
Universitat Politècnica de València
Departamento de Informática
de Sistemas y Computadores

Head-of-Line Blocking Reduction in

Power-Efficient Networks-on-Chip

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Engineering)

Author

José Vicente Escamilla López

Advisor

Prof. José Flich Cardo

September 2017

http://www.upv.es

ii

Contents

List of Figures vii

List of Tables xiii

Abbreviations and Acronyms xv

Abstract xvii

Resumen xviii

Resum xix

1 Introduction 1

1.1 Thesis Outline . 10

2 Background and Related Work 13

2.1 Congestion Management . 13

2.2 Power Saving . 19

2.2.1 Dynamic Voltage and Frequency Scaling 19

2.2.2 Power-Gating . 22

3 Proposed Techniques 25

3.1 Congestion Management . 25

3.1.1 BAHIA Description . 25

3.1.1.1 Burst Detection . 26

3.1.1.2 Burst Notification . 26

3.1.1.3 Traffic Separation . 27

3.1.2 ICARO Description . 30

3.1.2.1 Congestion Detection . 31

3.1.2.2 Congestion Notification 31

3.1.2.3 Congestion Isolation . 33

3.1.3 Evaluations . 38

3.1.3.1 BAHIA . 38

3.1.3.2 ICARO . 43

3.2 Improving DVFS Through Congestion Management 51

3.2.1 ICARO-DVFS . 51

3.2.1.1 Dynamic Voltage and Frequency Scaling 51

iii

Contents iv

3.2.1.2 Voltage and Frequency Islands 52

3.2.1.3 Merging ICARO with DVFS 53

3.2.1.4 Different ICARO-DVFS Alternatives 54

3.2.2 ICARO-DMSD . 55

3.2.2.1 Analysis of the DMSD DVFS Policy 55

3.2.2.2 Implementing Congestion Management 57

3.2.3 Area Overhead Analysis . 61

3.2.4 Evaluations . 61

3.2.4.1 ICARO-DVFS . 61

3.2.4.2 ICARO-DMSD . 64

3.3 Reducing Buffers Leakage Power . 70

3.3.1 ICARO-PAPM . 70

3.3.1.1 Overview . 70

3.3.1.2 PAPM for ICARO . 71

3.3.1.3 Selective Broadcast . 72

3.3.1.4 Flow Control . 74

3.3.2 PAPM . 74

3.3.2.1 Router Implementation 76

3.3.2.2 Activation Network . 78

3.3.2.3 Power-Down Strategy at End Nodes 79

3.3.3 Evaluations . 80

3.3.3.1 ICARO-PAPM . 80

3.3.3.2 PAPM . 82

3.4 Proposals Digest . 85

4 Head-of-Line Blocking Avoidance in Networks-On-Chip 87

4.1 Abstract . 88

4.2 Introduction . 88

4.3 Related work . 89

4.4 BAHIA Description . 91

4.4.0.1 Burst Detection . 91

4.4.0.2 Burst Notification . 92

4.4.0.3 Traffic Separation . 93

4.5 Evaluation . 96

4.5.1 Simulation Environment . 96

4.5.2 Parameters Tuning . 97

4.5.3 BAHIA vs no-BAHIA Analysis . 100

4.5.3.1 Simplest Configuration Analysis 100

4.5.3.2 Number of Virtual Networks Analysis 101

4.6 Conclusions and Future Work . 102

5 ICARO: Congestion Isolation in Networks-On-Chip 105

5.1 Abstract . 106

5.2 Introduction and Motivation . 106

5.3 Related Work . 108

5.4 ICARO Description . 110

Contents v

5.4.1 ICARO Principles . 110

5.4.2 Congestion Detection . 111

5.4.3 Congestion Notification . 111

5.4.4 Congestion Isolation . 114

5.4.4.1 Congested-points Cache 114

5.4.4.2 Optimizations . 116

5.5 Performance Evaluation . 117

5.5.1 Simulation Environment . 117

5.5.2 Robustness Analysis . 119

5.5.3 Overall Results . 121

5.6 Implementation Analysis . 122

5.7 Conclusions and Future Work . 124

6 Efficient DVFS Operation in NoCs through a Proper Congestion Man-
agement Strategy 125

6.1 Abstract . 126

6.2 Introduction . 126

6.3 Related Work . 128

6.4 ICARO-DVFS Implementation . 129

6.4.1 Dynamic Voltage and Frequency Scaling 129

6.4.2 Voltage and Frequency Islands . 129

6.4.3 ICARO . 130

6.4.4 Merging ICARO with DVFS . 131

6.4.5 Different ICARO-DVFS Alternatives 132

6.4.6 ICARO-DVFS Performance Analysis 134

6.4.6.1 Simulation Environment 134

6.4.6.2 Results . 135

6.5 Conclusions and Future Work . 137

6.6 Acknowledgements . 137

7 Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 139

7.1 Abstract . 140

7.2 Introduction . 140

7.3 Analysis of the DMSD DVFS Policy . 142

7.4 Implementing Congestion Management . 145

7.4.1 ICARO . 145

7.4.1.1 Congestion Detection . 145

7.4.1.2 Congestion Notification 145

7.4.1.3 Congestion Isolation . 146

7.4.2 Delivering Latency Measurements with the CaL Network 147

7.4.3 Power-Gating Extra-VN Buffers 148

7.4.3.1 Network Interfaces Detection 149

7.4.3.2 Routers Detection . 149

7.4.4 Area Overhead Analysis . 150

7.4.5 Experimental Results . 150

7.5 Related Work . 155

Contents vi

7.6 Conclusions and Future Work . 156

8 ICARO-PAPM: Congestion Management with Selective Queue Power-
Gating 159

8.1 Abstract . 160

8.2 Introduction . 160

8.3 ICARO . 162

8.3.1 Congestion Detection . 162

8.3.2 Notification . 163

8.3.3 Isolation . 163

8.4 PAPM: Path Aware Power Mechanism . 164

8.4.1 Overview . 164

8.4.2 PAPM . 165

8.4.3 Selective Broadcast . 166

8.4.4 Flow Control . 167

8.5 Experimental Results . 169

8.5.1 Methodology . 169

8.5.2 Results . 171

8.5.3 Multimedia Traffic . 172

8.6 Related Work . 173

8.6.1 Congestion Management . 173

8.6.2 Power Gating . 174

8.7 Conclusions . 175

9 PAPM: Path-Aware Fine-Grained Virtual Channel Power Manage-
ment 177

9.1 Abstract . 178

9.2 Introduction . 178

9.3 Related Work . 180

9.4 PAPM Description . 182

9.4.1 General Description . 182

9.4.2 Router Implementation . 183

9.4.3 Activation Network . 185

9.4.4 Power-Down Strategy at End Nodes 185

9.5 Performance Evaluation . 186

9.5.1 Simulation Testbed . 186

9.5.2 Performance Analysis . 187

9.5.3 Saturation Analysis . 189

9.6 Conclusions . 190

9.7 Future Work . 190

10 Conclusions 191

10.1 Contributions . 192

10.2 Future Directions . 193

10.3 Publications . 193

References 195

List of Figures

1.1 Microprocessors specifications timeline. 2

1.2 IBM Power 8 CMP chip. 4

1.3 TILE-Gx72 platform provided with 72 tiles. 4

1.4 DVFS voltage and frequency islands in a 16 Mesh system. 6

1.5 Head-of-Line blocking. 8

1.6 Thesis outline. 9

2.1 One flow forwarded at high data rate . 14

2.2 Two flows causing contention . 14

2.3 Congestion propagation. 15

2.4 Congested message blocking non-congested message (HoL). 18

2.5 Congested message is isolated from the non-congested one. 18

2.6 Voltage regulator. 20

2.7 Voltage and frequency change process. 20

2.8 Power-gating implementation. 22

3.1 Example of BNN network for node 0. 27

3.2 Burstiness bit vector implemented at each end-node. 28

3.3 CNN registers example for ICARO. 32

3.4 Complete congestion notification network (CNN) for ICARO. 33

3.5 Notification management. 35

3.6 ICARO NI module mechanism description. 36

3.7 Merge opportunities in ICARO. 37

3.8 Notification delay (ND) analysis. Average flit latency. 39

3.9 High-threshold (HT) analysis. Average flit latency. 40

3.10 Low-threshold (LT) analysis. Average flit latency. 40

3.11 Polling interval (PI) analysis. Average flit latency. 41

3.12 Latency for BAHIA and no-BAHIA, 2 VNs, traffic pattern B. 42

3.13 Overall average latency without BAHIA, traffic pattern A. 43

3.14 Regular-VNs average latency with BAHIA, traffic pattern A. 44

3.15 Extra-VN average latency with BAHIA, traffic pattern A. 44

3.16 Latency for the synthetic part of traffic pattern B, without and with BAHIA. 44

3.17 Latency for the MCSL part of traffic pattern B, without and with BAHIA. 45

3.18 Average latency without and with BAHIA for the synthetic and MCSL
parts of traffic pattern B. 45

3.19 ICARO configuration analysis. 47

3.20 Typical synthetic traffic patterns. 49

vii

List of Figures viii

3.21 Performance evaluation with hotspot traffic pattern. 50

3.22 NI area and power overhead for ICARO. 50

3.23 Router area and power overhead for ICARO. 51

3.24 Two consecutive routers belonging to different VFIs (at the boundary
delimiting such VFIs). 52

3.25 CNN signal format in DVFS-based platforms. 55

3.26 Voltage Regulator controller logic for ICARO-DVFS. 55

3.27 All nodes in the network send latency measures to the PI controller to
set the new frequency. 56

3.28 Conversion from U to frequency. 56

3.29 Frequency for DMSD under hotspot traffic. 57

3.30 End-to-end latency per traffic type for DMSD under hotspot traffic. . . . 57

3.31 Power consumption for DMSD under hotspot traffic. 57

3.32 CaL network register associated logic for regular nodes adapted to DMSD. 58

3.33 CaL network register associated logic for the node provided with the
PI/DVFS controller adapted to DMSD. 59

3.34 Power-gating controller. 60

3.35 ICARO-DMSD area overhead of different meshes. 61

3.36 Final power consumption. 63

3.37 VFIs frequencies for DVFS without ICARO. 64

3.38 VFIs frequencies for ICARO-2VN. 64

3.39 VFIs frequencies for ICARO-1VN. 64

3.40 VFIs frequencies for ICARO-2GHz. 64

3.41 Network latency for background traffic. 64

3.42 Throughput for background traffic. 64

3.43 Final net. latency (all traffic). 65

3.44 Final throughput (all traffic). 65

3.45 End-to-end latencies for the background and the hotspot traffic. 66

3.46 Frequencies for DMSD and ICARO-DMSD. 66

3.47 Power consumption for DMSD and ICARO-DMSD. 66

3.48 End-to-end latency for different configuration parameters 68

3.49 Power consumption improvement with respect to DMSD for all configu-
rations. 69

3.50 Power consumption improvement with respect to DMSD (provided with
1VN) for all configurations. 69

3.51 Network Interfaces reaching south port of router #4. 72

3.52 PAPM messages copies destinations. 73

3.53 Buffer powering on/off protocol. 73

3.54 Flows sharing buffers along their paths. 76

3.55 Router implementation. 77

3.56 AN network in a 4x4 mesh. 77

3.57 End-to-end latency comparison between ICARO and ICARO-PAPM for
different configuration parameters . 81

3.58 Power consumption for different configuration parameters 81

3.59 Average power consumption under realistic multimedia traffic patterns. . 82

3.60 Average power consumption when no congestion in the network. 82

List of Figures ix

3.61 Average power consumption when congestion traffic in the network. . . . 82

3.62 End-to-end latency. 84

3.63 Power consumption. 84

3.64 Throughput. 84

3.65 8x8 end-to-end latency. 84

3.66 8x8 power consumption. 84

3.67 8x8 mesh throughput. 84

3.68 H264 end-to-end latency. 85

3.69 H264 power consumption. 85

3.70 H264 Throughput. 85

4.1 Node 0 communicates burst events through this 1-bit network. 93

4.2 Forwarding of messages in a source. 94

4.3 Notification delay (ND) analysis. 98

4.4 High-threshold (HT) analysis. Average flit latency. 99

4.5 Low-threshold (LT) analysis. Average flit latency. 99

4.6 Polling interval (PI) analysis. 99

4.7 Latency for BAHIA and no-BAHIA, 2 VNs, traffic pattern B. 100

4.8 Overall average latency without BAHIA, traffic pattern A. 101

4.9 Default-VNs average latency with BAHIA, traffic pattern A. 102

4.10 Extra-VN average latency with BAHIA, traffic pattern A. 102

4.11 Latency for the synthetic part of traffic pattern B, without and with BAHIA.102

4.12 Latency for the MCSL part of traffic pattern B, without and with BAHIA.103

4.13 Average latency without and with BAHIA for the synthetic and MCSL
parts of traffic pattern B. 103

5.1 CNN registers example. 113

5.2 Complete congestion notification network (CNN). 113

5.3 Notification management. 115

5.4 ICARO NI module mechanism description. 116

5.5 Merge opportunities. 118

5.6 ICARO configuration analysis. 120

5.7 Performance evaluation with hotspot traffic pattern. 122

5.8 Typical synthetic traffic patterns. 123

5.9 NI area and power overhead. 124

5.10 Router area and power overhead. 124

6.1 Two consecutive routers belonging to different VFIs (at the boundary
delimiting such VFIs). 130

6.2 CNN network example. Links in green: CNN interconnecting all CNN
registers. 131

6.3 Voltage Regulator controller logic . 132

6.4 CNN signal format in DVFS-based platforms 134

6.5 Final power consumption. 134

6.6 VFIs frequencies for DVFS without ICARO. 136

6.7 VFIs frequencies for ICARO-2VN. 136

6.8 VFIs frequencies for ICARO-1VN. 136

List of Figures x

6.9 VFIs frequencies for ICARO-2GHz. 136

6.10 Network latency for background traffic. 137

6.11 Throughput for background traffic. 137

6.12 Final net. latency (all traffic). 137

6.13 Final throughput (all traffic). 137

7.1 Frequency for DMSD under hotspot traffic. 141

7.2 End-to-end latency per traffic type for DMSD under hotspot traffic. . . . 141

7.3 Power consumption for DMSD under hotspot traffic. 141

7.4 All nodes in the network send latency measures to the PI controller to
set the new frequency. 143

7.5 Conversion from U to frequency. 144

7.6 Congestion Notification Network for a 4x4 mesh. 146

7.7 NI with ICARO for reallocating congested messages. 147

7.8 CaL network register associated logic for regular nodes adapted to DMSD.147

7.9 CaL network register associated logic for the node provided with the
PI/DVFS controller adapted to DMSD. 148

7.10 Power-gating controller. 149

7.11 ICARO-DMSD area overhead of different meshes. 150

7.12 End-to-end latencies for the background and the hotspot traffic. 151

7.13 Frequencies for DMSD and ICARO-DMSD. 151

7.14 Power consumption for DMSD and ICARO-DMSD. 151

7.15 End-to-end latency for different configuration parameters 153

7.16 Power consumption improvement with respect to DMSD for all configu-
rations. 154

7.17 Power consumption improvement with respect to DMSD (provided with
1VN) for all configurations. 155

8.1 Router modules power consumption. 162

8.2 Congestion Notification Network for a 4x4 mesh. 163

8.3 ICARO example of node 3 sending a congested message to node 6 and a
non-congested one to node 5. 164

8.4 Network Interfaces reaching south port of router #4. 166

8.5 PAPM messages copies destinations. 167

8.6 Buffer powering on/off protocol. 168

8.7 End-to-end latency comparison between no-ICARO and ICARO for dif-
ferent configuration parameters . 170

8.8 End-to-end latency comparison between ICARO and ICARO-PAPM for
different configuration parameters . 170

8.9 Power consumption for different configuration parameters 171

8.10 Average power consumption when no congestion in the network. 172

8.11 Average power consumption when congestion traffic in the network. . . . 172

8.12 Average power consumption under realistic multimedia traffic patterns. . 172

9.1 Power consumption of the different components of a canonical router. . . 179

9.2 Flows sharing buffers along their paths. 179

9.3 Router implementation. 184

List of Figures xi

9.4 AN network in a 4x4 mesh. 184

9.5 End-to-end latency. 188

9.6 Power consumption. 188

9.7 Throughput. 188

9.8 8x8 end-to-end latency. 188

9.9 8x8 power consumption. 188

9.10 8x8 mesh throughput. 188

9.11 H264 end-to-end latency. 189

9.12 H264 power consumption. 189

9.13 H264 Throughput. 189

List of Tables

2.1 Voltage regulators comparison. 21

3.1 Scenario configuration for bursty traffic in BAHIA. 39

3.2 BAHIA robustness analysis configuration. 40

3.3 Average latency for BAHIA and no-BAHIA scenarios. 42

3.4 ICARO configuration. 48

3.5 DVFS levels assumed in the ICARO-DVFS mechanism (obtained from [1]) 51

3.6 Common simulation configuration. 62

3.7 Simulations configuration. 66

3.8 Robustness analysis scenarios configuration. 67

3.9 General system configuration. 80

3.10 Scenarios configuration. 82

3.11 Simulation configuration. 83

3.12 Traffic patterns. 83

3.13 Digest of all proposals described in this thesis 86

4.1 Scenario configuration for bursty traffic. 97

4.2 BAHIA robustness analysis configuration. 98

4.3 Average latency for BAHIA and no-BAHIA scenarios. 100

5.1 ICARO configuration. 121

6.1 DVFS levels assumed in the ICARO-DVFS mechanism (obtained from [1])129

6.2 Common simulation configuration. 134

7.1 Robustness analysis scenarios configuration. 144

7.2 Robustness analysis scenarios configuration. 152

8.1 Orion configuration parameters. 161

8.2 General system configuration. 169

8.3 Scenarios configuration. 173

9.1 Simulation configuration. 187

9.2 Traffic patterns. 187

xiii

Abbreviations and Acronyms

ABP Activate Buffers Path

AM Allocation Message

AN Activation Network

ANN Artificial Neural Network-based

AsAP Asynchronous array of simple Processors

AVADA Adjustable VC Assignment with Dynamic VC Allocation

BAHIA Burst-Aware Head-of-Line blocking Injection Avoidance

BET Break Even Time

BNN Burst Notification Network

CaL Congestion and Latencies

CMP Chip Multi Processor

CNN Congestion Notification Network

CP Congested Point

DBP Deactivate Buffers Path

DC-DC Direct Current-Direct Current

DVFS Dynamic Voltage Frequency Scaling

DM Deallocation Message

DMSD Delay-based Max Slow Down

FVADA Fixed VC Assignment with Dynamic VC Allocation

GHz Giga Hertz

HAT Heterogeneous Adaptive Throttling

HoL Head-of-Line

HPC High Performance Computing

HPRA Hotspot-Preventive Routing Algorithm

HSD Hotspot Destined

HT High Threshold

ICARO Internal-Congestion-Aware HoL-blocking RemOval

MPSoC Multi Processor System on Chip

LT Low Threshold

MC Memory Ccontroller

MHz Mega Hertz

xv

Abbreviations and Acronyms xvi

ND Notification Delay

NI Network Interface

NoC Network-on-Chip

NonHSD NonHotSpot Destined

NoRD Node Router Decoupling

PAPM Path Aware Power Management

PARS Path Aware Routing Scheme

PGC Power Gating Controller

PI Polling Interval

PI Proportional Integer

PLL Phase Locked Loop

PWM Pulse Width Modulation

RCA Regional Congestion Awareness

RECN Regnional Explicit Congestion Notification

RP Router Parking

RP-A Router Parking-Aggresive

RP-Adp Router Parking-Adaptive

RP-C Router Parking-Conservative

RSO Request Switch Off

SAT THR SATuration THReshold

SoC System-on-Chip

TBG Time Between Generations

TooT Turn-on on Turn

UNSAT THR UNSATuration THReshold

V&F Voltage & Frequency

VFI Voltage Frequency Island

VC Virtual Channel

VCO Voltage Controlled Ooscillator

VN Virtual Network

VR Voltage Regulator

Abstract

Nowadays, thanks to the continuous improvements in the integration scale, more and

more cores are added on the same chip, leading to higher system performance. In order to

interconnect all nodes, a network-on-chip (NoC) is used, which is in charge of delivering

data between cores. However, increasing the number of cores leads to a significant power

consumption increase, leading the NoC to be one of the most expensive components in

terms of power. Because of this, during the last years, several mechanisms have been

proposed to address the NoC power consumption by means of DVFS (Dynamic Volt-

age and Frequency Scaling) and power-gating strategies. Nevertheless, improvements

achieved by these mechanisms are achieved, to a greater or lesser extent, at the cost of

system performance, potentially increasing the risk of saturating the network by forming

congested points which, in turn, compromise the rest of the system functionality. One

side effect is the creation of the “Head-of-Line blocking” effect where congested packets

at the head of queues prevent other non-blocked packets from advancing. To address

this issue, in this thesis, on one hand, we propose novel congestion control techniques

in order to improve system performance by removing the “Head-of-Line” blocking ef-

fect. On the other hand, we propose combined solutions adapted to DVFS in order

to achieve improvements in terms of performance and power. In addition to this, we

propose a path-aware power-gating-based mechanism, which is capable of detecting the

flows sharing buffer resources along data paths and perform to switch them off when

not needed. With all these combined solutions we can significantly reduce the power

consumption of the NoC when compared with state-of-the-art proposals.

xvii

Resumen

Hoy en d́ıa, gracias a las mejoras en la escala de integración cada vez se integran más

y más núcleos en un mismo chip, mejorando aśı sus prestaciones. Para interconectar

todos los nodos dentro del chip se emplea una red en chip (NoC, Network-on-Chip), la

cual es la encargada de intercambiar información entre núcleos. No obstante, aumentar

el número de núcleos en el chip también conlleva a su vez un importante incremento en

el consumo de la NoC, haciendo que ésta se convierta en una de las partes más caras del

chip en términos de consumo. Por ello, en los últimos años se han propuesto diversas

técnicas de ahorro de enerǵıa orientadas a reducir el consumo de la NoC mediante el uso

de DVFS (Dynamic Voltage and Frequency Scaling) o estrategias basadas en “power-

gating”. Sin embargo, éstas mejoras de consumo normalmente se obtienen a costa de

sacrificar, en mayor o menor medida, las prestaciones del sistema, aumentado poten-

cialmente aśı el riesgo de saturar la red, generando puntos de congestión que, a su vez,

comprometen el rendimiento del resto del sistema. Un efecto colateral es el “Head-of-

Line blocking”, mediante el que paquetes congestionados en la cabeza de la cola impiden

que otros paquetes no congestionados avancen. Con el fin de solucionar este problema,

en ésta tesis, en primer lugar, proponemos técnicas novedosas de control de congestión

para incrementar el rendimiento del sistema mediante la eliminación del “Head-of-Line

blocking”, mientras que, por otra parte, proponemos soluciones combinadas adaptadas

a DVFS con el fin de conseguir mejoras en términos de rendimiento y enerǵıa. Además,

proponemos una técnica de “power-gating” orientada a rutas de datos, la cual es capaz

de detectar flujos de datos compartiendo recursos a lo largo de rutas y apagar dichos

recursos de forma dinámica cuando no son necesarios. Con todas éstas soluciones com-

binadas podemos reducir el consumo de enerǵıa de la NoC en comparación con otras

técnicas presentes en el estado del arte.

xviii

Resum

Hui en dia, gràcies a les millores en l’escala d’integració, cada vegada s’integren més i més

nuclis en un mateix xip, la qual cosa millora les seues prestacions. Per tal d’interconectar

tots els nodes dins el xip es fa ús d’una Xarxa en Xip (NoC; Network-on-Chip), la qual

és l’encarregada d’intercanviar informació entre els nuclis. No obstant això, incrementar

el nombre de nuclis en el xip també comporta un important augment en el consum de la

NoC, la qual cosa fa que aquesta es convertisca en una de les parts més costoses del xip en

termes de consum. Per això, en els últims anys s’han proposat diverses tècniques d’estalvi

d’energia orientades a reduir el consum de la NoC mitjanant l’ús de DVFS (Dynamic

Voltage and Frequency Scaling) o estratègies basades en “power-gating”. Malgrat això,

aquestes millores en les prestacions normalment s’obtenen a costa de sacrificar, en major

o menor mesura, les prestacions del sistema i augmenta aix́ı el risc de saturar la xarxa

al generar-se punts de congestió, que al mateix temps, comprometen el rendiment de la

resta del sistema. Un efecte col-lateral és el “Head-of- Line blocking”, mitjanant el qual,

els paquets congestionats al cap de la cua, impedixen que altres paquets no congestionats

avancen. A fi de solucionar eixe problema, en aquesta tesi, en primer lloc, proposem

noves tècniques de control de congestió amb l’objectiu d’incrementar el rendiment del

sistema per mitjà de leliminació del “Head-of- Line blocking”, i d’altra banda, proposem

solucions combinades adaptades a DVFS amb la finalitat daconseguir millores en termes

de rendiment i energia. A més, proposem una tècnica de “power-gating” orientada a

rutes de dades, la qual és capaç de detectar fluxos de dades al compartir recursos al llarg

de les rutes i apagar eixos recursos de forma dinàmica quan no són necessaris. Amb

totes aquestes solucions combinades podem reduir el consum d’energia de la NoC en

comparació amb altres tècniques presents en l’estat de l’art.

xix

Acknowledgements

I would like to thank my parents, my sister and Tatiana who gave me their support.

To my colleages and friends in the GAP group for those great moments we had in the

laboratory. To Pedro J. Garćıa who contributed in most of the papers of this thesis and

to all professors of the DISCA department.

I also want to specially thank Mario R. Casu who was my advisor during my internship

in Torino, a great professor and a great person (and with a lot of patience).

And, finally, I want to thank even more specially to José Flich, my advisor, who put up

with me for several years. Thanks for his invaluable support and knowledge. The best

advisor I could had.

xx

Chapter 1

Introduction

Nowadays, our society relies and depends on the never ending need of higher computing

power and capacity. Computing power demand increases dramatically every year. New,

never thought, emerging multimedia applications in the personal computer and embed-

ded systems landscape and the need of High Performance Computing (HPC) for solving

challenging and complex problems pose more and more computational demands while

requiring to keep costs low in terms of power.

In order to meet these tight and conflicting requirements, in the last years, computing

architecture realm has suffered a radical change in its paradigm. Traditionally, per-

formance improvements in microprocessors have been achieved by improvements over

the architecture (multitasking, cache memories, etc...), but, also by taking benefit of

system’s clock increase, which causes a high direct impact in system performance. For

instance, firsts 80286-based[2] processors accounted with system’s clock frequency in the

order of few MHz’s. In contrast, in 15 years processors raised the frequency to the order

of GHz’s. Increasing the frequency is the straight way to increase processors through-

put. However, in the last years, clock frequency has reached its feasible limits. As seen

in Equation 1.1, power depends roughly quadratically with the frequency, therefore, it

is evident that to exceed the frequency above a given value will make the dissipated

power to reach unfeasible values. Several solutions have been used in order to increase

the clock frequency as much as possible. As an example, processor cooling systems have

evolved from simple aluminum heat sinks with no fan to modern liquid cooling systems.

However, advanced cooling systems are expensive and consume huge amounts of power.

Therefore, associated costs become unaffordable in production platforms such as HPC

systems.

P = CV 2f (1.1)

1

Chapter 1. Introduction 2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

Year

Microprocessors characteristics

Number of cores
Frequency (MHz)
Single-Thread Performance (SpecINT x 10

3
)

Number of transistors (thousands)
Power

Figure 1.1: Microprocessors specifications timeline.

Because of the unfeasibility of speeding processors up by increasing the frequency, re-

cently, chip manufacturers set the frequency increase strategy aside and opted to increase

performance by means of implementing more cores in the same chip, which are termed

chip multi-processors (CMPs). The idea behind this new strategy consists in, instead of

relying on a big and complex monolithic processor running at high frequencies, to design

simpler processors and physically replicate them several times while running at lower

frequency values. In this way, applications can be mapped into different cores, hence,

allowing them to run completely in parallel. This clearly implies a significant improve-

ment in performance and power efficiency due to the benefits of parallelism. Due to

the use of more power-efficient cores, a set of those cores can lead to same performance

levels (or higher) for the same power budget in monolithic processors.

In Figure 1.1 we can see the evolution of key microprocessor parameters since 1970. As

seen, until 2005, manufacturers kept increasing clock frequency for single-core processors.

In 2005, the clock frequency reached the top value, after which, the clock frequency has

been kept roughly constant while the increased factor has been the number of cores,

causing only a slightly power consumption increment.

Currently, multi-core architectures are being used extensively with designs implementing

typically from 2 to 24 cores. However, in order to increase parallelism and take even

more advantage of the multi-processor paradigm, the trend is to move forward in this

approach by adding tens, hundreds or even thousands of cores. These processors are

called many-core processors.

Chapter 1. Introduction 3

Despite these efforts to control power consumption by means of the multi-core/many-

core paradigm, power consumption still represents a key and difficult challenge, due to

the current trend of implementing more and more cores in the same chip in order to

satisfy both higher performance in HPC and to optimize the limited batteries lifetime

in the emerging market of portable devices such as smart phones. However, one side

benefit when using the multi- and many-core approach is that each core can be optimized

and tailored with specific technologies to save power and, thus, to become more energy

efficient. An example is the use of core level power-saving mechanisms such as DVFS[3]

or power-gating[4], which are currently commonly used to achieve better power-efficiency

results.

The multi-core and many-core paradigm is not only restricted to CMPs. CMPs are

typically composed of several general-purpose microprocessors interconnected in order

to run any application in any of their nodes. This could be seen as the evolution of the

general-purpose microprocessor. Similarly, Systems-on-Chip (SoC) consist in a complete

and specific system integrating on the same chip most of the components required (cores,

encoders, specific function modules, memories, . . .). As integration scale continued its

evolution, SoCs, similarly to CMPs, evolved to MPSoCs (Multi-Processor System-on-

Chip), in which, regular SoCs implement several processors to take advantage of the

multi-core approach.

Both CMPs and MPSoCs need an interconnect fabric in order to work. This on-chip

network[5][6], termed network-on-chip or NoC, is necessary in order to support the

internal traffic between components in the same chip. In CMPs, caches interchange data

blocks and commands (coherence traffic) and also access to external memory modules.

Therefore, due to the type of traffic it transports, the NoC must be extremely fast and

capable of serving data at very low latencies, otherwise the overall chip performance

will be negatively affected. However, due to the intrinsic design restrictions inside the

chip, the NoC must be carefully designed according to very tight constraints in terms of

area and power. In current multi-core chip designs, since only a few nodes are typically

implemented, such processors usually rely on simple buses or rings, as in the case of the

IBM Power8, shown in Figure 1.2. Bus and ring topologies are simple and relatively

inexpensive. However, since all nodes connected to the network share the same physical

media, they do not scale in performance with the number of interconnected nodes, since

the media can be used by only one node at a time. Therefore, to make many-core

processors feasible, other network designs must be used in order to allow concurrent

communication between all nodes. In this sense, currently, point-to-point mesh network

topologies are emerging as the most popular interconnect strategy in many-core systems.

Specifically, as microprocessors are manufactured over a 2D silicon substrate, 2D meshes

fit naturally well in the floorplan. An example of this network topology is the Tilera

TILE-Gx72 platform[7] with 72 cores shown in Figure 1.3 which is provisioned with 5

completely independent 2D mesh networks each one intended to a specific type of traffic.

Chapter 1. Introduction 4

Figure 1.2: IBM Power 8 CMP chip.

Figure 1.3: TILE-Gx72 platform provided with 72 tiles.

NoCs are being deeply researched for the last 15 years. These NoCs adopted many

design styles and methods from networks designed for HPC systems. Indeed, these

NoCs are not exempt from well known problems such as network routing deadlock,

fault-tolerance designs, network contention and network congestion, to name a few.

Also, the increase in number of computational units in CMPs and MPSoCs, makes the

network utilization to increase, therefore, its design increases in complexity to increase its

performance, leading to an increase in the power consumed by the NoC infrastructure as

well. At the beginning of the concept, NoCs were used to provide connectivity between

only a few nodes (from 2 to 8). For this number of nodes, the impact of the NoC

power consumption is moderated compared with the overall chip power consumption.

However, as the number of nodes in the chip increases, the NoC power consumption

increases significantly as well, representing a higher portion of the overall chip power

consumption. In fact, some authors have demonstrated that the NoC power consumption

reaches up to 28% [8] of the overall 80-cores chip power consumption, representing one

Chapter 1. Introduction 5

of the most power-hungry parts of the chip. Because of this, several works focused on

the NoC power consumption by extending the use of power control techniques -typically

focused to control the power consumption of cores- to the NoC infrastructure.

Among all power savings techniques, currently, the most extended strategies come in two

flavors: DVFS (Dynamic Voltage Frequency Scaling) and power-gating. Both mecha-

nism aim to save power but through different approaches.

DVFS works by adjusting the voltage and the clock frequency in order to increase

or decrease the system performance. The idea behind DVFS is to adapt the system

performance to meet the current application requirements so that the more the frequency

is decreased, the more power-saving is achieved according to Equation 1.1.

DVFS techniques, when applied to cores, rely on different metrics representing the core

utilization, so that the V&F (Voltage and Frequency) controller is aware of it in order to

decide whether to increase/decrease the core frequency. In order to drive the NoC V&F,

these metrics become useless since the network utilization may not be directly related

with cores activity. Therefore, in order to drive NoC V&F, new metrics and algorithms

were conceived. Typically, these metrics are related to the buffers utilization, data-rates

or message latencies. However, to choose a metric or a given set of metrics is not trivial.

NoCs activity can be complex due to the intrinsic unpredictability nature of the traffic

flow and its interactions. Indeed, an efficient DVFS approach applied to NoCs is still a

challenge.

Typical DVFS techniques works by decreasing the voltage and frequency in case of

resources to be underutilized, thereby achieving power-savings. Similarly, frequency

and voltage are increased when detecting that some resources are fully utilized at their

current frequency, leading to a higher performance but at the cost of power consumption.

The key idea is to tune the frequency and voltage to achieve a balance in which the

performance loss is acceptable while achieving a significant power-saving. Achieving

this balance point is not easy, specially when applied to NoCs. DVFS always implies

potential performance loss since, to decrease the clock frequency, even assuming a single

flow crossing the network, always implies a linear increment to the end-to-end latency.

Furthermore, if the DVFS policy is not well designed or running under specific circum-

stances (for instance, under bursty traffic or unbalanced traffic patterns), DVFS may

wrongly decide to decrease frequency, saturating the network and, thus, favoring the cre-

ation of congestion spots. This may revert into a significant overall system performance

degradation for relatively small systems, but in large NoCs, which are more sensitive

to saturation, the system will be more affected by this side effect. Thus, voltage and

frequency control becomes more critical as network increases in size.

One of the main issues of DVFS is related to its granularity. DVFS was initially designed

to support a single V&F domain. This means that V&F is set for all nodes in the system,

Chapter 1. Introduction 6

cv

VFI 0 VFI 1

VFI 2 VFI 3

Figure 1.4: DVFS voltage and frequency islands in a 16 Mesh system.

making all nodes to work at the same voltage and frequency. This could lead in V&F

suboptimal adjustment so that while a given set of nodes in the network would require

to rise the frequency to meet the application traffic requirements, other nodes could be

completely underutilized, causing a waste of power in case of raising the frequency. To

face this issue, V&F islands (VFIs) were proposed. In this way each VFI is driven by an

independent V&F controller so that each VFI is responsible of monitoring the activity

of the nodes belonging to each VFI and setting its voltage and frequency accordingly

and independently of other VFIs. In Figure 1.4 we can see an example of a 4x4 2D mesh

network with 4 VFIs. This approach effectively increases its granularity, meeting more

accurately the needs of the system. However, each VFI requires its own V&F regulator,

which could be very expensive and completely unfeasible beyond a given granularity

level, as stated in [9].

As stated previously, an alternative approach for saving power is power-gating. This

mechanism essentially consists in powering off unnecessary devices or parts of them,

depending on the mechanism granularity. Concerning NoCs, power-gating works by

monitoring the network in order to switch off unused routers or links. However, this

mechanism poses drawbacks. For instance, switching off a complete router may affect

network connectivity leading to parts of the system being disconnected. To solve this,

specific parts of routers can be switched off independently, guaranteeing connectivity,

since the rest of the router parts are kept in service.

Power-gating mechanisms usually require a centralized controller in order to collect

metrics from the system. Once these metrics are collected, the controller decides the

routers (or parts of them) to be switched off/on and sends the corresponding signals

to switch them on/off. This means that, the more the granularity, the more complex

becomes the control over the parts to be switched off.

Chapter 1. Introduction 7

Other aspects of power-gating mechanisms are related to the delays and overheads.

Switching off/on a device induces a penalty in terms of delay and power mainly due

to electronic limitations when rising the voltage. This means that the power-gating

control must be carefully designed in order to switching on/off a given device properly.

Otherwise, it could even cause an increase power consumption rather than power savings.

In terms of latency, additionally to the inherent delay caused by scaling up the voltage,

switching resources off also may lead to large transmission delays as some components

required by incoming traffic could not be switched on in time for serving this traffic.

This also leads to potential congestion effects that can spread over the network, similar

to the ones potentially originated by DVFS techniques, leading to a serious decrement

of system performance.

As previously stated, both DVFS-based techniques and power-gating techniques may

cause performance degradation at NoC level, making the network potentially weak and

prone to congested situations. Indeed, traffic patterns in NoCs are typically character-

ized by their irregularity[10] and burstiness[11]. Irregular traffic is even more apparent

in new heterogeneous systems[12][13]. In this scenario, we can classify congested traffic

and non-congested traffic both coexisting on the same NoC. This mixture is the perfect

recipe for generating the Head-of-Line blocking(HoL)[14] effect. HoL-blocking emerges

when congested data flows share the same buffers than non-congested ones. As seen

in Figure 1.5, if a congested flow reaches the head of a queue and, due to output re-

sources congestion, is not able to be forwarded to the next router, it will get blocked

(red flow in the cited figure). In the same figure, the following message in the FIFO

queue corresponds to a non-congested flow which requests a non-congested output port,

which has all resources available to forward the non-congested flow. However, since the

congested message keeps blocked waiting for its resources, the non-congested flow gets

blocked unnecessarily. This effect of blocking messages even having requested resources

available is known as HoL-blocking.

Several proposals in the literature deal with this harmful effect, being the most signifi-

cant one the RECN mechanism[15]. RECN is innovative in the sense that it is the first

work that considers congestion not to be a real problem by itself. Indeed, congestion

leads to severe HoL blocking effects between congested and non-congested flows, and

this is what makes congestion to affect performance negatively. If the HoL blocking ef-

fect caused by congestion is totally removed then performance is not affected at all and

congestion becomes harmless. To solve the HoL blocking effect, RECN uses a sophis-

ticated and dynamic mechanism implemented in routers. Unfortunately, the complete

implementation of RECN on NoCs is unfeasible given the current constraints of area and

power imposed in NoCs. This means the RECN mechanism can not be applied directly

on NoCs. However, its philosophy (separating non-congested flows from congested ones)

can be considered for achieving effective performance in NoCs. This sort of congestion

management becomes even more important in environments provided with DVFS and

Chapter 1. Introduction 8

w

Requests

C
re
d
it
s=
0

C
re
d
it
s=
3

Credits=3

Credits=3

Figure 1.5: Head-of-Line blocking.

power-gating techniques due to the performance degradation caused by them, which

could generate congestion. This thesis addresses this fact and focuses on an integral

approach to deal with the design of NoCs with power efficient techniques while smartly

addressing congestion situations.

In this thesis we provide efficient and effective methods that address power saving while

improving performance levels of the NoC and applications running on the system. In

particular, as a novelty of this thesis, we address the two problems of congestion manage-

ment and power-saving providing separated solutions but also combined ones. Indeed,

one central contribution of the thesis is the achievement of a mechanism able to deal

with congestion while reducing power consumption by using power minimization strate-

gies (namely DVFS and power gating). As stated previously, those techniques are prone

to create congestion spots as they affect the operational frequency of the system and its

resources availability. Therefore, combining them and taking into account both conges-

tion management and power minimization strategies is worth to be analyzed and may

lead to more effective solutions.

More specifically, Figure 1.6 shows the different contributions of the thesis. As a first

step, we propose two different (but related) congestion control mechanisms: BAHIA and

ICARO. With these mechanisms congested traffic is logically and dynamically separated

in different queues in the network, guaranteeing the side effects of congested traffic

over non-congested one to be avoided. This is mainly the HoL-blocking effect where a

congested message prevents non-congested ones from advancing. Although this way of

actuating does not eliminate congestion (but eliminates the side effects) is more effective

as it has been proven in the past in [15]. Indeed, this novel approach (removing side

effects of congestion rather than eliminating congestion) has never been directly applied

to NoCs. The difference between the two methods relies on the location where congestion

Chapter 1. Introduction 9

REACTIVE

PROACTIVE

• ATM
• HAT
Inj. limit

• Congestion isolation
•Detection End-point

• Congestion isolation
•Detection In network

• Congestion isolation
• Congestion-aware V/F driving
• Efficient V/F control

• Congestion isolation
• Congestion-aware V/F driving

• Path-aware power-gating
• Buffer level
• Standalone

• Congestion isolation
• Path-aware power-gating (extra-VN)

ICARO-DMSD

PAPM

Get power-savings Improve raw DVFS

Improve ICARO’s power

ICARO-DVFS

Performance Power-Awareness

Congestion Control Power-GatingDVFS

ICARO-PAPMICARO

BAHIA• RECN
Isolation

Figure 1.6: Thesis outline.

is detected, which is at the end-nodes for BAHIA and at each router in ICARO. In this

thesis, we propose an effective and efficient implementation of a congestion-management

strategy focusing on HoL-blocking removal.

Then, following the most evolved congestion control mechanism (ICARO), we adapt it

to a system design where multiple V&F domains exist and where DVFS techniques are

applied to each domain. Specifically, we deploy the ICARO-DVFS strategy. In this

strategy, ICARO is used to assist DVFS by allowing DVFS performance metrics to be

collected following three different approaches allowed by the integration of ICARO with

DVFS. According to these three different collection strategies, we present three different

approaches to integrate DVFS with ICARO, each focusing on an optimization parameter

(power consumption, message latency, or a combination).

On a similar trend, we adapt ICARO to the DMSD method. DMSD stands for Delay-

based Max Slow Down (DMSD) which is a DVFS policy that actuates based on the

delay of the message flows from every end-node. Basically, DMSD guarantees a latency

target for each communicating flow and actuates on the DFVS controller in order to

minimize power consumption while guaranteeing such latency target. In the new pro-

posal (ICARO-DMSD) we integrate the ICARO mechanism to guarantee the isolation

of congested background traffic and letting the DMSD strategy to operate only on sen-

sitive traffic. In other words, we isolate congestion to let DMSD be still effective under

conflictive traffic patterns. These two methods (ICARO-DFVS and ICARO-DMSD)

provide an overview how congestion management strategies can be applied to DVFS

related techniques.

Finally, and to embrace a larger scope in power minimization strategies, we address

power-gating strategies. Thus, we propose the ICARO-PAPM mechanism where we

Chapter 1. Introduction 10

combine ICARO with a novel path-aware power-gating mechanism. Basically, PAPM

(proposed as a contribution in this thesis as well) selectively powers on and off paths

based on the traffic activity related to that path. If a path is not used for a period of time

then the path is powered off and all the associated buffers along the path are potentially

powered down. However, as router buffers are shared we need to have a strategy to avoid

powered down buffers on active paths. In PAPM we address this issue. The ICARO-

PAPM mechanism let’s an effective use of buffers in terms of power. Indeed, as ICARO

avoids congestion by separating the congested traffic from the non-congested one, as long

as contention is not present, these inactive buffers can be powered off. ICARO-PAPM

will manage those inactive buffers from a power consumption perspective. Notice that

we propose both, the PAPM mechanism and the combined form that leads to ICARO-

PAPM.

To summarize, our contributions in this thesis are:

• BAHIA: A congestion control mechanism based on congested traffic detection at

the end-nodes and its isolation to avoid the HoL-blocking

• ICARO: A congestion control mechanism that detects congestion at routers (more

accurate) and isolates it.

• ICARO-DVFS: Combination of DVFS with ICARO to improve the efficiency of

DVFS provided systems. Three solutions are proposed aiming to improve different

parameters: Power saving, performance, or a balanced combination.

• ICARO-DMSD: Combines ICARO with DMSD (latency-driven DVFS) to improve

DVFS-based scenarios by preventing from overdriving the frequency under hotspot

and/or bursty traffic patterns while keeping the latency bounded.

• ICARO-PAPM: Combines PAPM with ICARO in order to improve ICARO power

savings by switching off the extra virtual network used by ICARO when not needed

while improving system performance.

• PAPM: A path-aware power management mechanism consisting in power-gating

router buffers based of flows paths.

1.1 Thesis Outline

Following the rules of Universitat Politècnica de València, this thesis has been written

as a compendium of articles and is structured as follows:

• In Chapter 2 the background of this thesis is described as well as related work.

Although subsequent chapters will include related work sections, we provide in

Chapter 1. Introduction 11

this chapter a complete and integrated background and related work description

in order to provide a unified view to the reader.

• In Chapter 3 we put together all the descriptions of this thesis proposals, to-

gether with their evaluations and an assessment of their similarities, differences

and complementarities. The goal of this chapter is to ease the understanding of

the proposals and to let the reader be focused on the proposals.

• From Chapter 4 to Chapter 9 the compendium of papers are arranged as follows:

– In Chapters 4 and 5 we describe the basic congestion control mechanisms,

namely BAHIA and ICARO, respectively.

– In Chapters 6 and 7 we propose two approaches to combine ICARO with

DVFS-based mechanisms to efficiently manage power consumption by isolat-

ing congested traffic.

– In Chapters 8 and 9 a path-aware power-gating mechanism is proposed to im-

prove ICARO power consumption and adapted to general NoCs respectively.

• Finally, in Chapter 10 we expose the conclusions, discuss future work derived from

this thesis and enumerate all conferences in which the articles of this thesis have

been published in.

Chapter 2

Background and Related Work

In this chapter, we collect basic concepts required to fully understand all proposals

described in this thesis. The content of this chapter provides the background related

to networks-on-chip, power-saving mechanisms and congestion management. Along the

description, we also introduce some of the existing work in order to provide an up-to-date

view of the state-of-the-art related to this thesis.

First, we center our description on congestion management and then on power-saving

techniques.

2.1 Congestion Management

NoCs must be capable of delivering traffic extremely fast but, at the same time, very

efficiently in terms of power. This, by itself, represents a challenge. However, on-chip

designs also pose very tight area constraints as on-chip networks must be carefully de-

signed in order to minimize physical resources required to perform successfully. These

tight constraints may lead to insufficient provisioning of resources, causing network sat-

uration, thereby generating congestion which degrades network performance and causes

the system performance to degrade as well.

Congestion is defined as the effect of suffering contention along the time, therefore, to

understand how congestion arises in the network, first contention background must be

described to fully understand its origin and behavior.

Contention in a network arises when an output port is not capable of serving all data

flows requesting the output port as the incoming flow bandwidth exceeds the output

port bandwidth. In other words, contention occurs when the sum of all incoming rate

flows requesting a given output port exceeds the output port maximum capacity, as

formulated in Equation 2.1

13

Chapter 2. Background and Related Work 14

w

1 flit/cycle

1 flit/cycle

Figure 2.1: One flow forwarded at
high data rate

w

1 flit/cycle

1 flit/cycle

1 flit/cycle

Figure 2.2: Two flows causing con-
tention

r∑
ip=0

λip > µop, ∀ip 6= op (2.1)

where r is the number of router ports, λ is the arrival data rate for the input port

denoted by ip and µ represents the maximum data rate the output port (op) is able to

serve. The output port capacity, typically, is equal to the maximum arrival data rate at

the input port. Because of this, a single flow will never exceed an output port capacity,

thereby will never be able to cause contention as shown in Figure 2.1, thus will never

generate congestion as well. Due to this, contention is only generated when two or more

input ports request the same output port as shown in Figure 2.2, where the sum of both

flows data rate exceeds the output port capacity, making both flows to be slowed down.

Contention can occur without degrading significantly system’s performance. If con-

tention occurs sporadically, router buffers along the flow path will absorb accumulated

traffic in a lesser or greater extent, depending on the router buffer depth, avoiding ex-

cessive contention effects, thereby causing negligible network turbulence. However, in

case of contention to last for moderate or large amounts of time, buffers will quickly

filled, triggering the flow control to stop incoming flows from upstream routers, which

may cause those router buffers to be filled as well, thereby propagating this effect to

the rest of routers, spreading contention over the network starting from the first con-

tended router and creating branches due to the interaction of other data flows with the

congested flow as shown in Figure 2.3. When this happens, the network is congested.

Due to the negative impact of congestion, and also to the growing popularity of NoC-

based systems, the number of proposals for congestion management in NoCs has quickly

increased during the last years. Although some congestion-management mechanisms

have been proposed for bufferless NoCs, such as the one presented in [16], we focus on

Chapter 2. Background and Related Work 15

cv

First oversubscribed port

Propagated oversubscribed port

First congested paths

Propagated congested paths

Figure 2.3: Congestion propagation.

solutions intended to buffered NoCs, as our proposals have been designed for this type

of NoCs architectures.

Some works try to eliminate congestion by means of injection throttling, which cor-

responds to one of the “classical” approaches to congestion management. Injection

throttling essentially consists in to decrease the injection rate at sources to reduce the

network load, thereby alleviating or removing congestion. In [17], authors propose a self-

tuning injection throttling-based mechanism which monitors the whole network buffers

occupancy to compare them with a self-tuned threshold which is in charge of deciding

whether to throttle traffic or not. Similarly, in [18] authors proposed HAT, a more sophis-

ticated injection throttling mechanism. It works by classifying applications according

to the intensity of its traffic generated at sources. Then uses this classification in order

to decrease the injection rate only for the traffic generated by high network demanding

applications. Other approaches, instead of evaluating directly metrics collected from

the network to know the current network status, rely on more sophisticated mechanisms

in order to compute predictions. For instance, in [19], authors propose an end-to-end

flow control mechanism based on prediction-models to control the injection rate at the

source node. Predictions are computed in every router using its state and its neighbors

state. In order to exchange the necessary data for computing the prediction, routers im-

plement additional wires interconnecting them. However, all injection throttling-based

mechanisms suffer from the same issue. Like any control strategy based on closed-loop

theory, may present performance oscillations and become inefficient if source nodes react

too late.

Chapter 2. Background and Related Work 16

NoCs, as well as any other network, need to implement routing algorithms to deliver

traffic from a given source to any destination. NoCs in CMPs typically follow a 2D

regular mesh topology and are subjected to the simplicity paradigm to save area and

power. Thus, NoCs are typically provided with deterministic routing (Dimension Or-

der Routing, DOR) due to its simplicity and effectiveness. However, in order to deal

with congestion, some works propose to replace DOR by dynamic routing policies which

collect metrics from the network to offer alternative paths to route around congested

areas, thus increasing network performance. This adaptive routing approach is the basis

of solutions like RCA[20], which uses a composition of multiple global metrics collected

by means of piggybacking data into messages from the whole network to decide at

each router output port which message is forwarded through, so hotspots are avoided.

Similarly, in [21] authors propose to collect congestion information from the whole net-

work and to take routing decisions based on network status. However, both proposals

present similar potential drawbacks. In both mechanisms the congestion information

is collected by piggybacking the links status into the packets header, which, in case of

heavy-congestion situations, both mechanisms may collapse since the information used

to avoid congested areas is aggregated in the same messages that are congested, which

slows down the metrics delivery, causing the mechanisms to react too late. Additionally,

adapting the routes to avoid hotspots may result in moving the location of such hotspots

from one place to another, so the problem would remain unsolved. Moreover, avoiding

hotspots may be impossible if all the congested flows have the same target (e.g. the

memory controller).

Piggybacking metrics is an area-efficient strategy to deliver congestion-related data, but

it may lead to wrong or too delayed corrective actions. To solve this, other proposals im-

plement dedicated simple networks to avoid such delays. For instance, PARS, proposed

in [22], uses a dedicated network for sending congestion metrics based on the buffer state

at certain routers. Like RCA, PARS uses such metrics to select proper paths in order

to avoid hotspots. Although in this case the information is sent through the dedicated

network, the problems regarding unavoidable hotspots or “hotspot reallocation” may

still appear. Similarly, in [23] authors propose a token-based flow-control mechanism

which uses dedicated wires to send routers status information (token) which is used to

take routing decisions and bypass router pipelines. However, this proposal is focused on

reducing network latency by skipping routers pipelining, but not by facing congestion

harmful effects.

Depending on the intensity and persistence of congested flows, congestion may be prop-

agated very fast. Due to this, is key to detect it and react as fast as possible. However,

due to its stochastic intrinsic characteristics, congestion detection becomes challenging.

Most of the works rely on metrics related to the network or end-to-end latency. These

metrics measure the time spent for traversing the network from the source to the destina-

tion and the time spent from the data allocation at NIs to its arrival to the destination.

Chapter 2. Background and Related Work 17

Nevertheless, to keep track of these metrics typically requires these metrics to be deliv-

ered to the logic block in charge of reacting against congestion in case of being detected,

which may take several cycles. Probably, when the congestion is intense enough to sig-

nificantly affect the latency and, after the required time to deliver and evaluate those

metrics, as stated in [17], it will be too late to react in time to avoid congestion from

affecting the system performance.

Being aware of this, other proposals face the congestion caused mainly by hotspots

by addressing it from a prediction-based approach. This is the case of [24], in which

authors propose HPRA, a hotspot-formation prediction mechanism. HPRA uses an

Artificial Neural Network-based (ANN) hardware that gathers buffer utilization data to

predict the formation of hotspots. Then, HPRA classifies the traffic into two classes:

hotspot-destined traffic (HSD) and non-hotspot-destined traffic (nonHSD). HSD traffic

is throttled at source while the nonHSD traffic is routed avoiding paths containing

hotspots routers. However, in the cases in which the ANN fails to predict hotspots, it

may redirect traffic to an unpredicted hotspot, causing an even worse degradation of the

system performance. Besides, HPRA suffers from the same metrics delivering issue of

previously described RCA.

Most congestion control proposals are focused in dealing with congestion, either by acting

over the injection rate or by dynamically routing traffic. However, regarding congestion

control, in this thesis we focus our work from a different point of view. We claim that

congestion is not a problem by itself but the real problem is the effects of congestion

over non-congested traffic due to the HoL-blocking effect. Acting over congested traffic

by reducing its rate is not an effective solution due to the oscillation effects described

previously because the interaction between congested and non-congested flows is only

alleviated, not solved, and to decrease the injection rate, even in a application-aware

manner, deliberately decreases the application performance. Acting over congested traf-

fic by detouring it (adaptive routing), can potentially reduce the interaction between

congested flows and non-congested ones, but only because the availability of alternative

paths. This strategy is not designed for this purpose, therefore, there is no guarantee of

performing in that way.

Because of this, from our point of view, there is a need to change the paradigm to

address congestion issues in NoCs. We show that an efficient HoL-blocking-avoidance

mechanism must explicitly identify congested flows in order to isolate them completely

and dynamically. A solution that follows a similar approach has been proposed in

[25]. Actually, authors propose two policies to map traffic flows to VCs: FVADA and

AVADA. Both proposals establish a correspondence between the output port requested

on the router x+1 and the output VC assigned in the router x (note this requires

lookahead routing). The main difference between both policies is that FVADA establishes

a direct and permanent correspondence between the requested output port and the

assigned VC, while AVADA starts establishing a direct correspondence but later this

Chapter 2. Background and Related Work 18

X

Congested message

Non-congested message

Figure 2.4: Congested message
blocking non-congested message

(HoL).

Congested message

Non-congested message

Figure 2.5: Congested message is
isolated from the non-congested one.

correspondence can be dynamically adapted, based on the output port load, making use

of a correspondence table (a CAM-based table). Note that, while FVADA is simpler to

implement, it requires exactly as many VCs as the router radix−1 value, thus depending

the number of required VCs on the router radix. Moreover, both policies require routers

implementing lookahead routing and a credit-based flow-control in order to quantify the

output port load and adapt their behavior when the load in a given VC is too high.

Note that neither FVADA nor AVADA are actually aware of which traffic flows are

contributing to a hotspot, as they only consider one hop (i.e. the next requested output

port) in the path of the messages, while hotspots may be located further away. Thus,

congested flows may still share queues with non-congested ones, thereby still causing

HoL-blocking in some degree.

Following the HoL-blocking removing paradigm, a more convenient approach is proposed

in [15], where authors propose RECN (Regional Explicit Congestion Management), a

mechanism for isolating congested traffic for off-chip networks. Among the plethora of

proposals for congestion management in off-chip networks, RECN can be considered as

one of the most efficient as it completely prevents HoL-blocking while requiring a reduced

set of queues. However, adapting the RECN basics to NoCs requires a very different way

of implementing it, due to the tight limitations in area and power in this context. This

is the starting point of the congestion side of this thesis. Under the paradigm proposed

in RECN we propose a mechanism to deal with congestion by detecting congested flows

and isolate them into special queues. In this way, interaction between congested flows

and non-congested ones is avoided, hence removing the HoL blocking effect as following

illustrated. In Figure 2.4 a router queue is depicted containing one congested message at

the top of the queue blocking the non-congested one. Our proposal basically consists in

adding a special queue intended to isolate congested traffic while the other queue stores

non-congested one, as shown in Figure 2.5, thus allowing this traffic to be forwarded

regardless the status of the congested traffic.

Chapter 2. Background and Related Work 19

2.2 Power Saving

2.2.1 Dynamic Voltage and Frequency Scaling

To deal with the growing demand of performance, manufacturers traditionally opted

by increasing the system clock frequency. This strategy has been a feasible solution to

speed up processors. However, current silicon technology imposes restrictions to this

approach since dissipated power scales exponentially with the frequency, making power

consumption completely unfeasible at high frequencies. As seen in Equation 1.1, re-

ducing the frequency and the voltage decreases the power consumption significantly.

Because of this, one of the most extended strategies intended to decrease power con-

sumption is DVFS[3] (Dynamic Voltage and Frequency Scaling). DVFS takes advantage

of the resources underutilization to decrease the clock frequency opportunistically, which

has a direct impact on the power consumption. However, reducing the clock frequency

also decreases the system performance. Therefore, DVFS-based mechanisms analyze

applications requirements and adapt the clock frequency in order to meet these require-

ments, thus saving power when requirements are low. Nevertheless, to decrease the

frequency and voltage according to the application needs may generate additional is-

sues. To determine when to increase or decrease the frequency is critical since wrong

decisions adjusting the frequency may affect negatively to the performance and power

consumption.

A typical implementation of DVFS is composed of a metric collector/evaluator and a

voltage/frequency controller. The metric collector is the module in charge of collecting

different metrics representing the system utilization. These metrics are evaluated to

determine the relationship between applications requirements and system performance.

The goal of DVFS is to adjust the V&F in order to meet as fast and as close as pos-

sible the system performance with the application requirements in order to achieve the

maximum power savings without affecting significantly the application performance.

Therefore, becomes key to determine accurately the application requirements through a

proper metric (or metrics set). An example could be a mechanism that sends average

end-to-end latencies from each node to the collector which, after receiving all latencies,

evaluates whether the latencies are close to the network saturation point or not and

triggers a frequency increase/decrease respectively.

The V&F controller corresponds to the physical driver which sets the network voltage

and frequency. This controller is composed of the voltage regulator and the frequency

driver. The voltage driver is typically implemented by means of a DC-DC buck converter

which, at the same time is driven by a PWM/PFM controller as shown in Figure 2.6,

setting the operating voltage according to the system needs. Regarding the frequency

controller, early implementations assumed voltage-controlled oscillators (VCO) as the

one implemented in the TI MSP430, which performs automatic and continuous frequency

Chapter 2. Background and Related Work 20

Figure 2.6: Voltage regulator.

V1

V2

f1

f2

t

PLL lock time

Figure 2.7: Voltage and frequency change process.

changes according to the operating voltage, allowing to keep the system running during

all the voltage transition. However, this type of controllers are not commonly used

in high-performance computing due to their frequency instability and inaccuracy at

high frequencies. In turn, recent frequency implementations rely in PLLs due to their

accuracy. However, in systems provided with PLLs to generate clock signals, first the

voltage controller increases its value and waits until the voltage is stabilized to ensure

the system stability and then the PLL changes its value to set the new frequency, which

takes a lapse of time in the order of µs. To scale down the voltage and frequency, first the

frequency is decreased and then the voltage is downscaled as described in Figure 2.7.

PLLs, contrarily to the VCOs, must wait for the frequency to stabilize. This delay

is called PLL lock time, and it is considered the main source of delay when raising

the frequency since, during this time, devices powered by the controller are completely

halted. These delays may affect negatively to the system performance, therefore, to

abuse of V&F changes may affect to the system performance, increasing the risk of

generating congestion in the NoC.

Voltage regulators can be implemented either on-chip or off-chip, depending on the

requirements they must satisfy. As described in Table 2.1, on one hand, on-chip voltage

regulators are characterized by their speed as they are able to switch in the order of tens

of nanoseconds but they are very expensive in terms of area and its efficiency is lower

than off-chip VRs[9]. On the other hand, off-chip regulators, are able to switch in the

order of few milliseconds, which is two magnitude orders above on-chip VRs. However,

off-chip VRs, as are implemented outside the chip, the area spent to implement them

Chapter 2. Background and Related Work 21

Type Speed Area Efficiency

On-Chip Fast High ∼80%

Off-Chip Slow None ∼90%

Table 2.1: Voltage regulators comparison.

represents not a real issue, hence they are able to deliver huge amounts of power and

more efficiently to the chip.

As seen, current typical DVFS implementations incur in several µs of delay. Neverthe-

less, there are other implementations as the one performed in the AsAP processor[26],

in which each processor can selectively switch from VddHi to VddLo and vice versa. As

this is performed by switching the current power source from the VddHi power grid to

the VddLo, V&F changes can be performed in the order of ns.

Regarding the metrics used in DVFS to evaluate the network performance, we dispose of

several metrics as the buffers usage, received data-rate, end-to-end latency, etc. However,

none of these metrics could be considered representative of the overall system state.

Other factors like congestion, unbalanced traffic patterns could turn these metrics useless

since may represent only a small portion of the overall system, potentially causing the

frequency to increase or decrease due to a small part of the network traffic. To solve

this, Voltage and Frequency Islands (VFIs) were proposed. VFIs create V&F (Voltage

and Frequency) domains containing part of the network and controlled by a dedicated

V&F controller. In this way, V&F of the nodes contained in each VFI are controlled

independently of the rest of the system and network utilization metrics are collected only

for these nodes. By doing this, V&F control granularity is increased so that the V&F

can meet more precisely application requirements, thus improving power-savings and

system performance. In this sense, most works drive the VFIs concept until its limits by

increasing the granularity to the router and even to the link level[27][28][29][30][31][32].

These works, however, do not consider the overhead of having multiple voltage regulators

and PLLs for the various NoC components, not to mention the latency penalty due to

multiple clock-domain crossings. In fact, in [9], authors state that the area spent by

VRs is proportional to the power to be delivered and it is estimated that it is necessary

2mm2 to deliver 1W of power. Therefore, to provide power enough to supply a core,

it is necessary almost the same area that the area spent by the core itself, which is not

practical[33].

Since on-chip and off-chip VRs, each one, exhibits advantages and drawbacks, a more

feasible approach of increasing the VFIs granularity consists in to take advantage of both

by designing a mixed approach as proposed in [9], in which both VR types are used.

However, we are closer to the view of other authors that consider more practical to have

a single voltage and frequency domain for the whole NoC [34][35][36][37].

Chapter 2. Background and Related Work 22

Figure 2.8: Power-gating implementation.

It is apparent that a fine-grain DVFS approach would lead to better power savings, but

the implementation cost would be too high. For these reasons researchers explored a

middle ground that we can classify as coarse-grain NoC DVFS, in which either multiple

NoC planes (typically two planes) powered at different voltages and/or frequencies are

used [38][39], or routers that can individually choose between only two voltages are

employed [40].

2.2.2 Power-Gating

Advances in the integration scale not only come with the benefit of allowing to integrate

more and more transistors in the same area but also with decreasing the overall power

consumption due to the reduction of the capacitances of the circuitry. However, this

helps to decrease the dynamic component of power consumption caused by signal toggles

but it has negligible effects over the leakage power. As the technology goes further, the

importance of the leakage power grows similarly, leading to more works addressing this

challenge. The most extended mechanism to deal with the leakage power is power-

gating, which essentially consists in powering off unused devices or components, thereby

avoiding them to consume leakage power when they are not needed. A traditional power-

gating implementation is shown in Figure 2.8. Q1 and Q2 are MOSFET transistors

which are driven by the sleep signal coming from the power-gating controller. These

transistors provide power from VDD and GND to the virtual power rails VDDV and

GNDV respectively, which, in turn, supply power to the device or logic to be controlled.

To switch a device off and on is not for free. Due to the power-gating circuitry decoupling

capacitances and other factors, to switch on/off a device incurs in power overheads that,

in absence of power-gating mechanisms, would not exist. This power overhead depends

on the circuitry capacitances but also exhibits a linear direct relationship with the load

device power consumption.

Chapter 2. Background and Related Work 23

Because of this, in order to amortize this power overhead and achieve power savings,

the policy driving the power-gating mechanism must be carefully designed to avoid to

switch off devices unnecessarily. In this sense, the break-even point (BET) is defined as

the minimum amount of cycles a given device must be switched off in order to amortize

its switching on power overhead. Therefore, in order to achieve power savings, the

power-gating policy must guarantee to prevent to violate the BET.

Power-gating works, similarly to DVFS, also requiring to monitor each device to be

power-gated in order to collect status information to be able to take the decision of

switching it on/off or not. Similarly, power-gating granularity is an important fac-

tor when designing power-gating mechanisms. Some works bet on typical power-gating

mechanisms for NoCs in which whole routers are power-gated as in [41], in which authors

propose Router Parking (RP). RP works essentially by powering off routers associated

to sleeping cores. They use a centralized controller (Fabric Manager) which collects the

state of the network, takes the decisions of powering on/off each router and sends this de-

cision to each router. However, usually not all buffers in a given router are equally used

and to switch a whole router off decreases significantly the available paths to reach all

nodes, even causing some nodes to be unreachable under deterministic routing. There-

fore, switching a whole router off might be an overkill which can potentially decrease the

NoC performance unnecessarily. To solve this, the RP proposal reroutes traffic around

parked routers, which might increase latency and power. Authors propose 3 different RP

flavors: RP-A (aggressive) which parks as many routers as possible to improve power

savings, RP-C (conservative) which carefully selects a small set of routers to be parked,

and RP-Adp (adaptive) which selects between RP-A and RP-C dynamically depend-

ing on network utilization. This work achieves large power savings but to power whole

routers off makes the complexity of this proposal to increase due to the traffic detours

and the need to handle corner cases caused by network routing reconfiguration.

As to completely switching routers off incurs in several difficulties due to the loss of

connectivity, some works try to avoid this scheme by implementing alternative mecha-

nisms that guarantee minimum services. For instance, authors in [42] propose, instead

of switching the whole router off, to decrease the available number of Virtual Channels

(VCs) by switching some of them off when the traffic load is low. Other proposals stand

by switching off huge parts of the router and enabling bypasses, which are simpler,

thereby less power-hungry. An example of this is described in [43], in which NoRD is

proposed. NoRD consists in powering routers off but enabling bypasses at powered off

routers in order to enable a guaranteed path at each router. This bypass also enables

the NIs to inject and eject traffic to/from the network even when its associated router

is powered off. The router overhead is low as it needs an inexpensive logic. However,

concerning this proposal, the complexity associated to the bypass flow control and VC

selection is moved to the NI, which may increase its complexity and power consumption.

Similarly, in [44] authors propose TooT, which relies on the fact that most of the traffic

Chapter 2. Background and Related Work 24

crosses routers making no turns. Based on this fact, TooT switches most parts of the

router off, and keeps on only a very reduced version of the router and one latch per

port, allowing to forward traffic that requires no turns. However, effectiveness of this

sort of strategies depends on the traffic pattern and may not work properly under some

circumstances.

Some works bet on fine-grained power-gating approaches to switch unused small parts

of the routers, thus, minimizing the loss of connectivity while achieving similar power-

savings. As stated in [45], buffers represent one of the most power-hungry parts of a NoC

router. Because of this, router buffers represent one of the most common targets when

designing fine-grained power-gating techniques. For instance, authors of [46] follow this

approach by proposing a buffer power-gating mechanism which makes use of lookahead

routing to offset the amount of time necessary to powering the buffer on. By using

lookahead routing each node is able to know in advance the path the message will follow

two hops away from it. Each router is connected to the routers located two hops away

on each dimension so that the n-th router is able to request powering the buffer on for

the (n+2)-th router buffers. In this way, the buffers are powered on a few cycles before

the first flit arrives to the (n+2)-th router. However, this proposal requires to wire from

each router to the one located at two hops on each dimension, which may be expensive.

Another interesting proposal is described in [47], in which authors propose Power Punch.

This proposal consists in sending power-gating signals through the network in order to

switch buffers on/off as long as these signals are delivered through buffers. The key of

this work is the way in which the authors propose to aggregate in the same message

different power-gating signals during their delivery through the network, alleviating the

overhead caused by these signals.

Chapter 3

Proposed Techniques

3.1 Congestion Management

In this chapter we describe the different techniques provided in this thesis and their

evaluation. For the sake of understanding they are collected from the associated publi-

cations exposed in the previous chapters, avoiding in this chapter any duplicity between

publications.

In this thesis we propose to combine congestion management mechanisms with power-

saving proposals to overcome known performance degradation effects of DVFS-based

techniques. To deal with congestion we share the point of view of authors in [15]. In

that work, authors do not to deal with congestion itself but with the HoL-blocking

effect by identifying congested flows and isolating them into special queues from the

non-congested traffic.

In order to combine congestion management mechanisms with power-saving techniques,

first we develop congestion management mechanisms following the idea of removing the

HoL-blocking by congested traffic isolation. We first introduce BAHIA and then ICARO

followed by the evaluations of both.

3.1.1 BAHIA Description

BAHIA (Burst Aware HoL-blocking Injection Avoidance) provides a method to isolate,

at runtime, detected bursty traffic in a network, in order to prevent bursts from causing

HoL-blocking. Detection of bursty traffic is performed at any end-node receiving a burst.

All the end-nodes are then notified of this detection, so that thereafter the bursty traffic

can be identified in order to be separated from non-bursty traffic, thereby avoiding the

HoL-blocking that the former could produce to the latter. BAHIA makes use of Virtual

Networks to separate traffic, hence BAHIA requires at least two virtual networks: the

25

Chapter 3. Proposed Techniques 26

“regular” virtual network (hereafter regular-VN), for non-bursty traffic, and an “extra”

virtual network (hereafter extra-VN)1 for bursty traffic. Therefore, if no bursty traffic

is detected, the traffic is injected always through the regular-VN, but when a burst

is detected, the bursty flow is mapped to the extra-VN. It is worth mentioning that,

although BAHIA makes a special use of virtual networks, it supports virtual channels

implementation over such virtual networks.

3.1.1.1 Burst Detection

As mentioned above, the detection of bursty traffic is performed at the end-node re-

ceiving the burst. For that purpose, each end-node periodically calculates its rate of

received traffic. The traffic rate is calculated every “polling interval” (PI) cycles, which

is a predefined parameter of BAHIA. If that rate exceeds a given high-threshold (HT)

value, this end-node will notify the other end-nodes that it is receiving bursty traf-

fic. Similarly, any end-node notifying bursty traffic must be able to detect the end of

the burst. For that purpose, the traffic reception rate is compared with a given low-

threshold (LT) value. Accordingly, in this case, all the end-nodes will be notified about

the end of the burst. It is worth mentioning that an appropriate configuration of the two

aforementioned thresholds (upper and lower) is important to achieve the best BAHIA

performance. Indeed, in our evaluation experiments we have thoroughly tuned these

values, as explained in Section 3.1.3.1.

On the other hand, an alternative burst detection mechanism could be conceived at the

sender. Indeed, if a node is going to inject a burst then it can know that in advance.

However, detecting at the senders cannot guarantee the effective detection of different

lightweight bursts from different sources to the same destination, thereby being not so

efficient in preventing the negative effects of aggregate bursts. Hence, we opted for

performing burst detection at the receiver part of the end-nodes.

3.1.1.2 Burst Notification

In order to notify a traffic burst to all the end-nodes, BAHIA makes use of a simple

dedicated signaling network (Burst Notification Network, BNN). Basically, the whole

BNN is a set of one-bit-wide overlapped control networks, each one managed by a specific

end-node. Each one-bit control network connects its manager end-node to the rest of end-

nodes, the former being the only one able to activate/deactivate the signal (i.e. to set the

bit to one/zero) of this control network, while the latter being just signal receivers. Thus,

every end-node owns an exclusive one-bit-wide control network to notify bursts events

1In some publications composing the papers compendium of this thesis, terms used for the regular-VN
and the extra-VN are default-VN and slow-VN respectively. However, for the sake of clarity, in this
chapter we unified the VNs nomenclature of all proposals using regular-VN and extra-VN terms.

Chapter 3. Proposed Techniques 27

Figure 3.1: Example of BNN network for node 0.

to the rest of end-nodes. Figure 3.1 shows the one-bit-wide control network managed by

end-node 0, but note that every end-node owns a similar control network, so that in this

4× 4 mesh network, there would be other 15 one-bit-wide control networks besides the

one shown. The overlapping of these control networks allows every end-node to notify

bursts without risk of collisions with notifications from other end-nodes. Therefore, the

BNN can be viewed as an N-bit-link, where N is the number of end-nodes and every bit

(wire) in the link corresponds to a specific end-node in the system.

Any end-node notifies the rest of end-nodes of a burst by setting to high value the signal

of its BNN line. Due to the simplicity of that signal, it reaches all the end-nodes in

a few cycles. The time spent in propagating and processing this signal is modeled by

the “notification delay” (ND) parameter in the simulations. It is worth mentioning that

the processing of this signal is negligible (and so the required hardware). Regarding the

area overhead introduced by the BNN, in [48] an additional dual-network for routing

data transmission is proposed. This dual-network comprises the logic needed for coding

and decoding data, flow controlling, handling transmission failures mechanisms, etc.

Despite of its relative complexity, the authors of the referred paper conclude that the

area overhead of the hardware required to implement their proposal is 12.5% of the

switch. Note that the BNN consists just in a set of wires which are set to a high or

low signal value for notifying, hence no logic for processing data is needed. Therefore,

relying on the hardware overhead study performed in [48], we can conclude that the

hardware overhead for implementing the BNN is negligible.

3.1.1.3 Traffic Separation

Every end-node implements a “burstiness bit-vector”, each bit corresponding to a specific

end-node in the network, as can be seen in Figure 3.2. When an end-node detects a

high signal value in the BNN line associated to an end-node, the former will set to

Chapter 3. Proposed Techniques 28

Figure 3.2: Burstiness bit vector implemented at each end-node.

one in its burstiness bit-vector the bit corresponding to the latter. Once generated,

all the messages are mapped to the regular-VN, thus they are initially stored in the

queue associated to that virtual network (regular-VN queue). At every clock cycle

the head of all regular-VN queues are checked searching for the head of a message: if

one is found, its destination is checked to obtain the value of the corresponding bit

in the burstiness bit-vector. If that bit is set to zero, the message remains mapped

to the regular-VN; otherwise, the whole message is transferred to the extra-VN. These

checking&transferring process can be executed while reading from the queue currently

selected for injecting, hence a message at the head of a queue can be transferred to

the extra-VN queue while the next one is injected (even when it has to be transferred

to the extra-VN too). It is worth mentioning that in a real hardware implementation

the burstiness bit-vector could be replaced by simply inspecting the signals in the BNN

lines.

In extreme scenarios with several bursts addressed to many end-nodes, and with large

burst duration, the extra-VN queues may get full. In these cases messages cannot be

transferred from the regular-VN queues to the extra-VN ones, thus the regular-VN

queues with messages at their head waiting to be transferred to the extra-VN queue

will get blocked until messages at the extra-VN queue are drained. Note that it is

an extremely unlikely case: indeed, when simulations were performed with realistic

benchmarks this never happened.

Figure 3.2 shows the basic structure of the sender part of an end-node that has messages

addressed to end-nodes 1, 5 and 6. The message at the header is addressed to end-node

Chapter 3. Proposed Techniques 29

5. The bit corresponding to end-node 5 in the burstiness bit-vector is set to one (i.e.

end-node 5 previously notified that it was receiving a burst), so this message must

be mapped to the extra-VN. Indeed, before injection, the arbiter at the sender node

checks the burstiness bit-vector and transfers the message addressed to end-node 5 to

the extra-VN queue, so that this message will be later injected from that queue.

It is worth pointing out that, although messages are injected either from the regular-VN

queue or from the extra one, all of them are initially mapped to the regular-VN. This

is because, if an end-node directly maps to the extra-VN the messages addressed to an

end-node that has recently notified a burst, there may be messages still stored in the

regular-VN queue that are addressed to the same destination, and this could introduce

out-of-order message injection (and so delivery) as queue selection policy is based on

a simple round-robin algorithm. Hence, to guarantee in-order message injection and

delivery, all the messages are first mapped to the regular-VN and the arbiter is provided

with some additional intelligence to check the burstiness bit-vector, in order to evaluate

whether a message should be directly injected from the regular-VN queue or it should

be transferred (by changing pointers) to the extra-VN.

Once an end-node notifies that it is no longer receiving bursty traffic (by setting to low

value the signal of its BNN line), the other end-nodes will reset the corresponding bit

in their burstiness bit-vector. Thereafter, new messages addressed to this end-node will

be injected from the regular-VN queue. However, this may also introduce out-of-order

message injection and delivery, as messages addressed to the end-node may remain in

the extra-VN queue. The example of Figure 3.2 also shows a situation where there are

messages in the extra-VN queue addressed to an end-node (specifically, end-node 0)

whose associated bit in the burstiness bit-vector has changed from one to zero.

In these cases, in-order packet delivery can be preserved if messages addressed to a

specific end-node are injected from the regular-VN queue only if there are no messages

addressed to the same destination in the extra-VN queue; otherwise, the packet must be

transferred from the regular-VN queue to the extra-VN one. However, this makes nec-

essary other information than that of the burstiness bit-vector, besides some additional

tasks for the arbiter. Specifically, every end-node in BAHIA implements a presence

vector that contains an element per end-node in the network, and every element is a

counter indicating how many messages addressed to this end-node are stored in the

extra-VN queue. Every counter is incremented each time a message addressed to the

corresponding end-node is moved from the regular-VN to the extra-VN one, and decre-

mented when messages are injected towards that end-node from the extra-VN. When

a message reaches the head of the regular-VN queue and the bit associated with its

destination in the burstiness bit-vector is set to zero, the counter associated with that

destination in the presence vector is also inspected: if the value of that counter is zero,

the message is injected from the regular-VN queue; otherwise, the message is moved to

the extra-VN queue.

Chapter 3. Proposed Techniques 30

Note that, although BAHIA has been evaluated in this work assuming a deterministic,

dimension-order (XY) routing algorithm, it is suitable to any deterministic or adaptive

routing algorithm. However, in-order message delivery is only granted using determin-

istic routing.

The whole mechanism necessary to keep in-order message injection is a post-processing

mechanism, in the sense that messages are mapped to their final virtual network once

they reach the head of the regular-VN queue, and not before. As mentioned above, the

arbiter should be in charge of performing this post-processing mechanism, that can be

summarized in the next pseudocode:

for each regular-VN in the end-node do
if !isVNempty(vn) then

if isNodeReceivingBurst(msg.destination) ||
numFlitsInExtraVN(msg.destination) > 0 then

moveMessageToExtraVN(msg);
end

end

end

3.1.2 ICARO Description

As mentioned above, BAHIA is designed as a first approach since detecting bursty traffic

is simpler than detecting congestion. However, bursty traffic not necessarily may lead in

performance degradation or HoL-blocking, thus this approach may not be appropriate

for detecting and avoiding harmful traffic. To solve this, we propose ICARO, a more

sophisticated and accurate mechanism intended specifically for dealing with congestion

at routers.

The purpose of ICARO is not removing congestion but preventing the HoL-blocking

caused by congestion. Indeed, ICARO manages to solve this problem by identifying

congested flows, then isolating them into special Virtual Networks (VNs) while keeping

the non-congested data flows in different regular VNs. By doing this, ICARO separates

congested flows from non-congested ones, thus preventing HoL-blocking and so increas-

ing network performance. Similarly to BAHIA, ICARO needs at least two VNs: one

regular-VN (for non-congested traffic) and one extra-VN (for congested traffic). Nev-

ertheless, ICARO may be configured to work with several regular-VNs and also with

several extra-VNs. Note that ICARO is a reactive mechanism in the sense that all the

system works normally in absence of congestion, keeping the system performance in the

same values as the baseline (i.e. the same scenario without ICARO). However, when

congestion is detected ICARO reacts to keep network performance by preventing the

congestion harmful effects.

Chapter 3. Proposed Techniques 31

ICARO functionality can be divided into three stages: first, congested points in the

network are detected at routers; then routers notify the sources of this detection; finally,

the sources map the traffic flows either to a extra-VN or to a regular-VN depending on

whether or not the injected flow will traverse congested points. These three stages are

thoroughly described in the next subsections.

3.1.2.1 Congestion Detection

ICARO is based on detecting congested points, defined as output ports persistently

oversubscribed. According to the definition of contention given before, ICARO considers

that exists contention for an output port if two or more flows request that output port

from different input ports. In order to detect whether this contention is persistent, an

additional metric is used. This metric consists in counting the number of messages

requesting the contended output port. This count is computed per VN at input ports,

increasing its value when a new message requesting the output port arrives to the input

queue, and decrementing it when the whole message leaves the queue. Every time

this count is modified, it is compared with a threshold (SAT THR) whose value is a

configurable parameter of ICARO. Depending on the value of SAT THR, the congestion-

trigger sensitivity of ICARO is lower or higher. As each input port may contain several

VNs, an input port is considered as exceeding SAT THR for an output port if anyone

of its VNs does it. Therefore, an output port is considered as a congested point when,

in two or more input ports, there are VNs exceeding SAT THR for that output port.

ICARO must also detect the end of congestion. For this, an hysteresis technique is

used. In a few words, once an output port is detected as congested, ICARO detects the

end of congestion when the number of messages requesting that output port (in all the

VNs) falls below the UNSAT THR threshold, being UNSAT THR < SAT THR. The

pseudo-code in Algorithm 1 describes the whole mechanism.

3.1.2.2 Congestion Notification

Once a congested point is detected (or when a previously congested point is no longer

congested), sources must be notified in order to isolate (or stop isolating) congested flows

into extra-VNs. To deliver this notification ICARO employs a simple dedicated network

called CNN (Congestion Notification Network) to send data about the status of the ports

to all NIs in the network. The CNN consists in a P -bits-width ring-network to which

all NIs and routers are connected, being P= log2(NumNodes) + Router Radix + 1.

Obviously, in the CNN routers act always as injectors and NIs as receivers so there is

no media-access conflicts between NIs, but there may be conflicts between routers. To

solve this, this ring is segmented by registers, so that each router has an associated

register which separates the signals coming from the previous router from the signals

Chapter 3. Proposed Techniques 32

for each output port do
for each input port do

port saturated = FALSE;
for each vn do

if isVNsaturated(input port, vn)==TRUE then
if getNumRequests(vn, output port) < UNSAT THR then

port saturated = FALSE;
markVNasUNSaturated(input port, vn);

else
port saturated = TRUE;
break;

end

else
if getNumRequests(vn, output port) > SAT THR then

port saturated = TRUE;
markVNasSaturated(input port, vn);
break;

else
port saturated = FALSE;

end

end

end
if port saturated==TRUE then

num ports saturated++;
end

end
if num ports saturated >= 2 then

markAsCongested(output port);
else

markAsNoCongested(output port);
end

end

Algorithm 1: Congestion/no-congestion detection algorithm for ICARO.

Figure 3.3: CNN registers example for ICARO.

being injected from the current router to the next one. The signals at each register are

propagated to the next one at each clock cycle. A schematic definition of two consecutive

routers is shown in Figure 3.3.

When a router needs to inject data into the network, it waits until its associated register

gets free. In practice, the router just keeps the port-status signal at the input of a

multiplexer, which selects the register input signal depending on the busy bit sent by

the previous register. When the current router register gets free, the multiplexer injects

Chapter 3. Proposed Techniques 33

Figure 3.4: Complete congestion notification network (CNN) for ICARO.

the signal to the register and such signal is propagated to the next register at the next

cycle, and read by the next NI at the same time. When the port status data generated

from router x returns to the router x (the data has completed the loop along the ring),

such data is dropped and the register x is freed. A complete CNN is shown in Figure 3.4.

The congested-point data sent through the network consists of the router ID coded in

binary, a bitmap corresponding to all ports in the router (a bit set to 1 means that the

port corresponding to the bit position is congested, otherwise the port is not congested),

and an additional bit set to 1 to indicate a valid signal (busy bit). All data is transmitted

in parallel, so the CNN must be P -bits-wide.

As some congestion notifications may be dropped at Network Interfaces (NIs) (explained

later) or simply lost due to transient failures, the status of the ports is transmitted

regularly (re-sync mechanism) to keep the congested-points data coherent at NIs. The

frequency at which such data is transmitted is a configurable parameter of ICARO.

Note that this mechanism may not scale for very large systems, as notifications may

take too much time to reach all nodes in the network, this delay spoiling the perfor-

mance improvement achieved by ICARO. Thus, for large systems, instead of using an

unidirectional ring to deliver notifications, a hierarchical rings arrangement can be used.

3.1.2.3 Congestion Isolation

Congestion isolation is performed at NIs. As commented in the previous sections,

ICARO and BAHIA make use of at least two VNs: one extra-VN and one regular-VN.

All flows are always mapped first to regular-VNs, but a module called post-processor

is in charge of checking the head of all regular-VNs to find messages that should be

Chapter 3. Proposed Techniques 34

re-mapped to extra-VNs. The post-processor checks all queues each cycle: If it finds

a head of message, the destination is analyzed in order to check whether or not this

message will traverse a congested point. If so, the message is re-mapped to a extra-VN.

In case of having more than one extra-VN available, the re-mapping module follows

a modulo-mapping [49] strategy. Since we make use of VNs instead of VCs, messages

injected to the network through a given VN are never moved to another VN, as this is

the key of isolation mechanism. Messages are provided in their header with a VN id

prior injection. Such VN id is read by routers along the path in order to know in which

VN the message must be mapped to. The NI arbiter can be a typical arbiter (such as a

round-robin arbiter). Note that the re-mapping mechanism can be executed in parallel

with the injection of a message from other VNs except the one from which a message

is being re-mapped. Also note that ICARO is intended to be used with deadlock-free

deterministic routing algorithms (e.g. XY), so no deadlocks can arise.

Contrary to BAHIA, in ICARO NIs must implement a mechanism to manage and store

the congested-points data that must be available for the post-processor. This mechanism

mainly consists in a cache memory and some additional logic. Figure 3.5 shows a diagram

explaining the notification storing process. When a notification arrives to the NI, first

this notification is deserialized, then traverses some filters (contained in the Notification-

processing module in Figure 3.5), and is finally stored in the cache. This cache may be

implemented as flip-flop registers and it is arranged in several rows and two columns,

each row corresponding to a notification while each column corresponds to the data fields

contained in the notification (router ID and port). As explained previously, notifications

arrive through the CNN as a router identifier coded in binary and a bitmap describing

the status of each port. However, not all the port-status data is relevant to the NI

since not all ports of a given router are reachable from the receiver NI. Because of this,

and also to speed up the cache queries, each notification received through the CNN is

split internally into as many notifications as the router radix value (for being able to

discard individual port-status notifications). Once the router notification is split into

port notifications made of router, port status paired values, each notification is stored

in a temporary buffer (deserializer buffer). This buffer receives a notification containing

the status of all ports of the router at once, allowing the next functional module to

read and process each port notification one by one at each cycle. This allows to receive

and process properly one notification (containing all ports status) at each clock cycle

through the CNN (in extreme cases) during a lapse of time, depending on this temporary

buffer size. In case of deserializer-buffer overflow, notifications are dropped relying on

the re-sync mechanism that allows to receive and process them later safely.

Once the notifications are stored in the deserializer buffer, each notification traverses

a filter which discards unreachable points from this NI, thereby optimizing cache uti-

lization. Congestion notifications which pass the filter are stored in the cache. End-of-

congestion notifications which pass the filter trigger a matching-mechanism that removes

Chapter 3. Proposed Techniques 35

Figure 3.5: Notification management.

from the cache congestion notifications which match the same router and port.

In Figure 3.6 an example of an ICARO NI working in a 4x4 2D mesh is shown. The

example shows the behavior of the NI 8 in the network. As can be seen, in Figure 3.6a

the NI receives a notification from router 9. This notification contains the router ID

and the port status bitmap which informs that the East port of such router is congested

while the other ports are in normal state. As shown, the notification is processed and

stored in the cache. Next, in Figure 3.6b the message destined to the NI 2 tries to be

injected into the network but, as the message will traverse the East port of router 9 (in

order to arrive to the NI 2), the message is not injected, instead being re-mapped by

the post-processor to the extra-VN, through which the message will be later injected.

Finally, in Figure 3.6c the NI receives a new notification from router 9 informing that

none of its ports is congested, so the stored notification is removed, therefore no more

messages will be re-mapped to the extra-VN.

Note that, although ICARO makes no use of the extra-VNs in absence of congestion,

this does not necessarily lead to lower performance in terms of latency, as the number

of VNs only affects latency when network capacity reaches its limit, and ICARO would

start using all VNs in this case.

To optimize even more the cache utilization, a congested-points merge mechanism can

be used. Congestion tends to spread over the network starting from a root point. If

congestion spreads towards a given NI, routers contained in the path to the root may no-

tify for congestion sequentially. Due to this, the NI cache may be populated of multiple

congested points contained in the same route so all of them but one are redundant since

with only the one closer to the NI, the congested route would be covered completely.

Thus, an optimization of ICARO consists in a merge mechanism in order to allow the

redundant notifications to be discarded in a second filter before storing new congested

points. Let us suppose that we have a notification already stored in the cache (noti-

fication A). When a new notification arrives (notification B) three circumstances may

occur: the new congested point is covered by another, already stored congested point

Chapter 3. Proposed Techniques 36

(a) ICARO receives a congestion notification.

(b) A message is reallocated to the extra-VN.

(c) ICARO receives an end-of-congestion notification.

Figure 3.6: ICARO NI module mechanism description.

(Figure 3.7a), the new congested point covers one or more already stored congested

points (Figure 3.7b), the new congested point belongs to a new route (Figure 3.7c).

In the first case, the new congested point is useless because all messages crossing B

will cross A so the new notification is redundant, therefore can be discarded safely. In

the second case, A is contained in B, so A becomes useless if we store B, therefore, A

is replaced by B. Also, in such case, more rows may be affected by B. B may cover

several already stored congested points, so such congested points can be safely merged,

discarding them and storing B instead.

Chapter 3. Proposed Techniques 37

(a) A already covers B, so B is discarded.

(b) B covers A, so A is replaced by B.

(c) A and B belong to separated routes.

Figure 3.7: Merge opportunities in ICARO.

However, despite this optimization achieves good results in minimizing the cache utiliza-

tion, in some scenarios may be counter-productive in performance terms. When using

the merge mechanism, the stored congested points tend to get closer to the NI, thereby

isolating too much traffic into the extra-VN. Also, since congested points belonging to

branches of the congestion tree are usually more volatile than the congestion root, such

congested points disappear quickly, thereby removing the congested points at NIs and

so becoming the mechanism unstable in some cases. Therefore, this optimization should

be used only when the cache size must be critically small due to the lack of silicon area

available.

Having presented both, BAHIA and ICARO, we can now identify the main similarities

and differences. Both mechanisms rely on the same concept of identifying congestion,

rapid notification to end-nodes and separation of traffic (congested from non-congested)

using different VNs. Detection in BAHIA is performed at the end-node but in ICARO

at every switch output port. The notification infrastructure is different also and more

Chapter 3. Proposed Techniques 38

sophisticated in ICARO with a segmented ring. In BAHIA, notification network is a

naive one with just wirings which can have scalability issues. ICARO has caches at each

end node identifying congestion points whereas BAHIA has a bit-vector for all end nodes.

Both mechanisms use a post-processing mechanism to move messages from regular-VNs

to extra-VNs. In summary, ICARO mechanisms is a more advanced mechanism with

more complexity in the implementation needed.

In terms of performance, since each mechanism is targeted for different traffic patterns

(burst in BAHIA and in-network congestion in ICARO), it is clear that BAHIA will

underperform in traffic scenarios correctly handled by ICARO. However, ICARO is also

able to address scenarios in which BAHIA performs correctly.

3.1.3 Evaluations

In this section we perform an analysis of performance results obtained with previously

described congestion management mechanisms. Since each proposal is focused on deal-

ing with different traffic patterns, both proposals are not really comparable. Therefore,

simulation configuration and results for both proposals are separated in their corre-

sponding sections. Following, the first section describes the simulation platform and

general configuration parameters used for evaluating both mechanisms. Next, we show

results obtained for BAHIA under bursty traffic and finally we show results for ICARO

under congested scenarios.

Simulations are performed in a cycle-accurate in-house network-on-chip simulator pro-

vided with 4-stage pipelined routers: IB (data storing into the buffer), RT (routing

computation), VA/SA (VC allocation/switch allocation, both running in parallel), X

(crossbar). Our router model uses wormhole switching with flit-level crossbar and 16-

depth queues. Regular 2D mesh topology is used (with XY routing) being each node

connected to a single end-node.

3.1.3.1 BAHIA

Results are shown every 5000 simulated cycles (1 transient = 5k cycles). Table 3.1 sum-

marizes the configuration of the scenarios modeled in our experiments. Specifically, the

network topology modeled in all the experiments is a 2D mesh built from 16 switches

arranged in a 4x4 mesh distribution, each switch being connected to a single end-node.

Regarding traffic patterns, for the first analysis an only-synthetic-traffic pattern is used.

This pattern (traffic pattern A in Table 3.1) consists of background uniform-traffic in-

jected at a rate of 0.2 flits/cycle/node, together with 2 bursts created by 4 hotspots

following a 4-to-1 strategy where nodes inject at 1 flit/cycle/node during 50000 cycles.

For the rest of analysis we use traffic pattern B in Table 3.1, which consists of realistic

Chapter 3. Proposed Techniques 39

traffic generated from extrapolated MCSL traces from the H264 video encoder [50], to-

gether with background synthetic traffic generated by all nodes injecting at a data rate

of 0.3 flits/cycle/node with a uniform distribution of destinations. The latter traffic is

used as our goal is to avoid the HoL-blocking that traffic bursts derived from the video

encoder processes may cause to other traffic. Regarding the number of virtual networks

we consider scenarios with 2, 4, or 8 virtual networks. For the BAHIA case we keep a

single extra-VN and the remaining virtual networks are used as normal (regular-VNs)

queues, so that all the bursty traffic is mapped into the same virtual network. For the

no-BAHIA case all the queues are used equally.

Topology 4x4 2D regular mesh

Virtual networks
no BAHIA 2, 4 or 8 VNs

BAHIA 1,3 or 7 regular-VN(s) + 1 extra-VN

Flow control Stop&go

Flit size 4 bytes

Message size 10 flits

Switch queue size 16 flits

Traffic patterns
A uniform 0.2 flits/cycle/node +

4 hotspots 1 flit/cycle/node
B h264 video enc. + uniform 0.3 flits/cycle/node

Table 3.1: Scenario configuration for bursty traffic in BAHIA.

BAHIA behavior is defined by four parameters: BNN notification delay (ND), high-

threshold (HT), low-threshold (LT) and polling interval (PI). In order to explore the

robustness of the mechanism, we have carried out an analysis of every parameter by

independently simulating different variations of the parameters.

In all the experiments of this analysis traffic pattern B in Table 3.1 has been used, and 2

virtual networks (1 regular-VN + 1 extra-VN) are assumed. The baseline configuration,

and the different values of the parameters used for the different simulations are shown

in Table 3.2.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400

C
yc

le
s

Transient

Notification delay (synthetic traffic)

1 cycle
2 cycle
4 cycle
8 cycle

16 cycle

Figure 3.8: Notification delay (ND) analysis. Average flit latency.

Chapter 3. Proposed Techniques 40

HT (flits/cycle) LT (flits/cycle) PI (cycles) ND (cycles)

baseline 0.45 0.35 1000 2

HT analysis
0.4, 0.45, 0.6, 0.35 1000 2

0.75, 0.9

LT analysis 0.45 0.25, 0.35, 0.4 1000 2

PI analysis
0.45 0.35 100, 200, 400, 2

800, 1600

ND analysis 0.45 0.35 1000 1, 2, 4, 8, 16

Table 3.2: BAHIA robustness analysis configuration.

First, we analyze the effect when varying the notification delay of the BNN network. In

Figure 3.8 we can see the results. This figure shows how notification delay has negligible

effects on the BAHIA behavior. The figure shows the latency of messages (only for the

synthetic-traffic part of the traffic pattern) when the BAHIA mechanism is running for

different notification delays, from 1 cycle up to 16 cycles. As can be seen, latency of

messages is unaffected and shows almost the same values. This gives some reliability

against unexpected jitter delays and grants flexibility for hardware implementation, since

BAHIA has no strict delay requirements.

Next we analyze the effect when varying the value of the detection threshold (high-

threshold, HT, at the receiver side of the end-nodes). Figure 3.9 shows results for

different values of the HT, ranging from 40% to 90% of traffic reception rate. Note that,

the lower the threshold, the more aggressive the mechanism (i.e. more sensitive to traffic

bursts), but it may incur in false positives (i.e. non-bursty traffic detected as bursty).

By contrast, the higher the threshold, the more selective the mechanism, thus it may not

detect lightweight bursty traffic. As we can see in Figure 3.9, all the considered values

of HT except the lowest one (40%) produce similar results. Thus we can conclude that

this parameter should be configured so that BAHIA is not too sensitive, i.e. the HT

value is high enough to avoid false positives.

 0

 300

 600

 900

 1200

 1500

 0 100 200 300 400

C
yc

le
s

Transient

High threshold (synthetic traffic)

0.4 f/c
0.45 f/c

0.6 f/c
0.75 f/c

0.9 f/c

Figure 3.9: High-threshold (HT)
analysis. Average flit latency.

 0

 200

 400

 600

 800

 0 100 200 300 400

C
yc

le
s

Transient

Low threshold (synthetic traffic)

0.25 f/c
0.35 f/c

0.4 f/c

Figure 3.10: Low-threshold (LT)
analysis. Average flit latency.

Chapter 3. Proposed Techniques 41

Similarly, Figure 3.10 shows the results obtained when varying the value of the low-

threshold (used to detect the end of bursts). As can be seen, this parameter does not

affect BAHIA performance because, when a burst ends, all virtual networks are free

from HoL-blocking effects, so traffic flows smoothly through all virtual networks, thus

no matter which virtual network messages are mapped to.

Finally, the value of the polling interval has been tested. Note that the polling interval

tuning presents a close relationship with the high-threshold analysis: having a small

polling interval may be similar to having a lower HT value. The contrary also applies:

a large polling interval could lead to the mechanism filtering short transient bursts. As

can be seen in Figure 3.11, for all the considered values we get a similar behavior. We

conclude, then, that the smallest polling interval among those considered is convenient

and not harmful.

 0

 200

 400

 600

 800

 0 100 200 300 400

C
yc

le
s

Transient

Polling interval (synthetic traffic)

100 cycle
200 cycle
400 cycle
800 cycle

1600 cycle

Figure 3.11: Polling interval (PI) analysis. Average flit latency.

Summing up, any combination of the considered values for these parameters, except

the lowest value for HT, would produce similar results. Thus, hereafter we assume that

an appropriate configuration of parameters can be ND=4 cycles, HT=0.6 flits/cycle,

LT=0.4 flits/cycle, PI=400 cycles, hence such configuration will be used for the next

analysis.

Next, we carry out a general analysis of BAHIA in comparison with similar scenarios

without BAHIA in order to quantify the capability of BAHIA to separate bursty traffic

from non-bursty one. In the previous section we have delimited a set of appropriate

values for the parameters that define BAHIA behavior for the scenario used in the

simulations, so in this analysis we have set BAHIA parameters according to these values.

For the next analysis, we have performed simulations for the simplest configuration in

terms of virtual networks, i.e. 2 virtual networks (as BAHIA requires a minimum of 1

regular-VN and 1 extra-VN). Figure 3.12 shows the latency achieved with and without

BAHIA for traffic pattern B in Table 3.1. Note that the results for the synthetic and

MCSL components of the traffic pattern are shown separately, as different series in the

same graph. Average numeric results can be seen in the first two entries of Table 3.3. As

Chapter 3. Proposed Techniques 42

 0

 200

 400

 600

 800

 0 100 200 300 400

C
yc

le
s

Transient

noBAHIA 2VN

Synthetic traffic
MCSL traffic

 0

 200

 400

 600

 800

 0 100 200 300 400

C
yc

le
s

Transient

BAHIA 2VN

Synthetic traffic
MCSL traffic

Figure 3.12: Latency for BAHIA and no-BAHIA, 2 VNs, traffic pattern B.

Average latency (cycles)

noBAHIA BAHIA Improvement

2VN synthetic traffic 56.78 40.40 40.54%

2VN MCSL traffic 130.02 121.89 6.67%

4VN synthetic traffic 85.89 39.31 118.47%

4VN MCSL traffic 240.10 102.40 134.46%

8VN synthetic traffic 133.71 37.65 255.15%

8VN MCSL traffic 464.21 110.88 318.66%

Table 3.3: Average latency for BAHIA and no-BAHIA scenarios.

can be seen in Figure 3.12 BAHIA achieves a moderated improvement of approximately

40% in the average latency with respect to the no-BAHIA case (seen also in Table 3.3)

Now, we turn our attention to scenarios where different numbers of virtual networks

are available. Specifically, we consider the cases of 2, 4, and 8 virtual networks. As

mentioned above, for the BAHIA case we keep a single extra-VN, the remaining virtual

networks being used for non-bursty traffic. For the no-BAHIA case all the queues are

used equally. For this analysis we have used traffic patterns A and B in Table 3.1, in

order to get a more complete comparison between BAHIA and no-BAHIA cases.

We firstly analyze results when traffic pattern A in Table 3.1 (i.e. only synthetic traffic)

is used. Assuming this traffic pattern, Figure 3.13 shows results of latency along time

for a network without BAHIA. The results correspond to the overall average latency

for all VNs. Clearly we can see a latency increase when contention exists due to the

appearance of hotspots, regardless the number of virtual networks. In Figure 3.14 the

overall average latency for all regular-VNs with BAHIA is shown. It can be seen that

when traffic bursts start, BAHIA quickly detects an excessive received data rate, thus it

is notified to the rest of end-nodes and such traffic is isolated in the extra-VNs, keeping

the regular-VNs latency low. On the other hand, as can be seen in Figure 3.15 the

latency of the extra-VNs increases as bursts are mapped to them. Note that these

Chapter 3. Proposed Techniques 43

BAHIA results do not significantly vary with the number of virtual networks, and they

show clearly how BAHIA isolates traffic-bursts into the extra-VN.

 0

 300

 600

 900

 1200

 0 50 100 150 200

La
te

nc
y

(c
yc

le
s)

Transient

no-BAHIA VNs avg. latency (only synth. traffic)

2VN
4VN
8VN

Figure 3.13: Overall average latency without BAHIA, traffic pattern A.

Secondly we focus on the results obtained for traffic pattern B in Table 3.1 (i.e. realistic

MCSL traces together with synthetic background traffic), with and without BAHIA.

Note that the results corresponding to the synthetic part of traffic pattern B are shown

separately (in Figure 3.16) from those corresponding to the realistic part (MCSL traces)

of this pattern, that are shown in Figure 3.17. Average numeric results can be seen in

Table 3.3. As can be seen in these figures, the higher the number of virtual networks, the

higher the latency increase in the no-BAHIA case. By contrast, when using BAHIA, non-

bursty traffic latency keeps bounded and minimized, reaching high latency reductions

up to a factor of 3x.

In order to better appreciate the average latency improvement of BAHIA in relation to

the no-BAHIA scenarios with different number of VNs in Figure 3.18 we can see the

average latency for such cases. Clearly, without BAHIA latency increments linearly with

the number of VNs while the scenarios implementing BAHIA keep it constant.

The BAHIA mechanism is unable to handle efficiently in-network congestion points.

Indeed, congestion is detected only at end-points. Nevertheless, BAHIA allows us to

identify the potential of dynamically separate flows to avoid congestion. Indeed, BAHIA

is used to further deploy the mechanism enabling in-network congestion detection. This

is the ICARO mechanism which is described next.

3.1.3.2 ICARO

This section is organized as follows. ICARO results are compared with FVADA and

AVADA [25]2. First, the scenarios used for the simulations are described. Next, ICARO

2For a description of FVADA and AVADA, please refer to Section 5.3 of Chapter 5

Chapter 3. Proposed Techniques 44

 0

 300

 600

 900

 1200

 0 50 100 150 200

La
te

nc
y

(c
yc

le
s)

Transient

BAHIA regular VNs avg. latency (only synth. traffic)

2VN
4VN
8VN

Figure 3.14: Regular-VNs average
latency with BAHIA, traffic pattern

A.

 0

 300

 600

 900

 1200

 0 50 100 150 200

La
te

nc
y

(c
yc

le
s)

Transient

BAHIA extra VN latency (only synth. traffic)

2VN
4VN
8VN

Figure 3.15: Extra-VN average la-
tency with BAHIA, traffic pattern A.

 0

 400

 800

 1200

 1600

 2000

 0 100 200 300 400

C
yc

le
s

Transient

noBAHIA different #VNs (synthetic traffic)

2VN synthetic traffic
4VN synthetic traffic
8VN synthetic traffic

 0

 400

 800

 1200

 1600

 2000

 0 100 200 300 400

C
yc

le
s

Transient

BAHIA different #VNs (synthetic traffic)

2VN synthetic traffic
4VN synthetic traffic
8VN synthetic traffic

Figure 3.16: Latency for the synthetic part of traffic pattern B, without and with
BAHIA.

is evaluated in different scenarios varying critical parameters that may affect its perfor-

mance. Then, a performance analysis is carried out comparing ICARO with FVADA

and AVADA and, finally, we perform a physical implementation analysis in order to

evaluate the costs in terms of area and power when implementing ICARO.

Simulations configuration parameters not mentioned in this section are set to the same

values as for BAHIA simulations. The amount of queues varies depending on the strategy

used, e.g. if the amount of queues is 4. A regular 8x8 2D mesh network is used, therefore

router radix=5. It is noteworthy that, both FVADA and AVADA make use of virtual

channels (VCs) instead of VNs as ICARO does. So, for the baseline scenario we decided

to make use of VCs as well. Messages are 5-flits long. Regarding traffic patterns,

two types of synthetic traffic patterns are used. On one hand, typical synthetic traffic

patterns are used like uniform, tornado, bit-reversal, etc. On the other hand, similarly to

BAHIA, as ICARO is a proposal intended to deal with irregular, bursty, hotspot-prone

traffic patterns, we drew up a combined traffic pattern. This traffic pattern is composed

of a light uniform background traffic and a hotspot component. Hotspots are active only

Chapter 3. Proposed Techniques 45

 0

 400

 800

 1200

 1600

 2000

 0 100 200 300 400

C
yc

le
s

Transient

noBAHIA different #VNs (MCSL traffic)

2VN MCSL traffic
4VN MCSL traffic
8VN MCSL traffic

 0

 400

 800

 1200

 1600

 2000

 0 100 200 300 400

C
yc

le
s

Transient

BAHIA different #VNs (MCSL traffic)

2VN MCSL traffic
4VN MCSL traffic
8VN MCSL traffic

Figure 3.17: Latency for the MCSL part of traffic pattern B, without and with
BAHIA.

 0

 50

 100

 150

2VN 4VN 8VN

BAHIA vs no-BAHIA average latency for synthetic traffic

no-BAHIA
BAHIA

 0

 100

 200

 300

 400

 500

 600

2VN 4VN 8VN

BAHIA vs no-BAHIA average latency for MCSL traffic

no-BAHIA
BAHIA

Figure 3.18: Average latency without and with BAHIA for the synthetic and MCSL
parts of traffic pattern B.

from cycle 10k to 20k. In this way, we have a background traffic which generates no

congestion, and another component of aggressive traffic which causes congestion, causing

HoL-blocking to the background traffic. Since FVADA/AVADA requires credit-based

flow control, all simulations implement it.

In previous sections we stated that ICARO needs at least 2 VNs, one for regular traffic

and one for congested traffic. However, the amount of VNs can be increased as much

as we need, arranging the VNs in several configurations: 1+1VNs, 2+2VNs, 4+1VNs,

4+4VNs, etc. Also, for ICARO, the cache size is a critical parameter depending on

the traffic pattern and network size. So, for the purpose of evaluating the impact of

such variables, an analysis is performed. For this analysis the combined hotspot traffic

patterns have been used with a background traffic of 0.3 flits/cycle/node.

The evaluation is performed with different VN configurations. In order to graph the

network latency for the different configurations, each VNs arrangement has a number

assigned that identifies such configuration. Identifier XY is for a configuration with

X regular-VNs and Y extra-VNs. We will play with configurations 11, 22, 31, 44 and

71. For the ICARO notifications we assume a propagation delay of 2 cycles for each

Chapter 3. Proposed Techniques 46

hop. Regarding the baseline configuration we use exactly the same configuration as the

ICARO scenario with the same number of VNs (considering both VN types: regular and

extra-VNs).

Regarding SAT THR and UNSAT THR thresholds used in the congestion-detection

mechanism (see Section 3.1.2.1), we performed simulations using different values for

these thresholds, in order to evaluate their impact in ICARO and to obtain the optimal

values. From the results obtained we conclude that the thresholds values do not have a

significant impact on the ICARO behavior while they are confined in a reasonable range.

Nevertheless, the best results are achieved for SAT THR=4 and UNSAT THR=2, so

these values are assumed in the current analysis.

ICARO can work with the re-sync mechanism and/or the merge mechanism. Never-

theless, both mechanisms may cause counter-productive effects, so this analysis has

been performed with three combinations of these mechanisms: no re-sync/no merge,

re-sync/no-merge and re-sync/merge. The combination no re-sync/merge has not been

considered as the purpose of the merge mechanism is to save cache slots in scenarios

with a high number of notifications due to the re-sync mechanism, therefore it makes

no sense to implement the merge mechanism when the re-sync one is not enabled.

Regarding the congested points cache, the following sizes have been used: 2, 4, 8, 16,

32 and 360 (theoretical limit due to the maximum possible congested points that can

be given in a 8x8 network). In the graphs, the 360 value has been replaced by 64

value for better viewing. For the deserializer buffer size we adopted the policy of using

2 ∗ cache size entries (determined empirically).

In Figure 3.19 the results are shown. The metric used for measuring the performance

is the latency area, which consists of the sum of the latency overhead during the whole

simulation. The latency overhead is measured as the difference of latency values between

the case with congestion present and the case with only background traffic running.

As can be seen, in all cases, with 4 or more cache slots, there is no latency area increase as

ICARO has room enough to store all relevant congested points, thus it is able to isolate

all the congested traffic properly. However, as the number of cache slots available falls

below 4, ICARO is not able to isolate congestion properly. However, as can be seen in

Figure 3.19b, the re-sync mechanism helps to alleviate the shortage of cache entries. This

is because congested points dropped due to the lack of room are re-notified periodically,

so they have more opportunities to be stored. Besides, if we add the merge mechanism

(Figure 3.19c), the latency falls even more as the congestion slots are better managed,

so that there are more free slots to store congested points. However, the conclusion from

this analysis is that with at least 4 cache entries HoL-blocking is completely removed

regardless of VN configuration.

Chapter 3. Proposed Techniques 47

 0 10 20 30 40 50 60 70 10
 20

 30
 40

 50
 60

 70
 80

 0
 1000
 2000
 3000
 4000
 5000
 6000

Latency area

Cache size
VNs configuration

Latency area

(a) No re-sync, no merge.

 0 10 20 30 40 50 60 70 10
 20

 30
 40

 50
 60

 70
 80

 0
 1000
 2000
 3000
 4000
 5000
 6000

Latency area

Cache size
VNs configuration

Latency area

(b) Re-sync, no merge.

 0 10 20 30 40 50 60 70 10
 20

 30
 40

 50
 60

 70
 80

 0
 1000
 2000
 3000
 4000
 5000
 6000

Latency area

Cache size
VNs configuration

Latency area

(c) Re-sync and merge.

Figure 3.19: ICARO configuration analysis.

Next, the ICARO performance is compared against AVADA and FVADA. First, all

techniques are simulated using common traffic patterns. As can be seen in Figure 3.20,

for most of the common traffic patterns ICARO keeps the results in similar values to

the baseline and the other techniques. In the case of ICARO there is a slight overhead

close to saturation. This is due to the fact that it employs VNs instead of VCs. VCs

gives more flexibility at the arbitration stage so is expected to perform better than using

VNs. However, our proposal goal is not to improve the performance over static traffic

patterns but with the combined hotspot one3.

In Figure 3.21 we can see the latency results for the different mechanisms over combined

hotspot traffic pattern. Note that all mechanisms but ICARO use VCs while ICARO

uses VNs. In Table 3.4 the ICARO parameters configuration is shown. Let us recall that

ICARO aim is to isolate harmful traffic into the extra-VN in order to avoid non-harmful

traffic to be affected by the former. To better appreciate the ICARO behavior, latency

3In the case of FVADA and AVADA, despite of reproducing exactly the same scenarios the authors
used in their evaluations, we could not obtain the results exposed by them for common synthetic traffic
patterns.

Chapter 3. Proposed Techniques 48

Parameter Value

VNs config. 1+1, 3+1 and 7+1

SAT THR 4

UNSAT THR 2

Cache size 4

Deserializer buffer size 8

Re-sync No

Merge No

Table 3.4: ICARO configuration.

results for our proposal are shown in two graphs: one for network latency average of all

regular-VNs and another one for network latency of the extra-VN.

As can be seen, ICARO outperforms all other mechanisms achieving an improvement

of up to 82% for the 8VN configuration. In the case of the 2VNs and 8VNs simula-

tion FVADA is not shown because FVADA requires exactly r-1 VCs (r=router radix).

Notice that congestion injection lasts from 10k-cycle to 20k-cycle. The HoL-blocking

effects in ICARO are minimized and removed after the congestion builds. However, for

the other configurations, congestion remains beyond the 20k-cycle point. They recover

performance point only beyond 60k-cycle.

Costs Analysis

Following, the area and power overhead of ICARO is analyzed. To perform this, the

ICARO mechanism has been implemented in Verilog using a canonical NI and a worm-

hole router, both with support for 4 VNs. The router queues have a 4-flit size with a

128-bit flit size. For the NIs the queues have a size of 8 flits. Regarding the ICARO

configuration, it has been implemented with support for merge and re-sync mechanisms

with a cache size of 4 slots and a deserializer buffer size of 8 slots. To synthesize the Ver-

ilog designs, Design Vision tool from Synopsys with 45nm Nangate open cell library [51]

(typical conditional) has been used. Then, we performed the place&route process with

Encounter tool (from Cadence) to estimate accurately the area overhead. Figure 3.22

shows the results for the area and power overhead of a NI implementing ICARO com-

pared with the baseline NI for different network sizes. In Figure 3.23, the area and power

overhead results of our proposal for the router are shown.

ICARO needs additional hardware in order to implement the CNN. However, this hard-

ware is not strictly located either at the router or the NI. This hardware consists of wires

interconnecting nodes and the logic associated to these wires (shown in Figure 3.3). In

order to fairly evaluate all the hardware overhead imposed by ICARO, the logic associ-

ated to the CNN is included in the router overhead. Wires are not taken into account as

they do not actually impose area overhead. Indeed, such wires use metalization layers.

However, in the design floor-plan, little empty gaps always exist between all tiles to

Chapter 3. Proposed Techniques 49

 0

 25

 50

 75

 100

 0.1 0.15 0.2 0.25 0.3

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(a) Bit-complement.

 0

 25

 50

 75

 100

 0.1 0.11 0.12 0.13 0.14 0.15

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(b) Bit-reversal.

 0

 25

 50

 75

 100

 0.1 0.15 0.2 0.25 0.3

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(c) Bit-rotation.

 0

 25

 50

 75

 100

 0.1 0.15 0.2 0.25 0.3
N

et
w

or
k

la
te

nc
y

(c
yc

le
s/

ni
c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(d) Butterfly.

 0

 25

 50

 75

 100

 0.1 0.15 0.2 0.25 0.3

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(e) Shuffle.

 0

 25

 50

 75

 100

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(f) Tornado.

 0

 25

 50

 75

 100

 0.1 0.11 0.12 0.13 0.14 0.15

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(g) Transpose.

 0

 25

 50

 75

 100

 0.1 0.2 0.3 0.4 0.5

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(h) Uniform.

Figure 3.20: Typical synthetic traffic patterns.

physically isolate each tile from its neighbors. Provided that these gaps are big enough

to physically place all links between tiles, the area spent by the whole CMP remains the

same even including the CNN wires.

As can be seen in Figure 3.22, for all cases, the area overhead for the NI varies between

3.8% for a 16-node network, and 6% for a 1024-nodes network. For the power overhead

Chapter 3. Proposed Techniques 50

 0

 200

 400

 600

 0 20000 40000 60000 80000

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Time (cycles)

baseline
ICARO regular VNs

ICARO extra VN
AVADA

(a) 2VC/2VN.

 0

 200

 400

 600

 800

 0 20000 40000 60000 80000

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Time (cycles)

baseline
ICARO regular VNs

ICARO extra VN
AVADA
FVADA

(b) 4VC/4VN.

 0

 400

 800

 1200

 1600

 0 20000 40000 60000 80000

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Time (cycles)

baseline
ICARO regular VNs

ICARO extra VN
AVADA

(c) 8VC/8VN.

Figure 3.21: Performance evaluation with hotspot traffic pattern.

0

20k

40k

60k

80k

100k

120k

16 64 256 1024

A
re

a
(u

m
2)

Nodes

NI
NI+ICARO

 0

 1

 2

 3

 4

16 64 256 1024

P
ow

er
 (m

W
)

Nodes

NI
NI+ICARO

Figure 3.22: NI area and power overhead for ICARO.

it varies from 4.5% to 5.4%. In Figure 3.23 the overhead results for the router are shown.

For the area, ICARO has an overhead of 6.7% for all cases. In the case of power, values

from 6% to 10% have been obtained.

As shown in such results, ICARO demonstrates an acceptable area and power overhead

either for the NIs or the routers. In addition, taking into account the results for different

networks sizes, seems clear that ICARO scales with the network size with no significant

extra area or power overhead.

Chapter 3. Proposed Techniques 51

0

30k

60k

90k

120k

150k

180k

16 64 256 1024

A
re

a
(u

m
2)

Nodes

Router
Router+ICARO

 0

 1

 2

 3

 4

 5

16 64 256 1024

P
ow

er
 (m

W
)

Nodes

Router
Router+ICARO

Figure 3.23: Router area and power overhead for ICARO.

3.2 Improving DVFS Through Congestion Management

In this section we describe two different strategies to combine ICARO with DVFS. First

we propose to combine ICARO with a vanilla version of DVFS through three different

strategies to improve power-savings, performance or both. Then, we describe a proposal

which combines a latency-driven DVFS together with ICARO, in order to improve its

behavior under congested traffic.

3.2.1 ICARO-DVFS

In this section, we present our proposal of combining ICARO with DVFS. As stated

previously, the aim of this proposal is to integrate both mechanisms in different ways

to improve performance, power or a combination of both parameters. First we describe

our DVFS implementation to better understand our proposal and then we describe each

integration proposal.

3.2.1.1 Dynamic Voltage and Frequency Scaling

Our DVFS implementation changes voltage and frequency in levels, depending on the

performance demand. Each level corresponds to a given pair of voltage-frequency fixed

values (Table 3.5). Off-chip VRs are assumed.

DVFS level V oltage(V) Freq(GHz) DVFS level V oltage(V) Freq(GHz)

Level 1 1.30 3.074 Level 4 1.15 2.281

Level 2 1.25 2.852 Level 5 1.10 1.932

Level 3 1.20 2.588 Level 6 1.05 1.540

Table 3.5: DVFS levels assumed in the ICARO-DVFS mechanism (obtained from [1])

Chapter 3. Proposed Techniques 52

W R

IB
RT SA X

VA

W R

IB
RT SA X

VA

VFI X VFI Y

Frequency f Frequency f1 2

Figure 3.24: Two consecutive routers belonging to different VFIs (at the boundary
delimiting such VFIs).

DVFS levels are changed by monitoring the occupancy at router buffers. Every poll period

cycles across all the monitored routers sample and report their occupancy level. If any

buffer exceeds a Qh threshold the DVFS level is decremented (voltage and frequency are

incremented). Accordingly, if all buffers exhibit an occupancy below the Ql threshold

(Qh > Ql), the level is incremented (frequency and voltage are decremented).

3.2.1.2 Voltage and Frequency Islands

Our DVFS implementation supports VFIs, so voltage and frequency changes can be

applied per VFI domain. Each VFI has its own VR which collects metrics from the

routers in its domain and changes voltage-frequency accordingly. However, routers at

the boundaries between VFIs must be carefully designed as data flows will cross different

domains. To address this issue, we implement mixed-clock/mixed-voltage buffers[52][53]

which enables to write and read at different frequencies.

Figure 3.24 shows the router implemented at a VFI boundary (see Section 3.1.3 for more

information about routers architecture design). The input buffer stage is divided into

two sub-stages, the write part belongs to the frequency domain of the upstream router

while the read stage belongs to the current router frequency domain. In this way, the rest

of pipeline stages (after IB) are able to work normally at its corresponding frequency.

The same is performed for the flow control logic. As credit-based flow control is used,

the credits buffer at the downstream router works at both frequencies, at the upstream

router frequency for writing and at the current router frequency for reading.

Chapter 3. Proposed Techniques 53

if CNNreg.busy && idBelongsToVFI(CNNreg.routerID, thisVFI) then
if CNNreg.FreqIncr then

freqIncrVector[routerID] = 1;
if |freqIncrVector then

increaseFrequency(thisVFI);

else if CNNreg.FreqDecr then
freqDecrVector[routerID] = 1;
if |freqDecrVector && ∼ |freqIncrVector then

decreaseFrequency(thisVFI);

else
Do nothing

end

end
Algorithm 2: DVFS level change algorithm for ICARO-DVFS.

3.2.1.3 Merging ICARO with DVFS

Now we show how ICARO is coupled with DVFS. Basically, ICARO notifies congestion

events through the CNN network. This network is extended to send DVFS notifications

as well4. This is easily achieved by changing the ICARO controller implemented in the

router. In addition to detect congestion events, the new logic monitors all input ports

queue occupancy and sends two new events through the CNN. Figure 3.25 shows the

new notification format. Two bits are added just indicating the router requests for a

level increment or decrement.

Buffer occupancy is analyzed in each router and compared against Qh and Ql thresholds.

If any of the queues exceeds the Qh threshold the V FIinc bit is set. Once all queues

occupancy are below Ql the V FIdec bit is set. Only when any of those two bits change

a DVFS notification is sent through the CNN network.

At each VFI domain, the VFI module reads the notification commands from the CNN

network, keeping record of all routers V FIinc and V FIdec bits from its domain. Two n-

length bit vectors (being n the number of routers in the VFI domain) are implemented.

VFI frequency/voltage is incremented when any of the routers request for such increment

(even if a router is requesting for a decrement). Frequency decrement is performed when

any router is requesting a decrement and none of the routers are requesting an increment.

Figure 3.26 shows the logic, whereas Algorithm 2 shows the algorithm change DVFS

levels.

4In a typical DVFS implementation, a dedicated logic collects metrics from the network and deliver
them to the logic that implements the VFI policy and drives its VR to carry this out. We take advantage
of the CNN network to simplify this process.

Chapter 3. Proposed Techniques 54

3.2.1.4 Different ICARO-DVFS Alternatives

Besides the CNN extension, ICARO deals with different virtual networks (VNs) to

decouple congested traffic from non-congested traffic. In the minimal implementation

(2 VNs), just one VN is used to map congested traffic, the other one remains for non-

congested traffic. As commented previously, to couple correctly ICARO and DVFS we

need to sense occupancy of input ports queues. However, as we have differentiated VNs

we have different options.

As a first alternative, we can sense all input ports queues, including both non-congested

traffic VN and congested traffic VN. In this case, DVFS will raise frequencies and voltages

whenever traffic increases to levels where congestion appears in the VFI domain. This

alternative is referenced to as ICARO-2VN.

Another alternative is to raise frequencies and voltages only whenever the non-congested

VN congests as well. In this case, the DVFS strategy will raise only when severe con-

gestion appears in the network. In other words, when congestion caused by hotspot

traffic affects background traffic in such a way in which causes regular-VNs to exceed

Qh threshold. It is supposed that this alternative will lead to more power-saving results.

This alternative will be referenced to as ICARO-1VN.

Finally, a different alternative is to sense all input port’s queue, but differently from

ICARO-2VN, the DVFS strategy will be bounded to a more conservative frequency

level. In this case, the maximum frequency will be set to ∼2GHz (instead of ∼3GHz),

corresponding to Level 5 frequency on Table 3.5. The reasoning behind this strategy

is the effect ICARO has on performance as will decouple congested traffic from non-

congested one. Therefore, increasing frequency for performance reasons will become

less critical. This alternative will be referenced to as ICARO-2GHz. In addition, this

approach allows to simplify VRs by reducing the number of voltage-frequency levels

provided. Notice that area consumed by VRs depends directly on the voltage-frequency

levels provided.

The three strategies will be analyzed in Section 3.2.4.1. All of them will be compared

against three different strategies. The two first strategies will not use DVFS at all

and will set the network both to minimum and maximum frequencies. They will be

referenced to as minFreq and maxFreq, respectively and will allow us to set the low and

up limits in terms of performance and power. The third strategy will be compounded of

DVFS with the defined levels shown in Table 3.5 and sensing the VFI occupancy queues

regardless of the congestion effects. This strategy will be referenced to as DVFS in the

plots.

Chapter 3. Proposed Techniques 55

Figure 3.25: CNN signal format in DVFS-based platforms.

✄

✄

Frequency increment bitmap

Frequency decrement bitmap

Freq.incr.

Freq.decr.

SW2 SW3

SW6 SW7

VR controller

VFI x

Figure 3.26: Voltage Regulator controller logic for ICARO-DVFS.

3.2.2 ICARO-DMSD

Following, the proposal for integrating ICARO with DMSD is described. First, DMSD

is described to better understand how it works and the opportunities of merging it with

ICARO and then we describe how we integrate both mechanisms to achieve a power

efficient system while guaranteeing latencies for non-congested traffic.

3.2.2.1 Analysis of the DMSD DVFS Policy

The purpose of the Delay-based Max Slow Down (DMSD) DVFS policy is to decrease

the NoC frequency and voltage as much as possible without compromising the system

performance [54]. To achieve this, DMSD uses the average end-to-end latency as a

performance metric, and a Proportional-Integral (PI) controller that adapts frequency

and voltage so as to keep that metric close to a latency target. The higher the latency

target, the larger is the power saving. In our experiments, we set it equal to the latency

that is obtained with an injection rate 5% less than the saturation point under uniform

traffic, which is obtained by running simulations in which the injection rate is increased

until saturation. However, in a real system the latency target can be obtained by means

of profiling.

In Fig. 3.27 an overview of an NoC provided with DMSD is depicted. Each node stores

in a register the average end-to-end latency, updated each time a flit is received. Peri-

odically, all nodes send the average latency to a given node, which computes the overall

Chapter 3. Proposed Techniques 56

+ -

Latency

Target

PI

controller

F(U)

U

FnocNoC

Clock & Voltage

DVFS

controller

Average

Latency

E

(Error)NoC

Controller node average delay computation

Node packet delay measurement

Figure 3.27: All nodes in the network send latency measures to the PI controller to
set the new frequency.

Fmax

Fmin

Umin Umax

F

Uminsat Umaxsat U

Figure 3.28: Conversion from U to frequency.

end-to-end latency for the whole system. In addition, this node contains the PI con-

troller and the voltage and frequency controllers. Upon receiving all latencies, the overall

latency at time n, Ln, is computed and the noise filter described by (3.1) is applied to

obtain L′n. Then, the error En is computed by subtracting the latency target Lt from

L′n as shown in (3.2). The error is then passed to the PI controller, which generates the

signal Un according to (3.3).

L′n = α L′n−1 + (1− α)Ln (3.1)

En = L′n − Lt (3.2)

Un = Un−1 +KIEn +KP (En − En−1) (3.3)

In (3.3), KI and KP are the integral and proportional gains determined empirically and

used to adjust the PI controller behavior while guaranteeing stability.

Chapter 3. Proposed Techniques 57

Finally, U is used to determine the frequency. For this, U is bounded within Uminsat

and Umaxsat and the range from Umin to Umax is linearly translated to frequency, as

shown in Fig. 3.28. A voltage-to-frequency mapping is then used to apply the correct

voltage for a given clock frequency.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

F
re

q
u

e
n

c
y
 (

M
H

z
)

Time (ms)

Frequency

Frequency

Figure 3.29: Frequency for DMSD
under hotspot traffic.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

B
a

c
k
g
ro

u
n

d
/A

v
e
ra

g
e

 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e
)

H
o

ts
p

o
t

la
te

n
c
y
 (

n
s
/m

e
s
s
a
g

e
)

Time (ms)

End-to-end latency

background
hotspot

average
latency target

Figure 3.30: End-to-end latency
per traffic type for DMSD under

hotspot traffic.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800

P
o
w

e
r

(m
W

)

Time (ms)

Power

power

Figure 3.31: Power consumption for DMSD under hotspot traffic.

DMSD performs well under stationary traffic patterns [54]. As shown in Figs. 3.29-

3.31, however, under hotstpot-based traffic patterns, the high intensity of a few data

flows (hotspots) which are not representative of the whole system load, disrupts the

DVFS strategy, leading to a waste of power by increasing the frequency and voltage

unnecessarily as can be seen in Fig. 3.31.

Notice that this effect could be avoided by implementing Voltage and Frequency Islands

(VFIs) [55][56]. However, this would imply extra silicon area and power to implement

the VFIs separate DVFS controllers, and it would require to either know at design-time

where hotspots will be located, or the ability to confine the hotspot traffic in a separate

voltage island at run-time. In contrast, our approach consists in implementing a con-

gestion control mechanism (ICARO) to detect hotspots and filter them out, regardless

their location and intensities.

3.2.2.2 Implementing Congestion Management

Hotspot traffic patterns may mask the overall system performance, increasing signifi-

cantly the overall latency while most of the network resources not affected by hotspots

Chapter 3. Proposed Techniques 58

CaL in

CaL out

CaL.type

N
o

ti
fi

ca
ti

o
n

in
je

ct
io

n

N
o

ti
fi

ca
ti

o
n

re
ce

p
ti

o
n

✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡ ✌ ☞

✍ ✎ ✒✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡✏

2

✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡

1

0

Reg n

FSM
Router n

NI n

Latency meassures

010b

001b

2

CaL.busy

La
te

n
ci

e
s

a
v
a

il
a

b
le

✑✓✓ ✑✔✑b

Figure 3.32: CaL network register associated logic for regular nodes adapted to
DMSD.

may be underutilized leading DMSD to overreact under these traffic patterns as shown

in Figs. 3.29-3.31. Our approach consists in combining ICARO in order to identify

hotspot flows, and separating them from the rest of the network traffic (background

traffic). Then, we modify the way in which DMSD collects latency metrics so that,

rather than collecting latencies from any received message, our proposal collects metrics

only from regular-VNs. Since ICARO effectively isolates hotspot traffic into the extra-

VN, we achieve the frequency to be adjusted only for non-hotspot traffic so that DMSD

achieves the non-hotspot traffic to accomplish with the latency target independently of

the presence of congested traffic in the network. Following, we describe modifications

performed in order to combine both mechanisms.

Delivering Latency Measurements with the CNN Network

In the original DMSD formulation, packets containing the measured end-to-end latency

are sent to the controller node via piggybacking [54]. Intense congestion situations,

however, may delay the delivery of those packets and the reaction of the PI controller,

potentially causing the PI controller to oscillate. On the other hand, ICARO implements

the CNN dedicated network, which we modify to support the delivery of those latency

values in addition to congestion notifications. By doing this, the metrics necessary to set

the frequency properly are guaranteed to timely arrive at destination (with low aggre-

gated overheads, as we show in Sec. 3.2.3) through the CNN (hereafter CaL network5;

Congestion notifications and Latencies network).

5The ICARO dedicated network is called CNN. However, to prevent from misunderstandings and to
keep it coherent with its new additional usage, in this proposal the name for the dedicated network is
changed to CaL

Chapter 3. Proposed Techniques 59

Reg n

NI n
PI

controller

CaL in

CaL out

CaL.busy

CaL.type

N
o

ti
fi

ca
ti

o
n

in
je

ct
io

n

N
o

ti
fi

ca
ti

o
n

re
ce

p
ti

o
n

Node n

latency

✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡ ✌ ☞

✍ ✎ ✒✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡✏

2

✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡

1

FSM

Router n

✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡

PGC

Figure 3.33: CaL network register associated logic for the node provided with the
PI/DVFS controller adapted to DMSD.

In a DMSD-based system there are two types of nodes: those that send their latency

metrics, and one that receives them. Thus, we implement two slightly different logic

blocks to connect to the CaL network. Fig. 3.32 shows the logic of a typical router/NI

that sends and receives ICARO notifications and sends DMSD latencies. Note that,

despite ICARO notifications are sent in one cycle, we modify the logic to serialize the

transmission of 32-bit latencies through the CaL network by extending its links width

by ext=8-Radix bits. Congestion notifications can be seamlessly interleaved with DMSD

latency notifications because one bit identifies the type of CaL message. DMSD notifi-

cations from different nodes are guaranteed to arrive in order since nodes will send them

after a fixed (and different for each node) time offset. Similarly to the sender node in

Fig. 3.32, Fig. 3.33 shows the logic for the receiver node. This node sends and receives

ICARO notifications like any other CaL node, adds its own latency measurements to

the received ones, and forwards them to the PI controller.

Power-Gating Extra-VN Buffers

To avoid wasting power when there is no congestion, we implement a mechanism to

power-off the extra-VN buffers via a centralized Power-Gating Controller (PGC), which

resides in the same node that implements DMSD. All the buffers of an extra-VN (in all

NIs as well as in all routers) are powered on/off simultaneously. Power-on is easy: the

PGC node snoops the CaL network and when it catches the first congestion notification

it broadcasts a power-on message through the CaL network. On the contrary, power-off

is not trivial. Snooping the CaL network in search of the “end of congestion” messages

Chapter 3. Proposed Techniques 60

n21

PGC

…

…

n21 …

CaL

In

Out

CaL.srcType

1

Lo
g 2(

N
)+

1

…

1

Nis
bitmap

Routers
bitmap

CaL.srcId

CaL.srcId

PGC

Figure 3.34: Power-gating controller.

is not a valid strategy because there might still be messages in the extra-VN, either

in the NIs pending to be injected, in the routers on their way to destination, or both.

Therefore, to safely turn off the extra VNs, the PGC must be informed through the CaL

network by both all NIs and routers about their detection of a congestion-free situation:

To make sure that no congested traffic will be injected into the network from a given

NI, two conditions must be satisfied. First, the extra-VN buffers must be empty. In

addition, the NI congestion notification board must be clean (no new notifications). If

both conditions are met, the NI notifies its congestion-free status to the PGC with a

special message sent through the CaL network.

At routers the mechanism is simpler. Each time the extra-VN buffer utilization increases

from 0 to 1, the router sends a message to the PGC to inform that is storing congested

traffic. On the other hand, when the buffer utilization decreases from 1 to 0, the router

sends another message to inform that is congestion-free.

The PGC is provided with two N -width bitmaps, where N is the number of nodes in the

network: one bitmap for the NIs and one for the routers. These bitmaps are updated each

time a NI or a router notifies the PGC about its status (0=no congested traffic stored,

1=congested traffic stored). In this way, the PGC has a complete congestion picture

of the network. When the PGC detects that all NIs and routers are congestion-free, it

commands to power-off the extra-VN buffers; otherwise, it commands to power-on the

buffers. Fig. 3.34 sketches the PGC bitmaps, the logic to power-on/off the buffers, and

its connection to the CaL network. We quantify the advantage of using power-gating in

Sec. 3.2.4.2.

Note that area and power consumed by the PGC are negligible since its implementation

only requires N -width demultiplexers, 1 N -width multiplexer, 1 N -width NOR gate and

2N registers for a complete mesh.

Chapter 3. Proposed Techniques 61

 0

 2

 4

 6

 8

 10

 12

NI Router

%

Area overhead

5x5

8x8

16x16

Figure 3.35: ICARO-DMSD area overhead of different meshes.

3.2.3 Area Overhead Analysis

The bars in Fig. 3.35 illustrate the area overhead for a NI and a router with support

for ICARO, with respect to a baseline implementation (no DMSD, no ICARO)6. The

results have been obtained after synthesis on our 28-nm technology, in the conditions

of Tab. 3.7, except for the mesh size that we let vary. We notice that the overhead is

small, less than 10%, even for the case of a large 16×16 mesh.

3.2.4 Evaluations

3.2.4.1 ICARO-DVFS

As in previous evaluations, our simulator models a 4-stage pipelined router: IB, RT, SA,

X for all routers but those defining the boundaries of each VFI. In the case of routers

at the VFI boundary, a coupling IB stage (see Section 3.2.1.2) is implemented with two

substages: IB W (writing data) and IB R (read data). IB W stage writes incoming flits

from the upstream router, therefore, this substage works at the frequency of the VFI to

which the upstream router belongs. However, as the IB R stage reads from the router

buffers, this stage runs at the frequency of the router implementing it. In Table 3.6

further configuration details are shown.

Regarding traffic patterns, as ICARO is a proposal intended to deal with irregular,

bursty, hotspot-prone traffic patterns, we drew up a combined traffic pattern. This

6We obtained overhead results only for ICARO since DMSD and the PG controller overheads are
negligible compared to the ICARO’s overhead.

Chapter 3. Proposed Techniques 62

Topology 8x8 2D regular mesh

Routing policy XY

Switching technique Wormhole (flit-level)

Flow control credits

Flit size 128 bits

Message size 5 flits

Switch queue size 16 flits

VFIs 4 VFIs (4 nodes each)

Table 3.6: Common simulation configuration.

traffic pattern is composed of a light uniform background traffic (at a data rate of 0.01

flits/ns) and a hotspot component. Hotspots consist in several nodes receiving each one

high data rates from 4 nodes (4-to-1 hotspots). Hotspots are active only from time 20ms

to 40ms. In this way, we have a background traffic which generates no congestion, plus

an aggressive traffic which causes congestion, causing HoL-blocking to the background

traffic. This compound traffic pattern emulates environments where light data flows

(i.e.: cores running applications with light data demand) share the NoC resources with

heavy traffic generated by nodes running high data demand applications or hardware

accelerators which tend to generate heavy data bursts, causing congestion as well.

Simulations with DVFS are performed using real voltage, frequency and delay values

shown in Table 3.5. We implement 4 VFIs each one containing 16 nodes. For power

consumption measures we use Orion 3.0[57].

First, two configurations without DVFS are considered: minFreq for the chip running at

the minimum frequency (1.54GHz) and maxFreq for the chip running at the maximum

frequency (3.074GHz). Then, results for a DVFS scenario (without ICARO) are shown.

Finally, results for the three ICARO-DVFS versions are shown. It is worth recalling

that the main ICARO goal is to keep background traffic unaffected when dealing with

congestion-prone traffic, such as the simulated hotspot traffic. For that reason, results

for background and hotspot traffic are shown separately.

Figure 3.41 shows average network latency results. For the DVFS cases some peaks in

latency can be seen when congestion background starts and ends. These peaks clearly

show the overhead derived from the VR taking some time to perform the DVFS level

changes. It is worth mentioning that the first peak is higher as the VR takes more time

to change from the lowest frequency to the highest. After some analysis, we decided to

increase from the minimum frequency to the maximum one since this involves only one

transition, incurring much less penalty with respect to a step-by-step increase. As ex-

pected, the scenario with DVFS improves in power consumption the no-DVFS scenario,

but at the cost of increasing network latency (Figure 3.43) and decreasing throughput

Chapter 3. Proposed Techniques 63

 0

 0.5

 1

 1.5

 2

 2.5

Le
ak

ag
e

Int
er

na
l

Switc
hin

g
Tota

l

P
ow

er
(m

W
)

minFreq
maxFreq

DVFS
ICARO-2VN
ICARO-1VN

ICARO-2GHz

Figure 3.36: Final power consumption.

(Figure 3.44). However, according to Figure 3.36, power consumption saving is more

significant than performance degradation.

As can be seen in Figures 3.41, ICARO proposals separate effectively background traffic

from the hotspot one, preventing the HoL-blocking effect over the former. As expected,

ICARO-2VN achieves the highest improvements in network latency (up to 43%) since

it takes into account all VNs to trigger the frequency-increment mechanism, and it

is able to increment frequency to the maximum, but at the cost of increasing power

consumption (∼8%). Nevertheless, despite being the ICARO proposal with the highest

power consumption, this case still keeps power consumption below “DVFS-alone” levels

while improving latency.

Regarding the results for ICARO-1VN, note that only regular-VNs (VN 0) is taken into

account to increase the VFI frequency and only background traffic is forwarded through

this VN, so that this slight traffic flow is not enough to trigger the frequency-increment

mechanism and all VFIs end up working at the minimum frequency. Despite running

at the minimum frequency, we can see that the background network latency is kept

in similar values to the DVFS case working at highest frequency. This is achieved by

separating both traffic types, so preventing the HoL-blocking that the hotspot traffic

could cause. In addition, as frequency is the lowest allowed, power saving is maximum,

achieving an improvement of 26%. However, as the system is working at the minimum

frequency, throughput is lower than other cases that are running at higher frequencies.

Nevertheless, background traffic achieves acceptable latency values.

Finally, ICARO-2GHz case could be considered as the best trade-off proposal. It takes

into account all the available VNs but it is only allowed to increment frequency to the

next step from the lowest frequency. This proposal does not achieve the best results in

Chapter 3. Proposed Techniques 64

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y
(M

H
z)

Time (ms)

VFI 0 freq.
VFI 1 freq.
VFI 2 freq.
VFI 3 freq.

Figure 3.37: VFIs frequencies
for DVFS without ICARO.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y
(M

H
z)

Time (ms)

VFI 0 freq.
VFI 1 freq.
VFI 2 freq.
VFI 3 freq.

Figure 3.38: VFIs frequencies
for ICARO-2VN.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y
(M

H
z)

Time (ms)

VFI 0 freq.
VFI 1 freq.
VFI 2 freq.
VFI 3 freq.

Figure 3.39: VFIs frequencies
for ICARO-1VN.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y
(M

H
z)

Time (ms)

VFI 0 freq.
VFI 1 freq.
VFI 2 freq.
VFI 3 freq.

Figure 3.40: VFIs frequencies
for ICARO-2GHz.

 0

 10

 20

 30

 40

 50

 60

0 1 2 3 4 5 6 7 8

N
et

w
or

k
la

te
nc

y
(n

s/
fli

t)

Time (ms)

minFreq
maxFreq

DVFS
ICARO-2VN
ICARO-1VN

ICARO-2GHz

Figure 3.41: Network latency
for background traffic.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (f

lit
s/

ns
)

Time (ms)

minFreq
maxFreq

DVFS
ICARO-2VN
ICARO-1VN

ICARO-2GHz

Figure 3.42: Throughput for
background traffic.

network latency and throughput, but nevertheless it improves the “DVFS-alone” case

by 19% with a significant power-saving improvement (20%) with respect to DVFS, due

to the lower frequency used.

3.2.4.2 ICARO-DMSD

In this section we first report simulation results obtained in the baseline configuration of

Tab. 3.7. Then, we report results obtained with a sensitivity analysis in which we varied

several configuration parameters to check the robustness of our solution. Note that, for

our experiments DMSD as well as ICARO-DMSD are provided with the same amount

Chapter 3. Proposed Techniques 65

 0

 50

 100

 150

 200

 250

N
et

w
or

k
La

te
nc

y(
ns

)

minFreq
maxFreq

DVFS
ICARO-2VN
ICARO-1VN

ICARO-2GHz

Figure 3.43: Final net. latency
(all traffic).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Th
ro

ug
hp

ut
(fl

its
/n

s/
ni

c)

minFreq
maxFreq

DVFS
ICARO-2VN
ICARO-1VN

ICARO-2GHz

Figure 3.44: Final throughput
(all traffic).

of VNs in order to compare both solutions with the same amount of resources, providing

each VN with the same amount of VCs. However, since DMSD does not require several

VNs to work properly and these additional resources may affect negatively to its power

consumption we perform an additional experiment comparing against the baseline with

only 1 VN. Note that, since the goal of our approach is to keep the background latency

around the latency target, for better understanding, hotspot latencies have been omitted

in the graphs. Also note that the hotspot start/stop time is highlighted with vertical

bars.

As in our previous evaluations, for calculating power consumption we use Orion [57].

However, Orion does not directly support the industrial 28-nm CMOS technology that

we used for the implementation of routers with support for congestion management and

buffer power-gating. By using the post-synthesis results of our RTL version of the router,

we modified Orion in such a way that its results are compatible with our technology.

Moreover, we added the support for including the effect of buffer power-gating in the

computation of power consumption.

Figs. 3.45-3.47 compare the DMSD and the ICARO-DMSD cases in terms of latency,

frequency, and power, in the baseline scenario. Notice that, to properly compare the two

cases, the two systems have the same total buffering resources. Note also that, in the

case of ICARO-DMSD, the extra-VN is composed of as many VCs as the regular-VNs.

Since ICARO effectively separates the background traffic from the hotspot one, DMSD

can effectively measure only the latency of the background traffic. Therefore, thanks to

the PI controller, DMSD keeps the latency of the background traffic around the 76-ns

latency target, as shown in Fig. 3.45. In fact, as Fig. 3.46 shows, the NoC clock frequency

is not influenced anymore by the activation of the hotspot traffic. This, in addition to

the use of power-gating, results in a significant improvement of the power consumption,

as shown in Fig. 3.47. When the hotspot is not active (from time 0µs to 300µs, and

then again after around 380µs), the extra-VN buffers are powered-off, resulting in lower

power for the ICARO-DMSD case. When the hotspot is active, the extra-VN buffers are

Chapter 3. Proposed Techniques 66

Table 3.7: Simulations configuration.

Network configuration

Topology 8x8 2D regular mesh

Routing policy XY

Switching technique Wormhole (flit-level)

Flow control credits

Flit size 128 bits

Message size 10 flits

Switch queue size 4 flits

Virtual Channels 4 per Virtual Network

DMSD configuration

Frequency range 333 - 1000 MHz

Voltage range [0.56, 0.9] V

Ki, Kp 0.025, 0.0125

U saturation range [-15, 15]

α 0.7

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800
 0

 2000

 4000

 6000

 8000

 10000

B
a

c
k
g

ro
u

n
d

 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e

)

H
o

ts
p

o
t

la
te

n
c
y
 (

n
s
/m

e
s
s
a

g
e

)

Time (ms)

End-to-end latency

DMSDonly BG
DMSDonly HS

DMSD+ICARO BG
DMSD+ICARO HS

latency target

Figure 3.45: End-to-end laten-
cies for the background and the

hotspot traffic.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

F
re

q
u

e
n

c
y
 (

M
H

z
)

Time (ms)

Frequency

DMSDonly
DMSD+ICARO

Figure 3.46: Frequencies for
DMSD and ICARO-DMSD.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

P
o

w
e

r
(m

W
)

Time (ms)

Power

DMSDonly
DMSD+ICARO

Figure 3.47: Power consumption for DMSD and ICARO-DMSD.

switched on, hence the power increases. Still, since the clock frequency in the ICARO-

DMSD case is less than in the DMSD case, the power consumption is also significantly

Chapter 3. Proposed Techniques 67

Table 3.8: Robustness analysis scenarios configuration.

Scenarios

Label Mesh Queue Msg. Num. HS Lat.
Size Size VCs Length HS Dur. target

(nodes) (flits) (flits) (ns) (ns)

Baseline 8x8 4 4 10 1 50us 76

5x5 5x5 4 4 10 1 50us 66

16x16 16x16 4 4 10 1 50us 105

qs2 8x8 2 4 10 1 50us 79

qs8 8x8 8 4 10 1 50us 81

qs16 8x8 16 4 10 1 50us 72

vcs2 8x8 4 2 10 1 50us 60

vcs8 8x8 4 8 10 1 50us 97

ml5 8x8 4 4 5 1 50us 62

ml20 8x8 4 4 20 1 50us 96

2HS 8x8 4 4 10 2 50us 76

3HS 8x8 4 4 10 3 50us 76

short 8x8 4 4 10 1 25us 76

large 8x8 4 4 10 1 100us 76

reduced.

To validate our results under different network configurations, we changed several net-

work parameters: mesh size, router buffers queues size, number of virtual channels,

message length, number of hotspots, and hotspot duration. All cases analyzed are de-

scribed in Tab. 3.8, in which each case is identified with a label that is used next in the

graph keys. As Fig. 3.48 shows for all the configurations analyzed, in the ICARO-DMSD

case the background traffic correctly tracks the prescribed target, hence avoiding the ex-

cessive power consumption that characterizes the reference DMSD case. Note that in

the hotspot duration graph the three different hotspot ending times are highlighted with

different colors. Please note that the latency target value for a given scenario depends

not only on the saturation point, which is highly correlated with the system configura-

tion, but also on the latency curve gradient. Therefore, in some system configurations

the calculated latency target seems not to follow an intuitive progression like in the VCs

analysis graph shown in Fig. 3.48.

Fig. 3.49 summarizes the improvement of power consumption of the ICARO-DMSD case,

in all the configurations of Tab. 3.8. Two different improvement values are reported.

The first one is due to the extra-VN power-gating (no-HS in the graph), measured

at time 290µs (just before the hotspot activation); the second one corresponds to the

power-saving during the hotspot duration (HS in the graph) and is calculated by aver-

aging the power spent from time 300µs to time 600µs, since this is the time range in

which the hotspots affect any of the cases analyzed. Note that the power overhead due

Chapter 3. Proposed Techniques 68

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency mesh size

DMSD 5x5
DMSD+ICARO 5x5

DMSD 8x8
DMSD+ICARO 8x8

DMSD 16x16
DMSD+ICARO 16x16

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency queue size

DMSD qs2
DMSD+ICARO qs2

DMSD qs4
DMSD+ICARO qs4

DMSD qs8
DMSD+ICARO qs8

DMSD qs16
DMSD+ICARO qs16

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency virtual channels

DMSD vcs2
DMSD+ICARO vcs2

DMSD vcs4
DMSD+ICARO vcs4

DMSD vcs8
DMSD+ICARO vcs8

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency message length

DMSD ml5
DMSD+ICARO ml5

DMSD ml10
DMSD+ICARO ml10

DMSD ml20
DMSD+ICARO ml20

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency number hotspots

DMSD 1HS
DMSD+ICARO 1HS

DMSD 2HS
DMSD+ICARO 2HS

DMSD 3HS
DMSD+ICARO 3HS

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency hotspot duration

DMSD short
DMSD+ICARO short

DMSD medium
DMSD+ICARO medium

DMSD large
DMSD+ICARO large

Figure 3.48: End-to-end latency for different configuration parameters

to the additional hardware required by our proposal is already included in the power

consumption graphs.

As Fig. 3.49 shows, for all the cases considered, the combination of DMSD and ICARO

leads to a significant power improvement over the DMSD baseline when hotspot is active.

When no hotspot is active, by switching the extra-VN off we achieve up to 38% power

saving and an average of 28%. When congested traffic is detected, ICARO manages

this sort of traffic and DMSD tunes the frequency properly saving up to 53% power

consumption and 38% on average. In the results obtained when the hotspot is present,

we observe a larger variance. This is expected as, for calculating the average, we take

values from the same range of time for all cases but the duration of the effects of the

hotspots are not the same for those cases, therefore, the weight of those values over the

average is not the same.

In the final experiments we analyze our proposal against DMSD provided with 1VN.

Unlike ICARO-DMSD, DMSD does not require several VNs to perform properly, so we

Chapter 3. Proposed Techniques 69

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

no-HS HS

%

Power consumption improvement

baseline
mesh5x5

mesh16x16
qs2
qs8

qs16
vcs2
vcs8
ml5

ml20
2HS
3HS

short
large

Figure 3.49: Power consumption improvement with respect to DMSD for all config-
urations.

-30

-20

-10

 0

 10

 20

 30

no-HS HS

%

Power consumption improvement (DMSD=1VN)

baseline
mesh5x5

mesh16x16
qs2
qs8

qs16
vcs2
vcs8
ml5

ml20
2HS
3HS

short
large

Figure 3.50: Power consumption improvement with respect to DMSD (provided with
1VN) for all configurations.

performed the same robustness analysis shown above but providing DMSD with 1VN.

Nonetheless, as ICARO-DMSD does not require the extra-VN to be provided with sev-

eral VCs, for this simulations we configured ICARO-DMSD with the same number of

VCs for the regular-VN as the DMSD case and only 1VC for the extra-VN. The power

results in Fig. 3.50 show that in absence of congestion, ICARO-DMSD consumes more

power than DMSD due to the ICARO logic power consumption. When hotspot is ac-

tive, however, despite the additional buffers ICARO-DMSD saves a significant amount

Chapter 3. Proposed Techniques 70

of power under the most part of the analysis, achieving up to 20% power saving. Nev-

ertheless, some scenarios present characteristics (amount of resources, message length,

etc.) for which DMSD does not overreact to keep the latency under the target, resulting

in less power consumption for DMSD. Still, the congestion in those scenarios triggers

the ICARO mechanism, causing to switch the extra-VN buffers on, increasing power

consumption, and ultimately reducing the power saving compared to the baseline.

3.3 Reducing Buffers Leakage Power

Previously we proposed congestion management mechanisms and combined them with

power-saving techniques based on decreasing the clock frequency. However, as technol-

ogy scale goes further, leakage power is becoming an important contributor of the overall

power consumption. As described in previous sections, ICARO requires to implement

special queues intended to confine congested traffic. Since these buffers are only used

when congestion is detected in the network, seems clear that to keep them switched

on represents a waste of power. In previous works we proposed other approaches to

deal with this by power-gating extra-VN buffers but following a very simple strategy

not properly adapted to ICARO. Because of this, we developed PAPM, a Path-Aware

Power Management which we integrate in ICARO (ICARO-PAPM) and then re-design

it to be a general standalone power-gating mechanism for NoCs (PAPM).

3.3.1 ICARO-PAPM

3.3.1.1 Overview

The goal of our proposal is to reduce power consumption in ICARO by implementing

a new buffer power-gating mechanism (PAPM) for the extra-VN queues. Essentially,

PAPM will power on only those queues which are necessary according to the CPs already

detected. The key idea behind PAPM is that not all buffers are always needed for

separate specific flows. Since deterministic routing schemes imply that a given flow

from a source to a destination will be always forwarded through the same path, we

can easily determine which buffers are needed for delivering such flow (those along that

path). In this way, we can safely power on or off router buffers dynamically to fit the

current traffic pattern requirements.

However, our proposal requires to know only those flows crossing CPs, as they are the

ones using extra-queues. Each end-node, by inspecting its local memory can know the

current CP locations. From that information we need to deduce the affected flows.

In addition, one key aspect of PAPM is related with the propagation of power-gating

signals. Most of the current proposals for power-gating stand up for driving the modules

Chapter 3. Proposed Techniques 71

power signals by means of dedicated wires. This strategy suffers from scaling issues in

large network sizes. Instead, since PAPM needs to power buffers on/off by building

data paths according to the routing policy, it follows a strategy in which buffers are

powered on in the same order a given congested message would follow through its path

to destination. Taking this into account, we design PAPM to send the powering on/off

signals as part of regular single flit messages sent through the regular network.

3.3.1.2 PAPM for ICARO

Each extra-VN buffer belonging either to a router port or to a NI must be powered on

only if congested traffic would potentially be delivered through that port or NI. In the

case of NIs, it is quite simple since they own the ICARO cache memory in where CPs

are stored. As soon as a NI allocates a CP (the cache is not empty), the NI becomes a

potential injector of congested traffic. Therefore, its extra-VN buffer must be powered

on.

Regarding router buffers at input ports, to know whether an extra-queue needs to be

powered on or off becomes more difficult. Figure 3.51 shows the NIs subset (NIs 6, 7

and 8) reaching the south port of router 4 (we assume XY routing). This means that

each buffer at each router must be powered on when any of those NIs has congested

traffic to inject and the congested point is along those paths. In the same way, each

extra-VN buffer must be powered off when none of those NIs has congested traffic to

inject through those points. To manage this, when a NI stores a new CP, it sends a

special message (allocation message; AM) to the first node reachable through the CP

port (node 1 in Figure 3.51). This message will increase by 1 a counter stored at each

input buffer at each router along the path until its destination. The extra-VN buffer is

powered on when the counter is greater than zero and is powered off otherwise. In the

example shown in Figure 3.51, the counter at south input port at router 4 will have a

value of 3 (one for each NI).

When a given NI receives a non-congested notification, the CP is removed from the cache

memory and sends a message (deallocation message; DM) to the first node reachable

through the CP (node 1), causing the buffer counters along the path to be decremented

by 1. In this way, when all NIs able to reach a given buffer deallocated the CP, the buffer

counter will reach zero, powering off the extra-VN buffer. Note that, AM messages are

injected through regular-VN buffers (the extra-VN buffers could be powered off), while

DM messages are sent through the extra-VN in order to guarantee that no out of order

delivery arises between the DM and the congested data being forwarded through the

extra-buffers.

Note that, although there are works proposing to switch off portions of buffers as in

[58], in this case is useless since ICARO-PAPM switches off extra-VN buffers, which are

Chapter 3. Proposed Techniques 72

Network Interface

Input Buffer

0 1 2

76 8

4 53

Congested Point

0

0

0 0

0 0

0

30

0 0

0

0

0

3

0

0

0

0 0 0 0 0

0 0 0 0 0 0

0 0100
01

PAPM counter

Figure 3.51: Network Interfaces reaching south port of router #4.

intended to deliver huge amounts of traffic (congested traffic). Therefore, it is expected

to require the whole buffer when the buffer is needed.

3.3.1.3 Selective Broadcast

Once a CP is detected, ICARO reallocates all traffic traversing that CP into the extra-

VN buffers, keeping the traffic in this VN until it arrives to destination, regardless the

path followed after crossing the CP. It means that, for a given CP and source, there is

only one path to reach the CP but, beyond the CP, congested flows might follow different

routes, therefore, all extra-VN buffers along each possible path must be powered on for

the given source and CP pair.

To address this issue we propose a selective broadcast mechanism. It consists in mod-

ifying the routers behavior when forwarding AM/DM messages. These messages are

forwarded as unicast messages until they arrive to a CP. Once a given AM/DM mes-

sage crosses the CP (in the next router), the message is treated as a regular broadcast

message. AM and DM messages are single flit messages, avoiding deadlock issues in

wormhole switched networks when combined with broadcast support.

This mechanism is implemented by setting the next reachable node after the CP as

the AM/DM message destination. These messages are provided with two bits: the

MCactive bit and the MC bit. The first one is set to 0 by default and is enabled only

when it arrives to the destination router (the next router reachable through the CP

port) and the MC bit is set to 1. When both bits are set, the message is treated as

a broadcast message. Since the broadcast mechanism works by duplicating the main

message, it will carry this bit to all its forked messages and this process is replicated

by each forked message along its path to its destination, crossing all reachable routers

Chapter 3. Proposed Techniques 73

0 1 2

98
10

5 6
4

3

11

13
12

14 15

Network Interface

Nodes affected by the CP

AM/DM original message

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

7Dst:6

{0,1}

AM/DM message copy

Congested Point

Dst:13

{0,0}

Dst:13

{0,0}

Dst:<destination>

{<MC_active>,<MC>}

Figure 3.52: PAPM messages copies destinations.

Counter==0 & buffer.empty? � TRUE

Downstream Router Upstream Router

!out_port.anyVC_used? � TRUE

Counter==0 & buffer.empty? � FALSE

!out_port.anyVC_used? � FALSE

Counter==0 & buffer.empty? � Switch OFF

t t

Figure 3.53: Buffer powering on/off protocol.

starting from the CP. An example of an AM/DM message being delivered can be seen

in Figure 3.52. The MC bit, when reset, disables broadcast operation. This is useful

when the CP is detected at an end-point. By forcing the MC bit to zero, the message is

not broadcasted at the last router where the end-point is connected to. Two examples

of the use of MC active bit and MC bit are shown in Figure 3.52 for two different CPs.

Chapter 3. Proposed Techniques 74

3.3.1.4 Flow Control

When using buffer power-gating mechanisms, one of the key challenges consists in avoid-

ing race conditions. Routers are unaware of the buffers state of their neighbors, therefore,

communication between adjacent routers becomes essential to know when is safe to for-

ward data to the next buffer. For this purpose, PAPM implements a simple handshake

protocol between adjacent routers. When a given buffer has to be powered off (its

counter reached 0 and the buffer is empty). The router sends an OFF request to the

upstream router for the corresponding port. Next, when the upstream port receives the

OFF request sets a bit that disables the output port for being selected for delivering

more flits. In addition to this, the router checks for flits having already assigned any

VC for such output port. If not, an ACK is sent to the downstream router. If there

is any flit owning a VC for such output port, the VA/SA stage stops assigning VCs

for that output port and the ACK is sent when no more messages own a VC for that

output port. Finally, when the ACK is received by the downstream router, the buffer is

powered off. However, it is worth to note that, between the OFF request and the ACK

arrival, some flits might arrive from the upstream router, and they must be forwarded.

Therefore, actually, after receiving the ACK, the downstream router checks the corre-

sponding buffer and powers the buffer off only if the buffer is empty. Otherwise, the

buffer is marked as requested to be powered off (RSO) and, finally, the buffer is powered

off when it gets empty. However, due to congestion transients, a buffer being powered

off due to a recently disappeared CP, may again be requested to be powered on because

the allocation of a new CP reachable also through the same path. To support this, the

powering off algorithm will cancel the RSO state in case of the counter to be increased

from 0 to 1 due to reception of an AM message while in RSO state. An example of this

protocol is depicted in Figure 3.53.

The protocol for powering a buffer on requires only to send an ON request handshake

message from the downstream router. Since to power a buffer on can not generate any

race condition, this message only causes the upstream buffer to enable that port to be

selected in the VA/SA stage, allowing data to be forwarded to the downstream router

through the extra-VN. No response from the upstream router is needed.

3.3.2 PAPM

In the previous section we described PAPM as a sub-mechanism of ICARO in order to

alleviate the leakage power consumption of the additional resources required by ICARO.

Due to the potential of PAPM, we adapted it to work in a standalone way, as a general-

purpose power-gating mechanism, independently of ICARO. Therefore, following we

describe the standalone proposal: PAPM.

Chapter 3. Proposed Techniques 75

The PAPM method works at the granularity of paths. One path is defined by the source

and destination end-nodes connected through the NoC. Those nodes use a fixed path

(we assume deterministic routing) to communicate. Along this path, a set of buffers are

used to flow control the advance of the traffic. Therefore, a path can be seen as a chain

of buffers.

PAPM manages the status of all buffers along a path. Buffers can be powered on or

off. Whenever a path needs to be used, the source end node injects a control message,

referred to as ABP (Activate Buffers Path) similar to the AM message sent in ICARO-

PAPM, in order to power on all the buffers along the path. Those buffers will then be

kept on during the transmission of traffic along the path. When the source node has

no more traffic to inject or when it decides to temporarily switch off the path (to save

energy), then the node injects a similar message, referred to as DBP (Deactivate Buffers

Path), which is the analogous to the DM message in ICARO-PAPM, in order to power

down buffers along the path.

One important aspect of PAPM is to be fast enough when powering on buffers. Indeed,

those buffers need to be on for the transmission of incoming messages. To speed up

this process, the PAPM method will rely on a lightweight fast network implemented

as a bidirectional ring. This network, referred to as Activation Network (AN), allows

powering on all buffers along a path.

The power down process in PAPM (DBP message) works, however, in synchrony with

the transmission of messages. Indeed, PAPM will inject the DBP message through the

regular NoC network, potentially switching off buffers along its way to final destination.

One key aspect of PAPM is the management of shared buffers by concurrent flows.

Indeed, two non-disjoint paths in the network will share some input ports, and thus,

buffers. Activating and deactivating buffers for one path does not have to conflict with

the expected buffer status of the other path. Indeed, buffers need to be powered on if

any of the paths sharing the buffer are active. Figure 3.54 shows the case.

To address the sharing buffers issue, PAPM will rely on an internal counter strategy

on every router input port. The counter will increase by one for every ABP message

received addressing that buffer. Accordingly, the counter will decrease by two (explained

in Section 3.3.2.2) for every DBP message received through the associated input port.

The input port will be activated (powered on) based on the counter value.

When a node allocates a message for a given destination, the NI PAPM module checks

the destination in order to know whether this path is available (switched on) or not.7

This information is stored in the Active Paths Bitmap by means of a bit for each destina-

tion node (1=path active, 0=path inactive). If the path is currently active, no additional

7Note that there is no way to certainly know whether the whole path is effectively on/off since other
nodes may share parts of the path. A given node is only able to certainly know whether it has requested
to switch the path on or off.

Chapter 3. Proposed Techniques 76

0 1 2

98 10

5 6
4

3

11

1312
14

15

Network Interface

7

Shared buffer

Figure 3.54: Flows sharing buffers along their paths.

action is required to send the message. Otherwise, an ABP is sent through the AN net-

work in order to switch on the path, being marked as active in the paths bitmap. Note

that the path may actually be switched on because another node has requested the same

path to be switched on. Once the message is sent, PAPM checks whether the path must

be switched off again. If so, PAPM sends a DBP message through the regular network

in order to switch the path off and the path is marked as inactive.

In addition to switch buffers off, to save more power, PAPM monitors at each router

the state of all buffers. When all buffers are off, since the rest of the router logic is no

longer needed, the whole router is switched off as well. Accordingly, when any of the

buffers are switched on, the router logic is also switched on.

3.3.2.1 Router Implementation

Figure 3.55 shows the implementation of PAPM strategy on the baseline router assumed.

The router implements the standard logic blocks, namely input buffer, routing unit,

virtual channel allocator, switch allocator and crossbar. The PAPM strategy impacts

mainly on the input buffer strategy. A counter and a logic block is added to update the

counter based on the arrival of ABP and DBP messages. Notice that DBP messages

arrive through the input port associated to the buffer whereas ABP messages arrive

through a lightweight new input port for the router. The added control network will

deliver ABP messages through that port.

Chapter 3. Proposed Techniques 77

Path Computation

N 0

E 0

W 0

S 0

L 0

Counters

Increment

Decrement

North buffer

West buffer

South buffer

Local buffer

East buffer

RT

Power-gate

Path Computation

VA

/

SA

AN0 AN1

Figure 3.55: Router implementation.

AN register

Node

AN register

AN0

input

NI

AN0

output
Reg

AN1

input

NI

AN1

output
Reg

Router

7

7

7

7

Figure 3.56: AN network in a 4x4 mesh.

The logic to support PAPM on the router design is small. Notice that every input port

needs to compute whether the port is along the path set between the source and the

destination of the ABP message. This logic is provided with the notification source, the

destination node which defines the path (source→destination) to be switched on/off and

the current node which allows to know whether this node belongs to the path and which

ports are involved in it. The outputs of this logic are connected to the counter of each

input port, allowing the counter for each buffer to be incremented when needed.

As seen in Figure 3.55, each counter for each port drives the power for each input port.

These control signals trigger the actions to power on or off those related buffers.

Switching ports off may cause race conditions since neighbor routers may already have

sent flits to the power-gated input port or, at least, already reserved resources to deliver

Chapter 3. Proposed Techniques 78

flits (credits). To avoid these synchronization issues we implemented a simple hand-

shaking protocol similar to the one implemented in the PAPM version for ICARO. A

given router A wants to switch off one of its input ports connected to its neighbor B,

this protocol simply sends a message from A to B just before switching the port off.

Router B replies to this message with an ACK signal in case there are no flits pending

to be delivered to A and marks the output port as disabled to avoid to be selected in

the VA/SA stage in further arbitrations. Otherwise, router B waits until the condition

meets to send this ACK. Once the ACK signal is received by router A, the input port is

switched off. To switch a port on, a signal is sent to router B to force router B to mark

the output port as enabled.

3.3.2.2 Activation Network

Figure 3.56 shows the added control network to deliver ABP messages. The network

forms a bidirectional ring topology forming a zig-zag structure visiting all the NoC

routers and end nodes similar to the dedicated network used in ICARO. For each network

hop one simple latch is used and a small multiplexer unit is added. The multiplexer is

added on every end-node in order to allow to inject ABP messages. The output of the

demultiplexer is wired on every router in order to eject a copy of traveling ABP messages

through the new network.

The ABP messages injected through the network will travel along all the ring and will be

removed when they reach again the injector end node (one complete lap performed). To

do this, each message includes the following fields: source of the path (src), destination

of the path (dst) and a valid bit (valid). In order to speedup the ABPs delivery, the ring

works at twice the system clock frequency by using latches activated either by rising or

falling edge. Since the AN is composed of two rings, each one for one direction, each

ABP is duplicated and injected in each direction of the ring. This means that each router

will receive each ABP duplicated, thus its affected buffer counters will be increased by

2. To solve this, each DBP received will cause the buffer counter to be decreased by

2. Whenever an ABP message is within the network, the message will get maximum

priority to move forward along the ring.

ABP messages are triggered by messages allocation and this may occur up to once per

cycle. Due to this and the highest priority of the in-flight notifications, ABP injection

may be blocked. Because of this, a small buffer is needed for ABPs storing before

injecton. However, we analyzed empirically the required buffer size and we arrived to

the conclusion that a 2-slots length buffer is enough to avoid any issue for all simulations

performed in Section 3.3.3.2.

Chapter 3. Proposed Techniques 79

3.3.2.3 Power-Down Strategy at End Nodes

Switching off/on buffers incur in power penalties, potentially ruining any power saving

achieved by switching them off. In order to amortize this power overhead, the buffer

must be powered off a minimum number of cycles (BET). Therefore, one important

aspect of PAPM method is deciding when to inject ABP or DBP messages. This is

performed at the source end-nodes. To do this, PAPM keeps track of the time between

generation of messages for the each destination (TBGdst). At each generated message,

the TBGdst value is updated according to Equation 3.4:

TBGdst = (TBGdst × 0.8) + ((Tcurrent − Tlast)× 0.2) (3.4)

where Tcurrent represents the current time and Tlast represents the time where the last

message to the same destination was injected.

PAPM implements a bit vector (referred to as Active Paths Bitmap) to keep track of

the status of all paths. When a message is generated, PAPM checks the status of the

path used to reach the destination. If the path is off, then an ABP message is injected,

changing the state of the bit to on.

The message generated is then delivered to the network interface queue and prepared

for injection. When the tail of the message reaches the head of the queue (just before

injecting it), PAPM checks whether the path has to be powered down or not. The path

should be powered off if the time for the next injected message to the same destination

is larger than BET. This means some power saving will be achieved. Therefore, PAPM

enables the DBP bit (which converts the message into a DBP message) in the tail flit of

the message if the following condition applies:

TBGdst > BET

If the expected time between injections is smaller then the path is not switched off.

If the last message sent to a given node did not trigger the DBP bit and no more mes-

sages are allocated for that destination node (TBG failed predicting the next allocation

time) will cause the path to be kept on indefinitely. To avoid this, a dedicated module

(TBG watchdog) is in charge of automatically sending a dedicated DBP message to such

destination node after 3 ∗ TBG cycles in case of no new message allocation.

Chapter 3. Proposed Techniques 80

Table 3.9: General system configuration.

Network configuration
Topology 8x8 2D mesh

Routing policy XY
Switching technique Wormhole (flit-level)

Flow control credits
Flit size 128 bits

Message size 10 flits
Switch queue size 4 flits
Virtual Channels 4 per Virtual Network

3.3.3 Evaluations

3.3.3.1 ICARO-PAPM

In this section we report simulation results obtained for several system configurations.

As in previous evaluations, since ICARO’s goal is to isolate congested traffic from non-

congested ones, the inspected traffic pattern is composed of two components: uniform

traffic at low data rate and hotspot traffic consisting in 4 nodes injecting to a single

node from time 300µs to 350µs (highlighted with vertical blue lines in the figures).

Since ICARO uses an additional VN to isolate congested traffic, all simulations are per-

formed with 2 VNs, each one containing the same number of VCs. The rest of the system

configuration parameters are described in Table 3.9. To elaborate different configura-

tions, in order to evaluate our proposal, we set a baseline configuration. Starting from

this configuration, we modify different parameters (mesh size, router’s queue size, num-

ber of VCs and number of hotspots) to elaborate a set of benchmarks. All configurations

are detailed in Table 3.10.

Since the goal of ICARO-PAPM is to isolate congested traffic in order to keep the

background one unaffected, for clarity, latency graphs show results only for background

traffic. Note that, latencies for AM/DM messages are also included in the results.

In Figure 3.57, a comparison between ICARO and ICARO-PAPM is performed in order

to demonstrate that, to implement a power-gating mechanism, has negligible effects over

ICARO. As seen, ICARO-PAPM performs quite similar to ICARO. It is worth to note

that, even for configurations in which PAPM messages suffer from high latencies (shown

later), there is no significant ICARO-PAPM impact on performance. Regarding power

consumption, in Figure 3.58 all results are depicted, showing values for the overall mesh

power consumption. As can be seen, before the hotspot is activated, ICARO-PAPM

saves up to 35% of power consumption by keeping the extra-VN buffers powered off.

When hotspot is activated, ICARO-PAPM activates only those buffers that compose

the routes needed to deliver congested traffic, therefore, reduces power consumption by

27%. In Figures 3.60 and Figure 3.61, final results for power consumption are shown

dividing the power consumption in two sets: when congestion does not arise in the

Chapter 3. Proposed Techniques 81

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

E
n

d
-t

o
-e

n
d

 l
a

te
n
c
y
 (

n
s
/m

e
s
s
a
g

e
)

Time (us)

End-to-end latency

ICARO 5x5
ICARO-PAPM 5x5

ICARO 8x8
ICARO-PAPM 8x8

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

E
n

d
-t

o
-e

n
d

 l
a

te
n
c
y
 (

n
s
/m

e
s
s
a
g

e
)

Time (us)

End-to-end latency

ICARO qs2
ICARO-PAPM qs2

ICARO qs4
ICARO-PAPM qs4

ICARO qs8
ICARO-PAPM qs8

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

E
n

d
-t

o
-e

n
d

 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e

)

Time (us)

End-to-end latency

ICARO vcs2
ICARO-PAPM vcs2

ICARO vcs4
ICARO-PAPM vcs4

ICARO vcs8
ICARO-PAPM vcs8

Figure 3.57: End-to-end latency comparison between ICARO and ICARO-PAPM for
different configuration parameters

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800

P
o

w
e

r
(m

W
)

Time (us)

Power

ICARO 5x5
ICARO-PAPM 5x5

ICARO 8x8
ICARO-PAPM 8x8

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

P
o

w
e

r
(m

W
)

Time (us)

Power

ICARO qs2
ICARO-PAPM qs2

ICARO qs4
ICARO-PAPM qs4

ICARO qs8
ICARO-PAPM qs8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800

P
o

w
e
r

(m
W

)

Time (us)

Power

ICARO vcs2
ICARO-PAPM vcs2

ICARO vcs4
ICARO-PAPM vcs4

ICARO vcs8
ICARO-PAPM vcs8

Figure 3.58: Power consumption for different configuration parameters

network (hotspot disabled) and when congestion arises in the network (hotspot enabled),

respectively. In all the cases ICARO-PAPM succeeds in reducing power consumption

significantly.

Chapter 3. Proposed Techniques 82

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

H264 VCE

P
o
w

e
r

(m
w

)

ICARO
ICARO-PAPM

Figure 3.59:
Average power con-
sumption under
realistic multimedia

traffic patterns.

 0

 100

 200

 300

 400

 500

 600

 700

ba
se

lin
e

m
es

h5
x5 qs

2
qs

8
vc

s2
vc

s8

m
W

ICARO
ICARO-PAPM

Figure 3.60: Aver-
age power consump-
tion when no conges-
tion in the network.

 0

 100

 200

 300

 400

 500

 600

 700

ba
se

lin
e

m
es

h5
x5 qs

2
qs

8
vc

s2
vc

s8

m
W

ICARO
ICARO-PAPM

Figure 3.61: Aver-
age power consump-
tion when congestion
traffic in the network.

Table 3.10: Scenarios configuration.

Scenarios
Label Mesh Queue Num. Num.

Size Size VCs HS
(nodes)

Baseline 8x8 4 4 1
5x5 5x5 4 4 1
qs2 8x8 2 4 1
qs8 8x8 8 4 1
vcs2 8x8 4 2 1
vcs8 8x8 4 8 1

In order to evaluate our proposal under more realistic scenarios we also performed eval-

uations under more realistic traffic patterns. We followed the same strategy as in [54].

We implement H264 and VCE multimedia codecs realistic traffic patterns and performed

simulations with no ICARO and with ICARO-PAPM. Figure 3.59 shows the power con-

sumption for the given traffic patterns without any congestion control and with ICARO-

PAPM. As seen, ICARO-PAPM saves power by activating buffers only when necessary,

achieving 26% of power saving in both scenarios with no performance loss.

3.3.3.2 PAPM

In this section we evaluate PAPM under different configurations using our in-house NoC

simulator. To obtain our power results we used a modified version of Orion v3.0 [57]

and Encounter tool from Cadence for calculating power overhead due to the additional

logic added by PAPM. Regarding power-on delay, according to the current state-of-the-

art [45] we could assume a delay of 0.2ns. However, in order to show the behavior of

our proposal under worse cases, for our experiments we assume a power-on delay of 2ns

(2 cycles).

In order to evaluate our proposal, we perform two analysis following different approaches.

First, we simulate a system performing changes of context by changing between differ-

ent traffic patterns for two different mesh sizes: 4x4 and 8x8. Then, we use realistic

Chapter 3. Proposed Techniques 83

Simulation configuration
Topology 4x4 2D mesh

Routing policy XY
Switching technique Wormhole

Flow control credits
Flit size 128 bits

Message size 10 flits
Switch queue size 4 flits
Virtual Channels 4

Frequency 1GHz

Table 3.11: Simulation configura-
tion.

Time (µs) Pattern Inj. Rate (f/c)
0-99 uniform

0.1

100-199 bit-reversal
200-299 bit-complement
300-399 bit-rotation
400-499 bit-shuffle
500-599 transpose
600-699 tornado
700-799 butterfly

Table 3.12: Traffic patterns.

traffic [54], increasing its intensity until network saturation to find the upper limit in

which buffers are used at their maximum rate while using more realistic traffic.

For our analysis we show results for a system provided with no power-gating mecha-

nism, results for a system implementing PAPM and, additionally we compare also with

TooT[44], a recent power-gating proposal described in Section 2.2.2, which essentially

switches routers off when traffic with no turns is detected and enables bypasses in the

router to keep it in service.

For our first benchmark we perform simulations using several synthetic traffic patterns.

Simulation toggles the traffic pattern used along the time in order to emulate a system

running different applications. By doing this, we demonstrate that PAPM is able to

dynamically adapt the available buffers in the network to fit the application requirements

while saving power switching off those which are not used. Details about the traffic

patterns used are described in Table 3.12.

One of the main challenges when implementing power-gating based strategies is to hide

the delay caused by the powering on process. In addition to this, since our proposal is

based in notifications (ABPs) to trigger this process, there is an additional delay caused

by ABPs delivery time. However, as seen in Fig. 3.62, the AN is able to deliver all

notifications in time thus no significant latency overhead can be appreciated. In the

same way, as seen in Fig. 3.64, no impact on throughput can be appreciated. However,

as shown in Fig. 3.63, PAPM disables buffers not required to deliver each traffic type,

achieving up to 73% and 33% of power savings compared with no power-gating and

TooT respectively. It is worth to note that, in addition to overcome TooT saving power,

TooT suffers latency overheads while PAPM keeps the latencies unaffected. Similarly,

Figures 3.65, 3.66 and 3.67 show the results for a 8x8 mesh network. As shown, the

latency when running PAPM increases slightly. This is due to the delay of the AN

delivering the ABPs to all nodes in the network. However, this increase is minimal, is

lesser than the latency increase using TooT and the power saving of PAPM is still around

65% of improvement compared with the no power-gating case and 21% comparing with

TooT.

Chapter 3. Proposed Techniques 84

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800

E
n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (us)

End-to-end latency

noPG
TooT

PAPM

Figure 3.62: End-to-end latency.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

P
o
w

e
r

(m
W

)

Time (us)

Power

noPG
TooT

PAPM

Figure 3.63: Power consumption.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(f

lit
s
/n

s
/n

o
d
e
)

Time (us)

Throughput

noPG
TooT

PAPM

Figure 3.64: Throughput.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800

E
n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (us)

End-to-end latency

noPG
TooT

PAPM

Figure 3.65: 8x8 end-to-end latency.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800

P
o
w

e
r

(m
W

)

Time (us)

Power

noPG
TooT

PAPM

Figure 3.66: 8x8 power consump-
tion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(f

lit
s
/n

s
/n

o
d
e
)

Time (us)

Throughput

noPG
TooT

PAPM

Figure 3.67: 8x8 mesh throughput.

For the next analysis a realistic traffic pattern corresponding to the H264 codec is used.

To generate this traffic we followed the methodology described in [54]. Since this traffic

emulates the H264 video codec traffic, we are able to provide the frame rate at which

the codec works. Since flows from any source are sent always to the same destination,

the subset of used buffers is always the same. Taking benefit of this, for this analysis

we increase the frame rate parameter in order to increase the network load under this

traffic in order to analyze how PAPM and TooT react to an increasing network load

until saturation using always the same buffers subset. In addition to this, performing

this analysis is also useful to evaluate PAPM and TooT under more realistic traffic.

Chapter 3. Proposed Techniques 85

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800

E
n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (us)

End-to-end latency

noPG
TooT

PAPM

Figure 3.68: H264 end-to-end la-
tency.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

P
o
w

e
r

(m
W

)

Time (us)

Power

noPG
TooT

PAPM

Figure 3.69: H264 power consump-
tion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(f

lit
s
/n

s
/n

o
d
e
)

Time (us)

Throughput

noPG
TooT

PAPM

Figure 3.70: H264 Throughput.

As seen in Fig. 3.68 and Fig 3.70, PAPM has negligible effect over the latency and

throughput, respectively. As seen, at very low frame rate, the network utilization is

very low, therefore, while the no power-gating case keeps all the buffers on, PAPM

only switches them on when necessary, consuming very low power. Regarding TooT,

due to the reduced buffers capacity in routers when bypasses are enabled, causes the

saturation to arise earlier, which makes it not suitable under high network load. As

long as the frame rate is increased, power consumption for the no power-gating case

increases due to the dynamic power component and PAPM reacts by increasing the

buffers uptime, increasing the power consumption as well. However, in the worst case

(at the highest frame rate), PAPM achieves an average power consumption improvement

of 79% compared to the case with no power-gating and of 45% when compared to TooT.

3.4 Proposals Digest

For the sake of understanding, in Table 3.13 we show, for each proposal described in this

thesis, key characteristics that differentiate each proposal, to provide a general view of

all works and the key differences between them.

Chapter 3. Proposed Techniques 86

T
a
b
l
e

3
.1

3
:

D
ig

est
o
f

a
ll

p
ro

p
o
sa

ls
d

escrib
ed

in
th

is
th

esis

B
A

H
IA

IC
A

R
O

IC
A

R
O

-D
V

F
S

IC
A

R
O

-D
M

S
D

IC
A

R
O

-P
A

P
M

P
A

P
M

D
etection

E
n

d
-n

o
d

e
R

ou
ter

R
ou

ter
R

ou
ter

R
ou

ter
-

lo
ca

tio
n

S
a
tu

ration
D

ata
rate

>
th

resh
o
ld

>
1

sa
t.

q
u

eu
es

>
1

sat.
q
u

eu
es

>
1

sat.
q
u

eu
es

>
1

sat.
q
u

eu
es

-
d

etection
req

.
an

ou
t

p
ort

req
.

an
ou

t
p

ort
req

.
an

ou
t

p
ort

req
.

an
ou

t
p

ort

D
etection

B
it-vecto

r
C

P
cach

e
-

-
-

-
Im

p
lem

en
t.

D
ed

icated
B

N
N

C
N

N
C

N
N

C
aL

C
N

N
A

N
n

etw
o
rk

(ex
ten

d
ed

)
(C

N
N

+
lats.)

N
etw

ork
A

ll-to
-a

ll
S

egm
en

ted
S

egm
en

ted
S

egm
en

ted
S

egm
en

ted
S

egm
en

ted
T

op
o
lo

gy
rin

g
rin

g
rin

g
rin

g
rin

g

D
a
ta

sen
t

H
IG

H
/
L

O
W

C
o
n

gested
C

on
g.

p
oin

ts,
C

on
g.

p
oin

ts,
C

on
g.

p
oin

ts,
A

B
P

/D
B

P
p

oin
ts

V
&

F
req

s.
laten

cies
A

M
m

sgs.
m

essages

C
o
m

p
a
red

to
n

o-B
A

H
IA

n
o
-IC

A
R

O
,

D
V

F
S

D
M

S
D

IC
A

R
O

T
o
oT

F
V

A
D

A
/A

V
A

D
A

Chapter 4

Head-of-Line Blocking Avoidance

in Networks-On-Chip

• Authors: José Vicente Escamilla (Universitat Politècnica de València), José Flich

(Universitat Politècnica de València) and Pedro J. Garćıa (Universidad de Castilla-

La Mancha)

• Type: Conference

• Conference: 3rd Workshop on Communication Architecture for Scalable Systems

(CASS)

• Location: Boston, MA, USA

• Year: 2013

• DOI: 10.1109/IPDPSW.2013.214

• URL: http://ieeexplore.ieee.org/document/6650958/

• Citation: [59]

87

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 88

4.1 Abstract

Many-core chip designs are the current manufacturing trend for high-performance com-

puting. Different challenges lead to different designs, whether general purpose-driven

chip multiprocessors (CMPs) or application-specific multiprocessor system-on-chips (MP-

SoCs) are deployed. An emerging problem is on-chip network congestion, due either to

several traffic flows requesting the same resources (e.g. memory controllers) or to bursty

traffic interfering with other flows.

In this paper we propose BAHIA, which enables dynamic separation of bursty traffic

from non-bursty one, thereby removing all the contention effects of bursts with a min-

imal impact on network overhead and with a marginal increase in area requirements.

Results demonstrate a robust and effective splitting of traffic, so that non-bursty traf-

fic achieves the desired low latencies even in bursty-prone conditions. By contrast, in

our experiments, when BAHIA is not used, non-bursty traffic gets congested, latency

increasing significantly and, in some cases, reaching a factor increase of 3x.

4.2 Introduction

The high-performance computing domain is taking advantage of the inclusion of multi-

core solutions in the form of Chip Multiprocessor (CMP) and System-on-Chip (MPSoC)

systems. As the integration scale goes further, more cores, nodes, or processing units

are included in the same chip. Examples of the many-core integrated Intel CMPs are:

The Xeon Phi coprocessor [60] with 60 cores, and the single chip cloud computer (SCC)

[61] with 48 cores. The Tile-Gx [7] from Tilera, with up to 72 cores, represents a good

example for a high-end MPSoC system. These systems provide support for the specific

needs of the different targeted applications such as multimedia, wireless networking, and

cloud-computing.

Both design platforms, CMPs and MPSoCs, rely on an interconnection network in-

frastructure that provides the communication between all the processing nodes. This

must be a high-bandwidth, low-latency network to avoid slowing down processors while

waiting for remote data. Networks-on-chip (NoCs) suit well when a large number of pro-

cessing nodes are present [6], as is the case of the Intel prototypes and Tilera products. In

general, NoC design is challenging due to the tight constraints found in on-chip systems.

Thus, an NoC must be simple in its mechanisms, exhibiting low hardware overhead, low

power-demanding, and at the same time being performance-efficient, independently of

the applications running on the system.

As technology advances, we will have more complexity in the chip, leading to more de-

vices. Also, specialization will drive the inclusion of dedicated devices as accelerators,

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 89

encoders, DMA devices, etc. This heterogeneity and the increasing number of compo-

nents will drive a change in the traffic present in those devices. We can expect traffic

bursts flowing from device to device, at intermittent and unpredictable frequencies. This

kind of traffic may create temporary oversubscribed ports (hotspots) where the traffic is

concentrated, thereby leading to the appearance of network congestion that is likely to

have a negative impact on the rest of the traffic. Specifically, in congestion situations,

the Head-of-Line (HoL) blocking phenomenon [14][62] is likely to appear, that consists

in congested traffic slowing down other traffic flows throughout the network. As we

show in this paper, efficiently dealing with the problems derived from congestion can

significantly improve the overall chip performance.

Indeed, in this paper we present BAHIA (Burst-Aware HoL-blocking Injection Avoid-

ance), a mechanism that dynamically detects bursty traffic in the network, then isolat-

ing the burst and thus guaranteeing that non-bursty traffic is unaffected. The BAHIA

method is targeted on lightweight NoC designs, where transmission latency is of outmost

importance, thus, no additional mechanisms built inside the network are added to the

switches (i.e. congestion control mechanisms, traffic separation). Indeed, we follow the

same approach as in [63], so moving the complexity to the network interfaces (NIs).

Notice that BAHIA can be complemented with any sophisticated mechanism built in-

side the network. Indeed, BAHIA is implemented at the end-nodes (NIs) and thus, it is

orthogonal and complementary to NoC mechanisms.

The rest of this paper is organized as follows. Section 4.3 presents the related work. In

Section 4.4 we thoroughly describe the key aspects of the BAHIA mechanism. Next, in

Section 4.5, we detail the evaluation scenarios and the results obtained, and finally in

Section 4.6, we present some conclusions and future work.

4.3 Related work

There is a number of solutions in [64], [65], and [66] focused on reducing the negative

effects of resource sharing through quality of service (QoS) policies and mechanisms,

based on priority schemes. Although all these solutions can alleviate or delay the neg-

ative impact of network congestion by prioritizing different traffic types, their main

objective is to differentiate traffic and they are not actually focused on dealing with

congestion by itself. As a consequence, congestion may appear within each traffic class

due to unpredictable traffic patterns.

In [67] authors first make an analysis of the impact of resource sharing with different

traffic patterns and the implication of dependencies between packets of the same data

flow in the efficient utilization of these resources. Finally authors propose to change the

abstraction unit from mapping packets to virtual channels to mapping flows to virtual

channels following a destination-based mapping policy.

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 90

Regarding specific congestion-control mechanisms, the authors in [16] present a mecha-

nism for congestion control and analyze its relation to the system scalability for buffer-

less on-chip networks. As the authors describe, their experiments show congestion

problems in this kind of networks (system size ranges from 16 to 4096 nodes), thus

demonstrating the need for a congestion control mechanism to prevent performance

degradation. However, as this work focuses on buffer-less networks, the results cannot

be directly applied to the buffered NoCs we consider in this paper. The main corpus

of congestion-control solutions on buffered NoCs are based on the idea of congestion-

awareness mechanisms implemented on the switches, either based on deterministic or

adaptive routing. The solutions presented by the authors in [20], [68], [69], and [70], de-

scribe mechanisms that collect congestion information from the neighbor nodes through

the routing process and ingress/egress buffer monitoring, in order to offer an alternative

path to route around a congested area. However, this strategy may end up producing

more congested resources, as it is impossible to avoid the congested region if all the

congested traffic has the same target (e.g. the memory controller).

In the case of high-end MPSoCs, all the previous congestion methods can be effectively

used as well. However, these methods do not specially deal with traffic bursts. Bursty

traffic has been analyzed and explored within the concept of QoS especially when ad-

dressing how QoS application requirements (latency, jitter, and bandwidth) can be met

within the network. Here we are not interested in the QoS aspect of the traffic, but on

the congestion effects that uncontrolled bursts may create. Indeed, in [71] and [72] the

importance of bursty traffic in the congestion control framework is pointed out. In that

sense, the BAHIA method described in the next section addresses the negative effects

of bursty traffic.

In [73] the problems derived from bursty traffic are addressed by increasing buffer size

in order to get room enough to absorb bursts. This approach is relatively expensive in

terms of silicon area and power, and as reported in the article, with non-bursty traffic this

results in a suboptimal utilization of the resources. In addition, it is difficult to predict

burst sizes, hence probably a burst may overflow buffers, then resulting in contention. In

BAHIA, however, buffer size is not modified as bursty traffic is separated at the sources.

In [74] a solution to reduce the latency in worst-case bursty traffic is proposed. However,

this mechanism is based on temporarily ejecting packets and later re-injecting them with

a priority-based approach. This achieves good results as it helps in the worst case, but

at the cost of increasing latency of newer packets. Moreover, if we consider a scenario

with several virtual networks, this mechanism requires three queues per virtual network

at each node, thus becoming an expensive solution in an NoC context.

In [75] authors propose a mechanism for improving substantially the deflection rate in

bufferless NoCs by implementing an end-to-end flow control technique. This mechanism

is a credit-based algorithm that keeps a clumsy record of the end-node buffer availability

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 91

instead of the intermediate buffers in order to throttle the injection data rate. Authors

propose a clumsy credit-based counter since, thanks to the deflection mechanism, an

strict counter is not necessary. This mechanism has some similarities with BAHIA in

the sense that an end-to-end load parameter is measured in order to take a decision to

eventually improve the network efficiency. However, as mentioned above, BAHIA only

works for buffered networks-on-chip and the proposal in [75] makes no sense in such kind

of networks.

On the other hand, many related solutions have been proposed in the off-chip context

(for clusters or Massive Parallel Processors) that notify (end-to-end) congestion to the

sources so that they cease or reduce packet injection (e.g. the InfiniBand congestion-

control mechanism [76]). The main difference with BAHIA is the strict minimized

implementation overhead pursued when designing BAHIA, which is a requirement in

the context of NoCs.

4.4 BAHIA Description

BAHIA (Burst Aware HoL-blocking Injection Avoidance) provides a method to isolate,

at runtime, detected bursty traffic in a network, in order to prevent bursts from causing

HoL-blocking. Detection of bursty traffic is performed at any end-node receiving a burst.

All the end-nodes are then notified of this detection, so that thereafter the bursty traffic

can be identified in order to be separated from non-bursty traffic, thereby avoiding the

HoL-blocking that the former could produce to the latter. BAHIA makes use of virtual

networks to separate traffic, hence BAHIA requires at least two virtual networks: the

“default” virtual network (hereafter default-VN), for non-bursty traffic, and an “extra”

virtual network (hereafter extra-VN) for bursty traffic. Therefore, if no bursty traffic

is detected, the traffic is injected always through the default-VN, but when a burst

is detected, the bursty flow is mapped to the extra-VN. It is worth mentioning that,

although BAHIA makes a special use of virtual networks, it supports virtual channels

implementation over such virtual networks.

4.4.0.1 Burst Detection

As mentioned above, the detection of bursty traffic is performed at the end-node re-

ceiving the burst. For that purpose, each end-node periodically calculates its rate of

received traffic. The traffic rate is calculated every “polling interval” (PI) cycles, which

is a predefined parameter of BAHIA. If that rate exceeds a given high-threshold (HT)

value, this end-node will notify the other end-nodes that it is receiving bursty traf-

fic. Similarly, any end-node notifying bursty traffic must be able to detect the end of

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 92

the burst. For that purpose, the traffic reception rate is compared with a given low-

threshold (LT) value. Accordingly, in this case, all the end-nodes will be notified about

the end of the burst. It is worth mentioning that an appropriate configuration of the two

aforementioned thresholds (upper and lower) is important to achieve the best BAHIA

performance. Indeed, in our evaluation experiments we have thoroughly tuned these

values, as explained in Section 4.5.

On the other hand, an alternative burst detection mechanism could be conceived at the

sender. Indeed, if a node is going to inject a burst then it can know that in advance.

However, detecting at the senders cannot guarantee the effective detection of different

lightweight bursts from different sources to the same destination, thereby being not so

efficient in preventing the negative effects of aggregate bursts. Hence, we opted for

performing burst detection at the receiver part of the end-nodes.

4.4.0.2 Burst Notification

In order to notify a traffic burst to all the end-nodes, BAHIA makes use of a simple

dedicated signaling network (Burst Notification Network, BNN). Basically, the whole

BNN is a set of one-bit-wide overlapped control networks, each one managed by a specific

end-node. Each one-bit control network connects its manager end-node to the rest of

end-nodes, the former being the only one able to activate/deactivate the signal (i.e. to set

the bit to one/zero) of this control network, while the latter being just signal receivers.

Thus, every end-node owns an exclusive one-bit-wide control network to notify bursts

events to the rest of end-nodes. Figure 4.1 shows the one-bit-wide control network

managed by end-node 0, but note that every end-node owns a similar control network,

so that in this 4x4 mesh network, there would be other 15 one-bit-wide control networks

besides the one shown. The overlapping of these control networks allows every end-

node to notify bursts without risk of collisions with notifications from other end-nodes.

Therefore, the BNN can be viewed as an N-bit-link, where N is the number of end-nodes

and every bit (wire) in the link corresponds to a specific end-node in the system.

Any end-node notifies the rest of end-nodes of a burst by setting to high value the signal

of its BNN line. Due to the simplicity of that signal, it reaches all the end-nodes in

a few cycles. The time spent in propagating and processing this signal is modeled by

the “notification delay” (ND) parameter in the simulations. It is worth mentioning that

the processing of this signal is negligible (and so the required hardware). Regarding the

area overhead introduced by the BNN, in [48] an additional dual-network for routing

data transmission is proposed. This dual-network comprises the logic needed for coding

and decoding data, flow controlling, handling transmission failures mechanisms, etc.

Despite of its relative complexity, the authors of the referred paper conclude that the

area overhead of the hardware required to implement their proposal is 12.5% of the

switch. Note that the BNN consists just in a set of wires which are set to a high or

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 93

Figure 4.1: Node 0 communicates burst events through this 1-bit network.

low signal value for notifying, hence no logic for processing data is needed. Therefore,

relying on the hardware overhead study performed in [48], we can conclude that the

hardware overhead for implementing the BNN is negligible.

4.4.0.3 Traffic Separation

Every end-node implements a “burstiness bit-vector”, each bit corresponding to a specific

end-node in the network, as can be seen in Figure 4.2. When an end-node detects a

high signal value in the BNN line associated to an end-node, the former will set to

one in its burstiness bit-vector the bit corresponding to the latter. Once generated,

all the messages are mapped to the default-VN, thus they are initially stored in the

queue associated to that virtual network (default-VN queue). At every clock cycle

the head of all default-VN queues are checked searching for the head of a message: if

one is found, its destination is checked to obtain the value of the corresponding bit

in the burstiness bit-vector. If that bit is set to zero, the message remains mapped

to the default-VN; otherwise, the whole message is transferred to the extra-VN. These

checking&transferring processes can be executed while reading from the queue currently

selected for injecting, hence a message at the head of a queue can be transferred to the

extra-VN queue while the next one is injected (if it must not be transferred to the extra-

VN too). It is worth mentioning that in a real hardware implementation the burstiness

bit-vector could be replaced by simply inspecting the signals in the BNN lines.

In extreme scenarios with several bursts addressed to many end-nodes, and with large

burst duration, the extra-VN queues may get full. In these cases messages cannot

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 94

Figure 4.2: Forwarding of messages in a source.

be transferred from the default-VN queues to the extra-VN ones, thus the default-VN

queues with messages at their head waiting to be transferred to the extra-VN queue

will get blocked until messages at the extra-VN queue are drained. Note that it is

an extremely unlikely case: indeed, when simulations were performed with realistic

benchmarks this never happened.

Figure 4.2 shows the basic structure of the sender part of an end-node that has messages

addressed to end-nodes 1, 5 and 6. The message at the header is addressed to end-node

5. The bit corresponding to end-node 5 in the burstiness bit-vector is set to one (i.e.

end-node 5 previously notified that it was receiving a burst), so this message must

be mapped to the extra-VN. Indeed, before injection, the arbiter at the sender node

checks the burstiness bit-vector and transfers the message addressed to end-node 5 to

the extra-VN queue, so that this message will be later injected from that queue.

It is worth pointing out that, although messages are injected either from the default-VN

queue or from the extra one, all of them are initially mapped to the default-VN. This

is because, if an end-node directly maps to the extra-VN the messages addressed to an

end-node that has recently notified a burst, there may be messages still stored in the

default-VN queue that are addressed to the same destination, and this could introduce

out-of-order message injection (and so delivery) as queue selection policy is based on

a simple round-robin algorithm. Hence, to guarantee in-order message injection and

delivery, all the messages are first mapped to the default-VN and the arbiter is provided

with some additional intelligence to check the burstiness bit-vector, in order to evaluate

whether a message should be directly injected from the default-VN queue or it should

be transferred (by changing pointers) to the extra-VN.

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 95

Once an end-node notifies that it is no longer receiving bursty traffic (by setting to low

value the signal of its BNN line), the other end-nodes will reset the corresponding bit

in their burstiness bit-vector. Thereafter, new messages addressed to this end-node will

be injected from the default-VN queue. However, this may also introduce out-of-order

message injection and delivery, as messages addressed to the end-node may remain in

the extra-VN queue. The example of Figure 4.2 also shows a situation where there are

messages in the extra-VN queue addressed to an end-node (specifically, end-node 0)

whose associated bit in the burstiness bit-vector has changed from one to zero.

In these cases, in-order packet delivery can be preserved if messages addressed to a

specific end-node are injected from the default-VN queue only if there are no messages

addressed to the same destination in the extra-VN queue; otherwise, the packet must be

transferred from the default-VN queue to the extra-VN one. However, this makes nec-

essary other information than that of the burstiness bit-vector, besides some additional

tasks for the arbiter. Specifically, every end-node in BAHIA implements a presence

vector that contains an element per end-node in the network, and every element is a

counter indicating how many messages addressed to this end-node are stored in the

extra-VN queue. Every counter is incremented each time a message addressed to the

corresponding end-node is moved from the default-VN to the extra-VN one, and decre-

mented when messages are injected towards that end-node from the extra-VN. When

a message reaches the head of the default-VN queue and the bit associated with its

destination in the burstiness bit-vector is set to zero, the counter associated with that

destination in the presence vector is also inspected: if the value of that counter is zero,

the message is injected from the default-VN queue; otherwise, the message is moved to

the extra-VN queue.

Note that, although BAHIA has been evaluated in this work assuming a deterministic,

dimension-order (XY) routing algorithm, it is suitable to any deterministic or adaptive

routing algorithm. However, in-order message delivery is only granted using determin-

istic routing.

The whole mechanism necessary to keep in-order message injection is a post-processing

mechanism, in the sense that messages are mapped to their final virtual network once

they reach the head of the default-VN queue, and not before. As mentioned above, the

arbiter should be in charge of performing this post-processing mechanism, that can be

summarized in the next pseudocode:

Note that post-processing can be performed in parallel to the transmission of a message,

either from the default-VN queue or from the extra-VN queue.

Once the end-node injects a packet, the packet will advance towards its destination

through the same virtual network. That is, if the packet is injected through the default-

VN, it will advance through the devault-VN located on every switch. If, on the contrary,

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 96

for each default vn in the end-node do
if !isVNempty(vn) then

if isNodeReceivingBurst(msg.destination) ||
numFlitsInExtraVN(msg.destination) > 0 then

moveMessageToExtraVN(msg);
end

end

end

the packet is injected from the extra-VN, it will advance through the extra-VN located

on every switch. Thus, every switch will implement two queues at minimum to support

BAHIA.

4.5 Evaluation

In this section we present an evaluation of BAHIA based on the results of simulation

experiments performed in bursty traffic scenarios. First, we describe the simulation

environment. Next, we show several analyses of BAHIA performance based either on

results obtained with only synthetic traffic or on results obtained with realistic traffic

patterns together with background synthetic traffic. Specifically, we firstly offer a ro-

bustness analysis of the different parameters that define the BAHIA behavior, carried

out establishing a baseline configuration, then running simulations with different values

of each parameter, in order to find out the optimal values to configure these parameters.

Next, we compare the results obtained with and without BAHIA when using the mini-

mum number of virtual networks. Finally, we perform an analysis of the influence of the

number of virtual networks over BAHIA and the performance improvement regarding

similar no-BAHIA scenarios. For all these analyses, keep in mind that we do not target

overall throughput increase or overall latency reduction. Our aim is to separate bursty

traffic from non-bursty one, thereby keeping the latter unaffected by the HoL-blocking

the former may produce.

4.5.1 Simulation Environment

An in-house NoC simulator has been used for the experiments. Results are shown every

5000 simulated cycles. Table 4.1 summarizes the configuration of the scenarios modeled

in our experiments. Specifically, the network topology modeled in all the experiments

is a 2D mesh built from 16 switches arranged in a 4x4 mesh distribution, each switch

being connected to a single end-node. Regarding traffic patterns, for the first analysis in

Section 4.5.3.2 an only-synthetic-traffic pattern is used. This pattern (traffic pattern A in

Table 4.1) consists of background uniform-traffic injected at a rate of 0.2 flits/cycle/node,

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 97

together with 2 bursts created by 4 hotspots following a 4-to-1 strategy where nodes

inject at 1 flit/cycle/node during 50000 cycles. For the rest of analyses we use traffic

pattern B in Table 4.1, which consists of realistic traffic generated from extrapolated

MCSL traces from the H264 video encoder [50], together with background synthetic

traffic generated by all nodes injecting at a data rate of 0.3 flits/cycle/node with a

uniform distribution of destinations. The latter traffic is used as our goal is to avoid the

HoL-blocking that traffic bursts derived from the video encoder processes may cause to

other traffic. Regarding the number of virtual networks we consider scenarios with 2, 4,

or 8 virtual networks. For the BAHIA case we keep a single extra-VN and the remaining

virtual networks are used as normal (defaults-VN) queues, so that all the bursty traffic

is mapped into the same virtual network. For the no-BAHIA case all the queues are

used equally.

Topology 4x4 2D regular mesh

Virtual networks
no BAHIA 2, 4 or 8 VNs

BAHIA 1,3 or 7 default-VN(s) + 1 extra-VN

Routing policy XY

Switching technique Wormhole

Flow control Stop&go

Flit size 4 bytes

Message size 10 flits

Switch queue size 16 flits

Traffic patterns
A uniform 0.2 flits/cycle/node +

4 hotspots 1 flit/cycle/node
B h264 video enc. + uniform 0.3 flits/cycle/node

Table 4.1: Scenario configuration for bursty traffic.

4.5.2 Parameters Tuning

BAHIA behavior is defined by four parameters: BNN notification delay (ND), high-

threshold (HT), low-threshold (LT) and polling interval (PI). In order to explore the

robustness of the mechanism, we have carried out an analysis of every parameter by

independently simulating different variations of the parameters.

In all the experiments of this analysis traffic pattern B in Table 4.1 has been used, and 2

virtual networks (1 default-VN + 1 extra-VN) are assumed. The baseline configuration,

and the different values of the parameters used for the different simulations are shown

in Table 4.2.

First, we analyze the effect when varying the notification delay of the BNN network. In

Figure 4.3 we can see the results. This figure shows how notification delay has negligible

effects on the BAHIA behavior The figure shows the latency of messages (only for the

synthetic-traffic part of the traffic pattern) when the BAHIA mechanism is running

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 98

HT (flits/cycle) LT (flits/cycle) PI (cycles) ND (cycles)

baseline 0.45 0.35 1000 2

HT analysis
0.4, 0.45, 0.6, 0.35 1000 2

0.75, 0.9

LT analysis 0.45 0.25, 0.35, 0.4 1000 2

PI analysis
0.45 0.35 100, 200, 400, 2

800, 1600

ND analysis 0.45 0.35 1000 1, 2, 4, 8, 16

Table 4.2: BAHIA robustness analysis configuration.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400

C
yc

le
s

Transient

Notification delay (synthetic traffic)

1 cycle
2 cycle
4 cycle
8 cycle

16 cycle

Figure 4.3: Notification delay (ND) analysis.

for different notification delays, from 1 cycle up to 16 cycles. As can be seen, latency

of messages is unaffected and show almost the same values. This gives some reliability

against unexpected jitter delays and grants flexibility for hardware implementation, since

BAHIA has no strict delay requirements.

Next we analyze the effect when varying the value of the detection threshold (high-

threshold, HT, at the receiver side of the end-nodes). Figure 4.4 shows results for

different values of the HT, ranging from 40% to 90% of traffic reception rate. Note that,

the lower the threshold, the more aggressive the mechanism (i.e. more sensitive to traffic

bursts), but it may incur in false positives (i.e. non-bursty traffic detected as bursty).

By contrast, the higher the threshold, the more selective the mechanism, thus it may not

detect lightweight bursty traffic. As we can see in Figure 4.4, all the considered values

of HT except the lowest one (40%) produce similar results. Thus we can conclude that

this parameter should be configured so that BAHIA is not too sensitive, i.e. the HT

value is high enough to avoid false positives.

Similarly, Figure 4.5 shows the results obtained when varying the value of the low-

threshold (used to detect the end of bursts). As can be seen, this parameter does not

affect BAHIA performance because, when a burst ends, all virtual networks are free

from HoL-blocking effects, so traffic flows smoothly through all virtual networks, thus

no matter which virtual network messages are mapped to.

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 99

 0

 300

 600

 900

 1200

 1500

 0 100 200 300 400

C
yc

le
s

Transient

High threshold (synthetic traffic)

0.4 f/c
0.45 f/c

0.6 f/c
0.75 f/c

0.9 f/c

Figure 4.4: High-threshold (HT)
analysis. Average flit latency.

 0

 200

 400

 600

 800

 0 100 200 300 400

C
yc

le
s

Transient

Low threshold (synthetic traffic)

0.25 f/c
0.35 f/c

0.4 f/c

Figure 4.5: Low-threshold (LT)
analysis. Average flit latency.

Finally, the value of the polling interval has been tested. Note that the polling interval

tuning presents a close relationship with the high-threshold analysis: having a small

polling interval may be similar to having a lower HT value. The contrary also applies:

a large polling interval could lead to the mechanism filtering short transient bursts. As

can be seen in Figure 4.6, for all the considered values we get a similar behavior

We conclude, then, that the smallest polling interval among those considered is conve-

nient and not harmful.

 0

 200

 400

 600

 800

 0 100 200 300 400

C
yc

le
s

Transient

Polling interval (synthetic traffic)

100 cycle
200 cycle
400 cycle
800 cycle

1600 cycle

Figure 4.6: Polling interval (PI) analysis.

Summing up, any combination of the considered values for these parameters, except

the lowest value for HT, would produce similar results. Thus, hereafter we assume that

an appropriate configuration of parameters can be ND=4 cycles, HT=0.6 flits/cycle,

LT=0.4 flits/cycle, PI=400 cycles, hence such configuration will be used for the next

analyses.

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 100

 0

 200

 400

 600

 800

 0 100 200 300 400

C
yc

le
s

Transient

noBAHIA 2VN

Synthetic traffic
MCSL traffic

 0

 200

 400

 600

 800

 0 100 200 300 400

C
yc

le
s

Transient

BAHIA 2VN

Synthetic traffic
MCSL traffic

Figure 4.7: Latency for BAHIA and no-BAHIA, 2 VNs, traffic pattern B.

4.5.3 BAHIA vs no-BAHIA Analysis

In this section we carry out a general analysis of BAHIA in comparison with similar

scenarios without BAHIA in order to quantify the capability of BAHIA to separate

bursty traffic from non-bursty one. In the previous section we have delimited a set of

appropriate values for the parameters that define BAHIA behavior for the scenario used

in the simulations, so in this analysis we have set BAHIA parameters according to these

values.

Average latency (cycles)

noBAHIA BAHIA Improvement

2VN synthetic traffic 56.78 40.40 40.54%

2VN MCSL traffic 130.02 121.89 6.67%

4VN synthetic traffic 85.89 39.31 118.47%

4VN MCSL traffic 240.10 102.40 134.46%

8VN synthetic traffic 133.71 37.65 255.15%

8VN MCSL traffic 464.21 110.88 318.66%

Table 4.3: Average latency for BAHIA and no-BAHIA scenarios.

4.5.3.1 Simplest Configuration Analysis

For this analysis, we have performed simulations for the simplest configuration in terms

of virtual networks, i.e. 2 virtual networks (as BAHIA requires a minimum of 1 default-

VN and 1 extra-VN). Figure 4.7 shows the latency achieved with and without BAHIA

for traffic pattern B in Table 4.1. Note that the results for the synthetic and MCSL

components of the traffic pattern are shown separately, as different series in the same

graph. Average numeric results can be seen in the first two entries of Table 4.3. As

can be seen in Figure 4.7 BAHIA achieves a moderated improvement of approximately

40% in the average latency with respect to the no-BAHIA case. Indeed, as can be seen

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 101

in Table 4.3, BAHIA achieves a moderated improvement of approximately 40% in the

average latency with respect to the no-BAHIA case.

4.5.3.2 Number of Virtual Networks Analysis

Now, we turn our attention to scenarios where different numbers of virtual networks

are available. Specifically, we consider the cases of 2, 4, and 8 virtual networks. As

mentioned above, for the BAHIA case we keep a single extra-VN, the remaining virtual

networks being used for non-bursty traffic. For the no-BAHIA case all the queues are

used equally. For this analysis we have used traffic patterns A and B in Table 4.1, in

order to get a more complete comparison between BAHIA and no-BAHIA cases.

We firstly analyze results when traffic pattern A in Table 4.1 (i.e. only synthetic traffic)

is used. Assuming this traffic pattern, Figure 4.8 shows results of latency along time for

a network without BAHIA. The results correspond to the overall average latency for all

VNs. Clearly we can see a latency increase when contention exists due to the appearance

of hotspots, regardless the number of virtual networks. In Figure 4.9 the overall average

latency for all default-VNs with BAHIA is shown. It can be seen that when traffic

bursts starts, BAHIA quickly detects an excessive received data rate, thus it is notified

to the rest of end-nodes and such traffic is isolated in the extra-VNs, keeping the default-

VNs latency low. On the other hand, as can be seen in Figure 4.10 the latency of the

extra-VNs increases as bursts are mapped to them. Note that these BAHIA results do

not significantly vary with the number of virtual networks, and they show clearly how

BAHIA isolates traffic-bursts into the extra-VN.

 0

 300

 600

 900

 1200

 0 50 100 150 200

La
te

nc
y

(c
yc

le
s)

Transient

no-BAHIA VNs avg. latency (only synth. traffic)

2VN
4VN
8VN

Figure 4.8: Overall average latency without BAHIA, traffic pattern A.

Secondly we focus on the results obtained for traffic pattern B in Table 4.1 (i.e. realistic

MCSL traces together with synthetic background traffic), with and without BAHIA.

Note that the results corresponding to the synthetic part of traffic pattern B are shown

separately (in Figure 4.11) from those corresponding to the realistic part (MCSL traces)

of this pattern, that are shown in Figure 4.12. Average numeric results can be seen in

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 102

 0

 300

 600

 900

 1200

 0 50 100 150 200

La
te

nc
y

(c
yc

le
s)

Transient

BAHIA regular VNs avg. latency (only synth. traffic)

2VN
4VN
8VN

Figure 4.9: Default-VNs average la-
tency with BAHIA, traffic pattern A.

 0

 300

 600

 900

 1200

 0 50 100 150 200

La
te

nc
y

(c
yc

le
s)

Transient

BAHIA extra VN latency (only synth. traffic)

2VN
4VN
8VN

Figure 4.10: Extra-VN average la-
tency with BAHIA, traffic pattern A.

 0

 400

 800

 1200

 1600

 2000

 0 100 200 300 400

C
yc

le
s

Transient

noBAHIA different #VNs (synthetic traffic)

2VN synthetic traffic
4VN synthetic traffic
8VN synthetic traffic

 0

 400

 800

 1200

 1600

 2000

 0 100 200 300 400

C
yc

le
s

Transient

BAHIA different #VNs (synthetic traffic)

2VN synthetic traffic
4VN synthetic traffic
8VN synthetic traffic

Figure 4.11: Latency for the synthetic part of traffic pattern B, without and with
BAHIA.

Table 4.3. As can be seen in these figures, the higher the number of virtual networks, the

higher the latency increase in the no-BAHIA case. By contrast, when using BAHIA, non-

bursty traffic latency keeps bounded and minimized, reaching high latency reductions

up to a factor of 3x.

In order to better appreciate the average latency improvement of BAHIA in relation to

the no-BAHIA scenarios with different number of VNs in Figure 4.13 we can see the

average latency for such cases. Clearly, without BAHIA latency increments linearly with

the number of VNs while the scenarios implementing BAHIA keep it constant.

4.6 Conclusions and Future Work

It is well-known HoL-blocking that considerably degrades the overall network perfor-

mance. In fact, this harmful effect is pronounced as more and more virtual networks

are available in the system. In this paper we have presented a solution (BAHIA) to

solve this problem by isolating bursty traffic from non-bursty one. With this mechanism

Chapter 4. Head-of-Line Blocking Avoidance in Networks-On-Chip 103

 0

 400

 800

 1200

 1600

 2000

 0 100 200 300 400

C
yc

le
s

Transient

noBAHIA different #VNs (MCSL traffic)

2VN MCSL traffic
4VN MCSL traffic
8VN MCSL traffic

 0

 400

 800

 1200

 1600

 2000

 0 100 200 300 400

C
yc

le
s

Transient

BAHIA different #VNs (MCSL traffic)

2VN MCSL traffic
4VN MCSL traffic
8VN MCSL traffic

Figure 4.12: Latency for the MCSL part of traffic pattern B, without and with
BAHIA.

 0

 50

 100

 150

2VN 4VN 8VN

BAHIA vs no-BAHIA average latency for synthetic traffic

no-BAHIA
BAHIA

 0

 100

 200

 300

 400

 500

 600

2VN 4VN 8VN

BAHIA vs no-BAHIA average latency for MCSL traffic

no-BAHIA
BAHIA

Figure 4.13: Average latency without and with BAHIA for the synthetic and MCSL
parts of traffic pattern B.

we do not address congestion directly but we avoid HoL-blocking. Thanks to this, we

achieve good results in keeping latency and throughput of regular traffic, obtaining up

to three times better latency when compared with the same scenario without BAHIA.

As future work we plan to deal with internal congestion within the network and solve

the problem in the same way, by eliminating at runtime the HoL-blocking introduced

by congested traffic.

Acknowledgment

This work has been supported by the project NaNoC (grant agreement no. 248972)

which is funded by the European Commission within the Research Programme FP7, by

the Spanish MICINN, Plan E funds, under Grant TIN2009-14475-C04-01, by the Junta

de Comunidades de Castilla-La Mancha under project POII10-0289-3724, and by the

Spanish Ministerio de Economı́a y Competitividad (MINECO) under Grant TIN2012-

38341-C04-01, and by Programa de Apoyo a la Investigacin y Desarrollo (PAID-05-12)

of the Universitat Politécnica de València under Grant SP2012.

Chapter 5

ICARO: Congestion Isolation in

Networks-On-Chip

• Authors: José Vicente Escamilla (Universitat Politècnica de València), José Flich

(Universitat Politècnica de València) and Pedro J. Garćıa (Universidad de Castilla-

La Mancha)

• Type: Conference

• Conference: 8th IEEE International Symposium on Networks-on-Chip (NoCS)

• Location: Ferrara, Italy

• Year: 2014

• DOI: 10.1109/NOCS.2014.7008775

• URL: http://ieeexplore.ieee.org/document/7008775/

• Citation: [77]

105

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 106

5.1 Abstract

The growing demand of computing power and the emerging trend towards heterogeneity

lead to integrate more and more cores and specialized modules into a single chip. As the

number of cores per chip increases, the network interconnecting them must satisfy the

growing communication needs. However, several factors as aggressive traffic patterns,

power-saving and fault-tolerance mechanisms may lead to oversubscribed resources in

the network, thereby generating congestion and so degrading the overall network per-

formance. In this paper we propose ICARO, a mechanism to dynamically isolate the

traffic flows contributing to congestion making use of dedicated virtual networks. In this

way, ICARO prevents the head-of-line blocking effect derived from congestion, thereby

improving overall network performance. We analyze thoroughly our proposal, especially

from the robustness point of view, showing that it effectively manages to identify and iso-

late congested flows, improving network performance up to 82% with respect to previous

proposals.

5.2 Introduction and Motivation

Nowadays, High-Performance Computing (HPC) and multimedia-oriented applications

and services demand increasing computing power to the systems supporting them. More-

over, achieving this performance with minimum power consumption has become almost

mandatory due to cost and power constraints. In order to satisfy both requirements,

manufacturers benefit from the advances in integration-scale technology, and include as

many computing modules as possible into the same die. This leads to the design of

chip multiprocessors (CMPs) or multiprocessor systems-on-chip (MPSoCs). To date,

it is common to find devices with tens or hundreds of modules [60][7][78]. Although

this approach offers flexibility, it does not offer high performance for specific usual com-

puting tasks. As a consequence, heterogeneous designs are being revisited as they may

include both multi-purpose and specific-purpose modules such as cache pre-fetchers [79],

accelerators [80], etc.

Regardless the specific design, these platforms require an interconnection network to

support communication between all the processing nodes. In general, this network must

provide high-bandwidth and low-latency to avoid slowing down the processing nodes

while waiting for remote data. In that sense, Networks-on-chip (NoCs)[5] are well suited

to systems with a high number of processing nodes. NoC design presents interest-

ing challenges due to the tight constraints found in this environment. Among these

challenges, an still open issue is how to efficiently deal with congestion situations, i.e.

0This work was supported by the Spanish Ministerio de Economı́a y Competitividad (MINECO)
and by FEDER funds under Grant TIN2012-38341-C04-01 and by Ayudas para Primeros Proyectos de
Investigación from Universitat Politècnica de València under grant ref. 2370.

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 107

scenarios where any number of the network internal paths are clogged, mainly due to

oversubscribed ports (hotspots). Basically, an oversubscribed port is a port requested

concurrently by several traffic flows, so only one is granted access at a given moment

while the rest will be temporarily blocked. This competition to access the ports is usu-

ally known as contention, congestion being actually the result of persistent contention,

whose effects (i.e. blocked flows) are propagated throughout the network due to the

backpressure of flow control. Indeed, congestion may lead to a severe degradation of

network performance if no countermeasures are taken.

Such congestion situations are likely to appear in NoCs due to several causes. For

instance, the nodes in heterogeneous systems may generate bursty traffic, thereby in-

creasing the probability of hotspot appearance. In addition, in such systems, due to the

different nature of each node, the traffic generated is inherently unbalanced, so being

prone to create hotspots that degrade network performance. Nevertheless, bursty traffic

is not the only case of traffic patterns creating hotspots; indeed, any application involving

intense communication towards more-preferred destinations may create them. Besides,

some normal operations prone to be concurrently demanded, such as accessing the main

memory controllers, may ”naturally” create hotspots. In addition, fault-tolerance mech-

anisms may re-route traffic flows to recover from network failures [81], thereby probably

causing an unbalanced traffic distribution, and so leading to oversubscribed links and

ports.

Moreover, as mentioned above, power consumption has become critical in HPC systems

due to their large number of nodes and their high clock frequency, which lead to high

costs, even to dissipate the heat generated by the machines. In the case of portable

computing devices (like multimedia devices, smartphones, etc), power consumption is

the main pending issue due to the insufficient capacity of their batteries. Indeed, in such

devices, one of the main power-hungry parts is the MPSoC [82], becoming mandatory

to improve its power consumption. To achieve this, CMP and MPSoC manufacturers

have developed and implemented mechanisms to reduce the energy necessary to keep

working these devices while reducing their performance as less as possible. One of the

most extended mechanisms to carry this out is Dynamic Voltage and Frequency Scaling

(DVFS) [3][83]. However, switching from low to high voltage/frequency values may not

be fast enough to satisfy a sudden increase in network performance demand, thereby

causing transitory network congestion as the network offered bandwidth is temporarily

insufficient.

Overall, any of the aforementioned causes of congestion may end up degrading network

performance, especially due to the Head-of-Line (HoL) blocking effect associated to con-

gestion situations. Specifically, HoL-blocking arises when flits belonging to messages

requesting oversubscribed ports precede in FIFO queues to flits belonging to messages

requesting other ports, which may be free. While the head-of-line flits do not win their

requested ports, such flits force the ones stored behind to stay blocked in the queue, even

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 108

if the latter request available ports. It is worth describing this effect because the mecha-

nism we propose in this paper is based on the premise that congestion is not a problem

by itself, the actual problem being the HoL-blocking caused by congestion. Indeed, if

HoL-blocking is completely prevented, network performance is not affected even though

the traffic flows contributing to congestion (hereafter referred to as congested flows) are

not removed, as some techniques proposed for off-chip networks have demonstrated (see

Section 5.3). By contrast, this principle has not been yet efficiently applied in the NoCs

context. To fill this gap, in this paper we propose ICARO (Internal-Congestion-Aware

Hol-blocking RemOval), a novel mechanism to prevent HoL-blocking in NoCs, which

uses special Virtual Networks (VNs) to dynamically isolate congested flows, separating

them from non-congested ones. In this way, the HoL-blocking derived from congestion

is prevented by using a reduced set of network resources (VNs), thereby cost-efficiently

improving network performance.

The rest of the paper is organized as follows. In Section 5.3, we offer an overview of

existing approaches to deal with HoL-blocking. Next, ICARO is described, dividing

the mechanism into three clearly differentiated stages. In Section 5.5 a deep behavioral

analysis of ICARO is performed by testing its robustness and scalability, and by com-

paring its performance improvement against other similar proposals. Next, we analyze

the area and power overhead of ICARO through HDL implementation results. Finally,

in Section 5.7, some conclusions are drawn and the future work on ICARO is indicated.

5.3 Related Work

Due to the negative impact of congestion, and also to the growing popularity of NoC-

based systems, the number of proposals for congestion management in NoCs has quickly

increased during the last years. Although some congestion-management mechanisms

have been proposed for bufferless NoCs, such as the one presented in [16], hereafter we

focus on the solutions oriented to buffered NoCs, as ICARO has been designed for this

type of NoC architecture.

Many of the solutions for buffered NoCs are based on collecting congestion information

from neighboring nodes through the routing process and monitoring buffer occupancy, in

order to offer an alternative path to route around congested areas (i.e. hotspots). Among

them, a mechanism called RCA is proposed in [20] for congestion avoidance in NoCs

with adaptive routing. RCA uses a composition of multiple global metrics collected from

the whole network to select at each router the output port which messages are forwarded

through, so that hotspots are avoided. Specifically, these metrics are: the count of free

Virtual Channels (VCs), the count of free buffers and the crossbar demand. In order to

collect the metrics from the whole network, such metrics are aggregated (piggybacked)

from a router to the next one and so on. In a heavy-congestion situation this mechanism

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 109

may collapse since the information used to avoid the congested areas is aggregated in the

same messages that are congested, so a vicious cycle may be created. However, adapting

the routes to avoid hotspots may result in moving the location of such hotspots from one

place to another, so the problem would remain unsolved. Moreover, avoiding hotspots

may be impossible if all the congested flows have the same target (e.g. the memory

controller).

Another solution based on adaptive routing policy is PARS, proposed in [22], which

uses a dedicated subnetwork for sending congestion metrics based on the buffer state

at certain routers. Like RCA, PARS uses such metrics to select proper paths in order

to avoid hotspots. Although in this case the information is sent through the dedicated

subnetwork, the problems regarding unavoidable hotspots or “hotspot reallocation” may

still appear. Similarly, in [23] authors propose a token-based flow-control mechanism

which uses dedicated wires to send routers status information (token) which is used to

take routing decisions and bypass routers pipeline. However, this proposal is focused on

reducing network latency by skipping routers pipelining, but not by facing congestion

harmful effects. In [21] authors propose to collect congestion information from the

whole network and to take routing decisions based on network status. However, in this

proposal the congestion information is collected piggybacking the links status into the

packets header.

Following a different approach, a predictive-based flow control mechanism is proposed

in [19]. Authors propose an end-to-end flow control mechanism based on prediction-

models to control the injection rate at the source node. Predictions are computed in

every switch using its state and its neighbors state. In order to exchange the neces-

sary data for computing the prediction, routers implement additional wires intercon-

necting them. This solution actually corresponds to one of the “classical” approaches

to congestion management, usually known as injection throttling, which, like any con-

trol strategy based on closed-loop theory, may present performance oscillations and

become inefficient if the source nodes react too late. Similarly, in [24] authors propose

HPRA, a hotspot-formation prediction mechanism, that makes use of an Artificial Neural

Network-based (ANN) hardware that gathers buffer utilization data to predict the for-

mation of hotspots. Then, HPRA classifies the traffic into two classes: hotspot-destined

traffic (HSD) and non-hotspot-destined traffic (nonHSD). HSD traffic is throttled at

source while the nonHSD traffic is routed avoiding paths containing hotspots routers.

This proposal may suffer from the same problems as injection throttling.

An alternative approach is to specifically deal with the HoL-blocking derived from con-

gestion, mainly by mapping different traffic flows to different queues in the buffers, so

that the interaction between flows is minimized. A solution that follows this approach

has been proposed in [25]. Actually, authors propose two policies to map traffic flows

to VCs: FVADA and AVADA. Both proposals establish a correspondence between the

output port requested on the router x+1 and the output VC assigned in the router x

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 110

(note this requires lookahead routing). The main difference between both policies is that

FVADA establishes a direct and constant correspondence between the requested output

port and the assigned VC, while AVADA starts establishing a direct correspondence but

later this correspondence can be dynamically adapted, based on the output port load,

making use of a correspondence table (a CAM-based table). Note that, while FVADA

is simpler to implement, it requires exactly as many VCs as the router radix− 1 value,

thereby the number of required VCs depending on the router radix. Moreover, both

policies require routers implementing lookahead routing and a credit-based flow-control

in order to quantify the output port load an adapt their behavior when the load in a

given VC is too high. Note that neither FVADA nor AVADA are actually aware of

which traffic flows are contributing to a hotspot, as they only consider one hop (i.e.

the next requested output port) in the path of the messages, while hotspots may be

located further away. Thus, congested flows may still share queues with non-congested

ones, thereby still causing HoL-blocking in some degree. A different approach to deal

with HoL-blocking is proposed in [84], based on an Unified Buffer Structure in which

the number of buffers per port and their depth are allocated dynamically depending on

the traffic load, dispensing fewer but deeper VCs under low traffic loads and more but

shallower VCs under heavy traffic.

Thus, we believe that an efficient HoL-blocking-avoidance mechanism must explicitly

identify congested flows in order to isolate them completely and dynamically. This

is the approach followed by the Regional Explicit Congestion Management (RECN)

mechanism, proposed for off-chip networks [15]. Among the plethora of proposals for

congestion management in off-chip networks, RECN can be considered as one of the

most efficient as it completely prevents HoL-blocking while requiring a reduced set of

queues. However, adapting the RECN basics to NoCs requires a very different way of

implementing it, due to the tight limitations in area and power in this context. In that

sense, in [59] a solution is presented to isolate bursty traffic, but not congested flows.

In this paper we finally propose a solution, ICARO, that adapts the RECN strategy to

the NoCs context, as explained in the next section.

5.4 ICARO Description

5.4.1 ICARO Principles

As mentioned in the previous sections, the purpose of ICARO is not removing congestion

but preventing the HoL-blocking caused by congestion. Indeed, ICARO manages to

solve this problem by identifying congested flows, then isolating them into special Virtual

Networks (VNs) while keeping the non-congested data flows in different regular VNs. By

doing this, ICARO separates congested flows from non-congested ones, thus preventing

HoL-blocking and so increasing network performance. Note that ICARO needs at least

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 111

two VNs: one regular-VN (for non-congested traffic) and one slow-VN (for congested

traffic). Nevertheless, ICARO may be configured to work with several regular-VNs and

also with several slow-VNs. Note that ICARO is a reactive mechanism in the sense that

all the system works normally in absence of congestion, keeping the system performance

in the same values as the baseline (i.e. the same scenario without ICARO). However,

when congestion is detected ICARO reacts to keep network performance by preventing

the congestion harmful effects.

ICARO functionality can be divided into three stages: first, congested points in the

network are detected at routers; then routers notify the sources of this detection; finally,

the sources map the traffic flows either to a slow-VN or to a regular-VN depending on

whether or not the injected flow will traverse congested points. These three stages are

thoroughly described in the next subsections.

5.4.2 Congestion Detection

ICARO is based on detecting congested points, defined as output ports persistently

oversubscribed. According to the definition of contention given before, ICARO considers

that exists contention for an output port if two or more flows request that output port

from different input ports. In order to detect whether this contention is persistent, an

additional metric is used. This metric consists in counting the number of messages

requesting the contended output port. This count is computed per VN at input ports,

increasing its value when a new message requesting the output port arrives to the input

queue, and decrementing it when the whole message leaves the queue. Every time

this count is modified, it is compared with a threshold (SAT THR) whose value is a

configurable parameter of ICARO. Depending on the value of SAT THR, the congestion-

trigger sensitivity of ICARO is lower or higher. As each input port may contain several

VNs, an input port is considered as exceeding SAT THR for an output port if anyone

of its VNs does it. Therefore, an output port is considered as a congested point when,

in two or more input ports, there are VNs exceeding SAT THR for that output port.

ICARO must also detect the end of congestion. For this, an hysteresis technique is

used. In a few words, once an output port is detected as congested, ICARO detects the

end of congestion when the number of messages requesting that output port (in all the

VNs) falls below the UNSAT THR threshold, being UNSAT THR < SAT THR. The

pseudo-code in Algorithm 3 describes the whole mechanism.

5.4.3 Congestion Notification

Once a congested point is detected (or when a previously congested point is no longer

congested), sources must be notified in order to isolate (or stop isolating) congested flows

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 112

for each output port do
for each input port do

port saturated = FALSE;
for each vn do

if isVNsaturated(input port, vn)==TRUE then
if getNumRequests(vn, output port) < UNSAT THR then

port saturated = FALSE;
markVNasUNSaturated(input port, vn);

else
port saturated = TRUE;
break;

end

else
if getNumRequests(vn, output port) > SAT THR then

port saturated = TRUE;
markVNasSaturated(input port, vn);
break;

else
port saturated = FALSE;

end

end

end
if port saturated==TRUE then

num ports saturated++;
end

end
if num ports saturated >= 2 then

markAsCongested(output port);
else

markAsNoCongested(output port);
end

end

Algorithm 3: Congestion/no-congestion detection algorithm.

into slow-VNs. To deliver this notification ICARO employs a simple dedicated network

called CNN (Congestion Notification Network) to send data about the status of the ports

to all NIs in the network. The CNN consists in a P -bits-width ring-network to which

all NIs and routers are connected, being P= log2(NumNodes) + Router Radix + 1.

Obviously, in the CNN routers act always as injectors and NIs as receivers so there is

no media-access conflicts between NIs, but there may be conflicts between routers. To

solve this, this ring is segmented by registers, so that each router has an associated

register which separates the signals coming from the previous router from the signals

being injected from the current router to the next one. The signals at each register

are propagated to the next one at each clock cycle. An schematic definition of two

consecutive routers is shown in Figure 5.1.

When a router needs to inject data into the network, it waits until its associated register

gets free. In practice, the router just keeps the port-status signal at the input of a

multiplexer, which selects the register input signal depending on the busy bit sent by

the previous register. When the current router register gets free, the multiplexer injects

the signal to the register and such signal is propagated to the next register at the next

cycle, and read by the next NI at the same time. When the port status data generated

from router x returns to the router x (the data has completed the loop along the ring),

such data is dropped and the register x is freed. A complete CNN is shown in Figure 5.2.

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 113

Figure 5.1: CNN registers example.

Figure 5.2: Complete congestion notification network (CNN).

The congested-point data sent through the network consists of the router ID coded in

binary, a bitmap corresponding to all ports in the router (a bit set to 1 means that the

port corresponding to the bit position is congested, otherwise the port is not congested),

and an additional bit set to 1 to indicate a valid signal (busy bit). All data is transmitted

in parallel, so the CNN must be P -bits-wide.

As some congestion notifications may be dropped at Network Interfaces (NIs) (explained

later) or simply lost due to transient failures, the status of the ports is transmitted

regularly (re-sync mechanism) to keep the congested-points data coherent at NIs. The

frequency at which such data is transmitted is a configurable parameter of ICARO.

Note that this mechanism may not scale for very large systems, as notifications may

take too much time to reach all nodes in the network, this delay spoiling the perfor-

mance improvement achieved by ICARO. Thus, for large systems, instead of using an

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 114

unidirectional ring to deliver notifications, an hierarchical rings arrangement could be

used. However, the evaluation of this option are left for further work.

5.4.4 Congestion Isolation

Congestion isolation is performed at NIs. As commented in the previous sections,

ICARO makes use of at least two VNs: one slow-VN and one regular-VN. All flows

are always mapped first to regular-VNs, but a module called post-processor is in charge

of checking the head of all regular-VNs to find messages that should be re-mapped to

slow-VNs. The post-processor checks all queues each cycle: If it finds a head of message,

the destination is analyzed in order to check whether or not this message will traverse

a congested point. If so, the message is re-mapped to a slow-VN. In case of having

more than one slow-VN available, the re-mapping module follows a modulo-mapping

[49] strategy. Since we make use of VNs instead of VCs, messages injected to the net-

work through a given VN are never moved to other VN, as this is the key of isolation

mechanism. Messages are provided in their header with a VN id prior injection. Such

VN id is read by routers along the path in order to know which VN the message must

be mapped to. The NI arbiter can be a typical arbiter (such as a round-robin arbiter).

Note that the re-mapping mechanism can be executed in parallel with the injection of a

message from other VNs except the one from which a message is being re-mapped. Note

that ICARO is intended to be used with deadlock-free deterministic routing algorithms

(e.g. XY), so no deadlocks can arise.

5.4.4.1 Congested-points Cache

NIs must implement a mechanism to manage and store the congested-points data that

must be available for the post-processor. This mechanism mainly consists in a cache

memory and some additional logic. Figure 5.3 shows a diagram explaining the notifi-

cation storing process. When a notification arrives to the NI, first this notification is

deserialized, then traverses some filters (contained in the Notification-processing module

in Figure 5.3), and is finally stored in the cache. This cache may be implemented as

flip-flop registers and it is arranged in several rows and two columns, each row corre-

sponding to a notification while each column corresponds to the data fields contained

in the notification (router ID and port). As explained previously, notifications arrive

through the CNN as a router identifier coded in binary and a bitmap describing the

status of each port. However, not all the port-status data is relevant to the NI since

not all ports of a given router are reachable from the receiver NI. Because of this, and

also to speed up the cache queries, each notification received through the CNN is split

internally into as many notifications as the router radix value (for being able to dis-

card individual port-status notifications). Once the router notification is split into port

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 115

Figure 5.3: Notification management.

notifications made of router, port status paired values, each notification is stored in a

temporary buffer (deserializer buffer). This buffer receives a notification containing the

status of the whole ports of the router at once, allowing the next functional module to

read and process each port notification one by one at each cycle. This allows to receive

and process properly one notification (containing all ports status) at each clock cycle

through the CNN (in extreme cases) during a lapse of time, depending on this temporary

buffer size. In case of deserializer-buffer overflow, notifications are dropped relying on

the re-sync mechanism that allows to receive and process them later safely.

Once the notifications are stored in the deserializer buffer, each notification traverses

a filter which discards unreachable points from this NI, thereby optimizing cache uti-

lization. Congestion notifications which pass the filter are stored in the cache. End-of-

congestion notifications which pass the filter trigger a matching-mechanism that removes

from the cache congestion notifications which match the same router and port.

In Figure 5.4 an example of an ICARO NI working in a 4x4 2D mesh is shown. The

example shows the behavior of the NI 8 in the network. As can be seen, in Figure 5.4a

the NI receives a notification from router 9. This notification contains the router ID

and the port status bitmap which informs that the East port of such router is congested

while the other ports are in normal state. As shown, the notification is processed and

stored in the cache. Next, in Figure 5.4b the message destined to the NI 2 tries to be

injected into the network but, as the message will traverse the East port of router 9

(in order to arrive to the NI 2), the message is not injected, instead being re-mapped

by the post-processor to the slow-VN, which the message will be later injected through.

Finally, in Figure 5.4c the NI receives a new notification from router 9 informing that

none of its ports is congested, so the stored notification is removed, therefore no more

messages will be re-mapped to the slow-VN.

Note that, although ICARO makes no use of the slow-VNs in absence of congestion,

this does not necessarily lead to lower performance in terms of latency, as the number

of VNs only affects latency when network capacity reaches its limit, and ICARO would

start using all VNs in this case.

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 116

(a) ICARO receives a congestion notification.

(b) A message is reallocated to the slow-VN.

(c) ICARO receives an end-of-congestion notification.

Figure 5.4: ICARO NI module mechanism description.

5.4.4.2 Optimizations

To optimizing even more the cache utilization, a congested-points merge mechanism

can be used. Congestion tends to spread over the network starting from a root point.

If congestion spreads towards a given NI, routers contained in the path to the root

may notify for congestion sequentially. Due to this, the NI cache may be populated

of multiple congested points contained in the same route so all of them but one are

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 117

redundant since with only the one closer to the NI, the congested route would be covered

completely. Thus, an optimization of ICARO consists in a merge mechanism in order to

allow the redundant notifications to be discarded in a second filter before to storing new

congested points. Let us suppose that we have a notification already stored in the cache

(notification A). When a new notification arrives (notification B) three circumstances

may occur: the new congested point is covered by another, already stored congested

point (Figure 5.5a), the new congested point covers one or more already stored congested

points (Figure 5.5b), the new congested point belongs to a new route (Figure 5.5c).

In the first case, the new congested point is useless because all messages crossing B

will cross A so the new notification is redundant, therefore can be discarded safely. In

the second case, A is contained in B, so A becomes useless if we store B, therefore, A

is replaced by B. Also, in such case, more rows may be affected by B. B may cover

several already stored congested points, so such congested points can be safely merged,

discarding them and storing B instead.

However, despite this optimization achieves good results in minimizing the cache utiliza-

tion, in some scenarios may be counter-productive in performance terms. When using

the merge mechanism, the stored congested points tend to get closer to the NI, thereby

isolating too much traffic into the slow-VN. Also, since congested points belonging to

branches of the congestion tree are usually more volatile than the congestion root, such

congested points disappear quickly, thereby removing the congested points at NIs and

so becoming the mechanism unstable in some cases. Therefore, this optimization should

be used only when the cache size must be critically small due to the lack of silicon area

available.

5.5 Performance Evaluation

For evaluating the performance we use a network-on-chip cycle-accurate simulator de-

veloped in our group. The ICARO results are compared with FVADA and AVADA [25].

First, the scenarios used for the simulations are described. Next, ICARO is evaluated

in different scenarios varying critical parameters that may affect its performance. Then,

a performance analysis is carried out comparing ICARO with FVADA and AVADA.

5.5.1 Simulation Environment

For our simulations we use a 4-stage pipelined router: IB (data storing into the buffer),

RT (routing computation), VA/SA (VC allocation/switch allocation, both running in

parallel), X (crossbar). Our router uses wormhole switching with flit-level crossbar

switching and implements credit-based flow control. The size of the router queues is

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 118

(a) A already covers B, so B is discarded.

(b) B covers A, so A is replaced by B.

(c) A and B belong to separated routes.

Figure 5.5: Merge opportunities.

16. The amount of queues varies depending on the strategy used, e.g. if the amount of

queues is 4, the total slots for a given input port will be 4 ∗ 16 = 64flits. A regular 8x8

2D mesh network is used (with XY routing), so router radix=5. It is noteworthy that,

both FVADA and AVADA make use of virtual channels (VCs) instead of VNs as ICARO

does. So, for the baseline scenario we decided to make use of VCs as well. Messages are

5-flits long with a flit size of 128 bits. Regarding traffic patterns, two types of synthetic

traffic patterns are used. On one hand, typical synthetic traffic patterns are used like

uniform, tornado, bit-reversal, etc. On the other hand, as ICARO is a proposal intended

to deal with irregular, bursty, hotspot-prone traffic patterns, we drew up a combined

traffic pattern. This traffic pattern is composed of a light uniform background traffic

and a hotspot component. Hotspots consist in several nodes (the amount depends on

the network size) receiving each one high data rates from 4 nodes (4-to-1 hotspots).

Hotspots are active only from cycle 10k to 20k. In this way, we have a background

traffic which generates no congestion, and another component of aggressive traffic which

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 119

causes congestion, causing HoL-blocking to the background traffic.

5.5.2 Robustness Analysis

In previous sections we stated that ICARO needs at least 2 VNs, one for regular traffic

and one for congested traffic. However, the amount of VNs can be increased as much

as we need, arranging the VNs in several configurations: 1+1VNs, 2+2VNs, 4+1VNs,

4+4VNs, etc. Also, for ICARO, the cache size is a critical parameter depending on

the traffic pattern and network size. So, for the purpose of evaluating the impact of

such variables, an analysis is performed. For this analysis the combined hotspot traffic

patterns have been used with a background traffic of 0.3flits/cycle/node.

The evaluation is performed with different VNs configurations. In order to graph the

network latency for the different configurations, each VNs arrangement has a number

assigned that identifies such configuration. Identifier XY is for a configuration with

X regular-VNs and Y slow-VNs. We will play with configurations 11, 22, 31, 44 and

71. For the ICARO notifications we assume a propagation delay of 2 cycles for each

hop. Regarding the baseline configuration we use exactly the same configuration as the

ICARO scenario with the same number of VNs as in the ICARO case (considering both

VN types: regular and slow VNs).

Regarding the SAT THR and UNSAT THR thresholds used in the congestion-detection

mechanism (see Section 5.4), we performed simulations using different values for these

thresholds, in order to evaluate their impact in ICARO and to obtain the optimal values.

From the results obtained (not shown due to lack of space) we conclude that the thresh-

olds values do not have a great impact on the ICARO behavior while they are confined

in a reasonable range. Nevertheless, the best results are achieved for SAT THR=4 and

UNSAT THR=2, so these values are assumed in the current analysis.

ICARO can work with the re-sync mechanism and/or the merge mechanism. Never-

theless, both mechanisms may cause counter-productive effects, so this analysis has

been performed with three combinations of these mechanisms: no re-sync/no merge,

re-sync/no-merge and re-sync/merge. The combination no re-sync/merge has not been

considered as the purpose of the merge mechanism is to save cache slots in scenarios

with a high number of notifications due to the re-sync mechanism.

Regarding the congested points cache, the following sizes have been used: 2, 4, 8, 16,

32 and 360 (theoretical limit due to the maximum possible congested points that can

be given in a 8x8 network). In the graphs, the 360 value has been replaced by 64

value for better viewing. For the deserializer buffer size we adopted the policy of using

2 ∗ cache size entries.

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 120

 0 10 20 30 40 50 60 70 10
 20

 30
 40

 50
 60

 70
 80

 0
 1000
 2000
 3000
 4000
 5000
 6000

Latency area

Cache size
VNs configuration

Latency area

(a) No re-sync, no merge.

 0 10 20 30 40 50 60 70 10
 20

 30
 40

 50
 60

 70
 80

 0
 1000
 2000
 3000
 4000
 5000
 6000

Latency area

Cache size
VNs configuration

Latency area

(b) Re-sync, no merge.

 0 10 20 30 40 50 60 70 10
 20

 30
 40

 50
 60

 70
 80

 0
 1000
 2000
 3000
 4000
 5000
 6000

Latency area

Cache size
VNs configuration

Latency area

(c) Re-sync and merge.

Figure 5.6: ICARO configuration analysis.

In Figure 5.6 the results are shown. The metric used for measuring the performance is

the latency area, which consists of the sum of the latency overhead during the whole

simulation. The latency overhead is measured as the difference of latency values between

the case with congestion present and the case with only background traffic running.

As can be seen, in all cases, with 4 or more cache slots, there is no latency area increase as

ICARO has room enough to store all relevant congested points, thus it is able to isolate

all the congested traffic properly. However, as the number of cache slots available falls

below 4, ICARO is not able to isolate congestion properly. However, as can be seen in

Figure 5.6b, the re-sync mechanism helps to alleviate the shortage of cache entries. This

is because congested points dropped due to the lack of room are re-notified periodically,

so they have more opportunities to be stored. Besides, if we add the merge mechanism

(Figure 5.6c), the latency falls even more as the congestion slots are better managed, so

that there are more free slots to store congested points. However, the conclusion from

this analysis is that with at least 4 cache entries HoL-blocking is completely removed

regardless of VN configuration.

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 121

Parameter Value

VNs config. 1+1, 3+1 and 7+1

SAT THR 4

UNSAT THR 2

Cache size 4

Deserializer buffer size 8

Re-sync No

Merge No

Table 5.1: ICARO configuration.

5.5.3 Overall Results

In this section the ICARO performance is compared against AVADA and FVADA. First,

all techniques are simulated using common traffic patterns. As can be seen in Figure 5.8,

for most of the common traffic patterns ICARO keeps the results in similar values to

the baseline and the other techniques. In the case of ICARO there is a slight overhead

close to saturation. This is due to the fact that it employs VNs instead of VCs. VCs

gives more flexibility at the arbitration stage so is expected to perform better than using

VNs. However, our proposal goal is not to improve the performance over static traffic

patterns but with the combined hotspot one1.

In Figure 5.7 we can see the latency results for the different mechanisms over combined

hotspot traffic pattern. Note that all mechanisms but ICARO use VCs while ICARO

uses VNs. In Table 5.1 the ICARO parameters configuration is shown. Let us recall that

ICARO aim is to isolate harmful traffic into the slow-VN in order to avoid non-harmful

traffic to be affected by the former. To better appreciate the ICARO behavior, latency

results for our proposal are shown in two graphs: one for network latency average of all

regular-VNs and another one for network latency of the slow-VN.

As can be seen, ICARO outperforms all other mechanisms achieving an improvement

of up to 82% for the 8VN configuration. In the case of the 2VNs and 8VNs simula-

tion FVADA is not shown because FVADA requires exactly r-1 VCs (r=router radix).

Notice that congestion injection lasts from 10k-cycle to 20k-cycle. The HoL-blocking

effects in ICARO are minimized and removed after the congestion builds. However, for

the other configurations, congestion remains beyond the 20k-cycle point. They recover

performance point only beyond 60k-cycle.

1In the case of FVADA and AVADA, despite of reproducing exactly the same scenarios the authors
used in their evaluations, we could not obtain the results exposed by them for common synthetic traffic
patterns.

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 122

 0

 200

 400

 600

 0 20000 40000 60000 80000

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Time (cycles)

baseline
ICARO regular VNs

ICARO extra VN
AVADA

(a) 2VC/2VN.

 0

 200

 400

 600

 800

 0 20000 40000 60000 80000

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Time (cycles)

baseline
ICARO regular VNs

ICARO extra VN
AVADA
FVADA

(b) 4VC/4VN.

 0

 400

 800

 1200

 1600

 0 20000 40000 60000 80000

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Time (cycles)

baseline
ICARO regular VNs

ICARO extra VN
AVADA

(c) 8VC/8VN.

Figure 5.7: Performance evaluation with hotspot traffic pattern.

5.6 Implementation Analysis

In this section, the area and power overhead of ICARO is analyzed. To perform this,

the ICARO mechanism has been implemented in Verilog using a canonical NI and a

wormhole router, both with support for 4 VNs. The router queues have a 4-flit size with

a 128-bit flit size. For the NIs the queues have a size of 8 flits. Regarding the ICARO

configuration, it has been implemented with support for merge and re-sync mechanisms

with a cache size of 4 slots and a deserializer buffer size of 8 slots. To synthesize

the Verilog designs, Design Vision tool from Synopsys with 45nm Nangate open cell

library [51] (typical conditional) has been used. Then, we performed the place&route

process with Encounter tool (from Cadence) to estimate accurately the area overhead.

Figure 5.9 shows the results for the area and power overhead of a NI implementing

ICARO compared with the baseline NI for different network sizes. In Figure 5.10, the

area and power overhead results of our proposal for the router are shown.

ICARO needs additional hardware in order to implement the CNN. However, this hard-

ware is not strictly located either at the router or the NI. This hardware consists of wires

interconnecting nodes and the logic associated to these wires (shown in Figure 5.1). In

order to fairly evaluate all the hardware overhead imposed by ICARO, the logic associ-

ated to the CNN is included in the router overhead. Wires are not taken into account as

they do not actually impose area overhead. Indeed, such wires use metalization layers.

However, in the design floor-plan, little empty gaps always exist between all tiles to

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 123

 0

 25

 50

 75

 100

 0.1 0.15 0.2 0.25 0.3

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(a) Bit-complement.

 0

 25

 50

 75

 100

 0.1 0.11 0.12 0.13 0.14 0.15

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(b) Bit-reversal.

 0

 25

 50

 75

 100

 0.1 0.15 0.2 0.25 0.3

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(c) Bit-rotation.

 0

 25

 50

 75

 100

 0.1 0.15 0.2 0.25 0.3
N

et
w

or
k

la
te

nc
y

(c
yc

le
s/

ni
c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(d) Butterfly.

 0

 25

 50

 75

 100

 0.1 0.15 0.2 0.25 0.3

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(e) Shuffle.

 0

 25

 50

 75

 100

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(f) Tornado.

 0

 25

 50

 75

 100

 0.1 0.11 0.12 0.13 0.14 0.15

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(g) Transpose.

 0

 25

 50

 75

 100

 0.1 0.2 0.3 0.4 0.5

N
et

w
or

k
la

te
nc

y
(c

yc
le

s/
ni

c)

Injected traffic (flits/cycles/nic)

baseline
FVADA
AVADA
ICARO

(h) Uniform.

Figure 5.8: Typical synthetic traffic patterns.

physically isolate each tile from its neighbors. Provided that these gaps are big enough

to physically place all links between tiles, the area spent by the whole CMP remains the

same even including the CNN wires.

As can be seen in Figure 5.9, for all cases, the area overhead for the NI varies between

3.8% for a 16-node network, and 6% for a 1024-nodes network. For the power overhead

Chapter 5. ICARO: Congestion Isolation in Networks-On-Chip 124

0

20k

40k

60k

80k

100k

120k

16 64 256 1024

A
re

a
(u

m
2)

Nodes

NI
NI+ICARO

 0

 1

 2

 3

 4

16 64 256 1024

P
ow

er
 (m

W
)

Nodes

NI
NI+ICARO

Figure 5.9: NI area and power overhead.

0

30k

60k

90k

120k

150k

180k

16 64 256 1024

A
re

a
(u

m
2)

Nodes

Router
Router+ICARO

 0

 1

 2

 3

 4

 5

16 64 256 1024

P
ow

er
 (m

W
)

Nodes

Router
Router+ICARO

Figure 5.10: Router area and power overhead.

it varies from 4.5% to 5.4%. In Figure 5.10 the overhead results for the router are shown.

For the area, ICARO has an overhead of 6.7% for all cases. In the case of power, values

from 6% to 10% have been obtained.

As shown in such results, ICARO demonstrates an acceptable area and power overhead

either for the NIs or the routers. In addition, taking into account the results for different

networks sizes, seems clear that ICARO scales with the network size with no significant

extra area or power overhead.

5.7 Conclusions and Future Work

In this paper a mechanism for avoiding HoL-blocking in NoCs has been presented.

ICARO manages to identify harmful traffic and properly separates it from non-harmful

one making use of VNs. This way, ICARO achieves improvements of up to 82% on the

overall network latency with no significant area and power overhead. As future work we

plan evaluate proposals for scaling the CNN for very large systems.

Chapter 6

Efficient DVFS Operation in

NoCs through a Proper

Congestion Management Strategy

• Authors: José Vicente Escamilla (Universitat Politècnica de València), José Flich

(Universitat Politècnica de València) and Pedro J. Garćıa (Universidad de Castilla-

La Mancha)

• Type: Conference

• Conference: Fourth International Workshop on On-chip memory hierarchies and

interconnects: organization, management and implementation (OMHI)

• Location: Viena, Austria

• Year: 2015

• DOI: 10.1007/978-3-319-27308-2 28

• URL: https://link.springer.com/chapter/10.1007/978-3-319-27308-2 28

• Citation: [85]

125

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 126

6.1 Abstract

As technology advances, applications demand more and more computing power. How-

ever, achieving the required performance is not nowadays the single target, as reducing

power consumption has become a key issue. In that sense, power-control mechanisms

such as Dynamic Voltage and Frequency Scaling (DVFS) are introduced in order to

dynamically adapt frequency and voltage to the actual computing-power demands of

applications. However, these techniques may not be as efficient as expected due to de-

lays caused by frequency-voltage changes. Furthermore, data flows generated at high

rates may cross slow voltage-frequency islands, thereby leading to congestion inside the

on-chip network. To alleviate this problem, we propose a combined DVFS and congestion

management strategy. Specifically, the policies to adjust DFVS levels are tuned cooper-

atively with the congestion management strategy, leading to power-saving achievements

of up to 26% and latency improvements for non-congested traffic of up to 43%.

6.2 Introduction

Nowadays, High-Performance Computing (HPC) and multimedia-oriented applications

and services demand increasing computing power. In order to satisfy this demand, man-

ufacturers take advantage of the advances in integration-scale technology to include as

many computing resources as possible into the same die. This trend has led to advanced

designs in manycore chips. Regardless the specific design, these platforms require an

on-chip network (NoC) [86] to support communication among all the processing and/or

storage nodes. The NoC must provide high bandwidth and low latency, otherwise pro-

cessing nodes will slow down as they have to wait for long to receive necessary data.

Hence, the design of the NoC presents unavoidable challenges.

Among these challenges, a still open issue is how to efficiently deal with congestion

situations, i.e. scenarios where any number of network paths are clogged, mainly due to

oversubscribed ports (hotspots). Indeed, congestion may lead to a severe degradation

in network performance if no countermeasures are taken. Another challenge is reducing

power consumption. Technology has reached power and thermal limits, thus limiting

clock frequency and voltage. Moreover, in battery-powered devices, energy must be

efficiently managed so as to maximize working time of the device. For these reasons, the

current trend is to provide manycore chips with power-control mechanisms.

One of the most popular mechanisms is Dynamic Voltage and Frequency Scaling (DVFS)[3].

Basically, it consists in adapting the frequency and voltage based on the actual computing-

power demand. Reducing the frequency and voltage leads to a significant reduction in

power consumption, thus saving unneeded energy. However, DVFS must be carefully

designed since reducing the working voltage and frequency may reduce also network

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 127

performance. Thus, finding out the optimal conditions to increase or decrease the work-

ing voltage and frequency is critical to achieve the best trade-off between power saving

and network performance. Additionally, voltage and frequency changes are usually per-

formed in steps or levels, and those changes cause severe power and delay penalties,

thus, demanding for a proper policy.

A DVFS change causes inherently the system to halt for a small period of time (due to

the electronic limits)[1]. Recent proposals shadow this effect by setting different DVFS

regions, called Voltage and Frequency Islands (VFIs)[55][56]. In this way, frequency and

voltage for a given island become independent as they are only driven by the metrics

obtained from such island. From the efficiency point of view, VFI islands achieve an

undeniable enhancement [55] as applications running concurrently may have different

needs, some maximizing performance while others minimizing power. Nonetheless, VFIs

still pose new challenges. Data flows may cross several VFIs working at different levels.

Thus, the crossing from a high-frequency VFI to a low-frequency VFI will slow down the

flow, potentially leading to a congestion situation appearing on VFI boundary. Moreover,

congestion may be propagated throughout the high-frequency VFI network.

Summing up, DVFS-based systems need a proper policy to perform frequency-voltage

transitions and, on the other hand, need to avoid congestion when VFIs are used.

To address both issues, we propose adapting a congestion-control mechanism called

ICARO[77] (Internal-Congestion-Aware Hol-blocking RemOval) to DVFS-based systems

with VFIs. By doing this, performance is maintained despite of the DVFS-transition

delays and congestion is alleviated despite of data flows crossing VFIs with different lev-

els. ICARO congestion metrics will be used to implement the DVFS policy to perform

voltage-frequency changes. We target different possibilities to plug a congestion control

mechanism with a DVFS policy. Several solutions are presented which improve differ-

ent key metrics, such as power consumption or message latency. Results show that we

achieve improvements on network latency of 43% for non-congested traffic with a power

overhead of approximately 8%. For the second solution a gain of 26% on power con-

sumption, with an improvement on latency of 2% at the cost of losing throughput and,

finally, the last proposal achieves an improvement on latency of 19% with a power saving

gain of 20%. As networks-on-chip consume up to the 36% of the total chip power[8][29],

the benefits of our proposal may improve substantially the overall power consumption.

The paper is organized as follows. Section 6.3 shows related work in DVFS and congestion-

control mechanisms. Section 6.4 describes the ICARO-DVFS method. Section 6.4.6

shows analysis results for different DVFS scenarios combined with ICARO. Finally, Sec-

tion 6.5 shows conclusions and future work.

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 128

6.3 Related Work

Related to DVFS, one key issue is the voltage-frequency regulator (VR) due to the high

delays caused when changing the voltage-frequency level. DVFS regulators are designed

either off-chip or on-chip. Off-chip regulators support high amounts of power, but they

are slow. By contrast, on-chip regulators are very fast but expensive in terms of area

and do not support much power. In [9], a hybrid scheme using both types of regulators

is proposed. In systems using VFIs, the more VFIs are implemented, the more power

efficiency is achieved, hence having one VFI per node would be the best case. Under

this premise, in [83] authors propose a per-core VFI approach based on on-chip VRs.

Despite authors state that area overhead would not be an obstacle to implement their

proposal, in a newer study [9] they discard this approach due to the large area required

to implement so many on-chip VRs, supporting their arguments on results obtained in

[33]. An accurate DVFS model is described [1] for different real architectures, comparing

with values from real systems. We use values of voltage/frequency levels (Table 6.1) and

level change delays (Table 5) to model DVFS in our simulator.

Related to congestion, we find several solutions. Solutions for buffered NoCs are based

on monitoring buffer occupancy and collecting congestion information from neighboring

nodes. A congestion-free path is then used to avoid hotspot areas. In this way, RCA [20]

uses multiple global metrics collected from the whole network to select at each router

the output port which messages are forwarded through. However, a vicious cycle may

be created since the information used to avoid the congested areas is included in the

congested messages. Besides, adapting the routes to avoid hotspots may result in moving

the location of such hotspots from one place to another. Moreover, avoiding hotspots

may be impossible if all the flows have the same target (e.g. the memory controller).

Another solution based on adaptive routing is PARS [22], that uses a dedicated subnet-

work to send congestion metrics about the buffer state at certain routers, then using

these metrics to select paths that avoid hotspots. However, the problems regarding

unavoidable hotspots or “hotspot reallocation” may still appear. Similarly, in [23] a

token-based flow-control mechanism is proposed which uses dedicated wires to send

router status information (token) used to make routing decisions and bypass router

pipeline stages. However, this proposal is focused on reducing network latency but not

by facing congestion harmful effects. In [21] authors collect congestion information from

the whole network to make routing decisions. However, in this proposal the congestion

information is collected by piggybacking the links status into the packets header. In

the next section we describe ICARO [77] which attacks congestion in a more efficient

manner.

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 129

6.4 ICARO-DVFS Implementation

6.4.1 Dynamic Voltage and Frequency Scaling

Our DVFS implementation changes voltage and frequency in levels, depending on the

performance demand. Each level corresponds to a given pair of voltage-frequency fixed

values (Table 6.1). Off-chip VRs are assumed.

DVFS level V oltage(V) Freq(GHz) DVFS level V oltage(V) Freq(GHz)

Level 1 1.30 3.074 Level 4 1.15 2.281

Level 2 1.25 2.852 Level 5 1.10 1.932

Level 3 1.20 2.588 Level 6 1.05 1.540

Table 6.1: DVFS levels assumed in the ICARO-DVFS mechanism (obtained from [1])

DVFS levels are changed by monitoring the occupancy at router buffers. Every poll period

cycles across all the monitored routers sample and report their occupancy level. If any of

the buffer exceeds a Qh threshold the DVFS level is decremented (voltage and frequency

are incremented). Accordingly, if all the buffers exhibit an occupancy below the Ql

threshold (Qh > Ql), the level is incremented (frequency and voltage are decremented).

6.4.2 Voltage and Frequency Islands

ICARO-DVFS supports VFIs, so voltage and frequency changes can be applied per

VFI domain. Each VFI has its own VR which collects metrics from the routers in its

domain and changes voltage-frequency accordingly. However, routers at the boundaries

between VFIs must be carefully designed as data flows will cross different domains.

To address this issue, we implement mixed-clock/mixed-voltage buffers[52][53] which

enables to write and read at different frequencies.

Figure 6.1 shows the router implemented at a VFI boundary (see Section 6.4.6.1 for

more information about routers architecture design). The input buffer stage is divided

into two sub-stages, the write part belongs to the frequency domain of the upstream

router while the read stage belongs to the current router frequency domain. In this

way, the rest of pipeline stages (after IB) are able to work normally at its corresponding

frequency. The same is performed for the flow control logic. As credit-based flow control

is used, the credits buffer at the downstream router works at both frequencies, at the

upstream router frequency for writing and at the current router frequency for reading.

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 130

W R

IB
RT SA X

VA

W R

IB
RT SA X

VA

VFI X VFI Y

Frequency f Frequency f1 2

Figure 6.1: Two consecutive routers belonging to different VFIs (at the boundary
delimiting such VFIs).

6.4.3 ICARO

Our proposal merges DVFS with ICARO [77], which tackles the congestion problem in

a different way as the usual one. Specifically, ICARO focuses on reducing the impact of

the Head-of-Line (HoL) blocking[14] derived from congestion situations. This harmful

effect happens when congested flows share buffers with non-congested flows, then the

former slowing down the latter and so degrading network performance. In order to deal

with HoL-blocking, ICARO separates congested flows from non-congested ones by means

of the different VNs implemented as disjoint virtual channels in the network. Note that

congestion situations (i.e. congested flows) are not removed but their negative impact

is reduced or even eliminated. Basically, ICARO detects congestion at routers, notifies

congestion to the end nodes, and they react by steering packets through different virtual

networks depending whether they cross congestion spots or not.

Congestion is detected at routers. A dedicated module at each router analyzes buffers

of each port and, based on the buffer utilization, computes pending requests from each

input port to each output port in order to detect contention (more than one request for

a given output port). If contention is detected and caused by oversubscribed input ports

(and lasts for a given threshold), then the output port is declared congested. Only if

one output port changes its congestion state, then a notification is triggered from the

router.

A congestion notification consists of the state of all output ports of the router (one bit

per output port). Notifications are sent from routers to end nodes through a dedicated

network (Congestion Notification Network or CNN) implemented as a k-width segmented

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 131

SW0 SW1 SW2 SW3

SW4 SW5 SW6 SW7

SW8 SW9 SW10 SW11

SW12 SW13 SW14 SW15

Figure 6.2: CNN network example. Links in green: CNN interconnecting all CNN
registers.

ring where k = log2(nodes) + routerradix + 1. Figure 6.2 shows a CNN implementation

for a 4x4 mesh NoC. The CNN is made of N registers, each one owned by a router

and connected to the next register through a k-width link. At each clock cycle, all the

registers forward their data to the next register along the ring. If a router needs to inject

a congestion notification, it checks its register state and injects the notification once the

register becomes free. Notifications travel along the entire ring and are removed when

they reach the register where they were injected from. Notifications are delivered to

all end nodes and at each node the notification is processed and stored in a notification

cache as congested point (pairs of values made up of {congested router, congested port}).
Registers in this network are implemented as mixed-clock/mixed-voltage buffers as well

to cope with different frequency domains.

Congestion isolation is performed at end nodes. To do so, ICARO uses two VNs: one

congested-VN and one regular-VN. All flows are always mapped first to regular-VNs,

but a post-processor module checks at each cycle the flit at the head of the regular-VN.

If the flit is a header and its path travels through a congested point, it is considered a

congested flow so, then the flit and the remaining ones of the same message are relocated

in the congested-VN relocating automatically all flits from such queue until a tail flit

is found). Messages injected through a given VN never change to a different VN, thus

achieving the isolation property pursued by ICARO.

6.4.4 Merging ICARO with DVFS

Now we show how ICARO is coupled with DVFS. Basically, ICARO notifies congestion

events through the CNN network. This network is extended to send DVFS notifications

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 132

✄

✄

Frequency increment bitmap

Frequency decrement bitmap

Freq.incr.

Freq.decr.

SW2 SW3

SW6 SW7

VR controller

VFI x

Figure 6.3: Voltage Regulator controller logic

as well1. This is easily achieved by changing the ICARO controller implemented in the

router. In addition to detect congestion events, the new logic monitors all input ports

queue occupancy and sends two new events through the CNN. Figure 6.4 shows the new

notification format. Two bits are added just indicating the router requests for a level

increment or decrement.

Buffer occupancy is analyzed in each router and compared against Qh and Ql thresholds.

If any of the queues exceeds the Qh threshold the V FIinc bit is set. Once all queues

occupancy are below Ql the V FIdec bit is set. Only when any of those two bits change

a DVFS notification is sent through the CNN network.

At each VFI domain, the VFI module reads the notification commands from the CNN

network, keeping record of all routers V FIinc and V FIdec bits from its domain. Two n-

length bit vectors (being n the number of routers in the VFI domain) are implemented.

VFI frequency/voltage is incremented when any of the routers request for such increment

(even if a router is requesting for a decrement). Frequency decrement is performed

when any router is requesting a decrement and none of the routers are requesting an

increment. Figure 6.3 shows the logic, whereas Algorithm 4 shows the algorithm change

DVFS levels.

6.4.5 Different ICARO-DVFS Alternatives

Besides the CNN extension, ICARO deals with different virtual networks (VNs) to

decouple congested traffic from non-congested traffic. In the minimal implementation

(2 VNs), just one VN is used to map congested traffic, the other one remains for non-

congested traffic. As commented previously, to couple correctly ICARO and DVFS we

1In a typical DVFS implementation, a dedicated logic collects metrics from the network and deliver
them to the logic that implements the VFI policy and drives its VR to carry this out. We take advantage
of the CNN network to simplify this process.

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 133

if CNNreg.busy && idBelongsToVFI(CNNreg.routerID, thisVFI) then
if CNNreg.FreqIncr then

freqIncrVector[routerID] = 1;
if |freqIncrVector then

increaseFrequency(thisVFI);

else if CNNreg.FreqDecr then
freqDecrVector[routerID] = 1;
if |freqDecrVector && ∼ |freqIncrVector then

decreaseFrequency(thisVFI);

else
Do nothing

end

end
Algorithm 4: DVFS level change algorithm.

need to sense occupancy of input ports queues. However, as we have differentiated VNs

we have different options.

As a first alternative, we can sense all input ports queues, including both non-congested

traffic VN and congested traffic VN. In this case, DVFS will raise frequencies and voltages

whenever traffic increases to levels where congestion appears in the VFI domain. This

alternative is referenced to as ICARO-2VN.

Another alternative is to raise frequencies and voltages only whenever the non-congested

VN congests as well. In this case, the DVFS strategy will raise only when severe con-

gestion appears in the network. In other words, when congestion caused by hotspot

traffic affects background traffic in such a way in which causes regular-VNs to exceed

Qh threshold. It is supposed that this alternative will lead to more power-saving results.

This alternative will be referenced to as ICARO-1VN.

Finally, a different alternative is to sense all input port’s queue, but differently from

ICARO-2VN, the DVFS strategy will be bounded to a more conservative frequency

level. In this case, the maximum frequency will be set to ∼2GHz (instead of ∼3GHz),

corresponding to Level 5 frequency on Table 6.1. The reasoning behind this strategy

is the effect ICARO has on performance as will decouple congested traffic from non-

congested one. Therefore, increasing frequency for performance reasons will become

less critical. This alternative will be referenced to as ICARO-2GHz. In addition, this

approach allows to simplify VRs by reducing the number of voltage-frequency levels

provided. Notice that area consumed by VRs depends directly on the voltage-frequency

levels provided.

The three strategies will be analyzed in Section 6.4.6. All of them will be compared

against three different strategies. The two first strategies will not use DFVS at all

and will set the network both to minimum and maximum frequencies. They will be

referenced to as minFreq and maxFreq, respectively and will allow us to set the low and

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 134

Figure 6.4: CNN signal format in
DVFS-based platforms

 0

 0.5

 1

 1.5

 2

 2.5

Le
ak

ag
e

Int
er

na
l

Switc
hin

g
Tota

l

P
ow

er
(m

W
)

minFreq
maxFreq

DVFS
ICARO-2VN
ICARO-1VN

ICARO-2GHz

Figure 6.5: Final power consump-
tion.

Topology 8x8 2D regular mesh

Routing policy XY

Switching technique Wormhole (flit-level)

Flow control credits

Flit size 128 bits

Message size 5 flits

Switch queue size 16 flits

Table 6.2: Common simulation configuration.

up limits in terms of performance and power. The third strategy will be compounded of

DVFS with the defined levels shown in Table 6.1 and sensing the VFI occupancy queues

regardless of the congestion effects. This strategy will be referenced to as DVFS in the

plots.

6.4.6 ICARO-DVFS Performance Analysis

6.4.6.1 Simulation Environment

We use gMemNoCsim, an in-house cycle-accurate event-driven NoC simulator. We

model a 4-stage pipelined router: IB, RT, SA, X. At IB flits are stored into the buffer.

In the case of routers at the VFI boundary, a coupling IB stage (see Section 6.4.2) is

implemented with two substages: IB W (writing data) and IB R (read data). At RT,

routing computation is performed, SA performs switch allocation, and at X stage the

flit crosses the crossbar and leaves the router.

Regarding traffic patterns, as ICARO is a proposal intended to deal with irregular,

bursty, hotspot-prone traffic patterns, we drew up a combined traffic pattern. This

traffic pattern is composed of a light uniform background traffic (at a data rate of 0.01

flits/ns) and a hotspot component. Hotspots consist in several nodes receiving each one

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 135

high data rates (3 flits/ns) from 4 nodes (4-to-1 hotspots). Hotspots are active only

from time 20ms to 40ms. In this way, we have a background traffic which generates

no congestion, plus an aggressive traffic which causes congestion, causing HoL-blocking

to the background traffic. This compound traffic pattern emulates environments where

light data flows (i.e.: cores running applications with light data demand) share the NoC

resources with heavy traffic generated nodes running high data demand applications or

hardware accelerators which tend to generate heavy data bursts, causing congestion as

well.

Simulations with DVFS are performed using real voltage, frequency and delay values

shown in Table 6.1. For power consumption measures we use Orion 3.0[57].

6.4.6.2 Results

In this section results for different configurations are shown. First, two configurations

without DVFS are considered: minFreq for the chip running at the minimum frequency

(1.540GHz) and maxFreq for the chip running at the maximum frequency (3.074GHz).

Then, results for a DVFS scenario (without ICARO) are shown. Finally, results for the

three ICARO-DVFS versions are shown. It is worth recalling that the main ICARO goal

is to keep background traffic unaffected when dealing with congestion-prone traffic, such

as the simulated hotspot traffic. For that reason results for background and hotspot

traffic are shown separately.

Figure 6.10 shows average network latency results. For the DVFS cases some peaks in

latency can be seen when congestion background starts and ends. These peaks clearly

show the overhead derived from the VR taking some time to perform the DVFS level

changes. It is worth mentioning that the first peak is higher as the VR takes more time

to change from the lowest frequency to the highest. After some analysis, we decided to

increase from the minimum frequency to the maximum one since this involves only one

transition, incurring much less penalty with respect to a step-by-step increase. As ex-

pected, the scenario with DVFS improves in power consumption the no-DVFS scenario,

but at the cost of increasing network latency (Figure 6.12) and decreasing throughput

(Figure 6.13). However, according to Figure 6.5, power consumption saving is more

significant than performance degradation.

As can be seen in Figures 6.10, ICARO proposals separate effectively background traffic

from the hotspot one, preventing the HoL-blocking effect over the former. As expected,

ICARO-2VN achieves the highest improvements in network latency (up to 43%) since

it takes into account all VNs to trigger the frequency-increment mechanism, and it

is able to increment frequency to the maximum, but at the cost of increasing power

consumption (8%). Nevertheless, despite being the ICARO proposal with the highest

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 136

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y
(M

H
z)

Time (ms)

VFI 0 freq.
VFI 1 freq.
VFI 2 freq.
VFI 3 freq.

Figure 6.6: VFIs frequencies for
DVFS without ICARO.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y
(M

H
z)

Time (ms)

VFI 0 freq.
VFI 1 freq.
VFI 2 freq.
VFI 3 freq.

Figure 6.7: VFIs frequencies for
ICARO-2VN.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y
(M

H
z)

Time (ms)

VFI 0 freq.
VFI 1 freq.
VFI 2 freq.
VFI 3 freq.

Figure 6.8: VFIs frequencies for
ICARO-1VN.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y
(M

H
z)

Time (ms)

VFI 0 freq.
VFI 1 freq.
VFI 2 freq.
VFI 3 freq.

Figure 6.9: VFIs frequencies for
ICARO-2GHz.

power consumption, this case still keeps power consumption below “DVFS-alone” levels

while improving latency.

Regarding the results for ICARO-1VN, note that only regular-VNs (VN 0) is taken into

account to increase the VFI frequency and only background traffic is forwarded through

this VN, so that this slight traffic flow is not enough to trigger the frequency-increment

mechanism and all VFIs end up working at the minimum frequency. Despite running

at the minimum frequency, we can see that the background network latency is kept

in similar values to the DVFS case working at highest frequency. This is achieved by

separating both traffic types, so preventing the HoL-blocking that the hotspot traffic

could cause. In addition, as frequency is the lowest allowed, power saving is maximum,

achieving an improvement of 26%. However, as the system is working at the minimum

frequency, throughput is lower than other cases that are running at higher frequencies.

Nevertheless, background traffic achieves acceptable latency values.

Finally, ICARO-2GHz case could be considered as the best trade-off proposal. It takes

into account all the available VNs but it is only allowed to increment frequency to the

next step from the lowest frequency. This proposal does not achieve the best results in

network latency and throughput, but nevertheless it improves the “DVFS-alone” case

by 19% with a significant power-saving improvement (20%) with respect to DVFS, due

to the lower frequency used.

Chapter 6. Efficient DVFS Operation in NoCs through a Proper Congestion
Management Strategy 137

 0

 10

 20

 30

 40

 50

 60

0 1 2 3 4 5 6 7 8

N
et

w
or

k
la

te
nc

y
(n

s/
fli

t)

Time (ms)

minFreq
maxFreq

DVFS
ICARO-2VN
ICARO-1VN

ICARO-2GHz

Figure 6.10: Network latency
for background traffic.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (f

lit
s/

ns
)

Time (ms)

minFreq
maxFreq

DVFS
ICARO-2VN
ICARO-1VN

ICARO-2GHz

Figure 6.11: Throughput for
background traffic.

 0

 50

 100

 150

 200

 250

N
et

w
or

k
La

te
nc

y(
ns

)

minFreq
maxFreq

DVFS
ICARO-2VN
ICARO-1VN

ICARO-2GHz

Figure 6.12: Final net. latency
(all traffic).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Th
ro

ug
hp

ut
(fl

its
/n

s/
ni

c)

minFreq
maxFreq

DVFS
ICARO-2VN
ICARO-1VN

ICARO-2GHz

Figure 6.13: Final throughput
(all traffic).

6.5 Conclusions and Future Work

In this work a combination of DVFS scheme with a congestion management mechanism

(ICARO) based on separating harmful traffic from non-harmful one has been presented.

Using the dedicated network used by ICARO in order to also deliver DVFS metrics for

triggering frequency changes has been proposed. Three different approaches have been

proposed in order to combine DVFS with ICARO. The first taking into account all VNs

to trigger the frequency change, achieving the best latency improvements with a slight

power consumption penalty. The second one only takes into account the regular-VNs

(VN 0) to trigger frequency changes, achieving a power consumption improvement of

26%. Finally, the third proposal limit the frequency increase until ∼2GHz (instead of

∼3GHz), with a latency improvement of 18% and a power-saving gain of 20%. As future

work we plan to use messages latencies as congestion metric and implement support in-

order delivery support.

6.6 Acknowledgements

This work was supported by the Spanish Ministerio de Economı́a y Competitividad

(MINECO) and by FEDER funds under Grant TIN2012-38341-C04-01 and by Ayudas

para Primeros Proyectos de Investigación from Universitat Politècnica de València under

grant ref. 2370.

Chapter 7

Increasing the Efficiency of

Latency-Driven DVFS with a

Smart NoC Congestion

Management Strategy

• Authors: José Vicente Escamilla (Universitat Politècnica de València), Mario R.

Casu (Politecnico di Torino) and José Flich (Universitat Politècnica de València)

• Type: Conference

• Conference: 10th IEEE International Symposium on Embedded Multicore/Many-

core Systems-on-Chip (MCSoC)

• Location: Lyon, France

• Year: 2016

• DOI: 10.1007/978-3-319-27308-2 28

• URL: http://ieeexplore.ieee.org/document/7774444/

• Citation: [87]

139

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 140

7.1 Abstract

Dynamic Voltage and Frequency Scaling (DVFS) can be a very effective power manage-

ment strategy not only for on-chip processing elements but also for the network-on-chip

(NoC). In this paper we propose a new approach to DVFS in NoC, which combines a

congestion management strategy with a feedback-loop controller. The controller sets

frequency and voltage to the lowest values that keep the NoC latency below a prede-

termined threshold. To cope with burstiness and hotspot patterns, which may lead the

controller to overdrive the NoC with too high frequencies and voltages, leading to ex-

cessive power consumption, the congestion management strategy promptly identifies the

flows that caused the abnormal traffic situation and eliminates them from the latency

calculation, leading to a significantly higher power saving. Compared to a baseline DVFS

strategy without congestion management, our results show that our proposal saves up

to 53% more power when bursty or hotspot-based traffic patterns are detected. In ad-

dition, since we also apply power-gating to make an efficient use of the network buffers,

we achieve an improvement of up to 38% in power savings when no bursts or hotspots

are present.

7.2 Introduction

Integrating a large number of processing elements into a single chip (CMPs, MPSoCs)

is becoming the standard design choice in industry. This strategy offers good perfor-

mance/power tradeoff while saves costs. These systems must be delivered with built-in

networks, known as network-on-chip (NoCs) [86]. Usually, the NoC is designed with

strict requirements in terms of throughput and latency so it becomes one of the most

important chip components to guarantee the expected chip performance. In addition,

the NoC may represent up to 20% of the overall chip power consumption [88].

The current trend is to increase the number of processing units as long as technology

shrinks. Examples of this trend are the 72-cores Tile-Gx [7] or the 256-cores Kalray

MPPA-256 (Bostan) [78]. With the number of processing elements increasing, it is

mandatory to use strategies that reduce overall power consumption without affecting

significantly system performance. One of the most successful mechanism to perform

this is DVFS [3], which drives voltage and frequency dynamically at runtime to fit the

workload requirements.

DVFS-based mechanisms essentially collect metrics from the system to find out how it is

performing. According to this, the system reacts by increasing or decreasing frequency

and voltage to meet the system requirements, thus saving power when requirements are

low. The application of this mechanism to the NoC is not trivial. One main issue is to

find the frequency that fits the whole NoC requirements. For small systems or systems

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 141

with a very regular workload, it may become trivial. However, in larger or non-balanced

workloads, that target may be difficult to achieve since some parts of the network may

be overloaded while the rest of the network is completely underutilized.

On the other hand, an emerging trend is, instead of using several identical cores, to man-

ufacture heterogeneous chips [12]. This paradigm is based on the fact that specialized

processing units are more efficient at performing specific jobs. However, due to this het-

erogeneity the network load becomes very unbalanced and unpredictable, characterized

by hotspots-based traffic patterns [89]. In addition, some application traffic patterns may

naturally generate abrupt traffic bursts [11] and generate congested network regions.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

F
re

q
u
e

n
c
y
 (

M
H

z
)

Time (ms)

Frequency

Frequency

Figure 7.1: Frequency for DMSD
under hotspot traffic.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

B
a

c
k
g

ro
u

n
d
/A

v
e

ra
g

e
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g

e
)

H
o

ts
p
o

t
la

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e

)

Time (ms)

End-to-end latency

background
hotspot

average
latency target

Figure 7.2: End-to-end latency per
traffic type for DMSD under hotspot

traffic.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800

P
o
w

e
r

(m
W

)

Time (ms)

Power

power

Figure 7.3: Power consumption for DMSD under hotspot traffic.

Because of these reasons, it becomes apparent that guaranteeing acceptable performance

levels while reducing power consumption is a real challenge. To illustrate this issue, in

Figs. 7.1-7.3 we can see how a system that uses the NoC latency as metric to drive the

DVFS mechanism (DMSD) [54] behaves under a critical traffic pattern. This pattern

mixes a background traffic generated by regular nodes in a 8x8 2D mesh (e.g. general pur-

pose processing units) with a hotspot traffic injected by four nodes towards a single node.

This hotspot is representative of traffic generated by device hardware accelerators [80]

or irregular traffic generated by some applications [11], both characterized by short and

heavy-weight data bursts from/to neighbor nodes. Specifically, the background traffic is

generated and received by all nodes not belonging to the hotspot following an uniform

distribution pattern. Accordingly, the hotspot traffic is generated by injecting traffic at

a high data rate to a given node from all of its neighbors.

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 142

The results reported in Figs. 7.1-7.3 have been obtained with a cycle-accurate NoC sim-

ulator which models 4-stages pipeline routers: IB (input buffer), RT (routing), VA/SA

(virtual channel and switch allocation), X (link crossing). In Tab. 7.1 the rest of config-

uration parameters are described. The values in Tab. 7.1 are used to obtain our baseline

results1. To obtain our power results we used a modified version of Orion v3.0 [57].

Fig. 7.1 shows the frequency increase as the hotspot is activated at 300µs. Fig. 7.2

shows how this increase differently affects the latency of two different traffic classes:

congested traffic (hotspot traffic) and regular traffic (background traffic). The regular

traffic is unnecessarily accelerated and its latency becomes less than a predetermined

target (highlighted with a horizontal green dashed line), whereas the latency of the

congested traffic increases significantly in spite of the high NoC clock frequency. As

shown in Fig. 7.3, the consequence is a net power waste for an unwanted decrease of

latency of the real productive traffic (the background one in our example).

In this paper we tackle such problem. We combine a latency-driven DVFS strategy

(DMSD, as proposed in [54]), with a congestion management mechanism (ICARO [77]).

Our goal is to use the congestion management strategy to discriminate and separate

both traffic types, allowing the network to apply frequency and voltage policies based

on the real productive traffic, hence allowing the DVFS strategy to guarantee a given

end-to-end latency while optimizing power consumption.

The paper is organized as follows. First, we briefly describe DMSD and the methodology

we used to obtain our results. Then, we describe ICARO. After presenting the combined

strategy and its internal arrangement, we show the results. Then we revisit the related

work. Finally we plot the conclusions and the future work plans.

7.3 Analysis of the DMSD DVFS Policy

The purpose of the Delay-based Max Slow Down (DMSD) DVFS policy is to decrease

the NoC frequency and voltage as much as possible without compromising the system

performance [54]. To achieve this, DMSD uses the average end-to-end latency as a

performance metric, and a Proportional-Integral (PI) controller that adapts frequency

and voltage so as to keep that metric close to a latency target. The higher the latency

target, the larger is the power saving. In our experiments, we set it equal to the latency

that is obtained with an injection rate 5% less than the saturation point under uniform

traffic, which is obtained by running simulations in which the injection rate is increased

until saturation. However, in a real system the latency target can be obtained by means

of profiling.

1We also evaluated the robustness of our solution when some of these parameters are varied, as we
will see in Sec. 7.4.5.

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 143

+ -

Latency

Target

PI

controller

F(U)

U

FnocNoC

Clock & Voltage

DVFS

controller

Average

Latency

E

(Error)NoC

Controller node average delay computation

Node packet delay measurement

Figure 7.4: All nodes in the network send latency measures to the PI controller to
set the new frequency.

In Fig. 7.4 an overview of an NoC provided with DMSD is depicted. Each node stores in a

register the average end-to-end latency, updated each time a flit is received. Periodically,

all nodes send the average latency to a given node, which computes the overall end-to-

end latency for the whole system. In addition, this node contains the PI controller and

the voltage and frequency controllers. Upon receiving all latencies, the overall latency

at time n, Ln, is computed and the noise filter described by (7.1) is applied to obtain

L′n. Then, the error En is computed by subtracting the latency target Lt from L′n as

shown in (7.2). The error is then passed to the PI controller, which generates the signal

Un according to (7.3).

L′n = α L′n−1 + (1− α)Ln (7.1)

En = L′n − Lt (7.2)

Un = Un−1 +KIEn +KP (En − En−1) (7.3)

In (7.3), KI and KP are the integral and proportional gains determined empirically and

used to adjust the PI controller behavior while guaranteeing stability.

Finally, U is used to determine the frequency. For this, U is bounded within Uminsat

and Umaxsat and the range from Umin to Umax is linearly translated to frequency, as

shown in Fig. 7.5. A voltage-to-frequency mapping is then used to apply the correct

voltage for a given clock frequency.

DMSD performs well under stationary traffic patterns [54]. As shown in Figs. 7.1-7.3,

however, the high intensity of a few data flows (hotspots) which are not representative

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 144

Fmax

Fmin

Umin Umax

F

Uminsat Umaxsat U

Figure 7.5: Conversion from U to frequency.

Table 7.1: Robustness analysis scenarios configuration.

Network configuration

Topology 8x8 2D regular mesh

Routing policy XY

Switching technique Wormhole (flit-level)

Flow control credits

Flit size 128 bits

Message size 10 flits

Switch queue size 4 flits

Virtual Channels 4 per Virtual Network

DMSD configuration

Frequency range 333 - 1000 MHz

Voltage range [0.56, 0.9] V

Ki, Kp 0.025, 0.0125

U saturation range [-15, 15]

α 0.7

of the whole system load, disrupts the DVFS strategy, leading to a waste of power by

increasing the frequency and voltage unnecessarily.

Notice that this effect could be avoided by implementing Voltage and Frequency Islands

(VFIs) [55][56]. However, this would imply extra silicon area and power to implement

the VFIs separate DVFS controllers, and it would require to either know at design-time

where hotspots will be located, or the ability to confine the hotspot traffic in a separate

voltage island at run-time. In contrast, our approach consists in implementing a con-

gestion control mechanism (ICARO) to detect hotspots and filter them out, regardless

their location and intensities.

Orion does not directly support the industrial 28-nm CMOS technology that we used

for the implementation of routers with support for congestion management and buffer

power-gating. By using the post-synthesis results of our RTL version of the router,

we modified Orion in such a way that its results are compatible with our technology.

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 145

Moreover, we added the support for including the effect of buffer power-gating in the

computation of power consumption.

7.4 Implementing Congestion Management

Hotspot flows mask the overall system performance, increasing significantly the overall

latency while the network resources not used by the hotspot flows may be underutilized.

Our approach consists in identifying those hotspot flows, and separating them from the

rest of the network traffic (background traffic). For this purpose, we pick ICARO, a

congestion-control mechanism that detects, identifies, and isolates congestion within the

network.

7.4.1 ICARO

ICARO removes the Head-of-Line (HoL) blocking by first identifying congestion, and

then by isolating the congested flows involved in it into dedicated Virtual Networks

(VNs). As the congested traffic is delivered through separate resources, it does not share

buffer resources with the non-congested traffic, so HoL-blocking is removed. ICARO

consists of three stages: congestion detection, notification and isolation.

7.4.1.1 Congestion Detection

The congestion is detected at the routers level, by keeping track of which input ports are

requesting any output port. If more than one input port is requesting a given output

port for too much time, that output port is marked as oversubscribed, so congestion at

that output port is declared. However, two or more input ports could be requesting a

given output port at a low data rate, not leading to congestion. Because of this, only

input ports exceeding a given utilization threshold are considered.

7.4.1.2 Congestion Notification

Once congestion is detected, it must be notified to the NIs to isolate the traffic that

causes the congestion before being injected into the network. To perform this, ICARO

uses a dedicated congestion notification network (named CaL network2), which consists

of a ring of N registers connected by links of log2(N) + p + 1 width, where N is the

number of nodes and p the routers radix. An example of a CaL network is shown in

Fig. 7.6. Other mechanisms for fast notification delivery include express channels [90]

2This network is called CNN in [77] but we modify it to deliver also other messages, hence the name
CaL (Congestion and Latency) network.

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 146

SW0 SW1 SW2 SW3

SW4 SW5 SW6 SW7

SW8 SW9 SW10 SW11

SW12 SW13 SW14 SW15

CaL register

Network Interface

Figure 7.6: Congestion Notification Network for a 4x4 mesh.

and circuit-switched networks. However, express channels may imply high area overhead

while circuit-switched networks suffer from high latency penalties when establishing

circuits.

7.4.1.3 Congestion Isolation

In absence of congestion, the NI allocates all messages in regular-VNs, as determined by

the NI allocator. Once notifications are received, the NI uses the congestion information

and calculates a message route to know whether that message will cross any of the

congested points (CPs). If so, the message is reallocated into a special VN (extra-VN)

to be injected and delivered through it along all the path to destination. Otherwise, the

message is injected through the current regular-VN. By doing this, flows contributing

to the congestion are isolated into the extra-VN, keeping the non-congested traffic into

the regular-VNs. In this way, DMSD will be able to measure the latency of the non-

congested traffic (data flowing through the regular-VNs). Fig. 7.7 depicts an example

of this process for the NI 4 in a 4x4 2D mesh.

When congestion ends, the conditions leading to detect CPs at routers will not occur

anymore. Therefore, all the routers that previously detected CPs will detect this end

of congestion and notify this event to the NIs, which will react by removing those CPs

from their congestion notification board. Accordingly, since the messages pending to be

injected at NIs will not cross any stored CP, those messages will be normally injected

through the regular-VN.

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 147

Regular-VN

Extra-VN

Dst=1Dst=7

NoC

ICARO CPs

memory

Message reallocated

Message no reallocated

Network Interface 4

Dst=11

SW Port

5 East

- -
ICARO

Arbiter

Figure 7.7: NI with ICARO for reallocating congested messages.

CaL in

CaL out

CaL.type

N
o

ti
fi

ca
ti

o
n

in
je

ct
io

n

N
o

ti
fi

ca
ti

o
n

re
ce

p
ti

o
n

✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡ ✌ ☞

✍ ✎ ✒✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡✏

2

✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡

1

0

Reg n

FSM
Router n

NI n

Latency meassures

010b

001b

2

CaL.busy

La
te

n
ci

e
s

a
v
a

il
a

b
le

✑✓✓ ✑✔✑b

Figure 7.8: CaL network register associated logic for regular nodes adapted to DMSD.

7.4.2 Delivering Latency Measurements with the CaL Network

In the original DMSD formulation, packets containing the measured end-to-end latency

are sent to the controller node via piggybacking [54]. Intense congestion situations,

however, may delay the delivery of those packets and the reaction of the PI controller,

potentially causing the PI controller to oscillate. On the other hand, ICARO implements

the CaL dedicated network, which we modified to support the delivery of those latency

values in addition to congestion notifications. By doing this, the metrics necessary to

set the frequency properly are guaranteed to timely arrive at destination (with low

aggregated overheads, as we show in Sec. 7.4.4).

In a DMSD-based system there are two types of nodes: those that send their latency

metrics, and one that receives them. Thus, we implement two slightly different logic

blocks to connect to the CaL network. Fig. 7.8 shows the logic of a typical router/NI

that sends and receives ICARO notifications and sends DMSD latencies. Note that,

despite ICARO notifications are sent in one cycle, we modified the logic to serialize

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 148

Reg n

NI n
PI

controller

CaL in

CaL out

CaL.busy

CaL.type

N
o

ti
fi

ca
ti

o
n

in
je

ct
io

n

N
o

ti
fi

ca
ti

o
n

re
ce

p
ti

o
n

Node n

latency

✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡ ✌ ☞

✍ ✎ ✒✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡✏

2

✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡

1

FSM

Router n

✞�✁☛ ✂ ✌ ✄☎✆✝✟ ✌ ✠✟✡

PGC

Figure 7.9: CaL network register associated logic for the node provided with the
PI/DVFS controller adapted to DMSD.

the transmission of 32-bit latencies through the CaL network by extending its links

width by (ext=8-Radix) bits. Congestion notifications can be seamlessly interleaved

with DMSD latency notifications because one bit identifies the type of CaL message.

DMSD notifications from different nodes are guaranteed to arrive in order since nodes

will send them after a fixed (and different for each node) time offset. Similarly to

the sender node in Fig. 7.8, Fig. 7.9 shows the logic for the receiver node. This node

sends and receives ICARO notifications like any other CaL node, adds its own latency

measurements to the received ones, and forwards them to the PI controller.

7.4.3 Power-Gating Extra-VN Buffers

To avoid wasting power when there is no congestion, we implement a mechanism to

power-off the extra-VN buffers via a centralized Power-Gating Controller (PGC), which

resides in the same node that implements DMSD. All the buffers of an extra-VN (in all

NIs as well as in all routers) are powered on/off simultaneously. Power-on is easy: the

PGC node snoops the CaL network and when it catches the first congestion notification

it broadcasts a power-on message through the CaL network. On the contrary, power-off

is not trivial. Snooping the CaL network in search of the “end of congestion” messages

is not a valid strategy because there might still be messages in the extra-VN, either

in the NIs pending to be injected, in the routers on their way to destination, or both.

Therefore, to safely turn off the extra VNs, the PGC must be informed through the CaL

network by both all NIs and routers about their detection of a congestion-free situation:

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 149

n21

PGC

…

…

n21 …

CaL

In

Out

CaL.srcType

1

Lo
g 2(

N
)+

1

…

1

Nis
bitmap

Routers
bitmap

CaL.srcId

CaL.srcId

PGC

Figure 7.10: Power-gating controller.

7.4.3.1 Network Interfaces Detection

To make sure that no congested traffic will be injected into the network from a given

NI, two conditions must be satisfied. First, the extra-VN buffers must be empty. In

addition, the NI congestion notification board must be clean (no new notifications). If

both conditions are met, the NI notifies its congestion-free status to the PGC with a

special message sent through the CaL network.

7.4.3.2 Routers Detection

At routers the mechanism is simpler. Each time the extra-VN buffer utilization increases

from 0 to 1, the router sends a message to the PGC to inform that is storing congested

traffic. On the other hand, when the buffer utilization decreases from 1 to 0, the router

sends another message to inform that is congestion-free.

The PGC is provided with two N -width bitmaps, where N is the number of nodes in the

network: one bitmap for the NIs and one for the routers. These bitmaps are updated any

time a NI or a router notifies the PGC about its status (0=no congested traffic stored,

1=congested traffic stored). In this way, the PGC has a complete congestion picture

of the network. When the PGC detects that all NIs and routers are congestion-free, it

commands to power-off the extra-VN buffers; otherwise, it commands to power-on the

buffers. Fig. 7.10 sketches the PGC bitmaps, the logic to power-on/off the buffers, and

its connection to the CaL network. We quantify the advantage of using power-gating in

Sec. 7.4.5.

Note that area and power consumed by the PGC are negligible since its implementation

only requires N -width demultiplexers, 1 N -width multiplexer, 1 N -width NOR gate and

2N registers for a complete mesh.

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 150

 0

 2

 4

 6

 8

 10

 12

NI Router

%

Area overhead

5x5

8x8

16x16

Figure 7.11: ICARO-DMSD area overhead of different meshes.

We are aware that turning on/off all the extra-VN buffers is suboptimal since several

buffers could not be reached by any congested flow. Because of this, as a future work

we plan to implement a new policy to turn the buffers on/off selectively.

7.4.4 Area Overhead Analysis

The bars in Fig. 7.11 illustrate the area overhead for a NI and a router with support

for ICARO, with respect to a baseline implementation (no DMSD, no ICARO)3. The

results have been obtained after synthesis on our 28-nm technology, in the conditions

of Tab. 7.1, except for the mesh size that we let vary. We notice that the overhead is

small, less than 10%, even for the case of a large 16×16 mesh.

7.4.5 Experimental Results

In this section we first report simulation results obtained in the baseline configuration

of Tab. 7.1. These results show that our combined DVFS and congestion management

strategies can effectively solve the problem outlined in Sec. 7.2 that is at the basis of our

work. Then, we report results obtained with a sensitivity analysis in which we varied

several configuration parameters to check the robustness of our solution. Note that,

for our experiments DMSD as well as ICARO are provided with the same amount of

VNs in order to compare both solutions with the same amount of resources, providing

each VN with the same amount of VCs. However, since DMSD does not require several

3We obtained overhead results only for ICARO since DMSD and the PG controller overheads are
negligible compared to the ICARO’s overhead.

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 151

VNs to work properly and these additional resources may affect negatively to its power

consumption we perform an additional experiment comparing against the baseline with

only 1 VN.

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800
 0

 2000

 4000

 6000

 8000

 10000

B
a

c
k
g

ro
u

n
d

 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e

)

H
o

ts
p

o
t

la
te

n
c
y
 (

n
s
/m

e
s
s
a

g
e

)
Time (ms)

End-to-end latency

DMSDonly BG
DMSDonly HS

DMSD+ICARO BG
DMSD+ICARO HS

latency target

Figure 7.12: End-to-end laten-
cies for the background and the

hotspot traffic.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

F
re

q
u

e
n

c
y
 (

M
H

z
)

Time (ms)

Frequency

DMSDonly
DMSD+ICARO

Figure 7.13: Frequencies for
DMSD and ICARO-DMSD.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

P
o

w
e

r
(m

W
)

Time (ms)

Power

DMSDonly
DMSD+ICARO

Figure 7.14: Power consumption for DMSD and ICARO-DMSD.

Figs. 7.12-7.14 compare the DMSD and the ICARO-DMSD cases in terms of latency,

frequency, and power, in the baseline scenario. Notice that to properly compare the two

cases, the two systems have the same total buffering resources. Note also that, in the

case of ICARO, the extra-VN is composed of as many VCs as the regular-VNs.

Since ICARO effectively separates the background traffic from the hotspot one, DMSD

can effectively measure only the latency of the background traffic. Therefore, thanks to

the PI controller, DMSD keeps the latency of the background traffic around the 76-ns

latency target, as shown in Fig. 7.12. In fact, as Fig. 7.13 shows, the NoC clock frequency

is not influenced anymore by the activation of the hotspot traffic. This, in addition to

the use of power-gating, results in a significant improvement of the power consumption,

as shown in Fig. 7.14. When the hotspot is not active (from time 0µs to 300µs, and

then again after around 380µs), the extra-VN buffers are powered-off, resulting in lower

power for the ICARO-DMSD case. When the hotspot is active, the extra-VN buffers are

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 152

Table 7.2: Robustness analysis scenarios configuration.

Scenarios

Label Mesh Queue Msg. Num. HS Lat.
Size Size VCs Length HS Dur. target

(nodes) (flits) (flits) (ns) (ns)

Baseline 8x8 4 4 10 1 50us 76

5x5 5x5 4 4 10 1 50us 66

16x16 16x16 4 4 10 1 50us 105

qs2 8x8 2 4 10 1 50us 79

qs8 8x8 8 4 10 1 50us 81

qs16 8x8 16 4 10 1 50us 72

vcs2 8x8 4 2 10 1 50us 60

vcs8 8x8 4 8 10 1 50us 97

ml5 8x8 4 4 5 1 50us 62

ml20 8x8 4 4 20 1 50us 96

2HS 8x8 4 4 10 2 50us 76

3HS 8x8 4 4 10 3 50us 76

short 8x8 4 4 10 1 25us 76

large 8x8 4 4 10 1 100us 76

switched on, hence the power increases. Still, since the clock frequency in the ICARO-

DMSD case is less than the DMSD case, the power consumption is also significantly

reduced.

To validate our results under different network configurations, we changed several net-

work parameters: mesh size, router buffers queues size, number of virtual channels,

message length, number of hotspots, and hotspot duration. All the cases analyzed are

described in Tab. 7.2, in which every case is assigned a label that is used next in the

graph keys. As Fig. 7.15 shows for all the configurations analyzed, in the ICARO-DMSD

case the background traffic correctly tracks the prescribed target, hence avoiding the ex-

cessive power consumption that characterizes the reference DMSD case. Note that, since

the goal of our approach is to keep the background latency around the latency target,

for better understanding, hotspot latencies have been omitted in the graphs. Also note

that the hotspot start/stop time is highlighted with vertical bars and that in the hotspot

duration graph the three different hotspot ending times are highlighted with different

colors. Please note that the latency target value for a given scenario depends not only on

the saturation point, which is highly correlated with the system configuration, but also

on the latency curve gradient. Therefore, in some system configurations the calculated

latency target seems not to follow an intuitive progression like in the VCs analysis graph

shown in Fig. 7.15.

Fig. 7.16 summarizes the improvement of power consumption of the ICARO-DMSD case,

in all the configurations of Tab. 7.2. Two different improvement values are reported.

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 153

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency mesh size

DMSD 5x5
DMSD+ICARO 5x5

DMSD 8x8
DMSD+ICARO 8x8

DMSD 16x16
DMSD+ICARO 16x16

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency queue size

DMSD qs2
DMSD+ICARO qs2

DMSD qs4
DMSD+ICARO qs4

DMSD qs8
DMSD+ICARO qs8

DMSD qs16
DMSD+ICARO qs16

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency virtual channels

DMSD vcs2
DMSD+ICARO vcs2

DMSD vcs4
DMSD+ICARO vcs4

DMSD vcs8
DMSD+ICARO vcs8

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency message length

DMSD ml5
DMSD+ICARO ml5

DMSD ml10
DMSD+ICARO ml10

DMSD ml20
DMSD+ICARO ml20

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency number hotspots

DMSD 1HS
DMSD+ICARO 1HS

DMSD 2HS
DMSD+ICARO 2HS

DMSD 3HS
DMSD+ICARO 3HS

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a
c
k
g
ro

u
n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (ms)

End-to-end latency hotspot duration

DMSD short
DMSD+ICARO short

DMSD medium
DMSD+ICARO medium

DMSD large
DMSD+ICARO large

Figure 7.15: End-to-end latency for different configuration parameters

The first one is due to the extra-VN power-gating (no-HS in the graph), measured

at time 290µs (just before the hotspot activation); the second one corresponds to the

power-saving during the hotspot duration (HS in the graph) and is calculated by aver-

aging the power spent from time 300µs to time 600µs, since this is the time range in

which the hotspots affect any of the cases analyzed. Note that the power overhead due

to the additional hardware required by our proposal is already included in the power

consumption graphs.

As Fig. 7.16 shows, for all the cases considered, the combination of DMSD and ICARO

leads to a significant power improvement over the DMSD baseline when hotspot is active.

When no hotspot is active, by switching the extra-VN off we achieve up to 38% power

saving and an average of 28%. When congested traffic is detected, ICARO manages

this sort of traffic and DMSD tunes the frequency properly saving up to 53% power

consumption and 38% on average. In the results obtained when the hotspot is present,

we observe a larger variance. This is expected as, for calculating the average, we take

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 154

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

no-HS HS

%
Power consumption improvement

baseline
mesh5x5

mesh16x16
qs2
qs8

qs16
vcs2
vcs8
ml5

ml20
2HS
3HS

short
large

Figure 7.16: Power consumption improvement with respect to DMSD for all config-
urations.

values from the same range of time for all cases but the duration of the effects of the

hotspots are not the same for those cases, therefore, the weight of those values over the

average is not the same.

In the final experiments we analyze our proposal against DMSD provided with 1VN. Un-

like ICARO, DMSD does not require several VNs to perform properly, so we performed

the same robustness analysis shown above but providing DMSD with 1VN. Nonethe-

less, as ICARO does not require the extra-VN to be provided with several VCs, for

this simulations we configured ICARO with the same number of VCs for the regular-

VN as the DMSD case and only 1VC for the extra-VN. The power results in Fig. 7.17

show that in absence of congestion, ICARO consumes more power than DMSD due to

the ICARO logic power consumption. When hotspot is active, however, despite the

additional buffers ICARO saves a significant amount of power under the most part of

the analysis, achieving up to 20% power saving. Nevertheless, some scenarios present

characteristics (amount of resources, message length, etc.) for which DMSD does not

overreact to keep the latency under the target, resulting in less power consumption for

DMSD. Still, the congestion in those scenarios triggers the ICARO mechanism, caus-

ing to switch the extra-VN buffers on, increasing power consumption, and ultimately

reducing the power saving compared to the baseline.

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 155

-30

-20

-10

 0

 10

 20

 30

no-HS HS

%

Power consumption improvement (DMSD=1VN)

baseline
mesh5x5

mesh16x16
qs2
qs8

qs16
vcs2
vcs8
ml5

ml20
2HS
3HS

short
large

Figure 7.17: Power consumption improvement with respect to DMSD (provided with
1VN) for all configurations.

7.5 Related Work

Most of the literature focuses on a fine-grain application of DVFS to NoCs, with routers

and even links individually powered at different voltages and frequencies [27][28][29]

[30][31][32]. These works, however, do not consider the overhead of having multiple

voltage regulators and PLLs for the various NoC components, not to mention the latency

penalty due to multiple clock-domain crossings. We share the view of other authors that

consider more practical to have a single voltage and frequency domain for the whole NoC

[34][35][36][37].

It is apparent that a fine-grain DVFS approach would lead to better power savings, but

the implementation cost would be too high. For these reasons researchers explored a

middle ground that we can classify as coarse-grain NoC DVFS, in which either multiple

NoC planes (typically two planes) powered at different voltages and/or frequencies are

used [38][39], or routers that can individually choose between only two voltages are

employed [40]. Our approach can be easily adapted to the case of multiple NoC planes.

In terms of implementation of the DVFS controller, our work has features in common

with [36], in which a PI-based DVFS is applied to the NoC and the last-level cache of a

Chip Multi-Processor (CMP). A different approach to this problem is proposed in [37],

in which the DVFS controller is based on an artificial neural network trained with the

help of a PI controller. Differently from these works, we do not restrict our study to

the CMP case and analyze the effect of hotspot traffic on the behavior of the PI-based

DVFS controller.

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 156

Regarding congestion management, most of the solutions in the literature are based on

monitoring congestion metrics and using them to make routing decisions. Following this

paradigm, RCA [20] uses multiple global metrics collected from the whole network to

select at each router the output port which messages are forwarded through. Differently

from our approach, RCA collects metrics delivered through the regular network. Thus,

if some metrics travel along already congested routes, this may slow down the metrics

collection, causing the mechanism to make wrong decisions. Besides, adapting the routes

to avoid hotspots may result in moving the location of such hotspots from one place to

another. Finally, avoiding hotspots may be impossible if all the flows are bound to the

same destination (e.g. the memory controller).

The authors of [24] propose HPRA, a hotspot-formation prediction mechanism. HPRA

uses an Artificial Neural Network-based (ANN) hardware that gathers buffer utilization

data to predict the formation of hotspots. Then, HPRA classifies the traffic into two

classes: hotspot-destined traffic (HSD) and non-hotspot-destined traffic (nonHSD). HSD

traffic is throttled at source while the nonHSD traffic is routed avoiding paths containing

hotspots routers. However, in the cases in which the ANN fails to predict hotspots, it

may redirect traffic to an unpredicted hotspot, causing an even worse degradation of the

system performance. Besides, HPRA suffers from the same metrics delivering issue of

previously described RCA.

In [91], the authors propose a mechanism to monitor the state of the network in order

to select the best path to deliver each packet. To select the best next router for a

given packet at each hop, each router in the network must know the best path to follow

from the current node to the packet’s destination. This requires sending back a special

message with the route status information for each message sent from a given node to

a given destination. This may cause a waste of network bandwidth and, in presence of

several or sudden congestion, it may be affected by the same problem of delayed metrics

delivery described before. In addition to this, this mechanism requires that each node

keeps a table composed of one entry for each node in the network. This means that the

total stored aggregated data in the whole network grows quadratically with the number

of nodes, which clearly hampers scalability for large mesh sizes. In contrast, in our case

every node only stores a 32-bit latency value, which results in a linear growth with the

number of nodes.

7.6 Conclusions and Future Work

In this paper we present an integrated approach for saving power while guaranteeing

latencies in NoCs under non-stationary traffic patterns. We demonstrate that by inte-

grating a congestion management strategy and a loop-based DVFS controller to tune

Chapter 7. Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC
Congestion Management Strategy 157

the frequency for saving power while guaranteeing a latency target, we obtain a power-

effective strategy. As our results show, we save up to 53% power compared with the

baseline DVFS system in presence of hotspots. In addition to this, we propose a power-

gating mechanism to power-off buffers when not needed, resulting in up to 38% power

saving in absence of congested traffic. To obtain these results, our approach requires a

small area overhead, less than 10%.

As future work we plan to compare the approach reported in this paper with another

one that separates traffic classes using physically distinct networks with two different

DVFS controllers rather than different virtual networks. In addition to this, as already

mentioned, we plan to implement a smarter mechanism to power buffers on/off selectively

to achieve best power saving results.

Acknowledgments

This work was supported by the Spanish Ministerio de Economı́a y Competitividad

(MINECO) and by FEDER funds under Grant TIN2015-66972-C05-1-R and by Ayudas

para Primeros Proyectos de Investigación from Universitat Politècnica de València under

grant ref. 2370. We also want to thank especially the HiPEAC project that supported

the internship during which this work was developed.

Chapter 8

ICARO-PAPM: Congestion

Management with Selective

Queue Power-Gating

• Authors: José Vicente Escamilla (Universitat Politècnica de València), José Flich

(Universitat Politècnica de València) and Mario R. Casu (Politecnico di Torino)

• Type: Conference

• Conference: International Conference on High Performance Computing & Sim-

ulation (HPCS)

• Location: Genoa, Italy

• Year: 2017

• DOI: Pending

• URL: Pending

• Citation: Pending

159

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 160

8.1 Abstract

The growing demand for performance and technology advances drive manufacturers

to integrate more and more cores in the same die. However, this increment of inter-

connected computing elements implies more pressure over the network-on-chip, which

might saturate, leading to congestion and, thus, degrading system’s performance. To

deal with this, ICARO was recently proposed as a congestion control mechanism which

identifies congested points and isolates congested traffic in separate queues, removing the

HoL-blocking effect, hence, leaving congestion harmless. However, ICARO’s additional

buffers incur in significant power overhead. In this paper, we propose a new version

of ICARO (ICARO-PAPM) which is integrated with a novel path-oriented fine-grained

power-gating mechanism (PAPM). PAPM can selectively power on and off paths par-

tially shared by different sources. When driven by ICARO, unused queues for congested

traffic can be powered down, thus saving energy. We demonstrate that ICARO-PAPM

does not interfere with the original ICARO performance, while it achieves a significant

reduction of 35% in power consumption by keeping all additional buffers powered off

when no congestion arises on the network, and up to 27% under congested traffic by

powering on only those queues needed by the congested traffic.

8.2 Introduction

Chip MultiProcessors (CMPs) and MultiProcessors System on Chips (MPSoCs) are

being designed and manufactured by the industry. Such designs offer good perfor-

mance/power tradeoff while saving costs. The current trend is to implement more and

more processing units motivated by the advances in the integration scale. Examples are

the Tile-Gx [7] or the 256-cores Kalray MPPA-256 (Bostan) chip [78]. These processing

units need to be interconnected by an on-chip-network [86], which is in charge of ex-

changing data between processing units or nodes. The network must be able to deliver

the huge amount of data generated by all nodes subject to very tight requirements in

terms of latency and throughput. Nevertheless, the constant increase in number of nodes

brings also an increase in the amount of data to be delivered, driving the network to

its performance limits, thus becoming critical to manage the network traffic properly in

order to achieve the expected system performance.

Additionally, data produced by hardware accelerators (e.g.: cache prefetchers[79][80]),

heterogeneous systems [12] and some specific applications, tend to generate irregular

traffic patterns[11] or hotspots. This sort of traffic patterns may saturate some points in

the network, generating congestion which might be easily propagated through the rest of

nodes and generate HoL-blocking [14](HoL), degrading the overall system performance.

HoL-blocking is given when flits stored in FIFO queues get blocked due to the lack

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 161

Table 8.1: Orion configuration parameters.

Orion configuration
Technology 28nm

Vdd 0.9V
Frequency 1GHz
Toggle rate 0.25

VCs 4
Queues size 4 flits
Flit width 128 bits

Input/Output ports 5
Output buffers 0

of resources required by the flit at the head of the queue preventing other flits from

advancing.

In this concern, ICARO was recently proposed [77]. ICARO is a congestion control mech-

anism that works by identifying congested flows and isolating them into an additional

Virtual Network (VN) implemented in a separate queue in all the routers. By doing

this, ICARO avoids interactions between congested and non-congested traffic, therefore

removing the HoL-blocking effect.

On the other hand, the network size affects dramatically the network power consump-

tion, representing up to 20% of the overall chip power consumption [88]. Therefore,

new mechanisms to improve network performance must be carefully designed to be also

power efficient. In this concern, there are different strategies that can be adopted to re-

duce network power consumption. One of the most extended strategies is to dynamically

power off different parts of the network (power-gating [4]), like routers. Nevertheless,

to power off a whole router implies important drawbacks, such as the need of building

an strategy to support traffic rerouting and to guarantee deadlock-free condition. We

performed an analysis of power consumption for each main component of a router us-

ing Orion v3.0 [57] with the configuration parameters shown in Table 8.1. Note that

Orion does not originally support the 28-nm CMOS technology that we used for our

implementation. By using the post-synthesis results of our RTL version of the router,

we modified Orion in such a way that its results are compatible with our technology.

Moreover, we added the support for including the effect of buffer power-gating in the

computation of power consumption. As seen in Figure 8.1, the router buffers are the

most power-hungry component of the router. Therefore, it makes sense to follow a buffer

power-gating strategy, rather than a router power gating strategy. In this way, if we

power a buffer off, we can still serve traffic without the need of a complex rerouting

strategy.

In this paper we revisit ICARO in order to complement it with a new power-gating

mechanism (PAPM) to alleviate the power overhead caused by the additional buffers

used by ICARO for its additional VN. The new mechanism, ICARO-PAPM, will power

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 162

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Crossbar Arbiter Buffers ClockCtrl

P
o
w

e
r

(m
W

)

Figure 8.1: Router modules power consumption.

on only those queues needed to store congested traffic. In the absence of congestion, all

the queues will be powered off.

The rest of the paper is structured according to the following. First, we describe ICARO.

Next, our novel power-gating proposal (PAPM) is presented. Then, we show the ex-

perimental results by comparing ICARO and- ICARO-PAPM. Finally we present our

conclusions and related work.

8.3 ICARO

ICARO is a congestion control mechanism that works by isolating congested traffic

flows from non-congested ones by means of VNs. By isolating congested traffic, ICARO

removes the HoL-blocking effect. ICARO implements an extra queue (referred to as

extra-VN) on each input port of every router, and also on each end-node. This queue

is used exclusively for packets contributing to congestion. ICARO functionality can be

divided in three phases: congestion detection, notification and traffic isolation.

8.3.1 Congestion Detection

Congestion is detected in routers essentially by detecting when an output port is con-

tended (requested by 2 or more input ports) during a relatively large amount of time

(determined empirically). Once congestion is detected, the oversubscribed output port

is notified as a {router, port status} pair value called CP (Congested Point) to all the

end-nodes. Indeed, each router periodically notifies to all end-nodes the current status

of each output port (congested, non-congested).

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 163

SW0 SW1 SW2 SW3

SW4 SW5 SW6 SW7

SW8 SW9 SW10 SW11

SW12 SW13 SW14 SW15

CNN register

Network Interface

Figure 8.2: Congestion Notification Network for a 4x4 mesh.

8.3.2 Notification

The notification of a port being congested or not is delivered to all end-nodes through

a light-weight separate network (Congestion Notification Network; CNN). The CNN

network consists of a ring of N registers connected through unidirectional links of

log2(N) + p + 1 width, where N is the number of routers and p is the router radix.

An example of a CNN network in a 4x4 mesh NoC can be seen in Figure 8.2. Once a

notification arrives to an end-node, this notification is stored in a local memory cache

at the NI. This memory is arranged in rows (e.g. 4 rows for a 8x8 mesh) so that each

row is populated with one CP. Entries are dynamically allocated and deallocated based

on the CP notifications received.

8.3.3 Isolation

ICARO uses two types of VNs: regular-VN and extra-VN. The first one is used for

non-congested traffic and the second one for congested traffic. For each message to be

injected into the network, the NI checks whether the message will cross an identified CP.

If so, the message is reallocated into the extra-VN and will traverse the network by using

only extra-VN queues. Otherwise, it will be injected through the regular-VN. Figure 8.3

shows an example of ICARO. Router 4 has detected a CP at the east port. Then, node

3 injects a message to node 6, which is not forwarded through the extra-VN since it

does not cross any detected CP. However, it also injects a message to node 5, which

will cross the east port of router 4. Therefore, this message is injected and forwarded

through the extra-VN. As can be seen, the CP affects also to destination nodes 2 and

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 164

Network Interface

Regular-VN Buffer

0 1 2

7
6

8

4 53

Nodes affected by the CP

Extra-VN Buffer

Congested Point

Figure 8.3: ICARO example of node 3 sending a congested message to node 6 and a
non-congested one to node 5.

8 because both are reachable through the CP by source 3, hence, any message to those

nodes will be forwarded through the extra-VN as well.

8.4 PAPM: Path Aware Power Mechanism

8.4.1 Overview

The goal of our proposal is to reduce power consumption in ICARO by implementing

a new buffer power-gating mechanism (PAPM) for the extra-VN queues. Essentially,

PAPM will power on only those queues which are necessary according to the CPs already

detected. The key idea behind PAPM is that not all buffers are always needed for

separate specific flows. Since deterministic routing schemes imply that a given flow

from a source to a destination will be always forwarded through the same path, we

can easily determine which buffers are needed for delivering such flow (those along that

path). In this way, we can safely power on or off router buffers dynamically to fit the

current traffic pattern requirements.

However, our proposal requires to know only those flows crossing CPs, as they are the

ones using extra-queues. Each end-node, by inspecting its local memory can know the

current CP locations. From that information we need to deduce the affected flows.

In addition, one key aspect of PAPM is related with the propagation of power-gating

signals. Most of the current proposals for power-gating stand up for driving the modules

power signals by means of dedicated wires. This strategy suffers from scaling issues in

large network sizes. Instead, since PAPM needs to power buffers on/off by building

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 165

data paths according to the routing policy, it follows an strategy in which buffers are

powered on in the same order a given congested message would follow through its path

to destination. Taking this into account, we design PAPM to send the powering on/off

signals as part of regular single flit messages sent through the regular network.

8.4.2 PAPM

Each extra-VN buffer belonging either to a router port or to a NI must be powered on

only if congested traffic would potentially be delivered through that port or NI. In the

case of NIs, it is quite simple since they own the ICARO cache memory in where CPs

are stored. As soon as a NI allocates a CP (the cache is not empty), the NI becomes a

potential injector of congested traffic. Therefore, its extra-VN buffer must be powered

on.

Regarding router buffers at input ports, to know whether an extra-queue needs to be

powered on or off becomes more difficult. Figure 8.4 shows the NIs subset (NIs 6, 7

and 8) reaching the south port of router 4 (we assume XY routing). This means that

each buffer at each router must be powered on when any of those NIs has congested

traffic to inject and the congested point is along those paths. In the same way, each

extra-VN buffer must be powered off when none of those NIs has congested traffic to

inject through those points. To manage this, when a NI stores a new CP, it sends an

special message (allocation message; AM) to the first node reachable through the CP

port (node 1 in Figure 8.4). This message will increase by 1 a counter stored at each

input buffer at each router along the path until its destination. The extra-VN buffer is

powered on when the counter is greater than zero and is powered off otherwise. In the

example shown in Figure 8.4, the counter at south input port at router 4 will have a

value of 3 (one for each NI).

When a given NI receives a non-congested notification, the CP is removed from the cache

memory and sends a message (deallocation message; DM) to the first node reachable

through the CP (node 1), causing the buffer counters along the path to be decremented

by 1. In this way, when all NIs able to reach a given buffer deallocated the CP, the buffer

counter will reach zero, powering off the extra-VN buffer. Note that, AM messages are

injected through regular-VN buffers (the extra-VN buffers could be powered off), while

DM messages are sent through the extra-VN in order to guarantee that no out of order

delivery arises between the DM and the congested data being forwarded through the

extra-buffers.

Note that, although there are works proposing to switch off portions of buffers as in

[58], in this case is useless since ICARO-PAPM switches off extra-VN buffers, which are

intended to deliver huge amounts of traffic (congested traffic). Therefore, it is expected

to require the whole buffer once its required.

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 166

Network Interface

Input Buffer

0 1 2

76 8

4 53

Congested Point

0

0

0 0

0 0

0

30

0 0

0

0

0

3

0

0

0

0 0 0 0 0

0 0 0 0 0 0

0 0100

01
PAPM counter

Figure 8.4: Network Interfaces reaching south port of router #4.

8.4.3 Selective Broadcast

Once a CP is detected, ICARO reallocates all traffic traversing that CP into the extra-

VN buffers, keeping the traffic in this VN until it arrives to destination, regardless the

path followed after crossing the CP. It means that, for a given CP and source, there is

only one path to reach the CP but, beyond the CP, congested flows might follow different

routes, therefore, all extra-VN buffers along each possible path must be powered on for

the given source and CP pair.

To address this issue we propose a selective broadcast mechanism. It consists in mod-

ifying the routers behavior when forwarding AM/DM messages. These messages are

forwarded as unicast messages until they arrive to a CP. Once a given AM/DM mes-

sage crosses the CP (in the next router), the message is treated as a regular broadcast

message. AM and DM messages are single flit messages, avoiding deadlock issues in

wormhole switched networks when combined with broadcast support.

This mechanism is implemented by setting the next reachable node after the CP as

the AM/DM message destination. These messages are provided with two bits: the

MCactive bit and the MC bit. The first one is set to 0 by default and is enabled only

when it arrives to the destination router (the next router reachable through the CP

port) and the MC bit is set to 1. When both bits are set, the message is treated as

a broadcast message. Since the broadcast mechanism works by duplicating the main

message, it will carry this bit to all its forked messages and this process is replicated

by each forked message along its path to its destination, crossing all reachable routers

starting from the CP. An example of an AM/DM message being delivered can be seen

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 167

0 1 2

98
10

5 6
4

3

11

13
12

14 15

Network Interface

Nodes affected by the CP

AM/DM original message

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

Bcast

{1,1}

7Dst:6

{0,1}

AM/DM message copy

Congested Point

Dst:13

{0,0}

Dst:13

{0,0}

Dst:<destination>

{<MC_active>,<MC>}

Figure 8.5: PAPM messages copies destinations.

in Figure 8.5. The MC bit, when reset, disables broadcast operation. This is useful

when the CP is detected at an end-point. By forcing the MC bit to zero, the message

is not broadcasted at the last router where the end-point is connected to. An example

of the use of MC active bit and MC bit is shown in Figure 8.5.

8.4.4 Flow Control

When using buffer power-gating mechanisms, one of the key challenges consists in avoid-

ing race conditions. Routers are unaware of the buffers state of their neighbors, therefore,

communication between adjacent routers becomes essential to know when is safe to for-

ward data to the next buffer. For this purpose, PAPM implements a simple handshake

protocol between adjacent routers. When a given buffer has to be powered off (its

counter reached 0 and the buffer is empty). The router sends an OFF request to the

upstream router for the corresponding port. Next, when the upstream port receives the

OFF request sets a bit that disables the output port for being selected for delivering

more flits. In addition to this, the router checks for flits having already assigned any

VC for such output port. If not, an ACK is sent to the downstream router. If there

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 168

Counter==0 & buffer.empty? � TRUE

Downstream Router Upstream Router

!out_port.anyVC_used? � TRUE

Counter==0 & buffer.empty? � FALSE

!out_port.anyVC_used? � FALSE

Counter==0 & buffer.empty? � Switch OFF

t t

Figure 8.6: Buffer powering on/off protocol.

is any flit owning a VC for such output port, the VA/SA stage stops assigning VCs

for that output port and the ACK is sent when no more messages own a VC for that

output port. Finally, when the ACK is received by the downstream router, the buffer is

powered off. However, it is worth to note that, between the OFF request and the ACK

arrival, some flits might arrive from the upstream router, and they must be forwarded.

Therefore, actually, after receiving the ACK, the downstream router checks the corre-

sponding buffer and powers the buffer off only if the buffer is empty. Otherwise, the

buffer is marked as requested to be powered off (RSO) and, finally, the buffer is powered

off when it gets empty. However, due to congestion transients, a buffer being powered

off due to a recently disappeared CP, may again be requested to be powered on because

de allocation of a new CP reachable also through the same path. To support this, the

powering off algorithm will cancel the RSO state in case of the counter to be increased

from 0 to 1 due to reception of an AM message while in RSO state. An example of this

protocol is depicted in Figure 8.6.

The protocol for powering a buffer on requires only to send an ON request handshake

message from the downstream router. Since to power a buffer on can not generate any

race condition, this message only causes the upstream buffer to enable that port to be

selected in the VA/SA stage, allowing data to be forwarded to the downstream router

through the extra-VN. No response from the upstream router is needed.

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 169

Table 8.2: General system configuration.

Network configuration
Topology 8x8 2D mesh

Routing policy XY
Switching technique Wormhole (flit-level)

Flow control credits
Flit size 128 bits

Message size 10 flits
Switch queue size 4 flits
Virtual Channels 4 per Virtual Network

8.5 Experimental Results

8.5.1 Methodology

In this section we report simulation results obtained for several system configurations.

All simulations are performed with an in-house network-on-chip simulator under syn-

thetic traffic patterns. Since ICARO’s goal is to isolate congested traffic from non-

congested ones, the inspected traffic pattern is composed of two components: uniform

traffic at low data rate and hotspot traffic consisting in 4 nodes injecting to a single

node. This compound synthetic traffic emulates a system in which regular data ex-

changed between nodes is represented by the background traffic, and main memory

controller requests or hardware accelerators traffic (e.g.: cache prefetchers[79], video

encoders[80]), which tend to generate hotspots naturally, is represented by the hotspot

traffic. The background traffic is injected at a constant rate all simulation long. How-

ever, to emulate burstiness, the hotspot is only activated from time 300µs to 350µs

(highlighted with vertical blue lines in the figures).

Regarding routers, we model a 4-stage pipeline router: IB (input buffer), RT (routing),

VA/SA (virtual channel and switch allocation), X (link crossing). Since ICARO uses

an additional VN to isolate congested traffic, all simulations are performed with 2 VNs,

each one containing the same number of VCs. The rest of the system configuration

parameters are described in Table 8.2. To elaborate different configurations, in order to

evaluate our proposal, we set a baseline configuration. Starting from this configuration,

we modify different parameters (mesh size, router’s queue size, number of VCs and

number of hotspots) to elaborate a set of benchmarks. All configurations are detailed

in Table 8.3.

To compute power consumption we use Orion v3.0 compiled as a library for our simulator

so that the simulator calls Orion periodically with the current network state to get power

values of the whole mesh.

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 170

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

E
n

d
-t

o
-e

n
d

 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e

)

Time (us)

End-to-end latency

noICARO 5x5
ICARO 5x5

noICARO 8x8
ICARO 8x8

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

E
n

d
-t

o
-e

n
d

 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e

)

Time (us)

End-to-end latency

noICARO qs2
ICARO qs2

noICARO qs4
ICARO qs4

noICARO qs8
ICARO qs8

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800

E
n

d
-t

o
-e

n
d

 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e

)

Time (us)

End-to-end latency

noICARO vcs2
ICARO vcs2

noICARO vcs4
ICARO vcs4

noICARO vcs8
ICARO vcs8

Figure 8.7: End-to-end latency comparison between no-ICARO and ICARO for dif-
ferent configuration parameters

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

E
n

d
-t

o
-e

n
d

 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e

)

Time (us)

End-to-end latency

ICARO 5x5
ICARO-PAPM 5x5

ICARO 8x8
ICARO-PAPM 8x8

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

E
n

d
-t

o
-e

n
d

 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e

)

Time (us)

End-to-end latency

ICARO qs2
ICARO-PAPM qs2

ICARO qs4
ICARO-PAPM qs4

ICARO qs8
ICARO-PAPM qs8

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

E
n

d
-t

o
-e

n
d

 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e

)

Time (us)

End-to-end latency

ICARO vcs2
ICARO-PAPM vcs2

ICARO vcs4
ICARO-PAPM vcs4

ICARO vcs8
ICARO-PAPM vcs8

Figure 8.8: End-to-end latency comparison between ICARO and ICARO-PAPM for
different configuration parameters

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 171

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800

P
o

w
e

r
(m

W
)

Time (us)

Power

ICARO 5x5
ICARO-PAPM 5x5

ICARO 8x8
ICARO-PAPM 8x8

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

P
o

w
e

r
(m

W
)

Time (us)

Power

ICARO qs2
ICARO-PAPM qs2

ICARO qs4
ICARO-PAPM qs4

ICARO qs8
ICARO-PAPM qs8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800

P
o

w
e

r
(m

W
)

Time (us)

Power

ICARO vcs2
ICARO-PAPM vcs2

ICARO vcs4
ICARO-PAPM vcs4

ICARO vcs8
ICARO-PAPM vcs8

Figure 8.9: Power consumption for different configuration parameters

8.5.2 Results

Since the goal of ICARO-PAPM is to isolate congested traffic in order to keep the

background one unaffected, for clarity, latency graphs show results only for background

traffic. Note that, latencies for AM/DM messages are also included in the results.

Figure 8.7 shows the latency for all configurations comparing a system without ICARO

and the same scenarios with ICARO. As seen, if ICARO is not used, when the hotspot is

enabled, the background traffic latency increases dramatically due to its interaction with

congested flows. Nevertheless, when using ICARO, congested traffic is isolated so that

background traffic keeps almost unaffected. In Figure 8.8, a comparison between ICARO

and ICARO-PAPM is performed in order to demonstrate that, to implement a power-

gating mechanism, has negligible effects over ICARO. As seen, ICARO-PAPM performs

quite similar to ICARO. It is worth to note that, even for configurations in which PAPM

messages suffer from high latencies (shown later), there is no significant ICARO-PAPM

impact on performance. Regarding power consumption, in Figure 8.9 all results are

depicted, showing values for the overall mesh power consumption. As can be seen,

before the hotspot is activated, ICARO-PAPM saves up to 35% of power consumption

by keeping the extra-VN buffers powered off. When hotspot is activated, ICARO-PAPM

activates only those buffers that compose the routes needed to deliver congested traffic,

therefore, reduces power consumption by 27%. In Figures 8.10 and Figure 8.11, final

results for power consumption are shown dividing the power consumption in two sets:

when congestion does not arise in the network (hotspot disabled) and when congestion

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 172

 0

 100

 200

 300

 400

 500

 600

 700

ba
se

lin
e

m
es

h5
x5 qs

2
qs

8
vc

s2
vc

s8

m
W

ICARO
ICARO-PAPM

Figure 8.10: Average power con-
sumption when no congestion in the

network.

 0

 100

 200

 300

 400

 500

 600

 700

ba
se

lin
e

m
es

h5
x5 qs

2
qs

8
vc

s2
vc

s8

m
W

ICARO
ICARO-PAPM

Figure 8.11: Average power con-
sumption when congestion traffic in

the network.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

H264 VCE

P
o

w
e

r
(m

w
)

ICARO
ICARO-PAPM

Figure 8.12: Average power consumption under realistic multimedia traffic patterns.

arises in the network (hotspot enabled), respectively. In all the cases ICARO-PAPM

succeeds in reducing power consumption significantly.

8.5.3 Multimedia Traffic

In order to evaluate our proposal under more realistic scenarios we also performed eval-

uations under more realistic traffic patterns. We followed the same strategy as in [54].

We implement H264 and VCE multimedia codecs realistic traffic patterns and performed

simulations with no ICARO and with ICARO-PAPM. Figure 8.12 shows the power con-

sumption for the given traffic patterns without any congestion control and with ICARO-

PAPM. As seen, ICARO-PAPM saves power by activating buffers only when necessary,

achieving 26% of power saving in both scenarios with no performance loss.

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 173

Table 8.3: Scenarios configuration.

Scenarios
Label Mesh Queue Num. Num.

Size Size VCs HS
(nodes)

Baseline 8x8 4 4 1
5x5 5x5 4 4 1
qs2 8x8 2 4 1
qs8 8x8 8 4 1
vcs2 8x8 4 2 1
vcs8 8x8 4 8 1

8.6 Related Work

8.6.1 Congestion Management

In congestion management most of the proposals are based on measuring congestion

metrics and to use adaptive routing to skip congested nodes as in [20][91][22]. However,

these approaches tend to move congestion from one region, to another. In [20], authors

propose an adaptive routing policy (RCA) based on different network state metrics. RCA

uses a low-bandwidth monitoring network so that, at each hop, the router aggregates

its local congestion estimation based on these metrics. To aggregate this estimation, the

router combines its local metrics with those received from its neighbors giving different

weights to the local metrics and to the neighbors metrics. In this way, RCA, routes

traffic through the best path. Weights assigned to the local and remote metrics seem

critical to determine the best path. In case of assigning too much weight to the remote

metrics, the local router may take wrong decisions based on the state of very far away

routers. On the other hand, if too much weight is assigned to the local metrics, the

routing policy may hide heavily congested nodes located far away from the router.

Other approaches opt for using also adaptive routing but based on predictions. In this

sense, in [24] an algorithm based on Artificial Neural Networks (ANN) predicts the

appearance of hotspots in order to react promptly. The ANN can be trained online or

offline and then monitors the buffer utilization of each router to predict the formation of

hotspots. However, this proposal may suffer the same issue noted previously for adaptive

routing based mechanisms. In [91] authors also propose a learning-based mechanism

(QCA). This mechanism uses of the Q-learning algorithm to globally and locally evaluate

the network state in order to take routing decisions properly. Each time a packet is

delivered from a router to its neighbor, the neighbor sends back a learning message

containing network state information used to take routing decisions. However, this

proposal requires the use of a table to store network state data on each node. This

table stores data for each node, which means that the total stored data in the network

grows quadratically with the number of nodes. Other authors follow other completely

different strategies to tackle congestion. In [92] authors modify the router architecture

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 174

in order to allow to use other input ports buffers with free slots to store flits originally

destined to other full input port buffer. This enables to optimize the use of the network

resources. However, as authors admit, this leads to out of order delivery. Besides, this

buffer architecture requires buffers to be provided with two writing ports, increasing the

logic overhead. In addition to this, under saturation situations, congested flows could

be reallocated into congestion free buffers, helping to propagate congestion along paths

that, otherwise, may not be affected by congestion.

These congestion management mechanisms are focused on either dealing with congestion

through adaptive routing, which is an approach that tends to move saturated regions

from one network location to another or other approaches with several issues that makes

them not to be affordable. Instead of this, ICARO deals with congestion from another

perspective. ICARO assumes that congestion is not the problem itself, the real problem

is the harmful effects (HoL) that congested flows cause to non-congested ones.Therefore,

ICARO tries not to remove congestion but to isolate it.

8.6.2 Power Gating

Most of the solutions in the literature focus on applying coarse-grained power-gating

techniques powering off routers or even sets of routers (regions). This is the case of [41],

in which authors propose Router Parking (RT) in which routers associated to sleeping

cores are powered off. They use a centralized controller (Fabric Manager) which collects

the state of the network, takes the decisions of powering on/off each router and sends

this decision to each router. Since powering routers off causes to break data paths, this

proposal needs to reroute traffic around parked routers, which might increase latency

and power. To deal with this, authors propose 3 different RP flavors: RP-A (aggressive)

which parks as many routers as possible to improve power savings, RP-C (conservative)

which carefully selects a small set of routers to be parked, and RP-Adp (adaptive) which

selects between RP-A and RP-C dynamically depending on network utilization. This

work achieves large power savings but to power whole routers off makes the complexity

of this proposal to increase due to the traffic detours and the need to handle corner cases

caused by network routing reconfiguration.

In [43] authors propose to power routers off but enabling bypasses at powered off routers

in order to enable a guaranteed path at each router. This bypass also enables the NIs to

inject and eject traffic to/from the network even when its associated router is powered

off. For the routers overhead is low as it needs an inexpensive logic. However, the

complexity associated to the bypass flow control and VC selection is moved to the NI,

which may increase its complexity and power consumption.

Other proposals more similar to PAPM, propose to power off only the buffers, since they

are the most power-hungry part of the router. For instance, in [46] a buffer power-gating

Chapter 8. ICARO-PAPM: Congestion Management with Selective Queue
Power-Gating 175

mechanism is proposed making use of lookahead routing to offset the amount of time

necessary to powering the buffer on. By using lookahead routing each node is able to

know in advance the path the message will follow 2 hops away from it. Each router is

connected to the routers located 2 hops away on each dimension so that the n-th router

is able to request the buffer powering of the (n+2)-th router buffers. In this way, the

buffers are powered on a few cycles before the first flit arrives to the (n+2)-th router.

However, this proposal requires to wire from each router to the one located at two hops

on each dimension, which may be expensive.

Most of the described power-gating works are intended to switch entire routers off.

However, as seen in Figure 8.1, to power off the entire router present more challenges

than benefits. Also, dedicated wires to power on/off are commonly used. Our proposal,

although it is designed as part of ICARO, uses a different approach, using the regular

network to power on/off buffers along paths according the routing policy, which fits

perfectly the needs of ICARO.

8.7 Conclusions

In this paper we have revisited ICARO, a congestion control mechanism that works by

isolating congested traffic by means of an additional VN. We propose PAPM, a buffer

power-gating mechanism that takes into account the paths followed by congested traffic

in order to power on only the buffers needed, and added it to ICARO to alleviate

the power overhead caused by the additional buffers required. We have demonstrated

that ICARO behavior keeps unaffected when power-gating its additional buffers and we

achieve to reduce the power consumption by up to 35% when no congestion arises on

the network and up to 27% when buffers are powered on to deliver congested traffic.

Acknowledgment

This work was supported by the Spanish Ministerio de Economı́a y Competitividad

(MINECO) and by FEDER funds under Grant TIN2015-66972-C05-1-R.

Chapter 9

PAPM: Path-Aware Fine-Grained

Virtual Channel Power

Management

• Authors: José Vicente Escamilla (Universitat Politècnica de València), José Flich

(Universitat Politècnica de València) and Mario R. Casu (Politecnico di Torino)

177

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 178

9.1 Abstract

Power consumption minimization is vital in SoC designs. As technology node goes

deeper, more complex systems are integrated on the same chip, driving the multicore

evolution to the manycore era. The NoC plays a vital role as communication backbone

and has an increasing impact on the power consumption of the whole chip. In this

paper we propose PAPM, a path-aware power management strategy. PAPM allows to

selectively power on and off router buffers based on the paths used by the communicating

flows. In addition, PAPM detects and correctly manages shared buffers by disjoint

unrelated paths. With PAPM, only buffers needed for current communication flows are

powered on, thus saving large amounts of energy. In addition, complete routers may

safely turn down, avoiding flow detours, when all their buffers are powered down by

PAPM. Router modifications are negligible in PAPM. Results show that with PAPM

we achieve up to 79% of power improvement over systems not provided with power-

gating techniques and up to 45% of improvement over a recent proposed power-gating

mechanism.

9.2 Introduction

Manycore processors are one of the most promising solution for addressing the never

stopping search for performance improvement. Recent commercial solutions already

reach hundreds of cores on the same chip (e.g. 256-cores with the MPPA architecture

[78]). These systems embed an on chip network, known as a network-on-chip (NoC)

[6]. The NoC is in charge of bringing effective communication between all the chip

components, mainly including the cores, the memory elements and the I/O components.

With every system size increment, the NoC plays a larger role in terms of performance

impact. As the NoC gets larger in size, the performance of the whole system becomes

affected by the performance and effectiveness of the NoC.

For a canonical NoC router, the components that consume most of the power are the

buffers. Fig 9.1 shows the power consumption break down for each main component in

a router. Results shown correspond to a 5-port router with 4 virtual channels (VCs)

capable of storing 4 flits each. Flit width is set to 128 bits. As we can see, 70% of total

power consumption is located at the input buffers.

There are many proposals in the literature for reducing power consumption in NoCs.

They can be classified by the component they target. In one flavor the complete NoC

router is powered down, thus maximizing power saving. This is the case of the Router

Parking proposal [41]. However, in this type of strategies, routing of packets gets severely

impacted, needing strategies to de-route messages when they face powered down routers.

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 179

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Crossbar Arbiter InputBuffer ClockCtrl

P
o

w
e

r
(m

W
)

Typical Router Power Consumption

Figure 9.1: Power consumption of
the different components of a canoni-

cal router.

0 1 2

98 10

5 6
4

3

11

1312
14

15

Network Interface

7

Shared buffer

Figure 9.2: Flows sharing buffers
along their paths.

Also, in some chip multiprocessor systems (CMPs) the last level cache is usually dis-

tributed over the complete system. Therefore, switching off a router may prevent ac-

cessing one cache bank.

Another research direction in power saving targets powering down router buffers. In

this approach, the messages may encounter down buffers along their paths and two

possibilities exist. The first one is to implement a mechanism to switch on buffers

while the message gets temporarily blocked. The second one is to de-route messages as

performed typically when switching off complete routers.

Switching off and on buffers on demand is an smart approach to save energy in the

network. However, deciding when to switch on and off the buffers may become critical

for performance reasons. Typically, some cycles need to be spent in the process of

powering on a buffer. During those cycles messages get blocked potentially incurring

also on temporal congestion in the network. Also, the process of powering on and off

buffers incurs in energy overhead. Indeed, the number of cycles a buffer must be switched

off in order to amortize this overhead is known as Break Even Time (BET). Thus, it is

important to switch on or off buffers appropriately to avoid wasting power.

On the other hand, NoC routers typically implement different buffer queues at the input

ports in order to provide higher performance. Indeed, when using virtual channels,

messages blocked temporarily may get bypassed by other messages, thus improving

performance. Virtual channels can be used for other purposes, for instance deadlock

avoidance and for implementing different virtual networks on the same physical network.

Anyway, from a power consumption perspective, the use of virtual channels incurs in

more power overheads due to the need of using more buffers.

The effectiveness of using virtual channels for performance improvement depends on

the load of the network. If the network load is low, more than one queue per input

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 180

port (one virtual channel) will not be needed most of the time. Indeed, messages will

seldom block in a low loaded network. However, when the load of the network increase,

more contention will occur and messages will interfere between them. In that sense,

having more than one virtual channel will help in reducing conflicts and achieving good

performance.

In this scenario (NoC with virtual channels and a varying network injection rate), power

consumption management becomes complex. Moreover, when running several concur-

rent applications, most router buffers will be shared by all the applications. It would

be advisable to have an smart NoC which effectively knows which parts of the network

(indeed the buffers) are needed by which applications, and therefore, switching on only

those buffers when needed.

In this paper we address this challenge and propose PAPM (Path-Aware Power Man-

agement) strategy. We propose an strategy and describe an implementation for the

strategy. PAPM relies on the paths used by the application in order to manage the

buffers along those paths. PAPM will control also buffers at routers shared by differ-

ent applications (or by different flows of the same application), thus preventing those

buffers being powered down even if one application finishes its communication process.

Moreover, routers with all the buffers powered down will be powered off completely thus

saving more energy.

Results show that our proposal achieves up to 80% of power consumption improvement

over a system provided with no power-gating mechanism. Also, we overcome by up to

57% a recent state-of-the-art proposal.

The rest of the paper is structured as follows. First, we describe the state-of-the-art

related to power-gating in NoCs. Then, we describe PAPM. Next, we evaluate our

proposal and analyze the results. Finally, we present the conclusions of this work and

our future plans.

9.3 Related Work

There are many proposals for power-gating. Traditionally, most of the proposals in-

tended to networks-on-chip consist in powering-off routers completely (coarse-grained

power-gating). However, in order to disable a router completely, all traffic traversing

the router must be diverted through alternative paths, which may have a significant im-

pact in performance. Among these proposals we can highlight Router Parking[41]. This

work takes advantage of sleeping nodes to disable their routers in order to save power.

To do this, a centralized manager (FM) is used, which is in charge of collecting the state

of all nodes and to drive the network reconfiguration. Reconfiguration is performed in

periods of several µs. This prevents taking advantage of more potential opportunities

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 181

within this lapse of time. Additionally, network reconfigurations may take also several

µs, which may cause penalties from the point of view of performance. Authors note

that a centralized manager performs better than a distributed mechanism. However,

it is well known that centralized strategies typically do not scale for large systems and

become single point of failure for the system.

Disabling paths by switching buffers off can compromise performance, specially when

using deterministic routing. To solve this issue, some works, instead of switching all the

buffers off in a given port, decrease the available resources (number of VCs) by switching

some of the buffers off[42] or switch all buffers off and enable bypasses to preserve paths.

In [43] authors propose to power routers off but enabling bypasses at powered off routers

in order to enable a guaranteed path at each router. This bypass also enables the NIs to

inject and eject traffic to/from the network even when its associated router is powered

off. For the routers, the overhead is low as it needs an inexpensive logic. However,

the complexity associated to the bypass flow control and VC selection is moved to the

NI, which may increase its complexity and power consumption. In [44] authors propose

TooT, which relies on the fact that most of the traffic crosses routers making no turns.

Based on this fact, TooT switches most parts of the router off, and keeps on only a very

reduced version of the router and one latch per port, allowing to forward traffic that

requires no turns. However, effectiveness of this sort of strategies depend on the traffic

pattern and may not work properly under some circumstances.

Other works advocate for using fine-grained power-gating, dividing routers into small

parts or domains capable of being switched off individually. This is the case of Power

Punch[47]. This proposal consists in sending power-gating signals through the network

in order to switch buffers on/off as long as these signals are delivered through buffers.

The key of this work is the way in which the authors propose to aggregate in the

same message different power-gating signals during their delivery through the network,

alleviating the overhead caused by these signals.

Since one of the key challenges of implementing power-gating techniques is to deal with

the delays derived from the buffer power switching some authors take benefit of look-

ahead routing. Related to this, in [46] a buffer power-gating mechanism is proposed

using lookahead routing to offset the amount of time necessary to powering buffers on.

By using lookahead routing each node is able to know in advance the path the message

will follow 2 hops away from it. Each router is connected to the routers located 2 hops

away on each dimension so that the n-th router is able to request the buffer powering of

the (n+2)-th router buffers. In this way, the buffers are powered on a few cycles before

the first flit arrives to the (n+2)-th router. However, this proposal requires to wire from

each router to the one located at two hops on each dimension, which may be expensive.

Our proposal overcomes most of the drawbacks of other works. PAPM is aware of the

actual network requirements by keeping track of required paths to serve flows before

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 182

injecting at sources allowing to enable resource very accurately and avoiding traffic de-

touring. This information is used to fastly deliver power-on signals through a lightweight

network avoiding to saturate the regular network with several messages. Also, our pro-

posal works at a fine-grained level, first driving the buffers and finally over the rest of

the router logic, which increase opportunities of saving power.

9.4 PAPM Description

In this section we describe the PAPM strategy and a possible implementation. First,

we provide a general description of the strategy and then we focus into implementation

details.

9.4.1 General Description

The PAPM method works at the granularity of paths. One path is defined by the source

and destination end-nodes connected through the NoC. Those nodes use a fixed path

(we assume deterministic routing) to communicate. Along this path, a set of buffers are

used to flow control the advance of the traffic. Therefore, a path can be seen as a chain

of buffers.

PAPM manages the status of all the buffers along a path. Buffers can be powered on or

off. Whenever a path needs to be used, the source end node injects a control message,

referred to as ABP (Activate Buffers Path), in order to power on all the buffers along

the path. Those buffers will then be kept on during the transmission of traffic along

the path. When the source node has no more traffic to inject or when it decides to

temporarily switch off the path (to save energy) then the node injects a similar message,

referred to as DBP (Deactivate Buffers Path), in order to power down buffers along the

path.

One important aspect of PAPM is to be fast enough when powering on buffers. Indeed,

those buffers need to be on for the transmission of incoming messages. To speed up

this process, the PAPM method will rely on a lightweight fast network implemented as

a bidirectional ring. This network, referred to as Activation Network (AN) will enable

powering on all the buffers along a path.

The power down process in PAPM (DBP message) works, however, in synchrony with

the transmission of messages. Indeed, PAPM will inject the DBP message through the

regular NoC network, potentially switching off buffers along its way to final destination.

One key aspect of PAPM is the management of shared buffers by concurrent flows.

Indeed, two non-disjoint paths in the network will share some input ports, and thus,

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 183

buffers. Activating and deactivating buffers for one path does not have to conflict with

the expected buffer status of the other path. Indeed, buffers need to be powered on if

any of the paths sharing the buffer are active. Figure 9.2 shows the case.

To address the sharing buffers issue, PAPM will rely on an internal counter strategy

on every router input port. The counter will increase by one for every ABP message

received addressing that buffer. Accordingly, the counter will decrease by two (explained

in Section 9.4.3) for every DBP message received through the associated input port. The

input port will be activated (powered on) based on the counter value.

When a node allocates a message for a given destination, the NI PAPM module checks

the destination in order to know whether this path is available (switched on) or not.1

This information is stored in the Active Paths Bitmap by means of a bit for each destina-

tion node (1=path active, 0=path inactive). If the path is currently active, no additional

action is required to send the message. Otherwise, an ABP is sent through the AN net-

work in order to switch on the path, being marked as active in the paths bitmap. Note

that the path may actually be switched on because other node has asked the same path

to be switched on. Once the message is sent, PAPM checks whether the path must be

switched off again. If so, PAPM sends a DBP message through the regular network in

order to switch the path off and the path is marked as inactive.

In addition to switch buffers off, to save more power, PAPM monitors at each router

the state of all buffers. When all buffers are off, since the rest of the router logic is no

longer needed, the complete router is switched off as well. Accordingly, when any of the

buffers are switched on, the router logic is also switched on.

9.4.2 Router Implementation

Figure 9.3 shows the implementation of PAPM strategy on the baseline router assumed.

The router implements the standard logic blocks, namely input buffer, routing unit,

virtual channel allocator, switch allocator and crossbar. The PAPM strategy impacts

mainly on the input buffer strategy. A counter and a logic block is added to update the

counter based on the arrival of ABP and DBP messages. Notice that DBP messages

arrive through the input port associated to the buffer whereas ABP messages arrive

through a lightweight new input port for the router. The added control network will

deliver ABP messages through that port.

The logic to support PAPM on the router design is small. Notice that every input port

needs to compute whether the port is along the path set between the source and the

destination of the ABP message. This logic is provided with the notification source, the

1Note that there is no way to certainly know whether the whole path is effectively on/off since other
nodes may share parts of the path. A given node is only able to certainly know whether it has requested
to switch the path on or off.

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 184

Path Computation

N 0

E 0

W 0

S 0

L 0

Counters

Increment

Decrement

North buffer

West buffer

South buffer

Local buffer

East buffer

RT

Power-gate

Path Computation

VA

/

SA

AN0 AN1

Figure 9.3: Router implementation.

AN register

Node

AN register

AN0

input

NI

AN0

output
Reg

AN1

input

NI

AN1

output
Reg

Router

7

7

7

7

Figure 9.4: AN network in a 4x4 mesh.

destination node which defines the path (source→destination) to be switched on/off and

the current node which allows to know whether this node belongs to the path and which

ports are involved in it. The outputs of this logic are connected to the counter of each

input port, allowing the counter for each buffer to be incremented when needed.

As seen in Figure 9.3, each counter for each port drives the power for each input port.

These control signals trigger the actions to power on or off those related buffers.

Switching ports off may cause race conditions since neighbor routers may already have

sent flits to the power-gated input port or, at least, already reserved resources to deliver

flits (credits). To avoid these synchronization issues we implemented a simple hand-

shaking protocol. Given router A wants to power one of its input ports off connected

to neighbor B, this protocol simply sends a message from A to B just before switching

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 185

the port off. Router B replies to this message with an ACK signal in case there are no

flits pending to be delivered to A and marks the output port as disabled to avoid to

be selected in the VA/SA in further arbitrations. Otherwise, router B waits until the

condition meets to send this ACK. Once the ACK signal is received by router A, the

input port is switched off. To switch a port on, a signal is sent to router B to force

router B to mark the output port as enabled.

9.4.3 Activation Network

Figure 9.4 shows the added control network to deliver ABP messages. The network forms

a bidirectional ring topology forming a zig-zag structure visiting all the NoC routers and

end nodes. For each network hop one simple latch is used and an small multiplexer unit

is added. The multiplexer is added on every end-node in order to allow to inject ABP

messages. The output of the demultiplexer is wired on every router in order to eject a

copy of traveling ABP messages through the new network.

The ABP messages injected through the network will travel along all the ring and will be

removed when they reach again the injector end node (one complete cycle performed). To

do this, each message includes the following fields: source of the path (src), destination

of the path (dst) and a valid bit (valid). In order to speedup the ABPs delivery, the ring

works at twice the system clock frequency by using latches activated either by rising

or falling edge. Because of this, each ABP is duplicated and injected in each direction

of the ring. This means that each router will receive each ABP duplicated, thus its

affected buffer counters will be increased by 2. To solve this, each DBP received will

cause the buffer counter to be decreased by 2 also. Whenever an ABP message is within

the network, the message will get maximum priority to move forward along the ring.

ABP messages are triggered by messages allocation and this may occur up to once per

cycle and ABP injection may be blocked due to the highest priority of the in-flight

notifications. Because of this, an small buffer is needed for ABPs storing. However,

we analyzed empirically the required buffer size and we arrived to the conclusion that

a 2-slots length buffer is enough to avoid any issue for all simulations performed in

Section 9.5.

9.4.4 Power-Down Strategy at End Nodes

Switching off/on buffers incur in power penalties, potentially ruining any power saving

achieved by switching them off. In order to amortize this power overhead, the buffer must

be powered off a minimum number of cycles (BET). Therefore, one important aspect

of PAPM method is deciding when to inject ABP or DBP messages. This is performed

at the end-nodes. To do this, PAPM keeps track of the time between generation of

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 186

messages for the each destination (TBGdst). At each generated message, the TBGdst

value is updated with the following formula:

TBGdst = (TBGdst × 0.8) + ((Tcurrent − Tlast)× 0.2)

where Tcurrent represents the current time and Tlast represents the time where the last

message to the same destination was injected.

PAPM implements a bit vector to keep track the status for all the paths referred to as

(Active Paths Bitmap). When a message is generated, PAPM checks the status for the

path used to reach the destination. If the path is off, then an ABP message is injected,

changing the state of the bit to on.

The message generated is then delivered to the network interface queue and prepared

for injection. When the tail of the message reaches the head of the queue (just before

injecting it), PAPM checks whether the path has to be powered down or not. The path

should be powered off if the time for the next injected message to the same destination

is larger than the BET. This means some power saving will be achieved. Therefore,

PAPM enables the DBP bit (which converts the message into a DBP message) in the

tail flit of the message if the following condition applies:

TBGdst > BET

If the expected time between injections is smaller then the path is not switched off.

If the last message sent to a given node did not trigger the DBP bit and no more mes-

sages are allocated for that destination node (TBG failed predicting the next allocation

time) will cause the path to be kept on indefinitely. To avoid this, a dedicated module

(TBG watchdog) is in charge of automatically sending a dedicated DBP message to such

destination node after 3 ∗ TBG cycles in case of no new message allocation.

9.5 Performance Evaluation

9.5.1 Simulation Testbed

In this section, PAPM is evaluated under different configurations using a cycle-accurate

in-house network-on-chip simulator. The simulator implements 4-stage routers: IB (In-

put Buffer), RT (Routing), VA/SA (Virtual Channel and Switch Allocation), X (Cross-

bar). See Table 9.1 for further configuration details. To obtain our power results we used

a modified version of Orion v3.0 [57] and Encounter tool from Cadence for calculating

power overhead due to the additional logic added by PAPM.

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 187

Simulation configuration
Topology 4x4 2D mesh

Routing policy XY
Switching technique Wormhole

Flow control credits
Flit size 128 bits

Message size 10 flits
Switch queue size 4 flits
Virtual Channels 4

Frequency 1GHz

Table 9.1: Simulation configuration.

Time (µs) Pattern Inj. Rate (f/c)
0-99 uniform

0.1

100-199 bit-reversal
200-299 bit-complement
300-399 bit-rotation
400-499 bit-shuffle
500-599 transpose
600-699 tornado
700-799 butterfly

Table 9.2: Traffic patterns.

Regarding power-on delay, according to the current state-of-the-art [45] we could assume

a delay of 0.2ns. However, in order to show the behavior of our proposal under worse

cases, for our experiments we assume a power-on delay of 2ns (2 cycles).

In order to evaluate our proposal, we perform two analysis following different approaches.

First, in Section 9.5.2 we simulate a system performing changes of context by changing

between different traffic patterns for two different mesh sizes: 4x4 and 8x8. Then, in

Section 9.5.3, we use realistic traffic [54], increasing its intensity until network saturation

to find the upper limit in which buffers are used at their maximum rate while using more

realistic traffic.

For our analysis we show results for a system provided with no power-gating mecha-

nism, results for a system implementing PAPM and, additionally we compare also with

TooT[44], a recent power-gating proposal described in Section 9.3, which essentially

switches routers off and bypasses ports when traffic with no turns is detected.

9.5.2 Performance Analysis

For our first benchmark we perform simulations using several synthetic traffic patterns.

Simulation toggles the traffic pattern used along the time in order to emulate a system

running different applications. By doing this, we demonstrate that PAPM is able to

dynamically adapt the available buffers in the network to fit the application requirements

while saving power switching off those which are not used. Details about the traffic

patterns used are described in Table 9.2.

One of the main challenges when implementing power-gating based strategies is to hide

the delay caused by the powering on process. In addition to this, since our proposal

is based in notifications (ABPs) to trigger this process, there is an additional delay

caused by ABPs delivery time. However, as seen in Fig. 9.5, the AN is able to deliver

all notifications in time thus no significant latency overhead can be appreciated. In the

same way, as seen in Fig. 9.7, no impact on throughput can be appreciated. However,

as shown in Fig. 9.6, PAPM disables buffers not required to deliver each traffic type,

achieving up to 73% and 33% of power savings compared with no power-gating and

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 188

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800

E
n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (us)

End-to-end latency

noPG
TooT

PAPM

Figure 9.5: End-to-end latency.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

P
o
w

e
r

(m
W

)

Time (us)

Power

noPG
TooT

PAPM

Figure 9.6: Power consumption.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(f

lit
s
/n

s
/n

o
d
e
)

Time (us)

Throughput

noPG
TooT

PAPM

Figure 9.7: Throughput.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800

E
n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (us)

End-to-end latency

noPG
TooT

PAPM

Figure 9.8: 8x8 end-to-end latency.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800

P
o
w

e
r

(m
W

)

Time (us)

Power

noPG
TooT

PAPM

Figure 9.9: 8x8 power consumption.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(f

lit
s
/n

s
/n

o
d
e
)

Time (us)

Throughput

noPG
TooT

PAPM

Figure 9.10: 8x8 mesh throughput.

TooT respectively. It is worth to note that, in addition to overcome TooT saving power,

TooT suffers latency overheads while PAPM keeps the latencies unaffected. Similarly,

Figures 9.8, 9.9 and 9.10 show the results for a 8x8 mesh network. As shown, the latency

when running PAPM increase slightly. This is due to the delay of the AN delivering

the ABPs to all nodes in the network. However, this increase is minimal, is lesser than

the latency increase using TooT and the power saving of PAPM is still around 65% of

improvement compared with the no power-gating case and 21% comparing with TooT.

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 189

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800

E
n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a
g
e
)

Time (us)

End-to-end latency

noPG
TooT

PAPM

Figure 9.11: H264 end-to-end la-
tency.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

P
o
w

e
r

(m
W

)

Time (us)

Power

noPG
TooT

PAPM

Figure 9.12: H264 power consump-
tion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(f

lit
s
/n

s
/n

o
d
e
)

Time (us)

Throughput

noPG
TooT

PAPM

Figure 9.13: H264 Throughput.

9.5.3 Saturation Analysis

For this analysis a realistic traffic pattern corresponding to the H264 codec is used. To

generate this traffic we followed the methodology described in [54]. Since this traffic

emulates the H264 video codec traffic, we are able to provide the frame rate at which

the codec works. Since flows from any source are sent always to the same destination,

the subset of used buffers is always the same. Taking benefit of this, for this analysis

we increase the frame rate parameter in order to increase the network load under this

traffic in order to analyze how PAPM and TooT react to an increasing network load

until saturation using always the same buffers subset. In addition to this, performing

this analysis is also useful to evaluate PAPM and TooT under more realistic traffic.

As seen in Fig. 9.11 and Fig 9.13, PAPM has negligible effect over the latency and

throughput respectively. As seen, at very low frame rate, the network utilization is

very low, therefore, while the no power-gating case keeps all the buffers on, PAPM only

switch them on when necessary, consuming very low power. Regarding TooT, due to the

reduced buffers capacity in routers when bypasses are enabled, cause the saturation to

arise earlier, which makes it not suitable under high network load. As long as the frame

rate is increased, power consumption for the no power-gating case increases due to the

dynamic power component and PAPM reacts by increasing the buffers uptime, increasing

Chapter 9. PAPM: Path-Aware Fine-Grained Virtual Channel Power Management 190

the power consumption as well. However, in the worst case (at the highest frame rate),

PAPM achieves an average power consumption improvement of 79% comparing with

case with no power-gating and of 45% comparing with TooT.

9.6 Conclusions

In this work we presented PAPM, a fine-grained and path-aware buffer power-gating

mechanism. PAPM essentially works by sending power-gating messages from each source

in order to increase counters implemented in each router buffer. In this way, buffers are

provided with a mechanism to determine whether each buffer is in use by any node and

switching on or off the buffer adequately. We demonstrated PAPM is able to save power

by up to 79% compared with a system provided with no power-gating mechanism and

improves TooT by up to 45% with no significant latency or through penalty.

9.7 Future Work

As future work we plan to improve PAPM by providing it the ability to switch VCs

on or off depending on the requirements of the system, offering more resources in those

network points where more traffic coincides.

Chapter 10

Conclusions

191

Chapter 10. Conclusions 192

10.1 Contributions

Networks-on-chip are emerging as the key solution in the multicore/manycore era to pro-

vide connectivity between tens, hundreds or even thousand of nodes, due to its effectivity

and scalability. However, as the scaling technology goes further heading to the many-

core era, network saturation and power consumption becomes an imminent challenge

that must be addressed to guarantee next generation chips performance. Current power

control mechanisms incur in performance penalties, which lead to system performance

degradation. Because of this, in this thesis we have addressed the challenge by design-

ing an effective congestion control mechanism (ICARO) based on HoL-blocking removal

through congestion isolation, and then we combined this congestion control mechanism

with DVFS-based and power-gating techniques.

First, we developed BAHIA to deal with bursty traffic by means of monitoring end

nodes. BAHIA is able to detect bursty traffic at end nodes and effectively isolate bursts

into the extra-VN, improving the system performance. However, bursty traffic may not

necessarily be harmful to the rest of traffic since it may not cause congestion, therefore,

the BAHIA detection strategy is naive in that sense. Because of this, BAHIA can be

seen as a first step before tackling a more sophisticated mechanism, which is ICARO, a

congestion control mechanism which works by detecting congestion at routers, which is

a more complex but also more accurate and effective approach.

ICARO, follows the same traffic isolation approach of BAHIA but improves the detec-

tion strategy, effectively identifying harmful traffic and succeeds in isolating it, thereby

improving the system performance due to the accurate and fast HoL-blocking removal.

Next, we combined ICARO with DVFS in three flavors depending on the parameter to

be improved: performance, power consumption and a balance of both. With this work,

we demonstrated that congestion isolation by means of ICARO can perform successfully

in improving different parameter in systems provided with DVFS.

Also, we combined ICARO with DMSD, a latency driven DVFS-based proposal. DMSD

works by setting a latency target close to the saturation point to maximize power-saving.

However, irregular traffic patterns as hotspot may affect negatively to the DMSD be-

havior. Therefore, we combined ICARO with DMSD in order to discriminate hotspot

traffic type from non-hotspot one, thereby achieving best power-savings and guarantee-

ing latencies for non-hotspot traffic.

As a final contribution, we proposed PAPM, a path-aware power-gating mechanism.

Different from most of the work in the literature, which work at flit granularity, PAPM

works at data flow granularity. PAPM works by identifying data flows and activating all

buffers composing the required path in a row. Although PAPM was initially designed

to improve the power overhead of ICARO due to its additional required resources, due

Chapter 10. Conclusions 193

to its success, we also proposed a standalone version to work in regular systems with-

out ICARO, demonstrating to overcome TooT, a recent state-of-the art power-gating

proposal.

10.2 Future Directions

Two of the main challenges of power-gating consists, on one hand, not to violate the BET

in order to avoid to waste power, thus compromising the usefulness of the mechanism

and, on the other hand, to deliver power-gating signals as fast as possible to the com-

ponent to be woken-up. Therefore, our future plans consist in following the approach of

the standalone version of PAPM but improving the paths request detection by means of

traffic predictors based on the locality principle and, in order to make power-gating sig-

nals to be delivered faster, we plan to implement hybrid or clustered networks, thereby

improving its scalability and speeding up power-gating signals delivery.

10.3 Publications

Conferences:

• J. V. Escamilla, J. Flich and P. J. Garcia. Burst-Aware HoL Blocking Avoid-

ance. In Proceedings of the 8th International Summer School on Advanced Com-

puter Architecture and Compilation for High-Performance and Embedded Systems

(ACACES), pages 237-240, Fiuggi, Italy, 2012.

• J. V. Escamilla, J. Flich and P. J. Garcia, ”Head-of-Line Blocking Avoidance

in Networks-on-Chip,” 2013 IEEE International Symposium on Parallel & Dis-

tributed Processing, Workshops and Phd Forum, Cambridge, MA, 2013, pp. 796-

805. doi: 10.1109/IPDPSW.2013.214

• J. V. Escamilla, J. Flich and P. J. Garca, ”ICARO: Congestion isolation in networks-

on-chip,” 2014 Eighth IEEE/ACM International Symposium on Networks-on-Chip

(NoCS), Ferrara, 2014, pp. 159-166. doi: 10.1109/NOCS.2014.7008775

• Escamilla J.V., Flich J., Garca P.J. (2015) Efficient DVFS Operation in NoCs

Through a Proper Congestion Management Strategy. In: Hunold S. et al. (eds)

Euro-Par 2015: Parallel Processing Workshops. Euro-Par 2015. Lecture Notes in

Computer Science, vol 9523. Springer, Cham

• J. V. Escamilla, M. R. Casu and J. Flich, ”Increasing the Efficiency of Latency-

Driven DVFS with a Smart NoC Congestion Management Strategy,” 2016 IEEE

Chapter 10. Conclusions 194

10th International Symposium on Embedded Multicore/Many-core Systems-on-

Chip (MCSOC), Lyon, 2016, pp. 241-248. doi: 10.1109/MCSoC.2016.42

• J. V. Escamilla, J. Flich and M. R. Casu, ”ICARO-PAPM: Congestion Manage-

ment with Selective Queue Power-Gating,”2017 IEEE 15th International Confer-

ence on High Performance Computing & Simulation (HPCS), Genoa, 2017

In addition, other related papers have been published in national conferences:

• J. V. Escamilla, J. Flich and P. J. Garcia. BAHIA: Burst-Aware Head-of-Line

Blocking Injection Avoidance. In Actas de las XXIII Jornadas de Paralelismo

(JP), pages 351-356, Elx, Spain, 2012.

• J. V. Escamilla, J. Flich and P. J. Garcia. Congestion Isolation in Networks-on-

chip. In Actas de las XXIV Jornadas de Paralelismo (JP), pages 24-29, Madrid,

Spain, 2013.

• J. V. Escamilla, J. Flich and P. J. Garcia. Mejorando DVFS en redes en chip

mediante tcnicas de control de congestin. In Actas de las XXVI Jornadas de

Paralelismo (JP), pages 250-257, Cordoba, Spain, 2015.

• J. V. Escamilla, Mario R. Casu and J. Flich. Guaranteeing latencies in DVFS-

based NoCs under unbalanced traffic loads. In Actas de las XXVII Jornadas de

Paralelismo (JP), pages 431-439, Salamanca, Spain, 2016.

References

[1] Sangyoung Park, Jaehyun Park, Donghwa Shin, Yanzhi Wang, Qing Xie, M. Pe-

dram, and Naehyuck Chang. Accurate modeling of the delay and energy overhead of

dynamic voltage and frequency scaling in modern microprocessors. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, 32(5):695–708,

May 2013. ISSN 0278-0070. doi: 10.1109/TCAD.2012.2235126.

[2] Wikipedia. Intel 80286. Available at https://es.wikipedia.org/wiki/Intel_

80286.

[3] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey. A voltage reduction

technique for digital systems. In Solid-State Circuits Conference, 1990. Digest of

Technical Papers. 37th ISSCC., 1990 IEEE International, pages 238–239, Feb 1990.

doi: 10.1109/ISSCC.1990.110213.

[4] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T.N. Vijaykumar. Gated-vdd: a cir-

cuit technique to reduce leakage in deep-submicron cache memories. In Low Power

Electronics and Design, 2000. ISLPED ’00. Proceedings of the 2000 International

Symposium on, pages 90–95, 2000. doi: 10.1109/LPE.2000.155259.

[5] W.J. Dally and B. Towles. Route packets, not wires: on-chip interconnection net-

works. In Design Automation Conference, 2001. Proceedings, pages 684–689, 2001.

doi: 10.1109/DAC.2001.156225.

[6] José Flich and Davide Bertozzi. Designing Network On-Chip Architectures in the

Nanoscale Era. Chapman & Hall/CRC, 2010. ISBN 1439837104, 9781439837108.

[7] Tilera Corp. Tilera tile multicore processors. Available at http://www.mellanox.

com/page/products_dyn?product_family=238&mtag=tile_gx72, .

[8] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,

A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar,

and S. Borkar. An 80-tile sub-100-w teraflops processor in 65-nm cmos. Solid-

State Circuits, IEEE Journal of, 43(1):29–41, Jan 2008. ISSN 0018-9200. doi:

10.1109/JSSC.2007.910957.

195

 https://es.wikipedia.org/wiki/Intel_80286
 https://es.wikipedia.org/wiki/Intel_80286
http://www.mellanox.com/page/products_dyn?product_family=238&mtag=tile_gx72
http://www.mellanox.com/page/products_dyn?product_family=238&mtag=tile_gx72

References 196

[9] Guihai Yan, Yingmin Li, Yinhe Han, Xiaowei Li, Minyi Guo, and Xiaoyao Liang.

Agileregulator: A hybrid voltage regulator scheme redeeming dark silicon for power

efficiency in a multicore architecture. In High Performance Computer Architecture

(HPCA), 2012 IEEE 18th International Symposium on, pages 1–12, Feb 2012. doi:

10.1109/HPCA.2012.6169034.

[10] A. Scherrer, A. Fraboulet, and T. Risset. Automatic phase detection for stochastic

on-chip traffic generation. In Hardware/Software Codesign and System Synthesis,

2006. CODES+ISSS ’06. Proceedings of the 4th International Conference, pages

88–93, Oct 2006. doi: 10.1145/1176254.1176277.

[11] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and

exploiting program phases. Micro, IEEE, 23(6):84–93, Nov 2003. ISSN 0272-1732.

doi: 10.1109/MM.2003.1261391.

[12] R. Kumar, D.M. Tullsen, N.P. Jouppi, and P. Ranganathan. Heterogeneous chip

multiprocessors. Computer, 38(11):32–38, Nov 2005. ISSN 0018-9162. doi: 10.

1109/MC.2005.379.

[13] AMD. What is heterogeneous system architecture (hsa)? Available

at http://developer.amd.com/resources/heterogeneous-computing/

what-is-heterogeneous-system-architecture-hsa.

[14] M.J. Karol, M.G. Hluchyj, and S.P. Morgan. Input versus output queueing on

a space-division packet switch. Communications, IEEE Transactions on, 35(12):

1347–1356, Dec 1987. ISSN 0090-6778. doi: 10.1109/TCOM.1987.1096719.

[15] P.J. Garcia, F.J. Quiles, J. Flich, J. Duato, I. Johnson, and F. Naven. Efficient,

scalable congestion management for interconnection networks. Micro, IEEE, 26(5):

52 –66, sept.-oct. 2006. ISSN 0272-1732. doi: 10.1109/MM.2006.88.

[16] George Nychis, Chris Fallin, Thomas Moscibroda, S. Seshan, and O. Mutlu. Con-

gestion control for scalability in bufferless on-chip networks. Technical report, 2011.

URL http://c1f.net/pubs/tr-2011-003-cc-scale.pdf.

[17] M. Thottethodi, A. R. Lebeck, and S. S. Mukherjee. Self-tuned congestion control

for multiprocessor networks. In Proceedings HPCA Seventh International Sym-

posium on High-Performance Computer Architecture, pages 107–118, 2001. doi:

10.1109/HPCA.2001.903256.

[18] K. K. W. Chang, R. Ausavarungnirun, C. Fallin, and O. Mutlu. Hat: Heterogeneous

adaptive throttling for on-chip networks. In 2012 IEEE 24th International Sym-

posium on Computer Architecture and High Performance Computing, pages 9–18,

Oct 2012. doi: 10.1109/SBAC-PAD.2012.44.

 http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa
 http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa
http://c1f.net/pubs/tr-2011-003-cc-scale.pdf

References 197

[19] U.Y. Ogras and R. Marculescu. Prediction-based flow control for network-on-chip

traffic. In Design Automation Conference, 2006 43rd ACM/IEEE, pages 839–844,

2006. doi: 10.1109/DAC.2006.229272.

[20] Paul Gratz, Boris Grot, and Stephen W Keckler. Regional congestion awareness

for load balance in networks-on-chip. In Proc. HPCA, pages 203–214, 2008.

[21] M. Ramakrishna, P.V. Gratz, and A. Sprintson. Gca: Global congestion awareness

for load balance in networks-on-chip. In Networks on Chip (NoCS), 2013 Seventh

IEEE/ACM International Symposium on, pages 1–8, April 2013. doi: 10.1109/

NoCS.2013.6558405.

[22] X. Chang, M. Ebrahimi, M. Daneshtalab, T. Westerlund, and J. Plosila. Pars

x2014; an efficient congestion-aware routing method for networks-on-chip. In The

16th CSI International Symposium on Computer Architecture and Digital Systems

(CADS 2012), pages 166–171, May 2012. doi: 10.1109/CADS.2012.6316439.

[23] A Kumar, Li-Shiuan Peh, and N.K. Jha. Token flow control. In Microarchitecture,

2008. MICRO-41. 2008 41st IEEE/ACM International Symposium on, pages 342–

353, Nov 2008. doi: 10.1109/MICRO.2008.4771803.

[24] E. Kakoulli, V. Soteriou, and T. Theocharides. Hpra: A pro-active hotspot-

preventive high-performance routing algorithm for networks-on-chips. In Computer

Design (ICCD), 2012 IEEE 30th International Conference on, pages 249–255, Sept

2012. doi: 10.1109/ICCD.2012.6378648.

[25] Yi Xu, Bo Zhao, Youtao Zhang, and Jun Yang. Simple virtual channel allocation

for high throughput and high frequency on-chip routers. In High Performance Com-

puter Architecture (HPCA), 2010 IEEE 16th International Symposium on, pages

1–11, Jan 2010. doi: 10.1109/HPCA.2010.5416640.

[26] B. Baas, Z. Yu, M. Meeuwsen, O. Sattari, R. Apperson, E. Work, J. Webb, M. Lai,

T. Mohsenin, D. Truong, and J. Cheung. Asap: A fine-grained many-core platform

for dsp applications. IEEE Micro, 27(2):34–45, March 2007. ISSN 0272-1732. doi:

10.1109/MM.2007.29.

[27] A. K. Mishra, R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan, and C. R. Das. A

case for dynamic frequency tuning in on-chip networks. In Proc. MICRO-42, pages

292–303, 2009.

[28] Liang Guang, Ethiopia Nigussie, Lauri Koskinen, and Hannu Tenhunen. Au-

tonomous DVFS on supply islands for energy-constrained NoC communication. In

Proc. ARCS 2009, volume 5455 of Lect. Notes Comput. Sc., pages 183–194. 2009.

[29] Li Shang, Li-Shiuan Peh, and N.K. Jha. Dynamic voltage scaling with links for

power optimization of interconnection networks. In Proc. HPCA, pages 91–102,

2003. doi: 10.1109/HPCA.2003.1183527.

References 198

[30] Jia Zhan, Nikolay Stoimenov, Jin Ouyang, Lothar Thiele, Vijaykrishnan

Narayanan, and Yuan Xie. Optimizing the NoC slack through voltage and fre-

quency scaling in hard real-time embedded systems. 33(11):1632–1643, November

2014. ISSN 0278-0070. doi: 10.1109/TCAD.2014.2347921.

[31] Robert Hesse and Natalie Enright Jerger. Improving DVFS in NoCs with coherence

prediction. In Proc. NOCS, pages 24:1–24:8, 2015. ISBN 978-1-4503-3396-2.

[32] X. Wang, Tengfei Wang, T. Mak, M. Yang, Y. Jiang, and M. Daneshtalab. Fine-

grained runtime power budgeting for networks-on-chip. In Proc. ASPDAC, pages

160–165, 2015. doi: 10.1109/ASPDAC.2015.7058998.

[33] Wonyoung Kim, D.M. Brooks, and Gu-Yeon Wei. A fully-integrated 3-level dc/dc

converter for nanosecond-scale dvs with fast shunt regulation. In Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, pages

268–270, Feb 2011. doi: 10.1109/ISSCC.2011.5746313.

[34] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote, S. Vangal,

G. Ruhl, and N. Borkar. A 2 Tb/s 6x4 mesh network for a single-chip cloud

computer with DVFS in 45 nm CMOS. 46(4):757–766, Apr. 2011.

[35] Xi Chen, Zheng Xu, Hyungjun Kim, Paul Gratz, Jiang Hu, Michael Kishinevsky,

and Umit Ogras. In-network monitoring and control policy for DVFS of CMP

networks-on-chip and last level caches. ACM Trans. on Design Automation of

Electronic Systems, 18(4):1–21, Oct. 2013. ISSN 10844309. doi: 10.1145/2504905.

[36] Xi Chen, Zheng Xu, Hyungjun Kim, Paul V. Gratz, Jiang Hu, Michael Kishinevsky,

Umit Ogras, and Raid Ayoub. Dynamic voltage and frequency scaling for shared

resources in multicore processor designs. In Proc. DAC, pages 114:1–114:7, 2013.

[37] Jae-Yeon Won, Xi Chen, P. Gratz, Jiang Hu, and V. Soteriou. Up by their boot-

straps: Online learning in artificial neural networks for cmp uncore power manage-

ment. In Proc. HPCA, pages 308–319, 2014. doi: 10.1109/HPCA.2014.6835941.

[38] Andrea Bianco, Paolo Giaccone, Mario Roberto Casu, and Nanfang Li. Exploiting

space diversity and dynamic voltage frequency scaling in multiplane network-on-

chips. In Proc. GLOBECOM, pages 3080–3085. IEEE, 2012.

[39] Jörg Henkel, Haseeb Bukhari, Siddharth Garg, Muhammad Usman Karim Khan,

Heba Khdr, Florian Kriebel, Umit Ogras, Sri Parameswaran, and Muhammad

Shafique. Dark silicon: From computation to communication. In Proc. NOCS,

pages 23:1–23:8, 2015. ISBN 978-1-4503-3396-2. doi: 10.1145/2786572.2788707.

[40] Manoj Kumar Yadav, Mario Roberto Casu, and Maurizio Zamboni. LAURA-NoC:

Local automatic rate adjustment in network-on-chips with a simple DVFS. 60(10):

647–651, Oct. 2013.

References 199

[41] A. Samih, R. Wang, A. Krishna, C. Maciocco, C. Tai, and Y. Solihin. Energy-

efficient interconnect via router parking. In High Performance Computer Architec-

ture (HPCA2013), 2013 IEEE 19th International Symposium on, pages 508–519,

Feb 2013. doi: 10.1109/HPCA.2013.6522345.

[42] H. Matsutani, M. Koibuchi, D. Wang, and H. Amano. Adding slow-silent virtual

channels for low-power on-chip networks. In Networks-on-Chip, 2008. NoCS 2008.

Second ACM/IEEE International Symposium on, pages 23–32, April 2008. doi:

10.1109/NOCS.2008.4492722.

[43] L. Chen and T. M. Pinkston. Nord: Node-router decoupling for effective power-

gating of on-chip routers. In 2012 45th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, pages 270–281, Dec 2012. doi: 10.1109/MICRO.2012.33.

[44] H. Farrokhbakht, M. Taram, B. Khaleghi, and S. Hessabi. Toot: an efficient and

scalable power-gating method for noc routers. In 2016 Tenth IEEE/ACM Inter-

national Symposium on Networks-on-Chip (NOCS), pages 1–8, Aug 2016. doi:

10.1109/NOCS.2016.7579326.

[45] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-ghz mesh in-

terconnect for a teraflops processor. IEEE Micro, 27(5):51–61, Sept 2007. ISSN

0272-1732. doi: 10.1109/MM.2007.4378783.

[46] Hiroki Matsutani, Michihiro Koibuchi, Hideharu Amano, and Daihan Wang. Run-

time power gating of on-chip routers using look-ahead routing. In 2008 Asia and

South Pacific Design Automation Conference, pages 55–60, March 2008. doi: 10.

1109/ASPDAC.2008.4484015.

[47] L. Chen, D. Zhu, M. Pedram, and T. M. Pinkston. Power punch: Towards non-

blocking power-gating of noc routers. In 2015 IEEE 21st International Symposium

on High Performance Computer Architecture (HPCA), pages 378–389, Feb 2015.

doi: 10.1109/HPCA.2015.7056048.

[48] Alberto Ghiribaldi, Daniele Ludovici, Michele Favalli, and Davide Bertozzi. System-

level infrastructure for boot-time testing and configuration of networks-on-chip with

programmable routing logic. In VLSI-SoC, pages 308–313. IEEE, 2011. ISBN 978-

1-4577-0171-9. URL http://dblp.uni-trier.de/db/conf/vlsi/vlsisoc2011.

html#GhiribaldiLFB11.

[49] T. Nachiondo, J. Flich, and J. Duato. Destination-based hol blocking elimination.

In Parallel and Distributed Systems, 2006. ICPADS 2006. 12th International Con-

ference on, volume 1, pages 10 pp.–, 2006. doi: 10.1109/ICPADS.2006.34.

[50] Weichen Liu, Jiang Xu, Xiaowen Wu, Yaoyao Ye, Xuan Wang, Wei Zhang,

M. Nikdast, and Zhehui Wang. A noc traffic suite based on real applications.

http://dblp.uni-trier.de/db/conf/vlsi/vlsisoc2011.html#GhiribaldiLFB11
http://dblp.uni-trier.de/db/conf/vlsi/vlsisoc2011.html#GhiribaldiLFB11

References 200

In VLSI (ISVLSI), 2011 IEEE Computer Society Annual Symposium on, pages 66

–71, july 2011. doi: 10.1109/ISVLSI.2011.49.

[51] Nangate freepdk45 generic open cell library ver 1.0, February 2008. URL http:

//www.si2.org/openeda.si2.org/projects/nangatelib/.

[52] T. Chelcea and S.M. Nowick. A low-latency fifo for mixed-clock systems. In VLSI,

2000. Proceedings. IEEE Computer Society Workshop on, pages 119–126, 2000. doi:

10.1109/IWV.2000.844540.

[53] D. Marculescu and P. Choudhary. Hardware based frequency/voltage control of

voltage frequency island systems. In Hardware/Software Codesign and System Syn-

thesis, 2006. CODES+ISSS ’06. Proceedings of the 4th International Conference,

pages 34–39, Oct 2006. doi: 10.1145/1176254.1176265.

[54] Mario R. Casu and Paolo Giaccone. Rate-based vs delay-based control for dvfs in

noc. In Proc. DATE, pages 1096–1101, 2015.

[55] D.E. Lackey, P.S. Zuchowski, T.R. Bednar, D.W. Stout, S.W. Gould, and J.M.

Cohn. Managing power and performance for system-on-chip designs using voltage

islands. In Proc. ICCAD, pages 195–202, 2002. doi: 10.1109/ICCAD.2002.1167534.

[56] U.Y. Ogras, R. Marculescu, D. Marculescu, and Eun Gu Jung. Design and man-

agement of voltage-frequency island partitioned networks-on-chip. 17(3):330–341,

March 2009. ISSN 1063-8210. doi: 10.1109/TVLSI.2008.2011229.

[57] A.B. Kahng, B. Lin, and S. Nath. Orion3.0: A comprehensive noc router estimation

tool. Embedded Systems Letters, IEEE, 7(2):41–45, June 2015. ISSN 1943-0663.

doi: 10.1109/LES.2015.2402197.

[58] M.R. Casu, M.K. Yadav, and M. Zamboni. Power-gating technique for network-

on-chip buffers. Electronics Letters, 49(23):1438–1440, Nov 2013. ISSN 0013-5194.

doi: 10.1049/el.2013.3225.

[59] J.V. Escamilla, J. Flich, and P.J. Garcia. Head-of-line blocking avoidance in

networks-on-chip. In Parallel and Distributed Processing Symposium Workshops

PhD Forum (IPDPSW), 2013 IEEE 27th International, pages 796–805, May 2013.

doi: 10.1109/IPDPSW.2013.214.

[60] Intel Corp. Xeon phi. Available at http://software.intel.com/en-us/

articles/intel-xeon-phi-coprocessor-codename-knights-corner?wapkw=

knight+corner, .

[61] Intel Corp. The single-chip cloud computer. Available at http://www.intel.com/

content/www/us/en/research/intel-labs-single-chip-cloud-computer.

html, .

http://www.si2.org/openeda.si2.org/projects/nangatelib/
http://www.si2.org/openeda.si2.org/projects/nangatelib/
 http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner?wapkw=knight+corner
 http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner?wapkw=knight+corner
 http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner?wapkw=knight+corner
 http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html
 http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html
 http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html

References 201

[62] M. Jurczyk and T. Schwederski. Phenomenon of higher order head-of-line blocking

in multistage interconnection networks under nonuniform traffic patterns, 1996.

[63] Marcello Coppola, Miltos D. Grammatikakis, Riccardo Locatelli, Giuseppe Maruc-

cia, and Lorenzo Pieralisi. Design of Cost-Efficient Interconnect Processing Units:

Spidergon STNoC. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2008. ISBN

1420044710, 9781420044713.

[64] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don Newell,

Yan Solihin, Lisa Hsu, and Steve Reinhardt. QoS policies and architecture for

cache/memory in CMP platforms. ACM SIGMETRICS Performance Evaluation

Review, 35(1):25, June 2007. ISSN 01635999. doi: 10.1145/1269899.1254886. URL

http://portal.acm.org/citation.cfm?doid=1269899.1254886.

[65] Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das. Application-

aware prioritization mechanisms for on-chip networks. Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture - Micro-42,

page 280, 2009. doi: 10.1145/1669112.1669150. URL http://portal.acm.org/

citation.cfm?doid=1669112.1669150.

[66] Boris Grot, S.W. Keckler, and O. Mutlu. Preemptive virtual clock: a flexi-

ble, efficient, and cost-effective QOS scheme for networks-on-chip. In Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,

pages 268–279. ACM, 2009. ISBN 9781605587981. URL http://portal.acm.org/

citation.cfm?id=1669149.

[67] A. Banerjee and S.W. Moore. Flow-aware allocation for on-chip networks. In

Networks-on-Chip, 2009. NoCS 2009. 3rd ACM/IEEE International Symposium

on, pages 183 –192, may 2009. doi: 10.1109/NOCS.2009.5071466.

[68] Dong Wu, Bashir M. Al-Hashimi, and Marcus T. Schmitz. Improving routing effi-

ciency for network-on-chip through contention-aware input selection. In Proceedings

of the 2006 Asia and South Pacific Design Automation Conference, ASP-DAC ’06,

pages 36–41, Piscataway, NJ, USA, 2006. IEEE Press. ISBN 0-7803-9451-8. doi:

http://dx.doi.org/10.1145/1118299.1118310. URL http://dx.doi.org/10.1145/

1118299.1118310.

[69] T Marescaux, A. Rangevall, V Nollet, A Bartic, and H Corporaal. Dis-

tributed congestion control for packet switched networks on chip. In Par-

allel Computing: Current Future Issues of High-End Computing, Proceedings

of the International Conference ParCo, volume 33, pages 761–768. Citeseer,

2005. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

89.1586&rep=rep1&type=pdf.

http://portal.acm.org/citation.cfm?doid=1269899.1254886
http://portal.acm.org/citation.cfm?doid=1669112.1669150
http://portal.acm.org/citation.cfm?doid=1669112.1669150
http://portal.acm.org/citation.cfm?id=1669149
http://portal.acm.org/citation.cfm?id=1669149
http://dx.doi.org/10.1145/1118299.1118310
http://dx.doi.org/10.1145/1118299.1118310
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.1586&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.1586&rep=rep1&type=pdf

References 202

[70] Ming Li, Qing-An Zeng, and Wen-Ben Jone. Dyxy: a proximity congestion-aware

deadlock-free dynamic routing method for network on chip. In Proceedings of the

43rd annual Design Automation Conference, DAC ’06, pages 849–852, New York,

NY, USA, 2006. ACM. ISBN 1-59593-381-6. doi: http://doi.acm.org/10.1145/

1146909.1147125. URL http://doi.acm.org/10.1145/1146909.1147125.

[71] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, and Li-Shiuan Peh.

Research challenges for on-chip interconnection networks. Micro, IEEE, 27(5):96

–108, sept.-oct. 2007. ISSN 0272-1732. doi: 10.1109/MM.2007.4378787.

[72] R. Marculescu, U.Y. Ogras, Li-Shiuan Peh, N.E. Jerger, and Y. Hoskote. Outstand-

ing research problems in noc design: System, microarchitecture, and circuit perspec-

tives. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-

tions on, 28(1):3 –21, jan. 2009. ISSN 0278-0070. doi: 10.1109/TCAD.2008.2010691.

[73] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of

network-on-chip. ACM Comput. Surv., 38, June 2006. ISSN 0360-0300. doi: http://

doi.acm.org/http://doi.acm.org/10.1145/1132952.1132953. URL http://doi.acm.

org/http://doi.acm.org/10.1145/1132952.1132953.

[74] M. Millberg and A. Jantsch. Priority based forced requeue to reduce worst-case

latencies for bursty traffic. In Design, Automation Test in Europe Conference Ex-

hibition, 2009. DATE ’09., pages 1070 –1075, april 2009.

[75] H. Kim, Y. Kim, and J. Kim. Clumsy flow control for high-throughput bufferless

on-chip networks. Computer Architecture Letters, PP(99):1, 2012. ISSN 1556-6056.

doi: 10.1109/L-CA.2012.22.

[76] Ernst Gunnar Gran, Magne Eimot, Sven-Arne Reinemo, Tor Skeie, Olav Lysne,

Lars Paul Huse, and Gilad Shainer. First experiences with congestion control in

infiniband hardware. In IPDPS, pages 1–12, 2010.

[77] J.V. Escamilla, J. Flich, and P.J. Garcia. Icaro: Congestion isolation in networks-

on-chip. In Proc. NoCS, pages 159–166, 2014.

[78] Kalray. Kalray, mppa-256 bostan, 2014. URL http://www.kalrayinc.com/

kalray/products.

[79] N.P. Jouppi. Improving direct-mapped cache performance by the addition of a

small fully-associative cache and prefetch buffers. In Computer Architecture, 1990.

Proceedings., 17th Annual International Symposium on, pages 364–373, May 1990.

doi: 10.1109/ISCA.1990.134547.

[80] Rui Hou, Lixin Zhang, M.C. Huang, Kun Wang, H. Franke, Yi Ge, and Xiaotao

Chang. Efficient data streaming with on-chip accelerators: Opportunities and chal-

lenges. In Proc. HPCA, pages 312–320, 2011. doi: 10.1109/HPCA.2011.5749739.

http://doi.acm.org/10.1145/1146909.1147125
http://doi.acm.org/http://doi.acm.org/10.1145/1132952.1132953
http://doi.acm.org/http://doi.acm.org/10.1145/1132952.1132953
http://www.kalrayinc.com/kalray/products
http://www.kalrayinc.com/kalray/products

References 203

[81] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F. Silla,

and J. Duato. Cost-efficient on-chip routing implementations for cmp and mpsoc

systems. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-

actions on, 30(4):534–547, April 2011. ISSN 0278-0070. doi: 10.1109/TCAD.2011.

2119150.

[82] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-

phone. In Proceedings of the 2010 USENIX Conference on USENIX Annual Techni-

cal Conference, USENIXATC’10, pages 21–21, Berkeley, CA, USA, 2010. USENIX

Association. URL http://dl.acm.org/citation.cfm?id=1855840.1855861.

[83] Wonyoung Kim, M.S. Gupta, Gu-Yeon Wei, and D. Brooks. System level analysis

of fast, per-core dvfs using on-chip switching regulators. In High Performance

Computer Architecture, 2008. HPCA 2008. IEEE 14th International Symposium

on, pages 123–134, Feb 2008. doi: 10.1109/HPCA.2008.4658633.

[84] C.A. Nicopoulos, Dongkook Park, Jongman Kim, N. Vijaykrishnan, M.S. Yousif,

and C.R. Das. Vichar: A dynamic virtual channel regulator for network-on-chip

routers. In Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM Interna-

tional Symposium on, pages 333–346, Dec 2006. doi: 10.1109/MICRO.2006.50.

[85] José V. Escamilla, José Flich, and Pedro Javier Garćıa. Efficient DVFS Operation in

NoCs Through a Proper Congestion Management Strategy, pages 339–351. Springer

International Publishing, Cham, 2015. ISBN 978-3-319-27308-2. doi: 10.1007/

978-3-319-27308-2 28. URL http://dx.doi.org/10.1007/978-3-319-27308-2_

28.

[86] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm. Computer,

35(1):70–78, Jan 2002. ISSN 0018-9162. doi: 10.1109/2.976921.

[87] J. V. Escamilla, M. R. Casu, and J. Flich. Increasing the efficiency of latency-

driven dvfs with a smart noc congestion management strategy. In 2016 IEEE

10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip

(MCSOC), pages 241–248, Sept 2016. doi: 10.1109/MCSoC.2016.42.

[88] S.S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The alpha 21364

network architecture. In Hot Interconnects 9, pages 113–117, 2001. doi: 10.1109/

HIS.2001.946702.

[89] A. Bakhoda, J. Kim, and T.M. Aamodt. Throughput-effective on-chip networks for

manycore accelerators. In 43rd IEEE/ACM Int. Symp. Microarchitecture (MICRO),

pages 421–432, Dec 2010. doi: 10.1109/MICRO.2010.50.

[90] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha. Express virtual

channels: Towards the ideal interconnection fabric. SIGARCH Comput. Archit.

News, 35(2):150–161, June 2007. ISSN 0163-5964. doi: 10.1145/1273440.1250681.

http://dl.acm.org/citation.cfm?id=1855840.1855861
http://dx.doi.org/10.1007/978-3-319-27308-2_28
http://dx.doi.org/10.1007/978-3-319-27308-2_28

References 204

[91] F. Farahnakian, M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and J. Plosila.

Q-learning based congestion-aware routing algorithm for on-chip network. In

Proc. NESEA, pages 1–7, 2011. doi: 10.1109/NESEA.2011.6144949.

[92] M. S. Sayed, A. Shalaby, M. El-Sayed Ragab, and V. Goulart. Congestion miti-

gation using flexible router architecture for network-on-chip. In Electronics, Com-

munications and Computers (JEC-ECC), 2012 Japan-Egypt Conference on, pages

182–187, March 2012. doi: 10.1109/JEC-ECC.2012.6186980.

	List of Figures
	List of Tables
	Abbreviations and Acronyms
	Abstract
	Resumen
	Resum
	1 Introduction
	1.1 Thesis Outline

	2 Background and Related Work
	2.1 Congestion Management
	2.2 Power Saving
	2.2.1 Dynamic Voltage and Frequency Scaling
	2.2.2 Power-Gating

	3 Proposed Techniques
	3.1 Congestion Management
	3.1.1 BAHIA Description
	3.1.1.1 Burst Detection
	3.1.1.2 Burst Notification
	3.1.1.3 Traffic Separation

	3.1.2 ICARO Description
	3.1.2.1 Congestion Detection
	3.1.2.2 Congestion Notification
	3.1.2.3 Congestion Isolation

	3.1.3 Evaluations
	3.1.3.1 BAHIA
	3.1.3.2 ICARO

	3.2 Improving DVFS Through Congestion Management
	3.2.1 ICARO-DVFS
	3.2.1.1 Dynamic Voltage and Frequency Scaling
	3.2.1.2 Voltage and Frequency Islands
	3.2.1.3 Merging ICARO with DVFS
	3.2.1.4 Different ICARO-DVFS Alternatives

	3.2.2 ICARO-DMSD
	3.2.2.1 Analysis of the DMSD DVFS Policy
	3.2.2.2 Implementing Congestion Management

	3.2.3 Area Overhead Analysis
	3.2.4 Evaluations
	3.2.4.1 ICARO-DVFS
	3.2.4.2 ICARO-DMSD

	3.3 Reducing Buffers Leakage Power
	3.3.1 ICARO-PAPM
	3.3.1.1 Overview
	3.3.1.2 PAPM for ICARO
	3.3.1.3 Selective Broadcast
	3.3.1.4 Flow Control

	3.3.2 PAPM
	3.3.2.1 Router Implementation
	3.3.2.2 Activation Network
	3.3.2.3 Power-Down Strategy at End Nodes

	3.3.3 Evaluations
	3.3.3.1 ICARO-PAPM
	3.3.3.2 PAPM

	3.4 Proposals Digest

	4 Head-of-Line Blocking Avoidance in Networks-On-Chip
	4.1 Abstract
	4.2 Introduction
	4.3 Related work
	4.4 BAHIA Description
	4.4.0.1 Burst Detection
	4.4.0.2 Burst Notification
	4.4.0.3 Traffic Separation

	4.5 Evaluation
	4.5.1 Simulation Environment
	4.5.2 Parameters Tuning
	4.5.3 BAHIA vs no-BAHIA Analysis
	4.5.3.1 Simplest Configuration Analysis
	4.5.3.2 Number of Virtual Networks Analysis

	4.6 Conclusions and Future Work

	5 ICARO: Congestion Isolation in Networks-On-Chip
	5.1 Abstract
	5.2 Introduction and Motivation
	5.3 Related Work
	5.4 ICARO Description
	5.4.1 ICARO Principles
	5.4.2 Congestion Detection
	5.4.3 Congestion Notification
	5.4.4 Congestion Isolation
	5.4.4.1 Congested-points Cache
	5.4.4.2 Optimizations

	5.5 Performance Evaluation
	5.5.1 Simulation Environment
	5.5.2 Robustness Analysis
	5.5.3 Overall Results

	5.6 Implementation Analysis
	5.7 Conclusions and Future Work

	6 Efficient DVFS Operation in NoCs through a Proper Congestion Management Strategy
	6.1 Abstract
	6.2 Introduction
	6.3 Related Work
	6.4 ICARO-DVFS Implementation
	6.4.1 Dynamic Voltage and Frequency Scaling
	6.4.2 Voltage and Frequency Islands
	6.4.3 ICARO
	6.4.4 Merging ICARO with DVFS
	6.4.5 Different ICARO-DVFS Alternatives
	6.4.6 ICARO-DVFS Performance Analysis
	6.4.6.1 Simulation Environment
	6.4.6.2 Results

	6.5 Conclusions and Future Work
	6.6 Acknowledgements

	7 Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC Congestion Management Strategy
	7.1 Abstract
	7.2 Introduction
	7.3 Analysis of the DMSD DVFS Policy
	7.4 Implementing Congestion Management
	7.4.1 ICARO
	7.4.1.1 Congestion Detection
	7.4.1.2 Congestion Notification
	7.4.1.3 Congestion Isolation

	7.4.2 Delivering Latency Measurements with the CaL Network
	7.4.3 Power-Gating Extra-VN Buffers
	7.4.3.1 Network Interfaces Detection
	7.4.3.2 Routers Detection

	7.4.4 Area Overhead Analysis
	7.4.5 Experimental Results

	7.5 Related Work
	7.6 Conclusions and Future Work

	8 ICARO-PAPM: Congestion Management with Selective Queue Power-Gating
	8.1 Abstract
	8.2 Introduction
	8.3 ICARO
	8.3.1 Congestion Detection
	8.3.2 Notification
	8.3.3 Isolation

	8.4 PAPM: Path Aware Power Mechanism
	8.4.1 Overview
	8.4.2 PAPM
	8.4.3 Selective Broadcast
	8.4.4 Flow Control

	8.5 Experimental Results
	8.5.1 Methodology
	8.5.2 Results
	8.5.3 Multimedia Traffic

	8.6 Related Work
	8.6.1 Congestion Management
	8.6.2 Power Gating

	8.7 Conclusions

	9 PAPM: Path-Aware Fine-Grained Virtual Channel Power Management
	9.1 Abstract
	9.2 Introduction
	9.3 Related Work
	9.4 PAPM Description
	9.4.1 General Description
	9.4.2 Router Implementation
	9.4.3 Activation Network
	9.4.4 Power-Down Strategy at End Nodes

	9.5 Performance Evaluation
	9.5.1 Simulation Testbed
	9.5.2 Performance Analysis
	9.5.3 Saturation Analysis

	9.6 Conclusions
	9.7 Future Work

	10 Conclusions
	10.1 Contributions
	10.2 Future Directions
	10.3 Publications

	References

