
Universidad Politécnica de Valencia
Departamento de Informática de Sistemas y Computadores

Cost Effective

Routing Implementations

for On-chip Networks

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Science)

Author

Samuel Rodrigo Mochoĺı

Advisor

José Flich Cardo

Valencia, 2010

ii

Acknowledgements

First of all, I would like to start with some thoughts. This has been a long

journey (or short, depending who I ask, but time is always relative) but it is

only the first step of another journey. And this is have been possible thanks to

Pepe, my advisor, which gave me the opportunity around 3 years ago to start

developing a new concept idea. His counseling, support and top of it, patience

and guidance, have been very useful all the path along. I can not forget the

colleagues who have also supported this research, in many ways. First to all

my lab colleagues and professors from GAP (specially Fede, Crispin, Blas and

Toni), and the italian guys, Davide, Simone and Daniele from Ferrara and

Maurizio from Catania.

Of course, thanks to my family (specially to my mother Suni who has also

achieved her objective not so long ago and my father Jose for his incredible

support and caring), for the support all these years and the opportunity to

follow a path which it was a dream years before, and hope my brother Diego

achieves also his path. I love you. I have to thank you also to my closest

friends for every moment of fun, dialogue and good memories (Albert, Carla,

Manolo, Eduardo, Salva, Juan Ángel, Vicente, Ignacio, Su’ad, Pablo, Raquel,

Lara, Néstor, Carlos, Javier, Jesús, Ainara, Xavi, Alberto, Jordi, Jon, Koldo,

José Maŕıa and so many more). And a final thank you to you, Mona, watching

over me as the best friend I had in many years.

iii

iv Contents

Contents

Acknowledgements iii

Abstract xvii

Resumen xix

Resum xxiii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 13

1.3 Dissertation Outline . 14

2 Technical Background and Related Work 15

2.1 On-chip Interconnection Networks 16

2.1.1 Design Factors . 16

2.2 Interconnection Network Basics 17

2.2.1 Network Topology . 18

2.2.2 The Routing Device . 25

2.2.3 Data Units . 27

2.2.4 Switching . 28

2.2.5 Flow Control . 33

2.2.6 Arbitration . 35

2.2.7 Routing . 36

2.3 Related Work . 45

2.3.1 Unicast-based Implementations 49

v

vi Contents

2.3.2 Collective Communication Implementations 51

3 The Foundations 55

3.1 Methodology . 56

3.2 Configuration bits . 58

3.2.1 Multiple Regions . 62

3.2.2 Bits Computation . 63

3.3 Conclusions . 65

4 Unicast Communication 67

4.1 LBDR: Logic-based Distributed Routing 68

4.1.1 Detailed Example . 72

4.1.2 Arbitration Issues . 73

4.1.3 More Cores inside a Node 76

4.1.4 Configuration Bits Computation 78

4.1.5 LBDRe . 80

4.2 Deroutes . 84

4.2.1 Deroute Bits Computation 85

4.3 Forks . 87

4.3.1 Fork Bits Computation 89

4.3.2 Router Implications . 90

4.4 uLBDR . 93

4.4.1 Configuration Bits Computation 95

4.5 Demonstration . 96

4.6 Real Implementations . 100

4.6.1 MPSoC Router Design 101

4.6.2 CMP Router Design . 103

4.7 Evaluation . 104

4.7.1 Coverage Analysis . 104

4.7.2 MPSoC Router Overhead 107

4.7.3 CMP Router Overhead 111

4.7.4 Area and Latency Overhead versus Memory-macro Im-

plementations . 114

4.7.5 Performance Analysis 116

4.8 Conclusions . 123

Contents vii

5 Broadcast/Multicast Communication and the eLBDR Archi-

tecture 125

5.1 bLBDR: Broadcast Logic-based Distributed Routing 126

5.1.1 A Broadcast is Initiated 127

5.1.2 A Router Receives a Broadcast Packet 128

5.1.3 Detailed Example . 131

5.2 SBBM: Signal Bit Based Multicast 132

5.2.1 Broadcast Tree . 135

5.2.2 How the Mechanism Works 137

5.2.3 Logic Implementation 138

5.2.4 Detailed Example . 139

5.3 Demonstration . 140

5.4 Evaluation . 143

5.4.1 Coverage Analysis . 143

5.4.2 Area, Latency and Power Breakdown 144

5.4.3 Performance Analysis 146

5.5 Gathering Unicast and Broadcast Implementations 149

5.5.1 eLBDR Architecture 150

5.5.2 Evaluation . 151

5.6 Conclusions . 154

6 Conclusions 157

6.1 Conclusions . 157

6.2 Contributions . 159

6.3 Future Work . 161

6.4 Publications related to this work 162

Bibliography 165

viii Contents

List of Figures

1.1 Tiled CMP. 3

1.2 Some network components have failed. 4

1.3 Allocation of applications in groups of nodes. 5

1.4 Voltage/frequency islands. 6

1.5 Some cores are powered down. 7

1.6 Multicast operation example with temporary failed links. . . . 8

1.7 Routing tables example. 9

1.8 Area and latency for memory macros/blocks as a function of

the number of entries for a 90nm technology node. 10

1.9 Foundations for the new routing mechanisms. 11

1.10 Evolution of the research. 12

2.1 A general overview of a network architecture. 18

2.2 Network architectures. 20

2.3 A crossbar network. 21

2.4 A 4× 4 2-dimensional mesh and torus. 22

2.5 A multistage network topology. 23

2.6 The processing element in a tile-based CMP. 24

2.7 Different tile-based designs. 24

2.8 A 4× 4 2-dimensional mesh. 25

2.9 Different link crossings in a 2-dimensional mesh. 26

2.10 Router in a tile. 27

2.11 Data units. 28

2.12 Circuit switching. 29

2.13 Store and forward switching. 30

ix

x List of Figures

2.14 Virtual cut-through switching. 31

2.15 Wormhole switching. 32

2.16 Virtual channels. 33

2.17 Ack/nack flow control. 34

2.18 Stop & go flow control. 34

2.19 Credit-based flow control. 35

2.20 DOR algorithm pseudocode. 37

2.21 DOR implementation. 38

2.22 Deadlock event. 39

2.23 CDG for DOR routing in a 2× 2 mesh network. 39

2.24 Different routing types. 41

2.25 Minimal and non-minimal paths. 44

2.26 XY mechanism is not able to route in the presence of failures. 46

3.1 Avoiding deadlock by breaking the cycle between routers. . . . 57

3.2 Routing algorithms represented as a set of routing restrictions. 59

3.3 Different routing instances for the same irregular topology. . . . 59

3.4 Configuration bits at a specific router. SR routing algorithm

used. 61

3.5 Routing and connectivity bits for a 4× 4 2D mesh with DOR.

Routers are numbered row-wise. (See Figure 3.2(b)) 62

3.6 8× 8 mesh partitioned into different overlapped regions. 63

3.7 Pseudo-code for the computation bit algorithm. 65

4.1 Routing restriction representation of DOR algorithm on a 4×4

2D mesh. 68

4.2 Example of minimal paths. 69

4.3 Topologies supported by LBDR. 69

4.4 LBDR implementation, detail on the north output port case. . 70

4.5 4 × 4 2D mesh with routing restrictions applied from the SR

algorithm. 71

4.6 Routing and connectivity bits computed for SR algorithm on a

4× 4 2D mesh. 72

4.7 Example of routing decisions in LBDR. 72

4.8 LBDR with fixed priorities. 74

List of Figures xi

4.9 LBDR with smart priorities. 75

4.10 LBDR oriented node labelling in concentrated k-ary n-mesh

topologies. 77

4.11 A p irregular topology that can be supported by LBDR. 78

4.12 Routing and connectivity bits of p irregular topology shown in

Figure 4.11. 79

4.13 Results of performance tests with LBDR. 80

4.14 Alternate routing decisions that will not lead to deadlock events. 81

4.15 LBDRe implementation. 81

4.16 Routing and connectivity bits computed for LBDRe. 82

4.17 Some links are inoperative forcing non-minimal paths. 84

4.18 Deroutes at router A. 85

4.19 Deroute logic. 86

4.20 Derouting a message at router B. 87

4.21 Pseudo-code for deroute computation algorithm. 88

4.22 Case not handled by the deroute logic. 89

4.23 Fork logic. 90

4.24 Pseudo-code for combined deroute and forks computation algo-

rithm. 91

4.25 Two multicast messages induce a deadlock situation. 92

4.26 LBDR mechanism with support for Rxx routing bits, detail for

N direction. 94

4.27 uLBDR. 95

4.28 Not possible to place a deroute at router B. 96

4.29 Checking if a topology has a instance of the routing algorithm

for valid routing. 97

4.30 Path not suitable. 99

4.31 MPSoC router schematic. 101

4.32 New arbiter for the CMP router with fork requests. 104

4.33 Example of topology in the coverage analysis with deroutes and

forks computed. 105

4.34 Coverage of several routing implementations. 106

4.35 Average percentage of deroutes and forks per chip. 106

4.36 MPSoC router area, normalized results. 108

xii List of Figures

4.37 MPSoC router latency, normalized results. 109

4.38 MPSoC router power analysis, idle power normalized results. . 109

4.39 MPSoC router power analysis, dynamic power normalized results.110

4.40 CMP complete router, normalized results. 111

4.41 CMP RT stage, normalized results. 112

4.42 CMP router power analysis, idle power normalized results. . . . 112

4.43 CMP router power analysis, dynamic power normalized results. 113

4.44 Area and data access time analysis, normalized results. 115

4.45 Area for different system sizes, normalized results. 115

4.46 Latency for different system sizes, normalized results. 116

4.47 Latency of different mechanisms under uniform traffic. 117

4.48 Latency of different mechanisms under bit-reversal traffic. . . . 117

4.49 Latency of different mechanisms under bit-complement traffic. . 118

4.50 Throughput of different mechanisms under uniform traffic. . . . 118

4.51 Throughput of different mechanisms under bit-reversal traffic. . 119

4.52 Throughput of different mechanisms under bit-complement traffic.120

4.53 2-cycle delay router (RT) vs one-cycle delay router (uLBDR),

normalized execution time of applications, directory-based pro-

tocol. 120

4.54 2-cycle RT module (RT) vs one-cycle RT module (uLBDR),

normalized execution time of applications, directory-based pro-

tocol. 121

4.55 Irregular topology 2-cycle RT module (RT) vs one-cycle RT

module (uLBDR), normalized execution time of applications,

directory-based protocol . 122

4.56 2-cycle delay router (RT) vs one-cycle delay router (uLBDR),

normalized execution time of applications, token-based protocol. 122

4.57 2-cycle RT module (RT) vs one-cycle RT module (uLBDR),

normalized execution time of applications, token-based protocol. 123

4.58 Irregular topology 2-cycle RT module (RT) vs one-cycle RT

module (uLBDR), normalized execution time of applications,

token-based protocol. 123

5.1 Simple schematic of the control lines. 128

List of Figures xiii

5.2 bLBDR logic. 129

5.3 Different cases for the NE sector. 131

5.4 Example of bLBDR. 133

5.5 Example of how links are virtually disconnected based on the

locations of routing restrictions. 135

5.6 4× 4 mesh topology with links failed. 136

5.7 Definition of the broadcast tree. 137

5.8 SBBM routing logic . 139

5.9 Broadcast operation started at router 4. 141

5.10 Path not suitable. 142

5.11 Coverage of SBBM and bLBDR. 143

5.12 Critical path breakdown for different methods. 146

5.13 Execution time, token-based protocol, normalized results. . . . 147

5.14 Execution time, directory-based protocol, normalized results. . 147

5.15 Average packet latency, token-based protocol, normalized results.148

5.16 Average packet latency, directory-based protocol, normalized

results. 148

5.17 Network throughput, token-based protocol, normalized results. 149

5.18 Network throughput, directory-based protocol, normalized re-

sults. 149

5.19 A general overview of the eLBDR architecture inside a router. 151

5.20 MPSoC complete router overhead, normalized results. 152

5.21 MPSoC RT stage overhead, normalized results. 153

5.22 CMP complete router overhead, normalized results. 154

5.23 CMP RT stage overhead, normalized results. 154

xiv List of Figures

List of Tables

4.1 Random link failure coverage evaluation. 107

5.1 Area, delay and power evaluations. 4× 4 mesh network. 145

xv

xvi List of Tables

Abstract

Current many-core architectures like Chip Multiprocessors (CMPs) and Multi-

processor System-on-Chips (MPSoCs) rely on the effectiveness of the on-chip

network (NoC) for inter-core communication. An effective NoC has to be

scalable while meeting tight power, area, and latency constraints. 2D mesh

topologies are usually preferred for general-purpose NoC designs as they fit

the chip layout. However, designers must address new emerging challenges.

The increased probability of manufacturing defects, the need for an optimized

use of resources to enhance application-level parallelism or the need for effi-

cient power-aware techniques may break the regularity in those topologies. In

addition, collective communication support is a desired feature to effectively

address communication needs from cache coherence protocols. Under these

conditions, efficient routing of messages becomes a challenge.

The objective of this dissertation is to lay the foundations of a new logic-

based distributed routing architecture that is able to adapt to any irregular

topology derived from a 2D mesh structure, thus providing full coverage for

any topology pattern induced by any of the challenges mentioned above. And

this take is done, first by starting from the grounds of a concept idea, then

looking through an evolution of several mechanisms and finally, arriving to a

final implementation that encompasses several modules accomplishing the ob-

jective mentioned before. In fact, this last implementation is named eLBDR

(effective Logic-Based Distributed Routing), but the study will span from the

first mechanism, LBDR, to the next mechanisms that have been emerged pro-

gressively, describing them in detail accompanied with evaluations and results

to show a cost/applicability trade-off analysis.

Referring to the full architecture, eLBDR presents area, latency and power

xvii

xviii Abstract

consumption requirements that are comparable to the most efficient solutions

in routing mechanisms like Dimension-Order-Routing (DOR), reflected on real

router implementations designed with first attempts of bringing ideas that are

still underutilised in the NoC domain, like virtual cut-through switching. NoC

scenarios modelled after link variability analysis show a 100% coverage achieve-

ment of the full mechanism in all scenarios that were configured. So, it is fair to

assume that eLBDR is prepared to face the new challenges present in the NoC

research field. eLBDR can be used as an effective fault-tolerant mechanism

in CMP and MPSoC systems with defective components at the NoC level,

aggressive power-down techniques switching off entire irregularly shaped NoC

regions can be designed as the remaining network topology is still supported

by eLBDR, virtualization of the chip (mapping applications to disjoint paths)

can be also achieved with eLBDR by defining disjoint network regions, and

finally, eLBDR allows the use of broadcast communication primitives to sup-

port effective cache coherency protocols. Broadcast is allowed inside a region

in eLBDR and previous alternatives, thus implementing multicast support at

the chip level.

In short, the objective of the concept idea is to offer an alternative to the

use of routing tables (either at routers or at end-nodes). Although the use

of routing tables at routers is extremely flexible, it does not scale in terms of

latency, area, and power consumption. As described in the next chapters, all

mechanisms require a small set of configuration bits, thus being more compact

than large routing tables implemented in memories. More important, from the

first mechanism to the most recent developed, the requirements of any of them,

do not grow with system size, thus providing scalability.

Resumen

Arquitecturas de múltiples núcleos como multiprocesadores (CMP) y solu-

ciones multiprocesador para sistemas dentro del chip (MPSoCs) actuales se

basan en la eficacia de las redes dentro del chip (NoC) para la comunicación

entre los diversos núcleos. Un diseño eficiente de red dentro del chip debe

ser escalable y al mismo tiempo obtener valores ajustados de área, latencia y

consumo de enerǵıa. Para diseños de red dentro del chip de propósito general

se suele usar topoloǵıas de malla 2D ya que se ajustan a la distribución del

chip. Sin embargo, la aparición de nuevos retos debe ser abordada por los

diseñadores. Una mayor probabilidad de defectos de fabricación, la necesidad

de un uso optimizado de los recursos para aumentar el paralelismo a nivel

de aplicación o la necesidad de técnicas eficaces de ahorro de enerǵıa, puede

ocasionar patrones de irregularidad en las topoloǵıas. Además, el soporte para

comunicación colectiva es una caracteŕıstica buscada para abordar con eficacia

las necesidades de comunicación de los protocolos de coherencia de caché. En

estas condiciones, un encaminamiento eficiente de los mensajes se convierte en

un reto a superar.

El objetivo de esta tesis es establecer las bases de una nueva arquitectura

para encaminamiento distribuido basado en lógica que es capaz de adaptarse

a cualquier topoloǵıa irregular derivada de una estructura de malla 2D, pro-

porcionando aśı una cobertura total para cualquier caso resultado de soportar

los retos mencionados anteriormente. Para conseguirlo, en primer lugar, se

parte desde una base, para luego analizar una evolución de varios mecanis-

mos, y finalmente llegar a una implementación, que abarca varios módulos

para alcanzar el objetivo mencionado anteriormente. De hecho, esta última

implementación tiene por nombre eLBDR (effective Logic-Based Distributed

xix

xx Resumen

Routing). Este trabajo cubre desde el primer mecanismo, LBDR, hasta el

resto de mecanismos que han surgido progresivamente, describindolos en de-

talle, junto con las pertinentes evaluaciones y resultados para mostrar los

anlisis de costes y aplicabilidad.

En el caso de la arquitectura completa, eLBDR, se obtienen unos requisi-

tos de área, latencia y consumo de enerǵıa que son comparables a soluciones de

encaminamiento tan eficientes como Dimension-Order-Routing (DOR), quedando

reflejado en implementaciones reales de routers diseñadas con conceptos que

siguen estando infrautilizados en del dominio de redes dentro del chip, como

encaminamiento virtual cut-through. Pruebas hechas sobre instancias de redes

dentro del chip modeladas a partir de un análisis de variabilidad en enlaces

muestran un logro en el 100% de cobertura de este mecanismos en todas las

configuraciones. Por lo tanto, es razonable suponer que eLBDR est preparado

para enfrentarse a los nuevos desaf́ıos presentes en el campo de la investigación

de redes dentro del chip. eLBDR es un mecanismo eficaz capaz de soportar

tolerancia a fallos en soluciones multiprocesador (CMP y MPSoC) que tienen

componentes defectuosos a nivel de red, preparado para implementar tcnicas

agresivas de apagado selectivo de regiones irregulares dentro de la red ya que la

topoloǵıa todav́ıa es completamente encaminable, con proyección para sopor-

tar virtualización del chip (desde mapeo de aplicaciones a caminos disjuntos)

con definicin de regiones disjuntas dentro de la red, y, por último, promueve

las primitivas de comunicación colectiva para apoyar protocolos efectivos de

coherencia de cach. eLBDR (y alternativas anteriores) permite la comuni-

cacin broadcast dentro de una región, lo que se puede traducir en un soporte

de comunicacin multicast a nivel de chip.

En resumen, el objetivo de esta idea conceptual es ofrecer una alternativa

a la utilización de tablas de encaminamiento (ya sea en los routers o en los

propios nodos). Aunque el uso de tablas de encaminamiento en routers es

extremadamente flexible, no escala en términos de latencia, área y el consumo

de enerǵıa. Como se describe en los caṕıtulos siguientes, todos los mecanismos

sólo requieren un pequeño conjunto de bits para su configuración, de forma

que conseguimos ms compactación que usando las tablas de encaminamiento

implementadas en memorias. Además, desde el primer mecanismo hasta el

último, se cumple que los requisitos de cualquiera de ellos, no crecen con el

Resumen xxi

tamaño del sistema, proporcionando una buena escalabilidad.

xxii Resumen

Resum

Arquitectures de múltiples nuclis com a multiprocessadors (CMP) i solucions

multiprocessador per a sistemes dins del xip (MPSoCs) actuals es basen en

l’eficàcia de les xarxes dins del xip (NoC) per a la comunicació entre els diversos

nuclis. Un disseny eficient de xarxa dins del xip ha de ser escalable i al mateix

temps obtindre valors ajustats de àrea, latència i consum d’enerǵıa. Per a

dissenys de xarxa dins del xip de propòsit general es sol usar topologies de

malla 2D ja que s’ajusten a la distribució del xip.

No obstant aix, l’aparició de nous reptes ha de ser abordada pels dis-

senyadors. Una major probabilitat de defectes de fabricació, la necessitat d’un

ús optimitzat dels recursos per a augmentar el parallelisme a nivell d’aplicació

o la necessitat de tècniques eficaces d’estalvi d’energia, pot ocasionar patrons

d’irregularitat en les topologies. A més, el suport per a comunicació collec-

tiva és una caracteŕıstica buscada per a abordar amb eficàcia les necessitats

de comunicació dels protocols de coherència de cau. En estes condicions, un

acarrerament eficient dels missatges es convertix en un repte a superar.

L’objectiu d’esta tesi és establir les bases d’una nova arquitectura per a

acarrerament distribut basat en lògica que és capa d’adaptar-se a qualsevol

topologia irregular derivada d’una estructura de malla 2D, proporcionant aix́ı

una cobertura total per a qualsevol cas resultat de suportar els reptes men-

cionats anteriorment. Per a aconseguir-ho, en primer lloc, es partix des d’una

base, per a després analitzar una evolució de diversos mecanismes, i finalment

arribar a una implementació, que comprén uns quants mòduls per a acon-

seguir l’objectiu mencionat anteriorment. De fet, esta última implementació

té per nom eLBDR (effective Logic-Based Distributed Routing). Este treball

cobrix des del primer mecanisme, LBDR, fins a la resta de mecanismes que

xxiii

xxiv Resum

han sorgit progressivament, descrivint-los en detall, junt amb les pertinents

avaluacions i resultats per a mostrar les anàlisis de costos i aplicabilitat.

En el cas de l’arquitectura completa, eLBDR, s’obtenen uns requisits

d’àrea, latència i consum d’energia que són comparables a solucions d’acarrerament

tan eficients com Dimension-Order-Routing (DOR), quedant reflectit en im-

plementacions reals de routers dissenyades amb conceptes que continuen estant

infrautilitzats en del domini de xarxes dins del xip, com a acarrerament virtual

cut-through. Proves fetes sobre instàncies de xarxes dins del xip modelades a

partir d’una anàlisi de variabilitat en enllaos mostren un èxit en el 100% de

cobertura d’estos mecanismes en totes les configuracions. Per tant, és raonable

suposar que eLBDR està preparat per a enfrontar-se als nous desafiaments

presents en el camp de la investigació de xarxes dins del xip. eLBDR és un

mecanisme efica capa de suportar tolerància a fallades en solucions multipro-

cessador (CMP i MPSoC) que tenen components defectuosos a nivell de xarxa,

preparat per a implementar tècniques agressives d’apagat selectiu de regions

irregulars dins de la xarxa ja que la topologia encara és completament supor-

tada a nivell d’acarrerament, amb projecció per a suportar virtualització del

xip (desde mapeig d’aplicacions a camins disjuntos) amb definició de regions

disjuntes dins de la xarxa, i, finalment, promou les primitives de comunicació

collectiva per a recolzar protocols efectius de coherència de cau. eLBDR (i

alternatives anteriors) permet la comunicació broadcast dins d’una regió, la

qual cosa es pot traduir en un suport de comunicació multicast a nivell de xip.

En resum, l’objectiu d’esta idea conceptual és oferir una alternativa a la

utilització de taules d’acarrerament (ja siga en els routers o en els propis

nodes). Encara que l’ús de taules d’acarrerament en routers és extremadament

flexible, no escala en termes de latència, àrea i el consum d’energia. Com es

descriu en els caṕıtols segents, tots els mecanismes només requerixen un xicotet

conjunt de bits per a la seua configuració, de manera que aconseguim més

compactació que usant les taules d’acarrerament implementades en memòries.

A més, des del primer mecanisme fins a l’últim, es complix que els requisits de

qualsevol d’ells, no creixen amb la grandària del sistema, proporcionant una

bona escalabilidat.

Chapter 1

Introduction

“You are about to take the first steps of the longest journey of your

life.”

The Longest Journey.

In this chapter, we first introduce the reasons that have motivated this

dissertation (Section 1.1). Then, we briefly define the specific objectives aimed

by the dissertation (Section 1.2). Finally, we outline the structure of the

remaining chapters in this document (Section 1.3).

1.1 Motivation

Nowadays, Chip Multiprocessor (CMP) is accepted as the design paradigm by

the largest microprocessor manufacturers. CMP chips are made of multiple

cores in the same die and, as technology advances, more cores are expected to

be included. Typically, a core includes a processor and some cache structures.

As an example, Intel has recently developed a research chip with 48 cores, each

being x86 compatible, under the Tera-scale Computing Research Program [7].

Previously, under the same research program, Intel also manufactured a chip

prototype [8] that included 80 cores (known as the TeraFlops Research chip)

but with very simple cores (2 FPUs). It is well accepted in the community

that processor performance will be increased in the following years by including

more cores in the same die.

1

2 Chapter 1. Introduction

In addition to CMPs, multicore solutions for System-on-Chip (MPSoCs)

are appearing in the embedded system market. Tilera [9] offers several high-

end SoCs where multicore computing platforms provide support for a wide

range of computing applications, including advanced networking, high-end

digital multimedia, wireless infrastructure, and cloud computing. The most

recent product by Tilera offers 100 cores in the same chip.

CMPs and high-end MPSoCs rely on an on-chip network to handle all

the communication traffic between cores. Initial chip designs with few cores

included buses and rings as the communication subsystem. Such solutions are

well suited for chips with a small number of cores, like the Cell processor [23].

However, as the number of cores scales up, the bus structure suffers from lack

of enough bandwidth. Thus, designers evolved to more scalable solutions.

The most recurring solution is the 2D mesh topology (and alternatively, the

2D torus topology) as it fits the chip layout. In a 2D mesh, each core is

attached to a network router and routers are laid out in a 2D structure where

each router is connected to four routers at most, each one in each direction

and dimension.

Good properties of the 2D mesh topology include its regularity and sim-

plicity for routing. All the links have the same length, thus exhibiting the

same latency (with the same number and type of repeaters). Also, applica-

tions with local traffic patterns obtain a good performance as message latency

is low (few routers and links to cross). However, one of the inconveniences of

the 2D mesh structure is its relatively high hop count for messages travelling

to distant nodes. Fortunately, this impact is reduced when using wormhole

and virtual cut-through switching strategies (where hop count is additive to

latency, not multiplicative).

A routing strategy in a network manages the way messages are routed from

a sender to a receiver. There are many routing algorithms and strategies. One

of the most used is Dimensional-Order-Routing (DOR; also called XY when

applied to 2D mesh topologies) [64] because of its simplicity, but the main

drawback of DOR is that it does not support any irregularity in the network.

At the same time, tile-based design is gaining momentum for CMP and

high-end MPSoC systems. In a Tiled CMP (Figure 1.1) the tile is designed in

isolation and, once designed, the chip is finally built by replicating tiles. By

1.1. Motivation 3

Figure 1.1: Tiled CMP.

doing so, the effort to design, test, and build the chip is drastically reduced.

Tiled CMPs also advocate for regular network structures like 2D meshes. Typ-

ically, each tile incorporates a processor core, a private L1 cache memory (data

and instruction cache), and a bank of the L2 shared cache, distributed over

the entire chip (each tile adds a slice of the cache). In addition, a directory

structure, and optionally, a memory controller may be allocated in each tile.

The directory reduces the overhead introduced by the cache coherency proto-

col between L1 and L2 caches. The memory controller is in charge of accessing

external memory. A router is also included to enable communication among

tiles.

Due to the reasons mentioned above, we advocate for homogeneous 2D

meshes in Tiled CMPs and high-end MPSoCs. However, even if the design

of a CMP chip with a 2D mesh network is correct, the on-chip network may

face new challenges leading to non-regular heterogeneous topologies. Several

challenges have been identified that may severely impact the homogeneity

of the network in the years to come: manufacturing defects, effective chip

utilization, voltage/frequency islands, and aggressive power saving techniques.

In the following paragraphs we briefly introduce those challenges.

As technology advances, correct manufacturing becomes challenging and

defective components will become frequent. As a consequence, a defective tile

in the chip, if not addressed, will ruin the 2D mesh structure of the network,

leading to an irregular network that cannot be handled by the routing algo-

4 Chapter 1. Introduction

rithm, thus rendering the chip useless. An example can be seen in Figure 1.2,

where the east link between routers 10 and 11 has failed. Unless the routing

mechanism is prepared to reroute a message around the defective link, it would

be impossible for both routers to communicate.

Figure 1.2: Some network components have failed.

Another challenge is the problem of not extracting enough parallelism from

applications so to efficiently use tens and hundreds of cores in future chips. As

a solution, the chip can be partitioned into multiple domains, each one running

a different application (or serving a different customer). In this scenario, and

in order to fit as many applications as possible, the partition of the chip

resources may lead to irregularly shaped domains. The way applications are

usually mapped onto the chip is known as virtualization, where a real chip

is partitioned into several smaller virtual chips. In Figure 1.3 an example is

shown. Three applications, A0, A1 and A2 are already mapped on the chip

using a different number of nodes. If a new application named A3 needs only

three nodes to perform its task it could then be mapped on the nodes attached

to routers 8, 9 and 12, grouping them into an irregular region. If such irregular

mapping is not allowed, then A3 will need to wait the completion of A0, A1

or A2. The objective is to minimize any fragmentation by allowing irregular

1.1. Motivation 5

patterns.

Figure 1.3: Allocation of applications in groups of nodes.

To reduce (if possible, minimize) power consumption on the chip, current

trends on NoC design shift from completely synchronous systems to GALS

(Globally Asynchronous, Locally Synchronous) communication models [66] as

clock lines can use up to 50% of the total power budget [39]. This leads to

the occurrence of voltage/frequency islands that introduce a new challenge re-

garding on-chip communication. In such scenario the isolation of such regions

may be required so as to avoid conflicting mismatches in voltage and frequency

that may lead to bottlenecks, e.g. a message crossing different domains. In-

deed, due to the high integration scale, chip manufacturing is becoming more

affected by variability inducing these islands. Let us see an example in Figure

1.4, where the chip has been divided into three isolated regions due to different

voltage thresholds. Isolation, even with overlapped regions, is a feature that

will be requested on future chip designs for multiple purposes.

As a major challenge for chip design, there is a clear need to introduce

efficient aggressive power saving methods. As the number of cores increases,

probably many of the cores will remain unpowered (in sleep mode) most of the

time, thus achieving large savings in power consumption. The same strategy

6 Chapter 1. Introduction

Figure 1.4: Voltage/frequency islands.

should be applied to the on-chip network, which has been reported [69] to

consume around 30% of the total chip power consumption. Powering routers

off and on will lead to temporary irregularities in the topology. An example

is present in Figure 1.5. Tiles 1, 6 and 10 are idle, and as a result of a power-

aware technique implemented, they are also powered down until requested by

another computation task. This is translated into an irregular topology with

the rest of nodes that are still active and need an effective routing layer capable

of handling the communication between them.

Finally, in addition to the previous issues, support for collective com-

munication in CMPs is also needed. Collective communication primitives

are required either for implementing barrier synchronization or to support

coherency traffic: a broadcast/multicast mechanism accelerates higher level

entities like cache coherence protocols (either directory-based [28] or token-

based [32]) or new techniques (virtual hierarchies [34]). Collective communi-

cation in CMPs may also be needed for an effective management of the NoC

(control/management messages). Although there are solutions for collective

communication in NoCs (see Chapter 2) either they do not support irregular

topologies or their implementation is costly. An example of this is shown in

Figure 1.6 where some links have failed and node 4 wants to perform a broad-

1.1. Motivation 7

Figure 1.5: Some cores are powered down.

cast operation (i.e. send the message to all nodes visiting them only once),

so it spreads across the network following a tree-based path supported by the

routing layer. This challenge does not only comprehend delivering support for

collective communication in presence of failed devices, but it also requires traf-

fic isolation support as broadcast/multicast operations should be contained to

the region/domain they belong to (if virtualization concepts are applied), thus

not flooding other regions in the chip.

It is important to note that addressing all the previous challenges requires

some effort at the on-chip network level and that will drive the way how future

routing algorithms, implementations and techniques will be implemented. In

particular, the most important thing to address is providing efficient support

for irregular network topologies. Indeed, all the challenges mentioned above

can be correctly addressed by deploying a routing mechanism able to deal with

any of the derived topologies.

Current solutions that advocate for irregular topologies are based on rout-

ing tables. The basic mechanism consists either on implementing look-up ta-

bles at every end node (when using source-based routing), or forwarding tables

at every router (when using distributed-based routing). For every destination,

8 Chapter 1. Introduction

Figure 1.6: Multicast operation example with temporary failed links.

there is a path or output port associated, respectively to each kind of routing,

that the message follows, or chooses, to arrive to its destination. Let us see

an example in Figure 1.7. In source-based routing, if a message had node 10

as a source and node 0 as destination, the path to follow, N − N −W − W

(north, north, west, west), would be coded on the message header (this will be

explained later). In distributed routing, there is no path coded at the message

header, just the destination, so on every router, the routing table is accessed

to see the output port the message has to take on its way to its destination.

In the example, at router 10, for destination 0, the output port chosen is N

(north).

The main advantage of table-based routing is that any topology and any

routing algorithm can be used, including fault-tolerant routing algorithms.

However, as routing tables are implemented with memories, they do not scale

in terms of latency, power consumption, and area, thus being impractical for

large NoCs [50]. Indeed, a routing table with as many entries as the number of

nodes and input ports is needed in the worst case, with the possible addition

1.1. Motivation 9

Figure 1.7: Routing tables example.

that every entry needs to store different output ports returned by the routing

algorithm. Hence the cost of this implementation is N ×d×d, where N is the

number of nodes and d is the number of ports. If we assume minimal routing

(only ports that get the message closer to its destination are provided) the

cardinality is reduced to two at maximum, so the cost is translated to N×2×d.

There are algorithms that do not require the use of the input port, this, in

such cases memory requirements can be N×2. Anyway, in the entire network,

memory requirements grow quadratically (N node with N entries each).

An example of poor scalability of tables can be seen in Figure 1.8 which

shows the synthesis of memory macros with 90nm technology obtained with

Memaker1 [6]. As can be seen in Figure 1.8(a), there is an exponential increase

of area with respect to the number of entries (table size). This is worsened

by the fact these results are obtained by modelling the memory block for one

tile, so the impact is multiplied for the total area related of the chip. Latency

results are less significative, but the trend is clear. Indeed, execution time of

applications may be affected. Also, the increase on router delay could change

the critical path of the router leading to lower performance.

Another study [47] performs a comparison between a DOR implementa-

tion and an implementation with routing tables on a 8 × 8 NoC mesh. The

1Memaker (from Faraday Technology Corporation) produces memory macro models on

UMC Logic LL-RVT (LowK) Process technology.

10 Chapter 1. Introduction

(a) Area (mm2) (b) Latency (ns)

Figure 1.8: Area and latency for memory macros/blocks as a function of the

number of entries for a 90nm technology node.

models were designed and synthesized on a 90nm industrial technology library.

Even with a small number of nodes there is a significative overhead between

both implementations. For example, the routing tables model shows a power

consumption over 20x when compared to the DOR implementation. DOR is

based on the concept of minimal-path routing and its concept is very simple:

first route the message in one dimension (X) and then, in the other dimension

(Y), when related to a 2-dimensional mesh. DOR is an efficient solution (logic-

based implementation) in terms of area, power and delay overheads, but as

opposed to a routing tables implementation it lacks the associated flexibility

and it cannot support any of the challenges mentioned before.

So, it is imperative for current and future designs to face these challenges,

benefiting from the flexibility of routing tables, while achieving important

savings in three critical key aspects that influence every design at the nano-

scale domain: area, latency (critical paths) and power-awareness, as shown in

DOR implementations. Indeed, effective and efficient designs that accomplish

to get overall savings in any of the aspects mentioned before will be a significant

contribution to the NoC field. In this dissertation we take on such a challenge.

But, rather than addressing completely irregular topologies (more suitable

for MPSoC systems) we focus on irregular topologies derived from an initial

2D mesh structure where the following properties still remain: (1) a router

is connected to at most four routers, each one in a different direction and

dimension, and (2) a hop along a valid direction and dimension will not cross

1.1. Motivation 11

more than one row or column. If we assume that the previous two properties

are guaranteed by the final topology, then the solutions to provide efficient

routing in those topologies get simplified. In this dissertation we present a

conceptual architecture able to cover all the possible cases derived from a

2D mesh with full support for any failure, virtualization, domain or region

configuration that keeps the network physically connected. Both unicast and

broadcast operations are supported.

Figure 1.9: Foundations for the new routing mechanisms.

Every mechanism proposed and described in this dissertation is based on

an alternative way of representing both the topology of the system and the

routing algorithm. This method, referred to as the foundations, will allow a

compact representation using only two sets of configuration bits: routing and

connectivity bits. Those bits are computed according to the routing algorithm

instance present in a given topology. Referring to Figure 1.9, from the current

topology of the network, a set of routing algorithm instances are computed.

These instances are defined conceptually by certain routing restrictions, that

from the router viewpoint are translated into the two sets of configurations

bits, which provide different associated properties.

Through all the dissertation we present a set of solutions that start from

a basic mechanism, LBDR (Logic-Based Distributed Routing). The basic

12 Chapter 1. Introduction

Figure 1.10: Evolution of the research.

mechanism will be enriched by new additions. On every step taken to arrive

to the full conceptual architecture both unicast and collective communication

will be addressed. This will be described thoroughly in the next chapters, but

let us see a general overview in Figure 1.10. Starting from the foundations,

with the basics established, first steps were made on LBDR, which is based

on unicast routing and provides support for minimal-path routing. Broad-

cast support is provided, from the foundations, in the bLBDR mechanism.

As with LBDR, only minimal-path support is provided. Although showing

better flexibility than a DOR implementation, better savings than routing

tables, and also with the addition of the broadcast counterpart, bLBDR,

lacks the support on non-minimal paths, needed in some configurations, so

the next steps were to add non-minimal path support to both mechanisms

(LBDR and bLBDR). The evolution of bLBDR, SBBM was straightfor-

ward as compared to the unicast counterpart, uLBDR, as it required a differ-

ent perspective of how the configuration bits were processed with a minimal

addition. For uLBDR, two extensions are added for non-minimal path sup-

port, deroutes and forks, both covering different cases. Finally, uLBDR and

SBBM are merged into eLBDR. With the full mechanism, eLBDR (effective

1.2. Objectives 13

Logic-Based Distributed-Routing) enables the implementation of communica-

tion primitives in any irregular network derived from a 2D mesh without the

need for routing tables, thus providing effective fault-tolerance, allowing the

use of aggressive power saving techniques and enabling the virtualization con-

cept at the network level. The technique works also in 2D meshes with no

failures/irregularities, thus enabling its use also in fault-free chips.

1.2 Objectives

This section presents the objectives of this dissertation. The key objective

we seek is to describe a simple logic-based distributed routing solution with

low hardware overhead that provides support for both unicast and collective

communication in a multicore chip where irregularities in its regular 2D mesh

network may be present. In order to do this, we pursue the following specific

goals:

• Provide an insight of the most recent related work in fault-tolerance and

routing in on-chip networks.

• Describe a new functional methodology that allows us to encode effi-

ciently routing algorithms and related issues into a compact representa-

tion of configuration bits. This is the foundations for our solutions.

• Propose a routing implementation, based on the previous methodology,

that is able to support unicast communication while achieving a sub-

stantial fault-tolerance support.

• Propose a routing implementation, based on the previous methodology,

that is able to support collective (broadcast, multicast) communication

while achieving a substantial fault-tolerance support.

• Provide a thorough evaluation on every proposed implementation on

aspects like performance, hardware overhead and coverage and provide

comparisons to previous and related routing implementations.

The completion of these goals is reflected on the final mechanism, eLBDR,

which achieves 100% coverage for all the evaluated cases, while showing sim-

ilar costs to DOR-based routing implementations, and exhibiting flexibility

14 Chapter 1. Introduction

comparable to routing table implementations. It is important to remark that

none of the proposals in this thesis is a routing algorithm by itself. This the-

sis proposes routing implementations, instead. Indeed, as will be explained

in Chapter 3, any routing implementation can be used for any routing algo-

rithm and its generated instances as long as it keeps these key characteristics:

deadlock-freedom and connectivity between each pair of end nodes (these con-

cepts are explained in the next chapter).

1.3 Dissertation Outline

This dissertation begins with this introductory chapter (Chapter 1). After, we

continue with Chapter 2 that describes the basics of on-chip interconnection

networks and an analysis of the current related work that contributes to the

matter of this dissertation. Chapter 3 presents the foundations of the concep-

tual architecture. Chapters 4 and 5 present the different routing implementa-

tions shown in Figure 1.10. The routing implementations are described from

the grounds to the full mechanism, each one with its associated evaluation and

comments. In these chapters we also present some real implementations of the

architecture and the trade-off related to the applicability of the design. Fi-

nally, the dissertation ends with Chapter 6, which summarizes the conclusions

and displays the contributions related to the research field.

Chapter 2

Technical Background and

Related Work

“Live for a century, learn for a century.”

Russian proverb.

In this chapter, the goal is to describe the basics and terminology of on-

chip interconnection networks. For the sake of understanding we will cover

the main aspects, but it is not the intention of this chapter to provide an

in-depth view on the subject, since the on-chip network field is as complex

as the general interconnection network field, and there exist several aspects

that are beyond the scope of this dissertation. We refer the reader to the

established textbooks on this topic and related ones for further background

and introductory material [11, 13].

First, in Section 2.1 a brief description of the design parameters that in-

volve networks-on-chip are presented. Then, in Section 2.2, we dive into a

more extensive description of the aspects that surround this kind of networks

and the basics of routing types, strategies and implementations and how they

are related. Finally, this chapter, in Section 2.3, shows the related work and

existent contributions that serve as a reference for this dissertation.

15

16 Chapter 2. Technical Background and Related Work

2.1 On-chip Interconnection Networks

In the field of interconnection networks, there is a growing interest and amount

of research in the on-chip domain. The integrated circuit technology has

evolved to accommodate a multiprocessing device capable of high-performance

computation. As a result of the high integration scale in the deep sub-micron

domain and the increasing number of connecting elements, on-chip intercon-

nection has become a need and will influence the performance of the final

system. So, any gain in the efficiency of the on-chip interconnection layer will

be highly beneficial.

2.1.1 Design Factors

As aforementioned, NoCs play a major role in the design of the modern high-

performance computers, nevertheless, they are not simple; there are many

factors that affect the choice of an appropriate interconnection layer at design

time. The main factors are:

• Performance. As commented, performance is a key point in intercon-

nection networks, not only from the point of view of raw throughput,

also from the point of view of latency. Latency is a critical design is-

sue in several systems such as real-time systems. Moreover, in on-chip

networks, messages must reach destinations in terms of nanoseconds.

• Scalability. Scalability is the first design rule that an interconnect de-

signer should keep in mind. Scalability in interconnection networks im-

plies that the bandwidth of the network increases proportionally to the

number of elements of the system. Latency should also be kept to rea-

sonable limits when increasing the system size. Otherwise, the intercon-

nection network would become a bottleneck, limiting the efficiency of the

whole system. Scalability also implies that network cost and resources

are proportional to the network size.

• Reliability. An interconnection network should be able to deliver infor-

mation in a reliable way. Interconnection networks should be designed

for continuous operations in the presence of a limited number of faults.

2.2. Interconnection Network Basics 17

More important, as technology scales, manufacturing defects will in-

crease, thus demanding an efficient treatment.

• Simplicity. Not only for the sake of cost, but making simpler designs

leads to the implementation of architectures that work with higher work-

ing frequencies, thus, increasing the system performance, and occupying

less area. In fact, the silicon area usage is a critical aspect in on-chip

networks. Indeed, reducing the area, translates into the opportunity for

making room for more devices inside the chip.

• Power consumption. One of the most important aspects in networks-on-

chip, not as important in other network environments, is the reduction

or minimization of power consumption. Indeed, effective power-aware

techniques are needed to bring better management of the total power

consumed by the processing cores.

All these previous factors must be specifically considered when designing

an on-chip network. In this thesis all the contributions take these factors,

directly or indirectly, as a reference. In the next section we present the basics

for interconnection networks.

2.2 Interconnection Network Basics

The network architecture design is the result of several design choices like

network topology, switching and flow control techniques or routing strategies.

The network topology defines the physical interconnection between nodes and

other elements. The switching and flow control techniques define how and

when the information is transmitted through the network resources. Finally,

the routing strategies manage the different path choices of communication

between the nodes.

There are some common elements that conform a network architecture.

The first elements are the nodes. Nodes are the elements that communicate

through the network and perform basically two main tasks: computation and

storage. Nodes connect to other nodes through a network interface that could

be associated to routing devices, depending on the topology of the network. A

18 Chapter 2. Technical Background and Related Work

routing device connects multiple devices. Link are the elements that connect

all the devices (network interfaces and routing devices) present in the network

architecture. See an example in Figure 2.1.

Figure 2.1: A general overview of a network architecture.

2.2.1 Network Topology

Different network categories can be devised based on how all the elements of

a system are connected to the network (see examples in Figure 2.2):

• Shared-medium networks: In this kind of network there is a transmission

medium that is shared by all the nodes, and only one node is able to begin

communication at a time, the rest of nodes read (and monitor) from the

shared medium. Every device has the circuitry to handle addressing of

other nodes and the data management. In this kind of networks, the

routing device is the shared medium, called also bus. Buses have limited

bandwidth, so they suffer from scalability problems, as the number of

connected nodes increases.

• Direct networks: Each node has a routing device attached, called router,

which is the component that establishes the connection to other nodes

2.2. Interconnection Network Basics 19

through point-to-point links. Each node is directly connected usually

to a small subset of nodes in the network. The concept of network

interface is weak in this type of networks as the end node and the routing

device are tightly connected. Nodes are connected according to a certain

interconnection pattern.

• Indirect networks: Instead of connecting directly the nodes through

point-to-point links, the communication between a pair of nodes can be

performed by intermediate stand-alone routing devices called switches.

Every node has a network interface that connects to a switch (through

a point-to-point link) and switches are connected between them (also

through point-to-point links).

• Hybrid networks: This kind of networks is a mixture of the previous

approaches. In general, they combine mechanisms from shared-medium-

networks and direct or indirect networks.

Although there are very subtle differences between direct and indirect net-

works, the functionality is similar in many aspects. An indirect network in

which every switch is connected to a single node is equivalent to a direct net-

work. Also, terms router and switch, although having different meanings, are

used with no distinction by the community, so both terms for the routing

devices are interchangeable. In the rest of the dissertation, unless noted, the

term router is assumed.

There are also some common aspects to all these types of networks. Al-

though links are usually formed by two communication channels, one in each

direction, one of the basic aspects of a network is how communication chan-

nels are arranged. Network performance significantly differs if links are bidirec-

tional or unidirectional. This choice impacts directly on the routing techniques

and algorithms and associated issues, like deadlock avoidance. We assume the

use of bidirectional channels on every link, though.

Each type of network can also be categorized with different properties:

• Router degree: This property refers to the number of channels that con-

nect a router to its neighbours.

20 Chapter 2. Technical Background and Related Work

(a) Shared-medium network (b) Direct network

(c) Indirect network (d) Hybrid network

Figure 2.2: Network architectures.

• Diameter: It is the maximum distance between a pair of end nodes in

the network.

• Regularity: A network is defined as regular when all the routers have

the same degree.

• Bisection Bandwidth: Bisection of the network encompasses the mini-

mum set of links that split the network in two equal halves. Bisection

bandwidth is the resulting bandwidth at the bisection.

• Homogeneity: A network is homogeneous if every node is equal in all

2.2. Interconnection Network Basics 21

aspects to the rest of nodes.

There are three common basic topologies used in interconnection networks.

The first one is the crossbar. A crossbar (see Figure 2.3) allows the connec-

tion from any node to any other node simultaneously at the same time other

connections are established (as long as the requested input and output are

free). Crossbar networks, typically, are used for high-performance computing

multiprocessor solutions and in the design for routers in direct networks. The

drawback with crossbar topologies is that they do not scale as system grows

due to the quadratic requirement of connections.

Figure 2.3: A crossbar network.

Strictly orthogonal topologies are the second common type. In this kind of

networks we can find the n-dimensional meshes and tori (see Figure 2.4). A

n-dimensional mesh or torus has k nodes placed along each dimension. A mesh

differs from a torus because it does not have the wraparound channels that

connect the nodes in the borders of the topology. Note that the torus topol-

ogy duplicates the bisection bandwidth of the mesh topology and reduces the

diameter. These topologies are the most common example of direct networks.

Multistage interconnection networks (MINs) are topologies driven by the

concept of indirect networks as seen in Figure 2.5. Between input and out-

put devices there are several switch stages. The arrangement of stages and

the connection patterns determine the routing in these networks. MINs have

22 Chapter 2. Technical Background and Related Work

(a) Mesh (b) Torus

Figure 2.4: A 4× 4 2-dimensional mesh and torus.

been heavily used to interconnect parallel computers with large number of

processors in commercial and high-performance solutions. However, for on-

chip networks mapping of such topology pattern in the 2-dimensional surface

of the chip is a big challenge.

Networks-on-chip Topology

Earlier on-chip communication architectures fall on the share-medium network

paradigm, that included buses as the communication subsystem. Examples of

this kind of architecture is the Cell processor [23], that is well suited for a

small number of processing elements (or nodes). But the trend nowadays in

the industry of high-performance computing is to include a reasonably large

number of processing cores inside the chip, and shared-medium network de-

signs have poor scalability and bandwidth impacting heavily on the network

performance.

Network-on-chips emerged, thus, as a response to effective on-chip com-

munication. On-chip networks are based on a paradigm that is a mixture of

the concept of direct and indirect networks. Current multicore architectures

are composed as a wall made of elemental brick nodes that work together

to achieve the high-performance computing goal, i.e, the chip is formed of

several processing devices. These devices are called usually tiles. A tile, fun-

2.2. Interconnection Network Basics 23

Figure 2.5: A multistage network topology.

damentally, apart from the processing elements, has also a router attached

that handles the communication between tiles. See a simplified schematic of

a tile in Figure 2.6.

As the chip can be seen as a collection of tiles, there is a major taxon-

omy where chips can be differentiated between homogeneous (inducing regular

topologies) and heterogeneous designs (more suited with irregular topologies).

Every tile is connected to a subset of other tiles through an on-chip network.

An example of homogeneous configurations are the tiled chip multiprocessors

(CMPs) where all the tiles are equal, i.e, tiles are replicated along the chip

(see Figure 2.7(a)). Instead, high-end multiprocessor systems-on-chip (MP-

SoCs) are an example of heterogeneous designs where tiles are different in

many aspects: size, functionality, performance, throughput, etc (refer to Fig-

ure 2.7(b)).

A popular choice in NoC designs is the use of orthogonal topologies as

most of the direct network architectures are implemented with this property

in mind. Orthogonal topologies, which are associated with regular patterns,

allocate the nodes in a n-dimensional space, with k nodes along each dimen-

sion. Every router has at least one link crossing one dimension. Every router

is labelled with an identifier depending on the coordinates, and all links that

communicate to other routers are bidirectional (formed by two channels, one

24 Chapter 2. Technical Background and Related Work

Figure 2.6: The processing element in a tile-based CMP.

(a) Tiled chip multiprocessor (b) High-end multiprocessor system-on-chip

Figure 2.7: Different tile-based designs.

in each direction). As the distance between a pair of routers is the sum of the

offsets in all dimensions, the routing strategy is usually implemented as a func-

tion of selecting the links that decrement the absolute value of the coordinate

offsets between a source node and a destination node, a very simple mecha-

nism. The most popular design in NoCs is the n-dimensional mesh, used in

most of the commercial and non-commercial (prototypes) NoC designs. The

most suitable topology is the 2-dimensional mesh (Figure 2.8). This kind of

topology is vastly used (or at least assumed) because it fits the chip layout.

As every router is located within the network by its coordinates on a n-

dimensional space, a router in a 2-dimensional graph will be numbered by a

2.2. Interconnection Network Basics 25

Figure 2.8: A 4× 4 2-dimensional mesh.

group of two coordinates, (x, y), one for each dimension. Crossing a link means

decrementing or adding an unitary value to the offset of the dimension between

the two nodes that share the associated link. See an example in Figure 2.9.

Moving from node 1, with coordinates (1, 0), in Y+ direction results in node

5, coordinates (1, 1). Typically, nodes are numbered by a single id, computed

as a function of the coordinates and the number of nodes per dimension. In

the case of the example for the 2-dimensional mesh, the value follows this

equation: IDNode = Xcoordinate + k× Ycoordinate, being k the number of nodes

per dimension. So, in the example in Figure 2.9, node (3, 1) has an id of 7.

2.2.2 The Routing Device

As aforementioned, each tile is composed of several elements. The router is

in charge of the communication between the associated node and the rest

of the nodes through the network layer. Typically, a router1 architecture is

structured by the following general parts (Figure 2.10):

• Buffers: Buffers are a key component of the router and its design and

1Note that, as previously commented, the community makes no distinction on the terms

of router and switch as they have similar meanings. We prefer the term router as it involves

making routing decisions, not just switching.

26 Chapter 2. Technical Background and Related Work

Figure 2.9: Different link crossings in a 2-dimensional mesh.

position inside the router affect other aspects of the router design. The

task of a buffer is to store temporarily units of information (typically

called messages and/or packets). Buffers are associated to the channels

that are connected to the router. Channels, also called ports, are divided

into input ports, streams that receive the messages and are subject to

the routing decisions, and output ports, streams the send the messages

to other routers or nodes. Note that, to save area and power, buffers at

the output ports are usually not implemented.

• Crossbar: The crossbar is the switching element and is non-blocking.

Crossbars allow the connection between all inputs of the router to all

the outputs. Crossbars are classified by their radix, i.e. the maximum

numbers of connections they can make. As has been already identified,

crossbars do not scale, thus routers with many ports do not scale neither.

• Routing unit: This unit is the responsible for decoding the unit of in-

formation provided by the incoming message, and based on the routing

function and destination of the message, computes the most suitable

output ports for transmitting the message.

• Arbiter unit: This unit feeds from the routing unit and configures the

2.2. Interconnection Network Basics 27

crossbar accordingly to the requests between input and output ports,

taking into account switching and flow control issues (both will be ex-

plained later).

Figure 2.10: Router in a tile.

2.2.3 Data Units

In an interconnection network, the general routing unit of information between

nodes is the message (see Figure 2.11). A message is a collection of bits that

the sender wishes to transmit to a destination (or a set of destination nodes),

i.e. it contains the data that must be transmitted. This information unit,

however, due to resource restrictions affected by design choices, may need to

be divided into smaller units, called packets, through a packetization process

(usually performed at the network interface). A packetization of a message

implies some reassembly and order handling at the destination. A packet (or

the message) is comprised of a header, which contains the information for

routing and control, to be used by the routing devices, a body which contains

the data, and optionally a tail, for flow control or arbitration purposes. Often,

packet and message terms are interchangeable by the community, when both

are equal in size. The term packet is usually employed even when the message

has not been packetized. In this thesis we use the term message when wormhole

switching is assumed (see next section) and the term packet when virtual cut-

through switching is used (see also next section).

28 Chapter 2. Technical Background and Related Work

A packet is divided further into flits (flow control digits), which are the

smallest unit of information flow controlled. As the width of the link can be

lower than the size of a flit, the flit is further divided at the physical level, into

phits (physical digits). It is left to the designer and the parameters involved,

the size of every unit. However, in on-chip networks, due to the vast amount

of bandwidth available, the phit size usually equals the flit size.

Figure 2.11: Data units.

2.2.4 Switching

Switching techniques are the responsible for the allocation of network resources

to messages/packets inside the routers. Their basic function is to perform the

setting of the connections between the buffers of the input and the output

ports. The choice imposes several design constraints in the router that impact

the performance, fabrication cost and power consumption of the elements in

the network. Next we describe the main switching techniques used in on-chip

networks.

Circuit Switching

In circuit switching (Figure 2.12), the network establishes a reserved path

between source and destination nodes prior to the transmission of the message.

This is performed by injecting in the network a flit header, which contains the

destination of the transmission. This header acts as some kind of routing

probe that progresses towards the destination node reserving the channels

2.2. Interconnection Network Basics 29

that it gets. When the probe reaches its destination, a complete path between

destination and source node has been set up due to the acknowledgement that

is sent back to the source node. As the path has been reserved for this flow,

messages cross the network avoiding buffer needs and collisions with other

flows. The circuit is torn down when the transmission finishes. An example

of a circuit switching-based on-chip network is described in [71].

Circuit switching can be very advantageous when messages are very fre-

quent and long. Nevertheless, this switching technique has several important

drawbacks. If circuit set up time is long compared to transmission time of

the data, it will strongly penalize the performance of the network since links

will be poorly used. Additionally, as channels are reserved for a given flow,

no other flows can use them even if the connection is idle, thus channels may

become even more under utilized.

Figure 2.12: Circuit switching.

30 Chapter 2. Technical Background and Related Work

Store and Forward

Instead of reserving all the path for a certain flow, there are some techniques

that operate at packet granularity. These techniques are referred as packet

switching. The most basic technique related to packet switching is store and

forward (SAF). When a packet arrives to a router, the router waits to store

the whole packet in its input port buffer before the packet is forwarded. So,

input port buffers must be large enough to store a packet (see Figure 2.13).

Figure 2.13: Store and forward switching.

As can be deduced SAF has longer buffer requirements than circuit switch-

ing. In addition, latency of packets is multiplicative with hop count along the

path (as the forward operation waits for the completion of the store operation).

Virtual Cut-Through Switching

SAF switching is based on completely receiving a packet before any routing

decision is made. But, this is not a very practical decision, since packet header

contains all the required information to perform the routing, and it is phys-

ically located at the beginning of the packet (typically in the first flit). So,

the routing process can be started once the packet header arrives to the input

buffer, without waiting for the rest of the packet. Thus, the packet can be

forwarded provided the selected output link chosen by the routing strategy

2.2. Interconnection Network Basics 31

is free. This is what is done in virtual cut-through (VCT) switching (Figure

2.14).

Figure 2.14: Virtual cut-through switching.

In this case, as packets can advance through the routers of the network

once the packet header has arrived to each buffer (and has been decoded),

the base latency for this switching technique is mostly additive to the distance

between the nodes (hop count). Despite this, buffer requirements are the same

for VCT and SAF. VCT requires there is enough free buffer space to store the

entire packet. In fact, VCT behaves like SAF when the output link is busy.

The router needs to completely allocate the entire packet. This is the switching

technique commonly used in off-chip high-performance interconnects [11, 13]

due that buffer size is not as critical as in NoCs.

Wormhole Switching

VCT switching is an improvement over SAF, but in some network architec-

tures, the choice of a buffer size to hold an entire packet could be critical. The

requirement to completely store a packet in the buffer of a router may prevent

to design a small, compact, and fast router [13]. In wormhole switching (WH)

buffers at the ports of a router only have to provide enough space to store

32 Chapter 2. Technical Background and Related Work

only few flits, depending on the round-trip time delay (RTT) 2, instead of the

whole message. In WH switching (Figure 2.15), the packet is forwarded im-

mediately before the rest of the packet is entirely received, but as opposed to

VCT, there is no need to have enough space for the rest of the message in case

the message blocks. In that case, the entire message remains stored through

the buffers of several routers. The major advantage of WH switching is the

low storage requirements at routers. However, the most important drawback

is that WH switching could lead to high contention levels at the network, be-

cause a message may block several resources when is traversing the network,

causing low utilization of links and buffers.

Figure 2.15: Wormhole switching.

Virtual Channels

To overcome the problem of contention induced by wormhole switching, virtual

channels [10] were proposed. Buffers basically are operated as FIFO (First-

in, First-out) queues. Therefore, if a message reserves the channel but due

to the saturation of the network it remains blocked at the current router, no

other message can use the physical channel even if its requested output port

is available. This problem is known as head-of-line blocking.

When using virtual channels the buffer at the input port is divided into

different virtual buffers and the channel is shared by all the virtual buffers

(see Figure 2.16). Of course this virtual multiplexing requires some local ar-

bitration and must be taken into account by flow control and switching tech-

niques. Virtual channels can be used to improve message latency and network

2Round-trip time delay can be defined as the elapsed time between a unit of information

is sent and the acknowledgement of that transmission is received

2.2. Interconnection Network Basics 33

Figure 2.16: Virtual channels.

throughput. Their major drawback is that the available link bandwidth is

distributed over all the virtual channels sharing a physical link, resulting in

lower speeds. Again, in the on-chip network domain, the designer must eval-

uate the trade-off and the impact overhead on the network. Virtual channels

are not restricted to wormhole switching, the concept can be extrapolated to

other design choices, depending on the need of their functionality (examples

are deadlock-free routing algorithms and quality-of-service protocols)

2.2.5 Flow Control

Transmission of a flit between the input and output ports in a router is a task

performed by the switching technique. Flow control, however, is in charge

of administering the advance of information between routers. Buffers are a

temporary resource where to store flits, but they are finite. Flow control tech-

niques are in charge of determining when the flits can be forwarded evaluating

the capacity of the buffers and the link bandwidth.

There are three flow control mechanisms that are commonly used: ack/nack,

stop & go and credit-based. The ack/nack flow control mechanism is based on

data acknowledgements. When a flit arrives to a buffer, if the buffer has space

available, then the flit is accepted and an acknowledgement signal (ack) is

sent back. Instead, if there is no space available, the flit is dropped and a

negative acknowledgement is sent. The flit must be retained at its origin until

it receives a positive acknowledgement.

Stop & go emerged as an alternative to reduce the signalling (control traf-

fic) between the sender and the receiver. Stop & go flow control is based on

every buffer having two thresholds corresponding to certain sizes computed

from the round-trip time. When the space occupied in the buffer reaches the

34 Chapter 2. Technical Background and Related Work

Figure 2.17: Ack/nack flow control.

stop threshold, a signal is sent back to the sender precisely to stop the trans-

mission, taking into the account that still remains enough buffer space for the

flits that are still being transmitted by the sender. When the buffer occupancy

diminishes under or equal to the second threshold, go, then another signal is

sent to reactivate the flow of flits.

Figure 2.18: Stop & go flow control.

With credit-based flow control, each sender, at its end of the link, maintains

a count of credits, which is equal to the number of flits that can still be

stored at the buffer on the receiver side. Whenever a flit is forwarded to the

receiver buffer, as it occupies a slot, then the counter is decremented. If the

counter reaches zero, it means that there is no available buffer space at the

other end, and no flit can be forwarded. On the other hand, whenever a flit

is forwarded and frees the associated buffer space, a credit is sent back to

2.2. Interconnection Network Basics 35

increment the counter. The drawback of this flow control mechanism is the

significant amount of credit signalling sent backwards, which could impact on

network performance.

Figure 2.19: Credit-based flow control.

2.2.6 Arbitration

A router is composed of multiple input and output ports with their associated

buffers and channels. Multiple inputs, according to routing decisions, may

request the same output port. In this scenario, an arbitration operation is

required to decide which one of the requests is allowed to connect to the output

port. The arbitration mechanism must ensure to assign the output to only

one of the inputs that have requested it, and the others must wait until they

are allowed. As the arbitration operation introduces a latency to determine

the assignment of the different output ports, it is critical for a network-on-

chip environment that these operations are performed fast enough to keep low

latencies.

The main goal of an arbitration mechanism is to provide fairness between

all the ports while achieving maximal matchings between requests and re-

sources. Although there are many proposals for arbitration algorithms and

implementations, we can distinguish two general arbitration techniques that

are differentiated on how to assign priorities between the requesters.

The first one is fixed priority. An arbiter with fixed priorities assigns the

requests in an established order to the different input ports. This order is

determined by the priority assigned to each input port. In this mechanism,

the arbitration is simple, but introduces unfairness and potentially, starvation.

If one of the input buffers with higher priority keeps requesting the associated

output, the inputs with lower priority get blocked, even, inducing the chance

that the inputs with low priority never get the request satisfied.

36 Chapter 2. Technical Background and Related Work

The second one is called round-robin. An arbiter that implements round-

robin arbitration cycles priorities between all the input ports by assigning the

lowest priority to the input port which request was last served. This arbitra-

tion technique introduces better fairness between the requesters, but is more

complex to implement. Usually, represents a trade-off between implementation

cost and performance.

2.2.7 Routing

In this section we tackle the basics of routing strategies. As we have described

before, topology defines the physical organization of the network composed by

the nodes. In fact, a given topology defines the available paths between all the

nodes. The routing algorithm is the responsible of deciding which path has

the message to follow to be effectively routed from its source to its destination.

The choice of the routing algorithm becomes of key importance in the network

performance. Indeed, in the on-chip network domain not all solutions from

the off-chip network domain are suitable due to environmental restrictions.

The designer must find a trade-off between efficiency, flexibility and cost of

the routing implementation (the core of this dissertation).

We must remark, for the sake of the description and interpretation of this

dissertation, the concept of a routing algorithm and a routing implementation.

Indeed, few authors disassociate both issues and, when talking about NoCs

the implementation becomes a big issue. Taking as an example the DOR

routing algorithm, we can distinguish between the routing algorithm itself

(the rules to apply to every incoming message) and the way such rules are

implemented. Figure 2.20 shows the algorithm written in pseudo-code and

Figure 2.21 shows a possible implementation with some logic gates. This

distinction will be key to properly identify and implement algorithms in NoCs

addressing future challenges.

Problems and Issues

In the on-chip network domain, and more generally in any interconnection

network scenario, the desired behaviour is that every generated message from

a source node arrives to its destination. However, even in the presence of phys-

2.2. Interconnection Network Basics 37

Figure 2.20: DOR algorithm pseudocode.

ical available paths, there are several situations that prevent message delivery.

Next we describe the different issues that may prevent message delivery.

The first issue is deadlock (see Figure 2.22). A deadlock occurs when a

message cannot advance toward its destination because the buffer requested

by the message is full, being blocked by another message that is also waiting.

A cyclic set of such events could make the messages to be blocked permanently

because each message involved in the situation requests a resource that is hold

by another one. As no one message will advance before getting its requested

buffer granted we get a deadlock situation. There are two common ways

to deal with deadlock events. The first one is to guarantee in the routing

strategy the avoidance of deadlock situations, which basically is done by the

exploration of cycles in the Channel Dependency Graph (CDG). The CDG is

built by graphically representing channels as vertices and channel dependencies

38 Chapter 2. Technical Background and Related Work

Figure 2.21: DOR implementation.

as edges. A dependency exists between two channels if a message uses both

channels. The resulting CDG for DOR routing is acyclic as shown in Figure

2.23. If a cycle exists in the CDG, then a deadlock situation may arise in

the network. The second one consists of detection of deadlock events that are

present in the network and providing a recovery methodology to dismiss the

deadlock situation.

The next issue to deal is livelock. Livelock scenarios are similar to deadlock,

but they happen when a message is misrouted and never reaches its destination

as the links required to do so are always reserved by other messages. So,

there is no situation of permanently blocked messages, but more adjusted

to a dynamic blocking (take the example of two people that want to cross

a narrow corridor, so both of them try to be polite by moving aside to the

same direction). These kind of situations arise when allowing non-minimal

path routing. Fortunately, this problem can easily be solved by bounding the

number of times a message can be misrouted.

Finally, the last problem a routing algorithm must face is starvation. This

issue is triggered when a message is permanently stopped holding a resource

and cannot advance because the network traffic is so intense that the resources

requested are always granted to other messages with higher priorities. This

scenario is the result of an incorrect arbitration. Starvation is easily avoided

2.2. Interconnection Network Basics 39

Figure 2.22: Deadlock event.

Figure 2.23: CDG for DOR routing in a 2× 2 mesh network.

by a proper design of arbiter and priority mechanisms.

All these issues occur because the number of resources (buffers) is finite,

and specially in the on-chip network domain, is reduced. To face these prob-

lems, there are two ways of implementing the routing schemes and algorithms.

The most suitable for networks-on-chip is to prevent the formation of such

scenarios (acyclic CDGs, no misrouting allowed, fair arbiters). The second

one consists on recovery techniques to solve these kind of situations (cyclic

CDGs). Recovery techniques also need extra circuitry to detect the presence

of these issues. In this thesis we focus on routing algorithms that guarantee

acyclic CDGs.

40 Chapter 2. Technical Background and Related Work

Implementation Types

Although any implementation is specific to the nuts and bolts of the technol-

ogy, there are two main trends to implement the routing strategy.

The first one is logic-based routing. This kind of routing is the result to

translate a logical or arithmetical function of a routing algorithm into the

equivalent in circuitry inside the router. So, when the message header is de-

coded at the input buffers, the output port is computed based on the hardware

that represents the routing function. Logic-based routing is a good design

choice in terms of delay, area, and power consumption. The main drawback is

the lack of flexibility as these implementations could become non-functional

if the topology scenario changes due to manufacturing defects, just to name a

reason.

As we anticipated in Section 1.1, on the other hand we have table-based

routing. Routing tables are basically composed of row-like structures that

match destinations with table entries. So, given the destination for a cer-

tain message, there is some circuitry associated that decodes this information,

and accesses the routing table to find the routing decision associated to that

destination. The most conventional way to implement these tables is to use

memory structures. The advantage of table-based routing is flexibility, as the

information of routing decisions stored on routing tables could be the answer

of more complex routing algorithms, that are not only based on logical or

arithmetical assumptions. On the other hand, routing tables implementation

suffers from scalability, area, power consumption, and latency problems. For

example, there is a penalty time (that increases with table size) associated to

accessing memory structures.

Schemes Classification

There are different taxonomies to classify routing algorithms. In the following

paragraphs we provide a discussion for the most well-known types of routing

algorithms.

The nodes of an interconnection network send and receive messages through

the routing devices present in the network. Given there is connectivity between

all the end nodes on the network-on-chip, a node (or several nodes) may re-

2.2. Interconnection Network Basics 41

quire to send the same information to several nodes, instead of only one. From

the perspective of the sender, and given the amount of nodes that are meant

to receive the data, there is a first distinction. If the message is sent to only

one destination, we are talking about unicast or one-to-one communication

(1 : 1). An example is represented in Figure 2.24(a).

On the other hand, if the message must be sent to several destinations (that

could include all the nodes on the network) then we are talking about some

types of collective communication, again from the perspective of the source

node. If the message must be sent from a source node to the rest of the nodes

in a chip then the routing operation is named broadcast communication, or

one-to-all (1 : all). On the other hand, multicast communication or one-to-

many, occurs when the sender distributes the message to a limited group of

destination nodes (1 : many). Broadcast communication can be seen as an

specific case of multicast communication. Broadcast communication is easier

to implement because the incoming message is just replicated to the rest of

router ports but the drawback is flooding the network with unneeded messages.

There is an example of multicast communication in Figure 2.24(b).

(a) Concurrent unicast operations (b) Multicast operation

Figure 2.24: Different routing types.

There are three basic methods to implement broadcast or multicast rout-

42 Chapter 2. Technical Background and Related Work

ing. The first one is the unicast-based approach or multiple one-to-one com-

munication. This technique implements a collective communication operation

by sending, in a sequential manner, a unicast message to every destination.

While this solution requires minimum routing infrastructure, it tends to flood

the network with many messages, resulting in higher latency communications.

Power consumption is also high as there are many redundant messages in

the network. The second one is the path-based approach. This solution relies

on the injection of a single message with as many headers as destinations.

The message uses a long path visiting all the destinations sequentially. Its

downside is the message header overhead as well as the long path used, which

impacts network latency. Also computation of paths is not trivial (so as to

avoid deadlock) usually using a Hamiltonian cycle. The last one is the tree-

based approach. Tree-based multicast or broadcast solutions rely on the use

of a spanning tree mapped on the network (typically on a 2D mesh network)

or region, providing collective communication to a set of destinations with the

minimum amount of time. Routers create replicas when new branches are

formed along the tree. This solution minimizes the number of messages sent

through the network (the sender only injects one message per tree) with the

associated reduction in power consumption and network latency. However,

this approach usually requires a costly implementation, and is the one where

avoiding deadlock is more complex.

Another classification in routing strategies is based on the location where

routing decisions are taken, i.e, which devices are responsible for computing

the path for the message. Routing can be implemented in two straightfor-

ward ways: source-based or distributed-based. In the first case, source-based

routing, the responsible agent for computing the path is the end node. The

entire path, then, is stored on the message header. In this routing scheme,

network routers just read the stored path in the message header and forward

the message through the indicated output port, which makes routing very

quick and router designs very simple. Nevertheless, storing the whole path

in the message header results in poor scalability, since header size grows with

network size and it consumes network bandwidth as it is transmitted through

the network, impacting on network performance.

In distributed-based routing, however, each router is in charge of comput-

2.2. Interconnection Network Basics 43

ing the next step that the message will take while travelling across the network.

The message header only contains a reference to the destination node (usually

an identifier or destination coordinate). Distributed routing allows for more

flexibility, as it enables the fact that, at each router, different output ports can

be available to reach a given destination. Note that with distributed routing,

routers require additional logic in order to take the routing decisions, thus

increasing the complexity.

Another aspect in the taxonomy of routing schemes is related on the num-

ber of paths that are available for the message to be routed. Here we can

differentiate two different ways. The first approach is deterministic routing.

It means that from a given source node and an specific destination node, a mes-

sage can only be routed by a single predetermined path. With deterministic

routing the traffic of the network may make an unbalanced use of the network

links depending on the traffic pattern, thus limiting the performance of the

network. On the contrary, an adaptive routing algorithm, as it name implies,

adapts the routing of messages as a response of the current network situation

(imposed by the traffic and saturation present). But, adaptive mechanisms

require complex designs starting from a selection function, that manages the

routing choices with the network information that is available. Of course, be-

tween a fully deterministic and a fully adaptive mechanism there is a range

of hybrid schemes. A quasi-deterministic scheme could offer several comple-

mentary predetermined paths instead of a single one, or an adaptive strategy

could be restricted to a set of links in each router becoming partially adap-

tive. The final decision relies, as many aspects before, on a trade-off. For NoC

environments, still there is not recent related work on adaptive mechanisms,

but as technology evolves, it would be a great asset for better efficiency of the

network. There is also a type of routing algorithms, called oblivious routing

algorithms [56, 67], that generate paths not taking into account traffic knowl-

edge at all (contrary to deterministic routing that may take few assumptions),

and could be interesting for NoCs due to their low overhead once implemented.

There is another major distinction that affects the functionality of a routing

scheme. A routing algorithm can be classified as having minimal or non-

minimal path support. A minimal path routing strategy will only function

on environments where it is assured that between each pair of nodes there

44 Chapter 2. Technical Background and Related Work

is always a path that is composed of minimal hops to reach a destination

node from a source node. This kind of routing is related to regular topology

scenarios. As it is shown in Figure 2.25 the path between nodes 13 and 8

is a minimal path because on every hop the message becomes closer to its

destination.

Figure 2.25: Minimal and non-minimal paths.

Instead, a routing algorithm with non-minimal path support is the one that

delivers routing decisions that are able to route a message in situations where,

at some step, the message is derouted around over other channels. Referring

again to Figure 2.25 the path between nodes 9 and 11 would normally cross

node 10, but as node 10 is unavailable due, for example, to a failure, the

message is derouted through a path surrounding the failed node. In fact,

non-minimal paths introduce misrouting and the routing algorithm capable of

handling these situations must also take care of deadlock and livelock issues.

Of course, in the NoC domain, minimal paths are preferred for shorter routes

as they reduce the average message latency, but non-minimal path support is

useful in the event of fault-tolerant or congestion-management scenarios.

2.3. Related Work 45

2.3 Related Work

In this Section the most recent contributions to routing in NoCs are described,

both for unicast and collective communication. Starting from unicast ap-

proaches and ending with techniques that deal with collective communication,

the key is to identify their features and how they address the incoming chal-

lenges applied to NoCs. Designers must take into account that they have to

build effective scalable mechanisms while looking for area, latency and power

consumption saves. Good designs require some effort at the on-chip network

level. Here we must remember to decouple between routing implementations

and routing algorithms. The first ones are mechanisms and techniques apply-

ing the second ones, and some implementations may support one or several

routing algorithms.

Routing Algorithms

Dimension-Ordered Routing (DOR) [64] has been widely used for meshes.

This routing algorithm forwards every message through one dimension at a

time, following an established order of dimensions. Sometimes it is alterna-

tively called XY , when applied to meshes. XY is based on a simple idea to

avoid deadlock issues (i.e. avoid cycles in the CDG). Messages are first routed

in the X dimension to reduce to zero the ∆x offset between the coordinates

of current router and destination router. Then, the next step is to route the

message through Y dimension while decreasing ∆y offset until they reach the

destination node. No message is allowed, on the contrary, to first be routed

through Y dimension and later through X dimension. Its implementation is

very cost-effective, but it is not able to route messages in presence of any irreg-

ularity of the current topology used. Different alternative combinations have

been proposed, like XY-YX routing [57], where separate virtual channels are

used for messages routed in XY or in YX. Note that the combination of two

algorithms could end up in a deadlock situation (thus virtual channels guar-

antee traffic isolation and thus deadlock avoidance). Other derived solutions

from DOR are pseudo-adaptive XY [12] and surrounding XY [2].

But let us assume the situation in Figure 2.26. Router at node 15 has

failed, so if there is a message from node 14 to node 11, it will never get to its

46 Chapter 2. Technical Background and Related Work

Figure 2.26: XY mechanism is not able to route in the presence of failures.

destination. Message can not traverse through router at 10 as it is not allowed

to cross Y dimension before crossing entirely X dimension. It lacks flexibility.

To support irregular topologies (e.g. due to failures), one popular routing

algorithm is up*/down* (UD) [55]. It performs a breadth-first search (BFS)

from a root node, assigning one direction to each unidirectional channel as up

(towards the root node) or down. The net result is a tree made of up and

down links. Computed paths are composed first of a sequence of up links,

followed by a sequence of down links, and no message is allowed to traverse an

up link after a down link has been used. Further refinements and derivations

of this routing algorithm comprehend DFS (depth-first spanning tree) [53],

the Flexible Routing scheme (FX) [53] and the left-up-first routing algorithm

(LTURN) [25]. All these algorithms need to be implemented in look-up tables

(either at the end node if source-based routing is implemented or at the router

if distributed-based routing is implemented). Indeed, most of these algorithms

have been proposed for off-chip networks, where typically the use of large look-

up tables on every router is not a major issue.

One of the main limitations of the UD routing algorithm is the concentra-

tion of the traffic (50% when assuming uniform distribution of message desti-

nations) around the root node. Another limitation is the use of non-minimal

2.3. Related Work 47

paths that tends to increase average message latency. To overcome (or at least

attenuate) both issues, there exists a collection of routing algorithms and so-

lutions: In-Transit Buffers (ITB) [16], Layered Shortest Path (LASH) [61],

Multiple UD (MUD) [30], Transition Oriented Routing (TOR) [54], and De-

scending Layers (DL) [26]. Most of these algorithms use virtual channels to

allocate different paths that, on the contrary, would create cycles in the CDG,

thus inducing deadlock situations. As virtual channels is a precious and ex-

pensive resource in NoCs, their use to guarantee deadlock-free routing should

be minimized if not used at all. Indeed, these algorithms were also initially

proposed for off-chip networks.

One significant routing algorithm, able to deal with any topology, is the

Segment-based Routing algorithm (SR) [35]. It renders in a up*/down* tree,

however, the way is computed allows for much large flexibility, ending up in

many routing instances. SR uses a divide-and-conquer approach, partition-

ing a topology into subnets, and subnets into disjoint segments, and placing

bidirectional turn restrictions (turn restrictions, or alternatively, routing re-

strictions, are introduced later in the chapter) locally within each segment.

SR benefits from a larger degree of freedom compared to previous routing

strategies. Indeed, SR has been proposed to tackle the irregularities found in

initial chip designs where a 2D mesh has been broken in one or two locations,

thus ending in an almost regular 2D mesh structure.

Other routing algorithms, like adaptive-trail [46], minimal adaptive [60],fully

adaptive [11] and smart-routing (SMART) [5] achieve performance improve-

ments, but are specific to some (off-chip) network technologies and require

extra functionality at the switches or have high computational cost.

All the routing algorithms can be classified as deterministic or adaptive.

Most of the routing algorithms, however, are partly adaptive (e.g., UD, DFS,

MUD, SR) in the sense that some alternative options are available by the rout-

ing algorithm and none of the options lead to a deadlock situation. However,

the use of alternative paths may introduce out of order issues, and this could

conflict with the application or the cache coherency protocol run on top of the

network. Anyway, adaptive routing techniques like turn-model routing and

planar adaptive routing [11,13] offer better throughput and fault tolerance by

providing a set of alternative paths, depending on the network congestion and

48 Chapter 2. Technical Background and Related Work

the presence of faults, and are subject of careful research for the NoC domain.

In the research of new routing algorithms that follow simplicity but effec-

tiveness for NoCs, we must also point to deflective routing [37]. This technique

routes messages through one of the profitable output channels (those getting

the message closer to its destination). If such channels are busy, then, mis-

routing is applied. These kind of algorithms can be implemented in buffer-less

NoCs.

As opposed to the off-chip domain, power, thermal and reliability issues

are important design restrictions in a NoC architecture. In [58], authors pro-

pose ThermalHerd, a distributed, collaborative run-time thermal management

scheme for on-chip networks to tackle thermal emergencies ensuring thermal

safety with little performance impact. Every router is equipped with a set

of registers (or counters) to estimate the traffic workload and the tempera-

ture sensor to adjust the traffic, but they only support minimal path routing.

In [31], authors describe the problem of transient failures of on-chip networks

and the impact on applications that require a guaranteed message arrival

probability and response time. Their approach combines temporal and spa-

cial redundancy taking into account energy consumption. The drawback of

this model is that it is deterministically selected at design time the links to be

used by each message and the number of copies to be sent on each link.

As previously commented, one important issue in routing algorithms for

on-chip networks is the implementation cost of the algorithm. In the next sec-

tions we describe some of the recent proposals that deal also with the imple-

mentation cost of the algorithm. We focus our attention first on unicast-based

routing algorithms and then on multicast/broadcast solutions. We describe

the solutions that are conceived to support fault-tolerance in the network, and

the assumed network topology is the 2D mesh. Indeed, different causes may

break the initial homogeneous and regular structure of the 2D mesh. In such

scenario, efficient routing of messages under irregularly shaped topologies be-

comes a challenge under the assumption of non expensive routing solutions.

To reinforce the need of extending research in the field of fault-tolerance for

NoCs, there are some studies [43,44] that explore the possibilities of how NoC

routing algorithms could be developed to provide routing around faults while

maintaining the network operational. Specifically, in [43], authors make a

2.3. Related Work 49

comparison between two methodologies of fault-tolerant routing algorithms,

flood-based algorithms and random walk algorithms, both based in proba-

bilistic mechanisms with the support of n × n probability matrices, being n

the number of nodes. In [44], authors propose Immunet, a table-based rout-

ing mechanism that tolerates failures for interconnection networks by doing

a hardware reconfiguration of all the network resources that have not been

affected by the failures. To effectively manage this objective, each router in-

corporates two system size tables for routing messages through the different

virtual networks (to avoid deadlock issues) and one table (as large as the

network degree) that records the current shape of the safe topology.

2.3.1 Unicast-based Implementations

There are design solutions from the off-chip network domain that could be

applied to the NoC field. All these mechanisms do not fit properly in NoCs

unless they are thoroughly redesigned. As an example, proposals for TCP/IP

protocols [65] are not suitable for NoCs as they rely on message dropping, and

would severely affect network performance. There are also techniques used

in large parallel systems like the Blue Gene/L system [19] where entire sets

of healthy nodes (lamb nodes) are switched off to keep topology and routing

algorithm unchanged. Other mechanisms, focused on routing optimization

[22], require the use of virtual channels (up to five in some cases) but they

do not achieve 100% coverage3 practically. Also, these mechanisms rely on

adaptive routing, and the network must deal with out-of-order delivery issues,

a feature that could be difficult to implement in NoCs. Other examples are

Interval Routing [68] and extensions [21], which group sets of destinations

requesting the same output port, and are an initial attempt to compress the

routing table in routers. However, these techniques are not easily applicable

to irregular networks.

Street-Sign Routing [4], a source-based routing implementation, compresses

the message header so to minimize the impact on network bandwidth. Street-

Sign Routing includes only the router id of the next turn and the direction

of the turn in the message header. Although message header is reduced it

3We define the coverage term as the percentage of failure cases that are supported.

50 Chapter 2. Technical Background and Related Work

still consumes bandwidth. In addition, a table including the paths for every

destination is required at every end node.

Regarding distributed routing solutions, first we focus on Region-Based

Routing (RBR) [17] (and a similar proposal [42]). It tries to achieve fault-

tolerance in regular and irregular on-chip networks while requiring few re-

sources. At each router RBR groups into a region different destinations that

can be reached through a given output port. The main drawback of such

mechanism is that, even with 16 regions defined, it still does not achieve 100%

coverage [49]. Also, when the mechanism is implemented on a router, it in-

duces a long critical path [49].

Default-Backup Path (DBP) [27] tries to keep healthy processing elements

(PEs) when the attached router fails. It consists of adding redundant wiring

and buffers that connect output and input ports directly. However, it does

not address routing in irregular topologies and requires redundant hardware.

Adaptive stochastic routing (ASR) [63] is a recently proposed routing al-

gorithm (an improvement from the COSR algorithm [38]) that relies on a

self-learning method to handle failures by assigning confidence fields to out-

put ports for different tasks (or applications) running in the system. Thus, it

requires a routing table at each router, having n entries for n tasks and suf-

fering from the same scalability and cost problems related to routing tables.

In [24], authors propose an architecture based on deflection routing that

attempts to detect fault errors by adding CRC modules at input and output

ports for crossbar faults, and SEC codes for link faults with the support of

routing matrices, one for each type of fault. The link fault matrix is n× n, n

being the router radix (i.e the number of inputs/outputs), and each column is

also divided into the bit parity. Routing matrices are also n× n, n being the

router radix, that represent the routing decisions on a message level, using a

variant of deflection routing called deltaXY with weighted priority. Deflection

(or reflection) can lead to potential starvation solved with message dropping,

thus potentially impacting performance.

Another recent proposal, whose objective is to minimize the size of routing

tables, either at end nodes or at routers, is described in [3]. In this article, three

techniques are proposed: Turn-table (TT), XY Deviation Table (XYDT) and

Source Routing Deviation Points (SRDP). All of these techniques consist of a

2.3. Related Work 51

routing table created by different routing algorithms to handle irregular cases

in combination with routing strategies like XY (combined with Y X), source

routing or the don’t turn technique (meaning that a message must not change

direction when traversing the router unless indicated). Deadlock-freedom,

however, is not assured in all these strategies (e.g. when changing from XY

to Y X) unless virtual channels are used, and if the technique supports all

the possible failure cases (coverage term). Anyway, in the worst case, the

supporting routing table will need n entries for n destinations.

In [29], a compendium of state-of-the-art look-up tables (LUTs) implemen-

tations for routing purposes is proposed. These designs shift from being fully

hardwired to being partially or fully configurable, depending on the degree of

flexibility.

Novel implementations based on Dimension-Ordered Routing, like FDOR

[62], arise to provide coverage on irregular topologies. This routing methodol-

ogy is based on the idea of dividing the dimensional mesh irregular topology

into regular submeshes, a core mesh and one or more flank meshes. Depending

on the division, at the core mesh, messages are routed with XY routing and

on the flank meshes with Y X, or vice versa. One bit per router is needed to

configure XY or Y X routing. FDOR provides a cheap and efficient routing

solution to offer coverage on a set of irregular topologies that abide by certain

conditions, but it does not offer full coverage (there is no non-minimal path

support).

As an overall view of the related work on fault-tolerant unicast routing for

NoCs, the proposals use routing tables (either at sources or at destinations)

and/or rely on an excessive number of resources (virtual channels) to avoid

the deadlock problem. Also, none of the solutions (except when using tables)

is able to provide full coverage (all the possible failure cases) for a 2D mesh.

Thus, existing solutions are very expensive in terms of routing delay and/or

required silicon area and power consumption.

2.3.2 Collective Communication Implementations

One of the most recent proposals for tree-based collective communication is

Virtual Circuit Tree Multicasting (VCTM) [14]. VCTM builds a dynamic tree

mapped on top of a mesh providing support for cache coherence protocols like

52 Chapter 2. Technical Background and Related Work

Virtual Tree Coherence (VTC) [15]. For its implementation, VCTM uses two

sets of tables. First, it uses a content-addressable memory at every end node,

storing references for the current active trees. Second, it uses a VCT (Virtual

Circuit Tree) table at every router. The number of entries of the VCT table is

the product of the number of end nodes times the number of trees used (e.g.

1024 entries for a 16-node system with a maximum of 64 trees per core). This

results in significant (and non-scalable) area, delay and power overheads. In

addition, VCTM requires virtual channels to keep the ordering of the tree for

different regions. Most important, VCTM is designed around DOR routing,

thus not supporting irregular topologies (2D meshes with potential faulty links

or routers).

XHiNoC [51], offers a very detailed multicast router architecture with a

different approach, not only focused on coherence protocols. XHiNoC provides

a parallel pipelined multicast wormhole switching technique. While XHiNoC

is flexible and extensible, it requires (on every router) look-up tables (LUTs)

and additional logic allocated at each port. In particular, it uses one table

for routing (as many entries as destinations) and a table for message identity

management (IDM) to break cyclic dependencies between multicast branches.

As an additional feature, XHiNoC uses a hardware logic called LCFS (Link

Controller and Flow Supervisor) for controlling the links in the crossbar router

to prevent congestion states.

MRR (Multicast Rotary Router) [1], is a router with multicast support

based on two concepts. First, a topology-agnostic table-based solution, and

second, two internal ring buffer structures at each router, cyclically routing

messages in opposite directions. All destinations of the collective operation are

encoded in the message header (using one bit per node). Instead of a central-

ized table, every output port has its own table with the reachable destinations

from that output port as a bit-encoded (N destinations, N bits) solution. As

said before, memory requirements increase quadratically with the number of

end nodes. Also, MRR, has a large number of buffering stages, the ones in

input/output ports and the intermediate ones in the rings, increasing power

consumption.

RPM (Recursive Partitioning Multicast) [70] is a recent table-less solution

for multicast. It uses a minimal logic to partition the entire network (from the

2.3. Related Work 53

perspective of the source end node), into eight partitions or quadrants. All

the destinations of the collective operation are encoded in the message header.

RPM generates message replicas at certain output ports based on the assigned

partitions and on priorities. The proposal, however, is confined to a limited set

of minimal routing paths and does not face the challenges mentioned above

that may end up in irregular topologies. In addition, it requires a number

of virtual channels on every input port to solve the deadlock problem with

multicast traffic. The number of virtual channels depends on the blocking

possibilities due to wormhole switching, thus increasing with network and

message size.

Following the summary for unicast-related work, multicast/broadcast pro-

posals either rely on the use of tables for routing purposes (and for building

multicast trees) and/or rely on simple routing algorithms not adapted to faulty

networks.

54 Chapter 2. Technical Background and Related Work

Chapter 3

The Foundations

“An idealist believes the short run doesn’t count. A cynic believes

the long run doesn’t matter. A realist believes that what is done or

left undone in the short run determines the long run.”

Sydney J. Harris.

The most straightforward solution for routing implementations is the use

of routing tables due to its flexibility. Virtually any routing algorithm instance

applied to a given topology can be represented as a set of routing entries in a

table. On small systems the hardware cost and power consumption related to

the memories used to build routing tables is affordable, but as more and more

cores are integrated on the chip, causing the system size to grow, the solution

becomes expensive due to its poor scalability.

In this chapter, we take a step forward, and propose a new methodology

for networks-on-chip routing implementations. The objective of this proposal

is to offer a compact, simple and flexible methodology to aid the development

of new routing implementations in the on-chip network domain. The basics

of this methodology is to offer a simple way to represent the topology and

routing algorithm. The aim is to simplify the way we understand a routing

algorithm, focusing on local actions performed at each router. Note that

we focus only on deterministic and/or partly adaptive routing algorithms,

where the CDG is acyclic. Adopting the techniques proposed in this thesis to

fully adaptive routing algorithms would be, however, straightforward. In the

55

56 Chapter 3. The Foundations

following chapters we will describe the method to represent a routing algorithm

in order to achieve efficient and scalable routing implementations.

For the sake of explanation, all the network routing implementations shown

in this dissertation are applicable to 2-dimensional meshes. Extensions of this

methodology to other n-dimensional topologies are beyond the scope of this

work. A remark must also be made concerning the interoperability of the

tile-based node. We assume only one end node per tile, so the router serving

as the interface to the network dedicates one local link. Expanding to tiles

with two or more end nodes can be done with the addition of more local links

between the router and the network interface.

3.1 Methodology

In order to enable an efficient implementation of a routing algorithm, a com-

pact representation of this algorithm is desirable, thus potentially requiring a

small silicon area and achieving low latency while providing flexibility. The

methodology we propose for such representation is based on two assumptions:

1. The 2-dimensional topology is modelled as a graph where each node con-

tains one router. For the sake of simplification, each router is connected

to at most four other routers, serving the communication between tiles.

Therefore, the nomenclature for each direction in the network is changed

from X+, X−, Y+ and Y− to east (E), west (W), south (S) and north

(N), respectively. Additionally, the bidirectional link connecting the

processing device to the network router is called local (L).

2. For each topology, a set of deterministic (or partially adaptive) routing

algorithms is applicable to that topology. Each routing algorithm that

can be applied on a 2-dimensional mesh topology would be suitable, but

in order to offer efficient routing (see Section 2.2.7) the routing algorithm

must comply with some restrictions:

• Deadlock-freedom: The routing algorithm must ensure that the

messages routed avoid deadlock scenarios.

• Connectivity: It is mandatory that the routing algorithm is able to

offer at least one path between each pair of end nodes.

3.1. Methodology 57

Once the proper routing algorithm is selected, it is represented on the

topology as a set of routing restrictions. Routing restrictions are a compact

description of any routing algorithm that follows the previous properties afore-

mentioned. The most straightforward solution to ensure deadlock-freedom is

to avoid cycles, by preventing some paths. As shown in Figure 3.1, if a mes-

sage arrives to router 3, that message is forbidden to take the west channel

reaching router 2 afterwards.

Figure 3.1: Avoiding deadlock by breaking the cycle between routers.

A routing restriction is defined between two consecutive channels (c1, c2),

thus, crossing a router. The routing restriction indicates that no message can

cross both channels in the order the routing restriction is defined (c1 then c2)

consecutively. However, a message can cross both channels if there are other

channels in between (c1, then other channels, and then c2). Figure 3.2 shows

the routing restrictions on a 4 × 4 2-dimensional mesh for two well-known

routing algorithms. Figure 3.2(a) shows an example of the Segment-based

Routing algorithm (SR) [35] represented by its set of routing restrictions. SR

is a topology-agnostic routing algorithm since it can be implemented on any

topology. With SR, many different instances of the routing algorithm can

be obtained by simply placing routing restrictions in different locations (but

58 Chapter 3. The Foundations

ensuring deadlock freedom and keeping connectivity among all the routers).

Figure 3.2(a) shows also the example of a valid path and an invalid path

crossing a routing restriction.

Also, traditional routing algorithms like Dimension-Order-Routing (DOR)

[64] and the odd-even routing algorithm can be represented by their set of

routing restrictions. Figure 3.2(b) shows the routing restrictions for the DOR

routing algorithm. Note that, in the SR case, bidirectional routing restrictions

are defined. Therefore, two links connected to the same router can not be used

in neither direction. In the figure a bidirectional routing restriction is drawn

by a bidirectional arrow. For the DOR algorithm, however, only unidirectional

routing restrictions are used (represented by unidirectional arrows). The DOR

algorithm forbids messages from taking Y-X transitions. Therefore, routing

restrictions are only defined from N and S links to E and W links. The opposite

transition is allowed by DOR, thus no routing restrictions exist from E and

W links to N and S links.

It is important to note that different routing algorithms can be represented

with routing restrictions even for irregular topologies. In Figure 3.3, two SR

routing instances and the up*/down* routing algorithm are represented for

the same irregular topology. As can be seen, different algorithms lead to

different locations of the routing restrictions, thus being different algorithms.

For some source-destination pairs, non-minimal paths are needed, thus, non-

minimal routing algorithms are also compatible with the routing restrictions

representation.

Fully routing algorithms (those that allow cycles in the CDG), can be

represented by routing restrictions, however, such restrictions only apply to

the escape path of such algorithms. Anyway, we focus in this thesis in acyclic

routing algorithms.

3.2 Configuration bits

Representing a routing algorithm by a set of routing restrictions will allow us a

compact and efficient implementation of the algorithm. To allow the usability

of this representation it is desirable to translate the graphical representation

into real hardware. To do so, we introduce the router configuration bits. We

3.2. Configuration bits 59

(a) SR routing algorithm (b) DOR routing algorithm

Figure 3.2: Routing algorithms represented as a set of routing restrictions.

pursue an implementation that is distributed among all routers. Also, we need

to track both the routing algorithm (through the location of routing restric-

tions) and the topology. Therefore, each router will include the configuration

bits of neighbour routing restrictions and connectivity patterns.

Each router in the network will handle globally two sets of configuration

bits. Each set has a different purpose as their function is to serve as a compact

and flexible translation of the current topology and the routing algorithm

applied. The first set of these configuration bits is called the routing bits

(a) SR (b) SR (c) up*/down*

Figure 3.3: Different routing instances for the same irregular topology.

60 Chapter 3. The Foundations

(Rxy). Routing bits represent the changes of direction that can be made at

the neighbour routers. It means that if a Rxy bit is set, the message can be

first routed on x direction and at the next router it can be routed through y

direction, picked from combinations of the four basic directions: north, east,

west and south. There are certain combinations that are not allowed, i.e.

to avoid U turns as to prevent that a message returns to a router that has

previously routed the message. Therefore, as we assume 2D meshes as the

initial topology we define twelve routing bits. They are listed and briefly

described next:

• Rne, Rnw, and Rnn. These bits indicate whether messages can take the

north port and at the next router the message can be forwarded through

the east port, the west port, or the north port, respectively.

• Ren, Res, and Ree. These bits indicate whether messages can take the

east port and at the next router the message can be forwarded through

the north port, the south port, or the east port, respectively.

• Rwn, Rws, and Rww. These bits indicate whether messages can take the

west port and at the next router the message can be forwarded through

the north port, the south port, or the west port, respectively.

• Rse, Rsw, and Rss. These bits indicate whether messages can take the

south port and at the next router the message can be forwarded through

the east port, the west port, or the south port, respectively.

Note that routing bits are the opposite of routing restrictions. Indeed,

if a routing restriction exists the associated routing bit is reset. Also, note

that routing bits are computed in a straightforward manner, as they mimic

the routing restrictions at the neighbour routers. In Figure 3.4(a) there is an

example of the allowed and forbidden paths a message could take according

to router A, and based exclusively on the routing bits. Specifically, bit Rne

at router A is set and indicates a message is allowed to go first to the north

and afterwards, at the next router, to the east. On the contrary, the routing

decision of going first to the east and then to the north is not allowed, due to

the restriction present in router C, at the east of A. Note that four of those

3.2. Configuration bits 61

routing bits (Rnn, Ree, Rww and Rss) indicate whether a message can advance

along the same direction in X or Y dimensions or, on the contrary, either

should take a non-minimal path, or has reached the mesh border. Following

the description of the example, in the case of router A, bit Rnn is reset due to

the fact that there is no path to the north after traversing router B. Note that

routing bits associated to local ports (links connecting end nodes to routers)

are not needed, since routing restrictions do not exist that affect such ports.

Therefore, no additional routing bits are required and, most important, they

do not increase as the system size increases.

(a) Routing bits (b) Connectivity bits

Figure 3.4: Configuration bits at a specific router. SR routing algorithm used.

The second set of configuration bits is related to the topology. They are

labelled as connectivity bits. A Cx bit defines the connectivity at the x output

port. For example, if the Cn bit is set it means that there is a neighbour

router connected through the N port. Cx bits act as a filter for connectivity

and topology definition.

In order to provide a complete example, Figure 3.5 shows the bits com-

puted for a 4 × 4 2D mesh when using the DOR routing algorithm (routing

restrictions can be seen in Figure 3.2(b)).

As can be seen in the figure, bits Rne, Rnw, Rse and Rsw are all set to

62 Chapter 3. The Foundations

Figure 3.5: Routing and connectivity bits for a 4 × 4 2D mesh with DOR.

Routers are numbered row-wise. (See Figure 3.2(b))

zero, representing the Y-X routing restrictions DOR imposes. Bits Rnn, Ree,

Rww and Rss are all set to one (allowed by DOR) except those cases where

the message would go out of the network (at the boundaries). Ren, Res,

Rwn and Rws are set to one (X-Y transitions allowed) except for the cases

the message would go out of the network. Finally, connectivity bits are set

appropriately and only those cases at the network boundaries are reset. It is

worth mentioning now that routing bits that cross network boundaries can be

either set or reset depending on the use/intention of such bits. This will be

discussed later.

3.2.1 Multiple Regions

Although a single bit needs to be used per output port to provide informa-

tion on topology connectivity, Cx bits may be extended to 8-bit registers, thus

providing flexibility when defining regions (which may enable effective vir-

tualization and aggressive power consumption mechanisms). This means, for

example, that the N port of a router has its connectivity defined from Cn[0] to

Cn[7] for regions 0 to 7. Note that while defining regions or domains, by using

connectivity bits, those regions may even overlap. We can find an example in

Figure 3.4(b). Router A is shared by two different regions. For region 0 the Cs

bit is reset and for region 1 the bit is set. With this configuration, messages

(labelled with the appropriate region identifier) can be managed appropriately.

3.2. Configuration bits 63

Also, failed links and boundary routers can be configured accordingly.

Figure 3.6 shows a possible static partition of a chip with 8× 8 tiles when

using 8 connectivity layers. We define a layer as the regions that can be

defined with the same identifier from the connectivity vector. Note that more

than eight regions can be defined since regions with the same layer identifier

do not need to overlap. Indeed, in the figure we can see how many regions

can be defined, some of them irregular and some of them regular ones. Also,

failed components (tiles) can be excluded with a proper configuration of the

connectivity bits. All the regions in the figure required only 3 identifiers/layers.

Thus, with eight identifiers/layers many regions can be defined, different ones

for different purposes. The feature of connectivity layers will be exploited by

different mechanisms we will define in the following chapters.

Figure 3.6: 8× 8 mesh partitioned into different overlapped regions.

3.2.2 Bits Computation

The way these bits (routing and connectivity bits) are computed is critical

for the success of the mechanisms. Indeed, not all the combinations of bits

guarantee connectivity and/or deadlock freedom. The first step is comput-

ing the routing bits (Rxy) and connectivity bits (Cx), which are computed

64 Chapter 3. The Foundations

offline. This is done by analysing the topology (including the failed/powered

down routers and links) and applying the routing algorithm. The choice of

the routing algorithm is critical since it must guarantee deadlock freedom and

connectivity. As by default, Segment-based Routing algorithm (SR) [35] is

chosen as it is topology-agnostic and does not require virtual channels. Never-

theless, any other topology-agnostic routing algorithm may be used. However,

SR provides many instances of valid routing algorithms, thus being flexible.

Alternatively, for a healthy chip (no failures) the XY routing algorithm can

be used by computing the corresponding bits.

Once the algorithm is selected, the routing algorithm is represented by

the routing restrictions it enforces. Routing bits (Rxy) are then computed by

taking into account the location of the routing restrictions. Note that when

the the location of routing restrictions is known, the computation of Rxy bits

is straightforward and thus, its computation complexity is low (linear with the

number of routing restrictions). Connectivity bits (Cx) are computed based

on the existence of links in the router and based on the static partitioning

necessities in the chip.

Figure 3.7 shows the algorithm in pseudo-code for the computation of the

routing bits and the connectivity bits. As can be seen, first the connectivity

bits are computed for each region defined with the appropriate link definition.

Function checkLink indicates whether a link belongs to a region or not.

In the case of routing bits, from the viewpoint of a router that has a re-

striction, the routing bit is set accordingly to its immediate neighbour based

on the type of restriction. The pseudo-code extends this computation to uni-

directional routing restrictions, as any bidirectional restriction can be defined

as a pair of unidirectional restrictions. Obviously, the code can be simpler

if the designer assumes always bidirectional restrictions. Function getNeigh-

bour delivers the identifier of the router attached to a given link to a router.

Function has restriction indicates if a routing restriction exists between two

links.

Note that routing bits different from Rnn, Ree, Rww and Rss, that are not

strictly associated to a routing restriction and at least one of the directions

is non existent (e.g. outside the network), can be computed either as set or

reset depending on the use the routing implementation will make. In Figure

3.3. Conclusions 65

Figure 3.7: Pseudo-code for the computation bit algorithm.

3.4(a), at router B, routing bit Ren can be set or reset, as a message can go

first to the east of router B, but afterwards, there is no link to the north, so

in any case, the connectivity bit could filter the final choice. We will expand

this idea in the next chapter. Indeed, the algorithm to compute routing and

connectivity bits will be extended in the following chapters to provide a better

use and to expand functionality.

3.3 Conclusions

Routing and connectivity bits are a simple yet powerful mechanism to route

messages in combination with the routing implementations described later.

Indeed, the main objective of these bits is to provide support for topologies de-

66 Chapter 3. The Foundations

rived from an initial 2D mesh structure, in some cases leading to non-minimal

paths, and to operate with the same degree of flexibility that routing tables

would offer. This allows for an efficient method to deal with the challenges of

fault-tolerance, power consumption issues, and virtualization-enabled systems.

With this methodology, good scalability of the system will be provided. In the

next chapters we will take advantage of such bits in order to define efficient

implementations of both unicast and broadcast/multicast communication.

Chapter 4

Unicast Communication

“Do or do not... there is no try.”

Yoda, Jedi Master.

In this chapter, we propose a compact, simple and flexible routing mech-

anism for unicast communication that removes the need for routing tables

at every router, thus enabling the distributed implementation of any rout-

ing algorithm on regular and irregular topologies derived from 2-dimensional

meshes. Three different mechanisms are proposed, starting with the simplest

one with acceptable coverage results and ending with the most complete one

providing full coverage. All the mechanisms rely (partly or completely) on the

foundations described in the previous chapter. The complete mechanism of-

fers full coverage and is prepared to face the new challenges present in routing

implementations in the on-chip network domain. We define the term coverage

as the percentage of irregular topologies derived from a 2D mesh topology that

are supported by the routing algorithm and its implementation.

The chapter is organized as follows. From Section 4.1 to Section 4.4 we

describe the evolution of the mechanism from its grounds, its very basic imple-

mentation and evolving until full coverage of irregular topologies is provided.

Then, in Section 4.5 deadlock freedom and connectivity is discussed with a

formal demonstration. In Section 4.6 two real router implementations are pre-

sented with the complete unicast routing mechanism, each one conceived both

for MPSoCs and CMPs. In Section 4.7, evaluations and results are presented,

67

68 Chapter 4. Unicast Communication

including the hardware overhead for the routing implementations. Finally, in

Section 4.8, some conclusions are provided.

4.1 LBDR: Logic-based Distributed Routing

DOR can be represented with the foundations presented in the previous chap-

ter. Figure 4.1 shows the routing restrictions for DOR in a 4×4 2-dimensional

mesh. With this representation, the properties of the routing algorithm still

remain. As an example, there is a routing restriction at router 10 that forbids

messages coming from the south being routed to the east. Indeed, the routing

bit Rne at router 14 is reset. The choice of the routing algorithm that will

serve to define the valid routing paths, represented as a set of routing restric-

tions, is key to the success of a routing implementation. We must ensure that

the chosen routing algorithm is able to offer full connectivity between each

pair of end nodes, including topologies with irregularities and maintaining the

deadlock-freedom condition. As discussed in Section 2.3, for the sake of the

routing implementation, Segment-Based Routing [35] algorithm is used for the

rest of the dissertation.

Figure 4.1: Routing restriction representation of DOR algorithm on a 4 × 4

2D mesh.

4.1. LBDR: Logic-based Distributed Routing 69

Logic-based Distributed Routing (LBDR) [18] is the simplest routing imple-

mentation based on the routing and connectivity bits methodology presented

in the previous chapter. This first basic mechanism is designed only for routing

algorithms where minimal path support is guaranteed in the applied topology.

See an example in Figure 4.2, where there are some minimal paths displayed

for different pair of sources and destinations. In addition, Figure 4.3 shows

several topologies where LBDR can be applied.

Figure 4.2: Example of minimal paths.

(a) p layout (b) q layout (c) + layout

Figure 4.3: Topologies supported by LBDR.

70 Chapter 4. Unicast Communication

As minimal path is guaranteed by definition, LBDR requires only eight

routing bits per router, as Rxx bits are always set to one. In particular: for

output port N , Rne and Rnw bits; for output port E, Ren and Res bits; for

output port W , Rwn and Rws bits; and for output port S, Rse and Rsw bits.

For the connectivity bits the mechanism relies only in one layer, thus no vector

bits are used for the connectivity. Instead, only four bits per router (Cn, Ce,

Cw, and Cs) are used. Notice, however, that connectivity layers can be added

in an straightforward manner (at a slight cost increase).

Figure 4.4: LBDR implementation, detail on the north output port case.

LBDR is based on the relative position in the mesh of the router the

destination node is attached to and the current router. A general schematic

of LBDR implementation is shown in Figure 4.4. First, in order to compare

both positions, the COMPARATOR module is used at the first stage, which

generates four control signals. These signals, N ′, E′, W ′ and S′, indicate the

relative position of the final router from the viewpoint of the current router.

For example, in Figure 4.5, if the current router is 5 and our destination is

router 2, signals N ′ and E′ would be activated, because it is located at the

north-east quadrant. With these control signals, and using the routing (Rxy)

and connectivity (Cx) bits, the LBDR mechanism computes a set of routing

decisions in the second stage.

The second stage requires four logic units, one for each output port. Each

one can be implemented with only two inverters, four AND gates and one OR

4.1. LBDR: Logic-based Distributed Routing 71

Figure 4.5: 4 × 4 2D mesh with routing restrictions applied from the SR

algorithm.

gate. As all of them are similar we describe here only the logic associated with

the N output port.

The N output port is considered for routing the incoming packet when

either one of the following three conditions is met. If none of the conditions is

met, then the N port can not be considered for routing the packet (addition-

ally, the connectivity bit Cn is inspected in order to filter the N port):

• The destination is on the same column (N ′ × E′ ×W ′).

• The destination is on the NE quadrant and the message can take the E

port at the next router through the N output port (N ′ × E′ ×Rne).

• The destination is on the NW quadrant and the message can take the

W port at the next router through the N output port (N ′×W ′×Rnw).

As stated, this logic provides support for minimal paths in the network,

and generates a signal per output port. The L signal is set when the message

has reached the final router destination, which equals when N ′, E′, W ′ and

S′ signals are reset.

72 Chapter 4. Unicast Communication

Figure 4.6: Routing and connectivity bits computed for SR algorithm on a

4× 4 2D mesh.

4.1.1 Detailed Example

Figure 4.7: Example of routing decisions in LBDR.

Figure 4.7 shows an example of routing in LBDR. Router 14 wants to

send a message to destination router 5. At router 14, signals N ′ and W ′ are

activated at the first stage of LBDR as destination is on the NW quadrant.

At the second stage, N signal is considered for routing as N ′ and W ′ signals

are active, Rnw is set (see Figure 4.6), and there is connectivity to the north

(Cn is also set at that router). Note that also W output port is valid to route

the message, as Rwn is set, and there is connectivity to the west. However,

let us assume that the arbiter chooses the N output port finally, therefore the

4.1. LBDR: Logic-based Distributed Routing 73

message reaches router 10. At the next hop, at router 10, a routing operation

is started again. N ′ and W ′ are active, again. After the second stage, LBDR

provides N direction as a valid choice, but unlike in the previous case, W is

discarded, because of the Rwn bit at router 10, which represents the routing

restriction at router 9. Message is sent north to router 6. At this router, the

process is repeated again, as the message is still not at its destination. In

this case, only W ′ signal is active, and after the routing process, W is the

only routing option available. The message is forwarded to router 5, where it

will be delivered to the local port connected to the node, as the message has

arrived to its destination (L signal is activated).

4.1.2 Arbitration Issues

Note that several signals (N , E, W , or S) could be activated at the same time

for a message, as there can be more than one valid output choice at the same

time. This occurs when partly adaptive routing algorithms are implemented on

top of LBDR. For instance, with XY routing only one output port is provided

regardless of the positions of the current router and the destination router.

For other algorithms, however, different output ports can be considered. This

is the case in Figure 4.5, for a message at router 9 that has its destination

at router 3. The message can use ports N and E at router 9 (the same at

router 10). If we need to enforce deterministic routing, then both output ports

can later be filtered by the arbiter that selects the final port according to its

priority strategy, whether adaptiveness is allowed or the routing algorithm is

deterministic. After the output port choice is considered, the arbiter configures

the crossbar to route the message to the corresponding output port.

However, in some NoC designs the arbiter may be simple and does not allow

multiple routing options from the same input port. This is the case of routers

designed with a two-phase arbiter where arbiters are implemented only at the

output boundaries of the router (commonly know as allocators). To tackle

with this issue, we provide two alternative basic modifications to the logic

in order to provide only one routing option per input port. In the first one,

referred to as fixed priorities, each input port will filter some routing options

in order to provide only one. This will be done locally at every input port,

thus no need for communication between different LBDR implementations at

74 Chapter 4. Unicast Communication

each input port of the router. The second one, referred to as smart, will make

more elaborated decisions when filtering the routing options.

Fixed Priorities

LBDR logic provides the following sets of two routing options: NE, ES,

SW , and WN . This is because all the provided paths are minimal within

the topology and the messages are forwarded to one of the possible quadrants

(NE, ES, SW , and WN quadrants). The idea behind fixed priorities is to

filter such routing options but providing equal probabilities to every output

port. This is achieved by providing higher priority to each output port in

a different quadrant. Figure 4.8 shows the extended LBDR logic providing

priorities to the N port for the NE quadrant, E port for the ES quadrant, S

port for the SW quadrant, and W port for the WN quadrant.

Figure 4.8: LBDR with fixed priorities.

In particular, for the N port, the new logic filters the port if the packet

can be forwarded also through the W port (in that case the N port is not

eligible for routing purposes). Notice that the N port is not filtered if the

packet is going only through N direction or through the NE quadrant (the

N port has priority in this quadrant). Similar deductions can be obtained for

the remaining set of logic equations.

4.1. LBDR: Logic-based Distributed Routing 75

The main benefit of fixed priorities is the fact that LBDR logic is compact

and still isolated at every input port. At the end LBDR provides only one

routing option per input port.

Smart Priorities

The original LBDR logic providing more than one routing option can be easily

coupled with a three-phase arbiter. At the first phase each input port provides

requests to the output ports (more than one is accepted). At the second phase

each output port independently selects just one routing option and notifies it

back to the input port. At the third phase the input port selects one of the

accepted routing options. The main drawback of the three-phase arbiter ap-

proach consists of the increased arbitration latency and thus increased packet

latency. This is one of the reasons to prefer two-phase arbiters in NoCs.

However, in some cases there is still margin to implement some common

logic sharing all the requests from input ports in order to make smarter arbi-

tration decisions. It is a design that fits with the lightweight implementation

of routers with two-phase arbiters.

(a) Filter and control signals layout (b) Details of a control signal

Figure 4.9: LBDR with smart priorities.

Figure 4.9 shows a possible implementation of a smart priority mechanism

coupled with LBDR. In this case, there is a common logic (Figure 4.9(a))

that reads all the routing options provided by every input port at each possible

76 Chapter 4. Unicast Communication

arbitration cycle. In particular, three control signals are activated from each

input port, plus four control signals from the local port. Each control signal,

labelled iXY , indicates if input port X is requesting output port Y . Possible

ports are NEWS and L (local port). The filter logic provides four control sig-

nals to every output port of the router, thus providing sixteen control signals.

The output signal labelled oXY means input port X finally requests output

port Y . Notice that the filter logic will assert only one control signal for every

output port (remember that a two-phase arbiter is assumed).

The filter logic is shown in Figure 4.9(b). The goal of the filter logic is

to remove routing options whenever the requesting input port is providing

two routing options and at least there is another input port (or local port)

requesting only that output port. In other words, priority is given to input

ports requesting only one output port by filtering routing options whenever

possible. The figure shows a possible logic implementation for such mechanism.

The first part of the logic computes five internal control signals (N1, E1, W1,

S1, and L1). X1 means X port is requesting only one output port.

The second part of the logic filters routing options. Focusing on routing

option iEN (input port E requests output portN) we can see that this routing

option is filtered (output signal oEN ′ is reset) by the smart filter if there is at

least one input port requesting only that output port (control signal iWN is

set and input port W is only requesting one output port, iSN is set and input

port S is only requesting one output port, or iLN is set and input port L is

only requesting one output port). The remaining routing options are filtered

in the same way and in parallel. Also, notice that routing options are filtered

again using a fixed priority module in order to provide one routing option per

input port. In the provided example the final oEN routing option is filtered if

the input port is also requesting output port W (for the quadrant NW west

direction has priority).

4.1.3 More Cores inside a Node

Although for this work, it is assumed that a tile-based node contains only one

core attached to the router, other designs could include two or more cores per

router. Under certain operating conditions, concentrated topologies become

attractive. Basically, the idea consists of reducing the number of topology

4.1. LBDR: Logic-based Distributed Routing 77

dimensions or (as in our case) of routers in each dimension of a k-ary 2-

mesh and to increase the number of cores attached to each router, instead of

assigning only one core per node. This way, bisection bandwidth is traded for

low latency, area and power in this kind of topologies. On the other hand,

assigning more cores to a router can increase the complexity of it, specially

in the arbiter and routing modules, resulting in an impact of area, power and

latency, so the designer must evaluate the trade-off of these kind of topologies.

LBDR can also be extended to support multiple cores per router in concen-

trated mesh topologies. For this purpose, a different labelling scheme had to

be devised, since LBDR requires the router coordinates within the 2D mesh.

Now, multiple cores might be associated with the same router coordinates.

The basic idea is that (see Figure 4.10) one local core inherits the same coor-

dinates of the router, while the other ones have an incremental x coordinate.

From a network viewpoint, x coordinates of the routers appear to increase at

a coarse granularity, where the granularity is determined by the number of

cores attached to each router. The figure illustrates the case with 4 cores per

router.

Figure 4.10: LBDR oriented node labelling in concentrated k-ary n-mesh

topologies.

78 Chapter 4. Unicast Communication

4.1.4 Configuration Bits Computation

The routing and connectivity bits are computed for LBDR with the algorithm

described in the previous chapter (foundations). That is, connectivity bits are

set for those channels that connect to routers and routing bits are set for

those cases where no routing restrictions exist. However, there is a special

case for the LBDR mechanism to cover with a slightly change of the routing

bits significance. See the example in Figure 4.11. In this figure, although

there are some failed routers that make the topology irregular, each pair of

end nodes can still be connected by a minimal path. In this specific case (or

similar where a submesh is removed from the original mesh), LBDR to route

a message from router 14 to router 7 needs a slight change of the routing bits

at the routers in the boundary. In particular, with no change of routing bits,

the Rne bit at router 14 would be reset as there is no connectivity to the east

of router 10 (we can think there is a routing restriction at router 10 between

S and E ports). However, such situation will impede a message at router 14

to be properly routed: the N port will be dismissed as Rne bit is reset and

the E port will be dismissed as Ce bit is reset.

Figure 4.11: A p irregular topology that can be supported by LBDR.

4.1. LBDR: Logic-based Distributed Routing 79

This is an important interpretation of the routing bits. Indeed, routing

bits are expected to reflect current routing restrictions in the topology, and

therefore, if the routing bit is associated with a channel that does not exist in

the topology (the case of the east port at router 10) then it is expected the

associated routing bit will be set to zero. However, in that case, a message

going at a router set in the NE quadrant would filter the N port as theRne bit is

reset. Thus, the message can not be routed although there is a valid minimal

path. To overcome this issue, all the routing bits associated with missing

links in the network will be set to one. Note that indeed, there is no routing

restriction if one of the links does not exist, thus routing bits really mimic

routing restrictions. Take into account also, that in the next improvements of

the mechanisms those bits can be set to zero (as new functionality will override

such cases).

Figure 4.12 shows all the routing and connectivity bits for the topology

and routing algorithm shown in Figure 4.11. As can be noticed routing bit

Rne at router 14 is set to one.

Figure 4.12: Routing and connectivity bits of p irregular topology shown in

Figure 4.11.

80 Chapter 4. Unicast Communication

4.1.5 LBDRe

At the first performance evaluations of the LBDR mechanism under the

Noxim (a network-on-chip simulator) platform [40], some degradations of per-

formance were detected when using some routing algorithms. Specifically, the

tests were made confronting up*/down* (UD), Segment-Based Routing (SRh)

and XY under different routing implementations, LBDR and routing tables

(and subsequently, LBDRe). A particular result of the test is shown in Fig-

ure 4.13. As it can be seen, tests under SR algorithm perform worse than

ones with UD routing algorithm. However, the interesting point is that SR

implemented with LBDR works worse than when implemented with tables.

Figure 4.13: Results of performance tests with LBDR.

The reason behind this degradation can be explained with the example

provided in Figure 4.14. A message from router 1 is sent to destination router

8. At the first router, S direction is discarded as a valid routing option by

the LBDR mechanism, preventing that a possible message crosses the routing

restriction at router 5. So the path followed by the message is 1−−0−−4−−8,

but 1−−5−−9−−8 would also be a valid path as the message does not cross

any routing restriction. However, in order to guarantee deadlock-freedom and

being conservative, i.e. no cycles are formed when routing a message, the

possible adaptiveness a routing algorithm could offer is reduced, so reducing

overall performance. Indeed, at router 1 the LBDR mechanism does not see

that two rows below messages could take W turns, thus sends the message

4.1. LBDR: Logic-based Distributed Routing 81

through the W port at router 1. This is a conservative decision.

Figure 4.14: Alternate routing decisions that will not lead to deadlock events.

Figure 4.15 describes the extended LBDR method to overcome this situ-

ation. We refer to is as LBDRe (LBDR extended). The set of routing and

connectivity bits from LBDR are maintained in this extension. Four new bits

per router output port are, however, added.

Figure 4.15: LBDRe implementation.

The bits labelled R2xy indicate whether the y direction can be taken two

hops away from the current router through the x direction. For example, R2ne

indicates whether a message is allowed to change direction to E at the router

located two hops in the N direction. Notice that this set of bits have similar

meaning with the ones used in LBDR. In some sense, these bits provide

visibility to the current router of the routing possibilities two hops away. For

instance, in Figure 4.16, which has the computed set of bits related to Figure

4.14 for LBDRe, the R2sw bit at router 1 is set. This means, that two hops

away from this router in S direction, it is allowed to route a message to W

82 Chapter 4. Unicast Communication

Figure 4.16: Routing and connectivity bits computed for LBDRe.

direction. There is, too, a set of bits labelled RRxy, which indicate whether

there is a routing restriction between x and y links at the current router. These

bits are needed in order to avoid the formation of cycles, which is described

in the example below.

To sum up, LBDRe requires 24 routing bits grouped by 6 bits per output

port. Additionally, the router needs five internal signals ipN , ipE, ipW , ipS

and ipL to indicate the incoming port of the message being routed.

The first part of the routing logic is slightly augmented compared to

LBDR. In particular, based on the X and Y coordinates of the current

router and the destination router, the logic computes the relative directions

N ′, E′, W ′, and S′. Additionally, four extra signals, N2, E2, W2 and S2, are

computed. These signals are set if the destination of the message is at least

two hops away in the corresponding direction (if N2 is set, then at least two

hops must be taken in the N direction to get closer to its destination). Note

that these signals can be easily computed with additional comparators with

the Xcurr and Ycurr coordinates shifted in one position.

The first part of the logic is also in charge of inhibiting the possible output

ports that would lead crossing a routing restriction. For this, the RR (routing

restriction) filter logic is used. This logic requires two inverters, three AND

gates and one OR gate per output port. The resulting signals are labelled as

N ′′, E′′, W ′′, S′′. They feed the final part of the logic.

The second part evaluates the routing options at the one-hop and two-

hops neighbours. For this, the previous logic functions for LBDR have been

extended. For instance, for the output port N , the port will be selected if any

one of the following conditions are met:

4.1. LBDR: Logic-based Distributed Routing 83

• The destination is on the same column (N ′ × E′ ×W ′).

• The destination is on the NE quadrant and the message can take the E

port at the next router through the N output port (N ′ × E′ ×Rne).

• The destination is on the NW quadrant and the message can take the

W port at the next router through the N output port (N ′×W ′×Rnw).

• The destination is on the NE quadrant and is at least two hops away

through theN port, and the message can take the E port at the two-hops

neighbour router through the N port (N2× E′ ×R2ne).

• The destination is on the NW quadrant and is at least two hops away

through the N port, and the message can take the W port at the two-

hops neighbour router through the N port (N2×W ′ ×R2nw).

Finally, the connectivity bit Cn and the routing-restriction filter (N ′′) are

used to filter the output port. For the remaining ports, similar deductions are

considered.

Note that the LBDRe mechanism provides both paths explained in the

example in Figure 4.14. At router 1, the S output port can now be taken

because the R2sw bit is set, so the internal S2 signal will be activated. Note

also that router 5 has its RRnw bit active, thus avoiding taking the W output

port at the current router, which would lead to an invalid path.

It is worth mentioning that this implementation (LBDRe) may provide di-

minishing returns while requiring a larger area requirement for its implementa-

tion (more configuration bits and filter logic). Indeed, performance deviations

between LBDR and LBDRe were analysed and only in algorithms like SR

differences were appreciated, although always lower than 3% in throughput

increase [50]. With some routing algorithms like UD (see Figure 4.13), the

improvement is non-existent as the paths implemented with LBDR are the

same as the ones implemented with LBDRe. Note that routing restrictions

are aligned (thus, one hop visibility equals two hop visibility). Since we advo-

cated for simplicity at previous chapters, we considered the complexity added

in LBDRe being not worth for such marginal performance benefits. More-

over, extending the visibility of the LBDR mechanism, as in LBDRe with

84 Chapter 4. Unicast Communication

two hops, to three hops or more, just increased the complexity with no gain

whatsoever. As this path is not taken, we revert to the basic LBDR mech-

anism and in the following sections we enhance the mechanism so to provide

non-minimal path support.

4.2 Deroutes

With LBDR, a topology will be supported if minimal paths are guaranteed

to exist for each pair of communicating devices. But, let us assume a case

where some links close to a router at the mesh present manufacturing defects

that renders them inoperative. In this case, a message coming from the router

trying to reach the adjacent routers would require non-minimal paths.

Figure 4.17: Some links are inoperative forcing non-minimal paths.

Figure 4.17 shows such a case, which would not be supported by the LBDR

mechanism presented before. The reason is that the path from A to B cannot

be supported. At router A, the possible directions to reach B are N and

E, however, both links are missing, and therefore there is no possible way to

reach B through minimal paths. This motivates for a extension to the LBDR

mechanism: the deroute logic. The deroute logic, when properly configured,

acts as a filter to the output choices provided by LBDR by introducing the

4.2. Deroutes 85

possibility of using non-minimal paths. Figure 4.18 shows an example. At

router A messages coming from the south port and going north need a west

deroute, whereas messages coming from the west port and going east need a

south deroute.

Figure 4.18: Deroutes at router A.

We need to provide non-minimal support in an efficient way, that is, with as

minimum logic as possible. Figure 4.19 shows the deroute logic. In particular,

at every input port of the router a deroute option (dr0, dr1 bits) is provided.

This set of two bits encodes the deroute option (N , E, W , or S). Whenever

the LBDR mechanism is unable to provide a valid output port for a message

(NOR gate with four inputs) and the message is not at its destination, the

deroute option is selected. The logic and the drx bits are replicated for every

input port. Therefore, the deroute option for a message is the one configured

at the input port it is. Alternatively, a single deroute option could be used for

the entire router. However, flexibility is reduced (will be evaluated later).

4.2.1 Deroute Bits Computation

It is worth mentioning that the deroute option needs to be computed in accor-

dance to the routing algorithm. In fact, the deroute option must not introduce

86 Chapter 4. Unicast Communication

Figure 4.19: Deroute logic.

potential cycles that could lead to deadlocks. In Figure 4.18 the deroute op-

tion at input port W at router B can not be set to S since this would lead to

messages crossing a routing restriction.

Once the routing and connectivity bits are computed (as described in the

previous chapter), the deroute options are searched. To do this, an offline

algorithm checks the existence of valid paths for every source-destination pair.

As LBDR may allow multiple paths for a given source-destination, the algo-

rithm deeply searches all the paths in a recursive way. A source-destination

pair is connected if all the allowed minimal paths reach the destination. If

the algorithm fails to support one of these paths, then, a misrouting action is

needed. Figure 4.20 shows a case, where at router B, for messages going from

router A to router C, a deroute is needed. In this situation, the algorithm

tries all the possible deroute options at router B, one per output port but

avoiding U turns (so, west port is not considered). Options leading to crossing

routing restrictions are also avoided. The algorithm starts with the first der-

oute option and keeps following the path, thus taking the deroute, checking if

the path (and all their possible alternative paths) will reach the destination.

In case of success, the deroute option is set and the deroute bit is configured.

In case of failure (destination is not reached), then another deroute option is

tried. Note that several deroute options may be required for a single path. A

pseudo-code description of the algorithm is shown in Figure 4.21. The core of

4.3. Forks 87

Figure 4.20: Derouting a message at router B.

the algorithm is the recursive function testPath that tests if there is a reachable

path between a router and any other router in the network. In the case there

is no direction provided by LBDR (with function doLBDRrouting) then the

deroutes options are tried, checking valid deroute options with the function

testDeroute, that checks the direction taken is not a U turn and at the next

hop there is no routing restriction that is crossed.

4.3 Forks

The deroute logic will enhance greatly the percentage of irregular topologies

supported. However, there are subtle cases that are still not covered. Figure

4.22 shows an example. The problem in this case comes by the fact that

for some destinations located at the same quadrant, at router B the routing

engine should provide one port (N) for some destinations (destination C)

and another port (E) for other destinations (destination A). As the LBDR

mechanism works in quadrants for routing, there is no way to indicate the

router which port should be granted for a particular message.

To solve the previous problem, the mechanism is enhanced with an addi-

88 Chapter 4. Unicast Communication

Figure 4.21: Pseudo-code for deroute computation algorithm.

tional and final feature. At router B, the message is simply forked through

N and W output ports. The fork logic is shown in Figure 4.23. As shown, it

relies on four additional configuration bits (fork bits) per router: Fn, Fe, Fw,

and Fs. These bits are set to reflect the output ports that must be used to

fork a message. Whenever a message comes and its destination is in the same

quadrant defined by the fork bits, then the message needs to be forked.

As can be seen from the logic, the fork operations are performed per quad-

4.3. Forks 89

Figure 4.22: Case not handled by the deroute logic.

rants. That is, a message will be forked maximum through two output ports

belonging to the same quadrant. Whenever a fork operation is detected (one

of the four AND gates is set to one), then the FORK signal is set and for-

warded to the arbiter. The output of the fork logic is also made of four control

signals (NF , EF , WF , and SF signals) sent also to the arbiter (we will see

later that the arbiter needs to be changed to support fork operations).

4.3.1 Fork Bits Computation

Fn, Fe, Fw, and Fs bits are set appropriately depending on the topology

and the applied routing algorithm. If due to the irregularity in the network

considered, at least one pair of end nodes are in the same quadrant but require

specific and different output ports, then, the fork operations are considered.

To do so, the bit computation algorithm tests any possible fork operation at

routers where no deroute succeeded. In Figure 4.24 we can see the addition

of fork bits computation to the algorithm in pseudo-code. In the case that,

even with deroutes, there is no valid path, then, forks options are searched

and tested, with the difference that if any of the output ports provides a valid

path, both are set at the router.

90 Chapter 4. Unicast Communication

Figure 4.23: Fork logic.

4.3.2 Router Implications

The fork operation leads, however, to important changes in the router design.

First, the arbiter must allow one message to compete for more than one output

port at the same time. Two design alternatives are possible. In the first one,

the arbiter may consider a request from a message to two output ports as an

indivisible request, therefore, granting or denying access to both outputs at

the same time. This leads to a simpler design of the buffering at the input

port, since only one read pointer is needed (as in the normal case of a message

requesting a single output port). In the second one, however, the arbiter may

grant or deny access to one output port regardless of the action performed for

the other output port. This leads to a more complex input buffering, since

forwarding of the message is shifted for both output ports, thus each requiring

a read pointer. We assume the first option because of its simplicity and the

fact that fork operations will be required in some rare cases.

The second change at the router (to allow fork operations) is related with

deadlock. Indeed, deadlock may occur in wormhole switching as two forked

4.3. Forks 91

Figure 4.24: Pseudo-code for combined deroute and forks computation algo-

rithm.

92 Chapter 4. Unicast Communication

messages may compete for the same set of resources. Although the routing

algorithm used is deadlock-free, performing fork actions (like collective com-

munication) may lead to deadlock. Imagine that a message m1 gets access to

output port p1 at router r1 and requests access to output port p2 at router r2.

However, message m2 gets access to output port p2 at router r2 and requests

access to output port p1 at router r1. If messages are long enough they will

block the current resources being used while requesting the new ones. Indeed,

none of the messages will advance since the input buffers will fill and the out-

put ports will never be released. Figure 4.25 shows an example where two

multicast messages collide in the network. Although both of them follow the

dimension-order routing algorithm, different branches of the tree induce new

dependencies. Indeed, there are new dependencies between channels used and

requested by different branches of the trees. If one of the branch blocks, then

the other branch will also block (although resources are available).

Figure 4.25: Two multicast messages induce a deadlock situation.

There are two solutions to this problem. The easiest way is the use of

virtual cut-through (VCT) switching, thus ensuring a packet, coming from

the division of a message, will fit always in a buffer. Thus, output ports in

the previous example will be released (the packet has been forwarded entirely)

4.4. uLBDR 93

and the requests for the output ports will be granted. Other options rely

on performing flit-level circuit switching [52], although wormhole switching is

still used among routers. Basically, flits are labelled with identifiers, thus flits

from different packets can be mixed in the same buffer. The problem with

this kind of solutions is that internal tables are required to keep flit identifiers.

We opted for the first solution, thus enforcing VCT switching. Although VCT

is seen as demanding much buffer space at routers, a careful design of the

router can minimize this effect. Note that fork operations resemble tree-based

broadcast operations as a packet is replicated through different output ports.

In Section 4.7 area and latency results from two real router implementations

are presented, thus showing upfront the real impact of such router changes.

Finally, packets being forked will reach the final destination. However, one

of the forked replicas will not reach the destination. In this situation, the

packet needs to be removed from the network. This will be easily achieved by

silently destroying the packet at a router.

4.4 uLBDR

In order to offer a complete unicast solution, LBDR and the extensions, der-

outes and forks, have been gathered in one single mechanism, called uLBDR

(Universal Logic-Based Distributed Routing) [48]. LBDR is integrated as the

core module of this mechanism, and the foundations have been extended to

include the Rxx routing bits, to reflect routing restrictions that prevent hori-

zontal or vertical traversal of a router (EW , WE, NS and SN transitions).

Also, the extension of several connectivity layers to support overlapped regions

or domains has been added.

The addition of the Rxx bits requires a minimal change of the LBDR mod-

ule as pictured in Figure 4.26. Now, on the first stage, at the COMPARATOR

module, eight control signals are generated. Apart from the regular ones (N ′,

E′, W ′ and S′), signals N1, E1, W1 and S1 are computed. These signals

indicate whether the final router is only one hop away in each direction. In a

previous example, in Figure 4.17, at router D, N1 signal would be set if our

destination is router C.

As shown in Figure 4.26, the N port will be selected (UN ′ signal activated)

94 Chapter 4. Unicast Communication

if any of the following four cases is met. First (first AND gate), the destination

is on the same column (to the north) and one hop away. Second (second AND

gate), the destination is on the same column (to the north) but more than one

hop away and the message is allowed to cross the next router from south to

north (bit Rnn is set). Third (third AND gate), the destination is on the NE

quadrant from the router viewpoint and the message can take the south-east

turn at the next router (bit Rne is set). And finally (fourth AND gate), the

destination is located on the NW quadrant from the router viewpoint and the

message is allowed to take the south-west turn at the next router (bit Rnw is

set). Therefore, the addition in LBDR is the use of Rxx bits and the filtering

of the case that the message is one hop away in any direction (in that case the

port is chosen).

Note also that the connectivity bit filters the final decision, and such filter-

ing is made by taking into account the region identifier the message includes

in its header (Rid field). The UL signal is set when the message has reached

the final router destination, which translates when N ′, E′, W ′ and S′ signals

are reset.

Figure 4.26: LBDR mechanism with support for Rxx routing bits, detail for

N direction.

An overview of the schematic of the complete mechanism can be seen in

Figure 4.27. The inputs of the mechanism are the coordinates decoded from

the header, as in the original LBDR, and the region identifier, primarily for

4.4. uLBDR 95

selecting the correct connectivity bit layer. The first signals are computed

on the comparator module, and then are forwarded to the LBDR and fork

modules. Fork bits are checked in parallel with LBDR, just after computing

the N ′, E′, W ′, and S′ signals. The outputs of the fork logic are combined

with the outputs of the LBDR mechanism to produce a possible set of valid

signals. After crossing the deroute module, they are exposed to the arbiter.

Note that fork operations have priority over deroute operations, as the deroute

logic is only enabled if none of the signals combined coming from LBDR or

fork are set. If not enabled, the deroute module just acts as regular wiring.

Figure 4.27: uLBDR.

4.4.1 Configuration Bits Computation

The uLBDR routing implementation, as we will show in the evaluation sec-

tion, is capable of full coverage (100%) of any topology case, regular or ir-

regular, derived from a 2-dimensional mesh, as long as there is connectivity

between each pair of end nodes, so non-minimal path support is guaranteed.

Note that in the event that it is not possible to reach all the destinations,

then the topology is not covered, but the assumption is related to the routing

algorithm instance used. Indeed, with a particular instance of the routing

algorithm, uLBDR is able to offer full coverage. However, with another rout-

ing instance used, a particular topology may or may not be covered. Different

routing instances of SR, for example, end up placing routing restrictions in dif-

ferent places and therefore, some instances could end up unusable. Figure 4.28

96 Chapter 4. Unicast Communication

shows the same topology shown at Figure 4.20 but with a different instance

of the SR algorithm. In this case, deroute options can not be placed at router

B since would lead to messages crossing a routing restriction. Note that the

previous instance of SR (Figure 4.20) allows a proper deroute, thus guaran-

teeing connectivity. The algorithm for finding configuration bits relies on SR

routing. Indeed, it iterates different placement of routing restrictions (com-

puted by SR) until one of them allows connectivity through the foundations

of uLBDR, as seen in Figure 4.29. Indeed, from the pool of different instances

computed by function computeRestrictions, every instance is checked, if all the

paths from any pair of routers is viable then the instance is marked as valid

and the topology is considered routable with that instance. Therefore, the

success in covering a given topology is due to the uLBDR mechanism and the

routing instance used at the same time.

Bidirectional Routing Restriction

A B

C

Figure 4.28: Not possible to place a deroute at router B.

4.5 Demonstration

In this section we discuss the deadlock-freedom and connectivity properties of

the different LBDR mechanisms. Before going into details we need, however,

4.5. Demonstration 97

Figure 4.29: Checking if a topology has a instance of the routing algorithm

for valid routing.

to differentiate between the routing algorithm and the routing implementation,

and to bear in mind that the applied routing algorithm is by itself deadlock-free

and provides connectivity over all the end nodes. Indeed, there is no mean-

ing in using the LBDR mechanisms to implement a deadlock-prone routing

algorithm or that the routing algorithm leaves some end nodes unconnected

(under the assumption that at least all end nodes communicate with other

end nodes, so routing paths must be provided, as there are practical cases in

which the hypothesis of full connectivity can be relaxed [41]) .

Based on the previous observation, then we can deduce that we need to

focus in guaranteeing the LBDR mechanisms are able to keep both properties

(deadlock-freedom and connectivity).

The way the routing algorithm is represented is by the use of routing

restrictions. The algorithms applied have an acyclic CDG and the routing

restrictions are located where channel dependencies do not exist. Thus, a set

of routing restriction is the complementary view of a CDG. Indeed, the CDG

is acyclic as no packets are allowed to cross routing restrictions.

The routing restrictions are coded in the LBDR implementations with the

use of routing bits. Indeed, there is a one-to-one relation between routing

98 Chapter 4. Unicast Communication

restrictions and routing bits.

From the previous comments we can deduce also that the network is dead-

lock free if no message crosses a routing restriction. In other words, deadlock

freedom is guaranteed by the fact that the routing restrictions imposed by

the routing algorithm (and coded in the routing bits) are preserved by the

mechanisms.

As can be deduced from the LBDR logic, no message crosses a routing

restriction. Indeed, an output port is not taken for a message if the message

may potentially cross a routing restriction at the next router. The Rxy bits are

taken into account for routing as they represent the translation of the routing

restrictions from the point of view of each router.

Let us imagine a deadlock occurs in a network using LBDR and a deadlock-

free routing algorithm has been applied (with the proper set of routing and

connectivity bits). If such case occurs, then a routing restriction necessarily

has to be crossed by a message blocked in the deadlock cycle. In that situation,

either the routing bits have been wrongly defined (not representing the routing

algorithm routing restrictions).

Let us extend this with an example in Figure 4.30. Router 5 receives a

message from router 9 that was originated at router 10. Router 9 has a routing

restriction that forbids the use of two consecutive channels: N and E, in both

directions. If the bit computation algorithm has configured correctly router

10, bit Rwn should be reset at that router. From router 10 (take Figure 4.30

as a reference), at the first stage of LBDR, N ′ and W ′ signals are active. If

the message would take W direction, at least one of the logic AND gates in

the computation of this output port must have its output to 1. W output port

is valid, if:

• W ′ signal is active, N ′ and S′ signals are not active and W1 signal

is active or routing bit Rww is set. Therefore, this alternative is not

applicable because N ′ signal is active.

• W ′ and N ′ signals are active and routing bit Rwn is active. Not appli-

cable because routing bit Rwn must be reset.

• W ′ and S′ signals are active and routing bit Rws is active. Not applicable

because S′ is not active.

4.5. Demonstration 99

So, if a message arrives at router 5 from router 9, there is no way that was

previously being routed from router 10 through its west link. In other words,

the LBDR logic guarantees no message will cross a routing restriction, thus

keeping the deadlock-freedom property of the applied routing algorithm.

Figure 4.30: Path not suitable.

When using the extensions in the form of deroutes and forks in uLBDR,

the computation algorithm that obtains such bits must run correctly as is

critical for the success of the mechanism. Once the routing and connectivity

bits are computed, the deroute options are searched. To do this, the algo-

rithm checks the existence of valid paths for every source-destination pair. As

uLBDR may allow multiple paths for a given source-destination, the algo-

rithm deeply searches all the paths in a recursive way. A source-destination

pair is connected if all the allowed minimal paths reach the destination. If

the algorithm fails to support one of these paths, then, a misrouting action

is needed. In case of success, the deroute option is set and the deroute bit is

configured. A similar task is done to compute fork operations. If the algo-

rithm fails in placing deroutes, the fork operations are considered. To do so,

the algorithm tests any possible fork operation at routers where no deroute

100 Chapter 4. Unicast Communication

succeeded. Preventing deadlock scenarios when applying deroutes or fork op-

erations is done by an explicit restriction on the computation algorithm. Any

non-minimal path that uses deroute or fork options is checked before validat-

ing the deroute and fork bits. If it crosses any routing restriction, then the

path is discarded and thus, the deroute or fork operation is not set. See an

example of pseudocode of this bit computation algorithm in Figure 4.24.

Fork operations, as commented before are not completely deadlock-free if

the network relies on wormhole switching. Any operation close to the premises

of collective communication is subject to deadlock scenarios with this kind of

switching as explained in [13]. As long as this kind of scenario is avoided for

routers with uLBDR, routing will be deadlock-free.

Connectivity is also guaranteed by uLBDR. However, in this case, demon-

strating connectivity is hard as many special cases appear when dealing with

derouted or forked messages in irregular topologies. Basically, the underlying

routing algorithm (SR) ensures connectivity in the network. When comput-

ing the configuration bits, the algorithm searches for valid paths from every

source node to every destination node. As commented above, on fail, the al-

gorithm tries to include deroute/fork operations to keep connectivity. Thus,

the same algorithm that computes the configuration bits checks connectivity.

Based on this, whenever the algorithm succeeds in computing the bits then

we can guarantee that connectivity in the network exists with LBDR-based

mechanisms. If the algorithm fails, then the topology is not supported (for

the tested routing instance).

4.6 Real Implementations

To asses the impact of the different mechanisms proposed in this thesis, two

router designs have been deployed. In this section we provide a brief descrip-

tion of the routers used for the evaluation: a non-pipelined MPSoC router and

a pipelined CMP router. In both cases an initial wormhole router design has

been evolved with minimum changes so to allow virtual cut-through switching

(required for fork operations). Changes required are: (1) in flow control, (2) in

the arbiter logic (support fork operations), and (3) in the crossbar to remove

stale copies of forked packets.

4.6. Real Implementations 101

4.6.1 MPSoC Router Design

Typically, NoC building blocks for use in MPSoCs target lower operating

speeds with respect to CMPs and are generally unpipelined [45]. The reference

component that we consider to assess the feasibility of uLBDR is an input

buffered router implementing wormhole switching (Figure 4.31). Size of the

input buffer is tunable and set to 4 flits. In 1 clock cycle, a flit covers the

distance between two consecutive input buffers of connected routers through

the inter-router link. The switch traversal inside the router is controlled by a

modular arbiter (one round-robin arbiter for each output port). A lightweight

stall/go flow control policy is implemented. It requires two control wires: one

going forward and flagging data availability (“valid”) and one going backward

and signalling either a condition of buffer filled (“stall”) or of buffer free (“go”).

This latter signal is indicated as flow control in Figure 4.31.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

FSM

Data / Valid

Input Buffer North

Input Buffer …..

ULBDR

NORTH

ULBDR

…….

Arbiter Output

North

Arbiter Output

…..
Data / Valid

REQ 0

REQ 0

REQ N
Flow

Control

Flow

Control

REQ N

LOGIC

Grant 0 .. Grant N

Grant

REQ 0… REQ N

Flow

Control

Flow

Control

Grant 0

Grant N

Figure 4.31: MPSoC router schematic.

LBDR and deroutes (LBDRdr) mechanisms are implemented in a simi-

lar way, from an architecture viewpoint. The head flit contains destination

coordinates which are read, after storage in the input buffer, by the routing

102 Chapter 4. Unicast Communication

logic. The output signals elaborated by the LBDR/LBDRdr module repre-

sent match signals sent to the arbiters. A match signal indicates that the

packet from a given input port requires a specific output port. It is interest-

ing to note that the LBDR/LBDRdr routing logic enables to preserve the

modular design style of the router architecture (one routing module per input

port).

This router was evolved to VCT switching to support uLBDR. The signals

used and the architecture schematic are the same of Figure 4.31, just the

meaning of flow control signals and the arbiter behaviour change. First of all,

we had to evolve the basic stall/go flow control protocol to credit-based flow

control. In fact, stall/go would have been acceptable only in case all packets

were of the same length. If packets exhibit variable length (e.g., reads versus

writes, variable number of write/read burst beats, etc.), then the router arbiter

needs to know the number of available slots in the downstream buffer before

granting a new packet head. Therefore, we now use the flow control signals

in Figure 4.31 as credits. An input buffer asserts a credit high when it has a

grant from the arbiter AND it has valid flits to send.

The arbiter behaviour had to be modified as well. A port arbiter (say for

the N output port) performs round-robin arbitration among all inputs with

valid asserted and presenting a headflit. Say that input N is the winner.

Then, the arbiter compares its counter value (denoting the number of free

slots in the downstream input buffer) with the packet length from the N

input port. If it is larger, then grant is asserted enabling switch traversal to

all the winning packet flits. If there is no space downstream for the entire

packet, the grant is kept low.

In uLBDR, packets can be forked through two output ports. When this

happens, the LBDR logic asserts two match signals heading to two different

port arbiters. When BOTH of them assert their grant signals, a unique grant

is sent to the requesting input buffer, as illustrated in Figure 4.31. One of

the packets will reach destination. The other one will reach a router where

the LBDR logic will not provide a valid match signal. In that situation, the

grant signal is set by default to asserted, thus the packet will be forwarded

to the crossbar which is not configured for the input port, thus the packet

will be filtered. The input buffer is not aware that no arbitration has been

4.6. Real Implementations 103

performed for the forked packet, and the grant signal is kept asserted, thus

will also correctly generate a credit to the upstream router, since buffer slots

are cleared. This is the way the misrouted forked packet is silently discarded.

4.6.2 CMP Router Design

The CMP router is a pipelined input-buffered wormhole router with five stages:

input buffer (IB), routing (RT), switch allocator (SW), crossbar (XB) and

link traversal (LT). We used a simple router with no virtual channels and five

input/output ports. The input buffer size is set to four flits. The RT module

has been implemented to supportXY , LBDR, LBDRdr, and uLBDR routing

implementations and the Stall/Go flow control. Finally, the SW module has

been designed with a round-robin arbiter as in [59]. The router has been

implemented using the 45nm technology open source Nangate [36].

In order to adapt the basic CMP router to VCT we have performed the

following changes. First, buffers at routers have been set to maximum packet

size, in our case to four flits. In addition, packetization is performed at the

interface nodes when required (notice that this is also needed for the MPSoC

router, probably with a different packet size). Message sizes in CMPs (using a

coherence protocol) are known beforehand. Usually a short message contains

a memory address and a coherence command and a long message also includes

the cache line.

To efficiently forward packets in VCT we need to change the flow control

mechanism (as in the MPSoC router). In the CMP case where packets sizes

are known, we opted for the Stall/&Go flow control at the packet level. That

is, a stall or go signal is asserted per packet. Notice that we assume links

with one cycle delay, thus round trip time is set to three cycles. Buffers of

four flits are thus enough to avoid introducing bubbles. However, for messages

with sizes lower than packet size (and round-trip time; e.g. one-flit packets)

bubbles between packets are generated. To avoid bubbles we decided to pad

short packets to four-flit packets.

SW is the most critical stage in our design. Thus, the arbiter modifications

applied in the MPSoC arbiter are not affordable for the CMP router. To solve

this we have implemented the arbiter shown in Figure 4.32. This arbiter is

the same used in the WH design but it adds a new module performed in

104 Chapter 4. Unicast Communication

parallel. This module arbitrates between fork requests. The grant signals of

this module enable (or disable) the non-fork grants. Higher priority is given to

fork requests. By doing this, minimum impact on the SW latency is expected.

Stale packets (generated by fork operations) are silently discarded in the same

way as in the MPSoC router.

...

PORT
OUTPUT

OUTPUT
PORT

LBDR−DR ARBITER

FORK?

 L

 SLBDR

 S
 S

FORK

 SFORK

 SLBDR

LBDR L

 NFORK

ARBITER
FORK

 S

 L

..

.

Figure 4.32: New arbiter for the CMP router with fork requests.

4.7 Evaluation

In this section we provide several evaluation results to assess the impact of

the different LBDR versions. First, we provide a coverage analysis for each

solution. Then, we analyse the overhead of the mechanisms in the router

designs, including also the overhead incurred by the VCT router counterparts.

Finally, we provide performance results by running real applications in a full

system simulator environment. Also, performance results when using routing

tables are obtained (for comparison purposes).

4.7.1 Coverage Analysis

In this section we evaluate the coverage provided by different versions of the

mechanism, from the original LBDR to the full uLBDR mechanism (with

4.7. Evaluation 105

deroutes and forks). Coverage is measured as the percentage of topologies

supported from a pool of topologies. A topology is considered supported

(covered) if every node in the network reaches all possible destinations.

Figure 4.33: Example of topology in the coverage analysis with deroutes and

forks computed.

A set of topologies derived from the link variability analysis provided in [49]

has been used. In particular, different NoC operating frequency thresholds

were set and links not reaching those thresholds (due to variability effects)

were labelled as faulty. Chips were modelled on a real 65nm implementation

NoC layout where all cores are identical, and their size is 1mm2. Two different

configurations were used, 4× 4 and 8× 8 NoCs with different values of spatial

correlation (λ 0.4 and λ 1.2) and variance (σ 0.05 and σ 0.18). In total,

1423 topologies have been evaluated. Figure 4.33 shows an example of such

topologies.

The evaluation comprehends four different scenarios, LBDR, LBDR with

1 global deroute (LBDR1dr), LBDRdr as explained in Section 4.2 and uLBDR

(LBDRdr+fork), the full mechanism. In Figure 4.34 results show how the

addition of the two enhancements, deroutes and forks, affects significantly the

coverage. Although having one global deroute per router helps to increase

coverage up to 50%, further benefits are obtained for deroutes per each input

port (5 per router), as coverage further increases to 80%. Finally, the fork

106 Chapter 4. Unicast Communication

Figure 4.34: Coverage of several routing implementations.

mechanism is the one that guarantees full coverage (all the topologies were

successfully supported). Figure 4.35 shows the average percentage of deroutes

and forks required per chip. As can be seen, an small set of deroutes is required.

As irregularity and network size increases the use of deroutes also increases

and the fork mechanism is even less utilized.

Figure 4.35: Average percentage of deroutes and forks per chip.

For a more exhaustive coverage of uLBDR routing implementation, a sec-

4.7. Evaluation 107

ond evaluation was made. Starting from 4× 4 and 8× 8 mesh configurations,

several set of irregular instances were produced with 1, 2 and 3 random link

failures across the meshes. Every set produced is composed of 2000 (random

combinations) irregular instances.

Table 4.1: Random link failure coverage evaluation.
1 failed link 2 failed links 3 failed links

4× 4 2000 2000 2000

8× 8 2000 2000 2000

As seen in in Table 4.1, uLBDR is able to offer full coverage (100%) any

irregular pattern in the scenarios provided.

From the results provided, it is straightforward that the uLBDR mecha-

nism is the one that a designer probably should aim for. However, notice that

overheads of the different mechanisms are not plotted in the figure, thus not

showing all the picture. The designer must be aware of implementation over-

heads and of performance impacts. Thus, a tradeoff exists between coverage,

overhead, and performance that needs to be considered. In the next section

we provide the overhead of such mechanisms in the two router designs used

for the exploration of uLBDR.

4.7.2 MPSoC Router Overhead

The MPSoC router was synthesized with a 65nm STMicroelectronics tech-

nology library and Synopsys Physical Compiler. Router versions for each

routing mechanism (LBDR, LBDRdr and uLBDR) were synthesized both

for maximum performance and for the same target speed (that of the slowest

architecture, i.e., uLBDR). All routers implement the same amount of buffer-

ing (4 slots). The choice of a specific routing mechanism affects the maximum

achievable speed by each router: 1GHz for LBDR, 950 MHz for LBDRdr, and

750 MHz for uLBDR.

Post-synthesis area results for the routers are illustrated in Figure 4.36.

By looking at the maximum performance figures, uLBDR is about 10% larger

than LBDR, clearly due to the more complex port arbiters and to their need to

handle true credit-based flow control. To make this relatively more complex

circuit faster, the synthesis tool tried to speed up the crossbar at the cost

108 Chapter 4. Unicast Communication

of further increased area. We also observe that LBDR and LBDRdr feature

approximately the same maximum area, except for hardly controllable specific

optimizations that the synthesis tool applies to the two netlists. The take-away

message here is that the logic complexity of these two routing mechanisms is

pretty much equivalent.

When the three routers under test were re-synthesized to meet the perfor-

mance of the slowest one, uLBDR, then of course the relaxation of the delay

constraint for LBDR and LBDRdr allowed the synthesis tool to infer a more

area efficient gate level netlist for them. As a consequence, the area efficiency

gap with uLBDR became as large as 44,7%, the absolute worst-case.

Figure 4.36: MPSoC router area, normalized results.

The conclusion is that whenever the three routing schemes are employed

at their maximum performance, the area gap is not significant (around 10%)

while tremendously gaining in fault coverage. When the target speed is afford-

able for each of them and close to that of the slowest scheme, then the choice

between the routers becomes a true area-coverage trade-off decision. When

the target frequency is very low (a few hundred MHz, not showed in Figure

4.36), then the gate level netlists of the three schemes can be almost equally

optimized, resulting in almost the same area while keeping the coverage dif-

ferences.

Figure 4.37 shows the latency breakdown of the three mechanisms, LBDR,

LBDRdr, and uLBDR. As can be seen, uLBDR introduces 25% more delay

compared to the basic system in the critical path of the router, while the gap

of LBDRdr is around 3%. But the routing stage is not setting the critical

path as shown in the figure. The latency for the routing stage for LBDRdr

4.7. Evaluation 109

Figure 4.37: MPSoC router latency, normalized results.

and uLBDR is almost the same. The latency gap introduced in uLBDR for

the total router is due to the changes to support VCT switching and this is

reflected in other router elements like the input buffers.

Figure 4.38: MPSoC router power analysis, idle power normalized results.

Power analysis has also been performed for the different routing implemen-

tations. Figure 4.38 reports normalized total idle power of the routers with

their respective breakdowns. Routers with LBDR and LBDRdr have been

implemented and characterized twice: in the first variant they are synthesized

at their maximum speed (1.1 ns clock period), while in the other variant they

are synthesized at the maximum speed achievable by uLBDR, thus resulting

into a fair power comparison.

Idle power is dominated in all cases by the buffer contribution, since clock

gating has not been applied. Power of the routing block inside all routers

110 Chapter 4. Unicast Communication

is relevant, and even dominant with respect to the arbitration power. This

is due not to the combinational logic computing the target output port, but

rather to the registers storing the values of LBDR configuration bits. This

is the price to pay to keep these bits potentially reprogrammable. We notice

however that a clock gating technique here would be very effective, since these

bits are not changed until a failure occurs in the network and routing for this

latter has to be reconfigured.

LBDRdr and LBDR have an almost equivalent power consumption, due to

the very similar router structure with just minor relative modifications, which

is consistently lower than that for uLBDR. This latter features more complex

arbitration logic (with a larger number of state registers), routing logic and

configuration registers, thus giving rise to an almost 30% idle power overhead.

Figure 4.39: MPSoC router power analysis, dynamic power normalized results.

Figure 4.39 reports total router power in active mode, as derived through

the average power computing capability of Synopsys PrimeTime PX (50%

switching activity). First of all, the crossbar contribution to total power now

becomes evident as an effect of the switching activity. In spite of this, the in-

put buffer is still by far the largest contributor. Interestingly, the gap between

LBDR and LBDRdr powers at maximum performance and relaxed perfor-

mance is now larger, due to the increased contribution of the combinational

logic. The gap is such that by comparing only power of the routers synthesized

at their respective maximum performance, uLBDR turns out to be the least

consuming scheme in dynamic power, but not achieving the same maximum

performance of LBDR and LBDRdr. Again, when aiming at the same target

4.7. Evaluation 111

speed, uLBDR proves almost 30% more power hungry than the other schemes.

4.7.3 CMP Router Overhead

Figure 4.40 summarizes frequency and area results of the CMP router for

different switching techniques and routing mechanisms. The first thing to

highlight is the improvement of both area and frequency of the VCT router.

The reason for this improvement is due to the use of buffers with the same size

of packets. This has simplified the IB stage because in VCT the flit header of

every packet is mapped always into the same buffer slot, thus simplifying read

logic. Also, the logic to keep track the number of mapped flits in the buffer has

also been simplified. Due to the per-packet flow control only a control signal

is required. Although such simplifications can also be made in WH, bubbles

would be introduced (known as atomic buffer allocation).

Figure 4.40: CMP complete router, normalized results.

There is no difference in the operating frequency when using either XY,

LBDR or LBDRdr, and only a marginal increase in area (differences fall

within the uncertainties of the synthesis optimization process). This is due to

the RT stage not setting the maximum frequency of the router. uLBDR expe-

riences, however, a small impact in performance and area. This performance

degradation is due to the overhead added to the SW stage.

Figure 4.41 shows the area overhead and frequencies of the different routing

modules, thus not considering the entire router. Now, there are significative

differences between the XY module for WH and for VCT. These differences

are due to the different flow control mechanism used in both versions. Also,

112 Chapter 4. Unicast Communication

Figure 4.41: CMP RT stage, normalized results.

the different input buffer design affects the routing module. On the other

hand, LBDR and LBDRdr mechanisms have an small impact on area but a

large one in frequency. Also, the complexity of uLBDR has a large impact on

both area and frequency. However, remember that this module is not the one

setting the router frequency.

Figure 4.42: CMP router power analysis, idle power normalized results.

Power analysis for the CMP router architectures has also been performed:

Wormhole routers with LBDR and LBDRdr routing mechanisms and the

VCT router with uLBDR routing mechanism. Figure 4.42 reports normalized

total idle power of the routers. As same as the MPSoC counterparts, routers

with LBDR and LBDRdr have been implemented classified in two variants:

4.7. Evaluation 113

in the first one they are synthesized at their common maximum speed (in this

case, 0.68 ns clock period), while in the second one they are synthesized at

the maximum speed achievable by uLBDR (for CMP version, 0.75 ns clock

period), for a fair power comparison in the results.

Idle power is dominated in all cases by the buffer contribution, since clock

gating has not been applied. Power of the routing block inside all routers is

relevant, but as it can be seen in Figure 4.42 the routing module presents the

lowest idle power consumption. As mentioned before, the main element that

causes the power consumption in the routing module is the registers that store

the values of LBDR configuration bits (routing, connectivity, deroute and fork

bits). Identically to the MPSoC router, LBDRdr and LBDR have an almost

equivalent power consumption, due to the very similar router structure with

just minor relative modifications, which is consistently lower than that for

uLBDR. Note that, when using uLBDR the routing module and the arbiter

increase their power consumption. This increment is almost 20%.

Figure 4.43: CMP router power analysis, dynamic power normalized results.

Figure 4.43 reports total router power in active mode, performed on the

same scenario that was set for the MPSoC variants. Note that, router power

presents similar results than idle power. However, the gap between uLBDR

and LBDRdr with respect to LBDR is reduced.

From this evaluation, now the designer will take a much broader view of

the real implications of the different mechanisms. Indeed, not necessarily the

114 Chapter 4. Unicast Communication

designer will opt for the most efficient mechanism that provides full cover-

age, as the area and frequency implications may lead to unacceptable lower

performance. A possible good tradeoff is the choice of the LBDR mechanism

with deroute bits which does not require VCT switching, thus requiring much

lower area and frequency overheads, while still achieving high coverage results

(80%). In the following section we further evaluate the different mechanisms

but using the network as a whole, thus to identify the overall network perfor-

mance effects of the different mechanisms.

4.7.4 Area and Latency Overhead versus Memory-macro Im-

plementations

When synthetizing, usually, industrial tools and libraries perform a synthesis

of a routing tables model in the form of a set of registers (or flip-flops). As

routing tables are implemented on current designs with memory modules, the

next step on the analysis was to find a suitable memory model. Memaker [6], a

tool from Faraday Technology Corporation, is a compiler that produces mem-

ory macro models on UMC Logic LL-RVT (LowK) Process technology. At

first, the objective was to compare both routing modules inside the router

model in a 65nm technology solution, but Memaker produces synchronous

memory macros and the model needed an asynchronous memory macro solu-

tion. Instead of changing all the router model, we decided to compare only

the modules. The LBDR module was changed to be synchronous adding a

previous step to the input. A new set of flip-flops (or registers) that feed the

input of the module with a clock signal. To compare the models in a fair

evaluation, the models were synthetized in a 90nm technology scenario.

For the evaluation, this scenario was assumed: routers are placed in a 2D

mesh, with an IP (core, memory) attached to the router. Routers have a radix

of 8 ports. The total of destinations it is the result of the mesh size, i.e for a

4× 4 mesh there are 16 destinations. Every input port has a memory module

attached with word size equivalent to the amount of destinations. Every word

is composed of 3 bits, matching the radix of the router, so an output port is

selected (from 0 to 7) given a destination.

The minimum size in words that Memaker, at 90nm technology, can pro-

duce is 256 words. But Memaker, also can produce for a size less than 256

4.7. Evaluation 115

words, a single-port register file macro. The results that the tool gives us for

the register macro on area and delay are equally analyzed in Figure 4.44 if

results in Figures 4.45 and 4.46 are extrapolated for a size in words less than

256. The minimum showed here is for 16 words, i.e, for a network with 16

destinations.

Figure 4.44: Area and data access time analysis, normalized results.

As is shown in Figure 4.44, LBDR implementation is about 91% smaller

than the single-port register file macro, with a similar latency. This gap is even

greater when increasing the number of destinations as seen in Figures 4.45 and

4.46. Remember, that any LBDR-based routing implementation only scales

with the router radix (i.e. the number of input and output ports), not with

system size.

Figure 4.45: Area for different system sizes, normalized results.

116 Chapter 4. Unicast Communication

Figure 4.46: Latency for different system sizes, normalized results.

4.7.5 Performance Analysis

This section starts with the performance evaluation of several mechanisms:

uLBDR, distributed routing tables assuming a two-cycle time delay router

(resembling the MPSoC router with the addition of tables, meaning that the

cycle time used by uLBDR router here is doubled), and distributed routing

tables assuming a two-cycle time routing stage (resembling the CMP router

with a larger RT stage with the addition of tables in which only the routing

stage cycle time is doubled compared to the one in the uLBDR routing stage).

We have developed, for such purpose, and in-house cycle accurate flit-

level network simulator. The simulator models the network cycle-by-cycle

and is based on events, where each event represents a different action within

the network (a flit arrived, a message header is routed, ...). Each workload

simulates a maximum of 80k of transient and 160k of permanent messages,

respectively. Flit size is set to 3 bytes. There are two messages sizes, short

messages composed of 5 flits and long messages with 27 flits. The percentage

of shot messages is set to 70% of the total of messages produced. Buffer size

is set to 5 flits, and as virtual cut-through is mandatory for packet switching

protocol, packetization is performed (with packet size equal to buffer size).

There are two metrics: throughput is defined as the average rate of successful

flit delivery (flits/cycle); and latency (cycles) is defined as the average end-to-

end time for a flit to arrive to its destination.

The tests were made on a 4 × 4 mesh irregular topology to force the use

4.7. Evaluation 117

of deroutes and forks (thus, using full potential of uLBDR) under three traffic

load types: uniform, bit-reversal and bit-complement. Uniform traffic work-

load returns for a given source a random destination. Bit-reversal traffic work-

load returns for a given source, the identifier of the source but reversing the

bits (if source is id 100, destination is id 001). In bit-complement traffic work-

load, it is performed a bitwise operation from the source identifier to give a

destination (if source is id 100, destination is id 011).

 0

 50

 100

 150

 200

 250

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

L
at

en
cy

 (
cy

cl
es

)

Injected traffic (flit/cycles)

uLBDR
Routing Tables (2*RT)

Routing Tables (2*Cycle)

Figure 4.47: Latency of different mechanisms under uniform traffic.

 0

 20

 40

 60

 80

 100

 120

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

L
at

en
cy

 (
cy

cl
es

)

Injected traffic (flit/cycles)

uLBDR
Routing Tables (2*RT)

Routing Tables (2*Cycle)

Figure 4.48: Latency of different mechanisms under bit-reversal traffic.

Figures 4.47, 4.48, and 4.49 show the average latency of messages for the

different traffic types. For zero-load latency we can see how, obviously, solu-

118 Chapter 4. Unicast Communication

 0

 100

 200

 300

 400

 500

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

L
at

en
cy

 (
cy

cl
es

)

Injected traffic (flit/cycles)

uLBDR
Routing Tables (2*RT)

Routing Tables (2*Cycle)

Figure 4.49: Latency of different mechanisms under bit-complement traffic.

tions relying with tables end up with higher numbers. Indeed, latency offset

is constant for all the low and mid-traffic range. A solution with routers with

2-cycles delay is the worst one, whereas a pipelined router with 2 cycles in

the RT stage approaches uLBDR performance. It has to be noted, however,

that results are provided in cycles instead of being provided in time. Probably

a table-based solution will end up in a router with long critical paths, thus,

operating at a much lower frequency. Thus, differences will be higher. For

the throughput we can observe also an increase when using uLBDR (Figures

4.50, 4.51, and 4.52).

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

A
cc

ep
te

d
 t

ra
ff

ic
 (

fl
it

/c
y
cl

es
)

Injected traffic (flit/cycles)

uLBDR
Routing Tables (2*RT)

Routing Tables (2*Cycle)

Figure 4.50: Throughput of different mechanisms under uniform traffic.

4.7. Evaluation 119

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

A
cc

ep
te

d
 t

ra
ff

ic
 (

fl
it

/c
y
cl

es
)

Injected traffic (flit/cycles)

uLBDR
Routing Tables (2*RT)

Routing Tables (2*Cycle)

Figure 4.51: Throughput of different mechanisms under bit-reversal traffic.

We have run also several analysis for performance using the GEMS/SIMICS

platform [33] upgraded with the event driven cycle-accurate network simula-

tor mentioned before. Several SPLASH-2 [72] applications (Barnes, FFT, LU,

Radix) and Apache application have been run in the platform.

• Barnes: This application simulates the interaction of a system of bodies

(galaxies or particles, for example) in three dimensions over a number of

time-steps, using the Barnes-Hut hierarchical N-body method.

• FFT: The FFT kernel is a complex 1-D version of the radix-
√
n Six-step

FFT algorithm, which is optimized to minimize interprocessor commu-

nication.

• LU: This application factors a dense matrix into the product of a lower

triangular and an upper triangular matrix.

• Radix: This application performs an iterative algorithm for integer radix

sort.

• Apache: This application simulates a traffic workload on the web server

Apache.

Chip environment was configured as a 16-tile CMP system in a 4 × 4

mesh NoC, each tile including a core processor, a private 2 MB L1 cache,

120 Chapter 4. Unicast Communication

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

A
cc

ep
te

d
 t

ra
ff

ic
 (

fl
it

/c
y
cl

es
)

Injected traffic (flit/cycles)

uLBDR
Routing Tables (2*RT)

Routing Tables (2*Cycle)

Figure 4.52: Throughput of different mechanisms under bit-complement traf-

fic.

a 4 MB L2 cache bank, a memory controller and the router. Flit size has

been set to 4 bytes and virtual cut-through switching is assumed. For this

chip configuration, two cache coherency protocols have been used to keep

coherency between private L1 caches and a shared (but distributed) L2 cache:

directory-based and token-based.

Figure 4.53: 2-cycle delay router (RT) vs one-cycle delay router (uLBDR),

normalized execution time of applications, directory-based protocol.

In Figures 4.53, 4.54 and 4.55 the results for performance evaluation in a

directory-based protocol are shown. Figure 4.53 shows the normalized exe-

cution time when using a router with distributed routing tables (two cycles

4.7. Evaluation 121

delay router) and a router using uLBDR mechanism (one cycle delay router).

Virtual-cut-through switching is assumed and flit size is set to 3 bytes (per-

forming packetization and padding when needed). As can be seen, a slow

router (routing tables) affects greatly the execution time of applications, in

some cases, like Apache, almost doubling it. In all applications the slower

router behaves worse. Therefore, the designer needs to avoid the large latency

of routing tables.

Figure 4.54: 2-cycle RT module (RT) vs one-cycle RT module (uLBDR), nor-

malized execution time of applications, directory-based protocol.

Figure 4.54 shows the case when two routers are compared, one with the

RT stage experiencing two cycles (only for header flits) and one with the RT

stage having a single cycle. Note that in this situation the average overhead

of routing tables is smaller, around 11%.

Figure 4.55 shows the performance achieved in the 4 × 4 topology, but

with some links missing, so deroutes and forks are necessary. In this irregular

scenario, applications could be run as the routing mechanism is able to support

all the paths (coverage of the topology). uLBDR mechanism still gets better

results, in average, a gap of 9% when compared with the router design with a

2-cycle table implementation in the RT stage. The interesting point, here, is

the success in running the application in a failed mesh network without using

routing tables.

Figures 4.56, 4.57 and 4.58 show the same previous evaluation, but this

time using the token protocol for cache coherency issues. This time differences

are not so significant, specially for the case of a pipelined router with 2-cycle

122 Chapter 4. Unicast Communication

Figure 4.55: Irregular topology 2-cycle RT module (RT) vs one-cycle RT mod-

ule (uLBDR), normalized execution time of applications, directory-based pro-

tocol .

Figure 4.56: 2-cycle delay router (RT) vs one-cycle delay router (uLBDR),

normalized execution time of applications, token-based protocol.

table implementation. The issue in this protocol is that most of the traffic

is broadcast and the current uLBDR mechanism is focused on unicast com-

munication. Later, when adding support for collective communication at the

network level we will see much larger differences.

However, an important thing to consider here is the fact that uLBDR

is not focused in achieving performance improvements over table-based ap-

proaches. The mechanisms proposed must be seen as cost-effective alterna-

tives to the routing tables. Having similar (or slightly better) performance

numbers must be seen as an additional feature.

4.8. Conclusions 123

Figure 4.57: 2-cycle RT module (RT) vs one-cycle RT module (uLBDR), nor-

malized execution time of applications, token-based protocol.

Figure 4.58: Irregular topology 2-cycle RT module (RT) vs one-cycle RT mod-

ule (uLBDR), normalized execution time of applications, token-based protocol.

4.8 Conclusions

In this chapter we have presented uLBDR, a logic-based unicast routing layer

for on-chip networks to support any irregular topology derived from a 2D

mesh without using routing tables. The objective of the full mechanism is

to offer full coverage on this set of topologies, result of several challenges to

be taken into account: fault-tolerance, chip virtualization, and power-aware

techniques. This is achieved with a trade-off between router design and cov-

erage. The mechanism proposed spans from a basic mechanism, LBDR, with

low coverage (30%) and no router overhead and no performance impact, to

full coverage with a marginal impact on router design. In particular, uLBDR

124 Chapter 4. Unicast Communication

version requires a VCT router design and its impact on router frequency is

30% on an MPSoC router and no impact on a CMP pipelined router design.

Chapter 5

Broadcast/Multicast

Communication and the

eLBDR Architecture

“It is your mind that creates this world.”

Gautama Buddha.

As the complexity of multicore architectures grows, the need for collective

communication support is a desirable feature to handle efficiently scattered

operations across the chip. Collective communication primitives are required

either for implementing barrier synchronization or to support coherency traffic.

A broadcast/multicast mechanism opens the door for cache coherence proto-

cols or virtualization techniques. Collective communication in CMPs may also

be needed for an effective management of the NoC (control/management mes-

sages). Although there are solutions for collective communication in NoCs

(see Section 2.3) either they do not support irregular topologies or their im-

plementation is costly (table-based).

In this chapter we tackle broadcast/multicast support for many-core ar-

chitectures like Chip Multiprocessors (CMPs) and Multiprocessor System-on-

Chips (MPSoCs). The mechanisms described in this chapter are based on the

foundations presented in Chapter 3, thus, relying exclusively on the routing

125

126Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

and connectivity bits. The proposed techniques remove the need for routing

tables for collective communication support and offer different levels of cover-

age of regular and irregular topologies derived from 2-dimensional meshes.

In this chapter we first describe the two mechanisms to provide broad-

cast/multicast communication support: bLBDR and SBBM . Later we demon-

strate deadlock-freedom and connectivity of such mechanisms. Next, a de-

tailed performance evaluation of the mechanisms is shown, starting with a

coverage analysis, and ending with both router analysis and performance im-

pact.

Later, we present a conceptual architecture, eLBDR, that aims to gather

both unicast and broadcast/multicast communication. A description of this

architecture and the associated evaluation is shown at the end of the chapter.

5.1 bLBDR: Broadcast Logic-based Distributed Rout-

ing

bLBDR (Broadcast Logic-based Distributed Routing) is the first mechanism

we introduce. It is based on the same foundations of LBDR, thus, relying ex-

clusively on the routing and connectivity bits. bLBDR relies on minimal path

routing, therefore is designed to cooperate with the basic LBDR mechanism

(without non-minimal path support).

In order to provide multicast support, bLBDR uses the concept of connec-

tivity layers, thus using a vector of connectivity bits per output port at each

router. In particular, we assume eight connectivity layers. Those layers will be

considered to be programmed before normal chip operation. Layers/regions

may be overlapped, however. Also, one of the layers will define a global region

including all the routers, thus enabling the broadcast communication for the

entire chip. bLBDR offers a tree-based broadcast operation inside a region

defined within the network. This can be viewed as a multicast operation at

the chip level. The following broadcast properties are enforced by bLBDR:

• Traffic derived from a broadcast action is bounded to the region where

it was initiated, even if parts of the region overlap with other regions.

Therefore, broadcast operations will not cross the region boundary they

5.1. bLBDR: Broadcast Logic-based Distributed Routing 127

belong to.

• A tree-based broadcast operation can be initiated from any node within

the region.

• Traffic originated from a broadcast action will take always minimal paths

and routers (and end nodes) will receive only one packet per broadcast

action. Thus, traffic is minimized.

• bLBDR can be applied to any routing/topology combination where the

basic LBDR mechanism is used, thus with no deroute or fork additions.

Also, any region pattern compatible with LBDR can be used.

• The broadcast/multicast mechanism does not require any new informa-

tion at routers and end nodes. Only a small logic is required to create

dynamically the broadcast tree at each router.

For the sake of explanation, broadcast in bLBDR is described in two parts.

First, when the broadcast is initiated, and second, when a router receives a

broadcast action.

5.1.1 A Broadcast is Initiated

When an end node initiates a broadcast a message is created. A control signal

(Bh) is used to differentiate broadcast messages from unicast ones. Addition-

ally, four control signals (Bn, Be, Bw, and Bs) are used. These signals indicate

the router the directions the broadcast message must take at the given router.

These signals travel together with the broadcast message through control lines.

As the first router has to inject the broadcast message through all possible di-

rections (regardless of the connectivity), the end node sets all the signals to

one. Figure 5.1 shows the additional control lines required on every network

channel.

It is left to the choice of the designer to include these signals as part of

the message header or defined as control lines over the channel between two

routers. As long as the signals are decoded and provided to the broadcast

mechanism correctly, there is no real difference. For the sake of description,

we assume they are served as control lines.

128Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

Figure 5.1: Simple schematic of the control lines.

5.1.2 A Router Receives a Broadcast Packet

A router may receive a broadcast packet either from its local port (from the

end node) or through the incoming ports. Upon reception of a broadcast

packet, the router injects through its output ports up to 4 packets (NB, EB,

WB, and SB), each one being sent through a different output port (N , E, W ,

S) and each one being a broadcast packet with its corresponding set of signals

(Bh, Bn, Be, Bw, and Bs). These signals are, however, computed by the router

in a different manner. For the sake of presentation signals for packet generated

for the N port are labelled NBh, NBn, NBe, NBw, and NBs; signals for the

packet for the E port are labelled EBh, EBn, EBe, EBw, and EBs; the same

for signals for packets sent through W and S ports. Additionally, broadcast

signals for the incoming broadcast packet are labelled IBh, IBn, IBe, IBw,

and IBs.

The input port stores both the packet and control signals. In particular, 8

control signals are received and stored: three signals encoding the region, and

five signals with the broadcast info. After decoding the packet at the buffers

and transferred the header data to the routing unit, if IBh signal is set, the

broadcast logic is used.

bLBDR uses the connectivity bits and routing bits to compute the set

of admissible output ports. The mechanism computes all the output ports

5.1. bLBDR: Broadcast Logic-based Distributed Routing 129

that must be used to broadcast the packet. To do this, the routing module

computes all the broadcast signals (20 signals, five signals per output port).

Figure 5.2 shows the logic required for computing each signal for each packet.

The logic is replicated at each input port.

Figure 5.2: bLBDR logic.

Let us focus on the computed signals for theNB packet (the control signals

used for the broadcast packet that will be sent through the north port; see

Figure 5.2):

• The NBn signal is set if the incoming broadcast packet (IB packet)

has its IBn signal set, that is, broadcast must go north and there is a

connected router (belonging to the same region) through the north port

(Cn bit is set for region Rid).

• The NBe signal is set if the incoming packet must be broadcasted

through the NE sector (signals IBn and IBe are set), there is a con-

nected router through the north port (Cn bit is set) and there is no

routing restriction at the next router that forbids turning towards E

(bit Rne is set). Notice that if the NBe signal is set, at the same router

the EBn signal should not be set (in order not to duplicate broadcast

packets). Notice that logic for EBn is only set if there is no connectivity

through the north port (bit Cn is reset) or routing towards E is not al-

lowed through the north port (bit Rne is reset). Therefore, both signals

NBe and EBn will not be set at the same time for the same broadcast

packet.

130Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

• The NBw signal is set if the incoming packet must be broadcasted

through the NW sector (signals IBn and IBw are set), there is a con-

nected router through the north port (Cn bit is set), and either there

is no router through the W port (bit Cw is reset) or there is a routing

restriction that forbids turning north at the router reached through the

W output port (bit Rwn is reset). Notice that in this case, signals NBw

and WBn must not be set at the same time.

• The NBs signal is reset since the packet will be sent through the N port.

• The NBh signal is computed by ORing all the previous signals. If NBh

is reset, then no broadcast packet is issued through the N port.

Figure 5.2 shows the equations for signals intended for other ports. As can

be seen, similar equations are obtained for the remaining output ports of the

router.

Let us describe how the bLBDR mechanism faces different situations and

irregularities in the topology. Figure 5.3 shows different situations we might

face when broadcasting through the NE sector at a given router (marked with

an X). In case A, the router forwards two broadcast packets through the N

and E ports. In the NB packet the NBn and NBe signals are set, and in the

EB packet just the EBe signal is set. Notice that, in this situation, the E

output port is used only to broadcast through the row of routers, whereas at

the next router through the N port the new NE sector is broadcasted. In this

case, notice that EBn has been reset as there is a routing restriction through

the E port (bit Ren is reset at router X). Contrary to this, in case B the NBe

signal is reset since there is a routing restriction through the N port (bit Rne

is reset). In this situation, the N port is used only to broadcast the column of

routers and the resulting new NE sector is broadcasted through the E output

port.

An interesting case is C. In this situation notice that the router has no

routing restrictions through N and E ports. However, in order to avoid du-

plicates, the N output port is given priority. In this case, N port is used to

broadcast the resulting new NE sector and E port is only used to broadcast

through the row of routers. bLBDR provides priority to all the output ports

depending on the sector that is being broadcasted. N port has higher priority

5.1. bLBDR: Broadcast Logic-based Distributed Routing 131

Figure 5.3: Different cases for the NE sector.

than E port (for the NE sector), E port has higher priority than S port (for

the SE sector), S port has higher priority than W port (for the SW sector),

and W port has higher priority than N port (for the NW sector).

In cases D and E, boundaries of the region are handled by bLBDR. In

particular, in case D, the NBn and NBe signals are set as there is no routing

restriction for the N port (bit Rne is set). Notice that at the next router the

same happens and thus, the broadcast packet with its Bn and Be signals set

makes forward progress, until it reaches the router with three neighbouring

routers. At that router, case A is applied. In case E, the EBe and EBn signals

are set. In particular EBn signal is set because there is no connectivity through

the N port (bit Cn is reset). The broadcast packet will, thus, make forward

progress until it reaches the router with three neighbours. At that router case

B is applied. The same deductions can be obtained to the remaining broadcast

signals that are computed and the remaining sectors (SE, SW , and NW).

5.1.3 Detailed Example

Figure 5.4 shows an example of routing in bLBDR. Router 14 starts a broad-

cast message. At first, the message is replicated through all existent links to

the neighbouring routers, but with different signals. For example, the replica

that exits to the north to router 10 will have NBn and NBe set to one and

132Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

the rest to zero, meaning that, router 10, at thenext cycle, will take care of

the NE quadrant with its replicas. On the other hand, the message sent to

the west to router 13 has WBn and WBw set to one (the rest are reset), so

router 13 will replicate the message to the WN quadrant at the next cycle.

Router 15 will not replicate the message to the north as there is a routing

restriction in this router and router 10 will cover router 11 at the next step.

Indeed, the message sent to router 15 has only the EBe signal set to one, in

the case there was a router at the east of router 15, but this is filtered by

the corresponding connectivity bit. The figure shows the signals computed at

routers 10, 6, 5 and 1. In five steps (cycles) the broadcast message has arrived

to all destinations. Note that none of the replicas of the broadcast message

crosses a routing restriction.

We must conclude this section with one remark. As bLBDR was an evolu-

tion based on the LBDR mechanism, it only supports minimal paths between

each pair of end nodes. As LBDR evolved to a more complete mechanism like

uLBDR to support full coverage, it is mandatory to find a mechanism, with

the same assumptions, to offer communication primitives in the presence of ir-

regularities that enforce non-minimal paths. The next mechanism, developed

from the base of bLBDR, achieves that.

5.2 SBBM: Signal Bit Based Multicast

In order to tackle non-minimal path support, we define the SBBM (Signal Bit

Based Multicast) mechanism. It offers a tree-based broadcast operation at the

network chip level or inside a region, in both cases defined by the connectivity

bits and supports non-minimal paths. Deroutes and fork bits are not used by

the mechanism, as it relies exclusively on the concept of connectivity. However,

is compatible with the uLBDR unicast mechanism.

As with bLBDR, the broadcast operation in SBBM can be initiated by any

of the nodes contained within the region, and the broadcast packet reaches

only the end nodes defined within the region. Only one packet is received by

every destination of the collective communication, thus avoiding any possible

duplicate. SBBM requires a minimum computation logic at each router. In

particular, the following properties are attributable to SBBM:

5.2. SBBM: Signal Bit Based Multicast 133

Figure 5.4: Example of bLBDR.

• Any irregular topology or region/domain derived from a 2D mesh NoC

is supported. Irregular topologies with gaps or blocks inside the mesh

are, thus, supported. This opens the possibility to use collective com-

munication in heterogeneous MPSoC systems (with IP cores of different

sizes). In addition, regular topologies are also supported by SBBM.

134Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

• The definition of overlapped regions in bLBDR is also supported by

SBBM, but contrary to bLBDR now regions with completely irregular

shapes can be defined and supported.

• SBBM works with any topology-agnostic1 routing algorithm that en-

forces full connectivity and is deadlock-free.

• Logic in SBBM is much simpler than in bLBDR allowing for further

savings with a more compact and efficient mechanism. In fact, the area

(as we will see) is reduced by 34% when both mechanisms are compared.

Compared to table-based mechanisms the gap is even greater for area

and latency. These savings are accounted for the implementation of

the routing engine within the router in the NoC. Although this delay

will not drive the main latency of the message within the network, it

will enable the implementation of fast and compact NoC routers. Also,

virtual channels are not required as other mechanisms do, so getting

more savings.

• SBBM uses the full set of routing bits of the foundations like the uLBDR

mechanism (including the Rnn, Ree, Rww and Rss bits).

On the other hand, SBBM shares the same base signals and expands the

configuration bits used in bLBDR, thus, ensuring a perfect downward com-

patibility. For the sake of explanation, the SBBM routing module is described

in several parts. First we describe how the tree for broadcasting packets is

formed. Second, we explain how the mechanism works. Finally, the required

logic is shown.

One of the down sides of SBBM mechanism (as compared to bLBDR) is

that it requires a complete connectivity layer to define the broadcast operation,

thus leaving less room for effective region definitions. This requirement comes

with a large (as we will see) increment in coverage and effectiveness, thus is

not a major problem. Indeed, if we rely in eight connectivity layers, with

the support of SBBM instead of bLBDR, we downgrade the effective number

of connectivity layers down to four. Obviously, mixed alternatives can be

thought, for instance, having both mechanisms and using only one connectivity

1A routing algorithm able to be computed on any topology.

5.2. SBBM: Signal Bit Based Multicast 135

layer for SBBM for the entire chip. However, such improvements are left out

of the current work.

5.2.1 Broadcast Tree

At the same time the routing and connectivity bits are computed, an acyclic

spanning tree for broadcast operations is computed. The tree structure is

stored in the connectivity bits. We assume 8 connectivity bits per output port

where now four of those layers/bits are used for collective operations.

Let us assume we define an entire region covering all the chip and we need

support for broadcast operations. At every router, Cx[0] (connectivity layer 0)

is used for unicast actions and Cx[1] (connectivity layer 1) is used for broadcast

actions. Initially, Cx[0] bits are computed based on the connectivity pattern

derived from the final topology. Those Cx[0] bits are then copied to Cx[1] bits.

Figure 5.5: Example of how links are virtually disconnected based on the

locations of routing restrictions.

Some Cx[1] bits are, then, reset by applying the following rule: If one

router has a routing restriction between two links, one of the links is virtu-

ally disconnected (Cx[1] bit is reset) in both directions. In Figure 5.5 we can

see the six possible cases where a link is virtually disconnected. Although the

136Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

figure shows bidirectional restrictions the rule also applies to unidirectional re-

strictions. As can be seen, if router A has a routing restriction placed between

N and E ports, the E port is virtually disconnected between routers A and

B, meaning that Ce[1] at router A and Cw[1] at router B are reset. If, when

processing a routing restriction, one link belongs to two routing restrictions

(an example can be seen in Figure 5.5 between routers C and D), then the link

is virtually disconnected for both routing restrictions, that is, two neighbour

routing restrictions end up in only one link being virtually disconnected. Al-

though there are different ways to decide which links to disconnect, we assume

the disconnection pattern just described and shown in Figure 5.5.

Figure 5.6: 4× 4 mesh topology with links failed.

Let us explain this operation with the example shown in Figure 5.6. In this

topology, two links, one between routers 1 and 5 and the other between routers

6 and 10, have failed. According to this, routing restrictions (bidirectional

arrows in the figure) have been computed and so routing bits and connectivity

bits (e.g. Cs[0] on router 1 is reset meaning it has no connectivity to the

south). Connectivity bits Cx[0] are then copied to Cx[1] and the appropriate

links are virtually disconnected (applying the previous rule). We can see

5.2. SBBM: Signal Bit Based Multicast 137

the resulting tree in Figure 5.7. As it is shown, seven links are virtually

disconnected (fourteen connectivity bits are reset, those with a grey shadow).

Now, the tree is ready for broadcast operations at the region defined (if the

region covers all the mesh then is a global tree for the entire chip). Note

the built tree is acyclic, thus helping in ensuring broadcast operations will be

deadlock-free (we iterate on this later).

Figure 5.7: Definition of the broadcast tree.

5.2.2 How the Mechanism Works

Let us focus on how the broadcast is performed. When an end node initiates a

broadcast operation a packet is created. As said before, a control signal (Bh)

is used to differentiate broadcast packets from unicast ones. Additionally, four

control signals (Bn, Be, Bw, and Bs) are associated to the packet. As with

bLBDR, these signals travel along with the broadcast packet through control

lines (or included in the packet’s header).

Control signals are computed on each router but they are used at the

next router to decide which output ports can be used for broadcasting the

packet. Note this is a key differentiation from bLBDR mechanism. Thus,

now in SBBM, the meaning of Bn, Be, Bw, and Bs signals associated to an

incoming packet indicate the output ports the packet needs to be replicated

138Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

through. As the first router has to inject the broadcast packet through all

possible directions (regardless of the connectivity), the initiating end node

sets all the control signals in the local port to one, regardless of the routing

and connectivity bits (as done in bLBDR).

We use the same nomenclature as in bLBDR. Broadcast signals for the

incoming packet will be referred as IBh, IBn, IBe, IBw, and IBs regardless

of the port identifier the packet comes from. The new signals for packet replicas

sent through port X will be labelled as XBh, XBn, XBe, XBw, and XBs.

Upon reception of a broadcast packet, the router may forward the packet

through up to four ports (local port is included and U turns are forbidden).

The router generates a replica through an output port (e.g. N port) if the cor-

responding received control signal (e.g. IBn signal) is set, and the connectivity

bit through the output port (e.g. Cn[1] bit) is set. For each replica, control

signals are computed again (to be used at the next router) and attached to

the packet replica.

5.2.3 Logic Implementation

Figure 5.8 shows the SBBM routing logic. In particular, 8 control signals are

received and stored: three signals encoding the region of the packet, and five

signals with the broadcast info. This unit computes all the output ports that

must be used to forward the broadcast packet. To do this, SBBM computes

all the broadcast signals. This logic is replicated at each input port. As it can

be seen, the complexity at the module is small. The reason for the simplicity

is the fact that deadlock-freedom is already guaranteed by the routing bits,

and duplicity of packets is prevented by connectivity bits (Cx[Rid] bits).

Indeed, the module just checks the available paths at the next router, which

matches with the routing bits present on the current router. As an example,

the NB packet signals (used by the broadcast packet that is sent through the

north port; see Figure 5.8) are computed as follows:

• The NBn signal is set if there is no routing restriction between channels

S and N at the next router through the north output port, i.e Rnn

routing bit at the current router. This signal tells the next router that

the broadcast packet is allowed to go north.

5.2. SBBM: Signal Bit Based Multicast 139

Figure 5.8: SBBM routing logic

• TheNBe signal is set if there is no routing restriction between channels S

and E at the next router through the north output port, i.e Rne routing

bit at the current router. This signal tells the next router the broadcast

packet is allowed to make the turn north-east. The same reasoning is

concluded for signal NBw.

• The NBs signal is reset since U turns are not allowed.

• The NBh signal is computed by checking the current connectivity bit on

the tree-broadcast layer (Cn[Rid]) and the IBn signal. If NBh is set to

zero, then no replica is injected through the N port.

Similar conclusions are obtained for the remaining output ports of the

router. It should be noted that every incoming broadcast packet is always

routed to the local port (or ports).

5.2.4 Detailed Example

Figure 5.9 shows an example of a broadcast action in the example network

of Figure 5.7. Router 4 receives the broadcast packet from its local node

140Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

and immediately sends two replicas through N and S output ports, the north

packet with only the NBe signal activated to let know router 0 that it must

only replicate to the east, and the south packet to router 8 with the SBs signal

activated that tells this router to replicate the packet only to the south. The

packet is not replicated through the E port as this link is virtually disconnected

(Ce[1] bit is reset), ignoring any incoming signal. Pay special attention at step

4, where router 2 sends a packet to the east, with all signals not activated, but

the packet is sent as it must reach router 3. As commented before, SBBM

differs from bLBDR in that the signals sent with each replica inform the next

router where to send the next replicas (filtered anyway with the connectivity

bits in any case). Broadcast actions continue until the last node is reached

with this mechanism. Note that the packet is delivered to the local node on

every visited router.

5.3 Demonstration

As shown in the previous chapter, in Section 4.5, a mechanism based on the

routing restrictions methodology is deadlock-free as long as it does not force

crossing these restrictions. Routing configuration bits are also used by bLBDR

and SBBM mechanisms to prevent crossing the routing restrictions with 1-

hop visibility. Taking as a reference Figure 5.2 we can observe that routing

bits in bLBDR are used to decide the paths the broadcast packet must cross.

As an example EBs signal is reset (broadcasting through the S port at the

router located at the east of the current router) if Res is set to zero (meaning

packets can not take east and then south). Therefore routing bits filter routing

options of the broadcast packet passing through routing restrictions.

For SBBM the approach is different (see Figure 5.8). Routing bits are

used to decide the output port that can be used at the next routers (e.g. EBs

is set if Res is set). Later, connectivity bits (building an acyclic spanning tree)

guarantee packets do not form cycles, as the spanning tree is acyclic.

For connectivity in bLBDR, such property is guaranteed as long as the

topology guarantees minimal path routing and bLBDR is as much flexible as

LBDR, which already guarantees connectivity.

For SBBM , connectivity is guaranteed by the way the spanning tree is

5.3. Demonstration 141

Figure 5.9: Broadcast operation started at router 4.

142Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

formed, ensured by the algorithm that computes the spanning tree. Note

that links are virtually disconnected in those places when routing restrictions

exist. Thus, it is guaranteed that an alternative path exists that overcomes

the disconnected link, since the unicast layer is connected and avoids crossing

routing restrictions.

Indeed, if any operation crosses a routing restriction or chooses an output

port with no connectivity is due to a wrong set of configuration bits. We

can see an example in Figure 5.10. Router 0 starts a broadcast operation in

SBBM mechanism. If a message arrives at router 5 from router 4 it would

be due to the wrong configuration of bits. Connectivity bit Ce from the tree

layer at router 4 is reset due to the virtual disconnection, so the routing would

not be valid. Even before, at router 0, routing bit Rse is reset also due to the

routing restriction present at router 4, so when the message sent to the south

is generated the SBe signal is not activated, so again the message can not take

this path.

Figure 5.10: Path not suitable.

Multicast and broadcast operations, though, under wormhole switching

5.4. Evaluation 143

are not completely deadlock-free as mentioned in [13]. As explained before for

fork operations in uLBDR mechanism in Chapter 4, with VCT switching or

a switching mechanism that performs at flit level, deadlock scenarios will be

avoided.

5.4 Evaluation

In this Section we provide evaluation results for bLBDR and SBBM . First,

an evaluation in terms of coverage is shown on a pool of irregular (and reg-

ular) topologies derived from a 2D mesh. Second, we analyse the impact of

these routing implementations in hardware overhead from the synthesis of the

modules. Finally, performance results are shown.

5.4.1 Coverage Analysis

In this Section we evaluate the coverage provided by both method on different

topologies. Coverage is measured as the percentage of topologies supported

from a pool of evaluated topologies. A topology is considered supported if

broadcast actions from every node in the network reach all possible destina-

tions and no duplicates are found (no end node receives more than one packet

for every broadcast operation). Note that the set of topologies derived from

the link variability analysis provided in [49] has been used for this evaluation,

as similar as the previous chapter with the unicast routing implementations.

Figure 5.11: Coverage of SBBM and bLBDR.

Figure 5.11 shows the coverage results for SBBM and bLBDR. As can

be seen, coverage in SBBM is optimal since all the topologies analysed were

144Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

supported by SBBM . In all the cases (1423 topologies) SBBM successfully

implemented a broadcast operation through a valid spanning tree (using the

rule described previously in the chapter).

In contrast, bLBDR, although efficient in its implementation, does not

provide a good coverage. Percentage of supported topologies do not exceed

the 30% threshold. The supported topologies are the ones that do not require

non-minimal paths (e.g. a 2D mesh with a lower right-hand side submesh

removed). As we see, this percentage of cases reduces with network size.

Indeed, coverage tends to reduce as irregularity is much more pronounced (as

network size increases and as spatial correlation increases). For 8 × 8 mesh

network coverage is severely reduced to only 10%.

The coverage results are very important, since they do not only determine

the suitability of a method on special (irregular) cases. They also determine

the complexity of the solution to tolerate such irregularities. For instance, if

bLBDR coverage is required to be increased then more logic will be needed.

As we will see later, SBBM currently covers all the topologies with even less

hardware overhead.

In favour of bLBDR we can state that it tends to produce shorter broadcast

trees, thus incurring in lower latencies. Therefore, if a broadcast mechanism

is needed in regular fault-free configurations, then bLBDR could be a better

option.

5.4.2 Area, Latency and Power Breakdown

In this section we provide synthesis results for SBBM and bLBDR on area,

latency and power requirements. To this end, SBBM and bLBDR methods

have been implemented as modules on SystemC. In both cases they repre-

sent only the routing/connectivity bits and the logic for the computation of

broadcast signals on every router. Therefore, special treatments for multicast

in buffer, flow control, and scheduling is not considered. In all the broadcast

methods these issues are equivalent and thus do not lead to differences between

the methods.

Both modules (SBBM and bLBDR) were synthesized in two steps. First

the SystemC model was translated into an RTL Verilog model. Then, the RTL

Verilog model was synthesized with Synopsys Physical Compiler (wireload

5.4. Evaluation 145

models in traditional synthesis tools are not trustworthy any more in the con-

text of nanoscale technologies, therefore Physical Compiler performs placement-

aware logic synthesis) on a 65nm low-power low-Vth industrial technology li-

brary. For SBBM, Rxx routing bits (Rnn, Ree, Rww, Rss) are included on the

analysis.

Additionally, we compare the results on area and latency, with the ones

from the VCTM method published in [15]. We have to remark that VCTM

results were obtained when targeting a 70nm technology. This comparison

between VCTM, bLBDR and SBBM is done because SBBM also works for

regular 2D meshes. We must take into account that the synthesis of both mod-

ules is driven by the fact that SBBM and bLBDR methods are orthogonal

respect to the router design.

Results are obtained for a 4× 4 2D mesh NoC, 16 end nodes. Remember

that SBBM and bLBDR logic do not increase with the number of destinations

as opposed to table-based solutions. Their logic grows only with switch radix

size, so we have assumed an standard configuration of five input/output ports:

N , E, W , S and a local port attached to a core in the node.

Table 5.1: Area, delay and power evaluations. 4× 4 mesh network.
Area (µm2) Delay (ns) Power (µW)

SBBM (4 ports + local) 1242.8 0.07 244.6

bLBDR (4 ports + local) 1892.8 0.08 415.3

VCTM - Destination CAM (512 entries) 24000 0.43 1800

VCTM - VCT Table (32 entries) 18000 0.87 700

As we can see in Table 5.1, SBBM achieves much better results when

compared to the bLBDRmodule. In particular, a reduction of 34% in area and

a reduction of 50% in power is achieved. In terms of latency, the achievement

factor is small, but SBBM still performs better.

Compared to the VCTM solution, savings are much greater. Giving just

an example, both tables required for VCTM (at each end node plus router)

require an area 33 times larger than the one required for SBBM. In latency,

SBBM also outperforms, being its latency just 0.07ns as opposed to 0.87ns

for VCTM.

We have also synthesized bLBDR, SBBM and routing tables (a simple

146Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

implementation of table-based solution that consists of a bit-based register for

16 destinations along with the logic for decoding the packet header, performing

unicast-based collective communication) modules on a simple 5×5 radix router

to see how the critical path is affected by these modules. As we can see at

Figure 5.12 SBBM still outperforms with its logic-based implementation.

Figure 5.12: Critical path breakdown for different methods.

5.4.3 Performance Analysis

We evaluate now the performance of different applications under the be-

haviour of bLBDR and SBBM mechanisms. Tests have been run under the

GEMS/SIMICS platform [33] with an event driven cycle-accurate on-chip net-

work simulator (described in Chapter 4). Several SPLASH-2 [72] applications

(Barnes, FFT, LU and Radix) and Apache [20] application have been tested.

A 16-tile (regular 4 × 4 mesh) CMP system has been modelled, each tile in-

cluding a core processor, a private 2 MB L1 cache, a 4 MB L2 cache bank, a

memory controller and the router. Flit size has been set to 3 bytes and vir-

tual cut-through switching is assumed. Both mechanisms are compared to a

unicast-basedXY mechanism (that deals with broadcast/multicast operations

by serializing unicast messages). Cache coherency is kept by a directory-based

protocol (MOESI directory). In addition, the token protocol [32] is also eval-

uated (MOESI token). As bLBDR and DOR only allow minimal paths, a

network with no failures is used.

Figures 5.13 and 5.13 show the normalized execution time of every applica-

5.4. Evaluation 147

Figure 5.13: Execution time, token-based protocol, normalized results.

Figure 5.14: Execution time, directory-based protocol, normalized results.

tion. For a token-based implementation, as seen in Figure 5.13, we can appre-

ciate that tree-based approaches (bLBDR and eLBDR) reduce the execution

time between 8% and 13% compared to the unicast-based approach (XY rout-

ing). Instead, in a directory-based environment, Figure 5.14, the impact is not

critical and even in some applications (like Radix), the unicast-based option

performs better, but reflected by a slightly small percentage, around 1%. The

reason behind this is that with directory-based protocols there is a very low

percentage of multicast/broadcast traffic present in the applications. Contrary

to this, in token-based protocols collective-communication is required due to

the large percentage of broadcast operations. The percentage of collective

operations in directory-based protocols is, on average, 0.05%, while in token-

based the percentage increases to 11%. Therefore, a tree-based broadcast is

beneficial in token-based protocols. When comparing SBBM with bLBDR

the difference on performance is due to the different spanning trees (quality

148Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

of the trees) used by both solutions. Anyway, differences are low, and most

important, SBBM can be used on any irregular topology (100% coverage).

Figure 5.15: Average packet latency, token-based protocol, normalized results.

Figure 5.16: Average packet latency, directory-based protocol, normalized re-

sults.

Figures 5.15 and 5.15 show normalized average packet latency. Note that

using broadcast operations helps in reducing packet latency in token-based

protocols (Figure 5.15) where we can find divergence of results of more than

40%, like in FFT, respect to the tree-based methods. In directory-based pro-

tocols (Figure 5.16) where the latency results are similar and as the overall

impact of broadcast operations present on the running scenario is almost neg-

ligible, the unicast-based solution usually performs better.

Finally, Figures 5.17 and 5.17 show the network throughput for both pro-

tocols. As expected, throughput is increased when token protocol is used and

is heavily penalized when using a unicast-based solution where the serializa-

tion of broadcast packets is present. Again, the low percentage of broadcast

5.5. Gathering Unicast and Broadcast Implementations 149

Figure 5.17: Network throughput, token-based protocol, normalized results.

Figure 5.18: Network throughput, directory-based protocol, normalized re-

sults.

traffic on the directory-based protocol makes this case having results not quite

significant compared when using a token-based protocol.

5.5 Gathering Unicast and Broadcast Implementa-

tions

In the previous and current chapter, a presentation of unicast and collective

communication routing solutions has been made that offer a full coverage

on any topology derived from a 2-dimensional mesh. Indeed, uLBDR and

SBBM routing implementations provide support for each type of communi-

cation, respectively, with resource costs comparable to other designs that are

the best representative on each field in terms of efficiency (like Dimension-

Order-Routing), and with an applicable flexibility that routing table-based

150Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

implementations show.

The next logical step is to offer an architecture that is able to respond

to both needs in communication, while maintaining a compact, simple and

flexible implementation. In this section, eLBDR (effective Logic-Based Dis-

tributed Routing) is presented, to take on such a challenge. We will first

describe the architecture that will encompass both uLBDR for unicast and

SBBM for broadcast/multicast communication support. Then, we will eval-

uate the final method in terms of router implementation and performance

impact. Note that coverage is already guaranteed to achieve 100% in both

communication traffics.

5.5.1 eLBDR Architecture

Let us introduce an overall view of the system. As we can see in Figure 5.19,

as soon as the packet header is decoded in the input buffer of a router, the

first operation is to distinguish whether the packet is meant for unicast or

for broadcast routing. As introduced before, a control bit, IBh, is associated

with the packet and enables the appropriate module (unicast or broadcast

module). SBBM additional control signals (IBn, IBe, IBw, and IBs) are

used for broadcast operations together with the Rid bits that indicate the

region the packet belongs to or the tree-based broadcast layer.

Each router has a global register storing all the eLBDR bits (routing and

connectivity bits). Additionally, each router has a register with an ID (i.e.

the coordinates in the 2D mesh). Each input port includes also a local 6-bit

register, with the drx and Fx bits. The global register is used by both modules,

unicast and broadcast, whereas the local register is used only by the unicast

module. Unicast module corresponds with the uLBDR mechanism as shown

in Figure 4.27, and the broadcast module with the SBBM mechanism like in

Figure 5.8.

Both modules generate the corresponding signals to the arbiter. There is

a signal for each output port (N , E, W , S or a local port) from each module.

The arbiter configures the crossbar to route the packet to the corresponding

output port, or replicates it to several output ports when needed like in the

case of fork or broadcast operations. Indeed, both types of operations can be

handled by the arbiter in a similar way as a packet can be replicated, at least,

5.5. Gathering Unicast and Broadcast Implementations 151

Figure 5.19: A general overview of the eLBDR architecture inside a router.

for two output ports. In fact, the only difference, in case of replicas generated

due to a fork operation is that the IBh signal would be not activated, and this

is done by taking into account the FORK signal that arrives to the arbiter.

This signal also manages to distinguish whether two UX signals come from the

basic LBDR mechanism (remember that LBDR could give two output ports

as valid) or are due to a fork operation. This allows the arbiter to manage

effectively the priority strategy implemented. Note that the basic mechanism

can implement also the basic filtering for simple arbiters described in Chapter

4. In case of deroutes, as this operation only provides one output port, there

is no specific action defined at the arbiter.

5.5.2 Evaluation

For a complete breakdown evaluation, eLBDR architecture has been inte-

grated in the two router models: the non-pipelined MPSoC router and the

pipelined CMP router. Both router models are an evolution of those pre-

152Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

sented at Chapter 4 (Section 4.6) to support both types of communications

as described before. Note that, as mentioned before, both router models start

from a wormhole switching implementation to a virtual cut-through imple-

mentation to ensure deadlock-free routing for unicast communication with

fork operations involved and collective communication.

As mentioned before, eLBDR achieves full coverage. Indeed, as unicast

and broadcast modules achieve this objective independently and any message

is forwarded to its respective module, it is ensured that no loss in coverage is

incurred by eLBDR, thus offering 100% coverage. Anyway, eLBDR routing

implementation was tested against the pool of topology instances used in the

previous coverage evaluation sections [49]. Results show that eLBDR, as

expected, is able to provide full coverage on every topology tested.

MPSoC Router Overhead

Post-synthesis area and performance results for the routers are shown in Fig-

ures 5.20 and 5.21. Routers with just the unicast module (uLBDR) and full

eLBDR (with unicast and broadcast modules) were also synthesized. All

routers implement the same amount of buffering (4 slots per input port) and

were synthesized for maximum performance.

Figure 5.20: MPSoC complete router overhead, normalized results.

Note that eLBDR router is only less than 1% slower than the unicast

implementation, uLBDR, as shown in Figure 5.20, increasing the total area

only by a negligible 5% respect to the uLBDR. This is due to the fact that

5.5. Gathering Unicast and Broadcast Implementations 153

Figure 5.21: MPSoC RT stage overhead, normalized results.

the broadcast module works in parallel with the unicast module, which is more

complex from a combinational logic viewpoint. The actual difference between

both critical paths is the combinational logic added to couple the unicast and

broadcast routing modules together. However, this logic is efficiently handled

by the synthesis tool and its impact is minimized. Focusing on the RT stage,

as seen in Figure 5.21, the area gap between uLBDR and eLBDR is increased

by 9%, due to the addition of the broadcast module (and logic associated). The

combinational logics adds a total of 4% more latency respect to the uLBDR

implementation, but does not impact the critical path of the router.

CMP Router Overhead

In Figure 5.22 normalized area and delay results are shown for the CMP router

with different routing mechanisms (and the switching techniques implemented

with them). As can be seen in the figure, for eLBDR the support for broadcast

operations over uLBDR comes with no further penalty in performance and

with a marginal increase of area.

Figure 5.23 also shows the area overhead and delay only for the RT stage.

Again, for eLBDR the support of unicast plus broadcast routing sets a min-

imal impact on both area and delay over uLBDR, less than 8% and 3%

marginal gaps, respectively. Furthermore, eLBDR architecture module does

not set the critical path of the router.

154Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

Figure 5.22: CMP complete router overhead, normalized results.

Figure 5.23: CMP RT stage overhead, normalized results.

5.6 Conclusions

bLBDR and SBBM offer broadcast/multicast support specially designed for

NoCs, in the sense that its implementation cost is minimal. SBBM offers a

solution that achieves a full coverage (100%) of any irregular topology derived

from an initial 2D mesh structure, while bLBDR covers roughly a 30% of

the total instances. bLBDR only provides minimal path support, but, with

SBBM , half of the connectivity layers are reserved for the tree computation

and obtains slightly lower results in overall performance due to the spanning

tree.

SBBM does not follow the typical approach. Also, its main driver is the

coverage that supports for irregular topologies derived from 2D mesh struc-

tures. This support is very convenient if not mandatory to tolerate manufac-

5.6. Conclusions 155

turing defects, support for coherency protocols, virtualization, partitionabil-

ity, traffic isolation, and collective communication in CMPs. SBBM follows

the trend initiated by bLBDR were the mechanism can be viewed as a region-

based multicast routing mechanism, where regions are predefined based on the

current set of applications being executed on top of the chip. The mechanism,

however, can be adapted to support dynamic formation of regions by changing

the connectivity bits, and thus the shape of the regions. Bear in mind, that we

address manufacturing defects and application-level virtualization granularity.

So SBBM (and bLBDR) requires that routing/connectivity bits are to be set

and changed on power on and on the event of new applications.

In this chapter we have also presented a logic-based routing layer for on-

chip networks (either CMPs or MPSoCs) that aims to effectively support any

irregular (and regular) topology derived from a 2D mesh without the need for

routing tables. eLBDR supports both unicast and collective communication

operations. As new challenges on the deep sub-micron level design for NoCs

arise, like manufacturing defects, support for application-level parallelism or

power-aware techniques, and the need for collective communication, designers

must make an effort on implementing new ideas while achieving an affordable

trade-off between NoC designs and coverage. The architecture proposed offers

support for a fault-tolerant routing layer in manufacturing environments where

failures are becoming more and more frequent. This is achieved by effectively

supporting a full coverage with a marginal impact on router design. In fact,

eLBDR is able to cover all the failure cases on a 2D mesh with marginal

impact on router area and delay.

156Chapter 5. Broadcast/Multicast Communication and the eLBDRArchitecture

Chapter 6

Conclusions

“So close, and yet so far away.”

Anonymous.

In this final chapter, we present the conclusions of this dissertation, the

contributions to the research domain and a brief list of research directions

that will be addressed in the future. Finally, we also expose the results in

terms of scientific publications and other contributions derived from the work

presented in this dissertation.

6.1 Conclusions

The following is a list of conclusions extracted from the current dissertation.

These conclusions helped to obtain the contributions and scientific publica-

tions that are at the core of the document.

• Current high-performance multicore solutions pledge for tile-

based designs. Tile-based design is gaining momentum for newer Chips

Multiprocessor (CMPs) and Multiprocessor System-on-Chips (MPSoCs)

solutions. As the expected trend is to include more and more cores inside

a chip, these solutions rely on networks-on-chip (NoCs) to handle all the

communication traffic between cores.

157

158 Chapter 6. Conclusions

• 2-Dimensional mesh topologies are appealing for CMPs and

MPSoCs. Manufacturers prefer 2-dimensional mesh topologies due to

their simplicity for routing purposes and that they fit very well the chip

layout. Although other topologies are also interesting, from the point of

view of performance, design tools are not suitable (e.g. fat-tree topolo-

gies) or the tile-based design enforce an homogeneous and regular struc-

ture of the network, this aiming for a 2-D mesh.

• It is imperative to find NoC solutions that offer at the same

flexibility and tight savings in area, power consumption, and

latency, that are critical key aspects in the NoC domain. Table-

based routing solutions offer excellent flexibility, but as they are usually

implemented with memory structures, they suffer from poor scalability,

and are resource-hungry (area, power consumption, and latency). Logic-

based implementations like Dimension-Order-Routing (DOR), offer, on

the contrary, excellent results in area, delay and power-awareness, but

they lack flexibility and can not support non-minimal path routing. It is

imperative to find solutions that are both efficient as logic-based routing

algorithms and flexible as routing tables.

• Future challenges in CMPs and MPSoC will demand dynamic

mechanisms in the chip so to adapt to such challenges. Chal-

lenges identified in the document are (1) manufacturing defects where

yield will become an important issue, (2) virtualization techniques to

effectively use the chip when different applications are run on top of it,

(3) aggressive power saving techniques that allow any set of the network

components to be switched (with no interactions with the remaining

network), and (4) support for efficient DVFS domains which will avoid

interferences between such domains.

• Routing restrictions are an efficient representation of instances

of routing algorithms applied to topologies. Indeed, a straightfor-

ward view of the design for the further implementation is desirable. This

compact representation of the acyclic CDG over the network to avoid

deadlock scenarios is suitable for the on-chip network domain as it helps

to implement simpler designs. Indeed, this is seen as a way to tackle

6.2. Contributions 159

the problem of efficient routing implementations that are at the same

level of flexibility of routing tables but with comparable overhead costs

of logic-based implementations.

The previous conclusions from the dissertation put the research performed

in perspective so to obtain the intended goals. In the next section the specific

contributions of the current dissertation are highlighted.

6.2 Contributions

The overall contribution of the dissertation is the design of an efficient uni-

cast/broadcast mechanism able to route messages in any of the possible con-

figurations of the network that started with an initial 2-D mesh structure. The

mechanisms are able to tolerate any possible configuration (100% coverage)

resulting from the challenges identified, with no performance degradation and

with costs similar to logic-based implementations of the routing algorithm,

like the DOR routing. Most important, the solution is scalable in the sense

that the same logic and configuration bits are required regardless of the net-

work/system size. This overall achievement has been obtained with a step by

step procedure described next:

• Configuration bits are a compact yet powerful foundation to

aid routing implementations. The objective of routing (Rxy) and

connectivity (Cx) bits is to provide a simple translation from the view-

point of each router of the neighbouring conditions of routing restrictions

and connectivity of the topology. They enable support for the incom-

ing challenges in networks-on-chip: fault-tolerance, power consumption

issues, and virtualization-enabled systems. The aim is that routing im-

plementations operate with the same degree of flexibility that routing

tables would offer. Configuration bits also offer good scalability, as they

do not grow with system size.

• Logic-based distributed routing: Unicast routing with minimal

path support. LBDR mechanism is a logic-based routing implementa-

tion capable to support a vast range of routing algorithms (that feature

160 Chapter 6. Conclusions

deadlock-freedom and full connectivity between each pair of end nodes)

in 2-dimensional mesh topologies where each end node can communi-

cate to another end node through a minimal path. LBDR is based on

the foundations aforementioned, the configuration bits methodology, so

it benefits from the same properties: great scalability, and important

savings in area, latency and power consumption respect to table-based

routing implementations and similar savings to DOR-based implemen-

tations.

• Deroutes and forks extensions, enabling a unicast implementa-

tion to offer full coverage and non-minimal path support. Uni-

versal LBDR (uLBDR) routing implementation handles, with a minimal

addition of configuration bits to each router, any irregular pattern con-

figuration of the 2-D mesh topology, providing support for the challenges

mentioned before with a compact mechanism. Indeed, uLBDR presents,

although slightly more complex than the basic mechanism, better results

and large savings than table-based routing implementations.

• Broadcast/multicast communication. Two mechanisms developed,

broadcast LBDR (bLBDR) and Signal Bit-Based Multicast (SBBM).

bLBDR is a broadcast/multicast logic-based implementation that works

with the same foundations of the unicast solutions able to offer tree-

based broadcast operations at user-defined (totally configurable) region

level in the same conditions as the unicast counterpart, LBDR. SBBM

is the evolution of bLBDR, with a different approach but reusing the

same resources, to offer non-minimal path routing, like in uLBDR, but

for broadcast purposes. Results show that SBBM offers 100% coverage

on irregular scenarios, whereas bLBDR features the same properties,

but restricted to minimal path routing. SBBM presents better savings

in area, latency and power consumption than bLBDR, but bLBDR is

slightly better in performance results due to the way the different span-

ning of the broadcast trees are computed for each mechanism. It is a

tradeoff that must be considered depending on the conditions of each

implementation scenario.

• An architecture able to offer both types of communication,

6.3. Future Work 161

unicast and broadcast/multicast, while maintaining the same

properties of the basic mechanisms. Effective LBDR (eLBDR)

gathers the philosophy of uLBDR and SBBM to offer a complete solu-

tion ready for NoCs, at is has been implemented on two real router envi-

ronments: CMP and MPSoCS. As the previous solutions, eLBDR han-

dles inter-core communication with large flexibility (like in table-based

routing implementations) and presenting excellent savings in network

resources.

6.3 Future Work

In this Section we highlight possible future work directions coming from this

dissertation. The following is a list of possible directions:

• Extend the support to other topologies. 2-dimensional meshes

dominate the current panorama of on-chip network oriented design, but

other topologies may also be applicable to NoCs due to different prop-

erties they could offer, including highly irregular topologies. Interesting

topologies to analyze are 3D meshes (due to the 3D stacking concept),

and 2D torus networks (due to its higher bisection bandwidth and re-

duced diameter).

• Dynamic reconfiguration of the bits. We have assumed in this

dissertation and our research that any change in the network that gen-

erates a new set of configuration bits is made offline by the computation

bit algorithm. Extending this methodology to support dynamic recon-

figuration is mandatory for transient faults and other related scenarios

to offer better performance. However, dealing with the proper order of

computing bits and distributing bits in the network is challenging since

deadlocks in the transitory state may be induced.

• Simplification and improvement of the routing mechanisms. Al-

though the routing implementations presented in this dissertation offer

excellent results, we aim for better improvements and savings in the logic

designs and foundations.

162 Chapter 6. Conclusions

6.4 Publications related to this work

The following list enumerates the papers related with this dissertation that

have been published, or are under review process, in specialized conferences

or journals. We outline for each contribution the novelties that are part of

this dissertation.

• S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F.

Silla, and J. Duato, “Addressing Manufacturing Challenges with Cost-

Efficient Fault Tolerant Routing,” The 4nd IEEE International Sympo-

sium on Networks-on-Chip (NOCS), Best paper award, 2010.

• S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F.

Silla, and J. Duato, “Addressing Manufacturing Challenges with Cost-

Efficient Fault Tolerant Routing,” in review process for a special issue

in IEEE Transactions on Computed Aided Design.

We presented in this conference the ultimate unicast solution uLBDR,

introducing the fork and deroutes operation as the way to provide full coverage.

Multicast/Broadcast support is not provided. The second contribution is an

extended version that includes power consumption estimations and evaluations

with a token-based protocol.

• S. Rodrigo, C. Hernández, J. Flich, F. Silla, J. Duato, S. Medardoni, D.

Bertozzi, A. Mej́ıa, and D. Dai., “Yield-oriented Evaluation Methodol-

ogy of Network-on-Chip Routing Implementations,” International Sym-

posium on System-on-Chip (SOC), 2009.

We performed in this paper the first coverage analysis with LBDR (unicast

mechanism) with the inclusion of the deroute bits. However, the major con-

tribution in the paper was the linking between routing algorithms and routing

implementations. Indeed, we provided a methodology to test different routing

instances until the LBDR mechanism succeeds in providing coverage to the

topology. Initial router designs are also presented in the paper.

• S. Rodrigo, J. Flich, J. Duato, and M. Hummel, “Efficient Unicast and

Multicast Support for CMPs,” The 41st Annual IEEE/ACM Interna-

6.4. Publications related to this work 163

tional Symposium on Microarchitecture (MICRO41), 2008. Awarded by

HiPEAC as significant contribution.

In this paper we presented the bLBDRmechanism able to broadcast minimal-

path regions. The overlapped region concept was also introduced.

• J. Flich, S. Rodrigo, and J. Duato, “LBDR: Efficient Routing Imple-

mentation in NoCs,” 2nd Workshop in Interconnection Network Archi-

tectures: On-Chip, Multi-Chip (INA-OCMC), held in conjunction with

the 3rd International Conference on High-Performance Embedded Archi-

tectures and Compilers (HiPEAC), 2008.

• J. Flich, S. Rodrigo, and J. Duato, “An Efficient Implementation of

Distributed Routing Algorithms for NoCs,” The 2nd IEEE International

Symposium on Networks-on-Chip (NOCS), 2008

• S. Rodrigo, S. Medardoni, J. Flich, J. Duato and D. Bertozzi, “An Ef-

ficient Implementation of Distributed Routing Algorithms for NoCs,”

published in the special issue on Networks-on-Chip of IET Computers

& Digital Techniques, Volume 3, Number 5, pages 460–475, 2008.

In these previous papers we introduced the LBDR mechanism with no

deroutes and forks. We also provided insights how the mechanism can be

adapted to two-phase arbiters and how concentrated meshes can be used with

the mechanism.

• S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, F. Silla, and J.

Duato, “Fault-Tolerant Routing for Next Generation Multicore Chips,”

in review process in IEEE Transactions and Computers.

In this paper we presented the overall unicast/multicast/broadcast mech-

anism (eLBDR), providing two router solutions with the mechanism.

• S. Rodrigo, J. Flich, and J. Duato, “Addressing Collective Communi-

cation in CMPs facing new challenges,” XXI Jornadas de Paralelismo,

2010.

164 Chapter 6. Conclusions

• S. Rodrigo, J. Flich, and J. Duato, “Logic Tree-Based Broadcast Support

for CMPs,” XX Jornadas de Paralelismo, 2009.

• S. Rodrigo, J. Flich, and J. Duato, “Una Implementacion Eficiente de Al-

goritmos de Encaminamiento Distribuido para Redes dentro del Chip,”

XIX Jornadas de Paralelismo, 2008.

• S. Rodrigo, J. Flich, J. Duato, and D. Bertozzi, “Assessing the imple-

mentation trade-offs of logic-based distributed routing for Networks-on-

Chip,” 4th International Summer School on Advanced Computer Archi-

tecture and Compilation for Embedded Systems (ACACES, HiPEAC),

2008.

These papers are summaries of the work done in the dissertation and belong

to conferences with non peer-review systems.

Bibliography

[1] P. Abad, V. Puente, and J. A. Gregorio. MRR: Enabling fully adaptive

multicast routing for CMP interconnection networks. In 15th Interna-

tional Symposium on High-Performance Computer Architecture, pages

355–366, 2009.

[2] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. P. Fekete, and J. Van der

Veen. DyNoC: A dynamic infrastructure for communication in dynami-

cally reconfigurable devices. In 15th International Conference on Field-

Programmable Logic and Application, 2005.

[3] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. Routing table min-

imization for irregular mesh NoCs. In DATE ’07: Proceedings of the

Conference on Design, Automation and Test in Europe, pages 942–947,

San Jose, CA, USA, 2007. EDA Consortium.

[4] S. Borkar, R. Cohn, G. Cox, S. Gleason, and T. Gross. iWarp: an in-

tegrated solution of high-speed parallel computing. In Supercomputing

’88: Proceedings of the 1988 ACM/IEEE Conference on Supercomputing,

pages 330–339, Los Alamitos, CA, USA, 1988. IEEE Computer Society

Press.

[5] L. Cherkasova, V. Kotov, and T. Rokicki. Designing fibre channel fabrics.

In ICCD ’95: Proceedings of the 1995 International Conference on Com-

puter Design, page 346, Washington, DC, USA, 1995. IEEE Computer

Society.

[6] Faraday Technology Corp. UMC free library – 90nm IPs. Available at

http://freelibrary.faraday-tech.com/ips/90library.html.

165

166 Bibliography

[7] Intel Corp. The single-chip cloud computer. Available at http://

techresearch.intel.com/articles/Tera-Scale/1421.htm.

[8] Intel Corp. Teraflops research chip. Available at http://techresearch.

intel.com/articles/Tera-Scale/1449.htm.

[9] Tilera Corp. Tilera tile multicore processors. Available at http://www.

tilera.com/products/processors.php.

[10] W. J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel

and Distributed Systems, 3(3):194–205, March 1992.

[11] W. J. Dally and B. Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2003.

[12] M. Dehyadgari, M. Nickray, A. Afzali-Kusha, and Z. Navabi. Evaluation

of pseudo adaptive xy routing using an object oriented model for NOCs.

In The 17th International Conference on Microelectronics, 2005.

[13] J. Duato, S. Yalamanchili, and Ni. L. M. Interconnection Networks: An

Engineering Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2002.

[14] N. D. Enricht Jerger, L. Peh, and M. H. Lipasti. Virtual circuit tree mul-

ticasting: A case for on-chip hardware multicast support. In International

Symposium on Computer Architecture (ISCA-35), 2008.

[15] N. D. Enricht Jerger, L. Peh, and M. H. Lipasti. Virtual tree coherence:

Leveraging regions and in-network multicast trees for scalable cache co-

herence. In MICRO 41: Proceedings of the 41st Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, pages 35–46, Washington,

DC, USA, 2008. IEEE Computer Society.

[16] J. Flich, M. P. Malumbres, P. López, and J. Duato. Performance evalua-

tion of a new routing strategy for irregular networks with source routing.

In ICS ’00: Proceedings of the 14th International Conference on Super-

computing, pages 34–43, New York, NY, USA, 2000. ACM.

Bibliography 167

[17] J. Flich, A. Mej́ıa, P. López, and J. Duato. Region-based routing: An

efficient routing mechanism to tackle unreliable hardware in network on

chips. In NOCS ’07: Proceedings of the First International Symposium

on Networks-on-Chip, pages 183–194, Washington, DC, USA, 2007. IEEE

Computer Society.

[18] J. Flich, S. Rodrigo, and J. Duato. An efficient implementation of dis-

tributed routing algorithms for NoCs. In NOCS ’08: Proceedings of the

2bd ACM/IEEE International Symposium on Networks-on-Chip, pages

87–96, Washington, DC, USA, 2008. IEEE Computer Society.

[19] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E.

Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay,

T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and

P. Vranas. Overview of the Blue Gene/L system architecture. IBM J.

Res. Dev., 49(2):195–212, 2005.

[20] GEMS-Wiki. Workload specific details. Available at http://www.cs.

wisc.edu/gems/doc/gems-wiki/moin.cgi/Workload_scripts.

[21] M. E. Gómez, P. López, and J. Duato. A memory-effective routing strat-

egy for regular interconnection networks. In IPDPS ’05: Proceedings of

the 19th IEEE International Parallel and Distributed Processing Sympo-

sium, page 41.2, Washington, DC, USA, 2005. IEEE Computer Society.

[22] M. E. Gómez, N. A. Nordbotten, J. Flich, P. López, A. Robles, J. Du-

ato, T. Skeie, and O. Lysne. A routing methodology for achieving fault

tolerance in direct networks. IEEE Trans. Comput., 55(4):400–415, 2006.

[23] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and

D. Shippy. Introduction to the CELL multiprocessor. IBM Journal of

Research and Development, 49(4/5):589–604, 2005.

[24] A. Kohler and M. Radetzki. Fault-tolerant architecture and deflection

routing for degradable NoC switches. In NOCS ’09: Proceedings of the

2009 3rd ACM/IEEE International Symposium on Networks-on-Chip,

pages 22–31, Washington, DC, USA, 2009. IEEE Computer Society.

168 Bibliography

[25] M. Koibuchi, A. Funahashi, A. Jouraku, and H. Amano. L-Turn routing:

An adaptive routing in irregular networks. In ICPP ’02: Proceedings of

the 2001 International Conference on Parallel Processing, pages 383–392,

Washington, DC, USA, 2001. IEEE Computer Society.

[26] M. Koibuchi, A. Jouraku, K. Watanabe, and H. Amano. Descending lay-

ers routing: A deadlock-free deterministic routing using virtual channels

in system area networks with irregular topologies. ICPP ’03: Proceedings

of the 2003 International Conference on Parallel Processing, 0:527, 2003.

[27] M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston. A lightweight

fault-tolerant mechanism for network-on-chip. In NOCS ’08: Proceed-

ings of the Second ACM/IEEE International Symposium on Networks-

on-Chip, pages 13–22, Washington, DC, USA, 2008. IEEE Computer So-

ciety.

[28] J. Laudon and D. Lenoski. The SGI origin: a ccNUMA highly scalable

server. SIGARCH Computer Architecture News, 25(2):241–251, 1997.

[29] I. Loi, F. Angiolini, and L. Benini. Synthesis of low-overhead configurable

source routing tables for network interfaces. In DATE ’09: Proceedings

of the Conference on Design, Automation and Test in Europe, pages 262–

267, 2009.

[30] O. Lysne, T. Skeie, S. A. Reinemo, and I. Theiss. Layered routing in irreg-

ular networks. IEEE Transactions on Parallel and Distributed Systems,

17(1):51–65, 2006.

[31] S. Manolache, P. Eles, and Z. Peng. Fault and energy-aware communi-

cation mapping with guaranteed latency for applications implemented on

NoC. In DAC ’05: Proceedings of the 42nd Annual Design Automation

Conference, pages 266–269, New York, NY, USA, 2005. ACM.

[32] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token coherence: de-

coupling performance and correctness. In ISCA ’03: Proceedings of the

30th Annual International Symposium on Computer Architecture, pages

182–193, New York, NY, USA, 2003. ACM.

Bibliography 169

[33] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,

A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multi-

facet’s general execution-driven multiprocessor simulator (gems) toolset.

SIGARCH Computer Architecture News, 33(4):92–99, 2005.

[34] M. R. Marty and M. D. Hill. Virtual hierarchies to support server con-

solidation. In ISCA ’07: Proceedings of the 34th Annual International

Symposium on Computer Architecture, pages 46–56, New York, NY, USA,

2007. ACM.

[35] A. Mej́ıa, J. Flich, J. Duato, S. A. Reinemo, and T. Skeie. Segment-based

routing: an efficient fault-tolerant routing algorithm for meshes and tori.

International Parallel and Distributed Processing Symposium, 0:84, 2006.

[36] Nangate. The nangate open cell library, 45nm freepdk. Available at

https://www.si2.org/openeda.si2.org/projects/nangatelib.

[37] E. Nilsson, M. Millberg, J. Öberg, and A. Jantsch. Load distribution with

the proximity congestion awareness in a network on chip. In DATE ’03:

Proceedings of the Conference on Design, Automation and Test in Europe,

page 11126, Washington, DC, USA, 2003. IEEE Computer Society.

[38] J.L. Nuñez Yanez, D. Edwards, and A.M. Coppola. Adaptive routing

strategies for fault-tolerant on-chip networks in dynamically reconfig-

urable systems. IET Computers and Digital Techniques, 2(3):184–198,

2008.

[39] J. Öberg. Clocking strategies for networks-on-chip. Networks on chip,

pages 153–172, 2003.

[40] University of Catania (Italy). Noxim, the NoC simulator. Available at

http://noxim.sourceforge.net.

[41] M. Palesi, R. Holsmark, S. Kumar, and V. Catania. Application specific

routing algorithms for networks on chip. IEEE Transactions on Parallel

and Distributed Systems, 20(3):316–330, 2009.

170 Bibliography

[42] M. Palesi, S. Kumar, and R. Holsmark. A method for router table com-

pression for application specific routing. In SAMOS VI Workshop in Mesh

Topology NoC Architectures, pages 373–384, 2006.

[43] M. Pirretti, G. M. Link, R. R. Brooks, N. Vijaykrishnan, M. Kandemir,

and M. J. Irwin. Fault tolerant algorithms for network-on-chip intercon-

nect. IEEE Computer Society Annual Symposium on VLSI, 0:46, 2004.

[44] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide. Immunet: A

cheap and robust fault-tolerant packet routing mechanism. SIGARCH

Computer Architecture News, 32(2):198, 2004.

[45] A. Pullini, F. Angiolini, S. Murali, D. Atienza, G. De Micheli, and

L. Benini. Bringing NoCs to 65 nm. IEEE Micro, 27(5):75–85, 2007.

[46] W. Qiao and L. M. Ni. Adaptive routing in irregular networks using

cut-through switches. In Proceedings of the International Conference on

Parallel Processing, pages 52–60, 1996.

[47] S. Rodrigo, J. Flich, J. Duato, and M. Hummel. Efficient unicast and

multicast support for CMPs. In MICRO 41: Proceedings of the 41st An-

nual IEEE/ACM International Symposium on Microarchitecture, pages

364–375, Washington, DC, USA, 2008. IEEE Computer Society.

[48] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho,

F. Silla, and J. Duato. Addressing manufacturing challenges with cost-

efficient fault tolerant routing. In NOCS ’10: Proceedings of the 4th

ACM/IEEE International Symposium on Networks-on-Chip, pages 25–

32, 2010.

[49] S. Rodrigo, C. Hernández, J. Flich, F. Silla, J. Duato, S. Medardoni,

D. Bertozzi, A. Mej́ıa, and D. Dai. Yield-oriented evaluation methodology

of network-on-chip routing implementations. In SOC’09: Proceedings

of the 11th International Conference on System-on-chip, pages 100–105,

Piscataway, NJ, USA, 2009. IEEE Press.

[50] S. Rodrigo, S. Medardoni, J. Flich, D. Bertozzi, and J. Duato. Efficient

implementation of distributed routing algorithms for NoCs. IET Com-

puters and Digital Techniques, 3(5):460–475, 2009.

Bibliography 171

[51] F. A. Samman, T. Hollstein, and M. Glesner. Multicast parallel pipeline

router architecture for network-on-chip. In DATE ’08: Proceedings of the

Conference on Design, Automation and Test in Europe, pages 1396–1401,

New York, NY, USA, 2008. ACM.

[52] F. A. Samman, T. Hollstein, and M. Glesner. Planar adaptive router

microarchitecture for tree-based multicast network-on-chip. In NoCArc

’08: International Workshop on Network on Chip Architectures, 2008.

[53] J. Sancho, A. Robles, and J. Duato. A new methodology to compute

deadlock-free routing tables for irregular networks. In Babak Falsafi and

Mario Lauria, editors, Network-Based Parallel Computing. Communica-

tion, Architecture, and Applications, volume 1797 of Lecture Notes in

Computer Science, pages 45–60. Springer Berlin/Heidelberg, 2000.

[54] J. C. Sancho, A. Robles, J. Flich, P. López, and J. Duato. Effective

methodology for deadlock-free minimal routing in infiniband networks.

In ICPP ’02: Proceedings of the 2002 International Conference on Par-

allel Processing, page 409, Washington, DC, USA, 2002. IEEE Computer

Society.

[55] M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M. Needham,

T. L. Rodeheffer, E. H. Satterthwaite, and C. P. Thacker. Autonet: a

high-speed, self-configuring local area network using point-to-point links.

IEEE Journal on Selected Areas in Communications, 9, 1991.

[56] D. Seo, A. Ali, W. Lim, N. Rafique, and M. Thottethodi. Near-

optimal worst-case throughput routing for two-dimensional mesh net-

works. SIGARCH Computer Architecture News, 33(2):432–443, 2005.

[57] D. Seo, A. Ali, W. Lim, N. Rafique, and M. Thottethodi. Near-optimal

worst-case throughput routing for two-dimensional mesh networks. In

ISCA ’05: Proceedings of the 32nd Annual International Symposium on

Computer Architecture, pages 432–443, Washington, DC, USA, 2005.

IEEE Computer Society.

[58] L. Shang, L. Peh, A. Kumar, and N. K. Jha. Thermal modeling, character-

ization and management of on-chip networks. In MICRO 37: Proceedings

172 Bibliography

of the 37th Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 67–78, Washington, DC, USA, 2004. IEEE Computer

Society.

[59] E. S. Shin, V.t J. Mooney III, and G. F. Riley. Round-robin arbiter

design and generation. In ISSS ’02: Proceedings of the 15th International

Symposium on System Synthesis, pages 243–248, New York, NY, USA,

2002. ACM.

[60] F. Silla and J. Duato. Improving the efficiency of adaptive routing in net-

works with irregular topology. In In Proceedings of the 1997 International

Conference on High Performance computing, 1997.

[61] T. Skeie, O. Lysne, and I. Theiss. Layered shortest path (LASH) routing

in irregular system area networks. In IPDPS ’02: Proceedings of the 16th

International Parallel and Distributed Processing Symposium, page 194,

Washington, DC, USA, 2002. IEEE Computer Society.

[62] T. Skeie, F. O. Sem-Jacobsen, S. Rodrigo, J. Flich, D. Bertozzi, and

S. Medardoni. Flexible DOR routing for virtualization of multicore chips.

In SOC’09: Proceedings of the 11th International Conference on System-

on-chip, pages 73–76, Piscataway, NJ, USA, 2009. IEEE Press.

[63] W. Song, D. Edwards, J. L. Nuñez Yanez, and S. Dasgupta. Adap-

tive stochastic routing in fault-tolerant on-chip networks. In NOCS

’09: Proceedings of the 2009 3rd ACM/IEEE International Symposium

on Networks-on-Chip, pages 32–37, Washington, DC, USA, 2009. IEEE

Computer Society.

[64] T. R. Sullivan, H.and Bashkow. A large scale, homogeneous, fully dis-

tributed parallel machine, i. In ISCA ’77: Proceedings of the 4th Annual

Symposium on Computer Architecture, pages 105–117, New York, NY,

USA, 1977. ACM.

[65] A. S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 2003.

Bibliography 173

[66] P. Teehan, M. Greenstreet, and G. Lemieux. A survey and taxonomy of

GALS design styles. IEEE Design and Test of Computers, 24(5):418–428,

2007.

[67] B. Towles and W. J. Dally. Worst-case traffic for oblivious routing func-

tions. In SPAA ’02: Proceedings of the fourteenth Annual ACM Sympo-

sium on Parallel algorithms and architectures, pages 1–8, New York, NY,

USA, 2002. ACM.

[68] J. Van Leeuwen and R. B. Tan. Interval Routing. The Computer Journal,

30(4):298–307, 1987.

[69] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,

P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and

N. Borkar. An 80-tile 1.28TFLOPS network-on-chip in 65nm CMOS. In

Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical

Papers. IEEE International, pages 98–589, 2007.

[70] L. Wang, Y. Jin, H. Kim, and E. J. Kim. Recursive partitioning mul-

ticast: A bandwidth-efficient routing for networks-on-chip. In NOCS

’09: Proceedings of the 2009 3rd ACM/IEEE International Symposium

on Networks-on-Chip, pages 64–73, Washington, DC, USA, 2009. IEEE

Computer Society.

[71] P. T. Wolkotte, G. J. M. Smit, G. K. Rauwerda, and L. T. Smit.

An energy-efficient reconfigurable circuit-switched network-on-chip. In

IPDPS ’05: Proceedings of the 19th IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS’05) - Workshop 3, page 155.1,

Washington, DC, USA, 2005. IEEE Computer Society.

[72] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-

2 programs: characterization and methodological considerations. In ISCA

’95: Proceedings of the 22nd Annual International Symposium on Com-

puter Architecture, pages 24–36, New York, NY, USA, 1995. ACM.

