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Abstract

Nowadays, the main libraries and document archives are investing a consid-
erable effort on digitizing their collections. Indeed, most of them are scanning
the documents and publishing the resulting images without their correspond-
ing transcriptions. This seriously limits the document exploitation possibili-
ties. When the transcription is necessary, it is manually performed by human
experts, which is a very expensive and error-prone task. Obtaining transcrip-
tions to the level of required quality demands the intervention of human ex-
perts to review and correct the resulting output of the recognition engines. To
this end, it is extremely useful to provide interactive tools to obtain and edit
the transcription.

Although text recognition is the final goal, several previous steps (known as
preprocessing) are necessary in order to get a fine transcription from a digi-
tized image. Document cleaning, enhancement, and binarization (if they are
needed) are the first stages of the recognition pipeline. Historical Handwrit-
ten Documents, in addition, show several degradations, stains, ink-trough and
other artifacts. Therefore, more sophisticated and elaborate methods are re-
quired when dealing with these kinds of documents, even expert supervision
in some cases is needed. Once images have been cleaned, main zones of the
image have to be detected: those that contain text and other parts such as im-
ages, decorations, versal letters. Moreover, the relations among them and the
final text have to be detected. Those preprocessing steps are critical for the
final performance of the system since an error at this point will be propagated
during the rest of the transcription process.

The ultimate goal of the Document Image Analysis pipeline is to receive the
transcription of the text (Optical Character Recognition and Handwritten Text
Recognition). During this PhD Thesis we aimed to improve the main stages
of the recognition pipeline, from the scanned documents as input to the final
transcription. We focused our effort on applying Neural Networks and deep
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learning techniques directly on the document images to extract suitable fea-
tures that will be used by the different tasks dealt during the following work:
Image Cleaning and Enhancement (Document Image Binarization), Layout Ex-
traction, Text Line Extraction, Text Line Normalization and finally decoding
(or text line recognition). As one can see, the following work focuses on small
improvements through the several Document Image Analysis stages, but also
deals with some of the real challenges: historical manuscripts and documents
without clear layouts or very degraded documents.

Neural Networks are a central topic for the whole work collected in this doc-
ument. Different convolutional models have been applied for document image
cleaning and enhancement. Connectionist models have been used, as well, for
text line extraction: first, for detecting interest points and combining them in
text segments and, finally, extracting the lines by means of aggregation tech-
niques; and second, for pixel labeling to extract the main body area of the
text and then the limits of the lines. For text line preprocessing, i.e., to nor-
malize the text lines before recognizing them, similar models have been used
to detect the main body area and then to height-normalize the images giving
more importance to the central area of the text. Finally, Convolutional Neural
Networks and deep multilayer perceptrons have been combined with hidden
Markov models to improve our transcription engine significantly.

The suitability of all these approaches has been tested with different corpora
for any of the stages dealt, giving competitive results for most of the method-
ologies presented.
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Resumen

Hoy en día, las principales librerías y archivos está invirtiendo un esfuerzo
considerable en la digitalización de sus colecciones. De hecho, la mayoría es-
tán escaneando estos documentos y publicando únicamente las imágenes sin
transcripciones, limitando seriamente la posibilidad de explotar estos docu-
mentos. Cuando la transcripción es necesaria, esta se realiza normalmente
por expertos de forma manual, lo cual es una tarea costosa y propensa a er-
rores. Si se utilizan sistemas de reconocimiento automático se necesita la in-
tervención de expertos humanos para revisar y corregir la salida de estos mo-
tores de reconocimiento. Por ello, es extremadamente útil para proporcionar
herramientas interactivas con el fin de generar y corregir la transcripciones.

Aunque el reconocimiento de texto es el objetivo final del Análisis y Proce-
samiento de Documentos, varios pasos previos (conocidos como preproce-
samiento) son necesarios para conseguir una buena transcripción a partir de
una imagen digitalizada. La limpieza, mejora y binarización de las imágenes
(si son necesarios) son las primeras etapas del proceso de reconocimiento.
Además, los manuscritos históricos tienen una mayor dificultad en el preproce-
samiento, puesto que pueden mostrar varios tipos de degradaciones, manchas,
tinta a través del papel y demás dificultades. Por lo tanto, este tipo de docu-
mentos requiere métodos de preprocesamiento más sofisticados. En algunos
casos, incluso, se precisa de la supervisión de expertos para garantizar buenos
resultados en esta etapa. Una vez que las imágenes han sido limpiadas, las
diferentes zonas de la imagen deben de ser localizadas: texto, gráficos o dibu-
jos, decoraciones, letras versales, etc. Por otra parte, también es importante
conocer las relaciones entre estas entidades y el texto. Estas etapas del pre-
procesamiento son críticas para el rendimiento final del sistema, ya que los
errores cometidos en aquí se propagarán al resto del proceso de transcrip-
ción.
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El objetivo principal del trabajo presentado en este documento es mejorar las
principales etapas del proceso de reconocimiento completo: desde las imá-
genes escaneadas hasta la transcripción final. Nuestros esfuerzos se centran
en aplicar técnicas de Redes Neuronales y aprendizaje profundo directamente
sobre las imágenes de los documentos, con la intención de extraer característi-
cas adecuadas para las diferentes tareas: Limpieza y Mejora de Documentos,
Extracción de Líneas, Normalización de Líneas de Texto y, finalmente, tran-
scripción del texto. Como se puede apreciar, el trabajo se centra en pequeñas
mejoras en diferentes etapas del Análisis y Procesamiento de Documentos,
pero también trata de abordar tareas más complejas: manuscritos históricos,
o documentos que presentan serias degradaciones.

Las redes neuronales y el aprendizaje profundo son uno de los temas centrales
de esta tesis. Diferentes modelos neuronales convolucionales se han desarrol-
lado para la limpieza y mejora de imágenes de documentos. También se han
utilizado modelos conexionistas para la tarea de extracción de líneas: primero,
para detectar puntos de interés y segmentos de texto y, agregarlos para ex-
traer las líneas del documento; y en segundo lugar, etiquetando directamente
los píxeles de la imagen para extraer la zona central del texto y así definir los
límites de las líneas. Para el preproceso de las líneas de texto, es decir, la
normalización del texto antes del reconocimiento final, se han utilizado mod-
elos similares a los mencionados para detectar la zona central del texto. Las
imagenes se rescalan a una altura fija dando más importancia a esta zona cen-
tral. Por último, en cuanto a reconocimiento de escritura manuscrita, se han
combinado técnicas de redes neuronales y aprendizaje profundo con Mode-
los Ocultos de Markov, mejorando significativamente los resultados obtenidos
previamente por nuestro motor de reconocimiento.

La idoneidad de todos estos enfoques han sido testeados con diferentes corpus
en cada una de las tareas tratadas., obteniendo resultados competitivos en la
mayor parte de los casos analizados.
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Resum

Avui en dia, les principals llibreries i arxius històrics estan invertint un es-
forç considerable en la digitalització de les seues col·leccions de documents.
De fet, la majoria estan escanejant aquests documents i publicant únicament
les imatges sense les seues transcripcions, fet que limita seriosament la pos-
sibilitat d’explotació d’aquests documents. Quan la transcripció del text és
necessària, normalment aquesta és realitzada per experts de forma manual,
la qual cosa és una tasca costosa i pot provocar errors. Si s’utilitzen sistemes
de reconeixement automàtic es necessita la intervenció d’experts humans per
a revisar i corregir l’eixida d’aquests motors de reconeixement. Per aquest
motiu, és extremadament útil proporcionar eines interactives amb la finalitat
de generar i corregir les transcripcions generades pels motors de reconeixe-
ment.

Tot i que el reconeixement del text és l’objectiu final de l’Anàlisi i Proces-
sament de Documents, diversos passos previs (coneguts com preprocessa-
ment) són necessaris per a l’obtenció de transcripcions acurades a partir d’una
imatge digitalitzada. La neteja, millora i binarització de les imatges (si calen)
són les primeres etapes prèvies al reconeixement. A més a més, els manuscrits
històrics presenten una major dificultat d’analisi i preprocessament, perquè
poden mostrar diversos tipus de degradacions, taques, tinta a través del pa-
per i altres peculiaritats. Per tant, aquest tipus de documents requereixen
mètodes de preprocessament més sofisticats. En alguns casos, fins i tot, es
precisa de la supervisió d’experts per a garantir bons resultats en aquesta
etapa. Una vegada que les imatges han sigut netejades, les diferents zones
de la imatge han de ser localitzades: text, gràfics o dibuixos, decoracions,
versals, etc. D’altra banda, també és important conéixer les relacions entre
aquestes entitats i el text que contenen. Aquestes etapes del preprocessament
són crítiques per al rendiment final del sistema, ja que els errors comesos en
aquest moment es propagaran a la resta del procés de transcripció.
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L’objectiu principal del treball que estem presentant és millorar les principals
etapes del procés de reconeixement, és a dir, des de les imatges escanejades
fins a l’obtenció final de la transcripció del text. Els nostres esforços se cen-
tren en aplicar tècniques de Xarxes Neuronals i aprenentatge profund directa-
ment sobre les imatges de documents, amb la intenció d’extraure caracterís-
tiques adequades per a les diferents tasques analitzades: neteja i millora de
documents, extracció de línies, normalització de línies de text i, finalment,
transcripció del text. Com es pot apreciar, el treball realitzat aplica xicotetes
millores en diferents etapes de l’Anàlisi i Processament de Documents, però
també tracta d’abordar tasques més complexes: manuscrits històrics, o docu-
ments que presenten serioses degradacions.

Les xarxes neuronals i l’aprenentatge profund són un dels temes centrals
d’aquesta tesi. Diferents models neuronals convolucionals s’han desenvolupat
per a la neteja i millora de les imatges dels documents. També s’han utilitzat
models connexionistes per a la tasca d’extracció de línies: primer, per a detec-
tar punts d’interés i segments de text i, agregar-los per a extraure les línies
del document; i en segon lloc, etiquetant directament els pixels de la imatge
per a extraure la zona central del text i així definir els límits de les línies. Per al
preprocés de les línies de text, és a dir, la normalització del text abans del re-
coneixement final, s’han utilitzat models similars als utilitzats per a l’extracció
de línies. Finalment, quant al reconeixement d’escriptura manuscrita, s’han
combinat tècniques de xarxes neuronals i aprenentatge profund amb Models
Ocults de Markov, que han millorat significativament els resultats obtinguts
prèviament pel nostre motor de reconeixement.

La idoneïtat de tots aquests enfocaments han sigut testejats amb diferents
corpus en cadascuna de les tasques tractades, obtenint resultats competitius
en la major part dels casos analitzats.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Tasks and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 End-to-end: The Handwriting Text Recognition pipeline . 5
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Document structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

This introductory chapter prepares the reader to understand the overall work
presented in this document. Interest in digitizing documents has increased
with the proliferation of cheap storage devices and new digital document for-
mats that allow documents to be stored and retrieved. All of these advances
have made it easier and more convenient to keep digitized libraries instead
of keeping physical volumes of data. We will establish the broad outlines fol-
lowed in this work, and we will present the motivation and objectives as well
as a brief summary of the structure of this document.

1.1 Motivation

The main libraries and document archives are currently digitizing their col-
lections. The advantages of digitizing documents are evident: documents can
be universally accessed; several people can access the same resources at the
same time; in some cases, indexing and searching for content can be per-
formed. And, of course, it saves paper and does not require physical space.
Most libraries and archives are scanning the documents and publishing the

1



Chapter 1. Introduction

resulting images without their corresponding transcriptions. This seriously
limits the possibilities of document exploitation. Document Image Analysis
aims to analyze and extract useful information from scanned documents. It
involves all of techniques and algorithms that are applied to these document
images to obtain digital information related to them.

The most evident and ultimate objective of Document Image Analysis is to
transcribe the content of the documents. Once a reliable transcription is
obtained, this information allows the contents to be searched and indexed,
and allows more meaningful information to be extracted for better under-
standing. Initially, Document Image Analysis, (specifically Optical Charac-
ter Recognition) was applied to automatic mail address recognition which
saved a tremendous amount of effort to the U.S Postal service in the 60s.
However, the scope of Document Image Analysis has grown over the years:
form recognition, writer identification, signature verification, content search,
queries, script recognition, meta-data identification (italic, bold, URLs, ref-
erences, style, glyphs, symbols), document classification, reading order and
much, much more. In this PhD Thesis, we aim to enhance both purposes of
Document Image Analysis, which is getting the final transcription of a scanned
document image, and the pre-processing stages, which include all of the trans-
formations performed on the image before the final recognition.

Our journey starts with the legacy of the The Natural Language Engineer-
ing and Pattern Recognition Group. That team developed a Handwriting Text
Recognition engine which achieved great results in modern handwritten texts
(Offline IAM Database) [Espana-Boquera et al. 2011]. Part of their success was
developing a bright text line pre-processing and the effort invested in mak-
ing the line images suitable for the final recognition (decoding) stage. From
these previous ideas, we realized that some of the techniques and insights
could be applied to other pre-processing stages such as Text Line Extraction,
layout analysis, or document cleaning and enhancement. For instance, an
Artificial Neural Network-based image enhancement process was performed
on text lines before text size normalization, but the target data was modern
handwriting, which does not have high levels of degradation or distortions.
Therefore, we decided to improve these connectionist models and apply them
to full pages that included other artifacts such as degradations, decorations,
borders, out-of-page zones, etc. In the process, we realized that most of the
core techniques in the literature were powerful enough to deal with recent
typewritten documents. However, there was still room for improvement, for
instance, applying them to more complex documents such as historical docu-
ments or even modern unconstrained handwriting with complex layouts. We
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also took the previous work based on Interest Point detection as a starting
point. In previous works developed by the group for Text Line Normalization,
Local Extrema Points were extracted and classified to track text reference
lines. These ideas meant that Text Line Normalization could be used to detect
text areas in the whole page, and, therefore, obtain lines as we will show later.
Local Extrema Points are extracted by heuristics and then classified into In-
terest Points by means of Machine Learning techniques. An Artificial Neural
Network receives contextual information around the point to be classified, and
the output is one of the classes that gives information about the position of the
point in the line. As stated, this method is extended to the whole page, where
the Interest Points provide information about the text line. It is then feasible
to join them to draw the line frontiers with a clustering algorithm.

Finally, the third encouraging pillar of this PhD Thesis comes from the success
of deep learning techniques in Computer Vision-related tasks, specifically, the
excellent performance obtained with Convolutional Neural Networks. There is
an increasing trend towards directly using raw images without explicit feature
extraction and then applying several layers of convolutions to extract edges
and shapes, and combining them in higher hierarchies. This allows overcom-
ing tasks such as image classification, object detection, image restoration,
compression, etc. Documents are also images, and, even though they have
different final objectives than typical scene pictures, most of the techniques
developed for Computer Vision could be reused and adapted to Document Im-
age Analysis methods.

1.2 Tasks and tools

In the field of Computer Science research, two tendencies can be found: tools
and tasks. In short, tools are applied to tasks, and tasks require tools. There-
fore, some works focus on providing a general solution to different problems,
while others try to find the best option for the actual task. Besides, standard
tasks (such as MNIST, RIMES, ImageNet, and others) can be used for both
purposes.

In the case of tools, one develops a great technique and then tries to verify
the greatness of its technology by trying it on different tasks. For instance, in
the Machine Learning community, specifically with Artificial Neural Networks,
the community develops faster and better methods to train, generalize, and
achieve better rates. As soon as these new techniques become popular they
start to be included in most of the Machine Learning frameworks and toolkits,
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and the community will try them on their specific tasks. However, there is
a dangerous drawback; sometimes one wants to apply his/her techniques to
all possible tasks, regardless of whether or not they are the best or the right
approach.

On the other hand, in the case of tasks, one wants to find the best way of
performing them. We must probably rely on some techniques and ideas devel-
oped by others and adapt them to the given task. This approach could appear
to be more straightforward since you only have to try several existing tech-
niques and observe which one works better. However, there is nothing further
from the truth. This approach involves a deep study of the task and signifi-
cant engineering with all the pre- and post-processing in order to guarantee
success.

Finally, we have the in-between situation: “I have this task, and I know this
novel technique that will work for it.” However, this also presents different
challenges:

◦ Once you develop a novel technique, you and the whole community ex-
pect a significant improvement in the state-of-the-art methods. What is
the point of applying this advanced technology if it cannot outperform
the current models in the bibliography?

◦ Post- and pre-processing approaches could work well in some of the spe-
cific parts of the whole process, but there will be other stages that re-
quire transforming the data, applying the algorithm, and adapting the
output to the desired answer of the system. And when using new meth-
ods, this is not straightforward and involves a significant amount of ef-
fort, research, and engineering.

Our research follows this last approach: we want to tackle the main Document
Image Analysis stages. Indeed, we want to use some of the new advances on
Artificial Neural Network and deep learning combined with our novel tech-
niques to approach them.
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1.3 End-to-end: The Handwriting Text Recognition
pipeline

As stated, we have extended the scope of our research to the overall transcrip-
tion process. One of the main achievements of this PhD Thesis is to provide
support for (almost) the whole transcription process: take a handwritten doc-
ument, clean it, extract the lines, and then transcribe them. Of course, some
of the full pipeline stages have been overlooked, but in some cases those are
optional. This is the case of skew correction or perspective correction in which
one can only rely on external effective and proven methods that are included
in several toolkits: OpenCV, OCROpus, Tesseract, and many others.

Therefore, we start with a scanned page. If it does not have a significant per-
spective distortion, we could directly apply the methods depicted in Chapter 4.
We enhance the image by removing stains and noise artifacts and by extract-
ing the primary foreground information (mostly text). Indeed, it is possible to
eliminate areas like margins, outside of page, decorations and other parts that
are not useful for the rest of the processing steps.

The next step involves extracting the lines to be transcribed. At this point, we
start with the cleaned page, and any of the techniques introduced in Chap-
ter 5 could be used for this purpose. In fact, since some of these methods
work directly on the raw image, it is possible to train these Text Line Extrac-
tion techniques to deal with the expected noise. In other words, the cleaning
step is implicitly included into the Text Line Extraction models. Neverthe-
less, splitting these stages into two steps (cleaning/enhancement and line seg-
mentation) is also a valid approach. In addition, if the document structure is
complex, it is desirable to separate the line extraction in two steps as well:
layout analysis to extract text blocks and removal of other parts; and then line
segmentation of the detected blocks.

With the extracted lines, we already have the data that will be fed into the
recognizer, but first, we would like to normalize the lines. The objective here
is twofold:

◦ To have images with a fixed height because our recognition engine ex-
pects a fixed size column height.

◦ To reduce variability between different samples and styles.

5



Chapter 1. Introduction

In this process, there are a few pre-processing steps that have been taken
from previous text line pre-processing [Espana-Boquera et al. 2011]: slope,
skew, and slant correction. However, the height normalization stage has been
improved by classifying all the line pixels instead of only the Interest Point
pixels. This thorough method gave us a significant improvement as explained
in Chapter 6.

Finally, our Handwriting Text Recognition engine is applied to the normalized
text line images. The optical modeling and, specifically, the feature extraction
process have been improved and updated with deep learning techniques to
learn more useful characteristics of the text. Hence, better and more accurate
results are achieved. The full process is illustrated in Figure 1.1.

As we have seen, we deal with the main stages of Document Image Analysis,
either by creating new ones from scratch or by improving the existing ones.

1.4 Objectives

After knowing the challenges of the Document Image Analysis and Optical
Character Recognition, we present the main goals of this PhD Thesis.

1. To extend our recognition system to include more pre-processing stages.
The goal is to cover the main steps of the Document Image Analysis
pipeline: Cleaning and enhancement, and Layout and Text Line Extrac-
tion.

2. To create reliable Machine Learning-based models for document clean-
ing and Text Line Extraction that could be easily adapted to different
documents and collections. Instead of having an adaptive or a generic
method that provides a reasonable performance in different kinds of doc-
uments, we suggest investing a small amount of effort in supervising or
adapting the already trained classifiers, which in the long term usage
eases the overall transcription process.

3. To develop a specific Artificial Neural Network (ANN) training method
able to deal with unbalanced datasets since most of the task analyzed
suffer this issue. Focusing on the evaluated metrics i.e. F-Measure (FM).

4. To provide tools that assist these processes. For some of the techniques
shown here, we require supervised data. For this purpose, we will pro-
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Figure 1.1: The figure illustrates the techniques and methods addressed in this PhD
Thesis. First, the image is cleaned and enhanced. Then, methods for Text Line Extrac-
tion can be applied, and finally, the height of the image is normalized. In the last step,
the recognition engine has been improved.
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vide a new corpus and tools that support and facilitate the human super-
vision process.

5. To update our decoding engine with deep learning techniques. New
approaches and improvements in recent years have been published for
Handwriting Text Recognition. Most of them apply deep learning tech-
niques, and those ideas can be included in our previously developed
Handwriting Text Recognition engine. The goal is to adapt and imple-
ment these new advances to improve its performance.

6. To explore and adapt Computer Vision techniques to Document Image
Analysis tasks. Most of the newer techniques in Computer Vision and
Image Processing can also be applied to documents since the input is
simply a scanned document.

We developed and implemented different ideas and methods to achieve the
objectives mentioned above. Thus, we are encouraged to write reliable, clean,
efficient and useful programs to allow the users to interact easily with them.
Other technical objectives that are related to the implementation of our mod-
els are:

(a) Efficient implementation of the described algorithms for the different
tasks.

(b) Contribution to the April-ANN [F. Zamora-Martínez, España-Boquera, et
al. 2013] toolkit developed by the research team. Apart from the actual
contribution to this toolkit during the development of this PhD Thesis,
we intend to continue modifying and updating the general developed
techniques.

1.5 Document structure

We briefly describe, in this section, how the current document has been struc-
tured, and we summarize the contents that can be found in the following chap-
ters.
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Chapter 2. Related work For better comprehension of the tasks and
the current methodologies, we collected some of the useful resources to an-
alyze the evolution and the techniques that have been applied to the above-
mentioned tasks. The chapter is structured following the four main tasks in
this PhD Thesis (indicating the most relevant techniques and trends in each of
them): Document Image Binarization, Text Line Extraction, Text Line Normal-
ization, and Decoding.

Chapter 3. Artificial Neural Networks Artificial Neural Networks are a
central topic to the whole work collected in this document. In this introduc-
tory chapter, basic concepts about Artificial Neural Networks and the other
statistical models used in the rest of the chapters are introduced. We also dis-
cuss some of the techniques and tricks used to speed up convergence and to
avoid over-fitting.

Chapter 4. Document Image Cleaning and Enhancement Document
cleaning and enhancement is one of the first stages of the Handwriting Text
Recognition pipeline. It works directly on the scanned image, and the errors
and mistakes commited there will affect the rest of the process. In this chap-
ter, we discuss several techniques based on Artificial Neural Networks. First,
we review the traditional Multilayer Perceptron used in previous work; then
we improve it by adding new features. Two novel techniques that are applied
in this field are presented: Convolutional Neural Networks and MultiDirec-
tional Long Short Term Memories. We introduce and discuss the different
corpora and metrics used to evaluate this task and the results of the proposed
approaches.

Chapter 5. Text Line Extraction Several approaches for Text Line Ex-
traction are presented and evaluated in this chapter. On the one hand, we
focus on the use of Interest Points to extract text segments and then combine
them in a second stage that aggregates the different segments to remove the
final lines. On the other hand, pixel labeling is applied to obtain the Main
Body Area in the raw images and to finally segment the generated map in or-
der to define the line frontiers. In addition, we discuss the different metrics
and formats contributed by several authors and their suitability for this task.
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Chapter 6. Text Line Normalization This chapter works directly with the
text line to be transcribed. In the original work, the three principal zones of
the text lines are extracted: Ascenders, the Main Body Area, and Descenders.
Then they are height-normalized independently. In this PhD Thesis, we have
improved the previous text height normalization techniques based on Interest
Points but classifying the pixel of the whole image. First, Hidden Markov
Models are applied to constrict the zones of each column. In a later approach,
we present a model that is based on Dynamic Programming and Convolutional
Neural Networks that solve the problems derived from the first approach.

Chapter 7. Decoding from Scratch In this chapter, we focus on the
decoding stage of Handwriting Text Recognition. We directly use text line
images by applying Convolutional Neural Networks and deep Multilayer Per-
ceptrons for feature extraction in the Handwriting Text Recognition system.
In addition, a qualitative study on the features learned by the Convolutional
Neural Networks is performed to get a better understanding of the system
behavior.

Chapter 8. F-Measure as Artificial Neural Network optimization func-
tion Imbalance datasets impose serious problems in Machine Learning.
For many tasks characterized by imbalanced data, the F-Measure is commonly
used when discussing the results and comparing them with other approaches.
The chapter studies the use of F-Measure as a loss function for training ANN
through the Backpropagation algorithm. This novel training criterion has been
employed when training ANN for document cleaning and enhancements.

Chapter 9. Conclusions and Future Work In this chapter, we summarize
the main discussions derived for each of the main tasks, and we also present
a general overview of this PhD Thesis development. Finally, future lines of
work and extensions are presented. In addition, each chapter includes its own
summary and conclusions.

The reader will notice that most of the Chapters are self-contained, specifically
Chapters 4, 5, 6 and 7, which treat different stages of the overall Document
Image Analysis pipeline. Same thing with Chapter 8, which is self-contained.
The structure of the chapters is typical: we introduce the specific task, the
methodologies, the results, and a brief discussion. In addition, we include
the index, introduction, and summary within the chapters. In any case, we
encourage the reader to look at Chapter 3 in order to have a better overview
of the common techniques and configurations that are shared in the different
tasks.
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Related work
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In this PhD Thesis many different stages of the Document Image Analysis
pipeline are adressed: Document Image Binarization, Text Line Extraction
and Text Line Normalization for document image processing and, in Chap-
ter 7, we focus on the recognition. In this chapter we review the related work,
we discuss the main approaches for Document Image Analysis and the most
successful systems in order to have a better understanding of the presented
tasks and their associated issues. It is not surprising, indeed, that most of the
pioneer works in the researched topics worked relatively well and their ideas
are still used and improved through time.
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Figure 2.1: Preprocessing steps. The diagram shows the natural preprocessing work-
flow, from the original image to the lines, and then he previous transformation of the
lines before the OCR process (Figure extracted and adapted from [España Boquera
2016]).

.

2.1 Document Image Binarization

Document Image Binarization (DIB) is one of the first stages of the Document
Image Analysis (DIA) and the further recognition pipeline. It consists mainly in
classifying the pixels of the image into background and foreground pixels. At
this stage, “binarization” will imply some cleaning and enhancement, since de-
tecting the foreground pixel will remove, for instance, ink spots, degradations
or ink-bleed through, besides it will recover lost strokes or other foreground
information. Undoubtedly, the performance of this stage will significantly af-
fect the outcome of all the other document analysis steps like layout analysis
and Text Line Extraction (TLE), and the final text transcription as well [Nagy
2000].

Binarization is also known in the literature as thresholding, since a threshold
value is applied to the pixels to saturate them in one of the classes1. Im-
age Binarization takes into account any images, but DIB is meant for doc-
uments where text (and other graphics) are considered foreground and the
background is the “common background of the sheet”.

In the literature we could find lots of works about Image Binarization (and of
course, the DIB modality). While writing this section, the main problem was
to find a proper taxonomy to classify the many related approaches. There are
several ways of classification: technique used, type of the images they are
aimed to, features used, etc. Indeed, any methodology could be described as
a combination of these categories.

1In grayscale images, pixels are usually represented by 1 byte (0 − 255 range values), when
binarizing we use the value 0 as background and 255 as foreground. These binary images can be
easily represented by 1 bit: 0 or 1.
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Moreover, the Document Image Binarization Contest (DIBCO) [B. Gatos et al.
2011; Pratikakis et al. 2011, 2013] and Handwritten Document Image Bina-
rization Contest (H-DIBCO) [Ntirogiannis et al. 2014b; Pratikakis et al. 2012,
2010] have been held for the last years in the ICDAR and ICFHR conferences..
This contributed to the emergence of better and novel approaches in each
edition.

Due to the vast number of works addressing DIB and any of its sub-tasks and
related works (enhancement, image restoration, contrast normalization), we
will go through the most significant and illustrative approaches. In any case,
one could rely on surveys or other sources to get a better insight on the topic,
for example, the above mentioned contests DIBCO and H-DIBCO are a good
source to know the last advances in the field. A complete survey (at that time)
was collected by [P. K. Sahoo et al. 1988], and later updates by [Mehmet et al.
2004] and [Sankur et al. 2001].

The deployed models in this PhD Thesis could be classified as local methods,
and they are meant for images of documents, specifically historical records.
We applied supervised techniques based on discriminative models. Hence, we
try to emphasize on the closest related works and the differences among the
followed approaches.

2.1.1 Taxonomy

We show different ways of classifying the different works to address DIB. In
each classification, we introduce and analyze some of the most representative
works.

Global/Local/Hybrid thresholding The general image binarization (or
thresholding algorithms) could be divided into global, local thresholding and
mixing strategies. Global thresholding establishes a fixed threshold for all pix-
els of the image, whereas local thresholding applies different thresholds for
each pixel (using pixel local information). Hybrid approaches try to compose
both strategies: they use global and local information for thresholding. Global
thresholding techniques usually need less computation, and they work well
in simple cases, though fail in complex images. The most popular global im-
age threshold is Otsu’s method [Otsu 1975] which after computing the gray
level histogram, takes the optimal value that minimizes the inner class vari-
ance. There are some refinements based on this method [Brink 1992; Farrahi
Moghaddam et al. 2012; Kittler et al. 1985]. The most popular local threshold-
ing algorithms are Niblack [Niblack 1985] and Sauvola [Sauvola et al. 2000]
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filters. For each pixel, Niblack takes a rectangular pixel-centered window and
adapts the local threshold using the average (µ) and standard deviation (σ) of
this region. The threshold value is computed as:

T (x, y) = µ(x, y) + k · σ(x, y) , (2.1)

where k is the influence of the region deviation in the local threshold. As
we can see, this method is not parameter free and requires to tune k and
the input region size (typical values are around 25×25 squared windows and
k = 0.6). Sauvola adapts the contribution of the standard deviation by the
dynamic range R:

T (x, y) = µ(x, y) ·

[
1 + k ·

(σ(x, y)

R
− 1
)]

. (2.2)

As the authors pointed out, typical values are k = 0.5 and R = 128.

Another similar approach is the one developed by [Bernsen 1986], they com-
pute an adaptive local threshold as the mean of the minima and maxima bright-
ness values (intensity level) of a w rectangular window. However, if the con-
trast is higher than a certain threshold (the difference between higher and
lower values), the pixels of the window are classified to background or fore-
ground according to the class that fits better.

On the last modality, hybrid approaches, we address the works of [Chang et
al. 2008; Farrahi Moghaddam et al. 2012; Ntirogiannis et al. 2014a; Pai et al.
2010].

Technique Grouping by technique or procedure is also a typical classifica-
tion, but, most of the time it is hard to enclose a method in a single category
since they pool and combine different techniques. Some of the categories we
could found and representative examples are shown:

◦ Clustering Analysis [Kittler et al. 1985; Otsu 1975].
◦ Histograms and image variance models [Dos Anjos et al. 2008;

Niblack 1985; Sauvola et al. 2000]
◦ Entropy-based methods [Pun 1980; P. Sahoo et al. 1997; A. Wong

et al. 1989].

And other approaches like fuzzy logic [Lopes et al. 2010], and the Machine
Learning (ML) that we will discuss later.
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Figure 2.2: Image Binarization modes. Nodes marked with "+" are not exclusive.

Type of images On Scene Images which contain objects, usually the ratio
between background/foreground is lower than document images wich present
more unbalanced data and background copes the major part of the image.
Due to the nature of the documents and regularity in writing, it is reasonable
to have a particular research field aiming these documents. General purpose
thresholding algorithms should perform worse in documents since more accu-
rate models can exploit their characteristics. In any case, given the hierarchy,
as seen in Figure 2.2, more general models, could be used in particular tasks.
Indeed, most of the general purpose approaches are adaptive or parametrized,
and they can conveniently be tuned for many different images. For example,
Sauvola is an adaptive method that could perform reasonably well with text,
degradations, and bad illumination issues. These general approaches suffice
in several document tasks that do not present high deterioration.

Taking a closer look to document specific contributions, [Ntirogiannis et al.
2014a] combine global and local threshold for handwritten text recognition.
First, a background estimation is applied to binarize the image globally, then
they work with Connected Components (CCs), the approach takes stroke char-
acteristics and discards components that do not suit to the common stroke
criteria. The method proposed by [Farrahi Moghaddam et al. 2012] works in a
similar manner since it extracts features such as stroke width and line height.
It adapts itself to the document structure because it combines a grid-based
modeling and the estimated background map.

A note on the data that is taken as input. The images could be coded in RGB or
grayscale, but also MultiSpectral Images (MSI) which are obtained applying
different filters of illumination (UV, VIS-NIR ) generating a rectangular lattice

15



Chapter 2. Related work

for an image. It is not common to find available MSI corpora [Easton et al.
2004; Shippert 2003] but this modality is gaining interest as shown in the
ICDAR 2015 contest [Hedjam, Nafchi, et al. 2015]. Another type of inputs that
are not taken into account in this classification images are taken from videos
sequences [Roy et al. 2012; Z. Zhou et al. 2010].

Historical and Degraded Documents In degraded documents, such
historical records2, traditional and general methods present poorly perfor-
mances. Degraded documents involve not only binarization but the restoration
of document parts (mainly lost strokes), for this purpose usually stroke char-
acteristics are integrated in the binarization. It is possible to find a vast set
of contributions addressing these issues [Amudha et al. 2012; Antonacopoulos
et al. 2007; Fung et al. 2010; Jagroop Kaur et al. 2014; Rani et al. 2015]. For
example, [Farrahi Moghaddam et al. 2010] treat binarization of degraded doc-
uments by combining different binarization scales. Their work aims to restore
lost strokes and eliminate ink bleed-through. [Nina et al. 2011] showed that a
recursive Otsu’s thresholding could be used for binarization of historical doc-
uments as well. [B. Su et al. 2013] applied another adaptive approach by the
combination of image contrast, gradients, and text shapes are estimated by
Canny’s edge extractor. [Valizadeh et al. 2012] extract useful characteristics
in order to classify the pixels in background or foreground; they use structural
contrast taking into account information like the stroke width for feature ex-
traction. With the selected features, space is partitioned into several regions
(clustering) where the pixel within each region will be classified mixing the
region information and the previously features extracted.

There is a full set of specific models focused on the ink bleed-through particu-
lar noise. In this concrete sub-task, we found two modes: blind and non-blind
(the ink bleed-through of a page is part of the opposite recto/verso page). The
non-blind approach takes as input recto/verso pairs of images while in the
blind each page is given independently. The former mode seems easier and
allows to deal with dirtier documents, but also arises new challenges such as
page alignment. We are not going into details with this particular mode; but
some related works are [Baronia et al. 2013; Drira 2006; Hanasusanto et al.
2010; Huang et al. 2008; Wolf 2010].

2Degraded and historical documents are two different concepts, even though they are heavily
correlated since the historical documents suffer from age degradations.
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2.1 Document Image Binarization

Machine Learning models In this PhD Thesis we have used ANN which
are discriminative models. Regarding ML approaches we mostly find works
based on Markov Random Fields (MRF)/Conditional Random Fields (CRF) and
other supervised methods that rely on labeled data for training the model.
We found several works on CRFs for different DIA related tasks [H. Cao et
al. 2009; S. Z. Li 2009; C. Wang et al. 2013]. With CRF the binarization is
formulated as the problem of maximizing the a posteriori probability based
on given previous observation (dirty pixels). In these models, the conditional
probability of a pixel of the image depends only on the pixels of a predefined
neighborhood (or clique). The model parameters (or potentials) are learned by
minimizing the energy function for a fixed size clique. Even though there are
several works for DIB based on CRFs they differ in the conditional probability
formulation, prior estimation, and the optimization procedure.

For example, [Wolf and Doermann 2002] use MRFs for low quality text bi-
narization/restoration, the clique potentials from the models are learnt from
training data. A probability density function is defined by adding Gaussian
noise with zero mean and variance (σ2

n), then they added the Sauvola’s thresh-
old (T ) to this function. The estimation is computed upon 4×4 grid clique, this
big size window arises the problem of search all the possibles clique potentials
(216). For that, the unseen cliques are smoothed. Finally the Bayesian maxi-
mum a posteriori is maximized by simulated annealing. In [Lelore et al. 2009]
they model the conditional function as the observation of background and
text distribution data. Nevertheless, they propose alternative heuristic rules.
The final parameter estimation and optimization is done by an Expectation-
Maximization (EM) algorithm. [Kuk et al. 2008] define the likelihood probabil-
ity using a Gaussian noise estimation taking illumination and text parameters.
Then they optimize the posterior probability by the graph cut algorithm. [Wolf
2010] adapted CRF models to deal with ink-bleeding images, using two dif-
ferent CRFs for the recto and verso sides. The primary goal is to recover the
recto pixels and remove the verso pixels, with the double modeling they could
identify recto pixels covered by verso ones. In [Lettner et al. 2010] the authors
had apply CRFs as well but using MSI as inputs. The model combines spectral
and spatial features based on the stroke properties. Then the model is trained
by using Belief Propagation but also performed some experimentation with
the graph-cut algorithm. Another approaches based on CRF are [H. Cao et al.
2009; Gupta et al. 2006], where patched-based topologies instead of pixels as
connectivity source are used.

Connectionist approaches have also been applied for image processing due to
their ability to learn very complex non-linear input/output relationships from
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examples. In particular, MLPs have been used for binarization and image en-
hancement. [Marinai et al. 2005] collects a set of ANN-based works for DIA,
they explore from document pre-processing to recognition, going through top-
ics like layout analysis and character segmentation. ANN, specifically MLPs,
have been used for the DIB task as well. For instance, in [Hidalgo et al. 2005],
a MLP fed with the pixels of a fixed size moving window is presented, the
net is a regression model used to enhance the image document. In [Chi et
al. 2001], a MLP is trained as a classifier in two classes, also considering a
sliding window running through the input image. These approaches require
from supervised data to train the regression models, and hence, the training
data quality has a direct impact on the overall system performance. [Mehrara
et al. 2009] proposed a similar setup, but they extract edges in images. First,
they apply an algorithm to obtain the possible edges, and finally, classify them
in 16 different types. An extreme approach is the work of [Wu, Rawls, et al.
2015], where an ANN for pixel classification is used but using several higher
order features as input. The idea is quite smart since they some features ex-
tracted from other methods, for example, the Otsu’s and Sauvola’s thresholds.
A novel approach is to treat the problem as 2D sequences and apply RNNs
to classify the elements of the sequence. We can found our collaboration in
[Afzal et al. 2015], were we applied MDLSTM trained with Backpropagation-
through-time (BTT) on image patches.

In some other examples on ML, for instance, [Hedjam, Moghaddam, et al.
2011] propose a maximum likelihood optimization using a high recall map
by Sauvola. Besides, they restore the lost strokes combining the maximum
likelihood with prior information. A Bayesian model using Hidden Markov
Models (HMMs) is proposed in [F. Su et al. 2007] for removing bleed-through
degradation. In [B. Su et al. 2010] pixels are classified in three classes: back-
ground, foreground and uncertain pixel; the uncertain pixel are re-classified
following an unsupervised k-means based procedure.

Combination of different approaches We have reviewed, mentioned
and, of course, excluded lots of binarization methods. Combination of sev-
eral thresholding models, tandems or Recognition Output Voting Error Reduc-
tion (ROVER) are an inevitable line of research to improve unique methods.
Indeed, most of the approaches evaluated try to pool as much as useful infor-
mation coming from different sources. That is the case of [B. Su et al. 2011],
following their previous work in [B. Su et al. 2010]. They compare the var-
ious outputs from different methods. The pixels that are not unanimous in
all the methods are marked as uncertain and then reclassified by using con-
trast information and surrounding neighborhood. [Arruda et al. 2014] com-
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2.1 Document Image Binarization

pute weak and strong bi-level images by combining the structural contrast im-
ages with 2 different parametrization of Niblack method. [Badekas et al. 2007]
use a self organizative maps for combining several binarization approaches:
Otsu’s, Bernsen’s, Niblack’s, Sauvola’s and others. [Khankasikam 2013] states
that there is not an optimal binarization technique suitable for all documents.
Hence they propose a selection algorithm where an MLP is trained to chose
the best binarization method in each case from from: Niblack’s, Bernsen’s,
Kapur’s, Kittler’s and Sauvola’s. As features, they use histograms, mean and
standard deviation. The main drawback is that the selection is made at page
level instead of pixels or patches.

Other approaches, like the one presented in [Rangoni et al. 2009] applies
different methods with different parameters, and then the authors validate
them with a set of representative pages (or even lines) and apply the best
method to the full document (or collections of documents).

2.1.2 Performance and efficiency

There are also several lines of research focusing on fast and efficient compu-
tation. For example, image histograms could be efficiently optimized by using
Integral Images [Bradley et al. 2007; Nicolaou, Ingold, et al. 2014; Shafait,
Keysers, and T. Breuel 2008].

[Pai et al. 2010] propose a fast but high-performance binarization algorithm
that is suitable for mobile devices. It divides the images into several blocks
and uses local and global thresholding. As part of the current PhD The-
sis we integrated our convolutional MLP in an Android Mobile application
[Adelantado-Torres et al. 2014; Pastor-Pellicer, Castro-Bleda, et al. 2015].

2.1.3 Evaluation

Evaluation of binarization is an open problem. As we will see in Chapter 4.4
there are several approaches for evaluating the performance of the binariza-
tion stage available. The most naïve approach is the subjective evaluation,
other is to compute the final OCR output or specific binarized metrics.

[Ntirogiannis et al. 2008] proposed a supervision framework by extracting the
skeleton of the text. Then the user can correct the mistakes; and the final esti-
mated ground truth is taken from a dilated skeleton of the text. [Ntirogiannis,
B. B. Gatos, et al. 2013] later proposed a set of evaluation techniques aimed
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for historical documents, they considered precision and recall but also the
influence of missed text, background and stroke reconstruction.

2.2 Text Line Extraction

[Nagy 2000] completed a great overview about DIA. Even though this sur-
vey is more than 15 years old, it captures the essence of the DIA tasks and
the progress over the twentieth-century. In this PhD Thesis we have focused
as well in one of the most exciting and crucial stages which is Text Line Ex-
traction (TLE). This stage is part of the overall pipeline, and usually, it goes
preceded by other steps like layout analysis, page skew correction, and image
denoising. In this section we collect related works to the models presented in
this PhD Thesis (Chapter 5) and other illustrative approaches to get a better
understanding about TLE and how to approach this problem.

First of all, one has to address the brilliant survey by [Likforman-Sulem et al.
2007], they grouped and reviewed the leading works on Historical Documents.
The different approaches have been classified as follows:

◦ Projection profiles As the name states, these models sum up vertically
the contribution of all the pixels and by analyzing this histograms (find-
ing peaks for example) the lines are detected and extracted. As a chief
drawback, they usually fail with short lines and narrow space between
them.

◦ Smearing The Run-Length Smearing Algorithm (RLSA) procedure by [K. Y.
Wong et al. 1982] is applied horizontally and then the lines are seg-
mented. Similar ideas have been used in Chapter 5.6.

◦ Grouping This technique includes most of the bottom-up approaches
like the methods proposed in Chapter 5.

◦ Hough transformation Translating the lines, points and other com-
ponents to the Hough domain, [Hart et al. 1973] allow to find and check
potential line alignments and therefore to extract them.

◦ Repulsive-Attract This category, as far as we know, only includes the
work from [Öztop et al. 1999]. The idea is to set up several baselines
along the text lines and find their exact location by attracting the base-
line and foreground pixels and repelling them from other baselines.
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2.2 Text Line Extraction

◦ Stochastic approaches Most of the ML approaches are probabilistic
models since the classifiers learned and estimated probabilities given the
input images.

Other classification are proposed. For instance, [Ouwayed et al. 2010] pre-
sented a new categorization with three top levels: (1) Top-down: projection-
based and document-based methods; (2) Bottom-up: K-NN, Hough transform,
Smoothing, Repulsive-attractive Network and, Minimal Spanning Tree meth-
ods and; (3) Hybrid approaches.

In [Razak et al. 2008] after introducing some of the common challenges of
TLE (line fluctuation (skew) and line proximity), the authors reviewed several
approaches grouping them by smearing methods, projection based, group-
ing, Hough and graph based. [Bukhari et al. 2009] proposed a much higher
lever classification dividing it into two types: connected components and de-
formable model based. We also recommend checking the review included in
[Fernández-Mota et al. 2014].

2.2.1 Bottom-up strategies and text aggregation

To approach the problem of noise and styles variation in handwriting, the ma-
jority of published methods rely on bottom-up strategies grouping low-level
elements of the image such as pixels or components. Simple rules such as
nearest neighbor fail since it often belongs to an adjacent line. Typically, low-
level parts such as text segments are computed as CCs [Feldbach et al. 2001;
Louloudis et al. 2008] or contours of the image [Romero, Pastor, et al. 2006].

In [Yin and Cheng-Lin 2007; Yin and Liu 2009] a bottom-up graph based pro-
cedure by joining CCs with minimal spanning tree clustering is followed. The
key point of this approach is to define a distance measure between compo-
nents and find clusterings in the minimal spanning tree to segment each line.
[Ouwayed et al. 2010] instead, aims at multi-oriented documents. In addition
to multi-skewed lines, we find multi-oriented lines within the same document.
The procedure has been studied on Arabic documents, but they claim that it
can be generalized to another script where writing is linear. Their approach
starts with a document meshing to allow several orientations, then active con-
tours (snakes) take the morphological information and CCs of the same line
are grouped for each mesh. The orientation estimation of each cell is calcu-
lated by means of projection profiles and the Wigner-Ville distribution. The fi-
nal lines are extracted by enlarging the meshes to their neighbors with similar
orientation until obtaining the lines. A smart touching components splitting
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is applied by using morphological information detecting the touching points
between ascenders, descenders, and Arabic ligatures.

Interest Point (IP)-based methods circumvent the problem of binarization and
offer the advantage of being independent of the actual layout, IP extracted
from geometrical methods, such as Difference-of-Gaussian, have been previ-
ously used to detect text lines in historical documents [Garz, Fischer, Bunke,
et al. 2013]. First the points are grouped into text segments using spatial
clustering and finally joined in to lines.

2.2.2 Projection profiles

With respect to projection profiles, [Bar-Yosef et al. 2009] applied them to de-
graded documents with large skew and curvatures for TLE. The local profiles
are computed at column level using a sliding window. Finally, a local projected
profile for every pixel is obtained and the seams are calculated by first-order
derivatives. [Dos Santos et al. 2009] use morphological operators to extract
features that will be combined with local projection profiles. This approach
comprises 8 flow stages: 1. Feature extraction by the morphological opera-
tion; 2. Vertical Histogram Projection, 3. Text Line Separation, 4. False Line
exclusion, 5. Line region recovery, 6. Histogram projection, 7. False Word
exclusion, and 8. Text Selection.

Projection based models assume uniform skew within the lines. If it is not
the case, piece-wise projections are applied instead. These ideas are very
close to the contribution presented in Chapter 5.5.1 since our methods al-
low different skews within lines and different orientations for each text seg-
ment. [Papavassiliou, Stafylakis, et al. 2010] for instance, divide the page into
non-overlapping equal-width vertical zones and after disregarding the zones
with a proportion of foreground pixels below a certain threshold (margins), a
smoothed projection profile for each vertical zone is applied. Text and gaps
are distinguished from the profiles and refined by a HMM which two states:
text and gap regions. Finally, separators between lines are estimated. The
key point relies on joining the separators of the contiguous columns and a
post-processing refinement to avoid line overlapping.
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2.2 Text Line Extraction

2.2.3 Blurring and smearing

Lots of contributions apply smearing in their pipelines which are lately com-
bined with CCs or projection profiles among others. [Nicolaou and B. Gatos
2009] use a blurring procedure to deal with touching components, line mark-
ers are extracted in the limits between lines. Next CCs are assigned to one
of these lines. If a CC belongs to many lines (touching components), the pix-
els are rearranged according to the line areas extracted from the markers.
[Nikolaou et al. 2010] applies a modified RLSA by adding CCs, white spaces,
punctuation marks, and skeleton of the strokes knowledge to the smearing
process. In [Bukhari et al. 2008, 2009] the authors tackle the text segmenta-
tion problem by using active contours (snakes) as a base unit to minimize the
energy function. The final lines are extracted by joining neighboring snakes
after applying several deformations until they stick together. To retrieve the
“snakes”, first a multi-oriented anisotropic Gaussian filter bank is used for
the image smoothing, and then ridges are taken as the central lines from the
smearing.

[Shi, Setlur, et al. 2009] combine blurring and morphological information. The
smearing procedure uses a local connectivity map, which smooths the data
within an elongated ellipse as pixel mask. “Each pixel value in an ALCM im-
age represents the cumulative intensity of the foreground pixels in an elliptical
neighborhood around the pixel in the original document image. A pixel with
higher value in the ALCM implies that the pixel is in a dense text region.” Then
the map is binarized and joined in CCs. Finally, the touching components are
split using the method proposed in [Shi and Govindaraju 1997]. [Papavassil-
iou, Katsouros, et al. 2010] apply morphological operations such as erosion,
dilation and m-th rank order operations to extract the structure of the lines
(the image is dilated and smoothed after applying 1×8 and 8×1 erosion opera-
tors before downsampling the resultant image). A median order filter removes
the ascenders and descenders and keeps the MBA of the text. The resultant
CC are post-processed using more structuring elements to eliminate touching
components. Another inspiring work is the one depicted in [Y. Li et al. 2008].
In there, first they introduce some of the TLE evaluation metrics discussed
in Chapter D.1. The approach computes a probability map marking whether
a pixel belongs to a line. The Probability Density Function is calculated by
means of Anisotropic Kernels. Once we have the “blurred” probability map,
the problem is reduced to find boundaries between lines. The probability map
looks like creeks and valleys (similarly to the MBA maps generated in Chap-
ter 5.6) and the final segmentation is performed by the level set method. Put it
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Figure 2.3: Text Reference lines.

in short, “the initial boundaries evolve by its partial derivative and an external
vector field”.

2.2.4 Line seams

Another trend is to detect the separation (seams or boundaries) between lines.
We found some methods following the idea of the Seam Carving algorithm [Avi-
dan et al. 2007] which is widely used in computer vision and it was initially
meant for image resizing, but it can be easily adapted for image segmentation.
It compute seams of minimum energy through an image, and this is calculated
efficiently by DP. The base idea behind applying it to TLE is to determine the
energy function that will found spaces between lines. [Saabni et al. 2011] use
the signed distance transform to generate the energy map. [Arvanitopoulos
et al. 2014] apply a modification of the seam carving procedure with text line
constraints. “Medial seams” are computed by projection profile matching and
the seam carving method is constrained to each of this medial seams. Seam
carving could be utilized as well, for post-processing stages, like in [Garz, Fis-
cher, Sablatnig, et al. 2012] where it is used for splitting touching components
when a line overlap has been detected.

[Gao et al. 2011] draw paths between text lines in a multi-scale approach.
After several pre-processing the average character size is computed (they ad-
dress Chinese writing), and then they combine 3 different sources of informa-
tion: simple local minima algorithm by checking the foreground pixel distri-
bution on regions above and below each pixel, CC contours and piece-wise
projection profile.

2.2.5 Text Reference Lines and baseline detection

Another set of approaches explores the text line characteristics such the ref-
erence lines which are explained in more detail in Chapter 5.2 (illustrated in
Figure 2.3). In addition some works that compute the text reference lines for
text line normalization are discussed in Section 2.3.
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Tracking the text reference lines is a good approach to guess the location,
continuity and orientation of the text lines, so they could be used in bottom-up
approaches to aggregate text segments into lines. For example, [Feldbach et
al. 2001] compute the mean and baselines of text using extrema points; then
they extract lines detecting the main baselines of the text.

An alternative idea is to track the MBA, in this modality, [Baechler, Liwicki,
et al. 2013] classify the pixels of the image to belong to the text core (MBA)
line class. They perform two classification levels; first, pixels are classified
as decoration, background, text block or periphery classes. And then, with a
higher resolution input, the outcome of this first stage is used for a more fine
classification into decoration, background, and core-text line. The detection
of the MBA at pixel level have been used for Text Line Normalization (TLN)
already used for TLN [Pastor-Pellicer, España-Boquera, Castro-Bleda, et al.
2015] and presented in Chapter 6.

2.2.6 Touching components

Touching components between lines is one of the principal problems of TLE
where most of the approaches are not robust enough when it is strongly
present. Therefore, there exists a full line of research addressing this issue.
Indeed, most of the works reviewed in here include their particular solution
to the touching components issue included in their solutions. Touching com-
ponents poses two main problems:

◦ Detection of the touching lines that must be splitting: this is usually
straightforward if the line spacing is wide or consistent. For exam-
ple, compute the average line height and mark to split the lines that
are above certain threshold. The problem becomes harder when the
space between lines is narrow, or the lines present different height or
are skewed.

◦ Splitting the lines: most of the touching cases come from the overlapping
of descenders and ascenders of two consecutive lines. The cut separat-
ing the lines must pass through ink strokes.

[J. Kumar, Kang, et al. 2011] introduce an approach for segmenting handwrit-
ten Arabic text-lines in the presence of touching components. This work is an
improvement of the method previously described in [J. Kumar, Abd-Almageed,
et al. 2010]. It comprises four main steps: coarse text-line estimation, error
detection and correction, touching component localization and separation. To
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Figure 2.4: This example illustrates how a text component is split by comparing the
height of the component above the tangent line with the height of the whole compo-
nent. The image of the right shows the outcome after separating the junction nearest
to the centroid of the CC (Image taken from the report done by Georg Schaller for the
DIA Seminar at University of Fribourg). The report was focused on work developed in
[J. Kumar, Abd-Almageed, et al. 2010].

localize the touching components they took the upper and lower tangent lines
of two consecutive lines: “If the ratio of the length of component below or
above this tangent line to the total height of the component is greater than
some threshold then the component is considered to be a touching compo-
nent.”, as illustrated in Figure 2.4.

[Kennard et al. 2006] address the problem of touching components in histor-
ical documents by applying several methods. After pre-processing, they use
the foreground/background transitions to estimate text lines. During the pro-
cess it provides the foreground data for each line as well. Hence, it removes
noise for the further text line processing stages. A different approach to over-
come splitting components to the detect the potential touching points. Usually,
character overlappings appear between ascenders and descenders of consec-
utive lines. [Kang and Doermann 2011] collected different touching template
patches in a dictionary; then the potential touching components are identi-
fied, and the splitting is resolved as the correct segmentation in the retrieved
closest patch from the dictionary.

[Rohini et al. 2012] aim at segmentation of touching and skewed documents.
Touching components are detected by extracting core text regions through
horizontal profiles. Then the line separators are drawn, and touching com-
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ponents are fixed by using RLSA. For the segmentation errors derived from
skew, they use distance measures.

2.2.7 Text Line as sequences

Related to the main line of this PhD Thesis, we found the work of [Moysset et
al. 2015]. In their approach MDLSTM are trained with Connectionist Temporal
Classification (CTC) for the localization of line frontiers. The line extraction is
done at paragraph level and requires from skew correction first. For training,
only the number of lines is provided, so the CTC algorithm will try to align
a sequence of line/interline transitions for each row. This approach has their
counter part by using HMM for text line segmentation in [Bosch et al. 2012].
They adapted the work of [Z. Lu et al. 2000] to HWR. As Moysset’s work, the
algorithm is applied to single unskewed columns. The image is aligned verti-
cally to 4 possible regions: Normal text Line-region, Inter Line-region, Blank
Line-region, Non-text Line-region. The model finds the best region sequence
ĥ as

ĥ = arg max
h

∑
b

P (o, b|h) · P (h) .

where b is the alignment and o the observations at each row. The first term is
estimated by an HMM3 by using the Viterbi search algorithm. The syntactic
model P (h) defines the a priori class of the given sequence; this term con-
strains the sequence to have a valid structure. For the observation probabil-
ities, a mixture of Gaussian is trained. The image is converted into sequence
of feature vectors by dividing the image into D non-overlapping vertical re-
gions, then projection based features are extracted for each block and finally
stacked for each row. In this work, they used a HMM to estimate the sequence
alignment and the input features of the model are handcrafted by projection
profiles, while in [Moysset et al. 2015] used the CTC and MDLSTM that are
directly applied on the raw image.

3There is a more detailed explanation of HMM in Appendix B.
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2.2.8 Historical Documents

Historical documents present more degradation due to the conservation state,
and sometimes their structure or layout are more complex than other modern
texts. Historical documents are gaining more interest in the literature in the
last years due to several reasons:

◦ By definition, they remained undigitized and nowadays most of the li-
braries are scanning and transcribing their databases. Newer and more
powerful techniques are aiming this daunting task and every day it is
easier to get more accurate transcriptions, which increased the interest
on this field of research.

◦ Historical documents are more challenging which promotes the creation
of novel and more powerful techniques. The interest of the research
community into overcoming most of the challenges and issues is rising.

Many works could be found in this field. [Diem et al. 2013] aim different type
of documents with several layouts, orientations, and backgrounds. They fol-
low a bottom-up approach where the CCs are grouped into words and then
into lines by globally minimizing all words distances. Skew and binarization
pre-processing are required and then the words are joined by using Local Pro-
jection Profiles. To speed up computation, a word is enclosed into a simple
rectangle area. Then the orientation of each word box is computed by extract-
ing the upper and lower contours, two respectively straight lines are fitted by
regression. If both lines had similar direction the box is oriented to them, if
not the box follows the general skew orientation of the document. Then the
words are merged according to their minimal distance; the distance takes into
account: the Euclidean distance of upper, lower and middle points between
boxes, their angle difference and a constant C that depends on of the text.
Some inconsistent words are removed from the text line orientation.

[Fernandez et al. 2012] introduced a line segmentation method based on pathfind-
ing (A*) from background skeleton. The algorithm is compared with [Man-
matha et al. 2005], they use the same word segmentation but different line
detection method. Later, works like [Fernández-Mota et al. 2014] detected
seams between lines by finding paths in a graph. The possible lines are located
first and then segmented. The segmentation is reduced to a graph traversal
problem by finding potential starting and ending nodes and minimum cost path
between them. “The paths consist of background points at equal distance to
the word above and below”. The nodes of the graph cover the background
area and touching text lines are treated by adding virtual edges in the graph.
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As they claim, the technique does not require any learning process, and it is
not oriented to a specific writer, style or alphabet.

[Cohen et al. 2014] use anisotropic filters for detecting the lines. They approx-
imate the probability density function of the lines (high probabilities in the
center of the lines and little in the frontiers) by a Gaussian filter. A multi-scale
filters are set up to make the method scale-invariant. In a second step, they
binarize the outputs of the Gaussian filters and extract CCs by using a compo-
nent tree. For each element obtained, a kind of center skeleton/polyline from
left to right on the component is drawn. From those, a fitness function states
whether this element is a text line. As always, some final post-processing elim-
inating small components and other spurious artifacts are applied. This ap-
proach gave excellent results on historical documents, especially in the Saint
Gall and Parzival Datasets which we have used for evaluation of our proposed
models as well.

[Rabaev et al. 2013] assume that working on binarized images fails for most of
the TLE algorithms when the documents have active degradation. Working on
the gray scale images, they propose a two staged approach: first, they extract
potential characters candidates in the image by using evolution maps of CCs
[Biller et al. 2012], in a second step the potential characters are aggregated
into lines using a sweep-line approach. Sweep lines move following the writing
direction and when an element is detected it is assigned to one of the lines
or discarded. These contributions gave good results in historical documents,
moreover some examples of very degraded documents where it is possible to
recover the lines are shown.

2.2.9 Machine Learning

Most of the works discussed so far are parameter free or adaptive, while oth-
ers require continuous parameter tuning. There is another subset that can
learn this parameter from the given data. For example, the contributions
shown in Chapter 5 use generally ANNs in order to estimate text zones (or
areas).

However, most of these approaches combine ML techniques with heuristic
and pre and post-processings. For example [Baechler, Liwicki, et al. 2013],
described previously, uses Dynamic MLPs to tag part of the images. The se-
quence segmentation approaches showed earlier [Moysset et al. 2015] and
[Z. Lu et al. 2000], learn the sequence model parameters from the input data
and the number of lines in the paragraph. [Stafylakis et al. 2008] followed
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a similar approach for the interline modeling with sequential models. First,
the image is split into several fixed-size columns to overcome the problem of
(non-uniform) skew. Then they use the typical scenario: horizontal projection
profile and smooth plus minima and maxima values for segmentation. With
this, over-segmented candidates are taken and finally refined with a Viterbi
model with two states: gap and text line.

[Kang, J. Kumar, et al. 2012] codebook based text line segmentation procedure
is followed. The image is summarized (downsampled) in smaller p×p bins. At
bin level, the codebook is formed by a contextual k neighborhood centered in
a bin and the mask indicating which contextual bins belong to the same line
to the center bin. The codebook samples are clustered, and during evaluat-
ing, each bin is classified to one of the clusterings which are used for a first
coarse text line segmentation which is post-processing to get a final text line
segmentation.

2.3 Text Line Preprocessing

Once text lines are extracted, a new set of processing stages are applied di-
rectly to those lines. Text line pre-processing comprises several stages (Fig-
ure 2.1). The order of these stages is important since some processes are
assumed in following steps. For example, a naïve text size normalization step
assumes that the slope and skew have been corrected. Otherwise, unwanted
artifacts could appear. Besides, some transcription engines require height line
normalization as input while others do not. Even though, some techniques
could skip some of the pre-processing steps where input data does not suffer
from high distortions or postpone its treatment to later stages.

It is common in the literature to find works pooling all the preprocessing steps
at once instead of individual studies for any of them. Indeed, most of end-to-
end HWR engines present their own approach based in previous normalization
works [Bozinovic et al. 1989; Brown et al. 1983; Bunke et al. 1995; Buse et
al. 1997; Caesar et al. 1995; Guerfali et al. 1993; Plamondon et al. 2000;
Vinciarelli et al. 2001]. However, some of the more challenging stages which
are skew and slant, have particular works dedicated to them. Besides, it is
worth to mention that the work developed aims at Western scripts, or at least
scripts that share some of their properties such as the presence of ascenders
and descenders.
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2.3.1 Tracking Text Reference Lines

Most pre-processing modules comprise the detection of the text zones or areas
as explained in detail in Chapter 5.2. In the literature we could find different
ways to track text reference lines:

◦ Histogram Profile based [Burr 1982; Guerfali et al. 1993; Hennig et
al. 2002; Powalka et al. 1994; Vinciarelli et al. 2001].

◦ Run-Length Smearing Algorithm (RLSA) [Pastor-Pellicer, Afzal, et
al. 2016; Toselli, Juan, et al. 2004].

◦ By contours/extrema [Bozinovic et al. 1989; Pastor et al. 2004].
◦ By Local Extrema [Brown et al. 1983; Caesar et al. 1995; Gorbe-Moya

et al. 2008; Guerfali et al. 1993].

The vertical histogram projection profile is the most straightforward approach
since the middle zone uses to concentrate more ink than the ascenders and de-
scenders. Geometrical heuristics may fail in many cases, specifically in short
sentences or isolated words. Since they are based on ink statistics, they may
be confused in the presence of too much or too few ascenders and/or descen-
ders, and they can also be affected by the presence of long horizontal strokes.
Local extrema-based approaches extract the vertical maxima and minima of
the strokes; these points, usually, belong to one of the 4 reference lines. One
basic approach is to use the horizontal projection histogram for this purpose
[Brown et al. 1983; Guerfali et al. 1993], or ML techniques relying on super-
vised or semisupervised data [Gorbe-Moya et al. 2008]. The reference lines
can be parametrized as straight vertical lines, diagonal straight lines [Caesar
et al. 1995], parabolic [Caesar et al. 1993] and also intervals [Gorbe-Moya
et al. 2008; Guerfali et al. 1993; Powalka et al. 1994]. [Caesar et al. 1995]
estimate the baseline by linear interpolation of Local Extrema Point (LEP),
selecting the subset of baseline points using regression analysis.

2.3.2 Skew and Slant correction

Skew correction is usually applied to the whole page instead of individual
lines or words [Y. Cao et al. 2003; Hull 1998]. The problem arises when there
is non-uniform skew within lines. In this case, the skew correction needs from
text line segmentation and line splitting into words or text units and individ-
ual treatment of each one. At line level, [Sun et al. 1997] apply histograms for
detecting the skew direction and the slant. They use a CC-based approach by
identifying and transform the surrounding parallelogram. [Morita et al. 1999]
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minimizes the weight least squares on the convex hull on the mathematical
line morphology. [Marti et al. 2002b] analyze HMM recognition systems with
statistical language modeling, they stack several preprocessing steps follow-
ing the ideas of [Brown et al. 1983]. For skew correction, they detect the
baseline but assuming that the lower baseline could be approximated with
one straight line. For slant, vertical contours are extracted and approximated
by vertical lines. The angle histogram of this vertical lines is collected, and the
final slant angle is the maximum value of this set. [Vinciarelli et al. 2001] pro-
poses a skew and de-slant approach without relying on heuristics. Horizontal
projection histograms are used for the text core region detection, w.r.t slant
correction they compute the angle that maximizes the number of columns with
continues vertical strokes. [Buse et al. 1997] explore two different slope/skew
corrections. One applies several angles and takes the projection histogram,
but they compute the minimum entropy of the whole distribution. The second
approach translates the image to the frequency domain. [Kavallieratou et al.
1999] explored several ways of detecting the skewed angle: by Cohen’s class
distributions on the horizontal profile and then combined with the Wignner-
Will distribution function as in [Kavallieratou et al. 2002]. In fact, some of the
techniques used in Chapter 5 were inspired by this work.

There also exist contributions mainly focusing on the slant removal procedure.
This is the case of [Pastor et al. 2004] where they compute the angle with max-
imum variance on the vertical projection profile for each de-slanted image.
This work is similar to [Slavík et al. 2001] in which Sobel filters are computed
to calculate the best slant angle. [Bertolami, Uchida, et al. 2007] uses a local
slant correction instead of averaging the slant of each word/line. An alterna-
tive is to use ML to estimate the MBA avoiding geometrical heuristics. [Seiler
et al. 1996] uses an ANN to obtain a rough estimate of the text-core zone. It
is important to remark our previous work [Gorbe-Moya et al. 2008] where the
slant is applied non-uniformly by using DP. For this, the slant is corrected
independently for each column but restricting the change over columns to a
certain degree. They use also supervised methods with ANNs to estimate the
score of each angle in each column.
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2.3.3 Size Normalization

Some recognition engines require fixed column height since the features are
commonly extracted at the column level. Size normalization often implies
width normalization, nevertheless we focus mainly in height normalization.

On the one hand, the advantages of having a fixed height are twofold: reduces
the script variability and allow to extract a constant number of features for
each image column (or context of columns). On the other hand, some of the
features extraction models and recognition engines do not require height nor-
malization and sometimes bad scaling could distort the images and therefore
decrease the recognition rate. When dealing with variable image heights, for
extracting a fixed set of features one could apply a non-uniform sliding win-
dow [Bianne-Bernard et al. 2011; Kozielski, Forster, et al. 2012], or pooling
features in upper levels [Graves and Schmidhuber 2009].

Models that rely on tracking reference lines use different scaling for each
zones preserving the size of each for the whole set of lines. [Toselli, Juan, et
al. 2004] gives a non-linear height normalization, given 30% of the final size to
ascenders and 15% according to the average ascenders and descenders distri-
bution of the corpora. Similar to this ideas, in [Gorbe-Moya et al. 2008] (and
in Chapter 6.2), 10% and 20%, have been taken for ascenders and descenders
respectively.

An interesting approach is the normalization based on second order moments
[Casey 1970; Miyoshi et al. 2009]. [Kozielski, Forster, et al. 2012] applies
moment-based normalization to HWR corpora such as IAM and RIMes database.
They run a variable window length in the image to scale by using moments.
In this procedure, the image is normalized but also centered on its gravity
center. Indeed, moments are used, as well, for feature extraction.

Width normalization It is slightly different than height normalization
since the variance between lines are mainly due to the sentence length and not
from writer variability. Therefore instead of normalizing the whole sentences
width to a fixed size, most of the approaches try to standardize the width vari-
ance per character or stroke. Is it possible to perform width normalization
by counting, for instance, the average number of changes of white-space/ink,
in horizontal, in the MBA rows and using this value, calculate the average
character size in the training data. [Graves and Schmidhuber 2009] tries to
approximate the mean character width to a fixed value, they take the text mid-
dle line (the line between baseline and corpus line) and normalize the width
by the stroke crosses in this line. [Marti et al. 2002b] counts the black-white
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transitions in the horizontal direction. Thus the average number of pixels per
stroke is estimated. Finally each image is re-sized to match the average pixel
per character. For isolated words or scripts like Arabic, we could normalize
each word to a fixed width keeping their aspect ratio [Dreuw et al. 2009].

On-line Text Line Normalization It is interesting to remark some works
on on-line text normalization. One can always render the stroke sequence
into a 2D image and apply some of the mentioned normalization. But, for
instance, it is straightforward to compute LEP from the strokes. In [Graves,
Liwicki, et al. 2009], the baseline and corpus line are calculated by linear
regression of those extrema in two steps where in the first one out-layers
are discarded. It is interesting also to address some of the complete on-line
recognition engines for on-line HWR like [Jaeger et al. 2001] or the Google
multi-language HWR [Keysers et al. 2016] where they also present the smart
pre-processing in this modality.

2.4 Handwriting Text Recognition

In this document, when talking about HWR we generally refer to unconstrained
off-line handwriting recognition, which is one of the most challenging modali-
ties, since there are not temporal relations between the strokes, and it has to
deal with large vocabularies. Word and character segmentation in this mode
are difficult and most approaches rely on the use of large dictionaries and
Language Models (LMs), even though the number Out-of-Vocabulary (OOV)
word occurrences is still very significant.

One of the goals of this PhD Thesis is to improve the performance of our pre-
vious HWR engine4. At line level, we have also invested some effort in pre-
processing, in particular, text size normalization, using detection of text line
zones. The following natural step to improve the overall handwritten recog-
nizer is to update the optical models, based on Hidden Markov Models hy-
bridized with ANNs (HMM/ANN), by using novel deep learning techniques.

In this section, we collected some useful related works on HWR, focusing on
optical modeling and feature extraction.

4The original HWR engine developed by the group is presented in Appendix B and it has been
used in the experiments for Chapter 6.
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Other important parts of the overall transcription process are language mod-
eling and decoding algorithms. We skipped these from the reviews since they
are out of the scope of this PhD Thesis.

2.4.1 Optical Modeling

One naive approach for HWR is to split the sentence into words, or even char-
acters, and then classify each word/character independently. However, there
is a cycle dependency between segmentation and classification tasks known
as the Sayre’s paradox [Sayre 1973]. To overcome this problem, HMMs does
not rely on an explicit segmentation. They are generative models where the
observed output might be seen as the contribution of many possible segmen-
tations although, in practice, only the path of best probability is computed
by means of the Viterbi algorithm. HMMs have been successfully applied to
several sequence labeling problems [L. R. Rabiner 1989].

HMMs comprise transition and emission probabilities P (x|q), the most used
emission model are Gaussian mixture models (GMMs). An alternative is to use
discriminative models that compute the P (q|x) and can be turned on emission
probabilities following the Bayes theorem.

P (x|q) =
P (q|x)P (x)

P (q)
. (2.3)

Although, when using this value for obtaining the word sequence which best
explains the observed input we can ignore the term P (x) since these terms
are the same for every case of the maximization and they do not depend on
the word sequence which is the value we are maximizing. Put in other terms,
we can use scaled values:

P (x|q) ∝ P ?(x|q) =
P (q|x)

P (q)
. (2.4)

Hybrid systems are one of the most successful approaches to HWR where
ANNs compute the emission probabilities of the HMMs, namely: MLPs in [Espana-
Boquera et al. 2011; Senior et al. 1998], CNNs in [Bluche, Ney, and Kermor-
vant 2013b], RNNs in [Marukatat et al. 2001], and combinations of them. Ad-
ditionally, we can find other related models: Radial Basis Functions in [Singer
et al. 1992], Support Vector Machines (SVMs) in [Stadermann et al. 2004], or
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time-delay networks in [Caillault et al. 2005; Jaeger et al. 2001; Schenkel et al.
1995].

An alternative sequence modeling to HMMs is the well-known Connectionist
Temporal Classification (CTC), which was introduced in [Graves, Fernández,
Gomez, et al. 2006]. It allows sequence labeling to be performed: CTC aggre-
gates the contribution of every alignment and adds a new blank grapheme/-
phoneme output to the net. This technique is mainly meant for RNNs and has
generated many successful works, particularly in HWR and speech recogni-
tion, among others.

Nevertheless, RNNs can be combined with both HMMs [Schenk et al. 2006;
Senior et al. 1998] and CTC. It is worth noting the work of [Graves, Li-
wicki, et al. 2009] where Hidden Markov Models with Recurrent Neural Net-
workss (HMM/RNNs) and CTC are compared. LSTM [Hochreiter and Schmid-
huber 1997] have shown to successfully tackle the vanishing gradient prob-
lem derived from long time recurrences. In addition, Bidirectional Long Short
Term Memories (BDLSTM) [Baldi, Brunak, et al. 1999; Graves and Schmid-
huber 2005; Schuster et al. 1997] allow the sequence to be scanned by two
RNNs, one from left-to-right and another from right-to-left.

Deep learning techniques [G. Hinton, Deng, et al. 2012] make easier to work
directly on the raw signal (2D images in the case of HWR). Other approaches
use GMMs combined with ANNs in tandem (the posterior probabilities are
taken by the GMMs). For example, in [Grézl et al. 2007], an MLP bottleneck
is used to extract features for the tandem. This approach was later improved
by Deep Belief Networks (DBN) as seen in [Sainath, Kingsbury, et al. 2012].

As Figure 2.5 shows, the different techniques can be combined, and basically
all of them have been explored for HWR and speech tasks. Nevertheless, there
are some restrictions and tendencies. For example, CTC is most efficient when
used with RNNs [Bluche, Ney, Louradour, et al. 2015] and is actually mainly
applied to LSTM networks.

When using HMM/ANNs, the MLP classifier usually receives a contextual set
of handcrafted features for each frame of the sequence [Espana-Boquera et al.
2011; Marukatat et al. 2001; Senior et al. 1998; Toselli, Juan, et al. 2004].

Some other recognition systems directly receive the raw image as input. For
example, CNNs and MDLSTM are convenient approaches for raw input sig-
nals since they deal with 2D sequences properly, as in [Bluche, Ney, and Ker-
morvant 2013a; Graves and Schmidhuber 2009]. Hierarchical sets of MLPs
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Figure 2.5: Connectionist sequence labelling models. There are two main tendencies:
HMMs and CTC. The connectionist models estimate frame posteriors to get likelihoods
in case of HMMs and the labelling sequences in the CTC. GMMs estimate the emission
probabilities in the original no connectionist approach.

are used to extract features from raw pixels in [Dreuw, Doetsch, et al. 2011].
They apply nested MLPs in the HMM/ANN system, and then they combine
them in tandem with GMMs. However, more recent works have used deep
architectures: [Bluche, Ney, and Kermorvant 2014] use deep MLPs for optical
modeling, with up to 9 hidden layers. A complete comparison between hand-
crafted features and pixel inputs is also performed. In addition, deep models
are compared with BDLSTM, and dropout is applied in both architectures. The
best results are finally obtained by means of a ROVER combination of the four
models.

The methodology followed in our experiments was somewhat explored in [Bluche,
Ney, and Kermorvant 2013b], whose CNNs estimate the state posteriors of
the HMM. In that work, two different approaches were followed: the first one
performs grapheme classification after segmentation, whereas the second one
uses a sliding window to perform the sequence alignment. A tandem approach
with CNNs and GMMs was also explored in [Bluche, Ney, and Kermorvant
2013b].

In [Kozielski, Doetsch, et al. 2013], they propose a discriminative training of
HMMs in tandem with BDLSTM and GMMs. Principal Component Analysis
is also applied to the extracted features, leading to 20 features per frame.
They got very competitive results due to the maturity and performance of all
the transcription components: a smart feature extraction relying on previ-
ous moment-based image normalization [Kozielski, Forster, et al. 2012]; vari-
able number of states per character obtained from initial alignment statis-
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tics; writer adaptation applied on GMMs; and a combined word and character
mixed language model to overcome the OOV issue.

Finally, for the feature extraction process, most of the features are based on
applying a sliding window to extract values such as gray densities, back-
ground/foreground estimation, and their derivatives [Bianne-Bernard et al.
2011; El-Hajj et al. 2005; Kozielski, Forster, et al. 2012; Marti et al. 2002b;
Toselli, Juan, et al. 2004].

2.4.2 Feature extraction

Finally, regarding the feature extraction process, most of the features are
based on applying a sliding window comprising cells in order to extract some
values such as gray densities, background/foreground estimation and their
derivatives [Bianne-Bernard et al. 2011; El-Hajj et al. 2005; Kozielski, Forster,
et al. 2012; Marti et al. 2002b; Toselli, Juan, et al. 2004].

2.4.3 Trends for HWR

As a general observation, most of the techniques applied in HWR have been
previously developed for Large Vocabulary Continuous Speech Recognition
(LVCSR) and adapted to HWR afterwards. Thus, current speech approaches
can be expected to be transferred to HWR in the near future.

The use of deep models in LVCSR is well established. Most of them still re-
quire handcrafted features, which is the case of [Seide et al. 2011] and [Veselý
et al. 2013], where different features combined with hybrid HMMs and DBNs
for weight initialization are studied. [G. Hinton, Deng, et al. 2012] gives an
overview of deep ANNs with many layers to produce HMM posterior proba-
bilities, using pretraining techniques that are based on Restricted Boltzmann
Machines, which are also presented in [A. R. Mohamed et al. 2012]. This novel
architecture uses up to eight hidden layers trained as DBN.

However, there is an increasing trend towards the use of raw signals instead of
handcrafted features. [Dahl, Yu, et al. 2012] use context-dependent deep mod-
els that work directly on the spectral speech signals. They later improved their
results by applying Rectified Linear Unit (ReLU) and dropout [Dahl, Sainath,
et al. 2013]. Other end-to-end approaches include the works of [Hannun et
al. 2014] and [Amodei et al. 2015], where RNN models trained with CTC are
used.
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The incorporation of CNNs in hybrid HMMs for speech has been quite recent
as seen in [Abdel-Hamid et al. 2012], where CNNs have been successfully
combined with HMMs. [Sainath, A. R. Mohamed, et al. 2013] rely on acoustic
parametrization, studying the number of convolution and fully connected lay-
ers keeping the number of learned features constant for each model. [Saon
et al. 2015] go further by combining CNN with recurrent models that are con-
veniently trained with dropout and maxout units.

More recent works explore deeper convolutional architectures [Bi et al. 2015;
Sercu et al. 2015], which are known as Very Deep Convolutional Networks [Si-
monyan et al. 2014]. More than 14 hidden layers are stacked, convolutional
kernels are usually 3 × 3 shaped, and pool layers are interleaved with 2 or 3

convolution layers.

Another interesting line of research is the sequence-to-sequence models [Sutskever
et al. 2014], which has been successfully applied to translate tasks [Cho, Mer-
rienboer, Bahdanau, et al. 2014; Cho, Merrienboer, Gulcehre, et al. 2014] and
are successfully combined with attention-based models [Dzmitry Bahdana et
al. 2014; Wu, Schuster, et al. 2016]. Indeed, the tendency is moving towards
to avoid recurrent connections making them more (or at least partly) paral-
lelizable [Gehring et al. 2017; Vaswani et al. 2017]. These models have also
been used in speech [Chorowski et al. 2015; L. Lu et al. 2015] since the nature
of speech (and handwritten) is a sequence-to-sequence transformation.

2.5 Summary

In this chapter the state-of-the-art for the main DIA tasks dealt in this PhD
Thesis are presented. We discussed several of these approaches and focused
on the most relevant and illustrative techniques. We analyze also the closest
and the most inspiring works to the ones presented in the current document.
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One of the goals of this PhD Thesis is to explore the use of connectionist mod-
els for Document Image Analysis (DIA). We have used different ANNs models
such as MLPs, CNNs or even RNNs for several DIA tasks and in almost all
cases the ANN receives an image as input.

In this chapter, we do not go deep through the ANN basic formulations and
other mathematical proofs. We assume that the reader has some basic knowl-
edge about ANNs. Nevertheless, we address some illustrative works to get a
better insight into the field. Since ANNs are a transversal topic in this PhD
Thesis, we will collect some of the common ideas and techniques used dur-
ing training and inference of our ANN models. We will show the procedures,
especially parameters and hyper-parameters optimization and regularization
techniques, that are shared by the several nets trained in the different stages
presented in the following chapters.
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Finally, we encourage the reader to check periodically, in the literature and
many online tutorials, the significant advances in deep learning that, for sure,
will help to improve the techniques discussed in here.

3.1 ANN basics

As its name depicts, ANNs try to imitate the way of the human brain learns
and solves problems. Nevertheless, the traditional implementation of ANN
differs significantly from real neurons, notwithstanding they still share the
concept of neurons and connections between them. An ANN is made up of
neurons (process units) and weighted connections between them. It can be
seen as a mathematical model where each unit takes new values depending
on its connected neighbors and the internal activation functions (Figure 3.1).
In the traditional approach, the neural network has an entry point (input) and
then, the neurons compute their values according to these inputs. Finally, an
output neuron (or set of neurons) generates the “answer” given the input. The
rest of neurons are referred as “hidden”.

The real power of ANNs is that they can learn complex functions from data.
The weights (or parameters) of the net are learned during the training phase
and are used to compute the outputs of the model during inference. The most
basic set of ANNs is known as Forward Neural Networks which do not present
cycles. The most well-known case is the Multilayer Perceptron (MLP) [Rosen-
blatt 1958]. In an MLP, neurons are organized by stacked layers, the values
of one layer are fed to the next layer (Figure 3.2).

Forward pass We will assume that we already have a trained ANN, and we
want to use it for the problem we are dealing with. For example, classification
of handwritten digits from 0 to 9, (which is the MNIST task). Our input in
this scenario would consist on a 16 × 16 image input (concatenated in a layer
of 256 input values). The output consists of 10 neurons, where the neuron
oi estimates the probability of output class i (or ci), given the current input.
Hence, our model classifies the sample to the digit that gives us the major
probability (ci = arg max i oi). For each neuron, during the forward pass, its
value is computed as the weighted sum of previous layer activation values
(with the addition corresponding to the bias, see Figure 3.1).
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Figure 3.1: Hidden neuron computation. The input value depends on the weighted
sum of its inputs values, then an activation σ function is applied.

Activation function An activation function is applied to each neuron af-
ter the weighted sum of the previous layer. Most of the activation functions
can be found in many external sources (https://en.wikipedia.org/wiki/
Activation_function). The activation functions mainly used in our experi-
ments are:

logistic It has been used by default for the hidden layers in most of the exper-
iments carried out. The logistic function is also applied to the output
neurons when we have a classification task of 2 classes ( 1

1+e−x ).

tanh The hyperbolic tangent has a similar to the logistic one, but its output
values are in the range (−1, 1) ( 2

1+e−2x − 1).

ReLU The Rectified Linear Unit (ReLU) is a simple but effective activation that
helps to avoid the gradient vanishing problem as we will see in Sec-
tion 3.4.

softmax This function is mainly used in a multi-class classification task, since it
normalizes all values of the layers in the range (0, 1) according to each
neuron contribution [Costa 1996]. This could be seen as a probability
estimation since all the values sum-up 1 ( exi∑

j e
−xj

).
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3.2 Training the networks

The error Backpropagation (BP) algorithm is the most used approach to train
ANNs. It is combined with a higher optimization algorithm (e.g. gradient de-
scent). In short, this procedure starts by taking the desired output (ground
truth) and the predicted value, and it iteratively computes the gradients of the
weights by the chain rule. For that, we need all the operations applied in the
net (from inputs to outputs, weight operations and activations) to be differen-
tiable. Loss is the function that computes the error between the ground truth
and the predicted output and it should be derivable as well.

Weight initialization The weights are updated by the BP procedure, but
an initial weight configuration is required for the first first. Indeed, and unfor-
tunately, the weight initialization has a direct impact on the net performance
since it could lead the optimization algorithm to an undesirable local minimum
in the function to optimize. Usually, the weights are initialized to random val-
ues sampled from a uniform or Gaussian distribution. Those values should be
relatively small in order to have small gradient steps and avoid problems like
exploding gradients (Section 3.4). This initialization could be conveniently
tuned with fan-in and fan-out normalization, which consists on normalizing
the weights according to the number of input and output connections in each
neuron. Usually the initial values are normalized by the square root of the
fan-in and fan-out as follows:

wi = N(µ, σ)/
√
nin, nout . (3.1)

This initialization ensures that all neurons in the network have approximately
the same output distribution and empirically improves the rate of conver-
gence. More extensive information about weight initialization could be found
in [Glorot et al. 2010]. Finally, it is worth to mention that layerwise pre-
training, as we will discuss about in Section 3.4. It can be applied to have a
more suitable initial weights when the final supervised training is performed.
But in any case, even for the pre-training stage, the weights has to be initial-
ized at the very beginning by one of the methods discussed here.
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Stochastic Gradient Descent This technique for training ANNs is also
well-known, and it has been successfully applied in several pattern recognition
tasks (classification, regression, forecasting, . . . ). Different weight updating
modes exists [Duda et al. 2001]:

◦ the off-line training mode (also know as full batch), which computes and
sums the derivatives of all training patterns and updates weights once
every epoch;

◦ the on-line training mode, which calculates the derivative of one training
pattern and updates weights once for each pattern every epoch; and

◦ finally, the mini-batch or batch training mode, which computes and sums
the derivatives of a few training patterns, updating weights once for the
mini-batch size, but several times for one epoch. 1

Mini-batch and on-line training modes have some advantages compared with
the offline mode: convergence is faster and the result is equal or even more
accurate. This mode is known as Stochastic Gradient Descent (or incremental
gradient descent), and it has been used to train all the networks showed in this
report. The data (or samples) are split into random sets (a.k.a mini batches
or bunches [Bilmes et al. 1997]) and incrementaly apply the weight updates
incrementally for each.

The size of the bunch has not only a direct impact in training but also in the
system’s efficiency. Since most operations (weight matrices products) can
be performed with algebraic operations, most of the toolkits take advantage
of that and perform bunch computations in parallel (especially with Graphic
Processor Units (GPUs) computation). Sometimes bigger bunches make the
training/inference faster, but sometimes, we have to restrict the size of the
batch to get better results during trainer. Note that during inference, since
no weights are updated, the output values do not depend on the bunch size.
During our experiments, the batch size is one of the hyper-parameters that we
have to tune during our experiments, but usually, we try to keep it around 32.

1In some bibliograpy and other resources, they refer to the size of the mini batch also as
“bunch”. We have used mini-batches during all the experiments of this thesis, in some cases we
refer to the size of the minibatch as “batch size” or “bunch size” indistinguishly.
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Replacement The data set is divided into random bunches, and the weight
updating is performed for each of this mini-batches. Usually, the training set
is divided into two sub-sets: train and development (or validation) and usu-
ally at the end of each epoch the error is computed for the development set.
During training, once an epoch is completed over all mini-batches the net is
evaluated with the development set. We talk about replacement when, instead
of using all the train data to complete an epoch, only a subset is used befor
the evaluation step. If the training data is vast and redundant selecting only a
portion of it for each iteration will speed up our training/validation procedure.
Summarizing, having a set XT with T training samples and a batch of size B,
a replacement is a random subset XR of size R, that is XR ⊂ XT . Therefore,
R
B weight updates are applied in each epoch. Replacement is often applied
also to the development set. But in this case, we have to be careful, since
the validation set is not invariant anymore. The stopping criteria rely on the
loss/error of the validation set, and this score is not strictly comparable since
the samples are different. If this subset is large enough, the error estimation
is similar to the entire validation error, and it could still work for validation
purpose. For instance, we used random replacement on the validation set on
our HMM/ANN model for HWR, since the number of frames is enormous.

An alternative, used in some of the one-to-one pixel labelings tasks, is to use
a fixed step on the validation set. Since pixels neighbors are usually similar,
an advance step (or stride) will keep the validation set almost invariant, and
at the same time, we reduce the number of forwards operations by a factor of
the step size.

3.2.1 Stopping criteria

The iterative training algorithm stops when no further improvement is ex-
pected. One could setup a fixed number of epochs (even bunch iterations) and
keep the weights of the net that has given best performance on the develop-
ment set.

A standard approach is to “continue training while the error in the develop-
ment set is still decreasing”. So the termination criteria are based on the de-
velopment set error since the training error (or loss) could be still decreasing
due to over-fitting. Usually, an absolute number of epochs without improving
is used prior the training termination. The problem comes if we got a false
good result in early epochs and training finishes much sooner than it should.
This issue is easily solvable by defining a minimum number of training epochs,
where the validation losses are ignored. Another approach is to use a relative
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number of epochs without improving; the net would need fewer epochs to de-
velop in early stages but more in later stages. Usually, the training stops in
the epoch (best_epoch(1 + α)), where α is the relative improvement parame-
ter. The problem here is that the training could take too long since we need
to wait for more epochs for each improvement. But in any case, this could
be combined with an absolute criteria (training will stop once one criterion is
accomplished) or we can always restrict the maximum number of epochs.

Regarding to the improvement criteria, an absolute definition is to consider
that the model is improving if the development error is strictly lower than the
best so far. But with adaptive optimizers the improvement gets smaller and
smaller and it is not worth it to keep training, so it is convenient to add an
absolute or relative threshold.

In our experimentation we have usually used one of the criteria described
here, there is not a universal answer, and at as most of the cases it depends on
the task. We cannot always train as long as we want because of computational
restrictions, so the faster and earlier the net converges, the better.

Continuous evaluation In other cases, the training and evaluation pro-
cesses are detached, and they are performed in paralel. The evaluator process
reads the weights of the model in a determined steps and performs the oper-
ation in a different thread. It is not required to wait for a training epoch to
finished to evaluate the dataset, and the training is not stopped while the eval-
uation. Indeed, several trainers could work in the paralel and then a master
process will join the gradients of each servers [Dean et al. 2012].

3.3 Architectures

One can find many different ANN architectures and variants in the literature.
In this section, we introduce some of the models used in this work, which
mainly involves: Multilayer Perceptron (MLP), Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN).
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Figure 3.2: A Fully Connected MLP. Input consists of 256 input neurons. Hidden
layers receive previous values. The output layer performs the classification of the
input sample in one of the 0− 9 classes.

Fully Connected Multilayer Perceptron These topologies correspond to
the initial forward models previously mentioned. The neurons of each layer
are “fully” connected to the neurons of the previous layer. Figure 3.2 illus-
trates an MLP for the digit classification task (MNIST).

Convolutional Neural Networks CNNs [Lecun et al. 1998] are a kind of
deep neural networks biologically inspired by the visual brain cortex and how
the cells are arranged in layers. The cells in one layer are sensitive to a small
region of the input, called receptive field, and these areas are tiled to cover
the whole input space. Different layers are connected sequentially to extract
useful information from the input.

In mathematical terms, this process is described as a convolution between the
whole input space and a kernel matrix. Convolutions with different kernels
are computed together to produce several output maps, which are different
transformations of the input. This convolution allows the extraction of local
features which are invariant to translation in the input space. The dimen-
sionality of the input space constraints the dimensionality of the convolution,
being a 1D convolution in case of time-series data, 2D convolution in case of
grayscale images, 3D convolution for color image or grayscale videos, and 4D
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Figure 3.3: Basic CNN configuration for the MNIST task. The input is one map of
16 × 16 pixels, and the following convolutions are applied in the 2D space. After
several convolution layers, the features are flattened and fed to an MLP. Following
fully connected layers are applied after the convolutional feature extraction.

convolution for color videos. Convolutions of subsequent layers may traverse
the set of maps previously computed.

To reduce the dimensionality of hidden layers, pooling operations are applied
to the output maps after a convolution layer. Different pooling strategies have
been proposed in the literature [Krizhevsky et al. 2012; Sermanet et al. 2012;
Zeiler and Fergus 2013]. Regarding the advantages of more complex pooling
layers, max-pooling is widely used in CNN systems. Since we are focusing in
DIA task we have mainly worked with 2D convolutions. The third dimension
defines the number of maps (or channels).

Generally, a CNN sequentially combines several layers of convolution/activa-
tion/pooling, acting as a deep extractor for high-level features. The output of
this convolutional part is fed into a standard MLP, being the output of this
MLP linear for regression or classification tasks. Figure 3.3 shows a basic
configuration for MNIST with CNNs.

Recurrent Neural Networks RNNs are meant to classify sequences. Con-
volutions are somehow dealing with sequences since the same neural network
is applied to different steps of a sequence. Nevertheless, they do not keep
any state information from previous steps. Recurrent connections are added
to the model, so in the next step, the previously hidden state is fed to the new
input into the current (Figure 3.4).

RNNs can be seen as deep nets in time, and therefore it is hard to keep
long term dependencies as stated in [Bengio, Simard, et al. 1994; Hochreiter
1998]. Long Short Term Memoriess (LSTMs) have been the most success-
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Figure 3.4: The figure (right) represents the time unrolled network. The figure has
been taken from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
and we encourage recommend to read the article for a better understanding about
RNNs and LSTMs.

.

fully neural “cells” used in recurrent nets to deal with the vanishing gradient
problem [Hochreiter and Schmidhuber 1997]. Bidirectional Recurrent Neural
Network (BDRNN) are an extension of RNNs where a sequence is scanned
in both directions: forward and backward and both passes are combined to
generate each step output [Schuster et al. 1997]. It is possible also to stack
several BDRNN to produce a deep BDRNNs [Graves, A.-r. Mohamed, et al.
2013], and of course, it is possible to combine them with convolution layers.

Indeed, RNNs are also extended to n-dimensional sequences: MultiDirectional
Long Short Term Memories (MDLSTM) [Graves, Fernández, and Schmidhu-
ber 2007]. With respect to our tasks the images are 2D sequences, so a RNN
runs through the image. Particularly, the pixel xi,j of the image, the recur-
rence takes states hi,j−1 and hi−1,j . Actually, there are 4 different directions
to scan the image: top-to-bottom and right-to-left, top-to-bottom and left-to-
right, bottom-to-top and right-to-left, bottom-to-top and left-to-right. Likewise
BDRNNs the 4 layers are combined to generate the outputs. Generalizing, in
a n-dimensional sequence it is needed 2n RNNs in order to scan the image in
all directions.

For training RNNs, the BP has to be slightly tweaked to work with time recur-
rent relations. The algorithm known as Backpropagation-through-time is the
most widely used [Werbos 1990]. Sometimes the sequences are too large, and
it is memory and time inefficient to backpropagate such long dependencies.
In these cases, a common practice is to truncate the BTT to a fixed number
of time steps [Williams et al. 1990]. Also, this allows for training with fixed
length bunches and improving the parallelism during training.
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3.4 Regularization

In this section we collect some of the regularization techniques aplied while
training neuronal networks which allowed to overcome the most common neu-
ral networks training problems:

◦ Over-fitting: when the model learns the particularities of the training
data and performs poorly for unseen data. In these cases, the training
error keeps improving while in the development/test set the error gets
worse. The opposite term is “generalization”.

◦ Vanishing gradient: when updating the weights by the chain rule, the
“front” layers are slower to train.

◦ Convergence: we look for models that are fast and robust to train, which
involves two main factors:

– Training speed and computational efficiency.
– Reaching a good state (results) in fewer iterations/epochs.

Data normalization It is convenient, and almost mandatory, to normalize
the data. Normalization makes the training and inference of the network more
efficient. Straightforward normalization methods are Min-Max, which reduces
the feature range to [0, 1], or Gaussian normalization, to [−1, 1].

Most of the input data used in this PhD Thesis consist of raw image pixels,
where the values are integers in the range [0, 255]. It is easy to apply Min-Max
normalization by dividing by 255. Indeed, since 0 denotes black pixels, we
invert the values (1 − x), so darker pixels have high activation values. In our
approaches we normalized the data as follows:

xnorm = 1.0− float(x)

255
. (3.2)

Some other works follow a Gaussian normalization which implies computing
the mean and variance from the training data.
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Add distortions and noise to the input of the image One could gen-
erate new artificial data or add noise on the net input to improve generaliza-
tion and reduce unseen data. In some tasks, adding Gaussian noise or filters
like Salt-Pepper are good enough to improve the overall training. But with
raw document images, Gaussian noise does not cover the differences between
characters or even writers. For this purpose, elastic distortions, as well as
scale and rotating deformations of the image inputs, will provide more realis-
tic general data.

Weight decay One of the essential regularization techniques is to add
the sum of the norm of the weights into the loss function. In this case, high
weights are penalized and the models try to keep them low:

loss′ = loss+ α
∑
i

(wi) . (L1-norm)

loss′ = loss+ α
∑
i

(w2
i ) . (L2-norm) (3.3)

L2-norm adds the squared contribution of the weights, and it is known as
weight decay, (α is known as weight decay penalty). It is usually set to very
low values and it has been used almost in all the experiments in this PhD
Thesis.

Weight Max norm With weight decay, we are minimizing the overall
weight contribution in the loss, but it is still possible to have some high weights.
One option is to constrain the maximum absolute weight values. In that case,
the weights are truncated. Usually, we used values between 4 and 8.

Rectified Linear Unit (ReLU) The ReLU activation function helps to avoid
the vanishing gradient problem. This a great advantage front sigmoid or tanh
functions. In some of our models convergence is hard to achieve. ReLU acti-
vation allowed to train faster and had better results in our tasks.

Dropout Originally proposed in [G. Hinton 2014; G. E. Hinton, Srivas-
tava, et al. 2012], dropout involves randomly removing some hidden units of
an ANN during training but keeping all of them during testing. More formally,
consider a layer with d units and let h be a d-dimensional vector of their activa-
tions. When dropout with droprate probability p is applied at this layer, some
activations in h are dropped. During inference, all units are retained, but their
activations are weighted by a factor of p. Dropout involves a hyper-parameter
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p, for which a common value is p = 0.5. It could be not only applied to fully
connected layers but also convolutions, when usually a smaller p values are
needed [Deng et al. 2013; Krizhevsky et al. 2012; Seltzer et al. 2013].

Dropout helps to avoid overfitting, especially when the model has lots of pa-
rameters, and it has been successfully applied to several tasks like Speech
Recognition [Dahl, Sainath, et al. 2013; J. Li et al. 2013] or HWR [Pham et
al. 2014]. There are some extensions like DropConnect [Wan et al. 2013]
where the weights are dropped instead of the neurons activations. Other use-
ful sources to understand Dropout are [Baldi and Sadowski 2013; Iosifidis et
al. 2015; Srivastava 2013; S. I. Wang et al. 2013].

Layerwise pretraining A trend for weight initialization is to precom-
pute the initial values using an unsupervised approach. The main idea un-
derneath is to try to extract the more discriminative features from the inputs
before the discriminative training. There are two main approaches lines are
Restricted Boltzmann Machine (RBM) [G. E. Hinton and Salakhutdinov 2006]
and Stacked Denoising Autoencoders (SDAE) [P. Vincent et al. 2010].

In this PhD Thesis, if pre-training has been applied, we followed the second
approach (SDAE) by adding Gaussian and Salt-Pepper noises in the layer ac-
tivations. The weights of each layer are trained like an unsupervised autoen-
coder, where the input of each layer is the previous layer input with some
distortions, and the output is the non-degraded input. Once the weights of a
layer are trained, the next layer is trained with the outputs of the previous
layer.

Clip gradient Another problem when training, especially in RNNs, is the
gradient explosion [Bengio, Simard, et al. 1994]. In each training step (mini-
batch update) many gradients are accumulated. Long term derivatives tend
to have higher derivatives, leading to a significant increase of the norm of the
gradients which makes the training very unstable.

The most applied solution to solve this cumbersome is to clip the gradients if
they exceed a threshold. Hard clipping where the derivates are kept below
the threshold or soft where the new gradients are computed like:

δw = threshold
δw

|δw|
. (3.4)
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Batch and layer normalization Another powerful idea that could im-
prove convergence is to normalize the inputs of each layer, especially for deep
architectures such as Batch Normalization [Ioffe et al. 2015] and Layer Nor-
malization [Ba et al. 2016]. In the first approach, the inputs of each layer are
normalized w.r.t each batch; during inference the parameters are normalized
to the overall training dataset stats. The next approach follows a similar idea,
but data is normalized according to all the neurons in the layer, the advantage
here is that the same normalization is applied between train and inference.

Other trends Every year one could find novel and better regularization
techniques which also speed up convergence. Some techniques worth to men-
tion are, for example, Curriculum Training [Bengio, Louradour, et al. 2009],
Maxout networks [I. J. Goodfellow et al. 2013], where the new units take as
output the maximum value of a set of neurons or residual nets [He et al. 2015].

Recently Generative Adversarial Networks are gaining lot of interest, citing
their main work [I. Goodfellow et al. 2014]:

[...] estimating generative models via an adversarial process, in
which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D
that estimates the probability that a sample came from the training
data rather than G. [...] This framework corresponds to a minimax
two-player game.

3.5 Deep learning

It is difficult to agree what deep learning is, and if what we are doing could
be considered as deep learning or just MLPs with many layers. What it is true
is that deep learning works, or at least in the recent years several tasks are
having better and better scores since deep models are applied.

The success of deep learning comes from mainly three points that all combined
started a new age in neural computing:

◦ New optimization techniques. Regularization terms allowed to overcome
the vanishing gradient problem and train successfully deeper and deeper
models.
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◦ Each layer is seen as a new level of features representation. Having
deeper models allow to have higher feature hierarchies so we can use
lower features or directly raw inputs. Hence, feature extractors are
avoided in some cases, since the net can learn more useful features from
raw inputs. Illustrative examples are image and speech. Raw pixel val-
ues are more often used as inputs in image related task, high-frequency
raw signals (spectrograms) are used as inputs of sequential models for
speech.

◦ The use of GPUs as processing units allowed to have cheap and very
powerful training resources. Indeed they efficiently allowed to perform
linear algebra operations of level 2 and 3. In combination with mini-
batch, GPU speeds up training and inference and made the use of the
deeper models practical.

◦ Lots of data. Despite having models that are able to learn complex func-
tions, tons of data are needed to train these models correctly. Nowadays,
with the massive use of Internet, mobile devices, social networks; a lot of
data is tracked and (anonymously?) collected in new databases. Which
somehow makes that all the stated before works.

3.6 Hyper-parameters tuning

Deeper and newer ANNs and smarter optimization algorithms impose a new
set of hyper-parameters [Bergstra, Bardenet, et al. 2011] that must be tuned
when finding the final configuration. ANN optimizers such as Gradient De-
scent, Adagrad, Adam, Adadelta, RMSProp, Quickprop and for sure new ones
every year, are used to train the neural weights2. But most of them require to
set up other hyper-parameters, even the adaptive parameters which still need
some seeds or initial values.

On the one hand, the main set of hyper-parameters is related to the net topol-
ogy, especially deeper models that have many layers and a huge range of pos-
sibilities, as with CNNs. On the other hand, other hyper-parameters such as
learning rate or momentum and regularization terms. (weight decay penalty,
drop rate or even random seeds).

The straightforward way to handle it is by manual setting. Somehow it works
relatively well if we have a limitation of computational resources. Since it is

2https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Extensions_and_

variants
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not possible to run a broad range of configurations, a human can easily get
some insights from previous runs and decide the new parameters to try. This
is a commont technique when we setting up new models to get the first insight
of their performance.

Grid search, which consists on the combination of all the possible values (usu-
ally discretize by intervals) for the explored parameters, works reasonably
well when the number of parameters and their ranges are relatively small.
The combination of the several value ranges could be easily paralleled since
there are no dependencies between runs. The combination of the parameters
explodes as soon as more hyper-parameters are added, making an exhaustive
search a barely practicable technique.

There is a simple but effective parameter tuning which is the random search
for hyper-parameter optimization [Bergstra and Bengio 2012]. Here the dif-
ferent values of the hyper-parameters are sampled according to random distri-
butions. During this process, several configuration instances are generated,
and the nets are trained with the sampled values. Finally, the setup that gets
the better result on the validation set is taken. This approach is successfully
combined with early stopping to avoid unnecessary computation if early losses
are bad. It is very easy to implement and parallelize.

Another approach to deal with the huge set of hyper-parameters is to use
Genetic and Evolutive algorithms to find promising parameter configurations
[Bäck et al. 1993]. More sophisticated way of optimizing is to use statistical
models such as Bayesian optimization or Gaussian processes [Snelson et al.
2006; Snoek et al. 2012].

3.7 One-to-one labeling

One of the main contributions of this PhD Thesis is the use of ANN that worked
directly on the 2D raw images and provide convenient features for the dif-
ferent cases of study. Some of the approaches consist on one-to-one3 pixel
labeling, which has been applied to:

◦ Document Image Binarization (DIB) where each pixel is classified
as background/foreground (Chapter 4).

3Why not many-to-many? This approach could be named as many-to-many, since the input is
formed by several pixel and so do the output. However, each pixel is classified in one class, so
there is a one-to-one correspondence between input and output
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◦ Text Line Extraction (TLE) for the Main Body Area (MBA) detection
(Chapter 5). Pixels of the MBA are marked as part of the core text zone
or not.

◦ Layout where eahc pixel is classified as: text, graphics, decorations,
and background (Chapter 5.8).

◦ Text Line Normalization (TLN) is performed following the same
setup than the previous MBA estimation but in this case it is applied
at line level for image height normalization (Chapter 6).

For our purposes we have explored three possibilities of ANNs: Fully Con-
nected MLPs, CNNs and MDLSTM. In this section, our goal is to clarify how
the different approaches work, their main drawbacks and perks, and the dif-
ferences among other approaches.

3.7.1 Sliding window CNN and MLP

Each pixel has to be classified in one of several classes depending on the task:
for binarization as foreground/background, for MBA in two classes or many in
Layout detection. What we do is to treat each pixel as an independent sample.
Indeed, the net receives contextual information around the pixel to classify.
It is usually a centered window (it is possible to aggregate other features as
well). Hence, an ANN runs through the image as an sliding window. Figure 3.5
illustrates the procedure. The MLPs and CNN receive the same input but they
do different computation. Note that this input is the one provided by the
sliding window. This is seen as a convolution since the same net is applied in
several parts of the image. The main particularity of this approach is that each
sample is classified independently, while CNN combines the outputs of each
convolution in higher layers and then compute features of the overall image.

For simplicity, we use padding when the part of window falls out of the image.
There are different pad filling that could be applied: use zeros (or white pix-
els), use the value of the closest pixel, mirroring the image, or even estimate
the background value of the noised image (i.e. with a median filter). In our ex-
perience, we have not found big differences among approaches and the latest
alternatives sometimes could present not desirable artifacts.

CNNs in their traditional set up are meant to classify one image in one of
the given classes. Therefore the images are normalized to a fixed size and
several stacked convolution/pools are used to extract overall features and then
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Sliding window
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Convolutions MLP

Figure 3.5: The MLPs and CNN receive the same input but they do different compu-
tation. The input in each step is provided by the sliding window.

a classifier to label the whole image in one of the classes is finally applied.
Another option to avoid image size normalization is to aggregate elements in
the layers before classification.

For one-to-one pixel labeling, one straightforward approach is to apply several
convolutions without padding neither strides since they reduce the size of the
maps. Thus, in each convolution the same height and width are kept for every
convolutional map (the number of planes may variate in each convolution).
Then in the last convolution all the maps are flatten to one map which corre-
spond with the output of the net. Note, that the output has the same shape
than the input, so it is possible to backpropagate the loss by agreggating all
the pixels in the output. In other words, the input of the ANN is the full imatge
or patch and the output is an image of the same size. However, this approach
is not taking advantage of poolings (with stride), remember that poolings are
avoided to keep the size of the image. If we apply several strides (in convolu-
tions or poolings), the planes are reduced by a factor of s. Hence the planes in
the last convolutions will have size height

s ×
width
s . One common approach to deal

with this is to re-size the ground truth images by a factor of s and use them as
the output of the CNN. Finally, the resulting image (or class map) is resized
to the original size using interpolation. Obviously, this is a rough estimation,

58



3.7 One-to-one labeling

since a lot of information is missed during the image transformation, and it is
not desirable for high-resolution tasks. Fully Convolutional Neural Networks
go one step further and convert back the reduced maps into the original im-
age using deconvolution procedures [Long et al. 2014]. This approach is very
powerful since a new set of deconvolution kernels is used to generate back
the size of the original output.

Notwithstanding this elegant solution, we have opted for the first approach
(the sliding window) since in the other cases the spatial information it is re-
duced to smaller maps and then when restoring the original sized output some
detailed information is lost. Indeed, the sliding window CNN applies a simple
CNN to each window and classify it into one of the classes. This approach is
much slower than others since a full net is used for each pixel of the image. It
also restricts the complexity of our nets, where traditional CNNs approaches
are more efficient. Therefore one of the contributions of this PhD Thesis is to
make this architecture to work in a reasonable amount of time and achieve
better performance than other methods.

Another perk of this approach as always other CNN-based approaches is that it
is easily parallelizable. It is possible to chop the image in several independent
windows (one per pixel) and process them independently in batches. Each
window (or pattern) is processed independently wich can lead to unnecessary
computation, yet they could reuse the maps generated by the first convolution.
I.e. to compute the maps generated by the kernels of the first convolutions and
use them as the input of the sliding window.

3.7.2 MultiDirectional Long Short Term Memories

Even though MultiDirectional Long Short Term Memoriess (MDLSTMs) work
slightly different than the other non recurrent nets, the use of RNN is an
elegant solution to perform the one-to-one labeling problem since images can
be taken as 2D pixel sequences. RNNs keep the state of the previous steps in
the sequence and generate an output for each input pixel.

The image sequences are not unidirectional in their nature. Indeed, it is mul-
tidimensional pixel could get contextual information from any of the 4 direc-
tions. MDLSTM add n (one per dimension) recurrence connections. These
recurrence connections allow to keep several contexts in the neurons internal
state, and with small input windows (0 to 3 pixel neighbors) good results could
be achieved. Nonrecurrence models (MLP/CNN), in a sliding window sce-
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nario, have to increase the size of the input windows significantly to extract
enough contextual information in each step.

There are several drawbacks of this approach; one is the difficulty to train
MDLSTM on long sequences. We work mainly with medium/high resolution
images, where they have millions of pixels. The BTT algorithm unfolds the
time sequences and kept the errors of each step to update this weights. For
full sequences, this procedure remains impracticable since we have to bear
in memory the gradients of each weight in each point of the sequence. For
example, for a given pixel, tracking a little context of 32×32 pixels requires to
keep the context a 32×32 = 1024 recurrence steps. To address this issue, one
could limit the number of recurrence steps updated on each step or split the
images in patches. Even with LSTM cells that have shown good performance
in longer sequence, but with 2D recurrence sequences the internal iterations
that we have to keep for having a meaningful context grown O(n2).

3.8 Summary

This chapter introduces several ANN concepts since this is one of the common
topics to this whole document. Some basic ideas about the architectures used
have been set up: regularization and other issues are needed to train and use
ANNs that have been applied in the several tasks.
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Image Cleaning and
Enhancement
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Image cleaning and enhancement, if not the first, is one of the first steps
of the Document Image Analysis and Optical Character Recognition pipeline.
With a scanned document image as input, this stage discriminates between
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Figure 4.1: Pre-processing steps (Document Image Binarization).

foreground (which is mainly text and figures) and page background. Text/non-
text classification is a related subtask where the text is the primary foreground
information that is used in following stages.

There are subtle differences between cleaning and enhancement ; and Docu-
ment Image Binarization. Nevertheless, both modes have the same aim: to
improve the performance of the DIA pipeline. In fact, the cleaning methods
could be adapted to binarization by thresholding the output values. We will
continue this discussion in section 4.2.

On the one hand, ultimate OCR/HWR and DIA systems rely on RGB or grayscale
images, without prior binarization neither denoising, as inputs. Those meth-
ods are robust enough for a certain level of noise. Besides, in other cases,
heuristics and traditional binarization methods like Sauvola [Sauvola et al.
2000], Otsu’s [Otsu 1975] or background removing techniques, such as me-
dian filter, suffice. On the other hand, the interest in DIB has been raising
in the last years, proof of it are the Document Image Binarization Contest
(DIBCO) and Handwritten Document Image Binarization Contest (H-DIBCO)
which have been hosted in the ICDAR and ICFHR conferences, respectively.

The noise presence will clearly affect posteriors stages [Likforman-Sulem et al.
2007]. Therefore, to improve the overall recognition workflow, it is interesting
to use robust and adaptive DIA modules and decoding algorithms combined
with an excellent image pre-processing which involves a smart cleaning and
enhancement stage. An ideal system tries to minimize the noise level in the
original image but also the following stages are adapted to work with previous
mistakes.

In this Chapter we will analyze and explore different connectionist techniques
for the DIB task. The basic idea is to receive a scanned image and output the
cleaned (and enhanced) version of it. The present methods will run through
the image labeling each pixel. We have started using a basic MLP based sys-
tem, and then improving it by adding more features, and regularization terms
during training. Following, we introduce the bases from state-of-the-art archi-
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tectures like CNNs and LSTMs. And finally, we took all the approaches to find
a working combination to improve previous results. The MLP-based system is
a particular case of a convolution since it runs through the image as a sliding
window. In this set up, each neuron of the first layer would correspond to one
kernel, and following layers are seen as 1×1 convolutions. In addition, sev-
eral document image corpus have been analyzed to find when is more suitable
the use neural networks and other machine learning based methods, since it
strongly depends on the task we are dealing and the resources available for
supervising.

4.1 Supervised Methods

For the DIB task, heuristics and other adaptive approaches work well with dif-
ferent types of images: pictures and documents with various fonts and styles.
Even though they are general, some specific tuning could improve the results
for a particular domain. These free parameters usually are tuned for a small
set of images and then applied to the rest of the collection. Conversely, pat-
tern recognition and machine learning based methods require some regularity
between the data seen during training and the real data.

The methods analyzed in this chapter determine their parameters directly
from the seen data, and they tend to fail if there is a mismatch between the
training samples and the expected data. Thus, the more representative data,
the better. This premise is crucial for the task we are dealing with; a prior task
analysis would help to whether is better to use ML than other techniques. For
instance, if we want to clean and enhance a small set of images when we do
not have a reliable ground truth and no previous knowledge about the noise,
it is not worth it to use a supervised methods. But, if we expect thousand of
scanned document pages which present different noises, but still show some
consistency on the script; with a tiny fraction of the corpus, we could train a
successful model that gives better results than other techniques for the rest
of the collection.

Supervised methods have several drawbacks. As “supervised” suggests, they
require enough meaningful supervised data to learn successful features from
the training images. Another issue is that traditional connectionist approaches
for DIB are not invariant to scales, translations or rotations. For this purpose,
it is possible to apply some image rotations and distortions to extend the train-
ing data with artificial samples. One could, for instance, perform a particular
set of noisy samples, and create new data with more meaningful patterns. The
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model is trained with the original data, and then the samples that have higher
error are taken to generate new training data. Bootstraping techniques as we
will see help to overcome these problems.

Pixel-to-pixel labeling Generating clean images from dirty ones involves
to classify each pixel in one of the main classes: foreground, background. In
our methods we treat each pixel as a sample to label, hence for a small set
of images, we have thousands and millions of individual samples. The ANNs
in here are trained with this huge amount of samples. It presents two main
handicaps:

◦ First, the high computational cost. Especially when dealing with high-
resolution images. The model has to take into account this limitation
since we expect them to work in a reasonable amount of time. Another
common approach is downsampling the image (usually by a power of 2),
which in some cases could help to speed up and improve (the samples
are simpler) the rest of the stages.

◦ There are a lot of redundant data. The stains, stroke are defined by
a set of pixels (non-individual pixels). Hundreds or thousands of pixels
could determine a shape, background pattern, stains or bleed-through
artifacts. Millions of samples do not imply millions of different image
patterns. It is worth to mention that DIB is an unbalanced task of two
classes where only 5% to 15% of the whole image is part of the fore-
ground [Al-Haddad et al. 2000; Pastor-Pellicer, F. Zamora-Martínez, et
al. 2013]. Most of the pixels are background, and they do not present a
big challenge to mark them as its class.

If we have an image with 1, 2Mpx (1 200 000 samples), which is a medium size
image, for training, it means that the fitting function has been trained over
those million samples. However, it has only seen one image, and it is hard to
generalize to other types of images. Summarizing, we have to use our model to
classify millions of samples and be able to generalize and work efficiently with
the expected data. Downsampling, as stated, can improve the performance
significantly, although it is desirable to work with full resolution images to get
more accurate results.
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4.2 Cleaning and enhancement as a probability pixel
estimation problem

We have been referring to the analyzed task as cleaning and enhancement, but
also we used the term binarization. Indeed, we are using these two concepts
for the same tasks. Binarization marks the foreground of the image, and it also
implies cleaning since we remove dirty backgrounds. It is clear that natural
background must be removed (set to 0) and main text should be marked as
foreground. But there are some particular cases where we have to agree:

◦ If a stroke or part of it is left should it be marked as foreground?

◦ Or if we have a terrible stain in the image or seal. Should it be removed?
What about decorations?

◦ What happens with the border of the strokes. If we have high-resolution
images the border frontiers between text and non-text could be not clear.

For example, a subtask of DIB is the text/non-text classification problem, in
this case, we mark as foreground only the text segments (avoiding decora-
tions).

Cleaning and enhancement do not imply binarization, that is, they could work
at gray level scale. Traditionally, the output of image cleaning is a binarized
image where black pixels mean the presence of ink in this region. Never-
theless, since many pre-processing techniques can also deal with gray level
images, it is possible to consider the gray level of cleaned image pixels as the
probability of ink. Thus, cleaned images shall not be regarded as arbitrary
grayscale images but, rather, as a soft estimation of a black and white im-
age which tries to represent, in a limited resolution, the set of ideal strokes.
Gray values are a way to account for the probability of picking a black sub-
pixel in this pixel, so intermediate gray values are expected to be found in
the borders of strokes. This idea has a correspondence with the desirable
anti-aliasing property of geometrical transformations applied in most typical
pre-processing stages such as the correction of the skew of the page, the slope
of the words in the lines and the slant of the strokes.

This problem can be considered as the joint estimation of the probability of
finding ink in pixel areas, as the classification of pixels into two classes or as
the retrieval of ink areas in the whole document.
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Regarding ANN models, they can be trained using a binary ground truth and
then generate a gray scale cleaned image with the soft output of the classifier.
We can threshold this value at any time. Also, the model could also be trained
with grayscales images, since we backpropagate the output value when train-
ing.

4.3 Ground Truth Generation

Our models require supervised and well-labeled data to learn successful mod-
els. In particular, DIB evaluation is usually computed at pixel level (Sec-
tion 4.4), and it requires an accurate ground truth, with the inherent com-
plexity of data supervision at this detail level. Generating synthetic data for
training and evaluating document image processing systems is a topic that has
been widely addressed in recent years [Baird 2007; Kieu, Visani, Journet, Mul-
lot, et al. 2013; Varga et al. 2003; Zi et al. 2004]. To overcome this issue, there
are several techniques to generate useful ground truths. We found two main
strategies: denoising and noising (and the combination of both). The former
strategy starts with a dirty image and creates its ground truth by cleaning it,
while the later takes a clean image and then a noisy background and artifacts
are added. On the one hand, the first approach has the advantage of using a
real dirty image, but on the contrary, the supervised cleaning procedure could
be harder. The second method has the challenge of finding a realistic noisy
model.

Some of the denoising methods, besides, are harder to supervise and require
human effort, especially at text boundary pixels. This problem become critical
when supervising high-resolution images where it is easy to have ambiguities
in the edge pixels

4.3.1 Denoising supervision

Several approaches to remove noise from a picture can be adopted to obtain
its clean ground truth.
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Image Manual pixel segmentation It relies on removing noise by a
human expert, usually assisted by a particular software. This method is dis-
couraged and never used from scratch. Since it requires lot of human effort
and can be partially automated as we will see.

Combination of several methods and parameter tuning In this case,
the human expert could use some of the conventional binarization/cleaning
processes as a starting point. The expert could even stack several of the most
reliable approaches, to get better results and ease the final manual correction
step. For instance, a pipeline for an image could be removing the background
by using a median filter, for example, apply Sauvola filter and correct mistakes
by the human expert with the help of an assistance tool.

Use Layout information to extract the foreground One can take advan-
tage of the layout definition, and text line ground truth data for text documents
since the foreground will be within the regions marked as text. This approach
extracts the text regions and then applies the cleaning procedures only on
these areas and marks the rest of the page as background.

For instance, if we wanted to extract the foreground text the followed proce-
dure would be:

1. Cut the lines using the text line definition. (Text lines are defined by
regions or polygons).

2. The text line areas are cleaned using one of the previously mentioned
techniques.

3. The rest of non-text features are marked as background.

Bootstrap denoising This method relies on semi-supervised methods
which improve in each iteration with newly cleaned data. First, one of the
previous approaches could be used to get a small supervised subset, to be uti-
lized in the first iteration. Then, an iterative training procedure, cleaning a
larger set of images, manual supervision of the mistakes and retraining with
the bigger set, is followed, until all the training data is supervised or a conver-
gence criterion is reached.

Thus, a common procedure could be described as follows1:

1We marked with an apostrophe (X′) the sets that have been cleaned or corrected by an expert.
Also, we talk about a model θ, we generalize for any machine learning model, but in practice, they
correspond to ANN.
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1. A small set of images (or patches) A0 are cleaned by a baseline method.
2. Manual correction of possibles mistakes is performed in the clean set:

A′0.
3. A model θ0 is trained with the previously supervised images A′0.
4. The model θ0 is used to generate a new larger set of cleaned images A1.
5. This new set is manually corrected (A′1), and it is used to train a new

model θ1.
6. Iterate between the steps 4 and 5, until obtaining the desired amount of

supervised data.

In this method, the first image corrections are more costly, since the model is
less accurate. The more data the model has seen, the better results while less
supervision effort is required.

4.3.2 Noising methods

Using synthetic data or synthetically degraded data has many advantages over
human supervision including rapid generation of datasets at lower cost, con-
trol of degradation level, and fit testing of the same underlying document con-
tent with different corruption methods [Baird 2007; Kieu, Visani, Journet, Mul-
lot, et al. 2013; Varga et al. 2003; Zi et al. 2004]. The main idea is to take a
clean image as the ground truth and apply several distortions and noise on top
of it. We are not going into details about noising methods. Nevertheless, it is
worth to remark that there are different modes.

When using ML based approaches like ANNs, it becomes useful to know how
the ground truth has been obtained. For instance, if the ground truth has been
generated only using heuristics methods, there is a risk that the model does
not generalize enough to a different real noise.

4.4 Measures and evaluation

Before introducing our developed methods, we would like to discuss the differ-
ent measures for evaluating the DIB task. As shown in Figure 4.1, the cleaning
and enhancement stage is the first (or one of the initials) of the OCR/HWR and
DIA pipeline. One could assess the goodness of this stage by checking its
impact in all the following stages, e.g. checking the WER after the full the
decoding process. Since there are lots of steps between the cleaning and de-
coding tasks, it is sometimes difficult to understand the real impact of each of
the processes in the overall workflow. The basic sceneario consists in keep-
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ing unchanged the rest of stages and check how the final results variate re-
spect the new inputs. Another proper comparison of the cleaning/binarization
methods is to test the performance in the intermediate stages, since this step
has a direct influence in layout and text line extraction stages. But when the
ground truth is available one could directly compare both images (predicted
and ground truth) and apply one of metrics discussed below. DIB contests
perform their evaluation as well by comparing the cleaned image (predicted)
with the corresponding ground truth.

4.4.1 Subjective evaluation

We have discussed so far the challenges and difficulties to obtain a reliable
ground truth. Indeed, it is not unusual not having it in many cases. Thus, it
would be necessary to apply some indirect evaluation instead, like the impact
in next stages as discussed.

When it is not possible to apply these indirect metrics, we can rely on a
subjective evaluation instead, meaning observations like: “The images look
clean, our algorithm is quite good”. This is an extreme case, but it could be
performed in a more normalized way by asking experts to assess to which
extent the pages, regions or figure/graphics have been properly cleaned or
even, adding a subjective score. Since our evaluations are based on ground
truth/prediction comparisons, we will not go into details about subjective meth-
ods, but if the lecturer is interested in the topic, we recommend to read
[Ntirogiannis, B. B. Gatos, et al. 2013; Trier et al. 1995].

4.4.2 Objective evaluation

Precision and Recall and F-Measure DIB is mainly a classification prob-
lem between two classes: foreground and background. Most of the pixels
belong to the background class, and indeed, usually these pixels are easy to
classify unless they are part of a stain or bleed-through ink or text frontiers.
And of course, it will be more important to classify the foreground pixels cor-
rectly since, in other case, we could lose useful information. For this purpose,
the F-Measure (FM) is one of the most used metrics for DIB evaluation. In
this case, we define the foreground class as our relevant class, so the prob-
lem is formulated as a retrieval problem where the foreground pixels must be
recovered.
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Ground Truth
Foreground Background

Predicted
Foreground True Positives False Positives
Background False Negatives True Negatives

Table 4.1: Relevant/non-relevant classification classes.

FM is the harmonic mean of precision and recall which are defined as follows:

FM =
2 · precision · recall
precision+ recall

. (4.1)

◦ Precision (also called positive predictive value) is the fraction of well-
classified foreground predicted pixels.

precision =
tp

tp+ fp
, (4.2)

where tp are True Positives and fp False Positives.

◦ Recall (also known as sensitivity) is the fraction of ground truth fore-
ground correctly.

recall =
tp

tp+ fn
, (4.3)

fn stands for False Negatives.

Soft F-Measure The pure FM based evaluation takes the classification as
a binary class. If the classifier outputs a score (or probability) for each pixel
when computing the FM, a threshold has to set to classify the sample in any
of the four cases (Table 4.1). We could generalize the precision/recall values
to take into account probability values between 0 and 1. The computation
and also the adaptation for using this soft measure for training our nets are
explained in detail in section 8.
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Accuracy We have introduced FM as a metric that represents better the
capabilities of the evaluated method since it takes into account the kind of
errors committed. Accuracy takes the number of well-classified patterns by
the total number of samples without relying in the nature of the missclassified
patterns.

accuracy =
hits

n
. (4.4)

Being our task highly unbalanced, it is easy to get high accuracy just by clas-
sifying all the pixels to the most probably class. To overcome this issue one
could take the accuracy as the average of background and foreground accu-
racy:

accuracy’ = 0.5
tp

tp+ fp
+ 0.5

tn

tn+ fn
= (4.5)

= 0.5
fg_pixels_well_classified

total_fg_pixels
+ 0.5

bg_ pixels_well_classified

total_bg_pixels
.

Mean Squared Error (MSE) It has the advantage that can work with
continous values (grayscale or probability outputs).

MSE =
1

n

n∑
i=1

(Ti − Yi)2 . (4.6)

Cross-Entropy (CE) error It is similar than the MSE but more common
in classification tasks.

ce =
1

n

∑
T log Y . (4.7)

Peak Signal to Noise Ratio (PSNR) It uses another scale for the MSE:

10 · log10(
1√

(MSE)
) . (4.8)

Since most of the pixels, particularly the vast majority of background pixels,
are well classified, the MSE tends to be very low. PSNR uses a log scale to get
more comparable results (the larger, the better).
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Pseudo F-Measure. This metric was introduced by [Ntirogiannis, B. B.
Gatos, et al. 2013] and citing its definition the DIBCO final reports:

Pseudo Recall/Precision metrics use distance weights on the con-
tour of the ground truth characters. In the case of pseudo-Recall,
the weights of the foreground (ground truth) are normalized ac-
cording to the local stroke width. Those weights are delimited be-
tween [0, 1]. In the case of pseudoPrecision, the weights are con-
strained to an area that expands to the GT background taking into
account the stroke width of the nearest ground truth component.
Inside this area, the weights are greater than one (generally delim-
ited between (1, 2]) while outside this area they are equal to one.

Unlike previous metrics, it is required to compute the strokes of the text,
a first skeletonization algorithm usually suffices. But it could lead to some
ambiguities regarding the skeletonization algorithm applied.

Geometric-mean pixel Accuracy This metric deals with the problem of
unbalanced datasets. It takes the proportion of foreground and background
pixels between the predicted and ground truth [Paredes et al. 2010].

GA =

√
b

B
· w
W
. (4.9)

Where w is the number of background pixels in the prediction (white), W
stands for background pixels in the ground truth (white) and b and B are the
respective values for the foreground (black).

4.5 Connectionist methods

There are many different ways of appliying ANNs (and deep learning) to DIB.
As we already stated, we have one-to-one pixel correspondences between the
dirty image and its denoised version. In this case, traditional connectionist
methods run over the image treating each pixel as an individual sample [Mari-
nai et al. 2005]. When treating each sample or pixel, we take into account
its normalized value, including also other features or contextual information
related to the pixel, like a neighborhood window or its histogram. Thus, ANNs
run over the image using a sliding window for extracting the input features,
while the output corresponds to the cleaned pixel. In our case, we apply the
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pixel labeling techniques described in Chapter 3.7. This is considered a con-
volution over the pixels of the image since the same weights are applied to
distinct patches of the image, but we will refer to them as MLPs.

When tuning a sliding window ANN we can split the model hyper-parameters
in two: parameters regarding to the input of the net, and parameters related
to its training. The former parameters correspond to the input variability of
the samples: input window size, extracted features, transformations, and de-
formations. For the later hyper-parameters we have, for example, the ones
required by the optimizer (e.g in gradient desecent, learning rate, momen-
tum); and regularization which we have already discussed about them in chap-
ter weight decay, dropout.

In this section we will analyze several ANN approaches used for the current
task. The classical approach relies on the utilization of a sliding window which
is fed to an MLP. Then we explore the use of extended features as input of
the classifier (Section 4.5.1), MLPs are then replaced by CNNs (Section 4.5.3).
Our final approach treats the image as a 2D sequences which are computed by
RNNs, in this case MDLSTM (Section 4.5.4). The primary purpose is to check
the suitability of the explored methods for the current task.

4.5.1 Multilayer Perceptron

The Multilayer Perceptron (MLP) receives a raw input image that is centered
on the pixel to be cleaned. Each pixel is seen by the net as an independent
sample, since the net does not keep any internal state between samples (Fig-
ure 4.2).

This approach is the simplest method explored and initially, we had to setup
the contextual window which our classifier receives, i.e. the set of pixels that
are fed into the MLP for each input sample (pixel). Given a n-neighboring
window, the final input size of the net consists on (n ∗ 2 + 1)2 values.

4.5.2 Multilayer Perceptron with additional features

In the basic MLP, the net only receives contextual information from the cen-
tered pixel. The bigger the window size, the more information the net re-
ceives. However, the input size grows quadratically with the neighborhood
value (n). The complexity of the model (weights) increases drastically with the
scale of the input window. Thus, it makes sense to consider the inclusion of
additional features from a larger context (Figure 4.3).
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Figure 4.2: The input of the MLP is a centered window on the pixel to de-noise. The
output is one single value with the cleaned pixel.

Our MLP using extended features is a refinement of the previous model which
adds more detail from the input. The explored features are:

Features N. of parameters Description
Input window (2n+ 1)2 Input squared window of neigh-

borhood n.
Window Histogram l The histogram values of a win-

dow of size wh and range l.
Horizontal Histogram hl The horizontal histogram val-

ues of the pixel column and
hn neighborhood columns, and
range hl.

Vertical Histogram wl The vertical histogram values
of the pixel row and wn neigh-
borhood columns of range wl.

Median Filter 1 Median filter is an estimation of
the background. It is estimate
given a window of radius r.
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Figure 4.3: New extra features are computed for the centered pixel. The net receives
a raw contextual input, then 4 normalized histogram values (0− 63, 64− 127, 128-191,
192-255) for the vertical and horizontal axes.

4.5.3 Convolutional Neural Networks

The next explored model involves the use of CNNs. The image is treated as
one 2-dimensional input map (grayscale, in RGB the input would consist of 3

input maps). Therefore, it is possible to apply 2D convolutions for feature ex-
traction. A set of convolution-activation-pooling transformations are applied
to the input map(s) to extract a new set of features. In our experimentation,
only grayscale images are used, performing a conversion from the RGB im-
ages when necessary.

Analog to the MLP with extended features, our goal here is to find a useful set
of features for classifying each pixel. The main advantage relies on the use of
automatic ML procedures to extract those features. The overall procedure is
the same than the previous models: we use a sliding window over the image
but, in this case, the MLP is replaced by a CNN (with the corresponding dense
and classification layers after the convolutions). Thus, the CNN receives a
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Figure 4.4: The diagram shows the CNN composed of two sets of convolution and sub-
sampling layers, and finally, an MLP with 2 hidden layers followed by a single output
neuron. The model estimates the value of the cleaned image.

raw input window of the image in order to compute the predicted value of the
current pixel.

There are several advantages when using CNNs instead of MLPs: convolu-
tional kernels operate on a smaller scale, and each one shares its weights at
different positions on the input window, which reduces the number of param-
eters decreasing the possibilities of overfitting and improving generalization.
When using a sliding window nearby, pixels should have a significant num-
ber of features in common since they share the major part of the overlapped
window. Thus, two consecutive input windows that look pretty similar have
an entirely different representation of the input feature vector because of the
window translation. Unlike MLPs, the problem is handled better by CNNs be-
cause they maintain the 2D structure of the image and then the kernels can
extract similar features from contiguous inputs. Also, max-pooling layers re-
duce the computational cost and provide translation invariance to the model.
Therefore, with this approach, a combination of convolutional and pooling op-
erators should be able to extract more significant features than the traditional
MLPs. Unfortunately, these topologies include a full set of new parameters to
tune: the number of convolutions, the kernel sizes, poolings and so on. The
main challenge of this work is to find a suitable and working CNN topology
that could be applied successfully to the current task.

We will explore different setups not only to validate the suitability of CNN
empirically for DIB but also to provide some insight relating adequate optimal
window sizes and topologies to obtain the best trade-off between binarization
quality and computational cost.
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Figure 4.5: 1D RNN for Document Image Binarization. The pixels are scanned row by
row in a continuous path.

4.5.4 MultiDirectional Long Short Term Memories

Our last approach is the use of RNNs and particularly, MultiDirectional Re-
current Neural Networks (MDRNNs). RNNs include feedback (or recurrent)
connections in their hidden layers and they can deal with arbitrary sequences.
For each new sample of the sequence, a temporary state of previous steps is
maintained.

As explained in Chapter 3, it is possible to apply 2D-RNN for image labeling.
Like with CNNs, the image is seen as a 2D sequence. An alternative approach
is to enumerate the pixels as a 1D sequence running over the rows of the
images (row major) or the columns (column major). Nevertheless, this is a
naive approach since the 1D relations between adjacent pixel do not make any
sense when jumping from one row to the next one, and also the 1D hidden
state covers a very thin context. These issues could could be softened by
having a continuous path from the start point (top-left corner) to the last pixel
(bottom-right) as depicted in Figure 4.5. But, in any case, it is desirable to
jump directly to the 2D sequences.

In our work we have used LSTM cells modified to keep 2-dimensional context
introduced by [Graves, Fernández, and Schmidhuber 2007]. Also, the recur-
rence is done on the 4 possible orientations as seen in figure 4.6. The output
value is extracted as a combination of this four orientations. Thus, when the
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Figure 4.6: Multidirectional Long Short Term Memories: each of the 4 LSTM has seen
different context.

value of a pixel sample is computed, each of the 4 recurrent neural networks
has the information available from the 4 possible directions (Figure 4.6).

Only one hidden layer has been used for each MDLSTM in our settings (plus
the combination layer).

4.5.5 Analytic cost

It is interesting to know the capabilities of the connectionist models presented
but also the number of weights (parameters) learned by each one. In this sec-
tion, for each of the proposed models we define the number of weights used
per model as well as the analytic cost of computing one pattern, that is the
cost of computing one pattern (i.e. in order to clean one pixel) which usually
corresponds with a forward pass of an ANN. In the general case, calculating
the values of one layer involves the products of the weights by the activation of
the previous layer (or input), the addition of the bias and finally, the activation
function. For simplicity, only the number of products (weights) executed in a
forward pass are taken into account, since activation cost function and bias
are linear with the number of neurons2. Indeed, we could make use of fast li-
braries that compute matrix operations in a very efficient way. We provide the
number of weight products applied without relying upon other optimization
like batch processing, or other parallelism techniques (BLAS or CUDA ).

2In some other problems the activation function computation it is not negligible, for example,
the case of a softmax activation with large outputs which involves the computation of the normal-
ization constants. In our case we have only one logistic neuron as output
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Multilayer Perceptron The cost of computing one pixel, in this case,
corresponds to a forward pass over the fully connected layers. That is the
number of weights learned by the net.

MultiDirectional Long Short Term Memories In RNNs (such as MDLSTM)
new recursive weights within hidden layers are added. Assuming that each
pattern is classified in each (time) step, the cost of computing one sample in-
volves a forward pass with the current inputs and the recursive connections.
Bidirectional and Multidirectional cases add temporal (or recursive) depen-
dencies from different directions and dimensions. Since the predicted value
is the combination of several layers, to process one (particular) sample it is
needed to apply several forward passes until arrive to the desired pixel. For
the 2-dimensial case, even though all pixels are calculated by using the 4 full
scanning directions, we indicate the amortized cost of computing one pixel for
a fair comparison with the other techniques. As described in Equation 4.10,
where w is the number of weights for each of the four LSTM hidden layers,
HW corresponds to the size of the sequence, and the 4 value comes from the
different directions. There is one weight added corresponding to the bias of
the final combination layer. N represents the number of cells in each LSTM
layer. The LSTM has more weights than a normal neuron as shown in Fig-
ure 4.7.

cost =
wHW

HW
+ 1 = 4w + 1 .

w = 10N2 + 11N + 1. . (4.10)

Convolutional Neural Networks (CNNs) A convolution layer can by
defined by the weights of the kernels that are applied to the several parts
of the input (H×W ). A x×y kernel is applied to the input map to generate
(W − x + 1) × (H − y + 1) maps. Each convolutional layer applies ki kernels
to the previous ki−1 maps generating k new maps. Following this procedure,
equation 4.11 defines the number of weights forwarded in a convolution.

cost = ki ×#convs× conv_cost .

#convs = (w − x+ 1)× (H − y + 1) .

conv_cost = ki−1 × (x× y) . (4.11)
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Figure 4.7: Long Short Term Memories (LSTM) memory block. The dotted connec-
tions are delayed connections over time. The three gates control the content of the
cell. (Figure from [Graves 2008] 4.2).

It is worth noting that each kernel is applied to the input image, but we need
only to keep the values of the kernels (K × x× y). So the number of operations
involved is high, but the final parameters of the model are reduced.

4.6 Ensembles

We have been diving through different connectionist approaches to DIB, some
will work better than others, but it is always desirable to combine them for
achieving better results. The combination of different methods tends to im-
prove results. There are many ways of having ensembles of diferent methods
[Arruda et al. 2014; Badekas et al. 2007; B. Su et al. 2011]. Following, we
present different ways of combining the proposed methods by taking the vari-
ous soft outputs; that is the probability values estimated by each ANN.
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Baseline Ensembles We can apply a set of straightforward combination
methods for a set of n outputs:

◦ Averaging The final value is taking as the average value of the different

outputs (
∑n

i xi

n ).

◦ Voting The output values are thresholded (if they are not binary yet)
and the most voted class is taken. In the case of even number of clas-
sifiers, ties are resolved by applying averaging on the different outputs
and then threshold that the output value.

◦ Max/Min The output value is taken as the maximum or minimum values
(separated approaches). It could work, for example, with models that
tend to get false positives. Nevertheless, this indicates that the methods
have not been properly trained since they generate not reliable outputs.

Confidence Ensemble Other than the straightforward combinations, the
most natural method is to apply a simple procedure based on some confidence
criteria. Since the used ANNs could be seen as a probability estimator, we
could take advantage of the logistic output neuron to get a confidence value.
A net with a high confidence will have the closest value to 0 or 1, and it may
have fewer chances to generate an incorrect classification. But this is also
dependent on the training procedure so it is not a very reliable indicator, yet
we have seen some improvements using it. Following this idea, we have set
up an ensemble method based on confidence where the pixel is classified to
the method that presents a higher value of confidence. A formal explanation
is set in Equation 4.12 and Figure 4.8 illustrates the proposed method.

confidence(x) = |x− 0.5| . (4.12)

Minimum Error Rate training A smarter combination is to apply a
weighted combination of the different outputs. The final output value is calcu-
lated as:

σcomb = λ1σ1 + · · ·+ λnσn . (4.13)

The λ weights can be learned from the training/development data, for example
by BP. Although we do not have too many parameters to estimate (between 3
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Figure 4.8: Logistic output for a pixel of different methods. The Method 3 has a higher
confidence than Method 1 and Method 2. So the pixel is classified as 1 or foreground.

and 4 models) so they could be calculated using a Minimum Error Rate Train-
ing (MERT) procedure. Indeed we have used the MERT implementation based
on the Simplex algorithm [Nelder et al. 1964]. The weights have been esti-
mated on the development set.

4.7 Experiments and results

In the current chapter, we have seen several connectionist approaches and
techniques for addressing the DIB tasks. We want to make a fair comparison
with the proposed methods, but also to analyze different topologies, config-
urations, and apply that to the several corpora. The experimental setup and
results have been organized as follows:

◦ Insights of CNNs for DIB It describes the experiments carried out and
the configurations explored for having successfully working convolutions
on the current task.

◦ Comparison of connectionist methods The different ANNs pre-
sented have been applied to the corpora described in Appendix C.1.

◦ Ensembles and Regularization We present the results of the combi-
nation methods.
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4.7.1 Insights of CNN for Document Image Binarization

We present the procedure carried out in order to get a working CNN for the
DIB task. Once we have a better insight into this novel application of CNNs
we will be able to perform a more intensive parameter and hyper-parameter
search.

Regarding the most appropriate sizes for the window, previous works [Hidalgo
et al. 2005; Marinai et al. 2005] has experimentally shown that small windows
do not provide enough information whereas large windows add too much vari-
ability and lead to problems due to the curse of dimensionality. We will explore
a range of windows similar to the ones for the MLP based models. When using
MLPs with fully connected layers, the usual topologies comprise one or more
hidden layers. Now, we have to take into account a functional set of convolu-
tional and pooling layers. In our initial setups, we limit our nets to up to two
sets of convolutions followed by max-pooling layers, and at the end up to two
dense layers. The explored parameters are:

◦ The input window size.
◦ Size of the kernel of the first convolution.
◦ Number of kernels in the first convolution.
◦ Size of the first sub-sampling layer.
◦ Size of the kernel of the second convolution.
◦ Number of kernels in the second convolution.
◦ Size of the second sub-sampling layer.
◦ Dense layers.

Topology and Parameters Setup To obtain a suitable convolutional topol-
ogy, we will focus our interest and towards the experimentation to analyze the
effect of the number of extracted features from the CNN prior the MLP clas-
sifier. This number depends on how many kernels in each convolution and
the pooling layers are added. Each kernel tends to learn different character-
istics, so the number of kernels is a significant parameter to set up, although
increasing this value too much has a direct impact on the computational cost.
On the other side, max-pooling layers are used to reduce the dimensionality of
the convolved maps.

In our preliminary configuration we have fixed the values of the input window,
and also the sizes of the kernels used in both convolutions:

◦ The sliding window size is fixed to a 9 neighbors leading to a 19× 19

window.
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◦ The size of the kernel of the first convolution is set to 6×6 leading to
maps of 14× 14 real values.

◦ The size of the first sub-sampling layer is fixed to 2×2 reducing the maps
to 7×7, one map for each kernel of the first convolution.

◦ The sizes of the kernels of the second convolution are set to 4×4, leading
to maps of 4×4 before applying the last max-pooling sub-sampling layer.

We have ranged the number of kernels in the first convolution from 10 up
to 160, whereas the number of kernels in the second convolution is twice as
much the number of the first convolution. Regarding the max-pooling layers,
two different settings have been tested for the second sub-sampling layer:
2×2 and 4×4. In the last case, the number of extracted features is drastically
reduced (16 values are reduced to 1). In our hyper-parameters tuning process,
we have set a final MLP composed of two hidden layers of sizes 32 and 16,
respectively. Having such small dense layers, has shown well behaviour in
most of the cases; the power of the model comes from previous convolution
layers.

An exploration of the parameters depicted previously have been applied to
the DIBCO dataset (more information about the data and partition in Ap-
pendix C.1). Figure 4.9 shows the FM for development set, in that case, we
have increased the number of generated features by increasing the number of
kernels. We demonstrated two different approaches with 2×2 and 4×4 max-
poolings in the last convolution. For a given a set of F features, the number of
kernels after the poolings are F/8 and F/4, respectively. For instance, a net
with 20 kernels in the second convolution layer generates 80 features when
using 2×2 layers and 20 features when using the 4× 4 max-pooling.

As expected, the more features the better, although the performance slows
down around 80 features. The 4× 4 max-pooling layer has better performance
when using less than 80 features since more kernels are applied. When more
than 80 features are used, the 2×2 max-pooling nets perform better probably
due to a less extreme sub-sampling.

The kernels learned by the different nets are illustrated in Figure 4.10. They
are directly applied to the image to extract features like edges or corners.

For the sake of a better comprehension of the convolution layers, Figure 4.11
illustrates how a sample is computed highlighting the activation values of each
layer.
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Figure 4.9: FM on the DIBCO development set given the number of features gener-
ated by different CNNs (The higher the better).

4.7.2 Comparison of connectionist methods

In this section, we present the experiments performed to analyze and compare
all the discussed approaches. Each method has been trained and applied for
the corpora described in Appendix C.1. A quick reminder of the analyzed
methods:

◦ Multilayer Perceptron (MLP).
◦ Multilayer Perceptron (MLP) with extra Features.
◦ Convolutional Neural Network (CNN).
◦ MultiDirectional Long Short Term Memories (MDLSTM).

Hyper-parameter tunning For fairer comparison of the proposed models,
it is necessary to estimate their parameters (weights) and hyper-parameters
(topology, training options) correctly. Thus,the variation between models should
be due to the capability of each model and not from the parameter tuning.
In Chapter 3.6 we discuss some hyper-parameters tuning procedures, in this
case, we have used the random search hyper-parameter optimization. Ta-
ble 4.2 shows the hyper-parameters sampled, for the MLP, MLP with features,
and CNNs: Nevertheless, there a few exceptions of parameters that have not
been estimated by this approach: one is the convolutional topology used in the
CNN, where convolutional and max-pooling layers have been fixed according
to the configurations obtained in previous experiments. We have followed a
random search hyper-parameter optimization for each available corpus and
each of proposed method (excepting MDLSTM). Figure 4.12 shows the evo-
lution of the error of the best net after several sampling iterations. We could

85



Chapter 4. Image Cleaning and Enhancement

a)

b)

c)

d)

Figure 4.10: Kernels learned from the first convolution of 6 × 6 for: (a) 10 maps, (b)
20 maps, (c) 30 maps, (d) 60 maps.
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Input
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Figure 4.11: Example illustrating the neuron activations of a Convolutional Neural
Networks for an input sample (brighter pixels mean higher activations).

Parameter Distribution Values MLP Feat. CNN
1st Hidden Layer uniform 26∼9 ◦ ◦ ◦
2nd Hidden Layer uniform 24∼7 ◦ ◦ ◦
Learning rate log-uniform 0.0001 ∼ 0.1 ◦ ◦ ◦
Momentum log-uniform 0.0001 ∼ 0.1 ◦ ◦ ◦
Weight decay uniform 0, 1e−7∼−4 ◦ ◦ ◦
Minibatch uniform 20∼8 ◦ ◦ ◦
Input Neighbors uniform 4, 6, 8, 10, 12 ◦ ◦
Median Filter radius uniform ∅, 20, 40, 60, 80 ◦
Histogram radius uniform ∅, 20, 40, 60, 80 ◦
V. Hist Neighbors uniform ∅, 0, 1, 2, 4 ◦
H. Hist Neighbors uniform ∅, 0, 1, 2, 4 ◦

Table 4.2: Parameters sampled by the Hyper-parameter Random optimization func-
tion.

87



Chapter 4. Image Cleaning and Enhancement

0 20 40 60 80 100
Hyperparameters iteration

0.70

0.75

0.80

0.85

0.90

B
e
st

 F
-m

e
a
su

re

Hyperparameter Optimization values for DIBCO

MLP
MLP Imp
CNN

0 5 10 15 20 25 30 35 40
Hyperparameters iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
e
st

 F
-m

e
a
su

re

Hyperparameter Optimization values for CNN

DIBCO
SAINTGALL
OFFICE

Figure 4.12: Both graphics shows the best result obtained until the current iteration.
The left graph shows the error of the different approaches given the DIBCO dataset,
while the right shows the error for the different corpora given the CNN method.

see that, after 50 iterations, it is very unlikely to find a better configuration
that could improve the overall performance. In our experiments, we kept the
tunning procedure running up to 200 iterations.

During the training of the MLP and CNN models, in each training epoch, be-
tween 500K and 1M samples have been taking from a random replacement.
Stochastic Gradient Descent with CE error loss has been used for the training.
MDLSTMs hyper-parameters, instead, have been tuned by a grid exploration
of the learning rate, momentum, and hidden size. In this case, we have split
the image in 512× 512 patches, and clean each of this independently. For
training, random patches are taken as replacement, while for validating and
testing, the images are split in non-overlapping patches, and the final output is
obtained by joining them. As an example of the best obtained configurations,
follwoing the best setups for the DIBCO dataset are detailed:

◦ MLP Two hidden layers of 512×16, learning rate of 1e−2, momentum of
8e−2, weight decay of 0, 128 minibatch, and 6 input neighbours leading
to an input of 169 values.

◦ MLP with Features Two hidden layers of 64×128, learning rate of 9e−3,
momentum of 7e−3, weight decay of 1e−6, 128 minibatch, and 6 input
neighbors which made an input of 225 values. Then values are added to
the input corresponding to the histogram of the pixels of a window radius
of 60 centered at the pixel, plus the median value of this radio. Other 4
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are also included corresponding to the horizontal histogram. That makes
an input of 178 (169 of the image input, 4 of the window histogram, 1 from
the median filter and 4 from the horizontal histogram).

◦ CNNs After analyzing several nets and their performance on the devel-
opment set as shown in the previous section, we have selected for the
final evaluation a CNN showing a good compromise between FM and the
computational cost. The chosen one has 10 kernels for the first convo-
lution layer and 20 kernels for the second one. Both max-pooling layers
are of size 2×2, leading to 80 extracted features. The following dense
layers have 512 and 16 neurons, respectively. The net have been trained
using a learning rate of 1e−2, momentum of 8e−3, weight decay of 0 and
minibatches of 128.

4.7.3 Results

Here we collect results of our methods on the evaluated corpora. Besides,
baseline heuristic approaches have been added: Otsu’s and Sauvola’s. Ta-
ble 4.3 collects the different measures for all the methods on the tests sets.
And the graph in Figure 4.13 illustrates these results. The Table 4.4 shows
also the FM for the different sets, Table 4.5 shows a comparison of our best
method (CNN) with other used on the DIBCO-2013. And finally, some exam-
ples together with the result of these binarization techniques are illustrated
in Figure 4.14.

Comparing the performance of the Convolutional Neural Networks approach
on the DIBCO dataset with respect to the results reported in the DIBCO-2013

[Pratikakis et al. 2013], the best FM on this competition was 92.70. Although
the obtained result (87.74) is far from this position, it goes hand in hand with
other competitors.

Ensembles and combinations We have taken the nets that obtained the
lower errors on validation and combined following several approaches. An-
other approach could be to get the best nets obtained while setting the hyper-
parameters, no matter what kind of classifier. By combining the results from
different methods, it is more likely to compensate their mistakes. MDLSTMs,
however, performed worse in some cases and we noticed that adding them to
the combination degenerate the results. Hence, we have removed them from
the ensembles. Table 4.7 shows the FM scores for the different test sets. It
includes the score of the 3 methods alone and the several combinations.
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FM PR RC MSE PSNR

DIBCO

MLP 0.823 0.849 0.859 0.029 16.89

MLP-Features 0.858 0.862 0.903 0.021 18.18

LSTM 0.782 0.853 0.797 0.039 15.74

CNN 0.877 0.950 0.847 0.020 18.91

Otsu 0.755 0.869 0.757 0.056 15.16

Sauvola 0.761 0.859 0.750 0.047 14.91

Ensemble 0.857 0.934 0.836 0.024 18.18

Saint Gall

MLP 0.952 0.931 0.974 0.003 25.17

MLP-Features 0.958 0.955 0.961 0.003 25.75

LSTM 0.849 0.843 0.856 0.010 20.12

CNN 0.970 0.965 0.975 0.002 27.22

Otsu 0.767 0.744 0.793 0.015 18.34

Sauvola 0.868 0.936 0.810 0.009 20.34

Ensemble 0.990 0.993 0.987 0.001 32.05

Saint Gall CROP

MLP 0.939 0.940 0.937 0.005 22.80

MLP-Features 0.947 0.951 0.942 0.005 23.39

LSTM 0.812 0.953 0.708 0.019 17.25

CNN 0.970 0.965 0.975 0.002 27.22

Otsu 0.807 0.959 0.698 0.020 17.09

Sauvola 0.886 0.936 0.841 0.010 19.86

Ensemble 0.969 0.967 0.972 0.003 25.85

NOISY OFFICE

MLP 0.976 0.975 0.976 0.007 22.50

MLP-Features 0.974 0.987 0.961 0.007 22.05

LSTM 0.922 0.967 0.893 0.025 18.55

CNN 0.970 0.997 0.945 0.008 21.26

Otsu 0.851 0.970 0.814 0.074 17.03

Sauvola 0.952 0.978 0.927 0.013 19.01

Ensemble 0.997 1.000 0.994 0.001 31.37

Table 4.3: Results on the different corpora. All the evaluated metrics but MSE are
better if the values are higher.
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DIBCO
Train Val Test

MLP 0.86 0.85 0.82
MLP-Features 0.88 0.89 0.86

LSTM 0.80 0.77 0.78
CNN 0.93 0.90 0.88

Otsu 0.82 0.79 0.76
Sauvola 0.80 0.81 0.76

Saint Gall
Train Val Test

MLP 0.95 0.96 0.95
MLP-Features 0.96 0.96 0.96

LSTM 0.85 0.85 0.85
CNN 0.97 0.97 0.97

Otsu 0.74 0.75 0.77
Sauvola 0.88 0.87 0.86

Saint Gall CROP
Train Val Test

MLP 0.94 0.94 0.94
MLP-Features 0.95 0.95 0.94

LSTM 0.82 0.81 0.81
CNN 0.97 0.97 0.97

Otsu 0.81 0.80 0.81
Sauvola 0.89 0.88 0.89

NOISY OFFICE
Train Val Test

MLP 0.98 0.98 0.98
MLP-Features 0.98 0.98 0.97

LSTM 0.96 0.94 0.92
CNN 0.97 0.97 0.96

Otsu 0.941 0.92 0.85
Sauvola 0.96 0.96 0.95

Table 4.4: Overall FM for the methods and the different datasets: training, validation
and test (the higher the better).
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Figure 4.13: The bars shows the F-Measure (FM) that are obtained for all the methods
and the different datasets presented.

Method FM Fps PSNR DRD
15b Su, Lu 92.12 94.19 20.68 3.10

3 Howe 92.70 93.19 21.29 3.18

5 Moghaddam, Moghaddam 91.81 92.67 20.68 4.02

13 Lelore, Bouchara 91.69 92.16 20.54 3.54

17 Ramirez-Ortegón 90.92 92.82 19.32 3.91

10c Hassaine, Hassaine 89.77 90.36 19.26 4.31

9 Neves, Zanchettin 89.46 89.95 19.05 4.72

11 Roe, A.B Mello 89.05 91.40 18.73 4.36

8b Okamoto, Nakata 88.58 90.81 18.66 4.66

2 Reddy, Chattopadhyay 88.45 88.91 18.66 6.36

CNN 87.68 - 18.91 -
4 Yoshida 87.35 91.80 18.34 4, 40

16 Nicolau 83.24 86.59 17.64 6.45

12 Raza 86.16 86.36 17.29 6.51

14 Sehad, Chibani 78.73 86.82 15.25 11.30

1 Djeddi, Labiba 64.62 65.35 11.10 46.09

Table 4.5: Comparison of our best approach with the standings on DIBCO-2013
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DIBCO 2013 Saint Gall
Method FM MSE PSNR FM MSE PSNR
Otsu 83.94 0.056 16.94 80.71 0.020 17.09
Sauvola 85.02 0.047 16.63 88.68 0.010 19.86
MLP 82.31 0.029 16.89 93.94 0.005 22.80
MLP+Features 85.82 0.021 18.18 94.75 0.005 23.39
CNN 87.74 0.020 18.91 97.02 0.002 27.22

Table 4.6: Performance of CNN on DIBCO and Saint Gall databases.

Input

CNN

MLP

Sauvola

Figure 4.14: Examples of binarization. First column: Full DIBCO 2013 sample and
the obtained binarizations. Second column: DIBCO 2013 image and its binarizations.

Dropout Dropout seems an appropriate technique to apply to some of the
ANN used for DIB. For example, in the DIBCO dataset, we have a tremen-
dous variability with the different sets. Indeed, images are quite different in
general, contained both handwritten and printed material.
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DIBCO Saint Gall ST. CROP NOISY OFFICE
MLP 0.828 0.952 0.976 0.976

MLP-Features 0.858 0.958 0.974 0.974

CNNs 0.877 0.97 0.970 0.970

Max 0.830 0.959 0.950 0.951

Min 0.863 0.963 0.954 0.983

Avg 0.865 0.982 0.963 0.99

Voting 0.857 0.974 0.955 0.986

Confidence 0.870 0.990 0.969 0.995

Simplex 0.879 0.975 0.975 0.995

Table 4.7: FM scores for the different combination approaches.

We evaluated also dropout combined with ReLU activation. We applied it to
the MLP (without extra features) and the CNN. We have variate the droprate
on the fully connected layers for both classifiers. In the convolutional lay-
ers, we have used a fixed droprate of 0.2 except for the net without dropout.
The rest of the parameters is kept untouched after the best configurations ob-
tained previously. In another range of experiments, we tuned the droprate in
the convolution layers, but we have seen that dropping activations in there
does not improve the overall performance of the net. What is more, higher
droprates worse the results. The tendency of the FM error on the DIBCO sets
is shown in Figure 4.15. From that graph, one appreciates how in the case
of the MLP the dropout helps until some level, while in CNN dropout does
not improve the results. We presume that the kernels used by the convolu-
tions generalize better, especially with the max-pool layers, so dropout in the
classification layers does not have such improvement.

4.8 Discussion

Let us summarize the methods and the outcomes presented so far.
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Figure 4.15: FM scores adding different levels of Dropout on the fully connected
layers for the DIBCO sets.

Insights of Convolutional Neural Network (CNN) for Document Image
Binarization (DIB) Experimental results on the different datasets show
that CNNs systematically outperform MLP for this task. The improvement for
the Historical IAM Database (Saint Gall and Parzival) seems more prominent
than the results on DIBCO. This difference may be due to the fact that the
previous collection is more homogeneous than the later. Indeed, it seems that
methods based on supervised learning techniques excel in this kind of docu-
ments where the font and size of the text, as well as the kind of noise, is more
homogeneous along the full collection. The practical interest of the proposed
technique is supported by the existence of collections composed of thousands
of similar documents. Due to the enormous number of topologies and setting
parameters of these models, the study of the influence of the most sensitive
parameters and the proposal of working and practical topologies provides a
useful insight into the use of ANN for DIB.

It is convenient to obtain a good compromise between binarization quality
and computational cost. We have also shown that small kernels are enough to
achieve competitive results and empirically validated the effect of the number
of such kernels on the overall binarization performance. In fact, increasing
this number over a given threshold does not lead to significant improvements.
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4.8 Discussion

Comparison of connectionist methods After comparing all the proposed
methods with all the analyzed corpora, the first remarkable conclusion is that
supervised methods outperform the baselines. The only exception comes with
the MDLSTMs that had some problems to work well with the proposed cor-
pora. In this area, we have made several improvements by using some addi-
tional pre and post processing that gave us the best result on the DIBCO-2013

test set: 89.82 on FM [Afzal et al. 2015]. Nevertheless, this is not a fair com-
parison with the rest of the models presented here so that we will keep this
out of this discussion.

We have to emphasize that our best net does not give us the best result for
the competitive DIBCO set. The results are discrete but not bad as shown in
Figure 4.5. This set of images (Appendix C.1) does not give the best scenario
for supervised methods. We could expect an improvement of the results if
more significant data is fed to our connectionist model.

It is also interesting to note that CNNs have outperformed other previous neu-
ral methods, even with the same input. Convolutional layers can extract more
reliable features from the image than traditional neurons or other parametriza-
tion. It is more remarkable in the DIBCO dataset where we have seen that is
tough to improve the performance due to the variability in the images. For
counterpart, in the case of the Noisy Office database, which is a very easy set
of images, the simplest method based on MLPs obtains a better performance
than the other more complex nets.

Coming back to the MDLSTM based model, the results are worse than one
could expect. This novel method, in theory, should be able to perform well in
this task since it can get a bigger context dependencies in its internal state.
We believe that there could be many reasons (or the combination of them) for
explaining this issues:

◦ A very basic setup have been used. We presume that better results could
be obtained with more complex architectures like the hierarchical nets
and also the combination of convolutional features and MDLSTM.

◦ The resolution of the images, we use patches of 512×512 which mean that
for one pixel we are having a context of 262 144 pixels. The 2D structure
and the impossibility of reducing the resolution of the images due to the
nature of the task constrain the patch sizes.
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Chapter 4. Image Cleaning and Enhancement

Combination and ensembles Apart from the straightforward combina-
tion, we have seen that the confidence ensembles and the MERT, as shown
in Table 4.7 improve the individual results. As seen, the combination of ap-
proaches works very well when the combined methods have similar error rate
(not necessarily the same kind of mistakes). If this gap is high, the bad result
tends to slant the combination. It is worth remarking that in the case of the
Saint Gall and Noisy Office corpora, the smart ensembles showed an almost
perfect performance. In the cropped version of Saint Gall, the combination
works worse than the original since the cropping method is not perfect and
there are small artifacts in the borders of the image that add false positives in
the final evaluation.

4.9 Summary

We have presented different neural models to approach the DIB task. A thor-
ough search of parameters and topologies has been followed for all of them.
Also, we applied successfully CNNs for the current task and explored several
configurations to make them work and better than previously connectionist
approaches. The publications derived from this research are: [Afzal et al.
2015; Pastor-Pellicer, España-Boquera, F. Zamora-Martínez, et al. 2015].
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Text Line Extraction
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In this chapter we treat the next stage on the Document Image Analysis pipeline:
Text Line Extraction (TLE) (Figure 5.1).

As its name states, it consists on delimiting and extracting the text lines of
the document for further recognition. The input of the TLE module is a doc-
ument image (presumably pre-processed). And the output contains the line
definitions; these could be just the surrounding areas, but more information
such as the type and content of text may be added. Therefore, the primary
goal is to extract the single lines that will be used by the transcription engines
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Chapter 5. Text Line Extraction

Figure 5.1: Pre-processing steps (Text Line Extraction).

Chapter 5

Text Line Extraction

The following chapter treats the well know Text Line Extraction (TLE) prob-
lem. The Document Image Processing stage, as its name states, consists

on delimit and extract the text lines for further recognition. The input of the
TLE module is a document image (preprocessed or not), the output should
contain the line definition, it could be the limits but they can contain more
information such as type of text (title, regular, notes, . . . ).Hence the main goal
is to feed single lines to the transcription engines, since they usually work
at line level (the final recognition is performed line by line). But, not only
transcription (or recognizers) could use the extracted lines. TLE is commonly
applied by transcribers, hence they can do transcription and line alignment
at the same time. Indeed, having a good line segmentation it is supposed to
reduce the transcription efforts and assist the transcriber during this process.

When dealing with non-complex and clean documents, specially typewritten
TLE is a very easy task. But when dealing with Historical Document Images
we have to understand and agree an about what is a text line. For example, if
the document contains some text parchment annotations, should we consider
that these lines?, should we extract them as part of text?. In a pure point
of view, they are lines; indeed, this problems extends the same way to titles,
annotations, tables, or text within figures among others.

One should overcome this issue, for example, tagging the type of text and have
a more complex definition to deal with all the casuistic. For this purpose, the
text line extraction relies on the layout definition of the document. In the pre-
vious Layout Analysis stage the entities that will contain the lines: columns,
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Figure 5.2: Sample of lines from different documents. Each one shows an increasing
TLE difficulty. Lines in the first document are clean and well defined, straight forward
techniques (histogram or CCs) will suffice to detect and segment them. The document
on the middle is clean but it presents some irregularities that require more advanced
techniques. The last document shows (artificial) distortions and special glyphs.

since these usually perform the recognition line by line. TLE could also be
used to assist transcribers when a reliable recognition engine is not available.
When dealing with non-complex and clean documents (specifically typewrit-
ten) TLE becomes an easy task. It gets harder, for example, on unconstrained
handwritten (Figure5.2-center) or historical distorted documents (Figure5.2-
right). Besides, in other scenarios such as Historical Documents, we have to
define what is a text line and how it is represented. E.g., if the document con-
tains parchment annotations, should we consider these as lines? Indeed, this
problem is extended to titles, tables, signatures or even text within figures and
decorations. The text type information included in the layout definition could
be useful in later stages like TLE.

The entities that contain the lines (columns, titles, text blocks and, anno-
tations) are extracted an conveniently labeled in the Layout Analysis stage.
Other elements of the document which do not include text such as decora-

100



tions, figures or signatures are also detected and labeled. Therefore, the in-
put of the TLE stage is not always a raw image, but a text region extracted
and tagged in the previous layout extraction step. Indeed, more accurate and
specialized techniques could be applied regarding the class of the area. If we
followed a supervised approach, the method would consider as line what the
ground truth says that is a line. Our supervised models will learn the features
about what lines defined in the ground truth.

There are several scenarios where TLE could be applied, those are not exclu-
sive and, for sure, there will be particular cases that are not contemplated
here:

◦ TLE is part of an end-to-end recognition engine. It could be embedded
in the recognition module, used as external web service running, or as a
batch tool without (a priori) human supervision.

◦ It is part of a transcribing assistance tool. The lines are extracted, and
then experts transcribe the documents line by line. Another scenario
performs a text line segmentation and then iteratively the human expert
corrects and improves the line model.

◦ Evaluation contests used in the academic and research communities for
fair comparison of several contributions. In this case, even though the
objective is to provide reliable and accurate text line ground truth, the
methods are often tuned to get high scores on the evaluated metrics.

For all these cases, a thorough understanding of the ground truth formats
and the line definition are required to develop, use and spread the techniques
proposed in the following chapter.

We explain in this chapter the TLE task and its applications, and we introduce
our proposals for this task. We also include a review of the ground truth for-
mats and their particularities, advantages, and handicaps in the Appendix D.2.
We present and discuss the evaluation measures on the proposed tasks (Ap-
pendix D.1).
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Figure 5.3: Text Reference Lines.

5.1 Ground truth formats and evaluation metrics

In the fulfillment of the proposed approaches, we had to deal with a vast range
of formats and different evaluation metrics.

The main problem of TLE evaluation is the line assignment procedure: a one-
to-one assignment between these both sets is necessary. The Appendix D.1
describes the evaluation measures applied to our techniques:

◦ Match Score (MS).
◦ Pixel Level Hit Rate (PHR).
◦ Text-Line-Level Detection Rate (TLL-DR).
◦ Precision, Recall and FM.

and Table 5.1 summarizes the metrics.

It is convenient to know and work with several formats and schemas to ease
the interchange and publicity among the research community. In Appendix D.2
we discuss some of the proposed solutions for the Text Line Ground Truth
definition. We present their advantages and handicaps, and the ideal scenario
to use each of them. Besides, one cannot say which definition is better; it
depends on the situation and the actual goal. It is also worth to mention the
work developed in [Shafait, Keysers, and T. M. Breuel 2006] since they present
different evaluation metrics and representation of different DIA tasks.

5.2 Text Reference Lines

In the following sections we introduce our approaches to the TLE task. Our
methods follow the idea of tracking the text reference lines (and the text line
areas/zones delimited by them). An illustration sample showing the reference
lines of the text is shown in Figure 5.3. Therefore, our methods are meant
to scripts which present these text reference lines. It includes most of the
alphabetical scripts, mainly the Latin family.
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5.2 Text Reference Lines

Metric Level Description

Computes a line match if the intersection of the foreground pixels
between a predicted line (Ri) and the ground truth line (Gj) is higher
than a certain threshold.

DR

Line

Tracks the number of predicted lines that have
been correctly assigned (precision).

RA
Evaluates the correctly detected ground truth
lines

FM Trade-off between DR/RA

One-to-one alignment between predicted lines and ground truth is
obtained.

PHR

Line

Number of shared foreground pixels between
each of the pairs, normalized by the number of
the foreground in the ground truth.

tll − dr
Number of well detected lines. A line is claimed
to be detected if it shares 90% of the foreground
pixels

It treats the predicted/ground truth lines assignment problem as an
alignment problem where we can have substitutions, deletions, and
insertions.
tla line AccT4 = N−S−D−I

N

tllpa pixel AccP = NP−SP−DP−IP
NP

Precision
line

Generalizes the PHR and TLL-DR to compute
the pixel/line precision and recall.

Recall

Precision
pixel

Recall

Table 5.1: Summary of the different used metrics.

Baseline (or lower baseline)

[Wikipedia] The baseline is the line upon which most letters “sit”.

It is a very reliable indicator for guessing the line orientation since the char-
acter sequences sit on it. Indeed, during the slope correction step, we put all
the words from a sentence on the same baseline.
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Mean line (or upper baseline)

[Wikipedia] In typography, the mean line, also called the midline, is
half the distance from the baseline to the cap height.

Put in other words; it is the line that delimits the upper part of the lower case
letters.

Ascenders and Descenders lines

[Wikipedia] In typography, an ascender is the portion of a minus-
cule letter in a Latin-derived alphabet that extends above the mean
line of a font.

Ascenders and descenders lines delineate the extension of the line on the ver-
tical axis. E.g., the part of a lowercase letter that is taller than the font’s
x-height.

Capital height defines the upper limits of the capitals letters, this reference
line is close to the ascenders line, and sometimes indistinguishable from it.

Besides the text reference lines define the text zones or areas of the text: Main
Body Area (MBA), ascenders and, descenders. Note that the MBA contains
the part that has the most useful information contained since it comprises the
body of the non-capital letters.

Once the text reference lines and the text areas have been introduced, one
could observe that this information could be excellent indicative about the
positions of the lines along the document. How to detect this reference lines
and areas (or zones) and employ them for the final text line segmentation are
the two challenges we had to deal when developing our methodologies.

In the next sections, are detailed the supervised approaches for tracking the
text reference lines and later we will show how to use this information in order
to extract the text lines.
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5.3 Text reference line estimation by Local Extrema Points

5.3 Text reference line estimation by Local Extrema
Points

We followed two main approaches for extracting text lines by means of esti-
mation of text reference lines:

◦ Computation of text segments by joining text reference lines.

◦ Detection of the text zones directly on the document image.

Both procedures require the detection of the text reference lines rely on super-
vised methods (ANNs). In previous works, the research group has successfully
used Local Extrema Points (LEPs) for tracking text reference lines in several
pre-processing stages, specifically, for slope correction and text line normal-
ization [Espana-Boquera et al. 2011; Gorbe-Moya et al. 2008]. In those works,
the reference lines were estimated directly at line level. However, we have
generalized it for the whole document.

The underlying idea of obtaining LEPs is to classify them to belong to one of
the reference lines (or none). As we will see, most of these extrema are part
of the upper and lower character limits, which correspond to one the of the
reference lines. Once a LEP is assigned to one of the reference lines, we refer
to it as Interest Point (IP) since it has gained knowledge about its function in a
text line. Therefore, given one text line, if we join the IP classified to the same
reference line we obtain an estimation of the whole reference line.

With regard to TLE, text reference lines, which follow the orientation of the
line, could provide useful information to detect and segment the whole text
line. These reliable indicators will help to improve the text line segmentation
procedure, and what is more, the method is hence more robust to skewed or
even distorted documents.

5.3.1 Local Extrema Points

First of all, we need to define what is a LEP. Note that the term LEPs could be
misleading, specifically in the computer vision field; we refer to Local Extrema
Point (LEP) as the geometric extremes of the ink strokes. In other research
areas, extrema points are taken w.r.t its brightness level and not their spatial
position. We have used two different approaches for extracting LEPs from in-
put images: one takes the upper and lower contours from the text and extracts
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Figure 5.4: Example of the upper and lower contour extracted for one text line.

the extrema in each of the continuous strokes; the second, takes the group
edges/contours, groups them and removes the LEP finally from the clusters:

1. Upper and lower contours This is the approach used in our original
text line normalization techniques. A contour line could be represented
as as a continuous function f(x) = y in a 2D plane; the LEPs correspond
with the local maxima and minima of the f function. Local maxima values
are computed for upper contours and local minima from lower contours
(Figure 5.4). The full procedure is detailed in [Gorbe-Moya et al. 2008].

2. Contour clustering In this mode, the contours (or edges) are extracted
by the Canny edge detector [Canny 1986]. Then, these are grouped by
proximity using the DB-SCAN clustering algorithm. Once the contours
are grouped by proximity, the LEPs are finally extracted. We define a
LEP from the contour as the maximum or minimum point of the n LEPs
cluster neighbors.

The reason of using contour clustering is twofold:

◦ Speeds up the LEP extractor since each subset is computed indepen-
dently. The main issue is that the clustering algorithm has to deal with
a big set of contours points (around 5K and 50k per page). The clus-
tering procedure could be efficiently computed by using, for example, a
Kd-Tree.

◦ It provides an intial first text segment estimation. We will see that in the
following stages we will aggregate points to form text segments. The
contour clustering provides a first grouping hypothesis.
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5.3.2 Interest Points

The next step consists of classifying the LEPs in one of the references lines.
The possible categories correspond mainly with the text reference lines:

◦ Mean Line
◦ Baseline
◦ Ascenders line
◦ Descenders line
◦ Text (nonbelonging to one of the text reference lines)
◦ Noise

Note that we have added 2 new classes which cover points not belonging to
any of the reference lines. These new classes will distinguish points that are
extracted from decorations and stains. We noticed that these non-text points
are useful in order to discard non-text areas.

Supervised classification We used a supervised approach to classify LEPs
into IPs, for this purpose a supervised ground truth is required. I.e. a set
of LEP conveniently labeled that can be used to train our classifiers. The
supervision of IP procedure is detailed in Appendix E. Indeed, since the IPs
are an artifact that we have introduced to extract the text reference lines, we
refer to it as soft ground truth. Given a set of well-classified IPs, we train a
ANN that receives as an input the contextual information around the points
to classify. The output of the classifier is a softmax layer with the 6 classes
proposed.

For the classification of IPs we have followed (again) two different approaches:
(1) using a Fish-Eye transformation, which was the already followed in previ-
ous works and (2) applying a CNN model that does not use any previous image
transformation.

Fish-Eye Transformation and MLP The input image is distorted using a
fish-eye transformation. This consists of a nonuniform image transformation
on the horizontal axis. Besides reducing the size of the image, it preserves
the resolution of the center part. An input patch (500×200 pixels) centered
on the LEP to classify and then downsampled to a 50×30 image which is used
as input by the MLP. The fish-eye transformation preserves the information of
the central part of the original input, but it comprises the rest of the contextual
information as well (Figure 5.5). As depicted in Figure 5.6, the resultant image
is flatten and fed to an MLP.
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Figure 5.5: Fish eye transformation. The image on the left shows the receptive field
around the LEP (red). The middle image shows the surrounding area of the LEP after
applying the fisheye transformation (high resolution). The image on the right shows
the final input of the MLP after downsampling the fisheye-transformed input window.

Meanline
x-height
Lower baseline

Noise

Ascender

Descender

Fish eye's receptive field Fish eye's transformation Multilayer Perceptron Output class

Figure 5.6: IPs classification process by using appplying a fish eye’s transformation
and an MLP.

Convolutional Neural Network The second approach does not rely on
any image transformation or distortions before the ANN. The receptive field
of the CNN is pixel window centered around the LEP to classify, as well (Fig-
ure 5.7). Then a set of convolutional layers are applied before the final MLP
discriminator. The input window is usually smaller than the one in the Fish-
eye transformation; this can be softened by using downsampling, in our ex-
periments reducing the image by a factor of 2 gave better results.

Any of both methods were good enough for the classification purpose. The
classification results were very similar but the difference is clear: the fish-eye
transformation does a considerable size downsampling preserving closer and
reducing surrounding information, while convolutions, instead, run over all
the input region, giving the same importance to center and outer pixels.

Once we have our models trained, we could discrete the soft outputs (argmax)
or either propagate them to the next step. We have always tried to take ad-
vantage of the ANN estimation by propagating these information we let the
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Figure 5.7: Illustration of the LEP classification. The receptive field is a centered
window on the point to classify. Then several convolution and sub-sampling layers are
applied.IPs

Layer Type Kernel Applied Output

1 input 1× 49× 49

2 convolutional 10 6× 6 kernels 10× 44× 44

3 Max-pooling (relu) 2× 2 16× 22× 22

4 convolutional 20 4× 4 kernels 20× 19× 19

5 Max-pooling (relu) 4× 4 20× 4× 4

6 flatten 320 neurons
7 fully connected (relu) 512 neurons
8 fully connected (relu) 256 neurons
9 Output (softma) 6 neurons

Table 5.2: Topology used for classifying the LEP in one of the text reference classes
and dirty IPs.
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Figure 5.8: Interest Points extracted from a section of the text. The sample on the
right shows the IP without the background image to illustrate the line continuity.

following stages to decide how to deal with this information1 Unfortunately,
the next IPs based algorithms work with discrete outputs.

5.4 Text Segments from Local Extrema Interest
Points

Once extracted and classified the IPs of the whole page, we end up with a
set of points that contains information about the location of the text reference
lines. The primary objective is to join these points to extract the final text
lines.

If we take a look into IPs map that is generated (Figure 5.8), the text refer-
ence lines and their directions across the IPs could be guessed. Indeed, this
problem reminds to the dot-joining game for kids, where one have to join the
points in a particular order to draw the final lines. However, this problem is
more complicated than it appears. We will have to determine, first, a set of
rules to join the points2. Besides, the joining approach has to deal with several
issues such as adjacent text lines and misclassified points.

Since the ideal text line extraction implies to join the IPs of the same line,
we followed a two-steps bottom-up approach: first, text segments by joining
related IPs. Following, these groups are composed (in a second step) in order
to extract text segments. Usually, we want to group IPs belonging to the same
line and propagate these groups to the following text segment aggregation
stage. In this step, we consider a text segment as indivisible unit taht will be

1The only problem comes from the data flow information between stages, since it is lighter
to move pairs (point, class). than propagate (point, score1, score2, ..., score6). But
this is not a big problem because we have a relatively small set of LEPs for one page.

2No, a feasible solution is not to use our nephews and give them the documents to connect the
dots
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joined in a later step that is using higher level features. The following features
are computed for each segment:

◦ Center point of the text segment which is computed as the average posi-
tion of all IPs.

◦ Centerline that is calculated as the middle line between the mean line
and baseline.

◦ Meanline (parametric form).
◦ Baseline (parametric form).
◦ Text segment area. It uses to be a surrounding polygon.

Advantages of extracting text segments from IP which track the reference
lines:

◦ The orientation of the text segment is computed by approximating the
text reference lines to knowing the orientation and the direction which
will help to join the text segments according to the primary orientation
of the line.

◦ The Noise class allows removing all the decorations and dirty artifacts
within the document (Figure 5.10). In addition, if a text segment is close
to (or even touching) a non-text part, the text segment will not cover the
non-text areas, which it makes more valuable than other approaches.

The next problem is to find a criterion to join the IPs into text segments. On
the one hand, if we are very strict when joining points (making sure they must
belong to same text line), we will propagate minuscule text segments, and
probably we will have problems with detecting the text orientation leading to
a wrong line segmentation. On the other hand, if we are very permissive and
soften the joining conditions, we will end up with segments covering several
lines. We improved the text segment extraction process by applying an itera-
tive join-and-split procedure until a reliable set of text segments is extracted.

The first segment hypothesis could be obtained by two different approaches:

◦ Contours and proximity clustering In the case of the LEP, that are
extracted from contour clustering, we will use theses clusters to form
the text segments.

◦ Connected Components Approach The second approach group the
IPs in the same CC. The errors commited by this naive approach could
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(a)

(b)

(c)

(d)

Figure 5.9: Example of bottom-up aggregation approach to text segment computation
(from top to bottom): (a) Original image with local extrema detected (in purple). (b)
Interest points classification (interest points belonging to the mean line in blue, to the
baseline in red, and within the text in green. (c) Meanline and baseline computation
from interest points. (d) Final extracted text segment.

be amended by the following text segments splitting and joining pro-
cedures. IPs are grouped by CCs. We tried to apply also a proximity
algorithm like DBSCAN or k-means for clustering the IP by proximity,
but we got some undesired behavior illustrated in Figure 5.11. In this
case we propose to use information of the IP class to do a more clever
segmentation.

Given the first set of text segments, we use the IPs and the features of the
reference lines to determine whether a segment must be splitted or joined
to another. For each text segment, we determine its meanline and baseline
by joining the IPs associate to that reference line. Then, we apply a linear
regression model, the regression score is taken as the average distance of the
set of points to the regression line.
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Figure 5.10: Example of the IPs classified. It can be seen than the yellow points (dirty
class) are set on the decorations and not the parts of the text.
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Figure 5.11: Sample of grouping IPs by proximity. In high components, the upper
points are far from the lower, so they cannot be grouped by a proximity criteria. The
above figure shows the IPs and each color represents the class (blue: mean line, red:
ascenders, orange: baseline, green: text body). The bottom image shows the clustering
of each of the points; the color now corresponds to the cluster.

Problem Approaches
LEPs Upper/Lower Contours

Contour Clustering
IPs Fish eye + MLP

CNN
Text Segment Generation CC clustering

Contour clustering
Text Line Aggregation Combinatorial Optimization Problem

Two-by-two Segments Joiner

Table 5.3: Summary of the different techniques for Text Line Extraction based on Text
Segments. 1) The Lep are extracted by Upper/Lower Contours extrema, or extrema of
each contour cluster. 2) The points are classified using an MLP or CNN. 3) The text
segments are build by using CCs or using the previous Contour clusters∗. 4) The final
text segments aggregation.
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5.4 Text Segments from Local Extrema Interest Points

Figure 5.12: Merge procedure of close text segments The left sample shows the text
segments extracted after the first clustering. The image on the right shows the seg-
ments merged according to the defined rules.

5.4.1 Merge of Text Segments

When extracting segments by CCs we still have adjacent segments corre-
sponding to the same word, but they have not been joined because they are
not in the same component. It is desirable to join these tight text segments
before propagating them to the next stage. For this purpose, we took into
account other features from both segments to join: proximity, the size and
orientation of the components. Note that this step has nothing to do with the
further text segment aggregation procedure, in this case, we want to join very
close text segments to relax and improve the later computation.

In Figure 5.12, the sample on the left, shows the first estimation by extracting
CCs. We have almost one component per character which can be quickly
joined into words. Indeed, text segments do not necessarily correspond to one
word. The merge criterion are based on the distance, orientation, and the
fitness of the IPs to the linear reference lines (Figure 5.13):

1. First, we the candidates to merge are selected.

2. We check if one segment contained in the other. In that case, we merge
them.

3. If the two segments meet the following conditions, then they must be
joined:

(a) If the MBAs of both segments intercept in the vertical axis.

(b) We compute by linear regression the mean line and baseline for
the resulting merged text segment. The fit error is the sum of the
average squared distance of all the points and the line, normalized
by the number of points. If the score is lower than an arbitrary
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upper

distance

middle

distance

lower

distance

Text Segments to merge

Linear regression of the  IPs

Distances

Figure 5.13: Criteria for merging Text Segments: a) fitness of the IPs to the reference
lines. b) Segment distances.

threshold (between 10 and 20), we said that the two segments fit
the reference lines.

fitness(ips, line) =
∑
p∈ ips

dist(p, line)2

N
. (5.1)

(c) For the distance between segments, we compute the maximum of
the three distances: upper line, lower line, and middle line dis-
tances. If the distance is less the average size of both components,
they are joined. We restrict the length to a maximum value to avoid
that large components “eat” the rest of elements.

Since one of the joining rules depends on the size of the components, it is
common that the new segments (that were joined) could be merged again with
other segments. For this matter, we apply the merging algorithm iteratively
until no new segments are generated.
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5.4 Text Segments from Local Extrema Interest Points

(a) (b) (c)

Figure 5.14: Bad extracted text segments. a) The meanline and baseline have diver-
gent directions. b) The reference lines are crossing. c) Both lines have a low regression
score regarding to the IPs.

5.4.2 Text Segments split (Touching Components)

We address now the opposite problem: a text segment does not match the
fitness criteria. Using the IPs of each text segment we have an effective way
to measure whether it should be splitted (Figure 5.14). Usually, the touching
components issue involves ascenders and descenders from adjacent lines, or
with the presence of noise (holes in the sheet, ink or bleed through). IPs are
used to check the fitness of the text reference lines in the text segment. The
split is computed using an iterative algorithm that is inspired by [J. Kumar,
Kang, et al. 2011] and the k-means clustering algorithm.

First, we compute, as well, the meanline and baselines, of each CC. A segment
is split if:

◦ When the mean line and baseline have divergent directions (< 20 de-
grees) (Figure 5.14-a).

◦ Both reference lines intercept, or the meanline is below the baseline
(Figure 5.14-b).

◦ If the average line and baseline have a high regression score (Equa-
tion 5.1). This is usually common when there are touching components,
or the segments contain text formed by several lines (Figure 5.14-c).

Then the line segment is splitted by computing new baselines. The main idea
of this algorithm is to create two or more new baselines equally distributed
along the y-coordinate of the text segment to split.

1. We start by re-grouping the text segments in two new segments (n = 2).
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2. n baselines are created, they are vertical equally distributed from the
highest point to the lower.

3. Baseline points are assigned to the closest of the new n baselines.

4. The new n baselines are recomputed according to the assigned points.

5. Steps 3, 4 are applied iteratively until no variation on the points assign-
ment. The algorithm is similar to k-means since we classify the points
to their closest line (like the centroids) and then, the new baseline is
computed according to the assigned points (Figure 5.15).

6. The rest of the (non-baseline) IPs are assigned to each of the new seg-
ments.

◦ Ascenders and meanline points are assigned to the segment whose
baseline is just below them. If a point is very close to the baseline,
it is not considered to be above of that.

◦ Descenders IPs are assigned to the segment whose baseline is the
nearest above them.

◦ Text (nonreference lines points): this is similar to the meanline
points, without the proximity restriction.

7. If none of the new segments fits the previous rules, the procedure is
computed using n+ 1 baselines.

8. If any of the new segments fit the rules, this is added to the list. The final
segment boundaries are taken from the convex hull of the assigned IP.

We have presented an elegant solution that works quite well with most of the
cases, allowing to split a text segment into 2 or more new segments, even
though it is not quite common to deal with touching components that involve
more than 2 lines. Nevertheless, we found one particular case where the
algorithm fails miserably. This occurs when the split criteria mark a segment
to be cut, but it does not correspond to several lines. This is understood better
by the Figure 5.17. The problem in there is that we horizontal split have been
instead of a vertical one. After splitting the segment, the 2 baselines do not
correspond to the expected segments (we are not discussing if the segment
must be divided or not, according to our criteria they must).

We propose a procedure to deal with this case; the first step is to detect if the
split must be vertical or horizontal; this is not straightforward. One hint is that
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(a) (b) (c) (f)
Figure 5.15: Iterative baseline computation. An Expectation/Maximization algorithm
is applied like k-means to define the new baselines. a) The regression baselines com-
puted from all the baseline points. b) The baselines are split into two lines, equally
distributed. The points are assigned to the closest line (expectation). c) The lines
are recomputed according to the designated points (maximization). And the points
are classified again (expectation) d) The lines are recomputed (maximization) and no
changes in the points classification (iterative stopping criteria).

Figure 5.16: Text segment splitting. The left sample shows the Interest Points ex-
tracted on the image. The center sample, shows the merged segments, even if they are
not touching component the proximity algorithm has grouped them. The image on the
right shows the extracted segments after the splitting approach.
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Figure 5.17: Sample where the split algorithm fails. The segment is marked to be
cut. The left image shows the two baselines computed after applying the algorithm.
As it can see, the assignation does not make any sense, even though the lines have a
low regression score to the assigned points (brown and green). The image on the right
illustrates the splitting procedure: Expectation/Maximization algorithm is applied but
now, doing the points assignation to the perpendicular lines.

there are no ascender points between both baselines, but this is not sufficient
evidence to detect these cases. We could apply first the vertical splitting (the
one showed before) and check the regression scores of the new segments if
they are higher (higher is worse) than the original one, we apply the horizontal
split.

If a vertical split is detected, two perpendicular lines are created distribute
them on the x-axis. Then classify the points to the closest segment, compute
the new baselines, and use the new perpendicular lines for the next assign-
ment, as depicted in Figure 5.17-right.

5.5 Text segment aggregation

When extracting text lines, bottom-up approaches usually start with text seg-
ments, and then they aggregate them by grouping based on geometric rela-
tionships among nearest neighbors; oriented nearest neighbor search; iter-
ative grouping by proximity, similarity and direction continuity; or a combi-
nation of heuristic rules and the Voronoi diagrams. Other approaches make
use of an artificial intelligence problem-solving framework using production
systems, or tree structures with minimal spanning tree clustering to group
CCs.
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Clean bathroom Sweep Floors Wash Windows
Jim $2 $3 $3
Steve $3 $2 $3
Alan $3 $3 $2

Table 5.4: Toy sample of the Combinatorial Optimization Problem. There are several
agents and tasks and we want to find the one-to-one assignment which minimize the
total cost.

5.5.1 Combination and Optimization problem

The following section has been extracted from the collaboration work named
“Combining Learned Script Points and Combinatorial Optimization for Text
Line Extraction” [Pastor-Pellicer, Garz, et al. 2015] with Angelika Garz and
Rolf Ingold from the DIVA group at University of Fribourg. The work combined
the previous text segments, and it applied a combinatorial algorithm for the
text segment aggregation problem. The procedure is shown to illustrate how
the text segments could be joined, but we must credit the team at Fribourg.

Regarding a text line as a string of consecutive segments (word segments),
we reformulate the problem of bottom-up text line creation as a combinatorial
optimization problem, which finds one or several optimal objects from a finite
set of objects. More specifically we consider the optimization as linear assign-
ment problem. This is equivalent to finding the optimal mapping of agents
to tasks, assuming that there are different costs involved for each combina-
tion [Munkres 1957]. The optimal assignment minimizes the total cost while
covering all jobs and agents (1:1).

To fix ideas, let us consider a typical assignment problem using a cleaning sce-
nario: we have three different cleaning tasks, washing the windows, sweeping
the floors, and dusting the surfaces of a room. We have three workers (agents)
who each demand different pay for each of the tasks. The problem now con-
sists of finding the lowest-cost way to assign the tasks to the workers. To
solve it, the problem can be represented as a matrix of agents and tasks with
their respective prices, and we can find the cheapest assignment by applying
the Hungarian algorithm [Y. Li et al. 2008], which solves the combinatorial
optimization in polynomial time (Table 5.4).

Approaching the problem in this manner, we allow for arbitrarily curved text
lines since the optimal assignment will be found given a suitable formulation
of a cost. One constraint is that text lines have to follow a common pattern, i.e.
intersecting or crossing lines cannot be processed; however, lines of multiple
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Segment-1 Segment-2 Segment-3 · · ·
Segment-1 ω(1, 1) ω(1, 2) ω(1, 3) · · ·
Segment-2 ω(2, 1) ω(2, 2) ω(2, 3) · · ·
Segment-3 ω(3, 1) ω(3, 2) ω(3, 3) · · ·
· · · · · · · · · · · · · · ·

Table 5.5: Now the tasks and agents are segments. The one-to-one assignment means
that a agent -segment is neighbor of the task -segment. ω is the cost function of the
assignation.
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Figure 5.18: Illustration of the computation of the line continuity term δ and the
distance γ. Two word segments (a,b) are illustrated by black lines that denote their
primary orientation and width in this direction. Their center, start, and end are denoted
by the subscripts c, s and e, respectively. The angles α and β describe the angle
between the respective orientations of the segments and a hypothetical continued line
between them. The shortest distance γ between two segments is illustrated as line
ae-bs.

orientations can. The second constraint pertains the direction vector of a word
segment, which has to follow the line.

As described in previous sections, we consider word segments as tasks and
agents alike, defining the assigning problem as finding exactly one neighbor
entity in a sequence (text line), i.e., for each entity, we find its neighbor in
reading order as depicted in Table 5.5.

The reading order is determined by the median orientation of all segments on
a page. Note that the actual reading order is irrelevant for the line concate-
nation, i.e., left-to-right and right-to-left are fungible. A segment’s optimal
neighbor can be itself, i.e. the end of a text line is reached, or it is noise.
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Cost function For the computation of the cost function ω, three values
are computed for each word segment: its main orientation o, and width and
height with respect to o. We define ω as a linear combination of four factors:

1. line continuity δ, which captures the requirement of a text line to be
smooth, i.e. no sudden changes of direction,

2. the shortest Euclidean distance γ between two segments, i.e. the short-
est distance between the two closest points of the respective segments,

3. a penalty term ε that penalizes entities smaller than the median height
of segments to ensure robustness to noise, and

4. a degree of freedom ζ to account for accuracy of the segments’ orien-
tation vectors, their position on the line, and fluctuation of a text line,
which is dataset-dependent.

The cost function ω is then computed as follows:

ω =
(δ ∗ γ + γ

ρ ) ∗ ε
ζ

(5.2)

with ρ being dataset-dependent and regulating the influence of distance γ with
respect to the line continuity term δ= min(α, β), where α is the angle formed
by the lines asac and acbc, and β being defined analogously, and ε is defined as

ε =

{
1, if hw > hm;

1 + abs(hw−hm)
(hm∗λ) , otherwise,

(5.3)

where hw and hm are the heights of the word segment and the median segment
height, respectively, and λ regulates the total influence of the penalty term.
Figure 5.18 illustrates the calculation of the line continuity term δ and the
distance γ.
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Post-processing Having joined the segments to lines, we use unsuper-
vised recursive k-means clustering as a post-processing step to reject invalid
text lines. The underlying assumption is that text lines are organized in blocks
of similar appearance. We use normalized features such as the length and
height of a text line’s bounding box, its ratio, the number of word segments,
and the overall orientation of the text line.

First, we use k = 1 and determine the best cluster center out of several at-
tempts by homogeneity of its cluster, which is defined as the smallest average
distance (mean(td)) of all text lines t to the cluster center. Should the clus-
ter be too inhomogeneous, i.e. median(td) > 0.85 ∧ Q3(td) > 1, we increase
the number of clusters (Q3 is the middle value between the median and the
highest value of the data set). Having selected the best cluster center, we
recursively apply following two steps nrec times: first, removing those text
lines where td > th, with th being a threshold that starts at 1.2 and is lowered
with each recursion by 0.1, and second, clustering the remaining lines with
k-means. Thus, we keep a set of homogeneous lines and reject outliers. De-
pending on the reliability of the input data (segments), the parameters of the
aggregation method need to be adapted. The degree of freedom ζ and ρ are
determined on a single page of the dataset.

Baseline: Connected Components Text Segments The Combinatorial
Optimization approach have been tested with the text segments extracted by
tracking the text reference lines (IPs). IPs allowed us to extract reliable text
segments, since they check their integrity by the joining/merging algorithm
and discard non-text components as well. And, what is more important, we
computed a proper orientation of the text segments by extracting the refer-
ence lines of each text segment.

At this point, a question comes to our mind: Do we need all this computation of
LEPs and IPs? May we do better or equal using a much simpler nonsupervised
technique?. For this purpose, we tried to extract directly text segments from
CCs. Each CC is considered one text segment, and calculating the text bound-
aries is straightforward: use the convex hull (or smarter concave-hull) of the
component; the problem appears when trying to calculate the orientation.

For computing the direction, we followed a similar idea from [Ouwayed et al.
2010]: Vertical and horizontal histograms are calculated for each text seg-
ment. The histograms are computed at different angle ranges: [−45◦, 45◦]. We
can see the output of the histograms as a 2D matrix (angle range × histogram
range). The optimal angle is computed applying the Wigner-Ville distribution
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function over the mentioned matrix. Usually, with the horizontal profile, the
orientation works well for most of the text segments, but we added the vertical
one for segments like “I” or “l”.

Figure 5.19 shows the histogram procedure for a text segment. The Wigner-
Ville gives one score for each of the possible angles, and then the maximum
value is the detected text orientation. It is worth to mention that the larger
the text segments, the more accurate the orientations are.

5.5.2 Two by two segments joiner

This section has been the result of the collaboration of Jérémie Bosom from
Université Paris-Sud in our research group. The work presented here was part
of his internship during the 5th year of his engineering courses.

In this section, we explore an alternative approach for the text segment ag-
gregation problem. We will try to join the detected segments by pairs. For
that, we propose two approaches: one using a heuristic or set of rules to join
the segments and the second that uses a ANN for this purpose.

Most of the text segments aggregation approaches rely on finding the right
neighbor of each component. They start building the text line aggregating
text segments from left to right. Local and global information are combined
in order to find the next neighbor by comparing the height, distances, and
orientation of the text segments respect the averages.

But now, the text segments extracted contain more useful information: size,
orientation, base/upper/center-line, etc. Our goal is to analyze if it is possi-
ble to use a two-by-two segment joiner according to our previously extracted
text segments. Joining pairs of text segments without global information is
a dangerous assumption. Therefore we will have to invest in post-processing
stages to fix possible errors during the joining. For a text segment the po-
tential neighbor candidates are evaluated. Then for a pair of text segments a
set of features from the two segments is extracted in order to decide if they
correspon to consecutive text segments of the same line.

The classifier, in principle, is very simple: it receives 2 segments (or features
regarding both segments), and the output predicts if the second segment is
the right neighbor of the first. This approach adds some challenges we have
to deal with:
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Figure 5.19: Top graphs show the histogram profile of the CCs for several angles. The
bottom shows the Wigner-Ville distribution function for the previous profile. Checking
the function we can see a maximum value at 10 degrees.
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Figure 5.20: The left sample corresponds to an image of the Saint Gall Database. The
right image shows the lines extracted for a sample in the distorted version. The green
lines illustrate the connected segments joined for computing the lines (Extracted from
[Pastor-Pellicer, Garz, et al. 2015]).

◦ Which features should be used by the classifier? Instead of using text
segment features, we need to use data about the interaction between
both: distances, orientation, position, size, etc.

◦ Check the candidates of each segment. We have to decide the criteria
for extracting pairs of potential neighboring segments.

◦ Create the text segment joiner ground truth. Once we know the candi-
dates and the features, we need supervised data for training the classi-
fier. We should provide positive and negative samples to the classifier.

Also, we have to control 2 assumptions:

◦ A text segment has at most one right neighbor.
◦ A text segment has at most one left neighbor.

In case we have more than one neighbor, the output of the ANN is taken as a
confidence value.

We propose first, a joiner that uses a set of rules based on the features ex-
tracted from the pairs of text segments. And second, we use a neural classifier
that computes if two segments must be joined.
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Figure 5.21: Candidates taken for the two-by-two Joiner. In green the segment to be
joined, the orange box shows the candidate searching area. Blue connections indicates
not right neighboring and the red one the correct neigbor.

Candidates function Before deciding which features are useful for the
segments joiner, it is important to define how to extract the segments candi-
dates to be merged. We need a reliable function, which given one neighbor,
it can remove potential candidates to be combined. Besides, we should avoid
irrelevant candidates to save useless calculations of features.

Our first solution to find candidates is to consider all the segments within all
the square/circle area around the candidate text segment. This solution is not
useful for three reasons:

◦ The function is reciprocal. So we will have duplicated candidatures.

◦ Some of the components in the area are irrelevant, and it is straightfor-
ward to discard them.

◦ Increasing the area to find more suitable candidates leads to add more
irrelevant candidates than relevant.

For the candidates searching function, we used a rectangle. The rectangle is
settled next to the current text segment, and the box size is proportional to the
segments. To determine if a segment is within the searching box, it must have
its middle point inside the rectangle. Figure 5.21 illustrates the searching
area, all components within the orange box are candidates to merge with the
left segments.
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Figure 5.22: Distance features computed for a set of segments.

Extracted features Once the two text segments are selected, it is impor-
tant to choose which features are relevant to decide whether both segments
must be merged. According to the text segments extracted on Section 5.4,
we could select the features from the pair to be joined according to distances
and orientation between both text segments; the MBA of the segments and
its direction. Regarding to to the distances between segments, the following
features are used (Figure 5.22):

◦ Base distance (dbase) The minimum distance betweem baseline and
meanline.

◦ Top distance (dtop) The minimum distance between the two meanlines.
◦ Center distance (dcenter) The minimum distance between the center

lines.
◦ Average Points distance (davgPoint) Distance between both center

points.

We add more features related to the sizes of the component and their MBAs.

◦ Area of the text segment The size of the bounding boxes of the seg-
ments are added as features.

◦ Area of the MBA (pMBA) Two more features (one per segment) are
included with the size of the MBA. This area corresponds to a trapeze.
(Figure 5.23).

◦ Projection of the MBA The first MBA is projected into the second as
seen in Figure 5.23. We force the meanline and baseline of each segment
to have the same orientation. That is to change the slope of the meanline
to the baseline.
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MBA projected Area

Figure 5.23: Main Body Area projection of one segment to the joining candidate. The
features is normalized by the total MBA of the candidate.

Heuristic Joiner If we check the segments forming a line, we could ob-
serve that most of the time the right segment is the next neighbor in the line.
Another assumption is to expect some homogeneity on the same page (or even
corpora).

For this purpose, our Heuristic classifier will use a Gaussian distribution func-
tion between the features among the closest text segments on the page. When
having two segments to classify we compute the Gaussian functions of each of
the features according to the average (µ) and its standard deviation (sigma)
from the whole page. The function is split in two sub-functions: If the bound-
ing box of the text segments overlap, we apply the joining function as:

P (join(s1, s2)) = G(ds1,s2avgPoint, µdavgPoint
, σdavgPoint

) (5.4)

If not we compute the score function with the rest of features:

P (join(s1, s2)) = φdcenter
G(ds1,s2center, µdcenter

, σdcenter
) (5.5)

+ φdbase
G(ds1,s2base , µdbase

, σdbase
)

+ φdtop G(ds1,s2top , µdtop , σdtop)

+ φpMBA G(pMBAs1,s2, µpMBA, σpMBA)

+ φdavgPoint
G(ds1,s2avgPoint, µdavgPoint

, σdavgPoint
)

The total score is taken by a linear combination of the different Gaussians
functions. Nevertheless, φdcenter

, φdbase
, φdtop , φProjMBA and φdavgPoint

can be
tuned for better results. In the typical case, they have the same weight ( 1

5 ).
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Figure 5.24: Sample of how the ground truth of the segment joiner is generated.
First, each segment is assigned to a line; then they are sorted by the x coordinate.
Finally, each segment is marked as right neighbor of the previous text segment.

Artificial Neural Network Joiner The second approach consists of re-
placing the heuristic classifier by a ML approach. Following this PhD Thesis
line, we opted for the use of ANNs.

The set up is very simple, the input will be the features described above, and
the output corresponds to a binary output where 0 means the two segments
are not joined, and 1 to join them. The model output is a logistic neuron, where
we have as output the estimation whether the two segments must be joined.

Generating the ground truth The first problem of this approach relies
on the generation of a suitable ground truth for training the supervised model.

The input of the classifier are text segments computed by joining IPs extracted
from the text. These segments are part of our approach, but they are not
present in ground truth of the lines. In other words, we do not have a ground
truth saying what a text segment is, neither their position on the text line and
its right neighbor.

Instead, first, we assign each text segment to one of the text lines. In the case
that a text segment overlaps two lines, we add it to the line whose overlapping
area is higher. Then we sort all the segments of a line by the x coordinate
(average point) to define the right neighboring as depicted in Figure 5.24.
Thus these pairs of text segments (one segment and its right neighbor) are
added to the ground truth as positive samples. Regarding the negative cases,
we use the rest of text segments according to the candidate’s function utilized
in the heuristic joiner. Each candidate segment which is not the right neighbor
is added to the ground truth as a negative sample.
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Post processing Finally, for both approaches, we could apply a basic post
processing for remove some false positives regarding:

◦ In some borders of the page there have been classified some IPs as text.
There are some small dirty text segments marked as text where are not
part of any line.

◦ Small components, like accents, which had not been merged.

For this purpose all the lines with a width lower than a certain threshold (usu-
ally 500 pixels) are skipped. We found some other issues:

◦ Tiny components are difficult to merge.

◦ Some lines are identified as two or more lines instead of one.

◦ There are a lot of false positives.

◦ Some text segments between lines, like accents, tend to stay alone or
add them to the wrong line.

Some specific treatment should be used to fix these issues:

◦ The first consists of identifying parts of the text that have been detached
from the lines. For this purpose, we rely back on the IP. We check
segments that contain descenders but not ascenders or meanline IPs.
If this is the case, we merge the component with the closest element
above it. In the same way, we join segments containing ascenders but
not descenders nor baseline points with the nearest element below it.

◦ Some lines have been split (or not merged) because they did not follow
the merging criteria. It is easy to check if very close lines correspond to
the same line:

– If the lines cross each other.
– If the distance between lines is smaller than the average distance

of all components of the page.

Summarising, first, merge small components to the closest line. Second, we
merge medium text segments with bigger lines. And finally, large components
corresponding to the same text line are merged.
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5.6 Text Line Extraction from MBA estimation

In this section we introduce an alternative approach for TLE. Instead of track-
ing the text reference lines, now we detect the Main Body Area (MBA) and the
lines are extracted from it. In this approach, CNNs, which have learned use-
ful features from the binarized-free document images, are used for extracting
text lines, by detecting the MBA. This approach works better when it is ap-
plied to text blocks (usually columns) that are extracted in a previous layout
analysis stage. Each text block is independently tackled and the CNN scans it
generating an MBA map. From that map, a segmentation algorithm is applied
in order to extract the lines. Finally, a final post-processing to enhance the
frontiers from the lines is applied.

The main contribution of this work is the practical use of CNNs directly on
images of historical documents and its robustness to noisy inputs and other
problems such as touching components. The proposed method estimates the
MBA of the text lines at page level. The underlying idea is to classify each pixel
from the raw image within the probability of being part of the MBA. The MBA
follows a continuous left to right path which provides a good estimation of the
position of the lines and their orientation, even if the page is skewed or the
typography presents slant. Also, the MBA does not cross along different lines,
which makes it robust against touching components where some traditional
methods fail.

Indeed, CNNs can extract this shape features giving high performance results
on the MBA classification as the shape of the letters within the MBA is regular
within different characters (i.e., letters “o”, “b”, “d”, “g”, “p”, “q” have a very
similar shape in the MBA, they all are like “o”), the MBA computation is very
suitable for working with ML techniques.

This approach is inspired by the work introduced in [Baechler, Liwicki, et al.
2013] since the lines are extracted after classifying pixels on the text core line
class. Nevertheless, the differences are substantial, Baechler et al. used two
classification levels: first, pixels are classified as decoration, background, text
block or periphery classes; and then, with a higher resolution input, the out-
come of this first stage is used for a more fine classification into decoration,
background, and core-text line. Following the same procedure, we detect the
text blocks in the first stage, and then we perform the MBA extraction only in
the zones marked as text blocks. The main novelty of our approach is the use
of CNNs over the raw input of the image instead of feature based models. Also,
our method works well using only 2 × 2 downsampled images. Moreover, the
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line segmentation from the text core line also differs from the original work,
since the output of the CNN presents some continuity that does not require
further components joining nor the post-processing used in Baechler et al.
work. Besides, our ground truth has been generated by means of bootstrap-
ping techniques and transferred knowledge combined with semi-supervised
methods (as detailed in Appendix E).

5.6.1 Text Block Extraction

As mentioned, the proposed method works in two classification stages. On
the first stage, every pixel of the image is classified into one of three classes:
text block, background or decorations/graphs. Following, a second CNN is
applied. Even though our approach could skip the first layout classification, it
provides several advantages:

◦ Without the first classification, the MBA classifier would have to deal
with less specific data, since it removes decorations and many not useful
data like background pixels. The model gets specialized into discrimi-
nate text parts from the body area and the rest of zones.

◦ In this way, the MBA classifier runs only in the text blocks areas, which
usually takes between 20% and 80% of the whole page. Thus, deeper
and more robust models are used in this second stage.

As for drawbacks, the Layout or text block ground truth is needed to extract
the text blocks, and it is required to perform a full page scan for this first
classification.

Figure 5.25 illustrates the whole text block pipeline from the original image
(Figure 5.25-a). After running the Layout CNN all over the page, the pixels are
labeled as text block if its CNN output value is greater than certain threshold
set to 0.5 (as shown in Figure 5.25-b). Then a text block map is generated
(Figure 5.25-c), and the text blocks are delimited by joining neighboring pixels
that are marked as text (8-connectivity). Usually, this procedure segments text
columns, but also, small and spurious text regions must be filtered according
to their size. Finally, a gap filling algorithm is performed on the text blocks to
have a closed polygon shape (Figure 5.25-d). The text line extraction is carried
out independently in each of these text blocks (see Figure 5.25-e).
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(a) (b) (c) (d) (e)

Figure 5.25: Text block pipeline. a) Original image. b) The softmax output after
applying the Layout CNN. c) Text block pixels after applying the threshold. d) Joined
text blocks with the gaps filled. e) Main Body Area map computed over the text blocks.

Layout CNNs MBA CNNs
Input window 37× 37 43× 43

Convolutions

10 (6× 6 + 1 + 1) kernels 10 (6× 6 + 1 + 1) kernels
2× 2 max pool (ReLU) 2× 2 max pool (ReLU)
20 (4× 4 + 1 + 1) kernels 20 (4× 4 + 1 + 1) kernels
2× 2 max pool (ReLU) 2× 2 max pool (ReLU)

MLP 128× 16 ReLU 128× 16 ReLU
Output 3 softmax 1 logistic

Table 5.6: Convolutional Neural Networks Configuration for MBA and Text Block.

5.6.2 Main Body Area pixel classification

The key point of the proposed approach is to classify the pixels of the image
belonging to the MBA. Performing the MBA classification follows a similar
procedure than the one in the layout classification level. The main difference
is that now we have fewer pixels to classify, and the output of classifier has
only one logistic neuron as output. Table 5.6 describes the CNN configurations
for both stages.
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Figure 5.26: The watershed transform tackles the MBA map as a set of valleys and
mountains. Then it tries to find the local minima height level flooding the map; the
high probability “mountains” are the final segmented lines.

5.6.3 Text Line Segmentation by Watershed Transformation

After estimating the MBA map for the whole page, we can observe in the
samples (Figure 5.27-a) that the text lines have been mainly detected. Hence
it would be easy to extract the lines from it.

We tackled this problem as an image object segmentation, where the objects
to segment are the lines in the MBA. Following this reasoning, a region-based
segmentation algorithm using the watershed transform is applied [L. Vincent
et al. 1991]. Roughly, the watershed treats the MBA probability map as a
set of valleys and mountains according to the output values of the CNNs. It
tries to find a local minima level flooding these valleys and preserving the
mountains which are zones of high MBA probability, which are the final objects
segmented lines (Figure 5.26). An alternative naïve approach is to use CCs,
even though this idea requires thresholding techniques and it does not explode
the soft information propagated from the logistic neurons.

Figure 5.27 illustrate the procedure followed for one text block:

136



5.6 Text Line Extraction from MBA estimation

a) b) c) d)

(a) (b) (c) (d)

Figure 5.27: Text line segmentation process for one of the text blocks from Fig-
ure 5.25. a) MBA map computed by the CNN. Brighter values represent the pixels
belonging to the MBA. b) A Sobel filter is applied for computing the frontiers of the
lines. c) Markers are computed classifying pixels from (a) in three classes: values less
than 0.2 (gray), between 0.2 and 0.7 (black pixels) and above (white pixels). d) The re-
gions centered on the MBA of the lines. The frontiers of the lines after post processing
the MBA regions and the lines extracted from two text blocks (columns in this case)
are shown in the last sample.
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Figure 5.28: The new frontiers of the lines are enhanced by detecting and adding the
correspondingLEP which are located outside of the MBA. Red areas delimit the shapes
found by the watershed segmentation algorithm. In blue, the new limits when addind
the new points to the original line.

1. First, a Sobel filter is applied (Figure 5.27-b) on the MBA map (Fig-
ure 5.27-a) in order to compute an elevation profile.

2. Since the values are probabilities computed by the CNN, the MBA is sep-
arated into three classes (markers): values less than 0.2; values between
0.2 and 0.7; and values above to 0.7 (Figure 5.27-c). The watershed pro-
cedure needs these markers.

3. The markers are used by the elevation map to apply the final watershed
transform. The watershed transform detects several regions which cor-
respond to a line (Figure 5.27-d).

5.6.4 Post-processing

The segmentation algorithm extracts tight polygons surrounding the MBA of
each of the detected text lines. Even though the algorithm can identify most of
the text lines, we need to provide more accurate frontiers, taking into account
ascender and descenders. For this purpose, a simple procedure is applied: on
the text blocks, the LEPs are extracted and added to the line polygons. Some
of these LEP delimit the frontiers of the text lines, the points which are not
inside of any polygon area are added to the line frontier if the following con-
ditions are met: the point must be local maxima and the distance to the next
polygon (which is below to it) should be lower than a certain threshold (usu-
ally 10 pixels). The same procedure is applied to the minimum extrema points
which are joined (or not) to their top closest lines. Figure 5.28 illustrates this
procedure.
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5.7 Experimental setup and results

Finally, we have tested the presented approaches with the IAM Historical Doc-
ument Database described in Appendix C.2. The evaluation metrics used in
here are detailed in Appendix D.1.

With the following experimentation we aim at the following objectives:

1. To verify and evaluate the proposed methods with the aimed corpora.
2. To compare the supervised approaches with equivalent heuristics.
3. To compare the performance of our models with other techniques in the

literature.

We grouped the methodologies developed in three main categories:

◦ Combination and Optimization Problem (COP) (Section 5.5.1) This
is the approach that computes text segments and the combine them to
create the final lines by optimizing a joining function.

– Proposed : the proposed approach that uses IPs for extracting the
segments.

– CCs-based : using CC as text segments as a baseline comparison.

◦ Two by two segments (2-by-2) (Section 5.5.2) Here the segments are
joined using neighbor classifier.

– ANN: It uses an MLP classifier instead.
– Heuristic: Uses a rule based approach (baseline).

◦ MBA estimation (MBA/CNN) (Section 5.6) extracts the MBA of the
lines and segment them by the watersheed transformation.3

– Proposed: Uses a CNN for extracting the MBA.
– RLSA-based: applies the smearing procedure on the pixels of the

text blocks, and then the same text line segmentation in our ap-
proach is computed over it. Note that the RLSA approach works on
the binarized ground truth of the image which has not been used in
our methods.

3The MBA approach uses a previous layout extraction approach that computes the Text Blocks.
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Tables 5.7 and 5.8 summarize the results of the proposed approaches (on the
test sets). Note that it has not been possible to try all the approaches with all
the available corpora. Nevertheless, it is feasible to observe the performance
of each approach versus their corresponding baseline alternative.

The COP approach results have been shown in another table (Table 5.8) since
they have been evaluated according the TLL-DR/PHR based metric.

Match Score metrics Pixel Accuracy
Dataset DR DA FM Prec. Rec. FM

Parzival
MBA/CNN

Proposed 98.65 98.86 98.75 98.61 98.90 98.79
RLSA-based 50.00 70.22 58.45 72.62 68.41 70.45

2-by-2
ANN 80.39 79.27 79.83 91.82 90.26 91.03
Heuristic 91.91 91.03 91.44 95.98 95.04 98.79

Saintgall

MBA/CNN
Proposed 96.39 96.52 96.46 99.06 98.49 98.76
RLSA-based 89.59 92.55 91.05 94.40 95.65 95.01

2-by-2
ANN 93.75 76.19 84.07 96.9 95.69 96.01
Heuristic 94.84 81.24 87.33 96.36 96.16 96.18

Table 5.7: The table compiles the performance of the proposed methods on the dif-
ferent test sets. The parameters selected for better understanding of the performance
have been the Match Score metrics and the Pixel Precision and Recall.

Dataset COP models TL-PA TLA

Saintgall
Proposed 98.3 97.2
CCs-based 97.6 89.5
Geometric IPs 98.0 97.2

DL Saintgall
Proposed 98.0 96.7
CCs-based 96.9 88.3
Geometric IPs 97.8 95.9
[Garz, Fischer, Bunke, et al. 2013] 97.44 93.99

Table 5.8: PA and TLA for the models used in the Combination Optimization Problem
approaches.

Furthermore, Table 5.9 comprises the performance of our approaches com-
pared with other reported works. However, getting a fair and transparent
comparison has been an impossible quest since different authors used differ-
ent sets, ground truths, different metrics, even different implementations of
the assessment toolkit could lead to differences. So the results shown here
are merely indicative.
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Corpora Method PHR tll-dr

Parzival
[Baechler, Liwicki, et al. 2013] 96.3 96.4

[Cohen et al. 2014] 98.31 99.22

MBA/CNN 98.79 98.76

Saint Gall

[Baechler, Liwicki, et al. 2013] 96.0 96.4

[Diem et al. 2013] 98.94 99.03

[Rabaev et al. 2013] - 97.84

[Garz, Fischer, Sablatnig, et al. 2012] 98.65 97.97

[Cohen et al. 2014] 99.08 99.22

MBA/CNN 98.49 96.4

Table 5.9: Comparison with other works. Pixel Hit Rate and Text Line Accuracy are
the selected metrics for comparison.

5.8 Layout Analysis

The content of the following section was developed during my internship at
the University of Kaiserslautern by the guidance and advice of Marcus Liwiki
and Shan Afzal.

The proposed method in Section 5.6 labels the image pixels as text, decora-
tion/graphics and background in the first step. Somewhat it corresponds to a
Layout Analysis stage.

We have tested the potential of our one-to-one labeling method (Section 3.7)
in the context of layout analysis by means of labeling parts of the document
images, i.e. text, non text, decorations, graphs, etc. The convolutional config-
uration used to this task is described in Table 5.6, and like other high/medium
resolution images a trade-off between optimal convolution topology and effi-
ciency plus performance is required. As seen, these configurations gave us
good outcome for further text line segmentation.

The output of the classifier has 3 softmax output neurons, each of them corre-
sponds to the class: background, decoration or text block. The final evaluation
is performed by comparing the labeled pixels between the input and ground
truth. Pixels that are not part of the page have been merged into the back-
ground class. If the image has enough resolution, we reduce the image by a
factor of 2×2, although the final evaluation is always performed on the original
scale.

For this purpose, we the Saint Gall and Parzival datasets; and, the UW-III
dataset which consists on current technical images. The following tables com-
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pile the results on the proposed corpora. MDLSTM4 have been used following
the same approach showed in Chapter 4.5, then we combined the two ap-
proaches like in the binarization task

Class accuracy (All pixels)
Text as Text Graph as graph Bg as bg Accuracy

Saint Gall CNN 98.37 76.89 98.46 91.36

Parzival

CNN 94.23 67.70 99.63 87.19

MDLSTM 96.29 48.75 98.11 81.04

Avg 92.68 32.04 99.77 74.83

Best 95.37 56 99.44 83.6

UW III

CNN 97.86 79.66 97.86 91.79

MDLSTM 97.34 73.82 97.34 89.50

Avg 98.86 76.52 98.86 91.41

Best 97.996 77.61 97.99 91.2

Class accuracy (Only foreground pixels)
Text as Text Graph as graph Bg as bg Accuracy

Saint Gall CNN 99.71 80.9 23.04 67.87

PARZIVAL

CNN 99.89 82.49 96.7 93.03

MDLSTM 99.72 56.534 93.44 83.23

Avg 99.86 45.42 97.43 89.68

Best 99.96 72.42 96.64 66.13

UW III

CNN 98.60 94.28 - 96.44

MDLSTM 95.72 93.58 - 94.65

Avg 99.43 91.43 - 95.43

Best 98.20 94.70 - 96.45

Table 5.10: Overall Accuracies for the pixel labeling layout evaluation.

Table 5.10 measures the accuracy for each class, the overall efficiency is com-
puted as their averaging. But, the results must be reviewed carefully, for
example, the Background accuracies are usually high since is that the major
part of the pixels that are white (or not ink) belong to the background. But
also there are other white pixels that are part of the graphs, as seen in Fig-
ure 5.29. A chart, for example, where the CNN input receptive field does not
get enough contextual information, will be marked as background. Another
interesting evaluation is only to take into account the foreground pixels as
shown in the table below. Therefore e have shown the results only for the
foreground pixels in the second table.

4Shan Afzal must be credit for the training of the recurrent models. We used them for compar-
ison with the convolutional models and the ensembles.
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a b c d

Figure 5.29: Some examples of issues that can be found in our layout analysis by
applying local methods (CNN). a) Text within graphics. b) Graphic parts classified as
text. c) Charts, where the inner pixels are classified as background. d) Capital and
headers.

The Background recall is mis-leading, since a background pixel cannot be part
of the foreground data, in this case, we refer to stains and dirty parts of the
document that are nor text neither decorations. The fraction of this issue is
almost negligible which explain large variations in this value (for example for
Saint Gall database). The UW-III database, instead, has been binarized, so we
skip these values.

We should remark some issues found with the UW-III dataset (illustrated in
Figure 5.29):

◦ Text within graphics: it is not clear if they should be labeled as graphic
or as atext. Since our approach uses local inforamation, it tends to mark
them as text.

◦ False positives when graphics have shapes similar to text.

◦ Lack of context, specifically in figures that contain big white areas.

◦ NonText Scale invariant. The problem in titles and small captions due to
the lack of information on the training dataset.

Note that we could not compare our performance with other approaches since
it has been difficult to use the same evaluation scenario. We address the
reader to check the works of [Bukhari, Al Azawi, et al. 2010; Chen et al. 2015]
for similar evaluation setup. In any case, this results are very interesting and
show how the methods presented in this chapter could be applied to other
related tasks.
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5.9 Discussion

The tables presented in the previous section show a large range of measures
and methods. In this section, we will discuss the system performances result
and draw several conclusions.

Combination and Optimization Problem As shown in Table 5.7, the
COP approaches have been tested on the distorted and nondistorted Saint Gall
datasets. The majority of the errors at line level are poorly assigned lines that
not pass the matching threshold (these represent the 60−80% of the mistakes).
Missed lines take around 10− 25% of the errors. These lines are primarily last
lines of a paragraph which are significantly shorter than the rest of the lines.
However, these errors barely affect the pixel hit rate since only a few pixels are
missing. For further processing, lost lines are the most severe errors, while
insertions can quickly be discarded in following recognition steps. Some text
segments are not correctly joined since they are too small and they are not
similar enough to the rest of the text line, so they are discarded while joining
the lines. Note that no prior filtering on the connected components approach
has been applied, leading to noisy data; however, competitive results can still
be achieved.

This approach compresses different techniques and it has a long sequential
pipeline: contours extraction, LEPs detection, IPs classification by CNNs, seg-
ment computation and finally, the text line Aggregation. The algorithm takes
around 1 minute for processing one page. A normal page contains around
10000 Interest Points. It takes less than 10 seconds to classify them using the
April-ANN toolkit with the Intel MKL library on an Intel i5 (4th generation)
processor at 3.2 GHz with 8GB of RAM. It is worth to mention that the con-
tours clustering process takes half of the computation time.

Two by two segment joiner As expected the two-by-two approaches
showed poor performance, even with ML methods which use local informa-
tion. We tried to propagate the local information given by the classifier to a
global post-processing steps, but it has been not enough to reach the desired
result.
Indeed, the Heuristic Joiner, in overall, provided better performance than the
ANN classifier. However, the difference with the Saint Gall is minuscule at the
pixel level.
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Text Line Extraction by MBA Even if the text block extraction stage is
not perfect, the MBA detection could recover some mistakes if the recall of
the text block extraction is high. The text block step helps mainly to speed
up the MBA classification and also for segmenting columns, which is the case
of Parzival dataset. The recall of the text blocks at the pixel level is around
98.74% in Saint Gall and 94.24% in the Parzival corpora.

First of all, a specialized classifier for the MBA is required since the RLSA
cannot estimate accurately the MBA. The results draw a high Pixel Hit Rate
in both corpora since the majority of pixels of the lines are well classified.
However, on the Saint Gall dataset, the TLL-DR and MS-FM are a bit worse
(the higher the better). We have noticed that in the Parzival dataset, the text
is more comprised and it is easy to find the MBA, while in Saint Gall some
regions are not fully covered by MBA classification. Nevertheless, the results
on the historical datasets are very competitive, outperforming some of the
state-of-the-art approaches, in particular on the Parzival dataset, as shown in
Table 5.9.

5.10 Summary

TLE is one of this PhD Thesis main contributions. We have explored different
bottom-up approaches, but always trying to extract useful text information by
ML techniques. This information has been helpful for later segmentation/ag-
gregation stages that not always relied on machine learning approaches, but
that took advantage of the received information.

Examples of this, are, for instance, the joint work for the Combination and
Optimization Problem with IP which proposed a flexible bottom-up text line
extraction method for handwritten historical documents which was presented
in [Pastor-Pellicer, Garz, et al. 2015]. Machine-learned interest points have
been classified and grouped into text lines using combinatorial optimization;
finally, a clustering step rejects invalid line candidates. Employing inter-
est points and combinatorial optimization facilitates processing of text lines,
blocks, and characters with arbitrary orientations and curvature. The advan-
tage of learned IP over those extracted by geometrical heuristics, such as
Difference-of-Gaussian, lies in the fact that knowledge about the nature of the
interest points, for example, whether it is part of the text, noise, background
or embellishment, is inherent. The IP have been classified, to determine their
position on the segment (upper/lower contour or center of the text); thus,
they define the limits of the segments, and provide information about where
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to split touching components and touching lines. Approaching the problem
of aggregating word segments to text lines using noise-robust combinatorial
optimization, the method is capable of finding the globally optimal assignment
of adjacent segments even for arbitrarily curved text lines. The key is the
formulation of a suitable cost function; while favoring close-by neighbors, the
cost function defined requires a text line to be smooth regarding orientation
changes, i.e., sudden changes in direction are avoided and includes a penalty
term for small segments, which are likely to be noise.

On the other hand, we proposed a MBA-based approach which avoids the ex-
traction of IP since it directly classifies all the pixels of the image, published
in [Pastor-Pellicer, Afzal, et al. 2016]. The pixel classification is done at layout
level and then for the text line extraction. This method aims at historical docu-
ments as well since as we have seen in the previous model, the CNNs can deal
with the typical historical artifacts which appear in those old documents and
then, detect the line paths. The computation of the MBA makes the method ro-
bust against touching component Also, the classification is very robust due to
it is performed at pixel level, and misclassification of one of the several pixels
is smoothed by the rest of pixels, providing a high recall on the text line set.
Mis-classifying one IP could have a bigger impact when determining the limits
of the text segments. We have also empirically shown that the pre-processing
Layout classification helps when the document presents decorations, annota-
tions, and stains because they are ignored in this first stage.
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Text Line Normalization
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Text Line Normalization (TLN) refers to the pre-process applied to each line
before feeding them into the recognition engine. The purpose of TLN is
twofold: to remove the variability associated with writers and writing de-
vices (while preserving the relevant features for classification) and also to
provide suitable inputs for the recognition engine. Most recognition engines
transcribe the input lines once the normalized text line image has been trans-
formed into a sequence of feature vectors. TLN aims to make the system
invariant to the size of the characters, and to reduce the empty background
areas caused by the ascenders and descenders of some letters. Figure 6.1
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Original
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Figure 6.1: DIA pipeline. In this chapter we focus on the size normalization stage.

Figure 6.2: Example of text line image with the different zones (zone of ascenders,
zone of descenders, and MBA) and the reference lines delimiting them (mean line and
baseline, and the lines of ascenders and descenders) of the cursive script.

shows the general text line recognition pipeline. It shows the steps followed
by our HWR engine, some of which could be skipped (depending on the cor-
pora). TLN is on of the final pre-processing steps applied before the final
recognition.

In previous works performed by the research group, a HWR system, based on
HMM/ANN optical models was developed. Nevertheless, part of its success
relied on a brilliant text line pre-processing. Indeed, the pre-processed lines
have been recognized by other recognition engines, generally, improving their
results [F. Zamora-Martínez, Frinken, et al. 2014]. The TLN methods followed
by this system were based on detecting the text reference lines and then scale
the parts of the text to a fixed size. A full explanation of the text reference
lines is shown in the previous Chapter 5.2. These methods relied on the clas-
sification of LEPs into IPs as explained in Section 5.3. After classifying LEPs in
one of the text reference lines class, it is straightforward to compute the final
reference line by joining the points of the same class. An example is shown in
Figure 6.2.

Though the normalization step by detection of reference lines by IP was suc-
cessful, our intuition was that this stage could enhance the final transcription

148



6.1 Skew, slant and slope correction

outcome. The premise is that the classification of IP had some drawbacks that
could make the normalization stage fail:

1. If an IP is misclassified, it could change the direction of the reference
line for a large segment, and thus distort the content of the line.

2. If the line is short, or the goal is to normalize isolated short words. Then,
there are not enough points of one class, and the text reference lines
prediction become not possible.

We have to be careful with this issues the line can become unreadable. The pri-
mary goal of text reference lines is to reduce the variation of the text amongst
lines, not to destroy them. Therefore, our goal in this chapter is to obtain a
more robust method. Our way to overcome the mentioned issues consist on
classifying all the pixels of the text line instead of specific IPs. The computa-
tion is now more exhaustive than previously, and therefore it requires efficient
techniques.

6.1 Skew, slant and slope correction

In off-line HWR, the text line pre-processing, relies typically on slope and slant
correction, and normalization of the size of the characters. Previous page level
pre-processing steps should have been applied as well, like cleaning and skew
detection (or TLE).

Skew Detection The skew detection and correction relies on the detection
of the skewed angle [Hull 1998]. Usually, the skew is corrected at page level
since all the page presents a similar skew, another approach is to apply a
different skew correction to various text blocks.
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Slope Correction With the slope correction, the handwritten word is ro-
tated such that the lower baseline is aligned to the horizontal axis of the image.
Note that if the line is skewed, we could use the slope correction to correct
the skew as well.

Deslanting The slant is the clockwise angle between the vertical direction
and the direction of the vertical text strokes. Slant correction transforms the
word to an upright position. Ideally, the removal of slope and slant results in a
word image independent on such factors. In this chapter, we rely on the fact
that slope correction, slant removal, and text size normalization stages can be
easily performed once the reference lines have been correctly tracked.

6.2 Text Line Height Normalization

Most of the HWR systems comprise the detection of the different zones of the
cursive script: the Main Body Area (MBA) (between the mean line and base-
line), the zone of the ascenders, and the area of the descenders. Besides, it
allows to reduce the text line variance, and by detecting the baseline of the
text, it is possible to correct the word slope. Not surprisingly, TLN approaches
that are not limited to obtaining a rough estimate of the text baseline system-
atically improve recognition results. After delimiting the text zones, each of
them is scaled to a fixed height by using an image interpolation algorithm.
Each zone is assigned a portion of the total height. The MBA should have
a larger extension than the other ones since it comprises most of the rele-
vant word information. Regarding ascenders and descenders, one extreme
approach is to code only with one pixel each of these zone, In this case, the
ascenders and descenders properties of a column are binary features which
indicate whether ascender/descender is present. Those features can discrim-
inate e.g. between “b” and “a” or “o” and “q”. Nevertheless, it could have
problems to distinguish between a “q” and “g”. Therefore, we will add a small
amount of pixel for this zones. In the experiments carried out, ascender zone is
reduced to 20% of the final image height and the descender region is reduced
to 10%, producing a fixed height image suitable for the feature extraction step.
The image height has been set to 42 (8-30-4) pixels as in [Espana-Boquera et al.
2011].
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(a)

(b)

(c)

(d)

Figure 6.3: Example of a IAM text line image and height normalization. From top to
bottom: (a) original image, (b) image with reference lines computed with the proposed
technique, (c) image after text size normalization, and (d) visualization of the features
extracted.

6.2.1 Column resizing model

There are several possibilities for the image resizing:

Independent Column model Since only height normalization is per-
formed in our approaches, the re-sizing is applied treating each column in-
dependently. Each column is seen as 1D vector which is split into the 3 areas
and is resized independently. This approach is the one applied in the meth-
ods presented in this Chapter. Note that in this case, the size normalization
process does not preserve the aspect ratio of the images.

Fixed size In this case, the reference lines are scaled to a certain height
for all the line image. These heights are computed as the average of each text
reference line. This method performs well if the MBA is stable along the line,
but it is not appropriated in the case of word size variations within the same
line. As an advantage, it avoids significant change between columns.

Keeping Aspect Ratio Each column is computed independently from the
rest, but the image as a whole is scaled preserving its aspect ratio. For each
text column, we compute the aspect ratio as |sl−su||dl−du| , where sl and su are the
lower and upper reference lines from the original images (source), and du
and dl are the upper and lower reference line values for the normalized line
(note that these values are constant throughout the line). The lines are then
translated to the center of the line and scaled preserving the aspect ration.
Note that some images may lose some parts of ascenders and descenders,
although it is very unlikely to lose parts of the MBA.
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A few remarks about the image scaling followed. As mentioned, the scaling is
performed in one dimension (i.e. column by column), so we could use different
interpolating methods. We used a simple bilinear interpolation. Though this
may not be the best scaling method available, we obtained clear and smoothed
normalized images prior the recognition.

6.3 HMM column model

Our first attempt to improve the IP-based normalization relies on the use of
Hidden Markov Models hybridized with ANNs (HMM/ANN) which are applied
column-wise in order to segment each column of the handwritten line into 3

zones. Our primary goal is to find a way to normalize handwritten text lines
based on a supervised statistical model which takes into account all pixels
instead of just local extrema. As we stated, the IP model degenerates as soon
as points are misclassified. As the original IP-based TLN methods, this model
also tracks the text reference lines, but these are obtained in a different way.
Instead of joining IPs to generate the reference lines, the pixels are classified
into the different zones. Thus, the reference lines are the frontiers between
zones. In short, we calculate the text areas, and then we extract the reference
lines as the boundaries between them.

6.3.1 Statistical framework

The zone detection problem can be formulated as a joint pixel classification
problem into three classes {A,B,D} for the zones of Ascenders, Main Body
Area (MBA), and Descenders, respectively. This classification shows some
restrictions: if we focus on a given column, the pixels of the same zone are
contiguous, and the classes follow a vertical order (from top to bottom: A, B
and D, as illustrated in Figure 4.5).

The zone estimation, posed in this way, can be readily formulated as a statisti-
cal pattern recognition problem. Especially, if this process is applied column-
wise, the problem is a joint classification of sequences, which can be tackled
using HMMs or CRF, since both provide the capability of combining syntactic
restrictions with the estimation of likelihoods of each pixel given some fea-
tures.

Formally, given an image of width w and height h, each one of the w image
columns can be described as a sequence of pixels X = (x1 . . . xh) and, under
the statistical approach to pattern recognition [L. Rabiner et al. 1993], the
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goal is to find the likeliest sequence of zones Z? = (z1 . . . zh) that maximizes
the a-posteriori probability:

Z? = arg max
Z∈{A,B,D}h

P (Z|X) . (6.1)

The application of the Bayes rule leads to a decomposition of P (Z|X) into the
model P (X|Z) and the statistical model that describes the apriori probability
of zones P (Z). The problem can then be reformulated as:

Z? = arg max
Z∈{A,B,D}h

P (X|Z)P (Z) . (6.2)

A summarised explanation of the HMM/ANN can be found in Appendix B. The
ANN estimates the posteriors P (z|x), being x a set of features associated with
the pixel to be classified. Therefore we need to convert to emission probabili-
ties P (x|z) by applying the Bayes rule:

P (x|z) =
P (z|x)P (x)

P (z)
. (6.3)

The class priors P (z) are estimated in the relative frequencies of each class
from the training data. The HMM transition probabilities are estimated from
the same data by Viterbi alignment. Note that, in this case, it is not necessary
to perform an expectation maximization procedure: the re-segmentation step
is not required since the artificial ground truth is labeled at the pixel level and
we are dealing with a joint classification at this level. These scaled likelihoods
can be used as emission probabilities (P (x|z)) since the scaling factor P (x) is
a constant for all classes.

6.3.2 Column HMM/ANN Modeling

A very simple left-to-right with loops HMM topology, as depicted in Figure 6.4,
is sufficient to model the a priori probability of zones given by the constraints
on the possible sequence of zone labels. Each one of the three emitting states
corresponds to one of the three zones. The fact that some lines do not have
ascenders or descenders is modeled by allowing their respective states to be
skipped.
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initial state

final state

descenders zone
state

main body zone
state

ascenders zone
state

Figure 6.4: Scheme of the used HMM topology: one state for each zone {A,B,D} and
skips for ascenders and descenders.

The state emissions are estimated with an ANN that receives a centered win-
dow around the pixel to be classified in one of the 3 zones. To this end, the
softmax activation function is applied to the MLP output layer. An alternative
approach consists of determining whether the pixel belongs to the MBA or
not, without discriminating between ascender and descender zones. In this
case, the emissions of the states A and D are tied, and a single logistic output
neuron is sufficient. For each column, we will obtain two points that delimit
the transitions of the HMM (ascenders-MBA-descenders).

6.3.3 Adding the rest of Text Reference Lines

The HMM/ANN models that are described above are applied to each column of
the image to segment it into 3 parts. White-space columns are skipped during
training and pre-processing.

Note that the HMM/ANN only detects the MBA and therefore the upper and
lower baselines, but not the ascenders and descenders limits. For this pur-
pose, we use an approach similar to the IP-based method, but only LEPs that
are outside of the MBA are taken. Then, the local maxima of the upper con-
tour are used for ascenders and the local minima of the lower contour for
descenders.

In addition some restrictions are applied:

◦ LEPs must be more than n pixels off the MBA. (n has empirically been
set to 5 pixels)
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◦ Only one LEP of each class can appear in the same column. In that case,
the furthest point from the MBA is taken.

The final reference lines are determined by joining ascenders and descenders
respectively using linear interpolation as can be seen in Figure 6.3.

Finally, once the reference lines have been obtained, normalization is per-
formed for each column of the image by linearly scaling the 3 zones to a fixed
height.

6.4 A combined Convolutional Neural Network and
Dynamic Programming approach

In the results section (6.6) we will see that our first approach did not outper-
form the original normalization. Although it was able to solve some of the
problems posed by the IP method, i.e. reducing the impact of misclassified
points. A flaw was the assumption that the segmentation of pixel columns was
independent, even though they share the same HMM/ANN model and part of
the receptive field that is received by ANN. Smoothing was applied to the lines
to avoid significant changes, but this was not sufficient to provide enough cor-
relation between adjacent columns. In some cases, the reference points had
significant changes between neighboring columns leading to undesired arti-
facts.

The following solution follows a similar procedure, we compute the reference
line using DP on top of the ANN estimations, avoiding the use of HMMs. The
DP algorithm used is based on Seam Carving [Avidan et al. 2007] and it seeks
the reference line continuity constraints on adjacent columns in an explicit
way. For this purpose, we applied a CNN that is trained to classify pixels as
belonging to MBA. Meanline and baseline are obtained by searching paths
of maximal energy applied over an energy map which is computed from a
pixel-wise classification by the CNN. The received reference lines are used to
normalize the text line images in the same way as the previous method and
the original normalization. Figure 6.5 illustrates the workflow that is followed
to normalize one line.

On top of the MBA estimation, we compute its vertical and horizontal gradi-
ents. Then DP pathfinding calculates the path with the highest score subject
to some continuity constraints.
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edge enhanced map
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Figure 6.5: Text line normalization workflow by DP.
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6.4.1 Pixel probability map

The purpose of this first step is to estimate, for each pixel of the text line im-
age, the likelihood of belonging to the MBA (Figure 6.5-c). Here, we apply the
one-to-one pixel labeling explained in Chapter 3.7. Indeed, the classification
task is the same as the one presented in chapter 5.6 but at line level instead
of on the whole page. CNNs can compute features from a window by applying
convolutional kernels and sub-sampling layers. Different configurations have
been tested considering the possibility of labeling either one pixel or one col-
umn at a time. The best figures of merit correspond to the second approach
which is illustrated in Figure 6.6.

In that case, the input of the net is a full column and its surrounding context.
This column-wise labeling requires text line images to be scaled to a fixed
height (Figure 6.5-b). This may seem paradoxical since one of the purposes of
height text normalization is to provide a fixed height for all the images. In this
case, we need a fixed height to detect the MBA to normalize the image to a
fixed height, although in the first resizing the images are scaled keeping their
aspect ratio.

For this first scaling1, the images are scaled to a height that is big enough to
keep the properties of the image. This height has been obtained by analyzing
the size of each area on the training set, the averages for ascenders, MBA,
and descenders are, respectively: 48, 30 and 44. Hence the image are scaled
to 122 pixels, Then we reduced the whole images by a factor of 2 before apply-
ing the column CNN. Therefore, the associated sizes of these areas are 24, 15

and 22. To this end, a rough estimate of the reference lines is obtained using
the horizontal projection histogram. The generated text reference lines corre-
spond to the first line exceeding 50% of the maximum value from the bottom
and top, respectively. The images, then, are scaled vertically, translated and
finally cropped. Some scaled images may loose some parts of ascenders and
descenders, although it is very unlikely to loose parts of the MBA.

1Note that this is the fixed size that we use to apply the column-wise MBA estimation model.
Then, after using the proposed normalization approach, the line will be reduced to 42 pixels. The
first scaling keeps the aspect ratio of the whole image, while in the second stage each column has
a different aspect ratio for each of the areas.
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Figure 6.6: Process to obtain the pixel probability maps from the scaled images by
using a CNN. The input is a window centered in one column, while the output is the
probability of all the pixels of this column to belong to the MBA.

6.4.2 MBA edge detection

After estimating the probability map by means of CNNs, the next step for com-
puting the reference lines is to highlight the edges enclosing the MBA. This
leads us to an energy map as illustrated in Figure 6.5-d. A discrete differenti-
ation operator is used to this end, by using the following filters which estimate
the vertical gradients for the upper and lower contours, respectively:

upper =

 2 2 2

−1 −1 −1

−1 −1 −1

, lower =

 −1 −1 −1

−1 −1 −1

2 2 2

 (6.4)

Note that this filters are similar to Sobel but they have been modified to detect
upper and lower edges separately.

6.4.3 Reference lines extraction by Dynamic Programming

We convolve the previous filters separately, generating 2 “energy maps” re-
garding to the text meanline and baseline. Both should be continuous left-to-
right paths. The path of maximum energy subject to this constraint can be
computed using DP as in Seam Carving algorithms. In these algorithms, the
continuity constraint can be modeled by limiting the search to paths with just
one row per column and restricting the distance between consecutive rows.
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6.5 Experimental Setup

In this work, only adjacent rows are taken into account to compute the score
f for each pixel position (x, y) from the corresponding energy map e. The
recursive equation for the general case is formulated as follows:

f(x, y) = e(x, y) + min


f(x− 1, y − 1)

f(x− 1, y)

f(x− 1, y + 1)

(6.5)

The remaining text reference lines (ascenders and descenders) are added fol-
lowing the procedure described in Section 6.2.1.

6.5 Experimental Setup

Both of classifiers presented here (MLP in the HMM and CNN in the DP algo-
rithm) estimate the MBA of the text line. Therefore, the same (soft) ground
truth is used for training the networks of both approaches (Appendix E.2),
which are obtained from the LEP classification technique used in [Espana-
Boquera et al. 2011]. Hence, it is expected some mistakes that are inherited
from it. Nevertheless, we have observed that the proposed MBA estimation
can recover some errors generated by the LEP classification.

6.5.1 HMM/ANN column model setup

For training the MLP we sampled the several hyper-parameters by using the
Random Search Hyper-parameter Optimization technique discussed in Chap-
ter 3.6. The explored parameters include:

◦ the learning rate and the momentum term are taken from a log-uniform
distribution between 0.001 and 0.5,

◦ the loss function can be either chosen from cross-entropy and MSE,
◦ the weight decay is chosen from {10−5, 10−6, 10−7},
◦ the size of the first hidden layer is chosen from {64, 126, 256, 512} and the

second hidden layer from {16, 32, 64, 128}, with the restriction that the
first must be greater than the second,

◦ the minibatch is sampled from {16, 32, 64, 128},
◦ the window size to model the input pixel window: the width and the

heights are chosen independently to be 2×n+ 1 pixels, for
n ∈ {10, 20, 25, 30, 35, 40},
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Layer Type Kernel Applied Output
1 input 1(61×61)

2 convolution 8(8×8) kernels 8(54×54)

3 max pooling 3×3 8(18×18)

4 convolution 16(3×3) kernels 16(8×8)

5 flatten 1024 neurons
6 fully connected (relu) 256 neurons
7 Output (logistic) 61 neurons

Table 6.1: Topology of the CNN for MBA estimation.

The best configuration for this experimental setting was:

◦ the input layer receives a window of pixels of width 2× 35 + 1 and height
2 × 35 + 1 centered at the pixel to be classified as well as the vertical
distance to the upper and lower the vertical contour of columns of a
window of the same width,

◦ two hidden layers of sizes 256 and 64, respectively,
◦ learning rate 0.15, momentum term 0.2 and weight decay 10−6

Note that HMM/ANN is applied in this step to downsized images to reduce
the input parameters of the net and to speed up the process. The images were
downsized to 50% of their original size. After computing the mainline and
baseline, these are scaled back to the original size. We have also observed
that applying the technique every other column produces nearly the same
results.

6.5.2 Combined CNN and Dynamic Programming

For this approach the classification performed by the CNN is very similar to
the neural models presented in Chapter 5.6, but instead of classifying one
pixel at a time we compute the total pixels of one column. The output of the
network have now 61 logistic units; each one represents the probability of the
pixel xi to belong to the MBA.

As depicted in Figure 6.6, the input of the net is a 61×61 squared window.
Despite the image downsampling, this window is big enough to label the MBA
of the central column reliably. After some scanning of topologies, the chosen
CNN is described in Table 6.1.
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6.6 Results

System |Ω| WER (%) CER (%)

MLP Normalization (HMM/ANN) 103K 21.1 8.6
HMM Zone estimation (HMM/ANN) 103K 24.4 10.6
CNN+DP Normalization (HMM/ANN) 103K 19.0 7.5

Table 6.2: WER and CER for the test set of IAM database.

In this case, the CNN has been trained with BP and adadelta ([Zeiler 2012]) as
optimizer, in combination with regularization methods such as weight decay
penalty, and Gaussian noise on the CNN input.

6.6 Results

To assess the performance of the methodologies presented in this chapter we
have used the IAM Offline Database for our experiments (Appendix C.3. We
applied a recognition engine based on Hidden Markov Models hybridized with
ANNs (HMM/ANN) which is detailed in Appendix B. Pre-processing steps (all
but height normalization) are fully explained in [Espana-Boquera et al. 2011].
For the LM we used a vocabulary of 103k words and 4-grams as described in
Appendix B.3.

Table 6.2 shows the text line recognition results that were obtained for the
test set together with our baseline (MLP Normalization). A complete table has
been included in next chapter (Table 7.4, including the following works using
HMMs and CNNs for features extraction, as well as, other relevant works
in the evaluated data. Careful attention must be paid when comparing with
other works even if they use the IAM database and the same training and test
partitions, since the lexicon, the language models, and other parameters may
vary. The metrics reported as usual in handwriting recognition tasks are Word
Error Rate (WER) and Character Error Rate (CER).

Table 6.2 show the comparison of different line normalization methods in this
context of the same recognition engine, only by using different line normaliza-
tion techniques while fixing the other HWR components. Table 6.3 show more
detailed comparison of the two methods developed in this section.

The HMM Zone estimation model showed worse results than the original nor-
malization . Nevertheless, we have observed that the proposed area estima-
tion method can recover from some errors generated by the local extrema
classification technique. For example, as illustrated, in Figure 6.7 the capital
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Validation Set Test Set

System WER (%) CER (%) WER (%) CER (%)

HMM Zone estimation 18.6 6.9 24.4 10.6

CNN+DP Normalization 13.9 4.5 19.0 7.5

Table 6.3: Word Error Rate (WER) and Character Error Rate (CER) for the test set of
IAM database.

(a) (b)

Figure 6.7: Example of IAM image normalization: (a) zone detection by applying
HMM/ANN, (b) detection of the reference lines LEPs.

“D” got a weird shape becuase of missclassified IP (left figure). By counter-
part, the CNN+DP model outperforms the other two models improving the
error in almost 2 absolute points in CER and the test set (5% relative improve-
ment).

6.7 Discussion

Two different methods for text line size normalization have been presented,
discussed, and evaluated. Even though the first approach (HMM Zone Esti-
mation) does not outperform our initial model, its underlying ideas there have
been extended for the CNN+DP model, which actually improved the previous
and the original models significantly.

The estimation of the different zones are computed pixel-wise by applying an
MLP and CNN (respectively) to each column of the text line image. Then
this information is combined with a HMM in the first case and DP for the
second approach. Nevertheless, the application of the proposed methods in
this work for slope normalization is straightforward, we just need to translate
each column to the same height on the baseline.

It is worth it to remark, to the best of our knowledge, this is the first time that
CNNs are used to track the reference lines of handwritten text line images.
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6.8 Summary

6.8 Summary

After analyzing the errors performed by our recognizer, we noticed that some
errors were due the text line normalization stage. Specifically, due to the
misclassification of IP while extracting the text reference lines. As expected,
by improving this stage it was possible to improve the overall recognition.
We have presented two approaches that are based on classifying pixels of
the image instead of LEPs/IPs. The first approach did not show an improve-
ment in performance. However, the second approach did finally improved
the recognition results. Both approaches are published in [Pastor-Pellicer,
España-Boquera, Castro-Bleda, et al. 2015; Pastor-Pellicer, España-Boquera,
P. Zamora-Martínez, et al. 2014].
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In the previous chapter, we made use of our Handwriting Text Recognition
recognizer based on Hidden Markov Models hybridized with ANNs to evalu-
ate the impact of our Text Line Normalization methods. Normalized images
are followed by a feature extraction stage before applying the HMM/ANN de-
coder. However, connectionist methods and especially deep neural networks
are able to extract meaningful features from raw values (in off-line HWR, text
images). More specifically, this chapter proposes the use of deep ANNs (MLPs
and CNNs) for this purpose. CNNs have already been used in this PhD Thesis
in several DIA stages: Document Image Binarization, Text Line Extraction, lay-
out and Text Line Normalization. The performance of the HWR engine using
deep learning and CNNs to extract meaningful features has been impressive,
as the experiments will show.
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In our baseline HWR system [Espana-Boquera et al. 2011], the emission prob-
abilities are estimated by an MLP, whose input is a sequence of feature vectors
following [Toselli, Juan, et al. 2004]. An illustration of the baseline system is
depicted in Figure 7.1. In the presented approaches, instead of relying on a
previous feature extraction process, we rely on the raw image input, by using
a deep neural network to directly extract meaningful features (see Figure 7.2)
or by using CNNs (see Figure 7.3).

In section 7.2 we introduce the models based on deep MLP for feature extrac-
tion and in Section 7.3 the convolutional topologies used for this purpose. The
experimental setup and results are described and analyzed in Sections 7.4 and
7.5.

7.1 Previous feature extraction and receptive field

In the feature extraction procedure proposed by [Toselli, Juan, et al. 2004],
60 features per frame were extracted (3 features from 20 cells with 2.1 pixels
step size). In the models trained in the previous chapter, the ANN received
a context of 11 frames which makes a total of 660 input values. The feature
extraction for each HMM step cover a 27× 27 pixel window as depicted in
Figure 7.4:

1. We start with an MLP that receives 660 features as input.

2. These features are taking from M frames. Each column has 60 (3 × 20)

features. The number of frames used is M = 660/(3× 20) = 11.

3. Each of these cell values is taken with an advance step of 2.1 columns on
the original image. Hence these frames cover 2.1 × M ' 23.1 columns
on the original image.

4. Then we have to take into account that the values of each column have
been taking by a 5 × 5 feature extractor cell. It involves the use of 2

extra padded columns on each side of the cell. After adding these padded
values, the final effective input for the MLP is ∼ 27.1 wide pixels.
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42 pixels
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Feature Extraction

Figure 7.1: Baseline HMM/ANN recognition system using a sequence of feature vec-
tors as input.
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Deep MLP
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Hidden Markov Model

Figure 7.2: HMM/ANN recognition system using the raw image as input.
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Figure 7.3: HMM/CNN recognition system.
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Figure 7.4: Effective image window on the MLP window.
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7.2 Deep MLPs for extracting features

We aim at extracting meaningful features for HWR using deep learning tech-
niques. When using the baseline system, the input of the MLP is a set of
feature frames that are centered at the current frame. In the new architec-
ture, the sliding window is a patch of raw pixels that are fed directly to the
ANN. The choice of a squared window has given good results in preliminary
experiments, leading to a window of 42× 42 pixels. The window advances two
pixels at a time. The overall architecture is similar to the one presented in
[Pastor-Pellicer, España-Boquera, Castro-Bleda, et al. 2015], but, in this case,
the raw image is used as input instead of the computed features.

When dealing with raw images, there are several issues to keep in mind to
improve the performance and generalization. Several standard regularization
methods such as weight decay or max weight penalty have been employed.
The input of these deep models is a 1D vector; therefore, adjacent windows
have different representations due to translation. Regularization techniques
such as dropout have helped to improve results. We have also tried a layer-
wise pretraining with SDAE [P. Vincent et al. 2010] in order to train deeper
nets.

7.3 CNNs for preprocessing

In the classical HMM/ANN architecture, the use of a sliding window (where
the same ANN is applied to classify each frame) can be seen as a 1D con-
volution on the X axis. In addition, we would like to explore the use of 2D
convolutions combined with pooling layers and higher level convolutions that
will hopefully be able to extract more useful features.

In our setup, unlike fully convolutional networks [Long et al. 2014], each win-
dow is treated as an independent classification problem, in spite of the fact
that the CNN is applied to the whole text line. It is an imperative and chal-
lenging task to obtain an architecture with a good cost-efficiency trade-off.

Figure 7.3 illustrates the CNN for feature extraction and conditional probabil-
ity computation. In the proposed settings, several parameters must be chosen
for the CNN, such as the number of convolutions, pooling layers, activation
functions, number, and size of the convolutional kernels as well as the classi-
fier, which usually is an MLP. For this choice, the computational restrictions
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that are essential for finding an appropriate but efficient architecture must
not be forgotten.

We have explored three alternatives with all of those limitations in mind,
namely: using known CNN architectures, using a specific network for the
mentioned task, and using a model inspired by a well established feature ex-
traction technique.

7.3.1 Using known architectures

Our first attempt using CNNs for feature extraction imitates some of the pre-
vious architectures that have achieved good results in similar tasks. This is
the case of the convolutional net LeNet CNN Lecun et al. 1998, which ob-
tained good results on the MNIST database. In addition, the increase in com-
putational resources (especially advances in GPU computing and distributed
systems) has allowed the use of deeper and more complex models. In re-
cent years, these issues, combined with an appropriate parameter tuning,
have led to remarkable improvements in performance, especially in image
vision tasks. This is the case of nets like AlexNet [Krizhevsky et al. 2012],
GoogleNet Szegedy et al. 2014, and Very Deep Convolutional Networks [Si-
monyan et al. 2014], which have reported excellent results in other tasks
such as the ImageNet Large Scale Visual Recognition Challenge contest [Rus-
sakovsky et al. 2015]. Nevertheless, our task still requires more resources
than traditional image object classification since each convolutional forward
is applied for each position of the sliding window, even though we have to deal
with somewhat smaller inputs. In addition, it is hard to apply models with
many subsampling or pooling steps since the input is not big enough.

7.3.2 Adhoc networks dealing with the singularity of HWR

Most of the architectures found in the bibliograpy are designed for tasks like
MNIST, which consists of 28 × 28 pixel images corresponding to the 10 digits,
or, for instance, the ImageNet database, which has larger inputs and more
than a thousand classes. However, in our case study, the net input consists
of 42 × 42 pixels, and there is an output for each different HMM state, which
corresponds to 553 neurons (7 states × 79 graphemes).

When tuning a ANN model, in an ideal case we have to explore, every pos-
sible parameter and hyper-parameter in order to obtain the most successful
configuration. The use of CNNs and deeper nets makes this tuning process
worse since more parameters are added, most of which are related to the new
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topology and layer configurations. Thus, in order to guide our exploration, we
should concern about the kernel sizes to extract useful features, the number
of kernels to cover the variability of the text, and deeper layers of the model
to properly represent the characteristics of the problem.

Therefore, in order to guide our exploration, we should ask ourselves some
questions about the net configuration such as the following ones:

◦ Kernel sizes: What size of kernel can extract useful features from hand-
written text (borders, shapes,. . . )?

◦ Number of kernels: How many characteristics must be extracted from
a window to cover most of the handwritten styles and variations?

◦ Deeper layers of the model: How could these features be properly
combined to represent handwritten characters?

In the feature extraction process proposed in [Toselli, Juan, et al. 2004], the
frames are computed using 5 × 5 cells. Coincidentally, LeNet-5 uses 5 × 5

convolutional kernels in both convolution layers. We will, therefore, explore
kernel sizes between 5 and 8 pixels per side allowing the model to consider
slightly bigger window sizes.

When analyzing the kernels trained in some preliminary experiments, we could
conclude that there is a tendency to extract redundant information from 16

kernels in the first convolution. Some of the learned kernels detect edges in
several orientations, others estimate the ink text zones. It turns out that all
of these features can be extracted with no more than 5 to 10 kernels. Due to
the above-mentioned computational constraints, we will avoid the use a large
number of kernels, at least, in the first convolutions.

7.3.3 Cell feature extraction by convolutions

Our baseline HWR system used the parametrization described in [Toselli, Juan,
et al. 2004]. In this work, we will design CNNs that are powerful enough to
mimic this feature extraction process. However, it is important to note that
the convolution kernels are not limited to extracting these features since they
will learn their own discriminative features.

The original feature extraction divides the input into cell regions. For each
region, three values are extracted: one value with the proportion of gray level
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Figure 7.5: How the 3 features extracted per cell will look if they were approximate
by a convolution kernel.

in the cell and two values for the vertical and horizontal derivatives. A linear
regression model is performed to find the optimal derivative directions.

This operations could be coded as convolutions (without hardcoded weights),
for example for a cell size of 5×5, they will look as:

normalized gray levels =
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One convolution computes the vertical derivatives from the differences be-
tween the upper and lower cell values, similarly, another convolution can com-
pute the horizontal derivatives, whereas a third estimates the smoothed gray
level of the cell (Figure 7.5).

With this ideas in mind, we can use totally learned kernels (convolutions) that
can perform a feature extraction in a similar way.
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Multilayer Perceptron

Emission Probabilities

Hidden Markov Model

Vertical Convolution

42 pixels

Vertical Kernels

Figure 7.6: Vertical model (I). The kernels run over the input window and only in the
horizontal direction.

Hidden Layers Dropout (droprate)

2 hidden layers (2048, 512) 0, 0.2, 0.5
3× 512 + SDAE 0, 0.2
5× 512 + SDAE 0, 0.2
7× 512 + SDAE 0, 0.2

Table 7.1: Deep MLPs fed directly with a raw image input from a window size of
42× 42 (1764 pixels).

7.3.4 1D convolutions

We have also explored a CNN that convolves the text line images in only one
direction. The convolutional kernels would have the height of the image, and
they would advance from left to right. Therefore, each kernel extracts only
one feature for each column. We explored two different approaches:

◦ Applying the vertical kernels directly into the raw image (Figure 7.6).

◦ Applying the vertical kernels after a 2D convolved map (Figure 7.7). In
this case, the first set of 2D convolutions is obtained followed by the
application of 1D kernels to these previous maps.
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42 pixels

Multilayer Perceptron

Emission Probabilities

Hidden Markov Model

2D -Kernels

First Convolution Maps

Vertical Convolution

Figure 7.7: Vertical models (II). Vertical kernels run over the maps generated by the
first 2D convolutions.
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In the first case, the vertical kernels are applied to the input window, and
we have a set of K × F features (with K being the number of kernels, and
F = C−w+1 where C is the number of columns of the sliding window and w is
the width of the kernel since padding is not applied). In the second example, a
2D convolution is performed using the same parameters as in previous models.
The vertical kernels are applied to the extracted maps afterward.

Although these 1D kernels are bigger than in the previous case, the model
is still quite efficient since the convolution is applied only in one direction of
the image. A larger number of kernels is used to overcome the restriction
of having one feature per kernel and column. A drawback of this technique is
that the system is less robust to distortions on the vertical axis such as vertical
image translations. This issue is alleviated by the use of text line normalization
approaches that reduce these vertical variations.

7.4 Experimental setup

In this section, we evaluate the performance of the proposed models. We show
the configuration finally used and the result obtained for each one. Finally, we
will visualize some of the kernels and the resultant maps of the proposed net
architectures. The experimental framework and evaluation are the same than
used in the past HWR and decoding experiments. The decoder applied, and
setup can be seen in Appendix B but, as explained in this chapter, we re-
moved the handcrafted parametrization step by using deep MLPs and CNNs.
The data used for the recognition was preprocessed following the method ex-
plained in Section 6.4.3.

7.4.1 Using raw input and deep MLPs

Our first goal is to compare the baseline system with a new one, avoiding
an explicit handcrafted feature extraction. Table 7.1 shows the configuration
used for the deep MLP-based systems with a receptive field (42 × 42 pixels).
We also trained deeper MLPs up to 7 hidden layers of 512 ReLU neurons that
were pre-trained with SDAE in order to obtain faster convergence. The use of
dropout helped significantly in these configurations.
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7.4.2 Using CNNs for preprocessing

Table 7.2 summarizes the CNN topologies explored. First, a topology based on
LeNet (LeNet-5 ) was tested. For the second alternative, after several trials,
we could highlight one special configuration, called Adhoc CNN, which led
us to the best results. We also decided to apply max pooling layers to not
only speed up the computations but also to make our model more robust to
translations. We tried increasing max-pooling layers of 3 × 3 and 4 × 4. Since
the suitability of the max-pooling is very task dependent, we also performed
experiments without them.

Finally, the models with the minimal configuration able to imitate the cell fea-
ture extraction were tagged as Cell/Kernel. As can be observed, the size of
the kernels increased up to 6 × 6 and a stride of 3 was applied in each direc-
tion. Two different topologies with one and two convolution-activation-pooling
layers were tried.

7.5 Results

7.5.1 Recognition results

The best results of the baseline system were presented in Pastor-Pellicer,
España-Boquera, Castro-Bleda, et al. 2015, obtaining a 15.6% and 19.0% WER
for validation and test sets, respectively. Table 7.3 shows the overall perfor-
mance of the proposed systems, with a confidence interval of 95% [Vilar 2008].
First, it can be observed that all the deep models with more than two layers
using raw inputs improved the baseline version. Indeed, when using two hid-
den layers in the raw setup, the results were worse than the baseline, unless
dropout was added, where the results were similar (Figure 7.8). Dropout sig-
nificantly helped in the deep model modality, reaching the best performance
with three hidden layers and a drop rate equal to 0.2, obtaining a WER of 13.7

for the development set. We tried drop rates that were larger than 0.2 but the
performance did not improve. As a matter of fact, although some results with
deep models were better than others, there was no statistically significant dif-
ference among them. For CER, deep models statistically improve the baseline
system.

The HMM/CNN also showed better performances with respect to the baseline
system. When compared with the deep MLPs using raw inputs, the results
were similar when dropout was used. When exploring the different nets, good
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Type Kernel Output

L
e
N

e
t-

5

input 1×42×42
convolution 16 kernels 5×5 16×38×38
Max-pool (ReLU) 2×2 16×19×19
convolution 32 kernels 5×5 32×15×15
Max-pool (ReLU) 2×2 32×8×8
flatten 2048 neurons
fully-conn. (ReLU) 500 neurons
output (softmax) 553 neurons

A
d

h
o
c

C
N

N

input 1×42×42
convolution 8 kernels 7×7 8×36×36
max-pool (ReLU) 3×3 8×12×12
convolution 16 kernels 3×3 16×10×10
max-pool (ReLU) 2×2 16×5×5
flatten 400
fully-conn. (Relu) 128
output (softmax) 553

C
e
ll

/K
e
rn

e
l

1
C

o
n

v.

input 1× 42× 42
convolution 8 kernels 6×13×13

6×6+3+3
flatten 1014
fully-conn. 512
fully-conn. 128
output (softmax) 553 neurons

C
e
ll

/K
e
rn

e
l

2
C

o
n

v.

input 1× 42× 42
convolution 8 kernels 6×13×13

6×6+3+3
convolution 16 kernels 16× 6×6

4×4+2+2
flatten 576
fully-conn. (ReLU) 256
fully-conn. (ReLU) 64
output (softmax) 553

V
e
rt

ic
a
l

1

input 1×42×42
conv. (vertical) 16 kernels 16×1×13

42×6+1+1+3
flatten 208 neurons
fully-conn. (ReLU) 256 neurons
fully-conn. (ReLU) 64 neurons
output (softmax) 553 neurons

V
e
rt

ic
a
l

2

input 1×42×42
convolution 8 kernels 6×13×13

6×6+3+3
conv. (vertical) 16 kernels 16×1×5

13×4+1+2
flatten 80 neurons
fully-conn. 256 neurons
fully-conn. 64 neurons
output (softmax) 553 neurons

Table 7.2: CNN topologies for the recognition system.
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Dev.
Dropout WER CER

H
M

M
/A

N
N



Baseline 15.6 ± 1.1 5.6± 0.5
Raw input 2048−512 0 16.1 ± 1.1 5.8 ± 0.5
+ Deep MLPs 0.2 14.6 ± 1.1 5.1 ± 0.5

3×512† 0 15.4 ± 1.0 4.9 ± 0.4
0.2 13.7 ± 1 4.7 ± 0.4

5×512† 0 14.1 ± 1.1 4.6 ± 0.4
0.2 14.2 ± 1.0 4.9 ± 0.5

7×512† 0 15.2 ± 1.1 4.9 ± 0.5
0.2 14.5 ± 1 .0 5.1 ± 0.4

H
M

M
/C

N
N



LeNet-5 14.6 ± 1.1 4.6 ± 0.4
Adhoc 14.4 ± 1.1 4.8 ± 0.4
Cell-kernel 1 13.9 ± 1.1 4.4 ± 0.4
Cell-kernel 2 14.3 ± 1.1 4.9 ± 0.4
Vertical 1 15.5 ± 1.1 5.2 ± 0.4
Vertical 2 15.3 ± 1.1 5.4 ± 0.5

Table 7.3: Overall performance of the proposed systems on the Development set (con-
figurations with the † mark make use of SDAE).

performances in the Adhoc CNN net or even LeNet-5 could be expected. Even
though the performance in these cases is quite good, the best result achieved
so far has been with a simple net, using one convolution with a stride of three
in each direction and only six kernels. We presume that the simplicity of the
model eased the training, and with six kernels the model covers most of the
variability of the handwritten text (as illustrated in Figure 7.12). In this partic-
ular case, the net extracts 1014 features from the convolution process, which
are conveniently combined with two fully connected layers of 512 × 512, re-
spectively. The Adhoc CNN model reduces the feature space to 400 after con-
volutions, compared with 2048 in LeNet-5. The model identified as Cell-kernel
2, which uses a second convolution level, had an fine performance that was
not far from the best models.

Finally, we observed that the vertical models had a more modest performance,
which did not improve the traditional 2D convolution models, but they were
still better than the baseline. As before, CER was significately better with the
HMM/CNN than with the baseline system.
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Figure 7.8: Evolution of the error by the number of hidden layers.

Random Kernels

Cell/Kernel Ad hocLeNet-5

Handcrafted Cells

Figure 7.9: Weights of the different kernels in the first convolution for some configu-
rations.

7.5.2 Kernel and map visualization

Let us analyze the shape of the learned kernels and maps to gain an insight
about the features learned by CNNs and deep MLPs. Figure 7.9 shows the
kernels learned by the convolutional models presented in this work. In ad-
dition, we plotted the weights of the first layer of one of the evaluated deep
MLPs in Figure 7.10 (brighter pixels indicate higher activation values).

The learned kernels do not seem to be extracting vertical and horizontal deriva-
tives, but rather locating edges and shapes. In fact, the kernel visualizations
are not so illustrative if they are not accompanied with the maps that are gen-
erated by each filter, as shown in Figure 7.11.
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Figure 7.10: Weights of the first hidden layer of the deep MLP. Only a portion of the
2048 neuron weights is shown.

The most illustrative sample comes from the net identified as Cell/Kernel (Fig-
ure 7.12), which is the configuration that gave us the best performance. The
figure shows the filtered maps by the six kernels of the first convolution. It is
worth mentioning that redundant and irrelevant kernels could also be learned,
as we observed when analyzing some of the maps generated by the different
nets.

On the other hand, if we analyze some of the features extracted by the fully
connected neurons in the deep MLP with raw inputs (Figure 7.13), each neu-
ron detects a characteristic in a specific location of the input window. Thus,
it requires several neurons to extract the same feature in different locations.
This translation invariance is solved in the convolutional model, where ker-
nels convolve the image by extracting one type of feature by the kernel in
various positions. Thus, between 128 ∼ 2048 neurons were required to extract
useful features, while similar or even better results were obtained with a few
convolutional kernels (6 ∼ 16).
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Figure 7.11: Maps extracted by the Adhoc CNN. For instance, one kernel generates
lower/right contours (fifth kernel), and another learns the upper/left edges (fifth from
the tail).

Figure 7.12: Six maps extracted by the first convolution of the Cell/Kernel. A free
interpretation of the features learned is: 1) lower text contours, 2) upper contours,
3) borders, 4) strokes 5) right contours, 6) background model (background pixels got
higher activation than text).
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Figure 7.13: Generated maps by LeNet-5.
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7.5.3 Comparison with other approaches

Table 7.4 shows the best results of our contributions together with the results
of other works using the same experimental conditions (corpus and language
modeling) reported in the literature. Careful attention must be paid when
comparing different performances even if they use the IAM database. As men-
tioned above, we have used lines for training and evaluation. As can be ob-
served, the proposed methods outperform all of the systems which recognize
at line level. Nevertheless, other works used the whole paragraph for train-
ing and evaluation and included other features such as a variable number of
states per character or writer adaptation Kozielski, Doetsch, et al. 2013. They
reached a test WER of 13.3 for a vocabulary of 50K. Doetsch et al. Doetsch
et al. 2014 achieved a WER of 12.2. Moreover, Bluche, Ney, and Kermorvant
2014 achieved a test WER of 11.9 with a vocabulary of 50K, which is the best
performance obtained so far. This result was obtained with a ROVER sys-
tem that was composed of the four possible combinations of HMM/ANN (deep
MLPs) and BDLSTMs systems on the one hand and raw inputs and features
extracted by specific parametrization process on the other hand. Pham et al.
[2014] recognized, as well, at line level, but using a sort of n-best list in order
to take full advantage of the language model, obtainig a WER of 13.6. Finally,
the best results so far are achieved by [Poznanski et al. 2016] (a WER of 6.45

and a CER of 3.45), yet the word segmentation is assumed and the recogni-
tion is applied word by word. Besides, all train and test word occurrences are
included in the system vocabulary.

7.6 Summary

In this work, we have presented several improvements to our recognition en-
gine by removing feature extraction from the text images and using deep
learning techniques directly on the text images. Deep MLPs and CNNs have
been analyzed for the current task. The results presented in the IAM Database
validate these approaches. In addition, we also studied the kind of features
learned by the neurons by plotting some samples.

Although several CNN topologies are explored, one of the configurations that
led to good results is comprised of a single convolution layer without pool-
ing, achieving a WER of 17.1. If we compare this result with the baseline
(HMM/ANN with features system which has a WER of 19.0), a considerable
step forward in the recognition performance has been achieved. Further ex-
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Test Set
System |V | WER CER

Isolated word recognition
Bianne-Bernard et al. 2011 10K 32.7 -
Bluche, Ney, and Kermorvant 2013b 10K 20.5 -
Poznanski et al. 2016 No-OOV 6.29 3.37

Line recognition
Bertolami and Bunke 2008 20K 32.8 -
Plötz et al. 2009 - 28.9 -
Graves, Liwicki, et al. 2009 20K 25.9 18.2

Toselli, Romero, et al. 2010 9K 25.8 -
Dreuw et al. 2011 50K 28.8 10.1

Espana-Boquera et al. 2011 20K 22.4 18.6

F. Zamora-Martínez, Frinken, et al. 2014 103K 20.0 8.3

F. Zamora-Martínez, Frinken, et al. 2014 (ROVER) 103K 16.1 7.6

Pastor-Pellicer et al. 2014 103K 24.4 10.6

Pastor-Pellicer et al. 2015 (baseline) 103K 19.0 7.5

Presented Approach (1) 103K 17.5 6.6

Presented Approach (2) 103K 17.1 6.3

Paragraph recognition
Kozielski, Doetsch, et al. 2013 50K 13.3 5.1

Doetsch et al. 2014 50K 12.2 4.7

Bluche, Ney, and Kermorvant 2014 50K 11.9 4.9

Table 7.4: Performance for the IAM database. Approach 1 is using deep MLPs and
raw input, and approach 2 is using the HMM/CNN system.
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periments and the combination of different systems are expected to improve
the results.

185





Chapter 8

F-Measure as Neural Network
optimization function
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Imbalanced datasets impose serious problems in Machine Learning. For many
tasks characterized by imbalanced data, the F-Measure is commonly used
when discussing the results and comparing them with other approaches. This
chapter studies the use of F-Measure as the training criterion for ANN by in-
tegrating it in the Backpropagation algorithm. This novel training criterion
has been empirically validated on the document cleaning and enhancing of
documents.

8.1 Motivation for a new training criteria

It is not uncommon in many real tasks that the number of patterns of one
class is significantly lower than other classes. Examples of tasks with very
imbalanced data are information retrieval (a lot of information and very few
useful data) or medical diagnosis (less ill than healthy patients). Imbalance
datasets impose serious problems in machine learning and, particularly, in
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Artificial Neural Networks (ANN) training. In those cases is common to use
F-Measure (FM) when discussing the results and comparing them with other
approaches.

Without going any further, we had an imbalanced task in Chapter 4, which
is Document Image Binarization. Due to nature of the task, the FM is one of
the most suitable measures for evaluation, indeed it is taken as the primary
measure of the DIBCO evaluation.

Backpropagation algorithm is commonly used to train ANNs, but traditionally
we fall in two error functions: MSE or CE error. This lead us to the following
question: Since the evaluated function is FM would it make more sense to use
FM as the loss of our nets?. In fact, training our method with FM woul also
help with the unbalanced class problem. MSE and accuracy are good gen-
eral measures, but it is not uncommon for many real tasks that the number of
patterns of one class is significantly lower than other classes. Some authors
have addressed this problem by resampling the data to balance the occur-
rences, others have modified the training algorithm [Al-Haddad et al. 2000;
Z.-H. Zhou et al. 2006].

The motivation of this chapter is to design and test new training algorithm
which uses the FM as an objective error function for the BP algorithm. In this
chapter, we present the steps followed to applying the FM as a new target
error function and the related experimental setup for DIB, yet it can be used
in many other information retrieval tasks.

The main issue we had to deal with is that FM is a global optimization function,
meaning that we can measure the FM on a set of retrieved values but not on
an single is pixel. So when applying the new approach, we have to process
a batch of several pixels to update the weights since it does make sense to
compute the loss of only one pixel.

Though there are different approaches for the optimization of the FM using su-
pervised techniques like SVMs [Musicant et al. 2003], logistic regression [Jan-
sche 2005] and other ML techniques [Dembczynski et al. 2011], no such algo-
rithm existed for ANN to the best of our knowledge.

We have used the FM training function for the DIB task, although it could be
utilized for different training tasks which can be seen as information retrieval
problem or even generalize the FM for more than one class and apply it as
error training function when the datasets are unbalanced.
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8.2 Error-backpropagation with F-Measure

Since the output of the ANN is represented as a real-value (i.e in the DIB task
we use a logistic neuron as output), it is straightforward to compute a “soft”
FM and error derivatives interpreting the output of the model as a probability,
where the value for a pattern i is set as o(i) = P (relevant|sample) and 1−o(i) =

P (non-relevant|sample).

Following we present the formulation of the FM and the operations performed
to derivate the error through the layers. For that, we must recall that FM
is a quality measure computed as a combination between Precision (PR) and
Recall (RC). For our task, it is possible to compute a version of the FM inter-
preting the output of the model as a binary value (for 2-class problems: 1 for
relevant and 0 for non-relevant), being o(i) the output of the model for pattern
i and t(i) the real-class value (0 or 1) for pattern i.

The computation of FM is a harmonic mean of PR and RC, and leads to the
final formulation of FM in terms of true positives (TPs), false positives (FPs)
and false negatives (FNs).

TPs, FPs, and FNs are computed over a dataset of m patterns:

TP =

m∑
i=1

o(i) · t(i).

FP =

m∑
i=1

o(i) · (1− t(i)).

FN =

m∑
i=1

(1− o(i)) · t(i). (8.1)

FM is formalized for positive real β, which weights the importance of recall
versus precision, although the formula can be simplified by substituting TPs,
FPs and FNs with previous definitions:
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FMβ =
(1 + β2) · PR ·RC
β2 · PR+RC

=
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
= (8.2)

=

(1 + β2) ·
m∑
i=1

o(i) · t(i)

m∑
i=1

(
o(i) + β2 · t(i)

) . (8.3)

to use the F-Measure as the objective error function in BP algorithm it is re-
quired to derive it by o(i):

∂FMβ

∂o(i)
=

(1 + β2)t(i)

m∑
j=1

(
o(j) + β2 · t(j)

) −
(1 + β2) ·

m∑
j=1

o(j) · t(j)

 m∑
j=1

(
o(j) + β2 · t(j)

)2 . (8.4)

Since BP is defined for minimization, the sign of the FM function has to be
inverted. Note that the F-Measure derivative of pattern i depends on the
others m−1 patterns, so it is not separable as the MSE or CE error. Therefore,
the exact computation of this derivative forces to use batch training mode.
However, batch training is slow and inaccurate when the number of patterns
m is large (in the reported experiments, millions of samples). Because of
these issues, we decided to use a mini-batch training mode, which leads to an
approximation highly correlated with the actual FM computed on the entire
dataset.

Another option is to split the image in patches and use these patches as
batches since all the pixels of the patch are correlated. The main problem
with this idea is that most of the patches will not contain foreground pixels
which lead to a ‘0’ weight update. We will see that is possible to take batches
of random patterns and compute the FM errors on this randomly sampled
batches. But still, the use of batch mode combined with random replace-
ment makes it possible to sample a bunch of patterns where every target is
non-relevant, meaning that these mini-batch presentations do not update the
weights. This problem becomes more likely the lower the mini-batch size and
also if the dataset is more imbalanced. Since each sample selection is inde-
pendent of others, the probability of occurrence of this situation can be easily
computed from the mini-batch size b and the proportion of 0’s in the entire
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training dataset (of size m) as (F/m)
b, where F =

∑m
j=1(1 − t(j)). This issue

reduces convergence speed because mini-batch presentations suffering this
problem do not update weights even if the output of the model is not correct.

8.3 Experimental Setup and Results

This section shows the experimental setup followed to verify our FM optimiza-
tion function. In our experiments we have used the DIBCO dataset as well,
presented in C.1. Nevertheless, there are slight differences from the DIBCO
dataset used in the rest of DIB experiments (Section 4.7). In this case we did
not used the DIBCO-2013 data, instead we took the following distribution:

◦ Training set: includes DIBCO-2009 and DIBCO-2010 datasets. A total of
24 images (19.8 Mpx, 6.6% classified as ink).

◦ Validation set: includes DIBCO 2011 dataset. A total of 12 images (10.0

Mpx patterns, 9.0% classified as ink).

◦ Test: includes DIBCO-2012 dataset. A total of 14 images (19.2 Mpx, 6.7%
classified as ink).

The main reason for this partition arises from the fact that DIBCO-2013 was
not released when we performed this experimentation. However, the sets
taken sufficed for showing that our approach worked.

To evaluate and check the proposed technique, different configurations have
been tried which differ in the error criteria:

◦ Logistic output unit ANNs trained using the MSE error criteria.
◦ Logistic output unit ANNs trained using the FM error criteria.

The training data have been used to find a common topology which works fine
with both error criteria. Validation data was used to adjust parameters af-
terward. Finally, the trained networks have been used to compute the perfor-
mance on the test set. Each type of error criteria has been tested on a network
which shares the same input, hidden and output topologies. The input layer
is composed of 90 input neurons: 81 pixels corresponding to a window of size
9 × 9 centered at the pixel to be cleaned and 9 additional context pixels asso-
ciated with a 3 × 3 window with an estimation of background using a median
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Validation Data Test Data
µ± σ MSE µ± σ FM µ± σ MSE µ± σ FM

MSE train 0.0254± 0.0010 0.708± 0.013 0.0165± 0.0004 0.754± 0.007

FM train 0.0376± 0.0036 0.774± 0.012 0.0181± 0.0006 0.836± 0.009

Table 8.1: Average and Standard Deviation of theMSE and FM.

filter. 1 Regarding the hidden layers, the best configuration was two hidden
layers of sizes 64 and 16, respectively. Also, 9 different randomly initialized
networks have been trained to reduce the effect of local minima.

Table 8.1 shows the average of the FM and MSE measures, along with the
standard deviation on validation and test sets for training for a mini-batch of
32 in both cases samples. Also, an example of a test set image cleaned with
both ANN is depicted in Figure 8.1.

In general, both training techniques performed quite well when measured ei-
ther on MSE or FM, since a well-cleaned image gives good results on both
metrics. The results are not competitive compared with the best contest ap-
proaches [Pratikakis et al. 2010], although they are better than Method 1

which is also based on ANN (they obtained a FM of 0.82, and we got 0.836). We
can also observe, from Table 8.1, that ANN trained with the FM error function
obtain better FM than nets trained with the MSE error function. Conversely,
the second model outperforms the first one in MSE in both validation and test
sets. As expected, each training criteria prioritizes a different goal.

Next, to study the influence of the size of the mini-batch, different trainings
have been carried out varying this parameter, and the reported results are
illustrated in Figure 8.2. Two different factors may influence the results in
opposite ways: on the one side, the larger the mini-batch size, the more accu-
rate the approximation to the real FM should be. On the other hand, a smaller
mini-batch size corresponds to a training scheme closer to the online version
of BP which may have faster convergence. As it can be observed, as the mini-
batch size is increased, the F-Measure performs worse, which means that even
smaller mini-batch sizes may be highly correlated with the global FM.

Finally, to study the correlation between mini-batch size and FM, a statistic
experiment has been carried out (see Figure 8.3) obtaining a Pearson product-

1Note that this is the net corresponding to the MLP with Features presented in Section 4.5.2.
In this case, we did not use any histogram based features, only the median filter.
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Figure 8.1: (Top) Example of a noisy test image. (Middle) The same image cleaned
with the ANN trained with the MSE error criteria. (Bottom) The same image cleaned
with the F-Measure error criteria.
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moment correlation coefficient r = 0.9991 ± 0.0004 with a confidence interval
99.9% (p < 0.001).
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Figure 8.2: Influence of mini-batch size on the FM loss function.
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Figure 8.3: Correlation between the average FM of 100 000 mini-batch presentations
of size 32 taken randomly and the FM value computed on the concatenation of all
validation images.
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8.4 Summary

We studied the use of more accurate and suitable error function such as the
ingretion of the FM loss criterion in the BP process. Additionally, it has been
explained how it can be adapted to batch training. We used the DIB task
to empirically validate the new training criteria, motivated by working in a
highly imbalanced task comprising millions of patterns (assuming each pixel
is pattern). Experimental results show that, although FM trained with MSE
or FM perform quite similar, each training mode prioritizes its corresponding
assessment measure. This error criterion could be evaluated, as well, in tasks
where FM makes sense, as is the case of information retrieval or document
classification.

This work was collected in the following publication: [Pastor-Pellicer, F. Zamora-
Martínez, et al. 2013].
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In this chapter, we summarize the main discussions derived from this work.
We also include an overview of the main contributions of our research. Finally,
future lines of works and extensions are presented.

9.1 What has been accomplished

As introduced, one of the primary goals of this PhD Thesis was to increase the
scope of our research, which is focused on text line HWR in order to include
the main pre-processing stages. We think that our commitment has been ful-
filled. On the one hand, document cleaning and enhancement has been applied
at the page level. On the other hand, we have dealt with image segmentation
tasks to extract the lines. With these new stages, we complete our recogni-
tion pipeline since it is feasible to obtain the transcription of a scanned image.
First, the image is cleaned. Then, the lines are extracted, and, finally, the
recognition is performed line by line.

With regard to the technologies developed and applied, one of the highlights
of this work is the application of deep learning to HWR, avoiding specific fea-
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ture extraction. To this end, CNNs and other deep ANNs, which have given
promising results in Computer Vision tasks, have been used for this purpose.
Following we summarize the work developed in this PhD Thesis.

One-to-one pixel-labeling Our contribution to one-to-one pixel labeling
is introduced in Chapter 3. We implemented this approach by means of a slid-
ing window to classify each pixel by CNNs, taking a surrounding area of that
pixel as input. This was useful for DIB related tasks, but then, by adding more
classes in the output, we labeled pixels in the first step for TLE and TLN tasks.
One perk of this approach is that we could improve the pixel classification,
thereby improving the overall performance of the system. Indeed, the tech-
nique is meant for HWR, but it could also be applied to other tasks such as
image segmentation, text scene localization, and other pixel labeling-related
tasks.

Document Image Binarization The improved one-to-one pixel labeling
has mainly been applied for DIB and image cleaning and enhancement. We
developed several methods based on ANNs to clean images. Our main contri-
bution was to apply CNNs for this task. However, we also analyzed other tech-
niques: MLPs (including extra features) and even MDLSTMs. For evaluation
purposes, we also collected several corpora (Appendix C.1) and discussed the
convenience of the several measures proposed for this task. We have demon-
strated that supervised DIB methods are suitable for homogeneous collection
even if they are noisy or present several distortions and degradations.

Text Line Extraction We introduced text line segmentation in our HWR
pipeline. It is very rewarding to create a text line segmentation from scratch
and get reasonably good results.

In the first approach, we collaborated with DIVA research group at Fribourg,
and we combined our extracted segments with the final text line aggregation
process. Their support and collaboration have been very valuable, and the
results have been very promising. Finally, we again applied the one-to-one
pixel labeling in the whole image to detect the Main Body Area of the text
and then segment the lines. These approaches got very competitive results,
especially in historical documents.

We realized that there is no a solid agreement about how to evaluate TLE-
related tasks. The predicted and ground truth lines are coded as shapes (poly-
gon, bounding boxes, pixel labeling), which have to be assigned/aligned and
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then an error measurement must be computed. We included an interesting
discussion about the evaluation metrics as well as our new proposals.

Text Line Normalization Extracting IPs for tracking the reference lines
helped in the previously developed works for TLN. We continued this line of
research and improved the text height normalization step. Our most signifi-
cant contribution on this topic was to avoid the extraction of IPs by classifying
all of the pixels of the image. Once again we were able apply our one-to-one
pixel labeling by using CNNs to obtain a MBA map. After some pre-processing
and using a DP algorithm inspired by the Seam Carving method, the text ref-
erence lines were obtained. This novel approach gave us an improvement in
the recognition rate, improving our models by an absolute WER of 2 points
(10.0% relative) and setting a new standard for normalization during the rest
of the recognition experiments.

Decoding In this work, a lot of effort has been invested in improving
the current group HWR engine. By identifying its deficencies and also an-
alyzing the new improvements in HWR and deep learning, the overall line
transcription process has been updated, and a significant improvement in the
performance has been achieved. The original recognizer got a WER of 22.4,
and, at the end of our developments, we reached 17.1 with the data, and LM
[Espana-Boquera et al. 2011].

F-Measure as Artificial Neural Network optimization function A
novel objective error function for the BP algorithm is proposed based on the
FM. Additionally, it has been explained how it can be adapted to mini-batch
training mode of BP. In order to empirically validate this training mode, a
real task (DIB) using an imbalanced dataset of several millions of patterns
has been carried out. Experimental results show that, although ANNs trained
with MSE or with FM performs quite similar, each training mode prioritizes
its corresponding assessment measure.
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Other achievements We have also contributed by making publicly avali-
able the Noisy Office database described in Appendix C.1. The corpus consists
of images of printed text documents with noise mainly caused by uncleanliness
from a generic office such as coffee stains and footprints on documents and
folded and wrinkled sheets with degraded printed text. This corpus is intended
to train and evaluate supervised learning methods for cleaning, binarization
and enhancement of noisy grayscale printed text image.

The described techniques required to improve and update our ANN frame-
work: April-ANN. Almost all the ANN approaches followed in this PhD Thesis,
specially CNNs, have been integrated into it. Besides, several functionalities
and efficiency related improvements were carried out in the mentioned toolkit.

9.2 Half way

During the development of this PhD Thesis, there have been a lot of works
and lines of research that were started but not been adequately explored or
finished. Sometimes the effort required to achieve a result was not worth it.
There were also situations where the first results were discouraging, so we
quit those lines of research. However, the lack of time and need to prioritize
other works and tasks wer the main reasons for not fulfilling the following
duties. Nevertheless, some of the ideas/projects/techniques that we started
are worth mentioning, and with enough effort and time, they would probably
become interesting approaches. Indeed, some of these tasks are included in
our future lines of work. We describe all these adventures, in the following
paragraphs.

◦ Apply the developed TLE models to other corpora. We applied
our text line segmentation approaches to other corpora, i.e., the ICDAR
Handwriting Segmentation Contest [Hedjam, Nafchi, et al. 2015; Stam-
atopoulos et al. 2013]. We trained our models for the 2015 edition, and
then we ran some preliminary evaluations on them. The biggest prob-
lem we encountered was that there were three different scripts: Latin,
Greek, and Hebrew. Our models could be trained for Greek and Latin,
but they were not suitable for Hebrew. Therefore, we had to change
the set partitions, so our results were not comparable with the ones re-
ported.

With regard to historical documents, the Esposalles Database [Romero,
Fornés, et al. 2013] was an excellent collection to try with our approaches.
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Indeed, we applied the bootstrap supervising and cleaning methods pre-
sented in Chapter 4 to clean the pages of the corpus prior to TLE. We
supervised the IP and MBA as explained in Appendix E. However, due to
lack of time and other issues with the data, we decided to postpone this
task.

◦ Make our approaches available for external usage. For TLE, we
trained some models for the Historical IAM Database, and some prelim-
inary models were obtained for other corpora. All of these models could
be used, tuned, and adapted for other collections. We started making
our algorithms available by means of web services [Marcel et al. 2016].
The primary challenge was to combine all of the steps in one process
and allow our server to process the petition in time. For example, the
MBA-based model presented in 5.6 has two main parts (MBA extraction
and post-processing) which had to be adapted for this purpose.

We also developed web demos based on web services for some of the
neural filters presented in Chapter 4.

◦ Distilling Neural Networks. We tried to "distill" our networks by
following the ideas introduced in [G. Hinton, Vinyals, et al. 2015]. We
distilled the neural filters used in Chapter 4, but the first results did not
seem very promising, so we decided not to continue this line of work.

◦ Fully Convolutional Neural Networks. As explained in 3.7, our
approach differs from the known Fully Convolutional Neural Networks
that are used for pixel labeling as well. In our approach, we had a
more through process, but we obtained more features per pixel than
the former one. We moved towards the use of Fully Convolution Neural
Networks by classifying all of the pixels of the images jointly. Our first
experiments used CNN without strides. Thus the original dimensions of
the image are kept through the convolutions. We also explored a proper
optimization with CUDA and GPUs for this matter, and we tackled the
limitation of training with big images. Work along this line is still prelim-
inary. Hence, we cannot show any relevant results or conclusions yet.

◦ Foreground pixel labeling. In the work developed for TLE and TLN,
we started with IP extraction and classification, and then we moved to
labelling all of the pixels of the image. Our original idea for height nor-
malization was to classify only the foreground pixels of the image. We
ran some initial experiments, but then we could not find any reliable way
of splitting the image into zones with only the foreground information.
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Classifying all of the pixels of the image led to MBA maps that were
easier to segment.

◦ Include our contributions in STATE. In the research project HI-
TITA (http://blogs.uji.es/hitita/), a transcription assistance tool
(STATE ) was developed by the team at Universitat Jaume I. Our rec-
ognizer was also included in this tool as a backend web service. Since
the HWR recognizer was meant for normalized images, we rewrote the
original IP normalization procedure to be used within the application;
unfortunately, it was never included in the tool.

9.3 What should have been done

In the previous section, we listed things that have been partially done, and,
unfortunately, most of them should have been finished. In this section, things
that have not been explored totally or partially are listed. Our apologies to the
reader for not being able to cover all of this research.

◦ Apply the end-to-end to a full task. We have extended our pre-
processing steps to the full page process by including cleaning and line
segmentation. With the new pre-processing stages, we deal with the
necessary stages in order to have the complete stack of operations from
the scanned image to the final transcription. However, unfortunately, in
this PhD Thesis we could not apply the full process to any corpora since
there is a gap between the data used for TLE and for the transcription.
For TLE, we focused on historical documents while the recognition en-
gine was set up for modern handwriting. On the one hand, it was not
appropriate to apply our TLE extractions to the IAM Database since the
input documents do not present a complex layout and TLE could be per-
formed which easier techniques (e.g. histograms). On the other hand,
we could have recognized the extracted lines in the historical documents.
Once again, the reasons were due to scheduling; we decided to focus on
the pre-processing stages and not to adapt the current HWR decoder to
this data, which would have involved training new LMs and tuning some
of the parameters of the recognizer.

◦ Participate in DIBCO contests. In Chapter 4, we used the DIBCO
and H-DIBCO datasets as the main corpora evaluation. We could have
submitted our approaches to these contests, but the submission required
the preparation of a stand-alone executable file with some requirements.
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Since it was not straightforward to adapt our toolkit and scripts to fulfill
these demands, we decided not to invest effort in this matter.

◦ Try many new regularization techniques that have been included
in most of the toolkits. During the elaboration process of this PhD
Thesis, many ANN-related methods appeared and they were integrated
into many toolkits. If we had presumed that these techniques could im-
prove our classifiers, we would have considered them. However, there
is a huge list of new techniques that we could have applied in our dis-
criminative training. Implementing all of these techniques would have
been tedious, but, indeed, most of them are integrated by the commu-
nity/developers in open source toolkits like Theano, Torch, Tensorflow.
This allows to apply them applied without significant coding effort. Here
is a list of some of the trends in ANN training, that we should have, at
least, given a try:

– Batch Normalization/Layer Normalization [Ba et al. 2016; Ioffe et
al. 2015]

– Inception Nets [Szegedy et al. 2014]
– Residual Networks [He et al. 2015]
– DropConnect [Wan et al. 2013]
– Elastic distortions [D. Cireşan et al. 2012]
– Different weight initialization processes [Glorot et al. 2010]

9.4 Derived publications

Publication in ranked conferences (CORE)

◦ Pastor-Pellicer, J., Zamora-Martínez, F., España-Boquera, S., and Castro-
Bleda, M. J. (2013). F-measure as the error function to train neural net-
works. In International Workshop on Artificial Neural Networks (IWANN)
(pp. 376–384).

◦ Pastor-Pellicer, J., España-Boquera, S., Zamora-Martínez, F., and Castro-
Bleda, M. J. (2014). Handwriting Normalization by Zone Estimation Us-
ing HMM/ANNs. In Frontiers in Handwriting Recognition (ICFHR) (pp.
633–638).

◦ Pastor-Pellicer, J., España-Boquera, S., Castro-Bleda, M. J., and Zamora-
Martínez, F. (2015). A combined Convolutional Neural Network and Dy-
namic Programming approach for text line normalization. International
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Conference on Document Analysis and Recognition (ICDAR) (pp. 341-
345).

◦ Pastor-Pellicer, J., España-Boquera, S., Zamora-Martínez, F., Zeshan Afzal,
M., and Castro-Bleda, M. J. (2015). Insights on the use of convolutional
neural networks for document image binarization. In International Work-
shop on Artificial Neural Networks (IWANN) (Vol. 9095, pp. 115–126).

◦ Pastor-Pellicer, J., Castro-Bleda, M. J., and Adelantado-Torres, J. L. (2015).
esCam: A Mobile Application to Capture and Enhance Text Images. In In-
ternational Work-Conference on Artificial Neural Networks (pp. 601–604).

◦ Pastor-Pellicer, J., Afzal, M. Z., Liwicki, M., and Castro-Bleda, M. J. (2016).
Complete System for Text Line Extraction Using Convolutional Neural
Networks and Watershed Transform. In Proceedings - 12th IAPR Interna-
tional Workshop on Document Analysis Systems, DAS 2016 (pp. 30–35).

Non ranked conferences

◦ Pastor-Pellicer, J., Garz, A., Ingold, R., and Castro-Bleda, M.-J. (2015).
Combining Learned Script Points and Combinatorial Optimization for
Text Line Extraction. In Proceedings of the 3rd International Workshop
on Historical Document Imaging and Processing (pp. 71–78).

◦ Afzal, M. Z., Pastor-Pellicer, J., Shafait, F., Breuel, T. M., Dengel, A., and
Liwicki, M. (2015). Document Image Binarization using LSTM: A Se-
quence Learning Approach. Third International Workshop on Historical
Document Imaging and Processing, (pp. 79–84).

◦ Adelantado-Torres, J. L., Pastor-Pellicer, J., and Castro-Bleda, M. J. (2014).
Una aplicación móvil para la captura y mejora de imágenes de textos. V
Jornadas TIMM.

Pending

◦ (Under revision) Castro-Bleda M.J., España-Boquera S., Pastor-Pellicer J.,
and Zamora-Martínez F.(2017). The NoisyOffice Database: A corpus to
train supervised machine learning filters for image processing. Interna-
tional Journal on Document Analysis and Recognition (IJDAR).

◦ (Submitted) Pastor-Pellicer, J., Castro-Bleda, M. J., España-Boquera S.,
and Zamora-Martínez, F. (2017). Handwriting recognition by using deep
learning techniques to extract meaningful features. AI Communications.
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Other publications

◦ Zamora-Martínez, F., España-Boquera, S., Gorbe-Moya, J., Pastor-Pellicer,
J., and Palacios-Corella, A. (2013). APRIL-ANN toolkit, A Pattern Rec-
ognizer In Lua with Artificial Neural Networks (https://github.com/
april-org/).

9.5 Future work

As future work we plan to continue our research by implementing and finish-
ing the ideas mentioned in the above sections. In addition to these, we have
established the following new lines of research and techniques to improve the
methods presented in this document.

In Chapter 4, we tried different ANNs and we combined them for cleaning
and enhancing document images. It is evident that newer models could be
added to this task, which certainly will outperform the given approaches. For
example, applying a net that is similar to [D. C. Cireşan et al. 2012] which
uses multi-column deep CNNs that allow using different resolutions of the
image simultaneously. Another line of research is to use Fully Convolutional
ANNs, especially deconvolutions, and increasing the number of maps in each
convolution. We can try more ideas on this topic such as the use of 2D convo-
lutions and MDLSTMs, which work as convolutions but keep an internal state.
Therefore, it is straightforward to stack CNNs and LSTM. Particular attention
must be established for the training in order to avoid gradient explosion or
even to have a memory-efficient algorithm due to recurrence connections. It
is also straightforward to adapt these pixel-labeling ideas to MBA detection-
based tasks: TLE and TLN. However, in these cases, other post-processing
techniques are applied after the ANN classification: hence the impact of these
techniques will be smaller than in a pure pixel -labeling task.

With regard to TLE, we presented two main approaches. With respect to the
Combination Optimization Problem (Section 5.5.1), we plan to apply it to more
complex documents like embellished manuscripts. The MBA-based approach
could be improved by a better detection of the ascenders and descenders.
Remember that it detects the central zone of the line and the last contours
are extracted later. We plan to improve this stage by having a more reliable
frontiers once the line has been detected.
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On height normalization, the new techniques avoid the classification of IPs,
but both approaches (MBA estimation and IP-based [Gorbe-Moya et al. 2008])
could be combined in order to overcome their weakness and to obtain a more
robust system. We plan to use these approaches in other pre-processing
stages; for instance, it is straightforward to adapt both techniques for slope
and skew correction. For each image column, we just have to move the MBA
to the center of the image. For slant correction, some further work is required
to adapt the current models, but the final purpose is to fit all of these pre-
processing steps into only one process: scan the image using an ANN and
then apply all the full normalization on the generated maps. We also plan to
evaluate the system on other corpora to check the robustness of the proposed
approach.

With regard to HWR and decoding, the baseline recognizer has been improved
by avoiding specific feature extraction and by applying deep learning in the
optical modeling. Before trying new improvements, we plan to do proper train-
ing with paragraphs instead of lines as in [Bluche, Ney, and Kermorvant 2014;
Kozielski, Doetsch, et al. 2013]. We then propose to try deeper architectures
such as Residual Nets and also to apply other normalization techniques such
as batch/layer normalization to speed up the training in order to obtain better
results. Finally, we need to do a more thorough error analysis to determine
which steps of the whole transcription pipeline we should focus on to assure
new improvements.

In conclusion, we would like to try newer and more complex nets: ResNets,
Generative Adversarial Networks. For this purpose, we intend to optimize
our techniques in order to apply them in a reasonable amount of computation
time.
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Appendix A

Description of the APRIL-ANN
toolkit

During our research at The Natural Language Engineering and Pattern Recog-
nition Group (ELiRF) research team we started developing a toolkit for ANN
and other pattern recognition algorithms. The development started at 2005

and continues today. The first idea of this project was to develop a suit-
able infrastructure for fast development and high performance of pattern
recognition algorithms. The APRIL-ANN toolkit combines fast operation algo-
rithms developed in C++ and Lua for scripting [F. Zamora-Martínez, España-
Boquera, et al. 2013]. It uses its own binding definition between Lua ob-
jects and C++ classes. Several algorithms for ANNs and HMM as well as Im-
age Processing were coded and extensively used in our research. Following,
great improvements came to APRIL-ANN, especially about ANN and matrix
operations. After that, the code was released under GPL license and pub-
lished on GitHub by the name of APRIL-ANN (A Pattern Recognition in Lua):
https://github.com/pakozm/april-ann. The developers of our group are
still improving and extending the functionalities.

APRIL-ANN uses matrix-based objects for ANNs computations. The code can
be compiled with different mathematical libraries for fast matrix computation.
In addition, algebraic operations and memory blocks are implemented by us-
ing wrappers for performing the computation in CPU and/or GPUs. The basic
(slower) compilation uses ATLAS for mathematical matrix operations. Intel
MKL is recommended for Intel processors, and finally, CUDA compilation uses
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Chapter A. Description of the APRIL-ANN toolkit

cuBLAS among other CUDA libraries for the basic toolkit operations. High-
level objects in Lua are transparent for the implementation used, which makes
it easier the development of algorithms without relying on architecture issues.
Under the hoods, algorithms are optimized to work with the desired library.

In addition to these performance features, APRIL-ANN provides a component-
based structure for ANN algorithms, like Torch and other toolkits do. Each
component implements a typical ANN interface: forward, backprop and gra-
dient computation. The final configured ANN iterates over the components
graph which is the definition of the full neural network system. Following
these ideas, an efficient and complete toolkit has been developed which pro-
vides several features and utilities for ANNs. You can made use of deep
learning which is the case of the SDAE for layer-wise pretraining and CNNs
among others. Recurrence is also provided and we are working on extending
LSTM models to Bidirectional LSTM and Multidireccional LSTM. Also, several
regularization and training related characteristics are included in the APRIL-
ANN toolkit: weight decay regularization, sparse activation, dropout, adaptive
learning rate methods, automatic differentiation and others.
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Appendix B

Hybrid HMM/ANN Modeling

Chapter 6 and 7 showed approaches that rely on the use of full Handwriting
Text Recognition (HWR) recognizer. The recognition engine used for this pur-
pose was the one developed by the ELiRF team [Espana-Boquera et al. 2011;
Gorbe-Moya et al. 2008] and it is based in HMM/ANN. The models developed
for TLN used the original decoder, while in Chapter 7 we modified the Optical
modeling part to avoid feature extraction.

In this chapter, we illustrate the Hidden Markov Models hybridized with ANNs
(HMM/ANN) models applied for HWR which have been used during this PhD
Thesis.

B.1 Handwriting Text Recognition (HWR)

Offline HWR could be seen as a left-to-right sequence of ink strokes. HWR
engines receive a text line as input, generally the image is converted to a se-
quence X = (x1 . . . xm) of feature vectors. The main goal is to find the likeliest
word sequence (W ? = (w1 . . . wn)) that maximizes the posterior probability:

W ? = arg max
W∈Ω+

P (W |X) . (B.1)

From all the possible sequences of words of a given vocabulary Ω, we want to
know the one that has the maximum probability given the input set of features
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P (W |X). This formula is decomposed as the product of the optical model
P (X|W ) and the statistical LM using the Bayes’ theorem:

W ? = arg max
W∈Ω+

P (X|W )P (W ) . (B.2)

On the one hand, for the current work the optical modeling P (X|W ) is esti-
mated by a HMM over the sequence of features. The language modeling, as
we detail in the following section, has been approached by the use of n-gram
and connectionist LMs.

B.2 Optical models by Hybrid HMM/ANN

For the input features sequences, we want to find the sequence of words
that provides the maximum likelihood P (W |X). One way to achieve this is
to model each grapheme as a left-to-right HMM, then for a given sequence of
graphemes W ∈ Ω (word sequences are finally grapheme sequences with the
special blank character), the P (W |X) could be computed as the concatenation
of each grapheme HMM in the sequence [L. R. Rabiner 1989]. The decoding
stage with additional lexicon information will be lead the (beam) search of the
possible W ∈ Ω sequences.

In Chapter 2.4, we reviewed related works based on HMM/ANN for HWR. As
already state there, the HMM is defined by transition (p(qj |qi) from state qi to
qj) and emission probabilities (p(xn|qi) for the frame xn and the state qi).

The emission probability density function (P (x|q)) is estimated for each state
q, that is the probability of the observed feature vector x given the hypothe-
sized state q of the model. It is possible to estimate the emission probability by
a discriminative model such as MLP that approximates the a-posterior proba-
bilities of the each state P (q|x). The output of the network corresponds to the
number of possible states in the HMM: given a set of n characters and s hid-
den states for each character, the output of the net will have |n × s| softmax
output units, since they estimate probabilities [Bishop 1995; Bourlard et al.
1994].

By the Bayes theorem, the emission probabilities are obtained from the poste-
riors probabilities as:

P (x|q) =
P (q|x)P (x)

P (q)
. (B.3)
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We want to find the best alignment. Therefore, we can ignore the P (x) since it
is constant for all the possible alignment. It lead us to the scaled likelihoods:

P (x|q) ∝ P (x|q) =
P (q|x)

P (q)α
. (B.4)

The class priors P (q) can be estimated from the relative frequencies of each
state on the training set. For example, we could apply forced alignment to get
an initial estimation. The α parameter weights the state priors (0.0 ≤ α ≤ 1.0).

On the counterpart, the ANN receives a contextual field on the centered frame
x. The approach runs like a sliding window of n frame neighbors, and the net
receives (n+ 1 + n) ∗ features input units.

B.3 Language Modeling

The second part of the equation corresponding to the P (W ) describes the a-
priori probability of the sentence. Since the sentence is formed by a sequence
of m words (w1, w2, · · · , wm), the probability could decomposed by the chain
rule:

P (w1, w2, · · · , wm) =
∏

i=1,...,m

P (wi|w1 · · · wi−1) . (B.5)

From left-to-right each word is estimated as the previous history words, n-
grams restrict the size of the history to n− 1 words:

P (wi|w1... wi−1) ∼ P (wi|wi−(n−1) . . . wi−1) . (B.6)

The word LM is integrated into the recognition process using the word insert
penalty and grammar scale factor commonly applied in the domain of speech
recognition.
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Count based n-grams The estimation of the parameters of n-gram models
is traditionally done by counting. The probability of a given n-gram is formu-
lated as the counting of the n-gram by the occurrences of the (n− 1)-gram:

P (wi|wi−(n−1) . . . wi−1) =
C(wi−(n−1) . . . wi)

C(wi−(n−1) . . . wi−1)
. (B.7)

Since the data is sparse, it is required to use smoothness techniques. The
main ideas are based on adding part of the probability mass to unobserved
events or combine with back-off models.

Neural Network Language Models (NNLMs) NNLMs could estimate
posterior probabilities such as the n-gram model:

P (wi|wi−(n−1) . . . wi−1) . (B.8)

A basic setup is to take as input the n − 1 words, and the output is composed
by |Ω| softmax units, where each output unit j estimates [Bengio, Ducharme,
et al. 2003; Schwenk 2007]:

P (wj |wi−(n−1) . . . wi−1), wj ∈ Ω (B.9)

Usually, input words are coded at the input as 1-of-k (one-hot-encoding) of the
size of size |Ω|. Then, as seen in Figure B.1 a shared weights projection layer
reduce the dimensionality of the sparse input.

B.4 HMM/ANN engine description (Baseline)

Once introduced the basics of our recognition engine, we concrete some of
the parameters used. This architecture is fixed in this PhD Thesis recognition
experiments unless we explicit mark the changes.

In our baseline system [Espana-Boquera et al. 2011], the emission probabil-
ities are estimated by an MLP, whose input is a sequence of feature vectors
following [Toselli, Juan, et al. 2004].

The recognition engine is based on a hybridized HMM with an MLP to model
graphemes, which was presented in [Espana-Boquera et al. 2011]. Each grapheme
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Figure B.1: NNLM used. It depicts a 4-gram. L indicates the one-of-k vectors, P the
projection layer, H the note the hidden layer(s), and O the final output layer. [Figure
extracted from [F. Zamora-Martínez 2012]]

is modeled with a 7-state left-to-right HMM topology with loops and without
skips. The connectionist model used to estimate the emission probabilities of
the HMM states was an MLP with 2 hidden layers of 512 and 256 units, respec-
tively, using the softmax activation at the output layer. The HMM/ANN system
is trained by means of an EM procedure with a forced Viterbi alignment.

The images received by the recognition engine were preprocessed follow-
ing the skew and slant correction presented in [Espana-Boquera et al. 2011]
and following the height normalization proposed in [Pastor-Pellicer, España-
Boquera, F. Zamora-Martínez, et al. 2015]. For each HMM step, the parametriza-
tion obtained 11 contextual frames, which were extracted from a window of
28 × 42. W.r.t to the HMM, for each grapheme a 7-state left-to-right topology
with loops and without skips has been chosen. On the traditional setup, a neu-
ral model for generating the emission probabilities of the HMM graphemes
was trained by an MLP with 2 hidden layers of 512 and 256 units using the
softmax activation at the output layer. One output unit for each state of ev-
ery HMM was needed, for a total of 553 output units (79 grapheme models
composed of 7 states each).
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B.4.1 N-gram model

The n-grams language models were from [F. Zamora-Martínez, Frinken, et al.
2014] whose vocabulary size differs from the original work [Espana-Boquera
et al. 2011]. A 4-gram with Witten-Bell smoothing that was trained with the
SRILM toolkit [Stolcke 2002] was used. The text corpora used to train the
n-gram LM were: the LOB corpus [Johansson et al. 1986] (excluding those
sentences that contain lines from the test set or the validation set of the
IAM task), the Brown corpus [Francis et al. 1979], and the Wellington cor-
pus [Bauer 1993]. The lexicon of the LM had approximately 103K different
words. Word insertion penalty and grammar scale factor parameters were
optimized on the validation set by means of the MERT procedure [Och 2003].
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Appendix C

Document Image Corpora

In this Appendix we collect the corpora used during our evaluation. We will
include references, and used data distribution and partitions.

C.1 Document Image Binarization

In Chapter 4 we briefly disscussed different techniques to generate supervised
corpora for the DIB task. As it has been stated, it is important to judge and
evaluate our methods but also know the kind of data evaluated (distribution,
the level of noise, type of documents, difficulty).

C.1.1 DIBCO

The Document Image Binarization Contest (DIBCO) [B. Gatos et al. 2009;
Pratikakis et al. 2013] and the Handwritten Document Image Binarization
Contest (H-DIBCO) [Pratikakis et al. 2012, 2010] are contests that have been
hold in the context of the International Conference on Frontiers (ICFHR) in
Handwriting Conference and International Conference on Document Analysis
(ICDAR) and Recognition conferences since 2009.

In each edition, a new set of images has been provided for evaluation. Images
from previous editions could be employed to train or verify the developed
approaches. From now on, we are going to refer as DIBCO corpus as the set
of supervised images of the several editions of DIBCO and H-DIBCO contests.
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Using this corpus for evaluating has several advantages:

◦ It is a public competition, the images have been generated using novel
noising techniques and they have been used and tested by different
groups and companies.

◦ The ground truth is not expected to be ambiguous or subjective.

◦ It is easy to compare with the state-of-the-art methods since the evalua-
tion and results are provided in each edition.

This dataset also has some drawbacks:

◦ Even tough each year new set of images is provided, the set of images of
each edition is relatively small.

◦ The corpus has very different types of images, noises, fonts, and scales.
It is hard to find two different pages with the same style, font size or
background and, also, the sizes of the images differ.

These pecularities make that supervised based methods perform worse than
other heuristics and adaptive methods. Even though, it is very interesting to
see which one is performing better in this kind of conditions.

In past edition, supervised-based methods were trained using data of the con-
tests and, additional training data. Hence it is common to use enriched cor-
pora with more synthetic data. Another important point for success in super-
vised techniques is the capability of generalization when trained with hetero-
geneous data.

In our case, only data of previous editions has been used for training the ANN-
based methods. Three partitions were used as shown in table C.1.

C.1.2 Saint Gall

The IAM Historical Saint Gall dataset has been used as well for our DIB evalu-
ation purposes. More details of the IAM Historical Document Database (IAM-
HistDB), are provided in the next section.

This document database is appropriate for supervised methods since the font
and size of the text are homogeneous along the full collection, and there are
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Train Validation Test
CORPUS HW TW HW TW HW TW
DIBCO 2009 7 7
H-DIBCO 2010 10
DIBCO 2011 8 5 3
H-DIBCO 2012 12
DIBCO13 8 8
Subtotal 25 12 12 3 8 8
Total 37 15 16

Table C.1: Set distributions for DIBCO and H-DIBCO. There are two types of images:
Handwritten (HW) and Typewritten (TW).

lots of pages and enough meaningful data. Besides, these documents are ideal
to see how the evaluated method can learn text shapes and edges of the ex-
pected text. However, it is also convenient for adaptive methods with small
tuning of the parameters they perform well for the rest of collection.

The dataset includes transcriptions and line descriptions. WER and CER would
be good indicators about how our approaches improve the pre-processing but
other DIA metrics could be evaluated.

Cropping Saint Gall images have been taking by a digital scanner, so there
are black bands (out-of-page) on the extremes of the images. This is very com-
mon when the source of the data came from scanners and other specialized
cameras. In this case, there is some ambiguity about how to deal with this:

1. Since there is no text and it is of the background, they are considered as
background. That is class 0, or white pixels on the background.

2. Keep them as a foreground since there are black pixels they can be con-
sidered as black pixel or 1 label foreground pixels.

3. It is possible to remove this ambiguity applying basic heuristics.

Some supervised approaches can deal with this artifact due to they can learn
to remove it, while other heuristics methods like Sauvola’s and Otsu’s will fail
in this case. Anyhow, it is not a big problem because it is easy to remove
this black background like where a simple heuristic is applied, and the images
have been cropped to the sheet size.
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The black bands constitute an important part of the image ( 10/30% of the pix-
els). So for our purposes we have generated a new dataset (Saint Gall - Crop)
without the bands, we applied a separate vertical, and horizontal histogram
for each row/column and a band is removed if the percentage of black pixels
is above 90%.

For training and evaluation we have taken the sets depicted in the corpus
description:

◦ Training: 20 pages corresponding to manuscript Codex Sangallensis
562, pages 3 to 20.

◦ Validation: 10 pages of manuscript Codex Sangallensis 562, pages 24,
28, 32, 36, 49, 44, 48, 55, 59 and 63.

◦ Validation: 30 pages of manuscript Codex Sangallensis 562, pages 23,
25−27,29−31, 33−35, 37−39, 41−43, 45−47, 49, 50, 54, 56−58, 60−62,
64 and 65.

C.1.3 Noisy Office

This corpus comprises different types of noise added to a synthetic typewritten
data. In this case, we have a document text templates which are faded with
some background taken from real paper pictures.

Noisy Office can be considered a toy corpus since the resolution of the images
is very low (small patches around 540x420 pixels with 200ppi. The foreground
text is printed which no distortion. Moreover, the images have the same size
and text style. This dataset is very suitable for machine learning methods.

On the other hand, it represents real and expected noise in an office environ-
ment: folded sheets, wrinkled sheets, coffee stains, footprints. The font is sans
serif or roman with sizes: footnote, regular or large.

Besides, it presents some stains and other hard noise which is not easy to
remove. Additionally, the computing of the ground truth is straightforward,
due to the background and the noise have been added later to the synthetic
data.
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C.1.4 Corpora Information

Table C.2 shows some information about the corpora; these indicator try to
illustrate the complexity of each corpus. It is hard to measure the quantity
and level of noise in each since several kinds of noise could be appeared.

So we measure the size of the images which is directly proportional to the
computation cost since each neural network is applied at pixel level. We also
measure the signal/noise ratio with the Peak Signal to Noise Ratio (PSNR)
which is computed as 10 · log10( 1√

(MSE)
), where the MSE is the mean squared

error between the dirty image and the ground truth, the lower this score, the
noisier the outcome.

C.2 IAM Historical Document Database
(IAM-HistDB)

The IAM Historical Document Dabase (IAM-HistDB) has been also used for
evaluating the approaches developed in Chapter 4 and 52.

According to their web page:

The IAM-HistDB is a repository of data sets that contain handwrit-
ten historical manuscript images together with ground truth data
for training and testing automatic handwriting recognition systems

The IAM-HistDB is compiled by three datasets: Saint Gall, Parzi-
val and the Washington databases. We have mainly worked in the
former two.

The database was generated by the Research Group on Computer
Vision and Artificial Intelligence at the University of Bern.

2http://www.fki.inf.unibe.ch/databases/iam-historical-document-database
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DIBCO Train Validation Test
Images 37 17 16

Total Pixels 28, 71Mp 20, 28Mp 29, 39Mp
Largest Image 2044× 1308 2245× 1317 4161× 1049

Foreground pixels 0.09Mp (7.3%) 1.4Mp (6.9%) 1.98Mp (6.74%)
PSNR1 10.98 11.25% 10.88%

Saint Gall Train Validation Test
Images 20 10 30

Total Pixels 332.26Mp 166.133Mp 498.401Mp
Largest Image 3328× 4992 3328× 4992 3328× 4992

Foreground pixels 11.74Mp (3.53%) 5.34Mp (3.21%) 16.31Mp (3.27%)
PSNR 5.13% 5.13% 5.17%

Saint Gall (CROP) Train Validation Test
Images 20 10 30

Total Pixels 252Mp 125.9Mp 379.03Mp
Largest Image 3328× 3970 3195× 3996 3230× 3967

Foreground pixels 11.74Mp (4.65%) 5.34Mp (4.24%) 16.31Mp (4.3)
PSNR 10.35 10.52 10.54

OFFICE Train Validation Test
Images 72 72 72

Total Pixels 142.3Mp 142.3Mp 142.3Mp
Largest Image 540× 420 540× 420 540× 420

Foreground pixels 1.51Mp (10.63) 1.52 (10.62%) 1.44 (10.18%)
PSNR 13.55 13.78 12.34

Table C.2: Statistics about the binarization corpora.
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pages lines words w. labels letters
Saint Gall 60 1410 11597 4890 49

Parzival 47 4477 23478 4934

Training Validation Test
Pages Lines Pages Lines Pages Lines

Saint Gall 20 471 10 1405 30 721

Parzival 24 2285 9 720 14 1405

Table C.3: Distribution of the Historical IAM-DB.

C.2.1 Saint Gall

The images of the Historical IAM Saint Gall Database are captured
from the Manuscript images of the Codex Sangallensis 562. The
dataset and contains a handwritten historical manuscript:

◦ 9th century.
◦ Latin Language.
◦ single writer
◦ Carolingian script
◦ ink on parchment

Distorted Saint Gall A distorted version of the Saint Gall
dataset was created by [Kieu, Visani, Journet, Domenger, et al.
2012], we used it to asses our approaches as well.

C.2.2 Parzival

The PARZIVAL Dataset database is compiled from 13th century Gothic
scripts:

◦ 13th century.
◦ Medieval German language.
◦ three writers.
◦ Gothic script.
◦ ink on parchment.

Table C.3 show some statistics of both corpora.
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C.3 IAM Offline Database

The IAM offline dataset [Marti et al. 2002a] is composed of forms
containing handwritten English sentences extracted from the LOB
corpus [Johansson et al. 1986]. The version 3.0 of the IAM Dataset
(http://www.iam.unibe.ch/fki/databases/iam-handwriting-database)
has been mainly used for evaluating our developments in the recog-
nition engine and text line pre-processings. This version collects
5685 sentences from 657 different writers, with a total of 115000

word instances, composed by a total of 78 different graphemes.
The forms are divided into lines, which are the input for the exper-
imentation of this work. The standard training and test partitions
have been used.

C.3.1 Interest Points, Text Reference Lines and MBA
ground truth

The reference lines from a subset of 773 text line images from the
training data of the IAM database have been manually labeled us-
ing a bootstrapping approach and interactive tools, as described
and used in [Espana-Boquera et al. 2011; Pastor-Pellicer, España-
Boquera, P. Zamora-Martínez, et al. 2014; F. Zamora-Martínez, Frinken,
et al. 2014]. This subset of lines has been split into training and val-
idation.

224

http://www.iam.unibe.ch/fki/databases/iam-handwriting-database


Appendix D

Text Line evaluation and
ground truth formats

D.1 Evaluation and metrics

Likewise with DIB (Chapter 4), it is possible to evaluate the perfor-
mance of TLE directly on the text line detection or its impact in fur-
ther stages, for example, the final transcription error (CER/WER).
In this PhD Thesis we discuss and utilize text-line-level error met-
rics even though they could be misleading. For example, if we
missed a part of a text line it could have a notable impact on the
TLE metrics, but maybe, the lost stroke has not any effect on the
final recognition. The opposite situation could happen as well: only
a small part of the line is missed, but it has a bigger impact on
the recognition rates. However, as always, we could assume some
homogeneity and error correlation between the text line extraction
performance and the following stages. It is reasonable to think
that a wrong text line segmentation will lead to bad transcription
results.

At line level, usually, the shared regions between ground truth
and predicted lines are evaluated. Since the line frontiers could
be ambiguous because of the white spaces between them, during
the evaluation, only foreground pixels are taken into account. Two
main drawbacks are drawn:
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◦ We need a strong foreground definition. Therefore we have
the issues related to the binarization ground truth described
in Chapter 4.

◦ How to treat grayscale images, should we weight the results
according to the brightness valu of each pixel?

The evaluation process compares a set of ground truth lines with
the predicted lines. This could be approached as a precision/recall
problem, such as an information retrieval task. In addition, the
evaluation could be computed at two different levels:

◦ Line level. We count the line hits and misses according to
matching criteria between predicted and ground truth lines.
It estimates how many lines have been detected correctly ac-
cording to some tolerance threshold.

◦ Pixel level. We could compute the error without relying on
“all of nothing” line thresholding evaluation. The evaluation
is given by counting the number of well detected pixels. Thus
the ratio of foreground pixels that have been tagged correctly
is estimated.

Match Score from ICDAR The Match Score (MS) evaluation
has been applied in several text line segmentation contests: IC-
DAR 2009 Handwritten Segmentation Contest, ICFHR 2011 Hand-
written Segmentation Contest and the ICDAR 2013 Handwritten
Segmentation Contest [B. Gatos et al. 2009; B. Gatos, Stamatopou-
los, et al. 2010; Stamatopoulos et al. 2013]. Besides, the proposed
metrics in these contests have been widely applied for evaluation
and comparison between text line extraction algorithms. This as-
sessment has been adapted from [Phillips et al. 1999] which was
initially proposed for graphic recognition systems.

MS counts the text line matches between the prediction and ground
truth lines. Lets us have a set of N predicted and M ground truth
lines. Let G be the set of M entities in the ground truth, and R the
N objects predicted. It is a function that computes the intersec-
tion of the foreground pixels between a predicted line (Ri) and the
ground truth line (Gj). For each pair of lines, it returns a real value
[0, 1] computed as:

MS =
T (Gj ∩ Ri ∩ I)

T (Gj ∪ Ri) ∩ I
. (D.1)
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gt
pred 5 6 7

1 .79 .11 0
2 0 .68 .08

3 0 0 .86

Table D.1: Sample of the MatchScores between predicted lines (1, 2, 3) and the gt lines
(5, 6, 7). For example the MatchScore(1, 5) = T (G1 ∩ Ri)/T (G1 ∪ R5) = 11/4 = 0.79.

A M×N score matrix with all possible pairs is generated. Table D.1
has been taken from the illustrative example used on the evaluation
procedure explanation1.

After computing the MS matrix, we consider a one-to-one match
(o2o) if a cell score is higher than certain threshold Tα (0.95 for
handwritten and modern documents, and 0.9 for historical docu-
ments). Finally, the evaluation is expressed regarding precision
and recall. Thus it assesses the trade-off between the Detection
Rate (DR) and the Recognition Accuracy (RA). DR tracks the
number of predicted lines that have been correctly assigned (pre-
cision), while the RA evaluates the correctly detected ground truth
lines (D.2). Besides the F-Measure (FM) proposed computes the
harmonic mean between the DR and RA.

DR =
o2o

N
, DA =

o2o

M
, FM =

2DR RA

DR+RA
. (D.2)

Pixel Level Hit Rate (PHR) and Text-Line-Level Detection Rate
(TLL-DR) The Pixel Level Hit Rate (PHR) and Text-Line-Level
Detection Rate (TLL-DR) are the metrics proposed by [Y. Li et al.
2008]. These measures work either at the line and pixel levels. The
evaluation at page level is similar to the MS since it counts the hits
and misses of predicted/ground truth lines.

For computing both metrics, first, similar procedure than the MS
function is followed. Generating, a M×N matrix with the scores
of all the predicted/ground truth pairs. The score function (Pi,j)
computes the shared foreground pixels between a predicted (Ri)
and a ground truth line (Gj). Note that the score matrix, as we will
see, differs slightly with the MS matrix computed previously:

Pi,j = T (Gj ∩ Ri ∩ I) . (D.3)

1http://users.iit.demokritos.gr/~nstam/ICDAR2013HandSegmCont/Evaluation.html
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Once the matrix is computed, both approaches diverge. In this
case, the primary goal is to get one-to-one correspondence between
each of the ground truth and predicted lines. If the number of lines
differs, dummy lines are added. So we have a P ′ matrix of dimen-
sion max(M,N)×max(M,N). For each possible line assignment,
the Goodness S is computed as the sum of all shared foreground
pixels between the pairs of lines in the assignment.

Goodness(S) =

max(M,N)∑
k=0

Pk,S(k) . (D.4)

Following, the best assignment is computed as the one that maxi-
mize the Goodness:

So = arg max
S

Goodness(S) . (D.5)

Finding the best assignment is solved applying combinatorial op-
timization algorithms. The authors used the Hungarian algorithm
for an efficient computation in polynomial time. Once the best as-
signment is fixed, the PHR is defined as the number of shared black
pixels between each of the pairs, normalized by the number of black
pixels in the ground truth:

H =
Goodness(So)

#foreground
. (D.6)

Finally, it is computed the TLL-DR as the number of well-detected
lines. A line is claimed to be detected if it shares with the predicted
90% of the foreground pixels:

Pi,So(i)∑N
j=1 Pi,j

≥ 0.9,
Pk,So(i)∑N
k=1 Pk,So(i)

≥ 0.9 . (D.7)

Text Line and Pixel Accuracies The PHR and TLL-DR met-
rics do not take into account false positives such as extra lines
detected which do not correspond to any of the ground truth en-
tities. [Fischer et al. 2014] presented an elegant way to deal with
this problem; they introduced the Text Line Accuracy (Tla) and Text
Line Pixel Accuracy (TL-PA) which treat the predicted/ground truth
lines assignment problem by means of substitutions, deletions, and
insertions. It performs the same one-to-one line assignment than
[Y. Li et al. 2008] and after, the matching process, errors such as

228



D.1 Evaluation and metrics

insertion, splits, merges, and missed lines, are penalized. A line is
correctly detected if it shares more than 90% of the pixels with the
corresponding ground truth line. Hence, substitutions are matches
that do not reach the given threshold. Deletions and insertions
represent false negatives and false positives lines respectively. The
matching value is calculated by the symmetric difference (|A4B|)
respect the intersection of two lines:

|Ri4Gj |
|Ri ∩Gi|

≥ 0.9 . (D.8)

AccT4 =
N − S −D − I

N
. (D.9)

At pixel-level they defined the Text Line Pixel Accuracy (TL-PA):

AccP =
NP − SP −DP − IP

NP
(D.10)

Finally, as they claim, if you skip the insertion errors in this formula
it leads to the correctness (Correctness = N−S−D

N ) which corre-
sponds with the TLL-DR and PHR.

Precision and Recall So far we have seen several evaluation
techniques that are similar but with significant differences. TLL-DR
and Tla based approaches require a one-to-one assignment, while
MS based takes into account all the possible matches. As observed
the pixel level evaluation always required from a one-to-one assign-
ment to state the line that it belongs to. Put it in other words: a
pixel cannot be claimed as correctly labeled if we do not know the
line that must be assigned. One of the main drawbacks of the PHR
is that it only takes into account the recall of the lines since it cal-
culates how many pixels of the ground truth have been correctly
labeled, but the recognition accuracy (or precision) is ignored. This
measure could be adapted to extract the precision and hence the
FM. [Fischer et al. 2014] solve these problems by adding insertions
to the accuracy equation.

Our proposal generalizes the previous measures to compute the
pixel precision and recall. Then we can translate the same idea at
line level, which is very similar to the DR and RA. According to
the best assignment So, it is possible to compute the pixel recall of
paired lines as the ratio of the detected ground truth pixels by the
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predicted ones. Analogously pixel precision is calculated by com-
puting the ratio of predicted lines that correspond to the ground
truth.

Equations D.11 and D.12 formalize the precision and recall be-
tween a pair of lines following the previous nomenclatures.

recalli,j = Pi,j∑N
j=1 Pi,j

=
T (Gj ∩ Ri ∩ I)

T (Gj ∩ I)
. (D.11)

precisioni,j = Pi,j∑N
i=1 Pi,j

=
T (Gj ∩ Ri ∩ I)

T (Ri ∩ I)
. (D.12)

Finally, we aggregate the shared pixels Pi,j of the whole assignment
So, which, indeed, is the Goodness previously introduced. Normal-
izing the Goodness by the number of ground truth and predicted
pixels give us the pixel and recall and precision respectively:

recall =

∑max(M,N)
k=0 Pk,So(k)

#gt
=

=
Goodness(So)

#gt
=

max(M,N)∑
i,S(i)

T (GSo(i) ∩ Ri ∩ I)

T (GSo(i) ∩ I)
= H . (D.13)

precision =

∑max(M,N)
k=0 Pk,So(k)

#gt
=

=
Goodness(So)

#gt
=

=

max(M,N)∑
i,S(i)

T (GSo(i) ∩ Ri ∩ I)

T (Ri ∩ I)
. (D.14)

Hereby a balanced evaluation metric, the FM could be finally com-
puted as:

FMβ =
(1 + β2) · precision · recall

β2 · precision + recall
. (D.15)

FM = FM1 =
2 · precision · recall

precision + recall
. (D.16)

230



D.1 Evaluation and metrics

Line level accuracy The precision and recall at line level re-
quire again from some thresholding criteria that states if a line is
well detected or not. In this manner, we take into account the hits
(correctly identified lines, eq: D.17).

Pi, So(i)∑N
j=1 Pi,j

≥ 0.9, Pk,So(i)∑N
j=1 Pi,j

≥ 0.9 . (D.17)

Dividing the hits by the number of ground truth lines gives us the
line recall, and if we do so by the number of predicted lines, we
finally obtain the precision. Note that, the recall at line level cor-
responds on the TLL-DR previously introduced. Finally, the FM is
computed as the harmonic mean between the precision and recall.

precisionline = hits
N .

recallline = hits
M = tll-dr .

FM line = 2·precisionline·recallline

precisionline+recallline
. (D.18)

To finish, it is worth to mention that these measures are just a gen-
eralization of the metrics proposed in [Y. Li et al. 2008]: the idea of
the best assignment is maintained, but the precision of the predic-
tion comes now into the game.

Opening Points Even though we have not used this measure
during our experimentation, it is worth to mention it since it had
been employed in some text line segmentation contests.

An Origin Point is defined as the location of the starting character
of the first word of a line (Figure D.1). Indeed, this point is set in
the left extreme of the baseline from the text line. This definition is
very vague since we only indicate where a line starts. But, on some
occasions, the primary challenge is to detect the number of lines
and their begginings due to the possibility of merged and skipped
lines. One big perk, though, is the easiness of the evaluation since
we only need to compare a set of points. This metric has been
used for some Text Line Segmentation contests; that is the case of
the Competition on Text Line Detection in Historical Documents at
ICDAR 2015.

The ground truth and the prediction are defined as set of Open-
ing Points: Ground Truth Opening Points (Q = Q1, Q2, Q3, · · · , QM )
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y: baseline of the character

x: Left edge of the character

Opening points

Figure D.1: Sample of the Opening Points of two lines. The opening point of a line is
the intersection between the baseline and the left edge of the first character.

and the estimated Opening Points (P = P1, P2, P3, · · · , PN ). For get-
ting the final scores, the two sequence are aligned. The alignment
is performed by DP, minimizing the total Euclidean distances be-
tween matches. A hit is counted if two points (prediction-ground
truth) are closer than a tolerance region R.

D.1.1 TLE metrics discussion

One can notice that MS and TLL-DR/PHR metrics are mostly equiv-
alent. And in some cases, they work identically. Indeed, it is hard
to find a practical case where the results differ. The main differ-
ence relies on the ground truth to predicted lines assignment. The
TLL-DR based metrics compute the best assignment over all the
possibles assignments, while in the MS the hits between lines are
taken into account all the possible line pairs. Therefore, the later
proposal is more reliable since it performs the one-to-one assign-
ment which is more realistic and gives the possibility to compute
the pixel level accuracy. As stated, the pixel level evaluation pro-
vide a detailed comparison between competitive methods since we
could evaluate small differences regarding the frontiers of the pre-
diction.

Another fundamental difference between both approaches relies
on the way they compute a match between ground truth and the
predicted match. The MS function counts an o2o match if the in-
tersection of foreground pixels of the lines are higher than 0.9 of
their union. The PHR instead, checks if the precision and the recall
separately are greater than 0.9 for the assigned match. In practice
these measures are equivalent. Indeed, if a match follows the later
criteria, it would follow the former one. Although one can come up
with a very unlikely scenario where two matched lines have a pre-
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Ri GjRj∩Gi

Ri∪Gj

Ri := predicted line
Gj := ground truth line
Ri∩Gj := Intersection
Ri∪Gj := Union

Ri∪Gj
Ri∩Gj

Ri∩Gj Ri∩GjRi Gj

MatchScore 

Text line accuracy

Figure D.2: Computation of hits for Match Score and text-line-level detection rate.
The Match Score checks that the intersection Ri ∩ Gj is higher than the threshold.
While Text Line Accuracy check that the intersection by the number of pixels in the
ground truth and the prediction independently are over the threshold.

cision slightly lower than the threshold, and there will be counted
as a match in MS metrics but not in TLL-DR. Figure D.2 illustrates
the matching comparison using Venn’s diagrams.

The precision and recall proposed metrics seem to us the best way
of evaluating TLE because it gives us an idea about the errors com-
mitted. For example, with PHR and TLL-DR only the recall is taking
into account, so no matter how many lines the method has guessed
as soon as it detects the ground truth lines correctly. While adding
the precision to the equation, shows the dispersion of the evaluated
method, the same way DR and DA do in MS measure.
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Computation of metrics Since all the possible pairs of pre-
dicted/ground truth, line scores must be computed the number of
comparisons is N×M . While the optimal assignment with the Hun-
garian Algorithm2 presents an additional cubic cost. It is not a big
problem since we do not deal with more than 100 lines in one docu-
ment (and 1002 and 1003 order of operations are assumable by any
modern computer). The main problem comes when evaluating the
matches between two lines. Either in MS and Tla/PHR we need
to check the number of foreground pixels overlapped between the
predicted and the ground truth lines. Since the lines are usually
defined as polygons shapes, the problem, now, relies on finding the
foreground pixels inside of these regions. The evaluation proce-
dure is evident in the bibliography, but the way it is computed in
practice could be tricky.

Checking if a pixel is inside a polygon is not straightforward, even
if we have a fast way of computing this value, we have a bunch
of queries (one per each pair evaluated). For example, most of the
methods, are linear with the number of nodes or edges and we have
libraries that provide a fast and efficient implementation, but the
line definition polygons have lots of edges, and doing the query for
each of the foreground pixels makes the procedure heavier. We
reduced the assignment problem to a polygon filling. We use a
typical polygon filling operation (like the one in Paint) for creating
a polygon mask: one corresponding to the ground truth area and
the other for the predicted. Then we apply each mask to get the
foreground pixels. If the two masks share the same bounding box,
now it is straightforward to compute the intersection Gj ∪ Ri ∩ I

and the union Gj ∩ Ri ∩ I, and then we only need to count the
black pixels to get the scores used for the evaluation. Figure D.3
illustrates this procedure.

D.2 Ground truth formats

Different formats for text line definition are discussed in this sec-
tion. We have collected the ones we have used, and some we
thought were worth to mention. Indeed, we are focusing on the
text line ground truth and format definitions.

◦ General purposes vs. Specific domain Most of the docu-
ment ground truth definitions include the line segmentation as

2https://en.wikipedia.org/wiki/Hungarian_algorithm
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Predicted Mask

Detected line and its ground truth

Ground truth Mask

Ground truth foreground Pixels Predicted ground truth pixels

Union of both polygons Intersection of both polygons

Figure D.3: Ground truth matching between one predicted line and its assigned
ground truth. The blue polygon shows the ground truth area and the red one our
prediction. Then two masks are extracted according to this areas and applied for the
foreground pixels. Finally, we see the intersection areas and the union areas that are
used for the evaluation metrics.

one of the many items coded. These elements correspond to
other recognition stages like the layout definition or the final
transcription.

◦ XML/JSON and other schemas Some of the formats in-
cluded a well-defined ontology that allows interchange and
data checking. Other formats just rely on the line definition
using pixel encoding or polygon coordinates in raw files.

◦ Evaluation versus transcription formats Some formats
are designed to be used by experts or OCR engines(TEI, IIF )
and others are more focused on the evaluation process: PAGE,
Pixel Encoded.

PAGE The Pattern Recognition and Analysis (PRimA) research
group at the University of Salford has developed and extended
the PAGE XML format schema to add and relate the many docu-
ment description elements. The creators of PAGE [Pletschacher et
al. 2010] claimed that there were several representation formats,
but each of them is designed to one of the individual transcription
stages. Therefore it is intended as a general purpose format that
allows several documents and a vast range of properties. Besides,
PAGE is more than a XML schema, it provides a set of tools to deal
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with other related operations: converters, viewers, validators, even
C++ and java libraries3.

The format is widely used by some groups and contests, for exam-
ple, the HisDoc project4 provide access to a ground truthing tool
that generates document definitions following this format. The IAM
Historical Database which we have worked with is also available in
the PAGE format.

Advantages:

◦ Suitable framework and evaluation tools provided for several
platforms and programming languages.
◦ Clear data structure with a XML validated schema.
◦ It is capable of providing information not only on text line seg-

mentation and Layout Analysis but transcriptions and more
document preprocessing stages.

Handicaps:

◦ It is a very general purpose definition. Even the schema is
complete and well define, one needs to perform an specific
parsing of the document to extract the line definitions.
◦ The XML data overload with redundant tags.

<PcGts xsi : schemaLocation="http : / / schema. primaresearch . org /PAGE/ gts /
pagecontent/2013−07−15 http : / / schema. primaresearch . org /PAGE/ gts /
pagecontent/2013−07−15/pagecontent . xsd" pcGtsId="">

<Metadata>
<Creator>hao.wei@unifr .ch</ Creator>

<Created>2014−mars−12 15−09−08+0000</Created>
<LastChange>2014−Jul−31 14−28−32+0000</LastChange>

<Comments/>
</Metadata>
<Page imageWidth="1664" imageHeight="2496" imageFilename="csg562

−003.png">
<TextRegion type=" text " id="1396720108" custom="0" comments="">

<Coords>
<Point x="213" y="963" />
<Point x="218" y="983" />
<Point x="224" y="1011" />

. . .
<Point x="222" y="960" />

</Coords>
</TextRegion>

3http://www.primaresearch.org/tools/PAGELibraries
4http://diuf.unifr.ch/main/hisdoc/divadia

236

http://www.primaresearch.org/tools/PAGELibraries
http://diuf.unifr.ch/main/hisdoc/divadia


D.2 Ground truth formats

Figure D.4: Screenshot of the Divadia Ground Truth Editor and the visual text layout
and text line segmentation of one page from the Saint Gall database.

<TextRegion type=" textline " id="3681944" custom="0" comments=""></
TextRegion>

<TextRegion type=" textline " id="5037281" custom="0" comments=""></
TextRegion>

<TextRegion type=" textline " id="8361707" custom="0" comments=""></
TextRegion>

<TextRegion type="page" id="3999666" custom="0" comments=""></
TextRegion>

</TextRegion>
</Page>

</PcGts>

Pixel encoded TLE is usually evaluated taking only into ac-
count foreground pixels. That makes sense since it is hard to de-
scribe the exact boundaries of the lines in the space areas between
them.

The image could be coded as a 2D matrix, where the label 0 in-
dicates background and the integer values in the range [1, N ] de-
scribe the pixel assigned line (N is the total number of lines). If
the number of lines expected is less than 255 it can be easily saved
as 8 bits grayscale image. If it is not the case, we can use other
matrix portable formats like numpy, matlab, or our internal format
in APRIL-ANN. This line definition was used at the ICDAR 2009
Handwritten Segmentation Contest, ICFHR 2011 Handwritten Seg-
mentation Contest and the ICDAR 2013 Handwritten Segmentation
Contest [B. Gatos et al. 2009; B. Gatos, Stamatopoulos, et al. 2010;
Stamatopoulos et al. 2013].
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0
1 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0
0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
0 2 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 2 0 0 2 0 0 0 0 0 0 2 0 2 2 2 0 0 0 2 2 0 0 0 0 0 0 2
0 2 0 2 0 0 0 0 2 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 2 0
0 2 0 2 0 0 0 2 2 0 0 0 2 0 0 2 0 0 2 0 2 0 0 0 0 2 0 0
0 0 2 0 0 0 2 0 2 0 0 2 0 0 0 2 0 0 0 2 2 0 0 0 2 2 0 0
0 2 0 2 2 2 0 0 2 2 2 0 0 0 0 2 2 2 2 0 0 2 2 0 2 2 2 2

Table D.2: Illustration of the pixel level line encoding.

Advantages:

◦ Could be encoded as a grayscale image, and it could be visu-
ally checked with a conventional image viewer.
◦ Only foreground pixels are tagged. That avoid problems re-

lated with lines boundaries definition.
◦ Fast computation for most of the evaluation metrics.
◦ Almost all formats can be converted to this codification (albeit

they would lose information). This is the lowest level used by
TLE evaluators.

Handicaps:

◦ The format does not allow annotation or transcriptions. That
should be added to new collections.
◦ It has some problems to be supervised or modified because

there are not line frontiers or anchors points that ease the
supervision. Some approaches like Voronoi could extract the
boundary lines from the pixel definition, but it does not guar-
antee to be easy to supervise or modify.
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Sparse pixel codification Since the codification is done only
on foreground pixels, it is possible to use a sparse representation
based on indexed pixels. In this case, for each text line, we de-
fine the list of foreground pixels by coordinates that belong to that
class.

Each line of the text file includes the foreground pixels of that text
line. This definition allows getting all the pixels of a line easily,
other formats instead, require running over the whole image to
assure that we got all the pixels of one line. Nevertheless, the
2D representation image is a more explicit codification than the
indexed.

Medieval Manuscript Layout Model [Baechler and Ingold
2010] introduced a Layout Model for Historical Manuscripts. A
text line definition associated was proposed. It is worth to mention
this work since it addresses the problem of ground truthing text
lines on historical documents.

Here it is proposed a Layout Model specialized on Medieval Doc-
uments. And it separates the parts of the scanned pages on 4

layers: degradation, text, comments, and decoration. Moreover,
the line boundaries are defined using isothetic polygons.// Isothetic
polygons are an elegant solution for the line segmentation ground
truth: the lines are formed only by vertical and horizontal seg-
ments5. In the proposed XML schema, the polygon is described
by the upper and lower isothetic lines. The extremes of both lines
are assumed to be joined for vertical straight lines closing the poly-
gon area. The text line model is coded on the text layer. Also, it
is possible to compute tokens for each line like words, characters,
and glyphs.

Advantages:

◦ This is an specific model for Medieval documents. It provides
the minimum requirements to cover the properties of this kind
of documents. Hence it avoids unnecessary generalization and
complexity of the DOM XML Schema. From a developing point
of view, it simplifies the understanding and posteriors parsing
operations.

◦ It also provides an hierarchical structure from layers to nested
elements within each of the layers.

5https://en.wikipedia.org/wiki/Isothetic_polygon
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◦ Isothetic polygons use straight vertical/horizontal lines. The
frontiers of the polygon are clear, easy to compute and avoid
aliasing problems or numerical errors while calculating the
interpolated polygon lines.

Handicaps:

◦ The layers proposed deal with most of the cases from medieval
documents. But one can always find unexpected information;
it is missing some more generic class with a personalized type.
◦ In this format, they decided to use the isothetic polygon def-

inition, besides different types of polygons can be easily in-
cluded. The upper and lower line definition of the polygon
makes sense for text lines, but in decoration or figures, it is
not clear what is the upper and lower contour.
◦ The isothethic definition of the line is not natural for the hu-

man eye, and also it is a bit uncomfortable to supervise.

SVG polygons We have seen XML schemas for encoding the
document associated information. But, we already have standard-
ized, well-known and widely used XML definitions that allow draw-
ing elements (lines, polygons, shapes, embedding images). That
is the case of the widely XML-based image format Scalar Vector
Graphics (SVG) 6.

For the text line definition, we can use the polyline tag that al-
lows creating polygons, usually through a set of coordinates. The
coordinates could be absolute or relative, which each node has the
translated position respect to the previous one.

Advantages:

◦ It is a XML based format that is widely used and includes lots
of useful tools.
◦ It allows to embed or link the underlying document image.

Thus it is possible to visualize the text line definition with an
appropriate image viewer (most of the web modern browsers
support SVG).
◦ Easy to supervise, since the edges of the lines, are preserved

with the appropriated tool it is possible to modify or add new
edges to the polygons.

6More information about SVG in https://en.wikipedia.org/wiki/Scalable_Vector_

Graphics and http://www.w3schools.com/svg/.
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Handicaps:

◦ There are several ways of defining the polyline coordinates,
not only straight segments, it can include shapes and curves.
This makes harder to check the pixels inside of the polygon.
Usually, we have to restrict the polygons segments to straight
lines to ease the next evaluation.

◦ The SVG format was not mainly conceived for text line codifi-
cation. Instead, it is a general purpose drawing library. What
we are doing here is taking advantage of some of its capabil-
ities for defining our properties. But mostly we are drawing
lines and polygons on a canvas.

<?xml version="1.0" encoding="utf−8"?>
<!DOCTYPE svg PUBLIC "−//W3C/ /DTD SVG 1.0/ /EN"

"http : / /www.w3. org /TR/2001/REC−SVG−20010904/DTD/svg10 . dtd">
<svg xmlns: svg="http : / /www.w3. org/2000/svg"
xmlns="http : / /www.w3. org/2000/svg" version="1.0" width=’2690’ height

=’3794
’ id=’svg_document ’ style="display : inline ">

<g id="Volum_069_Registres_0004 .png">
<image xmlns: xlink="http : / /www.w3. org/1999/xlink " id="BgImageID" x

="0" y="0" width="2690" height="3794" xlink : href=’
Volum_069_Registres_0004 .png’ />

<g id=" lines ">
<polyline class=" line_0" points="198,544 257,544 . . . 2121,638

2121,639" style=" f i l l :none; stroke :green; stroke−width:5"></
polyline>

<polyline class=" line_1" points="300,825 409,805 . . . 2151,770
2160,763 " style=" f i l l :none; stroke :green; stroke−width:5"></
polyline>

. . .
<polyline class=" line_27" points="373,3600 481,3600 . . . " style=

" f i l l :none; stroke :green; stroke−width:5"></ polyline>
</g>

</g>
</svg>

Polygon coordinates One of the easiest ways of line encoding
is just to annotate the coordinates of each the polygon surrounding
a line. This can be as easy to note in a text file the coordinates of
the surrounding area of the text line. So in this case, we will have
a polygon per line with each coordinate, where the last point in the
sequence it is joined to the first one closing the area.

Advantages:
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Figure D.5: SVG visualization for the text line ground truth for a page from the ES-
POSALLES Marriage Records database.

◦ Very simple definition but powerful enough for describing lines.
◦ It is easy to parse and speeds up the collaboration between

researchers since the definition is straightforward: polygon
coordinates. Not ambiguities, overcharge data like XML and
other structured formats.
◦ Could be converted in other formats: PAGE, SVG, labeled pixel,

or even TEI.
◦ Easy to supervise, since the edges of the lines, are preserved,

and with the appropriated tools it is possible to modify or
added new edges to the polygon definition.

Handicaps:

◦ Extremely simple definitions does not allow much more infor-
mation than the line boundaries. No layout definition neither
transcription.
◦ It does not follow any scheme, which difficult to check the

correctness of the description.
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Text Encode Initiative

As reported in their main site,

The Text Encoding Initiative (TEI) is a consortium which
collectively develops and maintains a standard for the
representation of texts in digital form. Its chief deliver-
able is a set of Guidelines which specify encoding meth-
ods for machine-readable texts, chiefly in the humani-
ties, social sciences and linguistics. Since 1994, the TEI
Guidelines have been widely used by libraries, museums,
publishers, and individual scholars to present texts for
online research, teaching, and preservation. In addition
to the Guidelines themselves, the Consortium provides a
variety of resources and training events for learning TEI,
information on projects using the TEI, a bibliography of
TEI-related publications, and software developed for or
adapted to the TEI.

Text Encode Initiative (TEI) provide a broad set of possibilities to
encode several media. Hence it is possible and widely used the TEI
definitions for historical manuscripts. The guidelines include the
option to define lines and their transcription.

<TEI>
<teiHeader>

<fileDesc>
<titleStmt>

<t i t l e>Tit le</ t i t l e>
</ titleStmt>
<publicationStmt>Publication</ publicationStmt>
<sourceDesc>Source Description</sourceDesc>

</ fileDesc>
</ teiHeader>
<facsimile>

<surface xml: id="surface1" ulx="0" uly="0" lrx="1258" lry="1903">
<graphic url="http : / / digi .ub. uni−heidelberg .de/ diglitData / image/

cpg148/4/006v . jpg" />
</ surface>
<surface xml: id="surface1" ulx="0" uly="0" lrx="1258" lry="1903">

<graphic url="http : / / digi .ub. uni−heidelberg .de.. .007v . jpg" />
<zone xml: id="Area0" ulx="45" uly="134" lrx="330" lry="1138">

<line xml: id="Area0l0" ulx="115" uly="149" lrx="269" lry="189"
/>

<line xml: id="Area0l1" ulx="115" uly="190" lrx="303" lry="217"
/>

<line xml: id="Area0l2" ulx="114" uly="222" lrx="271" lry="247"
/>
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</zone>
<zone xml: id="Area1" ulx="57" uly="1131" lrx="713" lry="1737" />

</ surface>
</ facsimile>
<text><body>

<div facs="surface1">
<p><s>

<t i t l e>New Page</ t i t l e>
</ s></p>
<div>

<pb facs="http : / / digi .ub. uni−heidelberg .de.. .006v . jpg" />
</ div>

</ div>
<div facs="surface1">

<p><s>
<t i t l e>New Page</ t i t l e>
</ s></p>
<div>

<pb facs="http : / / digi .ub. uni−heidelberg .de/ diglitData / image/
cpg148/4/007v . jpg" />

<p facs="#Area0">
<l xml: id=" l0 " facs="#Area0l0" />
<l xml: id=" l1 " facs="#Area0l1" />
<l xml: id=" l2 " facs="#Area0l2" />

</p>
<p facs="#Area1" />

</ div>
</ div>

</body></ text>
</TEI>

Advantages:

◦ It allows line definitions and more complex characteristics of
the documents. zoning, glyphs and more semantic informa-
tion.
◦ Very complete schema with support to lots of document vari-

ants and issues.
◦ Templates and starter examples are provided.

Handicaps:

◦ Even though the clear guidelines and the completeness of the
formats, it seems (as seen in the example) a bit tedious to dive
in the XML schema for doing image transcription and zone
segmentation.
◦ The complexity of the schema could be overkilling since it is a

very general codification.
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International Image Interoperability Framework (IIF) As
its name suggests, it aims to provide interoperability between dif-
ferent image repositories. Thus, a set of tools, standard definitions,
and operations over images and image-based data are supplied.
Citing the API abstract:

The IIIF Image API specifies a web service that returns an
image in response to a standard HTTP or HTTPS request.
The URI can specify the region, size, rotation, quality
characteristics and format of the requested image. A
URI can also be constructed to request basic technical in-
formation about the image to support client applications.
This API was conceived of to facilitate systematic reuse of
image resources in digital image repositories maintained
by cultural heritage organizations. It could be adopted
by any image repository or service and can be used to re-
trieve static images in response to a properly constructed
URI.

W.r.t the Text Line Encoding, IIIF applies the concept of segments
that define parts on the document7. It allows defining rectangu-
lar bounding boxes or other nonrectangular segments using SVG
definitions.

The data interchange is performed using the Javascript Object No-
tation (JavaScript Object Notation (JSON)). Following we show a
sample of a transcribed document, the code has been taking ana-
lyzing the XHR web service request from one of the Biblissima 8.

Lately it has been converted to IIIF applying an XSL transformation
from TEI to JSON-LD9.

"@context" : "http : / /www.shared−canvas . org /ns / context . json" ,
"@id" : "http : / /demos. biblissima−condorcet . fr / i i i f /metadata /

BL_Add_10289/ l i s t / transscript_8v . json" ,
"@type" : "sc : AnnotationList" ,
"resources" : [

{
"@id" : "http : / /demos. biblissima−condorcet . fr / i i i f /metadata /

BL_Add_10289/ Annotation/8v_line449 . json" ,
"@type" : "oa: Annotation" ,
"motivation" : "sc : painting" ,

7http://iiif.io/api/presentation/2.0/#advanced-association-features
8http://demos.biblissima-condorcet.fr/roman-bl-caen/m1/
9https://github.com/stefaniegehrke/TEI-2-SC
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"resource" :{
"@type" : "cnt :ContentAsText" ,
"chars" : "De la forest a fe i t areine" ,
"format" : " text / plain " ,
"language" : " fr−FR"
},
"on" : "http : / / sanddragon . bl .uk/ IIIFMetadataService /canvas / fol io−8v .

json#xywh=1700,500,3800,208"
}

,
{
"@id" : "http : / /demos. biblissima−condorcet . fr / i i i f /metadata /

BL_Add_10289/ Annotation/8v_line450 . json" ,
"@type" : "oa: Annotation" ,
"motivation" : "sc : painting" ,
"resource" :{
"@type" : "cnt :ContentAsText" ,
"chars" : "Entor le mont, et bele et pleine . " ,
"format" : " text / plain " ,
"language" : " fr−FR"
},
"on" : "http : / / sanddragon . bl .uk/ IIIFMetadataService /canvas / fol io−8v .

json#xywh=1700,708,3800,208"
}

,
}

Diva Services The Diva Services [Marcel et al. 2016] is an ini-
tiative to provide a set of RESTful webservices using JSON schemas,
in a similar way than IIIF does. The main difference is that Diva
Services provide algorithms and techniques that can be used by
other external tools: line extraction, layout analysis, DIA, and OCR
(interest points, polygonization. . . ).

The primary objective is to normalize the interoperability between
tools and algorithms. The clearest example is the text line extrac-
tion methods. In this scenario, one tool could use a text line method
developed by somebody else using a web server. Moreover, exter-
nalization of some stages allows powerful servers to assume the
computation of heavier algorithms. And it avoids to re-implement
or compiles the algorithms for different platforms and devices.

In the case of text line extraction methods, the RESTful web service
response uses a JSON schema that defines the lines, which can be
seen as a ground truth definition of the text lines.

Next, it is shown the XHR response for a text line histogram based
algorithm; we can see that the lines are contained in rectangles.
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Nevertheless, the response could use polygons for the text line seg-
mentation.

{"output" :{}, "highlighters " :
[{"rectangle" :

{"segments" : [ [312,653] , [1970,653] , [1970,700] , [312,700] ]}},
{"rectangle" :

{"segments" : [ [669,731] , [1663,731] , [1663,749] , [669,749] ]}},
{"rectangle" :

{"segments" : [ [297,764] , [1618,764] , [1618,801] , [297,801] ]}},
{"rectangle" :

{"segments" : [ [490,836] , [1918,836] , [1918,887] , [490,887] ]}},
{"rectangle" :

{"segments" : [ [464,927] , [1914,927] , [1914,975] , [464,975] ]}},
{"rectangle" :

{"segments" : [ [320,1021] , [1985,1021] , [1985,1070] , [320,1070] ]}}
]

}

Following the corresponding POST request from the server:

{
algorithm : {name: "Histogram Based Text Line Segmentation"},
highlighter : {type : "rectangle" , closed : true ,
segments: [ [250, 611] , [250, 2830] , [2047, 2830] , [2047, 611] ]},

image: {_id : "5625010c966f808d22e463af" ,
clientName: "csg562−063.png" ,
extension : "png"},

inputs : {}
start : "2015−10−19T14:43:43.419Z"
started : true

}

Advantages:

◦ Nowadays the interest of using web services (specially REST-
ful) is growing in all the researching: economics, biology, fore-
casts, social networks. Use them as standard interchange for-
mat is a significant advance for the libraries and transcribers.

◦ In the case of Diva Services, the initiative allows to various
teams and research groups to provide their algorithms as web
services which allow to apply them to new tasks easily and
compare the results.

Handicaps:

◦ These formats are thought for interchange and not for storage.
What one could see here is the redefinition of XML and other
schemas into JSON.
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◦ It is needed to standardize the algorithms schemas on the
DIVA Services since some of the algorithms are parameter-
ized.

Others We apologize for not including other formats, and we
are sure we have forgotten to mention a bunch of several text defi-
nitions.

Some of the formats that could not been reviewed in this format
exploration have been the ALTO (Analyzed Layout and Text Object)
format10, hOCR 11 or Pink Panter [Yanikoglu et al. 1998].

Humanist and historical communities From an humanis-
tic point of view, just say a few words about the very necessity of
providing reliable formats and tools to standardize the transcrip-
tion procedure. During this chapter, we focus on TLE, but when
talking about ground truth and coding, the corresponding data for-
mats must also be reliable for the following human transcription,
correction, and annotation. If the whole transcription process is
perfect no human supervision is required, but w.r.t to complex an-
cient/historical documents the recognition engines are still far from
perfect. In fact, the final users of this tools are mainly humanists
and experts which are aiming to transcribe as much as documents
as possible. When one dives a bit in this community, it is surprising
that some of the transcribers use a side-by-side document image
and the text editor to perform the transcription. In other cases the
codification of the transcription on the XML based TEI encoding
which is popular among humanists: the expert opens an XML editor
and works directly on the XML definition. If the alignment is noted,
they even take coordinates from an image viewer/editor. This pro-
cedure leads to a lot of errors and unnecessary human overwork.
For this matter well defined and logical models as well as robust
are desirable for the humanist community.

10https://www.loc.gov/standards/alto/techcenter/layout.php
11https://en.wikipedia.org/wiki/HOCR
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Appendix E

Text Reference Lines (soft)
ground truth generation

One of the key points of this PhD Thesis is the concept of Interest
Point (IP) which has been used in TLE and TLE. The same ideas
have been followed in both tasks: first, we use the IPs for extracting
the reference lines and, then, we determine the Main Body Area
(MBA) of the text line. In the former scenario, the MBA is used to
extract the orientation and areas of the lines. In the later, the MBA
is used for a non-uniform text height normalization.

This IP extraction and classification requires from a supervised
ground truth, which is obtained by supervising and classifying LEPs.

In this Appendix we show the supervision of LEPs/IPs and the re-
lated data generated to assist our models. We refer to it as "soft"
ground truth since the IP classification task is not a proper applica-
tion. It is an intermediate step that we employ to build models that
used in further tasks.

E.1 Interest Point (IP) supervision

In Section 5.3 we showed how the IP are extracted and classified.
In TLE the Local Extrema Points (LEPs) are extracted from a full
page and in TLN the LEP are used at line level instead. There are
two main differences to separate the two process:

249



Chapter E. Text Reference Lines (soft) ground truth generation

Figure E.1: Sample of ICDAR 2013 Handwritting Segmentation Contest.

◦ It is easier, as we will see, to supervise the points at line level
than the in the whole page. So for the supervision stages, we
will separate the entire process in the two stages.

◦ When classifying LEPs, the classes are different for the line
and page scenarios. At the page level, we add new classes
that we could in the line based classification since the input
lines have been separated than decorations and noises.

Even though the primary objective is to extract the supervised points
for the whole page, in TLE, the reference lines are defined at line
level. Hence, it is more intuitive to supervise one line at a time.
Therefore, we split first the pages into lines, then compute the IP
and finally, this information is translated back to the full page.

Cut lines The first step is to extract the lines from the page.
We use for this purpose the text line definition in the ground truth.
Each line is cut and pasted in a new blank image of the size of its
bounding box. Even if the bounding box contains traces or parts
from other lines, we copy only the foreground pixels of the current
line.
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Initial IP Classification Once the lines have been cut, we need
to supervise them. For that, it is required and initial classification
of the points and then correct the mistakes. The classification of
points at text line level was presented in [Gorbe-Moya et al. 2008].
There are two main contributions in this PhD Thesis with respect
to the original IP framework:

1. Two new classes are added in our contribution: ignore and
dirty.

2. The models have been improved by including CNNs.

The idea is to have an initial classification of the points. We have
three options:

◦ Local Extrema or Naïve classification. No prior classification
is performed. Only the extrema points are extracted, then the
supervisor starts with a non-labeled set of points.

◦ Heuristic classification. In this case, we do not rely on ML
methods. We had tried to apply histogram based rules. The
results are not perfect, and it requires posterior supervision.

The heuristic classification is performed by means of horizon-
tal projection histogram. For that, the upper and lower base-
lines are estimated using a fixed height according to the fron-
tiers of the histogram. Then the LEPs are classified according
to the proximity to these lines.

◦ Transferred learning. If another model is trained previously,
it can be used for the initial classification. For this purpose
would be great to have a range of models for different styles
and fonts and use the one who has higher similarity.

This classification step is crucial, and a good initial set can save
human effort. Moreover, a weak classification could be counterpro-
ductive since the expert will have to remove lots of misclassified
points.

Note that at text line level the dirty class barely appears during the
supervision, but later we will add this IP as the points on the page
that are not in a text region.

251



Chapter E. Text Reference Lines (soft) ground truth generation

Text line Bootstrap Then a bootstrap supervision process is
followed. The underlying idea is to supervise a few set of lines, then
train a first model, generate a new set of IPs and supervise new
lines taking into account the new supervision. And we can do this
iteratively to speed up the process. With this into account, the first
question that comes up is about how many lines supervise in each
iteration. It relies on several factors: available for supervision,
accuracy of the first segmentation, the type of data. For instance,
we can set fixed amount of time for each supervision step. Let us
say 1 hour approximately, in that time we classify as many points
as possible and after we retrain the classifier with the new points.
Now, we continue supervising for another hour, if the things go as
expected the speed of supervising is supposed to improve because
fewer corrections are committed. Then another retraining of the
model and continue supervising more pages, since we reach the
number of lines that can assure us a good performance in the task
we are dealing with.

Translate points to page In this stage, the points supervised
are brought back to the original full page.

The methods exposed in this work on the beginning are using a
receptive field related to the pixel or interest point we want to clas-
sify. If we train our ANNs using only the lines, the receptive field
will include only information of the current line and it will not have
more surrounding information, which is critical when computing
line frontiers.

The straightforward approach is to translate the supervised IPs di-
rectly to the page. Then we calculate the rest of the LEPs of the
page and mark them as dirty. However, this approach has some
issues that we had to deal with:

1. The IPs extracted at text line level are not detected on the
main page or are detected in another position. This artifact
happens often:

◦ The line cut intersected some stroke, and fake LEPs are
detected.

◦ The LEP computation has a special treatment when we
have a wide local maxima/minima stroke (illustrate in Fig-
ure E.5), where we set up a gap of n pixels between points
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Figure E.2: Sample of the Interest Points translated into the full page.

to avoid a continuous line of pixels. These LEPs could have
different positions on the line and the page.

2. There are LEPs that are inside of the text but it has been not
detected on the text line splitting.

To overcome problem 1, we had to compute all the LEPs at the
page level and then tag the new points if they match with one of
the supervised (using a neighboring window of 1 or 2 pixels).

When dealing with problem 2 we can forward this error to the su-
pervisor in the next stage or just use the layout ground truth to
check the area which is contained (text/non-text).

Figures E.2, E.3 shows the results after moving the points of the
ICDAR 2013 corpora to the full page. Note that, this dataset is
clean and has only text. Figure E.4 shows the noise/non text
points extracted over the whole page.
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Figure E.3: Sample of the Interest Points translated to the Page Level (Detail).

Figure E.4: Sample of the dirty points added.
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Figure E.5: Example of wide Local Maxima Strokes. Points are distributed along the
streak line.

Full Page Supervision After translating the points to the page,
we can observe in Figure E.4, we can see some of the problems
described in the previous stage. So in this step, an expert could
supervise some mistakes. The supervision effort in this stage is
minimal.

E.2 Main Body Area supervision

In this PhD Thesis we explored to classify pixels into MBA without
relying on IP.

For this purpose, it will be more suitable to have a ground truth
directly of the MBA. Where for an image or line, we have two
zones: MBA and not MBA. The codification, indeed is very straight
forward, a binary image where 1 means that the pixel belongs to
the MBA and 0 the rest.

The supervision at the pixel level is more complicated and even
subjective than the IP. Nevertheless, the MBA is delimited by the
reference lines (mean line and baseline) and we used IP for delimit
the text reference lines. Thus, it is possible to generate the MBA
from the IP. Since we have performed already the IP supervision,
we use the same ground truth to create the MBA images.

The procedure is performed as follows and it is illustrated in Fig-
ure E.7:

1. LEPs are extracted for each of the lines.
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2. The points are classified and then supervised as depicted in
Section E.1.

3. The mean line and baseline points are joined to generate the
reference lines.

4. The area between the mean line and baseline is marked as
MBA.

5. The line MBA ground truth is translated to the page.

Ironically, for the IP classification we need the extract the IPs class
from the reference lines by human supervision. Now we are revers-
ing the procedure, we extract the reference lines from the points
in order for marking the MBA.

E.3 Case of study. Bootstrap

In this section, we illustrate the supervision procedure and the
effort invested while supervising the data from the ICDAR 2013
Handwritten Segmentation Problem [Stamatopoulos et al. 2013]:

1. The text lines are cut and extracted from the available ground
truth1.

2. The trained model from Saint Gall corpora is used for the
initial classification. Unfortunately, the results are not good
enough, and we need to invest some time to supervising the
lines.

3. After less than 1 hour of supervising, we could supervise the
14 lines corresponding to the first page. That is 5417 points in
total on an average of 2 minutes per line. Unfortunately, most
of the points have been relabeled (around 40% of the points).

4. A new ANN model is trained, using the new data.

5. The rest of lines are classified with the new model.

6. Now we start to supervise again. As we can see in figure E.8,
the model is still not good enough, and we have to continue
supervising points.

7. In this new iteration, we supervise 2 pages:

◦ A total of 31 lines.

◦ Total set of 11619 points.

1http://users.iit.demokritos.gr/~nstam/ICDAR2013HandSegmCont/
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E.3 Case of study. Bootstrap

◦ 3238 points are relabeled (28%) .

◦ Around 54 minutes, 104 seconds on average per line.

8. We retrain the new model, using this time 2 pages as train and
one as tuning set. Then we regenerate the points with this
new model.

9. It is time to supervise more pages, in this case, 4. As we can
see the corrections and the supervising time are decreasing in
each iteration.

◦ A total of 90 lines.

◦ Total set of 24048 points.

◦ 7132 points are relabelled (29%) .

◦ Around 135 minutes, 90 seconds on average per line.

With this data, we can train our models for text line extraction. In
around 3 to 4 hours of supervising effort we got:

◦ 7 pages.

◦ 120 lines.

◦ 42738 labeled interest points.
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E.3 Case of study. Bootstrap

Figure E.7: Main Body Area computation from Interest Points. In the left part, we
have the procedure for the mark the MBA at line level: a) Local Extrema Points, b)
Interest Points classified, c) Meanline and baseline, d) MBA of the line. In the right
part, the MBA of all the lines is translated to the full page.
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(i) Initial classification

(ii) Sample with the model after supervising one page.

(iii) Sample with the second model. Using one page for training and another
for validation.

(iv) Sample with improved model: 3 pages for training, 2 for validation.

Figure E.8: Bootstrap process for text line IPs classification.

260



References

Abdel-Hamid, O., A. R. Mohamed, H. Jiang, and G. Penn (2012). “Applying
convolutional neural networks concepts to hybrid NN-HMM model for
speech recognition”. In: ICASSP, IEEE International Conference on Acous-
tics, Speech and Signal Processing - Proceedings, pp. 4277–4280 (cit. on
p. 39).

Adelantado-Torres, J. L., J. Pastor-Pellicer, and M. J. Castro-Bleda (2014). “Una
aplicación móvil para la captura y mejora de imágenes de textos”. In: V
Jornadas TIMM (cit. on p. 19).

Afzal, M. Z., J. Pastor-pellicer, F. Shafait, T. M. Breuel, A. Dengel, and M. Li-
wicki (2015). “Document Image Binarization using LSTM : A Sequence
Learning Approach”. In: Third International Workshop on Historical Doc-
ument Imaging and Processing, pp. 79–84 (cit. on pp. 18, 97, 98).

Amodei, D., R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J.
Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan, C.
Fougner, T. Han, A. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang, A. Ng,
S. Ozair, R. Prenger, J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta,
Y. Wang, Z. Wang, C. Wang, B. Xiao, D. Yogatama, J. Zhan, and Z. Zhu
(2015). “Deep Speech 2: End-to-End Speech Recognition in English and
Mandarin”. In: Jmlr W&Cp 48, p. 28 (cit. on p. 38).

Amudha, J., N. Pradeepa, and R. Sudhakar (2012). “A survey on digital im-
age restoration”. In: Procedia Engineering. Vol. 38, pp. 2378–2382 (cit. on
p. 16).

261



References

Antonacopoulos, A. and A. C. Downton (2007). “Special issue on the analysis
of historical documents”. In: International Journal on Document Analysis
and Recognition 9.2, pp. 75–77 (cit. on p. 16).

Arruda, A. W. A. and C. A. B. Mello (2014). “Binarization of Degraded Docu-
ment Images Based on Combination of Contrast Images”. In: 14th Interna-
tional Conference on Frontiers in Handwriting Recognition, pp. 615–620
(cit. on pp. 18, 80).

Arvanitopoulos, N. and S. Susstrunk (2014). “Seam carving for text line ex-
traction on color and grayscale historical manuscripts”. In: Frontiers in
Handwriting Recognition, ICFHR. IEEE, pp. 726–731 (cit. on p. 24).

Avidan, S. and A. Shamir (2007). “Seam Carving for Content-Aware Image
Resizing”. In: ACM Trans. Graph. 26.3, p. 10 (cit. on pp. 24, 155).

Ba, J. L., J. R. Kiros, and G. E. Hinton (2016). “Layer Normalization”. In: arXiv.
arXiv: 1607.06450 (cit. on pp. 54, 203).

Bäck, T. and H.-P. Schwefel (1993). “An Overview of Evolutionary Algorithms
for Parameter Optimization”. In: Evolutionary Computation 1.1, pp. 1–23
(cit. on p. 56).

Badekas, E. and N. Papamarkos (2007). “Optimal combination of document
binarization techniques using a self-organizing map neural network”. In:
Engineering Applications of Artificial Intelligence 20.1, pp. 11–24 (cit. on
pp. 19, 80).

Baechler, M. and R. Ingold (2010). “Medieval manuscript layout model”. In:
Document Engineering, pp. 275–278 (cit. on p. 239).

Baechler, M., M. Liwicki, and R. Ingold (2013). “Text line extraction using
DMLP classifiers for historical manuscripts”. In: Proceedings of the In-
ternational Conference on Document Analysis and Recognition, ICDAR,
pp. 1029–1033 (cit. on pp. 25, 29, 133, 141).

Baird, H. S. (2007). “The state of the art of document image degradation mod-
elling”. In: Digital Document Processing. Springer, pp. 261–279 (cit. on
pp. 66, 68).

262

http://arxiv.org/abs/1607.06450


References

Baldi, P., S. Brunak, P. Frasconi, G. Soda, and G. Pollastri (1999). “Exploit-
ing the past and the future in protein secondary structure prediction.” In:
Bioinformatics (Oxford, England) 15.11, pp. 937–946 (cit. on p. 36).

Baldi, P. and P. J. Sadowski (2013). “Understanding Dropout”. In: Advances
in Neural Information Processing Systems 26 1, pp. 2814–2822 (cit. on
p. 53).

Baronia, S. and A. Namboodiri (2013). “Ink-bleed reduction using layer sep-
aration”. In: Proceedings of the International Conference on Document
Analysis and Recognition, ICDAR, pp. 215–219 (cit. on p. 16).

Bar-Yosef, I., N. Hagbi, K. Kedem, and I. Dinstein (2009). “Line segmentation
for degraded handwritten historical documents”. In: Proceedings of the
International Conference on Document Analysis and Recognition, ICDAR,
pp. 1161–1165 (cit. on p. 22).

Bauer, L. (1993). Manual of Information to Accompany The Wellington Corpus
of Written New Zealand English. Tech. rep. Department of Linguistics,
Victoria University, Wellington, New Zealand (cit. on p. 216).

Bengio, Y., R. Ducharme, P. Vincent, and C. Janvin (2003). “A Neural Proba-
bilistic Language Model”. In: The Journal of Machine Learning Research
3, pp. 1137–1155 (cit. on p. 214).

Bengio, Y., J. Louradour, R. Collobert, and J. Weston (2009). “Curriculum learn-
ing”. In: Proceedings of the 26th annual international conference on ma-
chine learning, pp. 41–48 (cit. on p. 54).

Bengio, Y., P. Simard, and P. Frasconi (1994). “Learning Long-Term Dependen-
cies with Gradient Descent is Difficult”. In: IEEE Transactions on Neural
Networks 5.2, pp. 157–166. arXiv: arXiv:1211.5063v2 (cit. on pp. 49, 53).

Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl (2011). “Algorithms for Hyper-
Parameter Optimization”. In: Advances in Neural Information Processing
Systems (NIPS), pp. 2546–2554 (cit. on p. 55).

Bergstra, J. and Y. Bengio (2012). “Random search for hyper-parameter opti-
mization”. In: The Journal of Machine Learning Research 13, pp. 281–305
(cit. on p. 56).

263

http://arxiv.org/abs/arXiv:1211.5063v2


References

Bernsen, J. (1986). “Dynamic thresholding of grey-level images”. In: Interna-
tional conference on pattern recognition, pp. 1251–1255 (cit. on p. 14).

Bertolami, R. and H. Bunke (2008). “Hidden Markov model-based ensemble
methods for offline handwritten text line recognition”. In: Pattern Recog-
nition 41.11, pp. 3452–3460 (cit. on p. 184).

Bertolami, R., S. Uchida, M. Zimmermann, and H. Bunke (2007). “Non-uniform
slant correction for handwritten text line recognition”. In: Internation Con-
ferecence on Document Analysis and Recognition, ICDAR. Vol. 1. IEEE,
pp. 18–22 (cit. on p. 32).

Bi, M., Y. Qian, and K. Yu (2015). “Very deep convolutional neural networks
for LVCSR”. In: Sixteenth Annual Conference of the International Speech
Communication Association (cit. on p. 39).

Bianne-Bernard, A. L., F. Menasri, R. Al-Hajj Mohamad, C. Mokbel, C. Kermor-
vant, and L. Likforman-Sulem (2011). “Dynamic and contextual informa-
tion in HMM modeling for handwritten word recognition”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 33.10, pp. 2066–
2080 (cit. on pp. 33, 38, 184).

Biller, O., K. Kedem, I. Dinstein, and J. El-Sana (2012). “Evolution maps for
connected components in text documents”. In: Proceedings - International
Workshop on Frontiers in Handwriting Recognition, IWFHR, pp. 405–410
(cit. on p. 29).

Bilmes, J., K. Asanovic, C.-W. Chin, and J. Demmel (1997). “Using PHiPAC to
speed error back-propagation learning”. In: IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing. ICASSP. Vol. 5. IEEE,
pp. 4153–4156 (cit. on p. 45).

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford Uni-
versity Press (cit. on p. 212).

Bluche, T., H. Ney, and C. Kermorvant (2013a). “Feature Extraction with Con-
volutional Neural Networks for Handwritten Word Recognition”. In: In-
ternational Conference on Document Analysis and Recognition, ICDAR,
pp. 285–289 (cit. on p. 36).

264



References

Bluche, T., H. Ney, and C. Kermorvant (2014). “A Comparison of Sequence-
Trained Deep Neural Networks and Recurrent Neural Networks Optical
Modeling for Handwriting Recognition”. In: International Conference on
Statistical Language and Speech Processing, pp. 1–12 (cit. on pp. 37, 183,
184, 206).

Bluche, T., H. Ney, and C. Kermorvant (2013b). “Tandem HMM with convo-
lutional neural network for handwritten word recognition”. In: Interna-
tional Conference on Acoustics Speech and Signal Processing, ICASSP,
pp. 2390–2394 (cit. on pp. 35, 37, 184).

Bluche, T., H. Ney, J. Louradour, and C. Kermorvant (2015). “Framewise and
CTC training of Neural Networks for handwriting recognition”. In: Pro-
ceedings of the International Conference on Document Analysis and Recog-
nition, ICDAR, pp. 81–85 (cit. on p. 36).

Bosch, V., A. H. Toselli, and E. Vidal (2012). “Statistical Text Line Analysis
in Handwritten Documents”. In: Proc. Int. Conf. Frontiers in Handwriting
Recognition. Bari, Italy, pp. 201–206 (cit. on p. 27).

Bourlard, H. and N. Morgan (1994). Connectionist speech recognition—A hy-
brid approach. Vol. 247. Series in engineering and computer science. Kluwer
Academic (cit. on p. 212).

Bozinovic, R. M. and S. N. Srihari (1989). “Off-Line Cursive Script Word Recog-
nition”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 11.1, pp. 68–83 (cit. on pp. 30, 31).

Bradley, D. and G. Roth (2007). “Adaptive Thresholding using the Integral
Image”. In: Journal of Graphics, GPU, and Game Tools 12.2, pp. 13–21 (cit.
on p. 19).

Brink, A. D. (1992). “Thresholding of digital images using two-dimensional
entropies”. In: Pattern recognition 25.8, pp. 803–808 (cit. on p. 13).

Brown, M. K. and S. Ganapathy (1983). “Preprocessing techniques for cursive
script word recognition”. In: Pattern recognition 16.5, pp. 447–458 (cit. on
pp. 30–32).

265



References

Bukhari, S. S., M. I. A. Al Azawi, F. Shafait, and T. M. Breuel (2010). “Doc-
ument image segmentation using discriminative learning over connected
components”. In: Proceedings of the 8th IAPR International Workshop on
Document Analysis Systems - DAS ’10, pp. 183–190 (cit. on p. 143).

Bukhari, S. S., F. Shafait, and T. M. Breuel (2008). “Segmentation of curled
textlines using active contours”. In: International Workshop on Document
Analysis Systems, pp. 270–277 (cit. on p. 23).

Bukhari, S. S., F. Shafait, and T. M. Breuel (2009). “Script-independent hand-
written textlines segmentation using active contours”. In: Proceedings of
the International Conference on Document Analysis and Recognition, IC-
DAR, pp. 446–450 (cit. on pp. 21, 23).

Bunke, H., M. Roth, and E. Schukat-Talamazzini (1995). “Off-line cursive hand-
writing recognition using hidden markov models”. In: Pattern Recognition
28.9, pp. 1399–1413 (cit. on p. 30).

Burr, D. J. (1982). “A normalizing transform for cursive script recognition”. In:
Int. Conf. Pattern Recognition. Munich, pp. 1027–1030 (cit. on p. 31).

Buse, R., Z.-Q. Liu, and T. Caelli (1997). “A structural and relational approach
to handwritten word recognition”. In: IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics 27.5, pp. 847–861 (cit. on pp. 30, 32).

Caesar, T., J. M. Gloger, and E. Mandler (1995). “Estimating the baseline for
written material”. In: Proc. 3rd Int. Conf. Document Analysis and Recog-
nition. Vol. 1, pp. 382–385 (cit. on pp. 30, 31).

Caesar, T., J. M. Gloger, and E. Mandler (1993). “Preprocessing and feature
extraction for a handwriting recognition system”. In: Proceedings of the
Document Analysis and Recognition. IEEE, pp. 408–411 (cit. on p. 31).

Caillault, E., C. Viard-Gaudin, and A. R. Ahmad (2005). “MS-TDNN with global
discriminant trainings”. In: Proceedings of the International Conference
on Document Analysis and Recognition, ICDAR. Vol. 2005, pp. 856–860
(cit. on p. 36).

266



References

Canny, J. (1986). “A computational approach to edge detection.” In: IEEE
transactions on pattern analysis and machine intelligence 8.6, pp. 679–
698 (cit. on p. 106).

Cao, H. and V. Govindaraju (2009). “Preprocessing of low-quality handwritten
documents using markov random fields”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 31.7, pp. 1184–1194 (cit. on p. 17).

Cao, Y., S. Wang, and H. Li (2003). “Skew detection and correction in docu-
ment images based on straight-line fitting”. In: Pattern Recognition Let-
ters 24.12, pp. 1871–1879 (cit. on p. 31).

Casey, R. G. (1970). “Moment normalization of handprinted characters”. In:
IBM Journal of Research and Development 14.5, pp. 548–557 (cit. on
p. 33).

Chang, Y. F., Y. T. Pai, and S. J. Ruan (2008). “An efficient thresholding al-
gorithm for degraded document images based on intelligent block detec-
tion”. In: Conference Proceedings - IEEE International Conference on Sys-
tems, Man and Cybernetics, pp. 667–672 (cit. on p. 14).

Chen, K., M. Seuret, M. Liwicki, J. Hennebert, and R. Ingold (2015). “Page
segmentation of historical document images with convolutional autoen-
coders”. In: Proceedings of the International Conference on Document
Analysis and Recognition, ICDAR, pp. 1011–1015 (cit. on p. 143).

Chi, Z. and K. W. Wong (2001). “A two-stage binarization approach for doc-
ument images”. In: Proceedings of 2001 International Symposium on In-
telligent Multimedia, Video and Speech Processing, pp. 275–278 (cit. on
p. 18).

Cho, K., B. van Merrienboer, D. Bahdanau, and Y. Bengio (2014). “On the Prop-
erties of Neural Machine Translation: Encoder–Decoder Approaches”. In:
Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation, pp. 103–111 (cit. on p. 39).

Cho, K., B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio (2014). “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”. In: Proceedings of the 2014

267



References

Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 1724–1734 (cit. on p. 39).

Chorowski, J. K., D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio (2015).
“Attention-Based Models for Speech Recognition”. In: Advances in Neu-
ral Information Processing Systems 28, pp. 577–585 (cit. on p. 39).
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