In order to perform this task, the order book model
uses finally the order matcher and re-matcher spaces, which, together with their base
class, contain the constraint programming model that defines the order matching
calculations. Figure 5.3 shows a simplified UML class diagram with the main classes
of the test system and their relationships.

5.4. DESIGN SPECIFICATION 43

Simulation
startSimulation()

OrderBookActor
act()

OrderBookOracle
getExpectedTradeEvents() : TradeEvent []

OrderBookModel
registerOrderEvent(orderEvent : OrderEvent)
match() : TradeEvent []
rematch(isBidTheIncomingSide : boolean) : TradeEvent []

OrderMatcherSpace OrderRematcherSpace

OrderMatcherBaseSpace
getBestSolution() : Trade []

1..*

1
includes

1..*

1
includes

1..* 0..1
consults

maintains

1

uses uses

Figure 5.3: Simplified UML class diagram of the test system

5.4.2 The input

As it can be inferred from the functional requirements (see Subsection 5.3.1), the
input domain for the test system is focused in those actions that modify the state
of an order book, either by inserting, updating, or cancelling orders in it. The sub-
domains for this case can be seen as the different combinations between purposed
actions (functional requirement 2) and considered order types (functional require-
ment 4). As explained in 4.3.3, there are many of these combinations, so an strategy
must be adopted in order to select a representative subset of them. Figure 5.4 shows
a taxonomy tree of trade orders with the most usual combinations of attributes (see
functional requirement 3). The leaves of the tree contain the trade order types that
have been chosen as representatives of each class. Note that, for the sake of clarity
and simplicity, iceberg orders have been discarded in this first version of the test
system.

44 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

All orders

Undefined price

Market

Defined price

Limit price

Minimum quantity

Longer

All-or-none

One match

Fill-or-kill

No minimum quantity

Longer

Limit

One match

Fill-and-kill

Pegged price

Pegged

Figure 5.4: Trade orders taxonomy for the input domain modeling

The class in charge of performing the input actions is, as mentioned above, the
order book actor. The probability of an actor and action being chosen, as well as
the number of actions (which defines the size of the input sequence) and the actors
that participate can be specified by the user before running the random test. This
allows the user to tune the input distribution depending on the goals of the random
test (see Subsection 5.4.2). An order book actor is able to perform the following
actions:

• Insert a market order: insert a market order with random side and quantity.

• Insert a limit order: insert a limit order with random side, quantity and
limit price.

• Insert a fill-or-kill order: insert a fill-or-kill order with random side and
quantity, minimum quantity set to the quantity and random limit price.

• Insert a fill-and-kill order: insert a fill-and-kill order with random side,
quantity and limit price.

• Insert an all-or-none order: insert an all-or-none order with random side
and quantity, minimum quantity set to the quantity and random limit price.

• Insert a pegged order: select a random side. Insert, if there are orders to
peg to in the side, a pegged order pegged to the best side price, with random
quantity and random price offset within a fixed range.

5.4. DESIGN SPECIFICATION 45

• Update an order: select randomly an own order from the order book. If
there is any, update it with a new random quantity, and new random values
for each relevant attribute depending on the order type.

• Cancel an order: select randomly an own order from the order book. If
there is any, cancel it.

All quantities and prices can be limited to a certain range, and the decimal
precision of prices can be also specified.

5.4.3 The order book oracle

As Chapter 2 explains, there are different types of oracles that vary in complete-
ness, complexity and other characteristics. The developed order book oracle can
be classified as a true oracle, as it aims to reproduce the exact expected trade flow
output for the specific input sub-domain explained in the previous subsection.

The main challenge in the design of the order book oracle is to implement the
functionality stated in the functional requirement 1 without sacrificing simplicity
and independence (see quality requirements 1 and 3). In order to reduce the com-
plexity, an inner class called order book model has been defined. This class represents
the state of the order book, and contains methods to calculate expected trades out
of that state (see Section 5.5), and a single method to change its state. It is the
responsibility of the order book oracle to keep the order book model updated with
the corresponding order events that are received or inferred from the trade events.

The most complex operation that the order book oracle performs is the calcu-
lation of the expected trade events that are derived from a user order action, such
as the insertion of a new order. Figure 5.5 shows an UML sequence diagram with
the interactions that take place between TRADExpress, the oracle and the order
book model in these calculations. The sequence can be summarized in the following
steps:

1. The oracle receives all the order events from TRADExpress and initializes a
queue of order events with the one corresponding to the user action.

2. The oracle extracts the oldest order event from the queue, and updates the
order book model with it.

3. The oracle gets the expected trades from performing a match in the order
model, and updates it with the order events that are derived from those trades
and the order events that are expected after a match.

4. The oracle gets the expected trades from performing a re-match in the order
model, and updates it with the order events that are derived from those trades
and the order events that are expected after a re-match.

46 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

:OrderBookOracle :OrderBookModel TE

user order event
system order event 1

...
system order event n

add user order event to the event queue Q

registerOrderEvent(order event popped from Q)

match()

expected trade events from match

registerOrderEvent(system order event i)

LoopLoop [for each system order event i after the match]

rematch(side of popped order event)

expected trade events from re-match

registerOrderEvent(system order event j)

LoopLoop [for each system order event j after the re-match]

add unvisited price recalculation order events to Q

LoopLoop [while Q is not empty]

Figure 5.5: UML sequence diagram of the calculation of the expected trade events

5.4. DESIGN SPECIFICATION 47

5. The oracle adds all possible price recalculation events that are derived from
the state of the order book model and have not been added before to the
queue, and if the queue is not empty goes to step 2 again.

6. The oracle returns the set of all calculated expected trades.

The algorithm 1 shows the process described above in a more formal way. The
key data structures are the set of trade events to return F , the queue of order events
that wait to be processed Q and the set V of order events that are waiting in Q
or have already been processed. After the order book model has calculated which
trade events should be expected from a match or a re-match, derived order events
must be calculated in order to update the state of the order book model:

Input: A set of order events E corresponding to the latest user action.
Output: A set of trade events T (expected result to the latest user action).

T ← ∅
eu ← user order event ∈ E
Q← {eu} // Q is a queue of order events to process

V ← {eu} // V is a set of visited order events

while Q 6= ∅ do
eo ← oldest event ∈ Q
Q = Q− {eo}
register {eo} in the order book model OB
T ← T ∪ {expected trades from a match in OB}
register {e ∈ E : e derived from the match expected trades} ∪

{e ∈ E : e is a one match order cancel event} ∪
{e ∈ E : e is a pegged order cancel event} in OB

T ← T ∪ {expected trades from a re-match in OB}
register {e ∈ E : e derived from the re-match expected trades} ∪

{e ∈ E : e is a pegged order cancel event} in OB
EP ← {e ∈ E : e is a pegged order recalculation event}
Q← Q ∪ (EP − V)
V ← V ∪ EP

end
return T

Algorithm 1: Calculation of the expected trade events by the test oracle

• Order events derived from expected trades: order events that represent the
cancellation of completely filled orders and the update of the quantity of par-
tially filled orders.

48 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

• One match order cancel events: order events that represent the cancellation
of orders with the validity period set until the next match. These cancellation
occurs always after the first match attempt.

• Pegged order cancel events: order events that represent the cancellation of
pegged orders that do not longer have any order to peg to in their side.

• Pegged order recalculation events: order events that represent the update of
pegged orders because of a best “peggable” price change in their side.

As it can be seen in the pseudo-code given in algorithm 1, the operation of
calculating expected trades and updating the state of the order book iterates while
the queue Q is not empty. It is important to ensure that this condition always
evaluates true after a finite number of iterations and the while-loop terminates. A
completely rigorous termination proof would require many formalization steps that
fall out of the scope of this project, so the termination is proven in a more informal
style.

Informal proof of while loop termination. Let us consider the set of trade events Ti,
the queue of order events Qi, the set of pegged order recalculation events EPi

and
the sum of the quantity of all orders in the order book |qi| at the end of the iteration
i, i > 0.

In the iteration i, one of the following disjoint cases takes place:

• |Ti| = |Ti−1|. Then no order is filled and |qi| = |qi−1|. Because of this, the best
“peggable” prices in the order book are not updated and EPi

= ∅, and hence
no new order event is added to Qi, and |Qi| < |Qi−1|.

• |Ti| > |Ti−1|. Then some order has been filled and |qi| < |qi−1|, which might
lead to new price recalculation events resulting in |Qi| ≥ |Qi−1|.

Therefore the sequence of pairs of |qi| and |Qi| in successive iterations follows a
lexicographical order:

〈|qi|, |Qi|〉 <
lex
〈|qi−1|, |Qi−1|〉, i > 0

As the relation < is well-founded for non-negative integers (which is the domain
of both elements in the tuple), the lexicographical order is well-founded and the
given sequence is finite. Hence, the while-loop terminates.

5.5. COMPUTATION OF THE EXPECTED TRADES 49

5.4.4 The output

Section 2.4 deals with two important aspects related to the output of a random
test: test case reduction, which refers to the task of isolating a failure found in
a simulation sequence, and reliability estimation, which offers techniques to infer
reliability models from statistical analysis of the random test output.

Test case reduction can be a very tedious task, so it is desirable to automate it,
by using techniques as the one suggested in the mentioned section. However, these
techniques require an adaptation of the test system to make it able to produce
machine-readable logs and replay subsets of a given simulation sequence, which
falls out of the scope of this project. In order to isolate a failure, therefore, manual
analysis of the failing simulation sequence must be performed, with help of the test
output and the possibility to deterministically repeat the whole simulation sequence
(see quality requirement 2).

Reliability estimation requires, as mentioned in the end of Section 2.4, the use of
a realistic operational profile in the test input distribution. The test system input
is highly configurable and accepts different input distributions, but the creation of
a realistic operational profile is a demanding task, out of the scope of this project,
so it will not be considered as a part of the development test system.

A third output aspect considered in the design is the collection of statistics in
test runs. The following statistics are collected and shown to the user at the end of
a test case:

• Total match hits (that is, match attempts that return some expected trade)
and total match expected trades.

• Total re-match hits (that is, re-match attempts that return some expected
trade) and total re-match expected trades.

These statistics can be useful to get an idea of which components of the system
under test have been exercised most in each simulation.

5.5 Computation of the expected trades

As mentioned in Section 5.4, the problem of computing the expected trades has
been approached in a different way to the rest of the test system. The order book
model, whose state is driven by the test oracle (as explained in Subsection 5.4.3),
calculates the expected trades of a match or re-match operation by defining and
solving a constraint satisfaction problem with its state as input data.

As Section 4.4 explains, TRADExpress combines the use of two different strate-
gies when running the auto-matching mechanism: match and re-match. As both

50 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

strategies are similar in an important number of points, the common elements have
been pulled up into a common constraint satisfaction problem, represented in Fig-
ure 5.3 by the class OrderMatcherBaseSpace and defined in Subsection 5.5.1. Each
derived problem (represented by the classes OrderMatcherSpace and OrderRematch-
erSpace and defined respectively in subsections 5.5.2 and 5.5.3) inherits thus the
variable definitions and constraints specified in this class, adding only the new vari-
ables and constraints that are specific to the problem.

In order to simplify the constraint problem as much as possible, each order that
is used as input is modeled by only three attributes: quantity q, minimum quantity
mq and limit price lp. These attributes get always a value, even if no direct mapping
is possible from the original TRADExpress order. The quantity is directly filled with
the value from the original order, and the minimum quantity and limit price of each
order model are assigned according to Table 5.1.

Type mq lp

Market 0 best price in order book + 1
Limit 0 lp

Fill-or-kill q lp

Fill-and-kill 0 lp

All-or-none q lp

Pegged 0 best price in its side + offset po

Table 5.1: Modelling of TRADExpress orders for the order matching problem

The calculation of the execution price of every trade varies in each of the de-
rived matching steps. Even though it is performed after the matching result is
obtained and is not actually part of the constraint problem, it is calculated by the
OrderMatcherSpace and OrderRematcherSpace classes, and it can be formalized and
expressed in terms of the same notation used in the constraint problems. For these
reasons, the formal model for the calculation of the execution price is attached as
well at the end of subsections 5.5.2 and 5.5.3.

5.5.1 The common order matcher

The common order matcher is not a complete order matcher in itself, as it does not
define any cost function and thus multiple solutions are allowed, but it provides a
framework in which the two order matchers are based. It includes the integer vari-
ables that represent the quantity matched between different orders, as well as some
auxiliary variables that are useful in the construction of more advanced constraints.

5.5. COMPUTATION OF THE EXPECTED TRADES 51

Furthermore, it includes constraints that set the basic limitations in how quantities
can be distributed.

Input data

An order book with n ≥ 1 bid and m ≥ 1 ask orders sorted descendingly by priority:

Bid orders Ask orders

b0 : qb0 (≥ mqb0) @ lpb0 a0 : qa0 (≥ mqa0) @ lpa0

...
...

bn−1 : qbn−1 (≥ mqbn−1) @ lpbn−1 am−1 : qam−1 (≥ mqam−1) @ lpam−1

where qbi , mqbi and lpbi respectively represent the quantity, minimum quantity and
limit price of the bid order bi. For the sake of simplicity, we define the set of bid
orders B = {bi : 0 ≤ i < n}, and the set of ask orders A = {aj : 0 ≤ j < m}.

Variables and domain

The following non-negative integer variables represent all possible trades between
the given orders:

a0 . . . am−1 total

b0 tqb0,a0 . . . tqb0,am−1 tqb0
...

...
...

...
...

bn−1 tqbn−1,a0 . . . tqbn−1,am−1 tqbn−1

total tqa0 . . . tqam−1 tq

where tqbi,aj
represents the quantity traded between the bid order bi and the ask

order aj. The auxiliary variables tqbi , tqaj
and tq respectively represent the total

traded quantity of the bid order bi, the ask order aj and between all orders.

Constraints

Auxiliary variables definition

tqb represents the total traded quantity of the bid order b:

tqb =
∑
a∈A

tqb,a ∀b ∈ B

52 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

tqa represents the total traded quantity of the bid order a:

tqa =
∑
b∈B

tqb,a ∀a ∈ A

tq represents the total traded quantity between all orders:

tq =
∑
b∈B

tqb =
∑
a∈A

tqa

Limit price: a bid order b cannot trade with an ask order a with higher limit
price:

lpb < lpa =⇒ tqb,a = 0 ∀〈b, a〉 ∈ B × A

Individual order quantity: an order x can only trade up to its quantity:

tqx ≤ qx ∀x ∈ B ∪ A

Traded quantity: a bid order b and an ask order a can only trade up to the
minimum of their quantities:

tqb,a ≤ min(qb, qa) ∀〈b, a〉 ∈ B × A

Minimum order quantity: an order x must trade either 0 or a quantity
greater than its minimum quantity:

tqx ≥ mqx ∨ tqx = 0 ∀x ∈ B ∪ A

Order priority: a limit order without minimum quantity constraint cannot
be bypassed by other order with less priority:

tqbi < qbi ∧ mqbi = 0 =⇒ tqbj = 0 ∀〈bi, bj〉 ∈ B2 : i < j

tqai
< qai

∧ mqai
= 0 =⇒ tqaj

= 0 ∀〈ai, aj〉 ∈ A2 : i < j

5.5. COMPUTATION OF THE EXPECTED TRADES 53

5.5.2 The order matcher

The order matcher represents the most common matching strategy used in auto-
matching. The incoming order is the only order allowed to match in its side, and
the matching must be performed sequentially, starting from the order with highest
priority at the resting side.

Input data

• The order book inherited from the common model.

• The incoming order c and its side C : c ∈ C, C ∈ {B,A}.

Variables and domain

The order matcher uses only the traded quantity variables inherited from the com-
mon model.

Cost function

The solution must maximize the total traded quantity:

maximize tq

Constraints

Incoming order: c is the only order allowed to trade in its side:

tqx = 0 ∀x ∈ (C − {c})

Sequential matching: an order in the resting side whose quantity, added to
the accumulated traded quantity of orders with higher priority, still fits into the
quantity of the incoming order c cannot be bypassed by orders with less priority:

c ∈ A ∧ atq(bi) + qbi ≤ qc ∧ tqbi < qbi =⇒ tqbj = 0 ∀〈bi, bj〉 ∈ B2 : i < j

c ∈ B ∧ atq(ai) + qai
≤ qc ∧ tqai

< qai
=⇒ tqaj

= 0 ∀〈ai, aj〉 ∈ A2 : i < j

where atq(xi) is a function from orders to integers that represents the accumu-
lated traded quantity from x0 to xi:

54 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

atq(x0) = 0

atq(xi)
i > 0

=

{
atq(xi−1) + qx−1, atq(xi−1) + qx−1 ≤ qc
atq(xi−1), otherwise

Trade price

The execution price tp at which two orders trade is set by the resting side, and it
must fall into the visible spread, if this can be defined:

c ∈ B =⇒ tpb,a =

{
maxx∈C′ lpx, |C ′| > 0 ∧maxx∈C′ lpx > lpa
lpa, otherwise

∀〈b, a〉 ∈ B × A : tqb,a > 0

c ∈ A =⇒ tpb,a =

{
minx∈C′ lpx, |C ′| > 0 ∧minx∈C′ lpx < lpb
lpb, otherwise

∀〈b, a〉 ∈ B × A : tqb,a > 0

where C ′ is the set of resting visible orders in the incoming side:

C ′ = {x ∈ C : mqx = 0} − {c}

5.5.3 The order re-matcher

The order re-matcher is applied when there are potential trades that the order
matcher cannot solve. New variables, including auxiliary ones, are defined, and the
cost function becomes more complex, as there is a hierarchy of criteria defined in
order to chose between different order combinations. As the order re-matcher is
always applied after the order matcher, the incoming order is not considered (it
could have been completely filled by the order matcher). However, the incoming
side is still taken into account for the calculation of the execution price.

Input data

• The order book inherited from the common model.

• The incoming side C ∈ {B,A}.

5.5. COMPUTATION OF THE EXPECTED TRADES 55

Variables and domain

• The traded quantity variables inherited from the common model.

• The non-negative integer variable eqp, which represents the equilibrium price
of the order matching and whose domain is the set of different order limit
prices {lpx : x ∈ B ∪ A}.

• The auxiliary integer variable im, which represents the imbalance in a calcu-
lated matching.

• The auxiliary integer variables itmax, itmin, jtmax and jtmin, which represent
the indexes of the minimum intervals that contain orders that trade.

• The auxiliary non-negative integer variables tq0, . . . , tqn+m−1, where tqk rep-
resents the total traded quantity between orders whose indexes sum k.

Cost function

The solution must lexicographically maximize the following tuple of integer variables
(note that the expressions with negative sign are to be minimized):

maximize 〈tq, −|im|, −(itmax + jtmax), (itmin + jtmin), −eqp, tq0, . . . , tqn+m−1〉

Constraints

Auxiliary variables definition

im represents the difference between the total can trade quantity in the bid and
ask sides (see Subsection 4.4.4):

im =
∑
b∈B:

lpb=eqp
mqb=0

(qb − tqb) −
∑
a∈A:

lpa=eqp
mqa=0

(qa − tqa)

itmax, itmin, jtmax and jtmin respectively represent the maximum and minimum
indexes, for the bid and ask side, of an order that trades:

itmax = max({−1} ∪ {i : bi ∈ B ∧ tqbi > 0})

itmin = min({n} ∪ {i : bi ∈ B ∧ tqbi > 0})

jtmax = max({−1} ∪ {j : aj ∈ A ∧ tqaj
> 0})

56 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

jtmin = min({m} ∪ {j : aj ∈ A ∧ tqaj
> 0})

tqk represents the total traded quantity between orders whose indexes sum k:

tqk =
∑
bi∈B
aj∈A
i+j=k

tqbi,aj
∀k : 0 ≤ k < n+m

Equilibrium price: an order that has worse limit price than the equilibrium
price eqp cannot trade:

lpb < eqp =⇒ tqb = 0 ∀b ∈ B

lpa > eqp =⇒ tqa = 0 ∀a ∈ A

Must trade quantity: the total must trade quantity in both sides must be
completely filled (see Subsection 4.4.4):∑

b∈B:
lpb>eqp
mqb=0

(qb − tqb) +
∑
a∈A:

lpa<eqp
mqa=0

(qa − tqa) = 0

Trade price

The execution price tp at which two orders trade is set by the resting side:

tpb,a =

{
lpb, C = A
lpa, C = B

∀〈b, a〉 ∈ B × A : tqb,a > 0

5.6 Implementation

The implementation decisions taken in this project have a great impact in the
fulfilment of the requirements stated in Section 5.3, specially the quality ones. They
can be divided in two parts, analogously to how the specification of the design is
organized: those related to the actor, oracle and order book model are detailed in
Subsection 5.6.1; those related to how the order book model computes the expected
trades are detailed in Subsection 5.6.2.

5.6. IMPLEMENTATION 57

5.6.1 Actor, oracle and order book model

Language and platform

With the aim of reusing existing work and reduce integration and learnability costs
(see quality requirement 2), the actor, oracle and order book model component
have been implemented as regular Java classes, and are integrated into the existing
simulation framework (see Figure 4.5) at the same level as the existing components.
Appendix A includes the Javadoc documentation of the main classes.

In order to minimize the complexity and increase the maintainability and read-
ability of the Java code (see requirement 3), high-level constructions as the following
ones have been applied whenever possible:

• The order predicates defined in the orders taxonomy shown in Figure 5.4 have
been directly implemented as classes that implement the Predicate interface
of the Apache Commons, a library of reusable Java components. These pred-
icates are used, for example, for filtering orders in collections.

• The logic that controls the order priority is encapsulated as a class that imple-
ments the Comparator interface of the Java platform. The order book model
is sorted according to this comparator. Other comparators are defined in order
to avoid code replication and increase the readability of the code.

User interface

The development of an advanced user interface falls out of the scope of this project.
The test system simply uses the console standard output to display the action
performed, the state of the order book model and the expected and actual trades
in each simulation step, as stated in requirement 2.

The random number generation is centralized and initialized by a seed, which
can be specified by the user in the test script. As the state of the tested order books
in TRADExpress is restarted between each run, the user can repeat a certain test
case of interest by simply specifying that the same seed should be used in the test
script. Figure 5.6 shows an example test script with only one actor and one oracle
where the initialization seed is set to 1000 and the simulation length is set to 100
steps.

Furthermore, the test oracle returns the expected trades as matcher objects,
which can be directly used by the constructions implemented in the random testing
framework for performing comparisons.

58 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

@Test
public void simpleScenarioWithOneActor () {

se tSeed (1000L) ;
setExecut ionLength (100L) ;

OrderBookOracle tOrac le = new OrderBookOracle (this , MOPS USER, mOrderBook) ;
addOracle (tOrac le) ;

addActor (new OrderBookActor (this , ”PARTICIPANT” , USER, mOrderBook , 100)
. useOrderBookOracle (tOrac le)
. s e tP r i c eL im i t s (10 , 1000)
. setQtyLimits (10 , 100)
. weightAction (OrderBookActor . INSERT LIMIT ORDER, 30)
. weightAction (OrderBookActor . INSERT ALL OR NONE ORDER, 30)
. weightAction (OrderBookActor . INSERT FILL AND KILL ORDER, 20)
. weightAction (OrderBookActor .CANCEL ORDER, 10)

) ;

s t a r tS imu la t i on () ;

}

Figure 5.6: Example of a test script with one oracle and one actor

5.6.2 Computation of the expected trades

As mentioned in the previous sections, the components in charge of computing the
expected trades given a model of a certain state of the order book are the Order-
MatcherBaseSpace and the derived OrderMatcherSpace and OrderRematcherSpace.
These components are defined as classes and encapsulate constraint problems to be
solved by a constraint programming system. As Section 3.4 shows, there are many
constraint programming systems that could potentially solve the order matcher and
re-matcher problems specified in Section 5.5. Gecode has been chosen out of them
for the following reasons, among others:

• It is delivered as a C++ library, which makes the integration with the test
system easy.

• Its openness reduces the risk that the lack of a needed feature will block the
development.

• I have previous experience with it, which has reduced the development time.

The Gecode models, written in standard C++, have been implemented as a
shared library, and are connected to the rest of the test system by using the Java
Native Interface (JNI). In this way, the quality requirement 1 has been satisfied. As
for the Java code, the C++ code makes an intensive use of high-level constructions,
for example by applying methods and structures from the C++ Standard Library

5.7. PRACTICAL ASPECTS OF THE DEVELOPMENT PROCESS 59

and using the direct modeling support ([32, Ch. 6]) provided by Gecode whenever
possible.

5.7 Practical aspects of the development process

The previous sections have introduced the design specification and the main im-
plementation decisions taken in the development of the test system. This section
sets one more level of abstraction and deals with the development process itself, the
methods applied, the organization of the available time and the main faced issues.

5.7.1 Organization of the development process

As the initial time plan states, the development phase of this master’s thesis has
been carried out in a period of 8 weeks, between October and November 2009.
As stated in the introduction to this chapter (Section 5.1), the test system has
been implemented iteratively, adding support for testing, generation, modeling and
verification of an order type in each iteration. The following practices have been
applied to the development process:

• Explicit statement of the requirements and prioritization by means of a back-
log.

• Test-driven development applied to the trade calculation subsystem, as stated
in the quality requirement 3. Appendix B includes a selection of the most
illustrative developed test cases.

• Version control of the code base, documentation and programming diary.

Figure 5.7 shows a timeline with the main events of the development period.
The first working version, available since week 42 and enlarged during weeks 43
and 44, uses only the order matcher specified in Subsection 5.5.2. Week 45 was
spent in trying to generalize the order matcher model so that it could support all
situations with all-or-none (AoN) orders involved. By the end of week 45, splitting
up the initial order matcher into two matchers (the matcher and the re-matcher)
was identified as the only possible option to reproduce the expected behavior of
TRADExpress. Week 46 and 47 were taken to develop the order re-matcher, and
the final version supporting all-or-none orders was available on week 48. As a
consequence of the design changes, the development of support for all-or-none orders
has taken practically the same time as the development of support for all the other
order types together.

60 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

Week 41 Week 42 Week 43 Week 44 Week 45 Week 46 Week 47 Week 48

October 2009 November 2009

S
u
p
p
or

ts
li
m

it
or

d
er

s

S
u
p
p
or

ts
F
aK

or
d
er

s

S
u
p
p
or

ts
m

ar
ke

t
or

d
er

s

S
u
p
p
or

ts
F
oK

or
d
er

s

S
u
p
p
or

ts
p
eg

ge
d

or
d
er

s

S
u
p
p
or

ts
A
O

N
or

d
er

s

T
es

t
fr
am

ew
or

k
b
u
il
t

O
rd

er
m

at
ch

er
sp

li
tt

in
g

L
ex

ic
og

ra
p
h
ic
al

op
ti
m

iz
at

io
n

Figure 5.7: Timeline of the development process

5.7.2 Issues

Trade priority in the order re-matcher

Figure 5.7 above shows the insight of using lexicographical optimization for the order
re-matcher as a main event in the development process. This is translated into the
following cost function in the final re-matcher problem (from Subsection 5.5.3):

maximize 〈tq, −|im|, −(itmax + jtmax), (itmin + jtmin), −eqp, tq0, . . . , tqn+m−1〉

While the first two elements of the tuple tq and −|im| are easily inferred from
the requirements database, the rest of elements are added only on the basis of
observations of actual results from TRADExpress, because it has not been possible
to infer the information found in the requirements database and example scenarios
with enough precision to be able to formalize it. Therefore, the order re-matcher
might produce false positive results (that is, expected trades that do not match the
actual results) in those order book states that are complex enough to contain several
possible order combinations with the same total trade quantity tq and absolute
imbalance |im|. Some of such cases have been detected, documented and added to
the test suite.

As an order re-matcher attempt can only succeed when all-or-none orders are
inserted into an order book, and furthermore the order book must reach a quite
complex situation for this issue to be reproduced, its impact to the test process can
be seen as limited. In order to evaluate the frequency of failure of the test oracle
due to this issue, a simple experiment has been performed: random test cases with
an input sub-domain designed to maximize the number of complex order re-matcher
situations (exclusive insertion of all-or-none orders with a constant limit price) have
been run. In these cases, no more than 10% of successful re-matches (that is, those
with tq > 0) have been revealed as false positives.

5.7. PRACTICAL ASPECTS OF THE DEVELOPMENT PROCESS 61

Domain of the order attributes

In order to avoid precision problems associated with the use of floating point num-
bers, TRADExpress uses Java long integers for representing prices and quantities,
even if the formers are presented to users as real numbers [4]. Standard C++ and
Gecode, in their turn, only support standard integers, which typically use half the
bytes of Java long integers. This type mismatch limits the input domain: quantities
and prices must be limited so that they fit into standard C++ integer variables.

On the other hand, attempts to calculate the expected trades in certain order
book configurations (with many orders and high quantities) might end up in a search
explosion when solving the associated constraint problem. This issue limits the
input domain as well, specially when including all-or-none orders, which generally
add more combinatorial richness to the constraint problem.

Even though these issues prevent the exploration of the whole domain of the
order attributes, situations of equivalent complexity from the order matching per-
spective can be generated with limited price and quantity values, and thus the same
coverage can be obtained as if we were able to explore the whole domain of these
attributes. The impact of both issues to the potential coverage of the test system
is considered to be thus limited again.

62 CHAPTER 5. DEVELOPMENT OF THE TEST SYSTEM

Chapter 6

Results and analysis

6.1 Introduction

This chapter analyzes, with the help of the collected results, in which degree the
chosen solution fulfills the problem stated in Section 1.3. The discussion is organized
by showing results and assessing the achievement of each of the goals presented in
Subsection 1.4.1:

1. Evaluate the suitability of constraint programming as a modeling technique
for solving the order matching problem.

2. Evaluate how the introduction of a true test oracle contributes to the improve-
ment of the trading system’s testing process.

In order to assess the degree of achievement of the first goal, the main charac-
teristics of the order book oracle, such as its completeness and maintainability will
be examined by considering, whenever possible, measures like the ones anticipated
in Subsection 1.4.2. The success of the second goal will be analyzed, in its turn, by
looking at the defects found in TRADExpress during the development and execution
of the implemented test system.

The chapter is organized in two main parts, each of them respectively related to
the goals listed above: the first part (Section 6.2) analyzes the main characteristics
of the developed test oracle, and how the application of constraint programming
affects them. The second part (sections 6.3, 6.4 and 6.5) analyzes the impact of the
order book oracle in the random trading simulations, by referring to the collected
results.

63

64 CHAPTER 6. RESULTS AND ANALYSIS

6.2 Characteristics of the order book oracle

Table 2.1 lists the main characteristics that must be considered in the development
of a test oracle. This section gives an overview of the developed order book oracle
by showing and discussing results related to each characteristic listed in the table.
A discussion on how the use of constraint programming affects some characteristics
is given as well. The metrics given here (for example, the functional requirement
coverage) should be, in general, taken as rough approximations rather than perfect
measurements of each characteristic.

6.2.1 Completeness

The completeness of the order book oracle has been evaluated by two main coverage
measures: the percentage of order attributes that are successfully modeled, and the
percentage of functional requirements related to auto-matching that are reflected in
the order book model.

Subsection 4.3.2 shows the main attributes of a trade order in TRADExpress.
Although only 6 different attributes are shown, an actual trade order message con-
tains a total of 29 attributes that affect the way in which the order is handled by
the system. For each of these attributes, the percentage of possible values that the
model can handle has been calculated. From these calculations, it has been derived
that the order book oracle covers approximately a 45% of all possible values that
the different attributes of a trade order can take.

Regarding requirement coverage, the order book model reflects 42 from a to-
tal of 172 requirements that have been considered relevant to the auto-matching
functionality modeled in this project, that is approximately a 27% of them.

A rough and purely qualitative inference of the two figures shown above gives
that the test oracle covers approximately one third of the auto-matching functional-
ity. However, a qualitative analysis of the measurements (assessing the importance
of each auto-matching feature) might lead to different conclusions, as many func-
tional requirements and trade order attributes deal with functionality that is not
commonly applied in TRADExpress ’ production. A complete analysis in this direc-
tion would require the development of an operational profile, which, as mentioned
in Subsection 5.4.4, falls out of the scope of this thesis.

6.2.2 Accuracy

There is only one known case where the output of the order book oracle might
be wrong, and it is documented in Subsection 5.7.2. As explained there, the false
positive can only be obtained in quite limited situations. Table 6.4 below shows
that this false failure has arisen 25 times in a total of 45144 input actions, which

6.2. CHARACTERISTICS OF THE ORDER BOOK ORACLE 65

gives a Mean Time Between Failures (MTBF, see Subsection 2.4.2) of 1806 actions.
The relatively high MTBF of this defect makes its impact on the oracle accuracy
low, although it would be of course desirable to correct it.

The use of a declarative programming paradigm such as constraint programming
impacts positively on the correctness and accuracy of the test oracle. Assuming
that the applied constraint programming system is correct, the directness of the
specification-to-code translation reduces the proof of correctness of the order match
and re-match code to verifying the specification itself.

Other aspect related to the accuracy of a test oracle, as described in [18], is the
degree of independence with respect to the system under test. The order book or-
acle has been developed based on the requirements database and other documents,
without referring to the implementation of TRADExpress, and it has been designed
using different programming paradigms (constraint programming) and languages
(C++). The degree of independence of the order book oracle is, therefore, consid-
erably high.

6.2.3 Usability

As Subsection 5.6.1 mentions, the developed test oracle provides output traceability,
event and statistics logging and possibility of repeating test cases. In addition, it is a
highly portable software system, written in Java and standard C++ and using only
libraries that are at the same level of portability. Other aspect that contributes to its
usability (see [18]) is that the expected results are returned as matcher objects that
can be directly used by the comparators available in the random test framework.

6.2.4 Maintainability

As Section 2.3 discusses, a main concern in the design and implementation of a test
oracle is to keep its complexity and maintainability as low as possible. One of the
simplest software maintainability metrics is the number of lines of code (LOC) [37].
This measure has been calculated (discarding empty lines) for both the test oracle
and the TRADExpress components that implement the functionality under test.
Although the test oracle is developed in two different programming languages, em-
pirical research shows that software systems implemented in Java and C++ are
generally equivalent in LOC [29]. Table 6.1 shows the results, measured in January
2010 with the tool CLOC 1.

1CLOC v. 1.08. http://cloc.sourceforge.net

http://cloc.sourceforge.net

66 CHAPTER 6. RESULTS AND ANALYSIS

System Files Code lines Comment lines

Test system 32 1946 902
TRADExpress 34 9585 4377

Table 6.1: LOC of the test oracle and the analogous TRADExpress components

As Table 6.1 shows, the test oracle comprises approximately a 20% of the code
and comment lines used in TRADExpress to deliver an equivalent functionality.
The fact that almost the same number of code files have been used in both cases is
explained by the use in the test oracle of C++ headers and one file for each Java
comparator and predicate class. The important difference in LOC can be explained
by many factors. The main ones are:

• TRADExpress implements the optimization search for the order re-match from
scratch, while the test oracle reuses the search capabilities of the constraint
programming system.

• Performance is a primary goal in the TRADExpress, while its importance
in the test oracle is secondary (see Subsection 6.2.5 below). As a result,
the TRADExpress implementation contains more lines of code, for example,
handling individual cases that could only be generalized with some lose of
performance.

Furthermore, the closeness between the order matcher and re-matcher specifi-
cations and their implementation (due to the use of a a declarative programming
paradigm) contributes positively to the maintainability of the test oracle.

6.2.5 Performance

The performance of the order book oracle is already identified in the introduction
chapter as a secondary goal. The average execution time of the calculation of the
expected trades (see algorithm 1) has been measured in the test runs described in
Section 6.3: while it is orders of magnitude higher (0.745 s. on average) than that of
TRADExpress [5], the time bottleneck at the random test process is probably still
the manual failure analysis. On the other hand, a main factor in this execution time
is the maximum quantity that actors are allowed to trade with (see Subsection 5.7.2).
This parameter can be specified in the test scripts, so it can be easily reduced for a
better execution time if necessary.

6.3. RANDOM TEST CASES 67

6.2.6 Cost

Besides the temporal costs discussed above, there are many other costs that must be
considered in the development of an oracle. Some of the possible costs listed in [18],
such as the maintenance cost of comparators, are cancelled out by the reutilization
of the testing framework previously developed at Cinnober. The license cost of
all technologies used in the test oracle implementation, including the constraint
programming system, is null as well. The maintenance cost of the test oracle,
considering the figures examined above, is low in comparison with the maintenance
cost of the system under test.

6.3 Random test cases

6.3.1 The test cases

As Chapter 5 states, the test cases that can be designed within the test system are
highly configurable. This allows to create a practical infinite number of test cases
that differ not only in the random generator seed number, but in other parameters
such as the number of actors and action probabilities. For the sake of simplicity,
a single configuration has been used and repeated with different random generator
seed numbers. In order to guarantee a potentially full coverage of the input domain,
all actions are included in the test configuration, distributed in three actors. The
probabilities of actors and actions being chosen in a given simulation step are shown
in Table 6.2.

Actor Probability Action Probability

A 30%
Insert a limit order 80%
Update an order 10%
Cancel an order 10%

B 30%
Insert a marker order 33.3%
Insert a fill-or-kill order 33.3%
Insert a fill-and-kill order 33.3%

C 40%

Insert an all-or-none order 40%
Insert a pegged order 40%
Update an order 10%
Cancel an order 10%

Table 6.2: Actors, actions and probabilities in the executed test cases

68 CHAPTER 6. RESULTS AND ANALYSIS

The test configuration is applied to 500 test cases with different generator seeds,
of 100 actions each. Prices are generated in a range between 10 and 100, and
quantities are generated in a range between 2 and 50. For the sake of simplicity and
failure traceability, only one order book, with its corresponding oracle, is defined.
While this input model does not aim to be specially realistic (as it is not based in
an operational profile), it is designed to take advantage of all developed capabilities
of the test oracle, and it can generate situations that are complex enough to detect
low frequency defects in the system under test.

6.3.2 Results

The 500 test cases have been run during the days 13th and 14th of January 2010
against the version 8.0.0 of TRADExpress. Although a total of 50000 input actions
were planned, premature terminations in the failing test cases have reduced the
total input actions to 45144. Table 6.3 shows the total match and re-match hits
calculated by the test oracle (see Subsection 5.4.4) and their corresponding expected
trades in the executed random tests.

Matching step Total hits Total trades

Match 10895 17037
Re-match 526 1189

Table 6.3: Total match and re-match hits and expected trades in the test runs

Two types of failure, explained with more detail in Section 6.4, have been de-
tected in the test execution:

• A pegged order wrongly remains in an empty order book.

• An incoming order without best priority is allowed to match.

Furthermore, the test oracle has erroneously reported several times a false re-
match failure documented in Subsection 5.7.2. Because the trading system is re-
pairable for the found failures, in the sense that they do not cause any crash or func-
tionality loss, it is possible to calculate the Mean Time Between Failures (MTBF, see
Subsection 2.4.2). Table 6.4 shows the calculated MTBF for each failure, including
the false one, and the total MTBF.

6.4. PROBLEMS FOUND IN THE TRADING SYSTEM 69

Failure Occurrences MTBF (actions)

Pegged order in empty order book 51 885
Incoming low priority order matches 37 1220
Re-match false positive 25 1805

Total 113 399

Table 6.4: MTBF of each failure detected in the random test cases

6.4 Problems found in the trading system

6.4.1 System failures

Pegged order remains in an empty order book

After a re-match that fills all orders that a pegged order can peg to and partially
fills a pegged order, the order book lacks a visible Market Best Bid and Offer price
(MBBO, see Section 4.4). Because of this, the pegged order is canceled as expected,
and the order book is emptied. However, if the same sequence is repeated, the
pegged order remains in the order book, even thought there is no order that can
define a visible MBBO and it should be automatically cancelled by the system. The
following steps are a simplification of the sequence causing the failure:

1. The order b1, which is pegged to the best bid price with a price offset of -1, is
inserted into an order book containing b0 and a0:

→Bid orders Ask orders

b0 : 13 @ 47 a0 : 14 (≥ 14) @ 22
→ b1 : 17 @ 46

2. A match attempt is performed without success, and the following trades are
calculated in the re-match:

b0 ↔ a0 : 13 @ 22

b1 ↔ a0 : 1 @ 22

As a result, b0 and a0 are completely filled, and b1 is automatically cancelled
by the system, as there is no defined visible MBBO.

3. Step 1 is repeated.

4. The same trades as in step 2 are executed, but this time the pegged order b1
wrongly remains in the order book:

70 CHAPTER 6. RESULTS AND ANALYSIS

Bid orders Ask orders

b1 : 16 @ ?

Incoming order without best priority is allowed to match

As the common order matcher constraint problem defines, no order is allowed to
match against orders in the other side if there are unfilled non-minimum quantity
condition orders with better priority in its side. However, if a visible MBBO is
defined (this is, if there are non-minimum quantity orders in both sides of the order
book) an incoming order with the same limit price but worse priority than other
orders existing in its side is wrongly allowed by TRADExpress to match, by-passing
them. The following steps are a simplification of the sequence generated by the test
system that causes the failure:

1. The AoN order a1 is inserted in an order book containing b0, a0 and a2. a1 has
the same limit price than a0, but it gets worse priority for being a minimum
quantity order:

Bid orders →Ask orders

b0 : 18 (≥ 18) @ 32 a0 : 4 @ 28
→ a1 : 18 (≥ 18) @ 28
a2 : 16 @ 38

2. The incoming order a1 is wrongly allowed to match in the first order match
attempt, even though a0 has higher priority and, because it is not a minimum
quantity order, it should never be bypassed by an order with lower priority:

b0 ↔ a1 : 18 @ 32

6.4.2 Documentation defects

The development of the order book model has required a formalization of the
TRADExpress order matching requirements, which were stated only in natural lan-
guage at the beginning of this project. As a side benefit of this process, some
documentation mistakes and ambiguities have been detected and fixed. Two main
types of defects have been identified in a total of six corrected requirements:

• Ambiguous statements due to the use of a natural language (English).

• Erroneous calculations and system expectations in illustrative examples.

6.5. IMPACT OF THE ORDER BOOK ORACLE 71

6.5 Impact of the order book oracle

As Chapter 1 states, the main contribution of this work with respect to the previous
work performed at Cinnober is the introduction of a true oracle, able to calculate
the expected output of a TRADExpress order book for a subset, detailed in Sub-
section 5.4.2, of its input domain.

In [19], a total of five defects are found in TRADExpress by applying random
testing. Although an heuristic test oracle is developed, it actually does not take
part in the detection of any of the found failures. In [21], no test oracle is used, and
no failures are discovered. The author argues that “the system under test has been
tested frequently and very rigidly for a long time, so no major errors were expected
to be found” [21, p. 66]. Yet two new defects has been discovered in this project,
even though TRADExpress is older and thus presumably more mature, due to the
introduction of a true test oracle. This suggests the idea that the random testing
capacity of finding new failures in TRADExpress without using a more complete
test oracle was exhausted.

It is important to notice that a less complete test oracle than the true oracle
could have given some results as well: a heuristic oracle verifying that an order book
does not only contain pegged orders after each input action could have detected the
remaining pegged order failure (see Subsection 6.4.1). The incoming order failure
is, however, harder to discover: detecting if an incoming order should match or not
is equivalent in complexity to solving the match problem, which falls into the scope
of a true oracle.

Finally, even if the use of a less complete test oracle could have helped to find
failures, it is arguable whether many side benefits of the modeling and formalization
task performed in this project, such as the documentation corrections described in
Subsection 6.4.2, would have been obtained.

72 CHAPTER 6. RESULTS AND ANALYSIS

Chapter 7

Conclusion and further work

7.1 Conclusion

This thesis aimed to provide a solution to the test oracle problem raised in the previ-
ous work on random testing applied to the trading system TRADExpress. The pro-
posed solution has been to develop a model of the core component of TRADExpress,
the order book, by applying constraint programming, and to integrate the model
as a true oracle into the existing random test framework. This work has involved
answering, through empirical research, two main questions:

1. In which degree does constraint programming represent a satisfactory solution
for modeling complex existing systems such as TRADExpress?

2. How does the testing process improve by the addition of a true test oracle to
the random testing framework?

The following two subsections summarize the work related to each question and
draw the respective conclusions.

7.1.1 Constraint programming and the order book model

The main procedure executed in the order book model applies two different con-
tinuous double auctions (called match and re-match). The specifications of these
auctions, initially given as functional requirements stated in a natural language,
have been formalized into constraint satisfaction problems to be solved by a con-
straint programming system. This has been the first attempt, as far as the author
is aware, to model a non-theoretical continuous double auction problem with this
technique.

73

74 CHAPTER 7. CONCLUSION AND FURTHER WORK

Because the model has been integrated as a true test oracle, its main design
goals are those of the oracle: completeness, accuracy, and maintainability. Con-
straint programming has proven to support well these goals: because of the use of a
different programming paradigm to that of TRADExpress, the test oracle is highly
independent. Furthermore, constraint programming, as a declarative programming
paradigm, has contributed to its accuracy by narrowing the gap between specifica-
tions and implementation. Last, the reuse of the search capabilities of the constraint
programming system and the high level of abstraction of the oracle implementation
have reduced its number of lines of code to a fifth of those used in TRADExpress
to deliver the same functionality, contributing to a lower complexity and a higher
maintainability.

From this discussion, the first question can be answered: constraint program-
ming has proven to be suitable for modeling a complex existing system comprising
combinatorial problems, and has shown to contribute well to the common design
goals followed in the development of test oracles.

7.1.2 The order book model as a true test oracle

The second step in the proposed solution has been to integrate the order book
model as a test oracle into the existing random testing framework. The test oracle
updates the state of the order book model and triggers the computation of the
double auctions through different actions, such as insertions and cancellations of
trade orders. An actor that exercises approximately a third of the functionality of
the main matching mechanism, including the most typical trade order types, has
been added to the framework. Finally, a set of random test cases with the new
configuration has been designed and run.

In 500 executed test cases, with a total of 45144 input actions, the true test oracle
has detected two failures that had been present in TRADExpress for several years.
These failures had not been discovered by previous random testing approaches with
less complete test oracles. While one of these failures might have actually been
detected with a less complete test oracle, detecting the other one would have been
hard without a true oracle. Furthermore, the development of an independent, well-
defined model of the system as a solution to the oracle problem has implied a
formalization task that has brought side benefits, such as the disambiguation and
correction of functional requirements.

Following this discussion, an answer can be given to the second question: a
true test oracle has shown to significantly improve the capacity of finding failures
through random testing. Although the development of a true test oracle based
on an independent model of the system can be costly, the application of suitable
declarative programming techniques can lower a great part of the implementation
effort, besides bringing some side benefits derived from their reduction of the gap

7.2. FURTHER WORK 75

between specification and implementation.

7.2 Further work

This thesis can be seen as a continuation of the work done in [19] and [21] on random
testing in the context of the trading system TRADExpress. The obtained results
encourage further research in the directions followed in this project.

7.2.1 Further development of the system model

The developed test oracle covers approximately a third of the functionality of the
main matching mechanism offered by TRADExpress. An obvious continuation of
this work is to enlarge the model with more order types and order book configura-
tions, with the goal of increasing the test coverage and finding new failures. Other
matching mechanisms offered by TRADExpress, like the so-called auction, could be
as well modeled and tested in a similar way as it is done here.

7.2.2 Continuous double auction as a dynamic CSP

In a continuous double auction as the one performed in the auto-matching mecha-
nism, every trade order action triggers a matching computation that typically alters
the order book in a limited way. Instead of building a new constraint satisfaction
problem (CSP) and solving it from scratch after each user action (as it has been
done in this project), the problem could be more naturally modeled as a dynamic
CSP [26]. In this way, the match computation could be made more effective, as the
results of the previous computations would be reused.

7.2.3 Automatic test case reduction

To manually isolate a failure that has been found in a long random test case is a
very tedious task. This process can fortunately be automated (see, for example, [36,
Ch. 13]). The random testing framework could be adapted by following the steps
suggested in Subsection 5.4.4, and the benefits of automatic test case reduction
could be measured by, for example, inserting artificial failures in the system under
test and calculating the test case reduction rate in several situations.

7.2.4 Operational profiles and reliability assessment

Reliability assessment is often included in the list of goals of software testing. As
Section 2.4 points out, reliability estimation requires the use of a realistic oper-
ational profile in the test input distribution. The development of an operational

76 CHAPTER 7. CONCLUSION AND FURTHER WORK

profile, following for example the methods detailed in [27], based on real usage
data of TRADExpress could be an interesting step towards the creation of realistic
reliability estimation models such as the ones described in Subsection 2.4.2.

References

[1] Hakim Belhaouari and Frédéric Peschanski. A constraint logic programming
approach to automated testing. In ICLP ’08: Proceedings of the 24th Interna-
tional Conference on Logic Programming, pages 754–758, Berlin, Heidelberg,
2008. Springer-Verlag. Cited on page 5.

[2] Eyal Bin, Roy Emek, Gil Shurek, and Avi Ziv. Using a constraint satisfaction
formulation and solution techniques for random test program generation. IBM
Systems Journal, 41(3):386–402, 2002. Cited on page 5.

[3] Cinnober Financial Technology AB. TRADExpress Trading Engine - Func-
tional Requirements Database, 2009. Cited on pages 28, 30, 31, 32, and 34.

[4] Cinnober Financial Technology AB. TRADExpress Trading Engine - System
Architecture Course, 2009. Cited on pages 27 and 61.

[5] Cinnober Financial Technology AB. TRADExpress Trading System - System
Overview, 2009. Cited on pages 1, 2, 25, 26, and 66.

[6] D. Epstein. On the NP-completeness of cryptarithms. SIGACT News, 18(3):38–
40, 1987. Cited on page 17.

[7] Ming Fan, Jan Stallaert, and Andrew B. Whinston. The internet and the future
of financial markets. Commun. ACM, 43(11):82–88, 2000. Cited on page 1.

[8] Eugene C. Freuder. In pursuit of the holy grail. Constraints, 2(1):57–61, 1997.
Cited on pages 4 and 15.

[9] Marie-Claude Gaudel. Testing can be formal, too. In TAPSOFT ’95: Proceed-
ings of the 6th International Joint Conference CAAP/FASE on Theory and
Practice of Software Development, pages 82–96, London, UK, 1995. Springer-
Verlag. Cited on page 3.

[10] Arnaud Gotlieb, Bernard Botella, and Michel Rueher. Automatic test data
generation using constraint solving techniques. SIGSOFT Softw. Eng. Notes,
23(2):53–62, 1998. Cited on page 5.

77

78 REFERENCES

[11] Dorothy Graham, Erik van Veenendaal, Isabel Evans, and Rex Black. Founda-
tions of Software Testing: ISTQB Certification. Int. Thomson Business Press,
2006. Cited on pages 3, 7, 9, 12, and 13.

[12] Johan Gundemark. Random tests in a market place system. Master’s thesis,
Uppsala University, Uppsala, Sweden, 2005. Cited on pages 2, 5, and 9.

[13] Dick Hamlet. When only random testing will do. In RT ’06: Proceedings of
the 1st international workshop on Random testing, pages 1–9, New York, USA,
2006. ACM. Cited on pages 8 and 9.

[14] Joel Hasbrouck. Empirical Market Microstructure: The Institutions, Eco-
nomics, and Econometrics of Securities Trading. Oxford University Press, New
York, USA, 2007. Cited on pages 6 and 31.

[15] Douglas Hoffman. A taxonomy for test oracles. Proceedings of 11th Interna-
tional Quality Week, 1998. Cited on pages 10 and 11.

[16] Douglas Hoffman. Heuristic test oracles. Software Testing and Quality Engi-
neering, pages 29–32, March/April 1999. Cited on page 9.

[17] Douglas Hoffman. Mutating automated tests. StarEast, 2000. Cited on page
8.

[18] Douglas Hoffman. Using oracles in test automation. Proceedings of Pacific
Northwest Software Quality Conference, pages 90–117, 2001. Cited on pages 8,
10, 65, and 67.

[19] Noah Höjeberg. Random tests in a trading system: random tests in a trading
system using simulations and a test oracle. Master’s thesis, School of Computer
Science and Communication, KTH Royal Institute of Technology, Stockholm,
Sweden, 2008. Cited on pages 2, 3, 10, 13, 71, and 75.

[20] Jayant R. Kalagnanam, Andrew J. Davenport, and Ho S. Lee. Computational
aspects of clearing continuous call double auctions with assignment constraints
and indivisible demand. Electronic Commerce Research, 1(3):221–238, 2001.
Cited on pages 6 and 31.

[21] David Karlgren. Random testing of a market place system. Master’s the-
sis, Division of Mathematical Statistics, KTH Royal Institute of Technology,
Stockholm, Sweden, 2009. Cited on pages 2, 3, 71, and 75.

[22] Mikael Zayenz Lagerkvist. Techniques for efficient constraint propagation, 2008.
Cited on pages 15 and 20.

REFERENCES 79

[23] H. G. Lee and R. M Lee. Electronic call market for commodity transactions:
Design of computer-mediated order matching system. Journal of Organiza-
tional Computing and Electronic Commerce, 8(4):307–334, January 1999. Cited
on page 6.

[24] Andreas Lundgren. Abstraction levels of automated test scripts. Master’s
thesis, Faculty of Engineering, Lund University, Lund, Sweden, 2008. Cited on
page 2.

[25] C. Meudec. ATGen: automatic test data generation using constraint logic
programming and symbolic execution. Software Testing Verification and Reli-
ability, 11(2):81–96, 2001. Cited on page 5.

[26] Sanjay Mittal and Brian Falkenhainer. Dynamic constraint satisfaction prob-
lems. In Proceedings of the Eighth National Conference on Artificial Intelli-
gence, pages 25–32, 1990. Cited on page 75.

[27] J.D. Musa. Operational profiles in software-reliability engineering. Software,
IEEE, 10(2):14–32, Mar 1993. Cited on pages 9 and 76.

[28] M. Petit and A. Gotlieb. An ongoing work on statistical structural testing
via probabilistic concurrent constraint programming. In First International
Workshop on Model, Design and Validation. Proceedings, pages 19–27, Nov.
2004. Cited on page 5.

[29] L. Prechelt. An empirical comparison of seven programming languages. Com-
puter, 33(10):23–29, Oct 2000. Cited on page 65.

[30] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint
Programming. Foundations of Artificial Intelligence. Elsevier Science Inc., New
York, USA, 2006. Cited on pages 4, 15, 16, 19, 21, 22, and 23.

[31] Young U. Ryu. Hierarchical constraint satisfaction of multilateral trade match-
ing in commodity auction markets. Annals of Operations Research, 71(0):317–
334, January 1997. Cited on page 6.

[32] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling with
Gecode, 2009. Cited on page 59.

[33] Guido Tack. Constraint Propagation – Models, Techniques, Implementation.
Doctoral Dissertation, Saarland University, Jan 2009. Cited on page 15.

[34] Georg von Zweigbergk. An introduction to financial markets. Technical report,
Cinnober Financial Technology AB, 2009. Cited on pages 1, 25, 26, 28, 29, 30,
and 32.

80 REFERENCES

[35] M. Xie. Software reliability modelling. World Scientific, 1991. Cited on page
13.

[36] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann, October 2005. Cited on pages 13 and 75.

[37] Horst Zuse. A Framework of Software Measurement. Walter de Gruyter & Co.,
Hawthorne, NJ, USA, 1997. Cited on page 65.

Glossary

auto-matching: matching mechanism of a trading system where trade orders can
be inserted and executed on a continuous basis.

automated testing: testing which is supported or performed by a computer.

black-box testing: testing without reference to the internal structure of the sys-
tem.

bug: see defect .

complete test oracle: see true test oracle.

constraint problem: see constraint satisfaction problem.

constraint programming: programming paradigm where constraints over vari-
ables are defined, and a general purpose constraint system is used to solve
them.

constraint propagation: process applied in constraint programming to discard
values that are not part of the solution of a problem.

constraint satisfaction problem (CSP): mathematical problem defined as a set
of variables with finite domains and a finite set of constraints.

constraint: relation over the variables of a problem that must be satisfied by the
problem solutions.

cost function: function that quantifies how good a particular solution to a problem
is.

debugging: process of looking for the defect that causes a certain failure in a
system.

declarative programming: programming paradigm where what should be com-
puted is described, rather than how the computation should be performed.

81

82 Glossary

defect: a flaw in a system that may cause the system to fail to perform its required
function.

error: a human action that produces an incorrect result.

failure rate: number of expected failures per time unit in a system.

failure: deviation of a system from its expected behavior.

financial instrument: item of value, physical or not, on which trades can be per-
formed.

financial market: system that allows buyers and sellers to trade and exchange on
financial instruments.

functional requirement: a requirement that specifies a function that a compo-
nent or system must perform.

functional testing: testing that analyzes the specification of the system function-
ality.

market participant: trader who takes part in the exchange powered by a financial
market.

match: first matching step applied in auto-matching after a trade order is inserted
or updated.

mean time between failures (MTBF): average time between failures of a sys-
tem.

NP-complete: a class of problems for which no polynomial-time algorithms are
known.

operational profile: quantitative characterization of how a system will be used.

order book: component of a trading system where different trade orders referring
to a certain instrument are stored and matched.

random testing: a testing technique where test cases are selected randomly to
match an operational profile.

random trading simulation: computer-based simulation that imitates a trading
sequence in a financial market, where different participants introduce random
trade orders matching a certain operational profile.

Glossary 83

re-match: second matching step applied in auto-matching after a trade order is
inserted or updated. It is also applied immediately after an order cancellation.

regression testing: testing of a previously tested system that has been modified
to ensure that defects have not been introduced during the modification.

software reliability: ability of a software system to perform its required functions
for a specified period of time or number of operations.

software testing: process of both detecting defects in a software system and de-
termining if it meets the requirements and fits its purpose.

systematic testing: as opposite to random testing, testing where the most valu-
able test cases are selected by applying techniques such as equivalence parti-
tioning.

test case: a set of input values and expected results developed for a particular
objective.

test oracle: a source to determine expected results to compare with the actual
result of the system under test.

trade order: request of buying or selling a certain quantity of a financial instru-
ment on a specific financial market.

trade: transaction that involves the exchange of a financial instrument for a certain
amount of money.

trading system: software system that manages the execution of trade orders in a
financial market. Cinnober’s TRADExpress is an example of a trading system.

true test oracle: independent implementation of the system under test that re-
produces the output that is expected from it. See test oracle.

84 Glossary

Appendix A

Java code documentation

A.1 OrderBookActor

A.1.1 Fields

public static final String INSERT LIMIT ORDER

public static final String INSERT FILL AND KILL ORDER

public static final String INSERT FILL OR KILL ORDER

public static final String INSERT MARKET ORDER

public static final String INSERT PEGGED ORDER

public static final String INSERT ALL OR NONE ORDER

public static final String UPDATE ORDER

public static final String CANCEL ORDER

A.1.2 Constructors

public OrderBookActor(Simulation pSimulation, String pRoleName,
String pUserAlias, Instrument pInstrument, int pWeight)

Initializes the order book actor.

A.1.3 Methods

public final void act(long pCycle)

Cleans the public trade flow message queue and picks and performs an action.

85

86 APPENDIX A. JAVA CODE DOCUMENTATION

public OrderBookActor useOrderBookOracle(OrderBookOracle pOrder-
BookOracle)

Specifies that the actor will use pOrderBookOracle for verifying the public trade
flow.

public OrderBookActor setQtyLimits(int pMinQty, int pMaxQty)

Sets the lower (pMinQty) and higher (pMaxQty) limits for quantity generation.

public OrderBookActor setPriceLimits(int pMinPrice, int pMaxPrice)

Sets the lower (pMinPrice) and higher (pMaxPrice) limits for price generation.

public OrderBookActor setPriceDecimalLevel(int pPriceDecimalLevel)

Specifies the number of decimal digits that the actor will use in its order prices. Note
that a high decimal level can lead to round-off errors and thus incorrect expected
trade prices.

public int getPriceDecimalLevel()

Returns the number of decimal digits that the actor will use in its order prices.

public void insertLimitOrder()

Inserts a limit order.

public void insertMarketOrder()

Inserts a market order.

public void insertFillAndKillOrder()

Inserts a fill-and-kill order.

public void insertFillOrKillOrder()

Inserts a fill-or-kill order.

public void insertPeggedOrder()

Inserts a pegged order.

A.2. ORDERBOOKORACLE 87

public void insertAllOrNoneOrder()

Inserts an all-or-none order.

public void updateOrder()

Updates an order.

public void cancelOrder()

Cancels an order.

public void restoreState()

Cancels all its orders in the order book.

A.2 OrderBookOracle

A.2.1 Constructors

public OrderBookOracle(Simulation pSimulation, String pUserAlias,
Instrument pInstrument)

Initializes the order book oracle.

A.2.2 Methods

public void prediction()

Prepares the EMAPI subscriptions for all the participating actors.

public Instrument getInstrument()

Returns the tradable instrument the oracle looks at.

public void addEmapiActor(OrderBookActor pOrderBookActor)

Adds pOrderBookActor to the list of actors that participate in the trading for the
order book.

public void cleanOrderEventQueues()

Cleans the order event message queues of all actors.

88 APPENDIX A. JAVA CODE DOCUMENTATION

public void printOrderBook()

Prints out the oracle’s internal order book state.

public EmapiTradeEventMatcher[] getExpectedTradeEvents()

Returns an array of matchers for the trade events that are expected to happen as a
consequence of the last order action performed in the order book.

public List getAllPrivateOrderEvents()

Returns all private order events registered in the internal order book.

public long getBestLimitPriceInSide(boolean pIsBid)

Returns the best limit price in the given side of the internal order book. If there
are no orders in the side, it returns 0.

public void restoreState()

Restores the state of the order book.

A.3 OrderBookModel

A.3.1 Constructors

public OrderBookModel(Instrument pInstrument, double pTick)

Initializes the order book model.

A.3.2 Methods

public void registerOrderEvent(EmapiOrderEventPrivateIf pOrderEvent)

Updates the order book model with the order event pOrderEvent.

public long getBestLimitPriceInSide(boolean pIsBid)

Returns the best limit price in the given side of the order book. If there are no
orders in the side, it returns 0.

public List getOrderEventList()

Returns a list with all private order events in the order book.

A.3. ORDERBOOKMODEL 89

public List match()

Returns a list of trade event matchers that are expected to be the result of matching
the contained orders. Calls the external library ”ordermatcher”.

public List rematch(boolean pIsBidTheIncomingSide)

Returns a list of trade event matchers that are expected to be the result of applying
a re-match to the contained orders. Calls the external library ”ordermatcher”.

public List toTradeEventMatcherList(List pTrades)

Converts a list of TradeModel objects to a list of trade event matcher objects.

public List getCancelOrderEventMatchersAfterMatch()

Returns a list of cancel order event matchers with the cancel events expected after
a match attempt for those orders that are valid only until the next match.

public List getOrderEventMatchersFromTrades(List pTrades)

Returns a list of order event matchers that are expected to be caused by the trades
in pTrades.

public List getPriceRecalculationOrderEventMatchers()

Returns a list of order matchers due to price recalculation of pegged orders.

public List getCancelPeggedOrderEventMatchers(List pBaseOrders)

Returns a list of order matchers due to cancel of pegged orders when there is noth-
ing to peg to. It includes only the order events that have not occurred yet in
pBaseOrders.

public String toString()

Returns a string with a representation of the order book state.

90 APPENDIX A. JAVA CODE DOCUMENTATION

Appendix B

Test cases for the order matching

As Section 5.7 explains, the trade calculation subsystem, which includes the classes
OrderMatcherBaseSpace, OrderMatcherSpace and OrderRematcherSpace, has been
developed by following a test-driven development style: on top of a test framework
based on CppUnit (a C++ testing framework), automated test cases defining the
expected behavior of the order matcher and re-matcher have been added, and then
the functionality has been implemented and verified by just running the test cases.
This has been performed iteratively, according to the cycles illustrated in Figure 5.7.

The test suite includes a total of 77 test cases: 46 of them test the order matcher,
and the remaining 31 test the order re-matcher. For the sake of conciseness, only
those test cases that are considered to be more illustrative are included in this
appendix. Section B.1 contains the selected test cases for the order matcher, and
Section B.2 contains the selected test cases for the order re-matcher. All test cases
follow the notation introduced in Chapter 4. Each test case includes a title, an
optional description, a figure with the input order book state, and the expected
output.

B.1 Test cases for the order matcher

B.1.1 Test cases with non-minimum quantity orders only

1. Incoming order completely fills resting order

• Input:

Bid orders →Ask orders

b0 : 25 @ 100 → a0 : 25 @ 100

91

92 APPENDIX B. TEST CASES FOR THE ORDER MATCHING

• Expected output:

b0 ↔ a0 : 25 @ 100

2. Incoming order completely fills several resting orders

• Input:

→Bid orders Ask orders

→ b0 : 100 @ 100 a0 : 25 @ 100
a1 : 75 @ 100

• Expected output:

b0 ↔ a0 : 25 @ 100

b0 ↔ a1 : 75 @ 100

3. Incoming order gets highest priority in its side

• Description: The incoming order gets higher priority than a1 because
of its better price, and is allowed thus to completely fill the two resting
bid orders.

• Input:

Bid orders →Ask orders

b0 : 25 @ 100 → a0 : 75 @ 100
b1 : 35 @ 100 a1 : 150 @ 105

• Expected output:

b0 ↔ a0 : 25 @ 100

b1 ↔ a0 : 35 @ 100

4. Incoming order partially fills the resting order with highest priority

• Input:

→Bid orders Ask orders

→ b0 : 30 @ 25 a0 : 200 @ 23
a1 : 30 @ 24
a2 : 10 @ 25

• Expected output:

b0 ↔ a0 : 30 @ 23

B.1. TEST CASES FOR THE ORDER MATCHER 93

B.1.2 Test cases with incoming minimum quantity orders

1. Incoming minimum quantity order does not reach match limit price

• Description: Even though b0 gets the highest priority in its side, the
best ask order (which offers exactly the quantity needed) cannot trade
at a price lower than 101, so no match is possible.

• Input:

→Bid orders Ask orders

→ b0 : 100 (≥ 100) @ 100 a0 : 100 @ 101
b1 : 100 @ 99

• Expected output: (no trades expected)

2. Incoming minimum quantity order cannot fill its minimum quantity

• Description: The incoming order a0 is only allowed to match b0, because
of the price constraints. However, b0 cannot fill it completely, so no match
is possible.

• Input:

Bid orders →Ask orders

b0 : 2000 @ 229 → a0 : 3000 (≥ 3000) @ 229
b1 : 3000 @ 228

• Expected output: (no trades expected)

3. Incoming minimum quantity order is completely filled

• Description: The incoming order a0 can match against both b0 and b1.
These two orders can contribute with the required quantity, so two trades
are created in priority order, at the price set by the orders in the resting
side.

• Input:

Bid orders →Ask orders

b0 : 2000 @ 229 → a0 : 3000 (≥ 3000) @ 228
b1 : 3000 @ 228

94 APPENDIX B. TEST CASES FOR THE ORDER MATCHING

• Expected output:

b0 ↔ a0 : 2000 @ 229

b1 ↔ a0 : 1000 @ 228

B.1.3 Test cases with resting minimum quantity orders

1. Incoming order is completely filled

• Input:

→Bid orders Ask orders

→ b0 : 40 @ 6 a0 : 20 (≥ 20) @ 5
a1 : 30 @ 6

• Expected output:

b0 ↔ a0 : 20 @ 5

b0 ↔ a1 : 20 @ 6

2. Incoming order is completely filled

• Description: The price of the trade between b0 and a0 is moved to the
best possible visible price existing in the order book before b0 is inserted.

• Input:

→Bid orders Ask orders

→ b0 : 40 @ 60 a0 : 20 (≥ 20) @ 50
b1 : 10 @ 55 a1 : 30 @ 60

• Expected output:

b0 ↔ a0 : 20 @ 55

b0 ↔ a1 : 20 @ 60

3. Incoming order bypasses a0 and is completely filled

• Description: The minimum quantity constraint of a0 cannot be satis-
fied. Minimum quantity orders can be bypassed, so b0 matches against
the lower priority limit order a1.

• Input:

B.1. TEST CASES FOR THE ORDER MATCHER 95

→Bid orders Ask orders

→ b0 : 40 @ 6 a0 : 50 (≥ 50) @ 5
a1 : 30 @ 6

• Expected output:

b0 ↔ a1 : 30 @ 6

4. Incoming order cannot fill alone a resting order

• Description: In order to satisfy the minimum quantity constraint of
a0, b1 needs the quantity of b0. This situation can only be solved by
executing a re-match.

• Input:

→Bid orders Ask orders

b0 : 100 @ 104 a0 : 200 (≥ 200) @ 103
→ b1 : 100 (≥ 100) @ 104

• Expected output: (no trades expected)

5. Incoming order is filled against several orders

• Input:

Bid orders →Ask orders

b0 : 10 @ 100 → a0 : 18 @ 98
b1 : 10 (≥ 10) @ 100
b2 : 5 (≥ 5) @ 100
b3 : 3 @ 99

• Expected output:

b0 ↔ a0 : 10 @ 100

b2 ↔ a0 : 5 @ 100

b3 ↔ a0 : 3 @ 99

6. Incoming order is filled against best resting order

• Description: The price of the trade between b0 and a0 is moved to the
best possible visible price existing in the order book before a0 is inserted.

96 APPENDIX B. TEST CASES FOR THE ORDER MATCHING

• Input:

Bid orders →Ask orders

b0 : 1000 (≥ 1000) @ 1210 → a0 : 1000 @ 1207
b1 : 2000 @ 1207 a1 : 200 @ 1208

• Expected output:

b0 ↔ a0 : 1000 @ 1208

7. Incoming order fills best resting order

• Description: Orders with minimum quantity constraints can be by-
passed by other orders. Therefore, although a1 has a worse price than
a0, it gets the possibility of matching b0.

• Input:

Bid orders →Ask orders

b0 : 3 (≥ 3) @ 646 a0 : 9 (≥ 9) @ 187
→ a1 : 10 @ 417

• Expected output:

b0 ↔ a1 : 3 @ 646

8. Incoming order cannot bypass resting order

• Description: Only orders with minimum quantity constraints can be
bypassed by other orders. As b0 does not have any minimum quantity
constraint, the incoming order b1 is not allowed to match.

• Input:

→Bid orders Ask orders

b0 : 1 @ 382 a0 : 9 (≥ 9) @ 313
→ b1 : 10 @ 377 a1 : 10 (≥ 10) @ 458

• Expected output: (no trades expected)

B.2. TEST CASES FOR THE ORDER RE-MATCHER 97

B.2 Test cases for the order re-matcher

B.2.1 Simple test cases

1. Simple situation where all quantity is filled

• Input:

Bid orders →Ask orders

b0 : 100 (≥ 100) @ 100 a0 : 25 @ 100
a1 : 75 @ 100

• Expected output:

b0 ↔ a0 : 25 @ 100

b0 ↔ a1 : 75 @ 100

2. Minimum quantity order cannot bypass limit order

• Description: For b1 to be allowed to trade b0 should be completely
filled, but this cannot happen without violating the minimum quantity
constraint of b1, so no trade is possible.

• Input:

→Bid orders Ask orders

b0 : 100 @ 106 a0 : 150 (≥ 150) @ 104
b1 : 100 (≥ 100) @ 106

• Expected output: (no trades expected)

3. Minimum quantity order bypassed to trade

• Description: Although a0 has the highest priority in its side, it is by-
passed by the rest of ask orders in order to satisfy the minimum quantity
constraint of b0 and trade.

• Input:

→Bid orders Ask orders

b0 : 9000 (≥ 9000) @ 134 a0 : 1000 (≥ 1000) @ 131
a1 : 2000 (≥ 2000) @ 132
a2 : 3000 (≥ 3000) @ 133
a3 : 4000 (≥ 4000) @ 134

98 APPENDIX B. TEST CASES FOR THE ORDER MATCHING

• Expected output:

b0 ↔ a1 : 2000 @ 132

b0 ↔ a2 : 3000 @ 133

b0 ↔ a3 : 4000 @ 134

4. Trades are executed in priority order

• Description: The trades are distributed in a way such that the orders
with highest priority in each side get to trade with each other.

• Input:

Bid orders →Ask orders

b0 : 3 (≥ 3) @ 100 a0 : 7 (≥ 7) @ 100
b1 : 3 (≥ 3) @ 100 a1 : 7 (≥ 7) @ 100
b2 : 3 (≥ 3) @ 100 a2 : 7 (≥ 7) @ 100
b3 : 3 (≥ 3) @ 100
b4 : 3 (≥ 3) @ 100
b5 : 3 (≥ 3) @ 100
b6 : 3 (≥ 3) @ 100

• Expected output:

b0 ↔ a0 : 3 @ 100

b1 ↔ a0 : 3 @ 100

b2 ↔ a0 : 1 @ 100

b2 ↔ a1 : 2 @ 100

b3 ↔ a1 : 3 @ 100

b4 ↔ a1 : 2 @ 100

b4 ↔ a2 : 1 @ 100

b5 ↔ a2 : 3 @ 100

b6 ↔ a2 : 3 @ 100

5. Minimum quantity order is bypassed by limit orders

• Description: The minimum quantity order b1 does not belong to any
possible combination. Therefore, it is bypassed by b2 and b3, which fill
completely (together with b0) the orders in the ask side.

B.2. TEST CASES FOR THE ORDER RE-MATCHER 99

• Input:

→Bid orders Ask orders

b0 : 10 @ 10 a0 : 15 (≥ 15) @ 10
b1 : 100 (≥ 100) @ 10 a1 : 15 (≥ 15) @ 10
b2 : 10 @ 10
b3 : 10 @ 10

• Expected output:

b0 ↔ a0 : 10 @ 10

b2 ↔ a0 : 5 @ 10

b2 ↔ a1 : 5 @ 10

b3 ↔ a1 : 10 @ 10

6. Undefined equilibrium price prevents trading

• Description: All possible subsets of orders in both sides that could sat-
isfy their respective minimum quantity constraints and trade (for exam-
ple, {b0, b4} and {a0, a1}) are found at different equilibrium price levels,
so it is not possible to find an equilibrium price that allows trading.

• Input:

→Bid orders Ask orders

b0 : 14 (≥ 14) @ 995 a0 : 20 (≥ 20) @ 209
b1 : 31 (≥ 31) @ 827 a1 : 5 (≥ 5) @ 565
b2 : 40 (≥ 40) @ 675
b3 : 13 (≥ 13) @ 631
b4 : 11 (≥ 11) @ 473
b5 : 11 (≥ 11) @ 275

• Expected output: (no trades expected)

B.2.2 More complex test cases

1. Smaller order subsets are preferred for trading

• Description: There are several possible combinations of orders that
maximize the total traded quantity (for example, {b1, b6} and {a0, a1})
and lie inside a defined equilibrium price. Among them, the smaller bid
subset {b5} has higher preference, and its selected for filling {a0, a1} with
a total traded quantity of 40.

100 APPENDIX B. TEST CASES FOR THE ORDER MATCHING

• Input:

Bid orders →Ask orders

b0 : 27 (≥ 27) @ 19 a0 : 5 (≥ 5) @ 11
b1 : 20 (≥ 20) @ 15 a1 : 35 (≥ 35) @ 11
b2 : 9 (≥ 9) @ 14 a2 : 28 (≥ 28) @ 14
b3 : 24 (≥ 24) @ 13 a3 : 23 (≥ 23) @ 15
b4 : 36 (≥ 36) @ 11 a4 : 31 (≥ 31) @ 17
b5 : 40 (≥ 40) @ 11 a5 : 30 (≥ 30) @ 18
b6 : 20 (≥ 20) @ 11 a6 : 28 (≥ 28) @ 18

a7 : 10 (≥ 10) @ 19
a8 : 5 (≥ 5) @ 19
a9 : 40 (≥ 40) @ 19

• Expected output:

b5 ↔ a0 : 5 @ 11

b5 ↔ a1 : 35 @ 11

2. Must trade quantity must be always filled

• Description: There are several possible combinations of two ask orders
that can fill completely b0 (for example, {a1, a3}) and lie inside a defined
equilibrium price. All of them need to include a3. If the equilibrium price
is set to 16, a3 becomes a can trade order, and the absolute imbalance is
not minimized as it cannot be completely filled. At an equilibrium price
higher than 16, a3 becomes a must trade order and it must necessarily
be filled, as it is when is combined with a4.

• Input:

Bid orders →Ask orders

b0 : 10 (≥ 10) @ 19 a0 : 3 (≥ 3) @ 11
a1 : 6 (≥ 6) @ 12
a2 : 9 (≥ 9) @ 12
a3 : 5 @ 16
a4 : 5 (≥ 5) @ 17
a5 : 3 (≥ 3) @ 19

• Expected output:

b0 ↔ a3 : 5 @ 19

b0 ↔ a4 : 5 @ 19

	Introduction
	Background
	Previous work at Cinnober
	Problem statement
	Proposed solution
	Related research
	Report overview

	Random testing
	Introduction
	Input
	Oracles
	Test output

	Constraint programming
	Introduction
	Constraint problem modeling
	Constraint problem solving
	Available systems

	The trading system
	Introduction
	Structure
	Trade orders
	Order matching
	The testing framework

	Development of the test system
	Introduction
	System overview
	Requirements
	Design specification
	Computation of the expected trades
	Implementation
	Practical aspects of the development process

	Results and analysis
	Introduction
	Characteristics of the order book oracle
	Random test cases
	Problems found in the trading system
	Impact of the order book oracle

	Conclusion and further work
	Conclusion
	Further work

	References
	Glossary
	Java code documentation
	OrderBookActor
	OrderBookOracle
	OrderBookModel

	Test cases for the order matching
	Test cases for the order matcher
	Test cases for the order re-matcher

