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ABSTRACT 

Water is an essential resource from an environmental, biological, economic 
or social point of view. In basin management, the irregular distribution in 
time and in space of this resource is well known. This issue is worsened by 
extreme climate conditions, generating drought periods or flood events. For 
both situations, optimal management is necessary. In one case, different 
water uses should be supplied efficiently using the available surface and 
groundwater resources. In another case, the most important goal is to avoid 
damages in flood areas, including the loss of human lives, but also to optimize 
the revenue of energy production in hydropower plants, or in other uses. 

The approach presented in this thesis proposes to obtain optimal 
management rules in water resource systems. With this aim, evolutionary 
algorithms were combined with simulation models. The first ones, as 
optimization tools, are responsible for guiding the process iterations. In each 
iteration, a new management rule is defined in the simulation model, which 
is computed to comprehend the situation of the system after applying this 
new management. For testing the proposed methodology, four evolutionary 
algorithms were assessed combining them with two simulation models. The 
methodology was implemented in four real case studies. 

This thesis is presented as a compendium of five manuscripts: three scientific 
papers published in journals (which are indexed in the Journal Citation 
Report), another under review also in an indexed journal, and the last 
manuscript from Conference Proceedings. In the first manuscript, the Pikaia 
optimization algorithm was combined with the network flow SIMGES 
simulation model for obtaining four different types of optimal management 
rules in the Júcar River Basin. In addition, the parameters of the Pikaia 
algorithm were also analyzed to identify the best combination of them to use 
in the optimization process. In the second scientific paper, the multi-
objective NSGA-II algorithm was assessed to obtain a parametric 
management rule in the Mijares River basin. In this case, the same simulation 
model was linked with the evolutionary algorithm. The results of this 
optimization process were presented in different colored plots to facilitate 
the decision makers for the selection of the best management of the system. 
In the Conference manuscript, an in-depth analysis of the Tirso-Flumendosa-
Campidano system using different scenarios and comparing three water 
simulation models for water resources management was developed. The 



                                                                                                                               
 

third published manuscript presented the assessment and comparison of 
two evolutionary algorithms for obtaining optimal rules in the Tirso-
Flumendosa-Campidano system using SIMGES model. The algorithms 
assessed were the SCE-UA and the Scatter Search. In this research paper, the 
parameters of both algorithms were also analyzed as it was done with the 
Pikaia algorithm. The management rules in the three first manuscripts were 
focused to avoid or minimize deficits in urban and agrarian demands and, in 
some case studies, also to minimize the water pumped. Finally, in the last 
document, two of the algorithms used in previous manuscripts were 
assessed, the mono-objective SCE-UA and the multi-objective NSGA-II. For 
this research, the algorithms were combined with RS MINERVE software to 
manage flood events in Visp River basin minimizing damages in risk areas and 
losses in hydropower plants. 

Results reached in the five manuscripts demonstrate the validity of the 
approach. In all the case studies and with the different evolutionary 
algorithms assessed, the obtained management rules achieved a better 
system management than the base scenario of each case. These results 
usually mean a decrease of the economic costs in the management of water 
resources. However, comparing the four algorithms assessed, SCE-UA 
algorithm proved to be the most efficient due to the different 
stop/convergence criteria and its formulation. Nevertheless, NSGA-II is the 
most recommended due to its multi-objective search focus on the 
enhancement of different objectives with the same importance where the 
decision makers can make the best decision for the management of the 
system. 

 



 

 

RESUMEN 

El agua es un recurso esencial desde el punto de vista ambiental, biológico, 
económico o social. En la gestión de cuencas, es bien conocido que la 
distribución del recurso en el tiempo y el espacio es irregular. Este problema 
se agrava debido a condiciones climáticas extremas, generando períodos de 
sequía o inundaciones. Para ambas situaciones, una gestión óptima es 
necesaria. En un caso, el suministro de agua a los diferentes usos del sistema 
debe realizarte eficientemente empleando los recursos disponibles, tanto 
superficiales como subterráneos. En el otro caso, el objetivo más importante 
es evitar daños en las zonas de inundación, incluyendo la pérdida de vidas 
humanas, pero al mismo tiempo, optimizar los beneficios de centrales 
hidroeléctricas, o de otros usos. 

El enfoque presentado en esta tesis propone la obtención de reglas de 
gestión óptimas en sistemas reales de recursos hídricos. Con este objetivo, 
se combinaron algoritmos evolutivos con modelos de simulación. Los 
primeros, como herramientas de optimización, encargados de guiar las 
iteraciones del proceso. En cada iteración se define una nueva regla de 
gestión en el modelo de simulación, que se evalúa para conocer la situación 
del sistema después de aplicar esta nueva gestión. Para probar la 
metodología propuesta, se evaluaron cuatro algoritmos evolutivos 
combinándolos con dos modelos de simulación. La metodología se 
implementó en cuatro casos de estudio reales. 

Esta tesis se presenta como un compendio de cinco publicaciones: tres de 
ellas en revistas indexadas en el Journal Citation Report, otra en revisión y la 
última como publicación de un congreso. En el primer manuscrito, el 
algoritmo de optimización Pikaia se combinó con el modelo de simulación 
SIMGES para obtener reglas de gestión óptimas en la cuenca del río Júcar. 
Además, se analizaron los parámetros del algoritmo para identificar la mejor 
combinación de los mismos en el proceso de optimización. El segundo 
artículo evaluó el algoritmo multi-objetivo NSGA-II para obtener una regla de 
gestión paramétrica en la cuenca del río Mijares. Los resultados de este 
proceso de optimización se presentaron en diferentes gráficos de colores 
para facilitar la selección de la mejor gestión por parte de los tomadores de 
decisiones. En el trabajo presentado en el congreso se desarrolló un análisis 
en profundidad del sistema Tirso-Flumendosa-Campidano utilizando 



                                                                                                                               
 

diferentes escenarios y comparando tres modelos de simulación para la 
gestión de los recursos hídricos. En el tercer manuscrito publicado se evaluó 
y comparó dos algoritmos evolutivos (SCE-UA y Scatter Search) para obtener 
reglas de gestión óptimas en el sistema Tirso-Flumendosa-Campidano. En 
dicha investigación también se analizaron los parámetros de ambos 
algoritmos. Las reglas de gestión de estas cuatro publicaciones se enfocaron 
en evitar o minimizar los déficits de las demandas urbanas y agrarias y, en 
ciertos casos, también en minimizar el caudal bombeado, utilizando para ello 
el modelo de simulación SIMGES. Finalmente, en la última publicación se 
evaluó el algoritmo mono-objetivo SCE-UA y el multi-objetivo NSGA-II. Para 
esta investigación, los algoritmos se combinaron con el software RS MINERVE 
para gestionar los eventos de inundación en la cuenca del río Visp 
minimizando los daños en las zonas de riesgo y las pérdidas en las centrales 
hidroeléctricas. 

Los resultados obtenidos en las cinco publicaciones demuestran la validez del 
enfoque. En todos los casos de estudio y, con los diferentes algoritmos 
evolutivos evaluados, las reglas de gestión obtenidas lograron una mejor 
gestión del sistema que el escenario base de cada caso. Estos resultados 
suelen representar una disminución de los costes económicos en la gestión 
de los recursos hídricos. Comparando los cuatro algoritmos, el SCE-UA 
demostró ser el más eficiente debido a los diferentes criterios de 
convergencia. No obstante, el NSGA-II es el más recomendado debido a su 
búsqueda multi-objetivo enfocada en la mejora, con la misma importancia, 
de diferentes objetivos, donde los tomadores de decisiones pueden 
seleccionar la mejor decisión para la gestión del sistema.



 

 

RESUM 

L'aigua és un recurs essencial des del punt de vista ambiental, biològic, 
econòmic o social. En la gestió de conques, és ben conegut que la distribució 
del recurs en el temps i l'espai és irregular. Este problema s'agreuja a causa 
de condicions climàtiques extremes, generant períodes de sequera o 
inundacions. Per a ambdúes situacions, una gestió òptima és necessària. En 
un cas, el subministrament d'aigua als diferents usos del sistema ha de 
realitzar-se eficientment utilitzant els recursos disponibles, tant superficials 
com subterranis. En l'altre cas, l'objectiu més important és evitar danys en 
les zones d'inundació, incloent la pèrdua de vides humanes, però al mateix 
temps, optimitzar els beneficis de centrals hidroelèctriques, o d'altres usos. 

La proposta d’esta tesi és l'obtenció de regles de gestió òptimes en sistemes 
reals de recursos hídrics. Amb este objectiu, es van combinar algoritmes 
evolutius amb models de simulació. Els primers, com a ferramentes 
d'optimització, encarregats de guiar les iteracions del procés. En cada iteració 
es definix una nova regla de gestió en el model de simulació, que s'avalua per 
a conéixer la situació del sistema després d'aplicar esta nova gestió. Per a 
provar la metodologia proposada, es van avaluar quatre algoritmes evolutius 
combinant-los amb dos models de simulació. La metodologia es va 
implementar en quatre casos d'estudi reals. 

Esta tesi es presenta com un compendi de cinc publicacions: tres d'elles en 
revistes indexades en el Journal Citation Report, una altra en revisió i l'última 
com a publicació d'un congrés. En el primer manuscrit, l'algoritme 
d'optimització Pikaia es va combinar amb el model de simulació SIMGES per 
a obtindre regles de gestió òptimes en la conca del riu Xúquer. A més, es van 
analitzar els paràmetres de l'algoritme per a identificar la millor combinació 
dels mateixos en el procés d'optimització. El segon article va avaluar 
l'algoritme multi-objectiu NSGA-II per a obtindre una regla de gestió 
paramètrica en la conca del riu Millars. Els resultats d'este procés 
d'optimització es van presentar en diferents gràfics de colors per a facilitar la 
selecció de la millor gestió per part dels decisors. En el treball presentat en 
el congrés es va desenvolupar una anàlisi en profunditat del sistema Tirso-
Flumendosa-Campidano utilitzant diferents escenaris i comparant tres 
models de simulació per a la gestió dels recursos hídrics. En el tercer 



                                                                                                                               
 

manuscrit publicat es va avaluar i va comparar dos algoritmes evolutius (SCE-
UA i Scatter Search) per a obtindre regles de gestió òptimes en el sistema 
Tirso-Flumendosa-Campidano. En dita investigació també es van analitzar els 
paràmetres d'ambdós algoritmes. Les regles de gestió d'estes quatre 
publicacions es van enfocar a evitar o minimitzar els dèficits de les demandes 
urbanes i agràries i, en certs casos, també a minimitzar el cabal bombejat, 
utilitzant per a això el model de simulació SIMGES. Finalment, en l'última 
publicació es va avaluar l'algoritme mono-objectiu SCE-UA i el multi-objetiu 
NSGA-II. Per a esta investigació, els algoritmes es van combinar amb el 
programa RS MINERVE per a gestionar els esdeveniments d'inundació en la 
conca del riu Visp minimitzant els danys en les zones de risc i les pèrdues en 
les centrals hidroelèctriques. 

Els resultats obtinguts en les cinc publicacions demostren la validesa de la 
metodología. En tots els casos d'estudi i, amb els diferents algoritmes 
evolutius avaluats, les regles de gestió obtingudes van aconseguir una millor 
gestió del sistema que l'escenari base de cada cas. Estos resultats solen 
representar una disminució dels costos econòmics en la gestió dels recursos 
hídrics. Comparant els quatre algoritmes, el SCE-UA va demostrar ser el més 
eficient a causa dels diferents criteris de convergència. No obstant això, el 
NSGA-II és el més recomanat a causa de la seua cerca multi-objectiu 
enfocada en la millora, amb la mateixa importància, de diferents objectius, 
on els decisors poden seleccionar la millor opció per a la gestió del sistema. 
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1. INTRODUCTION 
Living beings need water to survive, a resource which is also essential from 
an environmental, economic or social point of view. When water is used for 
biological purposes, the main problem is its availability. Usually, this resource 
has an irregular distribution in time and in space. Moreover, extreme climate 
conditions can worsen these effects generating drought periods or flood 
events. In both cases, an optimal management of the resource is necessary. 
In the first case, the available surface and groundwater resource must be 
distributed between the different uses according to their priorities. In the 
second case, avoiding damages in flood areas is the most important goal, but 
also to optimize revenue due to the different water uses, like electricity 
production in hydropower plants.  

In multi-reservoir water systems, there is a lack of application of optimization 
models (Labadie, 2004; Wurbs, 1993; Yeh, 1985). The necessarily high degree 
of simplification of these types of models, which remove them excessively 
far from reality, is one of the main reasons for this shortcoming (Akter and 
Simonovic, 2004; Moeini et al., 2011). Due to this simplification, it has 
consequently made water managers not trust the results of these models. 
Nevertheless, other authors consider that institutional limitations are the 
real cause, rather than technological or mathematical ones (Oliveira and 
Loucks, 1997). 

Optimization techniques are employed for multi-reservoir systems in the 
majority of water allocation problems. Labadie (2004) and Rani and Moreira 
(2010) reviewed the state of the art of these techniques for this type of 
problem. These authors commented that the most favored technique for 
water allocation models has been linear programming, which is the most 
traditional (ReVelle, 1999). This technique has been used for optimizing 
resources management of river basin schemes (Zoltay et al., 2010), 
optimizing irrigation water allocation in complex agricultural systems (Reca 
et al., 2001a, 2001b) and developing decision support systems for urban 
water supply areas (Yamout and El-Fadel, 2005). Kuczera (1989 and 1993) 
explains that network flow programming, a computationally efficient form of 
linear programming, is more suitable than linear programming for solving 
large multi-reservoir models. 
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A hydrologic-hydraulic network global analysis is important in numerous 
decision-making situations as water resources management, reservoir 
regulation, spillways design, hydropower plant operations optimization or 
the flood protection development (García et al., 2016). However, there is no 
general method for optimizing reservoir operations (Yeh, 1985). Linear 
programming, heuristic approaches, stochastic dynamic programming 
methods (Celeste and Billib, 2009; Mousavi et al., 2004; Tilmant et al., 2002), 
evolutionary optimization (Oliveira and Loucks, 1997) and other approaches 
are typical methods of optimizing reservoir operations. For using these 
methods, the water resource management problem  requires a large number 
of control variables, which, typically, represent the sequences of releases 
from all reservoirs and for all time steps of the studied period (Koutsoyiannis 
and Economou, 2003). 

In flood mitigation studies, system operators make decisions about storing 
and releasing water according to the possibilities given by reservoirs 
structures (Farhangi et al., 2012). A necessary task of flood management is 
to determinate an effective reservoir operation strategy keeping dam safety, 
maximizing the volume reservoir at the end of the flood event and, 
especially, minimizing downstream damage (Malekmohammadi et al., 2010; 
Uysal et al., 2016). In this field, Yeh (1985) used mathematical models for 
reservoir operations. Dias et al. (1985) optimized power generation 
requirements and flood control in multi-purpose reservoir. To solve this type 
of short-term optimal schedule problem, many other authors used network 
flow methods and linear programming (Lian and Jiang, 2005; Needham et al., 
2000; Zeng et al., 2003), artificial neural networks (Naresh and Sharma, 
2000), dynamic programming (Zhang and Zhang, 2003), nonlinear 
programming (Lyra and Ferreira, 1995; Piekutowski et al., 1994) or 
mathematical decomposition (Ni et al., 1999). 

Despite the growing use and development of optimization models (Labadie, 
1997), simulation models are the most commonly used tool to analyze the 
integrated planning and management of water resources systems (WRSs). 
These models allow for more detailed representations of the systems than 
optimization models (Loucks and Sigvaldason, 1982) or typical optimization 
schemes such as linear, dynamic or stochastic dynamic programming models. 



Assessment and implementation of evolutionary algorithms for optimal management rules 
design in water resources systems 

3 

 

These optimization techniques suffer from high dimensionality, and often 
unrealistic, simplifications concerning the operation of the real systems 
(Efstratiadis et al., 2004). For these reasons, in general, simulation models 
are used as support for performing river basin management. These types of 
models are characterized by their capacity and flexibility for representing 
very complex elements. However, they require the definition of system 
management through different management rules (MRs). 

In many real water systems, their managers employ MRs to make decisions 
depending on the storage of the system and/or last inflows, among other 
indicators. The decisions are normally related to reducing the deficit 
demand, to increase the available resource, to minimize flood damages or to 
maximize hydropower plant revenue. These rules can be considered as 
trigger MRs because one or several actions (for example, reduce supply to 
demands, start pumping groundwater or start turbine tasks) are triggered 
when the system reaches a specific situation.  Although the use of this kind 
of MRs is criticized because of its relative inefficiency (Karamouz et al., 2000), 
they perform the practical management of systems due to their 
comprehension and ease of application. These rules must be robust as well 
as simple; therefore, they must be implementable in real applications. 

During the scientific history of water resources, the design and obtainment 
of MRs for multi-reservoir systems has been widely developed (Bhaskar and 
Whitlatch, 1980; Lund and Ferreira, 1996; Young, 1967). Results of 
optimization models for obtaining MRs can be done using simple statistics, 
tables and graphs (Lund and Ferreira, 1996), simple (Young, 1967) or multiple 
(Bhaskar and Whitlatch, 1980) linear regressions. Unfortunately, a regression 
analysis can produce poor results, limiting the use of the obtained MR 
(Labadie, 2004). On the other hand, empirical MRs like the space rule (Bower 
et al., 1962) or the New York City rule (Clark, 1956) have limited applicability.  

In order to solve the issues of simulation and optimization models for 
obtaining optimal MRs, some authors propose coupling different techniques. 
For example, (Wurbs, 1993) suggests a modeling approach for combining 
efficient exploration of mathematical optimization models with adherence 
and flexibility of simulation models. In this sense, a typical technique for 



                                                                                                                              
1. Introduction 

 

4 

 

obtaining MRs is the iteration with basin simulation models. An optimization 
algorithm that varies the MRs according to the results of the simulation 
model runs can control these iterations. Nalbantis and Koutsoyiannis (1997) 
proposed another methodology introducing a parametric rule based in two 
parameters per reservoir. They defined and tested this rule by means of 
linear and nonlinear optimization methods, using a simulation model to 
evaluate the objective function. This approach has the advantage of using a 
parsimonious formulation with just two parameters per reservoir making 
searching most effective than other optimization approaches.   

Among the possible optimization algorithms that exist for solving real 
problems, Evolutionary Algorithms (EAs) are characterized by avoiding local 
optimal better than gradient methods and by their flexibility for adaptation 
to any kind of problem. Moreover, these algorithms allow for several benefits 
compared with classical optimization techniques. EAs can be implemented 
without heavy a-priori model requirements and their optimization 
procedures can directly address alternatives when applied to MRs 
optimization due to the ability to manage discrete variables. 

Evolutionary programming, evolutionary strategies and genetic algorithms 
are the three main paradigms of EAs. In general, these paradigms evolve a 
population of individuals by subjecting it to similar processes to those that 
act in the biological evolution (crosses and mutations). The population also 
suffers a selection process, which depends on survival of the fittest, and the 
less suitable, who will be discarded.  

Nicklow et al. (2010) reviewed the state of the art evolutionary techniques 
applied to water resource planning and management. Cai et al. (2001) 
described strategies for solving large nonlinear water resources 
management models combining EA with linear programming, in which this 
approach was applied to a reservoir operation model with a nonlinear 
hydropower generation and to a long-term dynamic river basin planning 
model. Momtahen and Dariane (2007) used a direct search approach to 
optimize the parameters of reservoir operating policies with an EA as an 
optimization method. In the particular case of MRs, Oliveira and Loucks 
(1997), and later Ahmed and Sarma (2005), presented an approach for 
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optimizing MRs for multi-reservoir systems using EAs. Elferchichi et al. (2009) 
also applied a real-coded EA to optimize the operation of reservoirs for an 
on-demand irrigation system, and this was later applied to the Sinista Ofanto 
irrigation scheme (Foggia, Italy). In flood problems, EAs have been applied to 
optimize a flood control reservoir (Chang and Chen, 1998), also for real-time 
flood management in river-reservoir systems (Malekmohammadi et al., 
2010), or to obtain a daily energy demand in an economic and safe way 
(Hidalgo et al., 2015).  

In real management problems, decision making can be complex and 
inflexible due to the inherent trade-offs among socio-political, technical, 
economic and environmental factors. Multiple conflicting objectives, which 
should be optimized simultaneously (Makropoulos et al., 2008), are involved 
for selecting the appropriate management strategies. For these reasons, 
Pareto front concept was defined. This front contains the solutions for which 
it is not possible to improve on the attainment of one objective without 
making at least one of the others worse. It has been demonstrated that, 
multi-objective EAs allow to reach the optimal Pareto front (Abd-Elhamid and 
Javadi, 2011; Cisty, 2010; Farmani et al., 2005a; Zhou et al., 2015).  

Solving a number of complicated real-world problems in hydraulic, electrical, 
aeronautical or structural engineering, the efficiency of these algorithms  has 
been illustrated (Farmani et al., 2007, 2006, 2005b; Hanne and Nickel, 2005; 
Molina-Cristóbal et al., 2005; Osman et al., 2005). However, there are limited 
applications in the policy analysis of water resources management (Farmani 
et al., 2009; Molina et al., 2011). In this field, multi-objective EAs have been 
applied in real studies, such us the control of Seawater Intrusion in Coastal 
Aquifers (Abd-Elhamid and Javadi, 2011; Kourakos and Mantoglou, 2011; 
Sedki and Ouazar, 2011), the optimal design of water distribution systems or 
reservoirs (Cisty, 2010; Haghighi et al., 2011; Hınçal et al., 2011; Louati et al., 
2011; Nazif et al., 2010), to optimize the rule curves of a multipurpose 
reservoir system in Taiwan (Chen et al., 2007), the Conjunctive Use of Surface 
Water and Groundwater (Safavi et al., 2010), for hydrological studies 
(Dumedah et al., 2010; Gorev et al., 2011; Hassanzadeh et al., 2011), or for 
solving an optimal multi-objective dispatch of hydroelectric generating units 
(Villasanti et al., 2004). 
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1.1. Objectives 

This research thesis aims to develop a generalizable methodology to 
optimize the water management of WRSs. In the last years, various 
strategies have been defined by using a combination of optimization and 
simulation techniques. However, full integration of both techniques has 
not yet been achieved in order to close the gap between research and 
real-world application. Few of these strategies have been employed in 
real-world multi-reservoir and multiuse water systems (Sechi and Sulis, 
2009). Moreover, although EAs have been applied successfully for many 
academic problems, additional research is required to enable them to be 
applied in real-life context (Maier et al., 2014).  

These are the grounds that motivated this thesis, in which one of the goals 
is to achieve optimal management for real and complex WRSs. Moreover, 
this research assumes the technique, which will be presented later in this 
document, can be used for different types of problems. Two types of 
problems are assessed: 1) optimal water distribution between different 
end-uses using both surface and groundwater resource; and 2) avoiding 
damages in flood areas meanwhile revenue from different water uses is 
optimized during flood events. It is important to note that other problems 
could integrate into the proposed methodology. Furthermore, this 
research provides the methodologic basis for its application in other real 
and complex WRS for obtaining optimal MRs in drought and flood events. 

The approach proposes the coupling between EAs and models for 
simulating water management. The methodology searches for optimal 
MRs in real cases and suggests alternatives for making decisions by 
decision makers. In this approach, which is applied to four real and 
complex systems, four different EAs are coupled with two simulation 
models. These last ones are characterized by their capacity and flexibility 
for representing very complex elements while EAs are characterized both 
by avoiding local optimal better than gradient methods and by their 
flexibility for adaptation to any kind of problem. Table 1 summarizes the 
different EAs and simulation models used in each real case study, which 
are described in the points 1.2 and 1.3 of this section. 
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Table 1: EAs and Simulation models used in each case study. 

REAL CASE STUDY EVOLUTIONARY 
ALGORITHM 

SIMULATION 
MODEL 

Júcar River Basin PIKAIA SIMGES 

Mijares River Basin NSGA-II SIMGES 

Tirso-Flumendosa-
Campidano System 

SCE-UA 

SCATTER SEARCH 

SIMGES 

WARGI 

AQUATOR 

SCE-UA 

NSGA-II 

Partial objectives were needed to archive the main one. The following 
points describe some of these goals: 

 To develop the main optimization frame, which is able to apply the 
proposed methodology combining the EAs with SIMGES or RS 
MINERVE tools. 

 To translate NSGA-II and Scatter Search algorithms from other 
languages to Visual Basic for Applications. 

 To develop a new element in RS MINERVE software for regulating 
the system management. 

 To compare three simulation models for water resources 
management in one of the real and complex systems analyzed. 

 To build four simulation models, one for each case study. 
 To determine which searching mechanisms and termination-

convergence criteria are best for real-life problems.  
 To reach the best way to convey the results of the optimization 

process to decision makers. 
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1.2. Methods and tools 

This point of the thesis summarizes the methodology and all the involved 
tools, including the simulation models and the EAs. The proposed 
methodology was defined with the objective of being generalizable, 
mainly in terms of case studies, but also for simulation models and EAs. 
The methodology estimates optimal MRs for a real and complex multi-
reservoir WRS. With this aim, an EA is responsible for controlling the 
iterative optimization process and, for each iteration, a river basin 
simulation model is used for evaluating the system management. The 
Optimization Frame (Figure 1) is responsible for managing the whole 
process. Although this methodology is defined specifically for this type of 
problem, it could be also generalizable for other types where a set of 
parameters should be optimized using a simulation model. 

 

Figure 1: Proposed methodology to obtain optimal MRs in WRSs. 

In the first step, the Optimization Frame user needs to define the decision 
variables, i.e. the MR parameters. The minimum and maximum 
thresholds of the decision variables are also required by the EA. 
Furthermore, some algorithm parameters, such as population size, the 
number of subgroups or the maximum number of iterations should be 
indicated to define the EA process.  
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Every EA implements the optimization process as it is described in the four 
Annexes. In general, the EA generates several individuals that belong to a 
MR collection. In this case, each MR aptitude depends on how it affects 
the WRS management. For this reason, WRS management is computed 
for each MR, and the obtained results allow the EA to evaluate an 
objective function (OF). The results obtained by this model represent the 
situation of the water system under the proposed water management 
policies. Given the OF value for each individual, the algorithm obtains new 
values for the decision variables defining new MRs, and the process is 
repeated until the stop condition for each EA is fulfilled. 

From all the EAs in the literature, four were selected to be assessed in this 
research. PIKAIA (Charbonneau and Knapp, 1995) in Annex 1, SCE-UA 
(Duan et al., 1992) in Annexes 3 and 4. This last algorithm was selected 
due to its demonstrated efficiency, which has been widely recognized in 
calibrating hydrological problems with a large number of parameters and 
with a high nonlinearity (Boyle et al., 2000; Duan et al., 1992; Kuczera, 
1997; Luce and Cundy, 1994). Scatter Search (Glover, 1977) in Annex 3, 
where its use to design MRs is currently uncommon but has been 
successfully applied in distribution network calibration problems 
(Liberatore and Sechi, 2009) as well as a wide range of more general 
optimization problems (Adenso-Díaz et al., 2006; Campos et al., 2001; 
Martí, 2006; Scheuerer and Wendolsky, 2006). NSGA-II (Deb et al., 2002) 
in Annexes 2 and 4. This multi-objective algorithm was chosen due to the 
scarce or even non-existent studies on coupling network flow models and 
this type of algorithm. Furthermore, NSGA-II can be coupled to several 
other simulation models to provide optimized solutions by taking 
advantage of the power of those models (Farmani et al., 2009; Molina et 
al., 2011).  

The water basin management models have been developed using the 
SIMGES module (Annexes 1 to 3) included in the Decision Support System 
Shell (DSSS) AQUATOOL (Andreu et al., 1996). Both, the simulation 
module and the DSSS, have been widely applied to river basins in Spain 
and abroad (CHJ, 1998; DICTUC, 2010; Jamieson, 1997; MIMAM, 2000; 
UNICA, 2012). SIMGES model is based on the conceptualization of a river 
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basin as a set of interconnected elements that represent the real 
components of the WRS and their interactions.  A large variety of 
elements are available, as reservoirs, river reaches, channels, aquifers, 
hydroelectricity generation facilities, groundwater pumping facilities, 
return flows, demands and intakes, etc. 

In Annex 5, a comparative between SIMGES and other two simulation 
models (WARGI and AQUATOR) was carried out. WARGI (Water 
Resources System Optimization Aided by Graphical Interface) (Sechi and 
Zuddas, 2000) was developed by CRIFOR-CINSA (Centro di Ricerca e 
Formazione delle Reti del Centro Interdipartimentale CINSA) of the 
Cagliari University. AQUATOR is also a software for simulating complex 
water resources systems and was developed by Oxford Scientific 
Software. The conclusions of this study confirmed SIMGES as the 
simulation model with the best results, in terms of deficits of the 
demands, stored water in reservoirs and pumping. These better results 
could be reached because SIMGES module uses optimization techniques 
for each time step and allows the user to include more MRs in contrast of 
WARGI and AQUATOR. 

RS MINERVE (García et al., 2016) is used to build the river basin model in 
Annex 4. RS MINERVE is a freeware software. This software is a 
hydrological-hydraulic tool to compute the water balance in a water 
system according to different predefined rules. RS MINERVE is used due 
to its application for studying basins in several projects and thesis in 
Switzerland, Spain, Peru, China, Brazil or Mexico (Astorayme et al., 2016, 
2015; Deval et al., 2011; Drenkhan et al., 2016; García et al., 2014; Jordan 
et al., 2012; Perez et al., 2016; Rodrigues et al., 2016). 

The basic description showed in these lines about the simulation models 
and the EAs assessed in this research, is included in the five manuscripts 
and it is fully developed in the Annexes of this document. 

PIKAIA is a flexible and easy-to-use genetic algorithm. This EA is based on 
the search for an optimum using Darwinian evolutionary theory. Although 
its application has been more frequent in astrophysics, it has also been 
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used in the calibration of water quality parameters with the QUAL2K 
model (Pelletier et al., 2006). The algorithm is based on six steps: initial 
population generation, fitness evaluation, selection, crossover, mutation, 
replacement and evaluation. It has two basic genetic operators: uniform 
crossover and mutation. 

NSGA-II (Elitist Non-Dominated Sorting Genetic Algorithm) is a multi-
objective EA with a specific operator to handle constraints. In this 
method, a fast, non-dominated sorting approach with a selection 
operator is used to create a mating pool by combining the parent and 
offspring populations and selecting the best solutions with respect to the 
fitness and the spread (Deb et al., 2002; Dumedah et al., 2010). The next 
generation is populated starting with the best non-dominated front and 
progresses through the rest of the fronts until the population size is 
reached, and if, in the final stage, there are more individuals in the non-
dominated front than there is available space, a crowded distance-based 
niching strategy is used to choose which individuals of that front are 
entered into the next population. The crowding distance value of a 
solution provides an estimate of the density of solutions surrounding that 
solution (Raquel and Naval, 2005). In this research, NSGA-II is used for the 
evaluation of the objective functions that allow knowing the aptitude of 
the operation rules. 

The SCE-UA optimization mechanism (the Shuffled Complex Evolution) 
was developed at the University of Arizona. The basic operation of the 
SCE-UA algorithm, inspired by the principles of natural selection and 
genetics, is a combination of deterministic and random processes. The 
departing point is from different search points (individuals) that are 
organized by teams (complexes). Searching for the globally optimized 
solution, an evolutionary process (evolution) is designed. This process is 
based on different reproduction methods such as crossing, mutation or 
recombination, and team mixing (shuffle). 

Finally, the Scatter Search algorithm is a metaheuristic procedure based 
upon formulations of strategies for generating candidate solutions. The 
concepts and principles of this method are based on the strategy of 
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combining decision rules. The Scatter Search operates on a set of 
solutions, called the Reference Set, and combines them to create new 
solutions that improve the original ones. In this sense, the Scatter Search 
should be considered as an EA. However, contrary to other evolutionary 
methods, such as genetic algorithms, the Scatter Search algorithm is not 
based upon randomness over a relatively large group of solutions but is 
based upon systematic and strategic choices over a small group. Typically, 
genetic algorithms consider large population sizes (100 solutions as an 
order of magnitude), whereas the Scatter Search utilizes an equivalent set 
of only 10 solutions. 

1.3. Case study’s descriptions 

All the case studies, to which the methodology was applied, are presented 
in this point. Three of them are representatives of Mediterranean climate. 
Júcar River basin and Mijares River basin are sited to the east of the 
Iberian Peninsula. The Tirso-Flumendosa-Campidano system is located in 
Sardinia Island, in the Mediterranean Sea. All three systems are also 
characterized, and for this reason representative of frequent drought 
events. However, the last system, Visp River basin is located in the 
Pennine Alps and is a typical case where flood events occur. 

Júcar River basin 

In the first journal manuscript, the proposed methodology is applied to 
the Júcar River basin. This basin is located in the east of Spain (Figure 2). 
Its area covers 22,378 km2 and the mainstream length is almost 550 km. 
The water resources average is 1,200 hm3/year comprising both surface 
water and groundwater. These water resources are due to an average 
basin precipitation of 510 mm/year.  
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Figure 2: Location of the Júcar River basin (source: Lerma et al., 2013). 

The management of this basin is complex due to the multiple uses of its 
resources. Although there are some important urban demands, 
agriculture use is the most important water consumption demand, with a 
value of 1,000 hm3/year. Mainly, this use occurs between April and 
September. The storage capacity of the main reservoirs is 2,000 hm3 in 
total. Although these values may indicate that the basin resources are 
sufficient, the system suffers frequent over-annual droughts due to the 
Mediterranean climatology, with a strong winter-summer gradient and 
series of dry years between wet periods.  

 

Figure 3: Topology of the simulation model developed for the Júcar River basin. 
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Figure 3 shows the topology of the system, with the main reservoirs and 
demands. The last ones can be classified by their supply source into 
surface, groundwater and mixed supplies. 

Mijares River basin 

The second research paper was applied to the Mijares River basin, which 
is located in the eastern slope of Spain (Figure 4). The basin surface is 
5,466 km2.  

 

Figure 4: Location of the Mijares River basin (source: Lerma et al., 2014). 

The basin is subdivided in two climatologically different geographical 
areas. The first one is characterized by a coastal climate with a 
Mediterranean coastline and, the second one, by a continental climate 
area located upstream of the Arenós reservoir. According to the Basin 
Water Plan (CHJ, 1998), the mean annual rainfall in Mijares River basin is 
505 mm, and the average temperature is 14.4 ºC. The maximum altitude 
is 2024 m above sea level. The average runoff is 380 Hm3/year and the 
length of the main river is approximately 156 km. 

The topology of the model for the Mijares water system is shown in Figure 
5. It includes three reservoirs, Arenós (95 Hm3), Sichar (49 Hm3) and María 
Cristina (19.7 Hm3). The urban demands are supplied from the 
exploitation of pumping wells and the use of springs. Regarding to 
agrarian demands, the irrigated land area is 48,509 ha.  
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Figure 5: Topology of the simulation model developed for the Mijares River basin. 

The water rights over surface water of the traditionally irrigated area in 
the low part of the basin are senior with respect to other more recent 
agricultural uses. The other agrarian demands in the basin represent 
modern irrigation, also called "mixed irrigation" due to the possibility of 
using both surface and ground water.  

The current system management is based on a rule curve defined in 1970 
(“Agreement 70”). If the sum of the volume of the reservoirs is greater 
than this rule curve, then all the demands can use cheaper surface water. 
However, when the volume storage is lower than the curve, mixed 
irrigation demands have to pump water, and the remaining surface water 
is reserved for the traditionally irrigated area. 

Tirso-Flumendosa-Campidano system 

In the third journal manuscript (Annex 3), the proposed methodology is 
applied to the Tirso-Flumendosa-Campidano system, which is located on 
Sardinia Island (Italy) (Figure 6). This system is also studied in the 
Conference manuscript (Annex 5). The island has a Mediterranean climate 
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and the system is characterized by irregular distribution of demand in 
time and by irregular distributions of water resources in both time and 
space. The average hydrological inflow of water resources to the system 
is approximately 750 hm3/year and the total system demand is 383.25 
hm3/year.  

 
Figure 6: Location of Tirso-Flumendosa-Campidano system in Sardinia (Italy). 

The water supply system is mainly characterized by the use of surface 
water that is stored and regulated by reservoirs. Groundwater is used only 
for small-localized requirements. However, the main problem of the 
system is to carry water to these places from areas with a high volume of 
resources. For this reason, as Figure 7 shows, the system has many 
pumping systems and pipelines that facilitate this transference of water, 
with a consequent economic cost. All these factors turn the Tirso-
Flumendosa-Campidano system into one of the most complex systems to 
manage in the region.  

The Water Management Authority of Sardinia (ENAS), as a decision-
maker, advised the building of the river basin model. ENAS considered 
that the priority in the optimization process was two-fold: to reduce the 
demand deficits and to reduce the pumping costs, both with the same 
level of importance.  
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Figure 7 illustrates the complexity of the Tirso-Flumendosa-Campidano 
system, with 23 reservoirs, 14 diversion dams, 23 pumps and 44 demands.  

 
Figure 7: Schematic of Tirso-Flumendosa-Campidano system (source: Lerma et al., 2015). 

Visp River basin 

The case study of the last research paper (Annex 4) is Visp River basin, 
which is located in Upper Rhone River basin, Valais Canton, in Switzerland 
(Figure 8). The basin has an area of 778 km2, the length of the Visp River 
is around 40 km and its average discharge is about 17.2 m3/s. The basin 
altitude varies from 450 masl to up to 4000 masl and 3% of the basin 
surface is occupied by glaciers. 
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Figure 8: Case Study location. Visp basin in Valais Canton (Switzerland) (source Lerma et 

al., 2017). 

Although the system is small compared with the Upper Rhone River basin 
(5520 km2), it has a real and complex regulation system with two 
reservoirs and their corresponding hydropower plants (Figure 9).  

 
Figure 9: Case study model in RS MINERVE software (source Lerma et al., 2017). 

The reservoirs are Mattmark (100 Hm3) and Zermeiggern (0.12 Hm3). The 
last one, as tank reservoir, is used as compensation basins for short time 
storage. Both reservoirs have a hydropower plant to turbine water in 



Assessment and implementation of evolutionary algorithms for optimal management rules 
design in water resources systems 

19 

 

regular conditions. Due to the system configuration, Zermeiggern 
hydropower plant generates more energy than Mattmark hydropower 
plant. Moreover, each reservoir has a spillway, and only Mattmark has a 
bottom outlet system. As Figure 9 shows, the water from the spillways 
and the Mattmark bottom outlet goes to the downstream through the 
river network, taking into account a fixed transit time between the 
elements. 

1.4. Structure of the thesis 

This thesis is developed as a compendium of research papers. For this 
reason, the document is divided in two main parts. The first part contains 
four sections complying with the regulations established by the Doctoral 
School of the Polytechnic University of Valencia. It synthesizes the thesis. 
The second part contains five annexes with the author’s version of the 
mentioned research papers. 

This introduction is enclosed in the first section (of four sections), with the 
objectives of the thesis, the methodology, the tools, the case study’s 
descriptions and the structure of the document. Second section cites the 
five research papers and a brief abstract of each one is presented. Next 
section shows the results reached in each research paper. Finally, in the 
last section the main conclusions and future research lines are presented.  
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2. PUBLICATIONS 

This thesis is a compendium of five scientific papers. Three of them published 
in peer review journals indexed in the Journal Citation Report, one more 
under reviewer in another indexed journal and the last one was included in 
a Conference Proceedings. The author version of each one is presented in the 
Annexes of this document. The citations of these manuscripts are exposed 
below. In the following points, a brief description of them are presented. 

 Lerma, N., Paredes-Arquiola, J., Andreu, J., and Solera, A. 2013. 
Development of operating rules for a complex multi-reservoir system 
by coupling genetic algorithms and network optimization. Hydrol. 
Sci. J., 58 (4), 797–812. 

 Lerma, N., Paredes-Arquiola, J., Molina, J. L. and Andreu, J. 2014. 
Evolutionary network flow models for obtaining operation rules in 
multi-reservoir water systems. Journal of Hydroinformatics, 16.1, pp. 
33-49 DOI:10.2166/hydro.2013.151. 

 Lerma Elvira, Néstor; Solera Solera, Abel; Andreu Álvarez, Joaquín, 
Paredes Arquiola, Javier; Sechi, Giovanni M. y Zucca, Riccardo 2014. 
Comparativa de herramientas para el desarrollo de Sistemas Soporte 
a la Decisión para los sistemas de recursos hídricos de Cerdeña, Italia. 
Aplicaciones de Sistemas Soporte a la Decisión en Planificación y 
Gestión Integradas de Cuencas Hidrográficas (ed. Solera Solera A. et 
al.), pp. 85-94, Ed. Marcombo, Barcelona. 

 Lerma, N., Paredes-Arquiola, J., Andreu, J., Solera, A. and Sechi, G. M. 
2015. Assessment of evolutionary algorithms for optimal operating 
rules design in real Water Resource Systems. Environmental 
Modelling & Software, Volume 69, Pages 425-436, ISSN 1364-8152, 
http://dx.doi.org/10.1016/j.envsoft.2014.09.024. 

 Lerma, N., García, J., Paredes-Arquiola, J. and Andreu, J. (under 
Review). Optimization assessment of hydropower plants during 
floods in Visp basin (Switzerland) using evolutionary algorithms. 
Journal of Flood Risk Management. 
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2.1. Development of operating rules for a complex 
multireservoir system by coupling genetic algorithms and 
network optimisation 

This research paper is developed in Annex 1, which proposes a procedure 
for obtaining and assessing MRs under drought situations in multi-
reservoir WRSs (Figure 10). In the proposed methodology, genetic 
algorithms, as EAs, and network flow optimization are combined. The 
Pikaia algorithm was used as the EA in this research due to the fact that it 
had been used in some other water resources fields. Furthermore, a 
module of the AQUATOOL Decision Support System, SIMGES, was linked 
with the mentioned algorithm (more information of Pikaia algorithm and 
SIMGES model is presented in Annex 1). 

The objective of the paper was to obtain drought MRs in the Júcar River 
basin in Spain, as a real and complex WRS. The resource allocation among 
urban and agricultural demands and environmental requirements in 
drought periods is one of the main issues in this basin.  

 

Figure 10: Schematic flow chart for research paper 1. 

In the manuscript, the optimization of various operating rules was 
analyzed with the objective of minimizing short-term and long-term water 
deficits. This paper validated the usefulness of this approach in the 
assessment of MRs for complex multi-reservoir systems. Results show 
that simple MRs generate similar results than other ones whose definition 
is more sophisticated. 

PIKAIA SIMGES
(AQUATOOL)

Júcar River
basin 
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2.2. Evolutionary network flow models for obtaining operation 
rules in multi-reservoir water systems 

Annex 2 presents the second research paper, which proposes a 
methodology to obtain operation rules for integrated water resource 
management coupling NSGA-II, as evolutionary multi-objective 
optimization, with the SIMGES network flow simulation model (Figure 
11).  

The proposed methodology is implemented in the Mijares River basin 
(Spain), which is characterized by a very traditional water rights system, 
by severe drought events, and by a historical practice of conjunctive use 
of surface and ground water. The established MRs for the system aim to 
minimize the maximum deficit in the short term without compromising 
the maximum deficits in the long term.  

 

Figure 11: Schematic flow chart for research paper 2. 

This research paper demonstrates the utility of the proposed 
methodology by coupling NSGA-II and SIMGES to find the optimal 
reservoir MRs in multi-reservoir water systems. Moreover, the NSGA-II 
results could be very useful for decision-making. 

2.3. Comparativa de herramientas para el desarrollo de 
Sistemas Soporte a la Decisión para los sistemas de recursos 
hídricos de Cerdeña, Italia 

“Comparative of tools for developing Decision Support Systems in Sardinia 
water resources systems, Italy.” is the English translation of the 

NSGA-II SIMGES
(AQUATOOL)

Mijares River
basin 
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Conference manuscript title. This research document is included in Annex 
5, which is focused on the comparative of three simulation models for 
water resources management: WARGI, SIMGES and AQUATOR.  

 

Figure 12: Schematic flow chart for the Conference manuscript. 

An in-depth analysis of these simulation models was developed using the 
Tirso-Flumendosa-Campidano system as a case study (Figure 12), as part 
of an international research project (RAS, 2013). For this purpose, a model 
was developed describing the current situation and a set of 15 scenarios 
were defined. These scenarios included ecological flows (2), the possibility 
of an infrastructure failure (3), new demands and infrastructures 
currently building (1) and an increment of the demands requirement (9). 
For each one, the system management was modified trying to avoid 
deficits in the demands, as the main objective of ENAS (the Water 
Management Authority of Sardinia). 

This research demonstrated that the three simulation models reached 
similar results in terms of deficits of demands, stored water in reservoirs 
and pumping. However, SIMGES obtained the best ones minimizing 
deficits. These results could be due to SIMGES uses of optimization 
techniques in each time step of the simulation process. Another reason is 
that in the SIMGES model, it can define many different types of MRs. 

The model developed in this research and all the scenarios defined and 
analyzed allowed for the understanding of the management of the Italian 
system. This knowledge was necessary to apply the proposed 
methodology. Although in this Conference paper the methodology was 

SIMGES
(AQUATOOL)

Tirso-Flumendosa-Campidano
River basin 

WARGI AQUATOR
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summarized in one section, the following research paper (Annex 3) 
includes full details about the application of the methodology, the results 
reached and the conclusions obtained.  

2.4. Assessment of evolutionary algorithms for optimal 
operating rules design in real water resource systems 

The third research paper is developed in Annex 3. This one assesses two 
EAs to design optimal MRs for water resource systems. To achieve this 
goal, a parameter analysis of both algorithms is developed in a theoretical 
case and the proposed methodology is applied to a complex and real case, 
the Tirso-Flumendosa-Campidano system (Figure 13).  

 

Figure 13: Schematic flow chart for research paper 3. 

The algorithm’s properties and performance by defining MRs are 
analyzed through these two applications. Moreover, both analyses allow 
knowing how an algorithm’s termination/convergence criteria affect the 
results. As one more aim, the importance of decision-makers participating 
in the optimization process is assessed. 

Results of both applications reflect the need for correctly defining the 
algorithm parameters to ensure an optimal result. Additionally, the 
former analyses demonstrate how the availability of more termination 
conditions makes the algorithm an efficient tool for obtaining optimal 
rules in less time. Finally, in the complex and real case application, the 

SCE-UA
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participation value of decision-makers in order to define objectives and 
to make decisions in the post-process was analyzed. 

2.5. Optimization assessment of hydropower plants during 
floods in Visp basin (Switzerland) using evolutionary 
algorithms 

The last research paper is presented in Annex 4, in which an optimization 
approach based on real forecasts is assessed using EAs with the main 
purpose of obtaining optimal management rules during floods in the Visp 
basin (Switzerland).  

The proposed methodology was developed by coupling two EAs (SCE-UA 
and NSGA-II) and the hydrological-hydraulic tool RS MINERVE (Figure 14). 
The main goal of this research was to assess the algorithms validity for 
optimizing management rules in flood events and for identifying the 
advantages of both algorithms.  

SCE-UA
RS MINERVE

Visp River 
basin 

NSGA-II

 

Figure 14: Schematic flow chart for research paper 4. 

The achieved results indicate the importance of this methodology to 
significantly reduce the damage in flood areas and reduce energy losses 
in hydropower plants.  
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3. GENERAL DISCUSSION OF THE RESULTS 

In the following two sections, the results obtained in the five research papers 
are summarized. These results were reached after applying the methodology 
described in point 1.2. and in the Annexes. In the first one, the analyses of 
the algorithms parameters are presented. Their conclusions allow for the 
selection of the proper parameters of the algorithms to apply the 
methodology in the different case studies. The results achieved in these 
cases are exposed in the second section. 

3.1. Algorithms’ parameters analysis 

According to Duan et al. (1994), the choice of the algorithm parameters 
influences in the effectiveness and efficiency of an algorithm. These 
parameters allow the user to decide how the algorithms should work and 
determine the algorithm’s performance. Examples of these parameters 
are the population size, aspects related to the stopping criteria of the 
optimization process, the seed for the calculation of random numbers, 
the number and size of the subgroups in which the population is divided 
to evolve, etc. An analysis of them allows for identifying which parameters 
should be specially treated when defining them in new optimization 
processes.  

Pikaia algorithm 

In Annex 1, an analysis of Pikaia algorithm parameters was developed. The 
studied parameters were: 

- the number of digits of codification,  
- the initial population,  
- the elitism consideration,  
- the number of individuals,  
- the crossover probability and  
- the mutation method.  

 



                                                                                                                              
3. General discussion of the results 

 

28 

 

  

  

  
Figure 15 a-f: Results of the OF for different test developed for definition of the EA-

parameters (adapted from Lerma et al., 2013). 

Figure 15 presents six plots with the analysis of each parameter. The 
results of the performed tests with the number of digits considered in the 
parameter codification revealed that the use of only one or two digits did 
not reach acceptable solutions compared to higher values. As the use of 
three digits does not affect at all the execution time, it is preferable to the 
use of the bigger number of digits. 
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The initial population tests reflect that the first three initial populations 
achieved an optimum before or near generation 30, whereas the last 
three initial populations obtained it by the 50th generation. Even so, it is 
apparent that all initial population yielded almost the same results by 
generation 30.  

Slightly better results were obtained when elitism was taken into account. 
This test showed that the optimum was achieved at the 29th generation, 
whereas it was obtained at generation 47 when elitism was not 
considered. 

Regarding the number of individuals, all tests reached the same (or very 
similar) optimum values from the 20th generation onwards, but the test 
with only 25 individuals did not reach an optimum comparable with the 
others. However, tests with 50, 100 and 200 individuals seemed to reach 
optimum values faster than the other tests. 

Finally, an analysis of the different options related to mutation and 
crossover modes, showed that all generations above the 25th generation 
presented the same (or very similar) optimum values.  

This analysis concluded that from a minimum number of three 
codification digits and taking elitism into account, most of the other 
options yielded near optimum values by the 30th generation.  

SCE-UA algorithm 

Annex 3 presents the analysis of SCE-UA algorithm parameters. The 
parameters studied were: 

- Maximum number of function evaluation (MAXN),  
- number of shuffling loops in which the criterion value must change 

by PECNTO before optimization is terminated (KSTOP),  
- percentage by which the criterion value must change in KSTOP 

shuffling loops (PECNTO),  
- number of complexes (NGS),  
- considering initial parameters (IFLAG) and  
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- random number (ISEED). 

MAXN was not modified in the simple system used for this analysis. In 
other optimizations, which require a high number of decision variables, 
there will be a need for a high value of this parameter. The reason is that, 
in these situations, more iterations will be required to obtain an optimal 
MR. NGS was the first parameter in the analysis because, a priori, it 
seemed to affect the most to the obtained result. In a second step, KSTOP, 
PCENTO, ISEED and IFLAG were modified. Figure 16 shows the results of 
the analysis. 

In the first step, 1 to 10, 15 and 20 as values for NGS were tested.  When 
NGS increases, a positive trend is observed in the number of evaluations 
of the OF (EVALS). For sizes smaller than 10 NGS, EVALS is below 1500; for 
sizes larger than 10 NGS, this number considerably increases, reaching 
more than 3000 OF evaluations. Regarding to the same parameter, the OF 
values range is quite narrow, between 0.537 and 0.539, which means that 
different tests could reach quite similar results. For values above five of 
NGS, the OF values obtained are higher and thus represent better 
solutions. The optimal result of these tests is obtained with a NGS=7, 
requiring nearly 1500 evaluations and resulting in an OF value of 0.5385. 

With this solution, the KSTOP parameter was analyzed using the following 
values: 2, 5, 10, 15 and 20. The results showed a high value of EVALS when 
KSTOP increases. This is normal because a hard stop criterion is defined 
for the algorithm. Regarding the OF values reached, for KSTOP values 
lower than 10, the OF value was below 0.538; however, for KSTOP values 
of 10, 15 and 20 resulted in the same OF value (0.5385). 

The next parameter, PCENTO, was analyzed with values of 0.05, 0.1, 0.2 
and 0.5. In this case, when the PCENTO value increases (the term 
condition is less restrictive), EVALS is reduced along with the OF value.  

ISEED parameter, which is related to the random number generation, was 
analyzed with four different values. The ISEED affects the obtained results 
without a clear criterion, i.e., there are ISEEDs with high OF values and 
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high EVALS; others with low values for both of them; and still others with 
high OF values and low values of EVALS (the best scenario). 

  

  

 

Figure 16: Performed test with SCE-UA algorithm (source: Lerma et al., 2015). 

The last parameter analyzed was IFLAG, which allows the user to consider 
specific initial values (minimum and maximum in this case) or random 
values for the decision variables. For this group of tests, the ISEED used in 
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the first ones and the ISEED with the best result originates in the last one, 
were used to evaluate the IFLAG behavior. The results showed how the 
initial values affect this behavior depending upon the ISEED. In the case 
of the ISEED with best results in previous tests, the initial value does not 
affect the result and the same EVALS and OF value are returned. By 
contrast, with the first ISEED, random initial values required a higher 
EVALS (compared to the minimum or maximum initial values) and higher 
values of the OF are obtained. 

Once analyzed the five SCE-UA parameters, NGS is quite important, in 
which neither values lower than 3 nor values higher than 8 are 
recommended to obtain optimal results in an efficient way. 

Scatter Search algorithm 

In Annex 3, the analysis of Scatter Search parameters is presented. For 
this algorithm, the user only needs to define: 

- number of iterations (ITER),  
- the size of the population (SIZEPOP) and  
- Reference Set (REFSET). 

The analysis was divided into four groups, depending on SIZEPOP, which 
assumed values of 5, 10, 50 and 100. All results are represented in Figure 
17. Results of the first group showed how the EVALS is higher when the 
ITER parameter increases for the three REFSET sizes (1, 2 and 5) analyzed. 
The EVALS is significant (more than 5000) when REFSET takes a value of 
5. However, in the case of ITER=1, only 164 EVALS were needed, but 
without finding any valid solution. Regarding to the OF values, the worst 
values are obtained with REFSET=5. The best result was obtained with 
REFSET=1 and 10 ITER (or more). 



Assessment and implementation of evolutionary algorithms for optimal management rules 
design in water resources systems 

33 

 

  

  

  

Figure 17: Performed test with Scatter Search algorithm (source: Lerma et al., 2015). 

In the second group of tests (SIZEPOP=10), the trend is almost the same 
for values of REFSET equals to 1 and 2. In these cases more than 10,000 
OF evaluations were needed for a value of ITER=50. Moreover, for 
REFSET=5, the increase in EVALS is larger, although slightly lower than 
that for SIZEPOP=5. However, the behavior of the OF value is not similar 
to previous tests. In these ones, for REFSET=1, the solutions obtained are 
less optimal than for the other two values. 
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To summarize these two groups of tests, for the best combination of 
parameters, the proportion SIZEPOP/REFSET is maintained. In the first 
group, SIZEPOP=5 and REFSET=1 were used, and for the second group, 
SIZEPOP=10 and REFSET=2. 

In the last two groups of tests (SIZEPOP=50 and 100), a value of 10 has 
been chosen for REFSET size, a lower value than SIZEPOP to maintain the 
proportion of SIZEPOP to REFSET that was used in previous tests. The 
results reflect the need for a very high EVALS value (from 2,377 to more 
than 64,000). With the lowest EVALS value, a worse OF value is reached 
than previous analysis. The best OF value was obtained only for EVALS 
values higher than 30,000 OF evaluations. 

With this analysis, it can be concluded that parameters related to the 
population size and the Reference Set are the most influential during the 
optimization process in order to provide good solutions. 

3.2. Case studies results 
Júcar River basin 

Results presented in this point are detailed in Annex 1. In the research 
paper of this Annex, the Pikaia algorithm is combined with the network 
flow model SIMGES to obtain optimal MR in the Júcar River basin. The 
application of the methodology is summarized in the following lines 
(more details in Annex 1).  

The OF to be minimized considers, in the first two terms, short-term and 
long-term deficits of the demands according to the Spanish Hydrologic 
Planning Instruction (IPH, 2008). In this document, the maximum deficit 
of one year as short-term deficit and the 10 consecutive years as long-
term deficit are commonly used. 

f(x) = w1
Max(Def1,Trd)-50

50
+ w2

Max�Def10,Trd�-100
100

+ w3
(∑ Vt)-n*2000n

t=1
n*2000

 

Both terms represent the deficit of Traditional demands. The Mixed 
demand deficits do not appear in the OF because it is assumed that the 
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restriction coefficient for these demands with respect to surface water 
supply is twice that of the Traditional demands. The values of 50% and 
100% were included in the function used for the reliability criteria, as they 
are the limits established by the IPH (2008) for agricultural demand 
satisfaction criteria. The last term of the equation was added to ensure 
the minimum reservoir volume among different possibilities. The weight 
w3 was fixed with a sufficiently low value to ensure that deficits terms are 
always more important. This term is evaluated as the sum of the volumes 
in the different months that are decision variables; this value is reduced 
by the number of months multiplied by 2,000 (considered the upper 
volume limit). 

In the optimization problem, the decision variables are the sum of the 
volumes of the three reservoirs of the system (Alarcón, Contreras and 
Tous) and a restriction coefficient for the demands. The volume of water 
stored in the reservoirs indicates the water reserve for scarcity periods. 
The restriction coefficient is applied to the Traditional demands, 
multiplying it by two for the Mixed demands as explained above.  

In this study, three different MRs were analyzed: 

• “April-September” MR: This rule makes a single decision in April 
and uses it until the end of the hydrological year. It is based on 
the fact that most of the demand is realized between the months 
of April and September.  

• “4 months” MR: It is a parametric curve using decision variables 
for only four months and estimating the rest by linear 
interpolation.  

• “12 months” MR: This last rule is based on the most general case, 
i.e., making decisions each month of the year.  

Each MR results are compared with a situation denoted “basic”. In this 
situation, the management is performed only according to the water 
distribution system priorities. Table 2 shows the best OFs and the 
maximum deficits in the demands for the three MR studied. These results 
are compared with the “basic” situation: 
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 The reduction of the annual deficits versus the “basic” case was 
very high for the traditional demands (from 40% to 9%, 
approximately), but not so much for Mixed demands due to the 
pumping option in some of them. 

 The results of the maximum ten-year deficit show a worse 
behavior in both types of demands. In Traditional demands, this 
deficit increased but it is under the IPH (2008) criteria. The worse 
value of this indicator was expected because the proposed OF, is 
to diminish the annual deficit; therefore, the deficit must be 
distributed over time. 

Table 2: OF and maximum deficits for 1 year and 10 years accumulated for the irrigation 
demands (adaptation of Lerma et al. (2013)). 

MR OF 
DEFICITS (% OF 

ANNUAL 
DEMAND) 

TRADITIONAL 
DEMANDS 

MIXED 
DEMANDS 

MaxDef1year 40.84 % 34.90 % 

MaxDef10years 72.35 % 102.34 % 

MaxDef1year 9.37 % 22.20 % 

MaxDef10years 90.10 % 139.13 % 

MaxDef1year 9.43 % 22.27 % 

MaxDef10years 90.76 % 140.09 % 

MaxDef1year 9.31 % 23.51 % 

MaxDef10years 89.72 % 154.01 % 

Regarding to the pumps of some of the Mixed demands (La Mancha 
demands), the pumped flow decreased respect the “basic” situation due 
to the restrictions imposed with the MR proposed. 

Taking into account all these results together, including the OF values, 
they demonstrated that the three MRs are quite similar and justified that 
defining very complex rules is not necessary. A simple MR like “April-
September” is enough to achieve the objective of minimizing the annual 
deficits without compromising ten-year annual deficits. 
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Finally, Figure 18 shows all the tested solutions for “April-September” MR. 
This figure is composed for four plots. The first one is a 3D plot 
representing the two decision variables (total volume and the restriction 
coefficients of the traditional demands) versus the OF. The other three 
plots are the corresponding 2D projections. 

a) b) 

c) d) 

Figure 18: a-d. Evolution of the OF, volume stored, and restriction coefficient for the 
“April–September” MR (adapted from Lerma et al., 2013). 

The plots show the restriction coefficients for the traditional demands 
tend to cluster near to 10%. Therefore, it is maintained as the optimal 
restriction value for any volume. Regarding this last decision variable, the 
best results are grouped near volumes above 1,000 Hm3. The 2D plot 
representing both decision variables shows how the algorithm searched 
for combinations over the entire solution space. 
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Confronting the volume versus the OF, the highest concentration of 
points was reached at a value of the OF near 0.6, corresponding to 
volumes over 1,000 Hm3. The most interesting result is the minimum 
volume where the maximum value of the OF is reached, which is 
approximately this threshold of 1,000 Hm3. The figure also shows the 
restriction coefficient versus the OF. The greatest concentration of points 
is near a restriction of 5 to 20% and a value above 0.2 for the OF. The 
maximum value of the OF is achieved with a restriction coefficient of 
approximately 11%. 

Mijares River basin 

In Annex 2, the multi-objective EA NSGA-II is combined with SIMGES to 
search optimal managements in the Mijares River basin. In this point, the 
application of the methodology and the results of the case study are 
presented (more details in Annex 2). 

As a multi-objective algorithm, NSGA-II requires the definition of different 
OFs and not a weighted-combined OF, like the Pikaia algorithm. In this 
problem, there are three OFs to minimize, which take into account the 
maximum deficit of the demands as well as the resilience of the water 
system: 

• OF1 = maximum annual deficit for agricultural demands 
(MaxDef1Year) 

• OF2 = maximum ten consecutive years deficit for agricultural 
demands (MaxDef10Years) 

• OF3 = years of pumping 

Each individual of the algorithm is composed by 13 values and 
corresponds with the definition of a MR. These values represent a volume 
threshold in each month (12) and the restriction coefficient for the water 
supply (1). The volume level is between a minimum (5 Hm3) and a 
maximum (87 Hm3) value depending on the associated reservoirs (Sichar 
and Arenós), and the restriction coefficient varies between 0 and 1 (not 
applying and applying a total restriction). 
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In this research, a complex MR composed by 13 decision variables was 
used to analyze the behavior of the multi-objective algorithm to search 
optimal and complex MR. 

Apart from the OFs definition and the decision variables, in this case, the 
NSGA-II algorithm also requires the problem restrictions. Two constraints 
related to the deficit objective functions were defined: 

• C1  MaxDef1Year<50% 
• C2  MaxDef10Years<100% 

Results reached for the algorithm are presented in Annex 2 in different 
figures. In this section, only the most relevant figures will be commented. 
In some of these figures, the Pareto front is represented linking the 
different OFs. In the other ones, the MR parameters are confronted.  

 
Figure 19: Pareto front 1; maximum deficits for the agricultural demands (for color-

marker coding, see Table 3) (source: Lerma et al. (2014). 

In Pareto front plots, each one contains two hundred points. These points 
represent the result for applying SIMGES to each combination of 
parameters obtained by NSGA-II in its last generation, i.e. the best 
solutions reached by the algorithm. To relate the solutions of one figure 
with the other ones, a color scale gradient was fixed, sorting the solutions 
according to the maximum annual deficit of the agricultural demands 
(abscissa of Figure 19). 
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Table 3: Color-marker coding adopted in Figures 7–11 (source: Lerma et al., 2014). 

Color (marker) Maximum annual deficit of the agricultural demands 
(%) 

Red (▲) –orange (■) 0–5 
Orange (■) –yellow (■) 5–10 
Yellow (■) –green (x) 10–20 

Green (x) –cyan (♦) 20–25 

Blue (Ж) –purple (●) 25–30 
Purple (●) –pink (●) 30–35 

Pink (●) –dark red (+) 35–37 

In Figure 19, the Pareto front corresponding to the short term (1 year) and 
the long term (10 years) of the deficit of agricultural demands is shown. 
The points of the figure represent a great variety of possible solutions 
generated by different MRs. The growing trend of this figure is due to the 
conditions of the basin. The optimal solution will not be the one with zero 
deficits, because the number of years pumped must also be taken into 
account. 

 
Figure 20: Pareto front 2; number years pumped versus deficit of the agricultural 

demands (for color-marker coding, see Table 3) (source: Lerma et al. (2014). 

The number of years pumped is represented in Figure 20, sorted 
according to the annual deficit of the agricultural demands. This 
parameter was taken into account because pumping has an associated 
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cost, which decreases when reducing the pumping time. The figure 
contains a second Pareto front. As this figure shows, at least 30 years of 
pumping is required according to the system. In this figure, three zones 
can be distinguished. The first one, with a low value of deficits (<20%) and 
a high number of years pumping (>55). The second one, between 20 and 
28% of deficits and a low number of year (>30). The last zone is 
characterized by high deficits and years pumped, whereby the set of 
solutions is not indicated. 

Figure 21 represents the restriction coefficient, MR parameter and the 
decision variable of the algorithm, depending on the maximum annual 
deficit of agrarian demands. The obtained restriction is higher than 92%, 
although the largest set of solutions is between 96% and 100%. This figure 
shows that a very high restriction has to be applied to reach the results 
obtained. 

 
Figure 21: Restriction coefficient (for color-marker coding, see Table 3) (source: Lerma et 

al. (2014). 

As mentioned above, the two hundred points represent the best solutions 
obtained by NSGA-II algorithm. Each point corresponds to a MR definition 
composed by thirteen values. Twelve of these are the threshold vale for 
each month of the year and the other is the coefficient of restriction. 
Because analyzing 200 MR is not feasible, and given that some of them 
are not applicable to real management scenarios due to the complexity 
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and variability of their definitions, four MRs were selected as 
representatives of the set of solutions. 

The first MR selected (MR1) corresponds to solutions near 5% of the 
maximum annual and ten years deficits of the agricultural demands. 
These solutions imply a large number of years pumped and high values 
for the pumped volume. MR1 is defined with high levels of the sum of the 
volumes of the Arenós and Sichar reservoirs. When the system is below 
those levels, it indicates that the Mixed Irrigation is not supplied with the 
surface water, but has to pump water. Only Traditional Irrigation is 
supplied with surface water.  

Second MR (MR2) is associated with annual maximum deficits between 
20% and 25% of the agrarian demands and between 30% and 100% in the 
case of the maximum deficits of 10 years. MR2 allows a larger surface 
water to supply the Mixed Irrigation and, therefore, somewhat less by 
pumping. The next MR (MR3) is similar to MR2, differing mainly in the first 
months of the hydrological year, i.e., November to January. For these 
months, MR2 reserves supply more surface water for Traditional 
Irrigation. However, MR3 allows a greater surface water to supply Mixed 
Irrigation, and for this reason, Traditional Irrigation increases its deficits.  

Finally, the last MR selected (MR4) corresponds to maximum annual 
deficits between 25% and 30% of the agricultural demands and between 
30% and 100% in the case of the greatest deficits of 10 years. This MR is 
defined with low reservoir levels and is associated with a very small 
reserve for Traditional Irrigation, causing high deficits of traditional 
demands. 

With the optimization carried out with NSGA-II and linked with SIMGES 
module, a great number of MR alternatives were reached. All these MRs 
obtained results below the maximum values of the IPH (2008) criteria. 
Thus, these solutions are better than not applying any MR (Table 4). The 
MR3 presented above is the closest to the operating rule included in the 
“Agreement 70” MR. 
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Table 4: Results of deficits and pumping without MR and with the “Agreement 70” rule 
curve (source: Lerma et al. (2014)). 

 WITHOUT MR 
(%) 

“AGREEMENT 
70” (%) 

Maximum deficit of 
one year 

37.12 23.35 

Maximum deficit of 
ten years 

217.28 55.77 

Maximum pumping 
of one year 

87.4 97.85 

Maximum pumping 
of ten years 

59.64 73.3 

 

Tirso-Flumendosa-Campidano system 

SCE-UA and Scatter Search algorithms are assessed in Annex 3 to obtain 
optimal MR in the Tirso-Flumendosa-Campidano system. The application 
of the methodology is summarized in the following lines (more details in 
Annex 3). 

In this study, an optimization problem is proposed to improve the defined 
system management protocols using the following OF: 

𝑂𝑂𝑂𝑂 = �0.3 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝐶𝐶𝑁𝑁𝑁𝑁 + 0.2 ∗
∑𝐷𝐷𝐷𝐷𝐷𝐷
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

∗ 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷� + 0.5 ∗�𝐶𝐶𝐶𝐶 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 

The optimization process minimizes the weighted sum of the number of 
demands with deficit (NDCD), the maximum annual deficit (DMA), and the 
pumping costs (CB). The main goal of the optimization for this case study 
is to design MRs that obtain the least number of demands with deficit. 
Moreover, it attempts to get the lowest possible value for their maximum 
annual deficits and the lowest pumping rate to reduce their associated 
economic costs. Typically, the problem with these goals is that, in this type 
of system, the reduction of deficit demands implies an increase in net 
pumping and, hence, the WRS operating cost. Therefore, the defined OF 
tries to minimize both aspects for optimal management. 
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Each term of the equation includes a weight (0.3; 0.2 and 0.5). These 
weights impose the priority of the system managers in the search for 
optimal managements. Moreover, each term includes some ratios 
coefficients (CND, CDMA and CCB) to make each one unitary. 

The optimization problem also includes some restrictions detailed below:  

 R1: Deficit in Urban Demands ≤ 1 
 R2: Maximum 1 Year Deficit (%)<50% Annual Demand 
 R3: Maximum 2 Years Deficit (%)<75% Annual Demand 
 R4: Maximum 10 Years Deficit (%)<100% Annual Demand 
 R5: Maximum Pumping Cost (€)<5,000,000€ 

Where R2 to R4 take into account the vulnerability criteria (IPH, 2008) 
used in Spain to verify the compliance of agrarian demands. 

Table 5: Results of the current management system for the case study (source: Lerma et 
al. (2015)). 

a) 

NUMBER OF DEMANDS WITH DEFICITS 4 

AVERAGE ANNUAL COST OF PUMPING 3,675,330.24 € 

b) 

Demand Maximum annual deficit 

GIO-A 86 % 

GUS-C 47.04 % 

LEN-A 80.2 % 

IGL-A 2.9 % 

The MR for this real case is defined by six parameters, which represent 
the thresholds of different reservoirs of the system. The decision makers 
of the WRS selected these parameters. Based on the above mentioned 
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thresholds, the supply degree of the demands is affected and, at the same 
time, this affects to the volume pumped. 

The initial situation of the system after its modeling with the collaboration 
of the Water Management Authority of Sardinia is presented in Table 5. 

For each EA, a figure with all the MRs tested is displayed, representing the 
number of demands with deficit (x-axis) and the average annual cost of 
pumping (y-axis). 

SCE-UA algorithm optimization employed 1594 iterations to complete the 
process obtaining the best value for the OF equal to 0.57. For this result, 
the total number of demands with deficits is three and the average annual 
pumping cost is 3,161,191.56 €. Figure 22 shows the results of all 
iterations. In this figure, previous solution has the combination of the 
fewest number of demands with deficit and the lowest average annual 
cost of pumping. Regarding to the initial situation, the number of 
demands with deficits was reduced and the average annual cost of 
pumping also decreased from 3,675,330.24€ to 3,161,191.56€. 

 
Figure 22: Obtained results using the SCE-UA algorithm (source: Lerma et al. (2015)). 
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Figure 23: Obtained results using the Scatter Search algorithm (source: Lerma et al. 

(2015)). 

Scatter Search algorithm required 3,989 iterations (Figure 23), and the 
optimal solution obtained is one with three demands with deficit and 
having an average annual cost of pumping of 3,251,280.22 €. The OF value 
reached is 0.579. 

The three demands that have deficits (in the best solution using both 
algorithms) show the same values of maximum annual deficit that are 
observed in the initial management system. However, with these best 
solutions the system suffers less deficits and the final cost of pumping 
decreases. 

Comparing both algorithms, the number of iterations used by the SCE-UA 
algorithm is smaller than the Scatter Search algorithm. Considering the OF 
and the results obtained, the best solution reached by the algorithms is 
more optimal than the initial management system, in terms of water 
supply deficits and pumping costs. However, the SCE-UA obtains an 
average annual cost of pumping that is lower than Scatter Search 
alternative, i.e., the SCE-UA obtains a better solution. On the other hand, 
the Scatter Search algorithm has fewer parameters, which makes it 
flexible and able to provide good solutions. 
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Figure 23 shows that the solutions found by the Scatter Search algorithm 
are focused on specific values for the average annual cost of pumping. 
However, in the SCE-UA plot (Figure 22) a major homogeneous 
distribution of the solutions is appreciated. Therefore, Scatter Search 
does not analyze or does not provide solutions for all the ranges of the 
average annual cost of pumping. 

Regarding the decision-makers, they can use this methodology to select 
between alternatives for what they consider the most desirable for the 
interests of the system. For example, with the results reached with both 
algorithms, the decision-maker may choose an alternative with a greater 
number of demands with deficits, but with lower pumping costs. 
Nevertheless, in cases where there are more than two objectives to be 
considered, it is possible that only with the figures presented, it would not 
be sufficient to make a decision because they do not show all aspects of 
the WRS management needed for making objective decisions. For these 
cases, a collection of figures could be created to show all important 
aspects and relate different solutions across the figures using a color code 
(Lerma et al., 2014). 

Visp River basin 

In the last manuscript (Annex 4), the mono-objective SCE-UA algorithm 
and the multi-objective NSGA-II algorithm were assessed to obtain 
optimal MR during flood events using RS MINERVE software. The 
proposed approach was applied to the Visp basin (Switzerland). The 
following lines summarize the application of the methodology before 
presenting the results (more details in Annex 4). 

To reach an optimal solution, minimizing damages in flood zones and 
losses in hydropower plants, three OFs were defined. However, SCE-UA, 
as mono-objective algorithm, is able to handle only one OF. The sum of 
the individual OFs represents a combined OF used in the optimizations 
with the last mentioned algorithm. Each OF represents an economical 
cost. One objective in these types of problems is to reduce the peak flow 
in the risk zone (OF1). Sometimes, it will be necessary to stop the normal 
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turbine process. For this reason, the second objective (OF2) is defined to 
minimize the difference between the maximum revenue in normal 
conditions and the revenue obtained in the optimization. In other 
situations, a preventive turbine program is necessary to provide enough 
space in the reservoirs. To avoid an excessive turbined volume in these 
cases, the OF3 is defined to get more benefit storing the water in the 
reservoir at the end of the optimization period for future turbining. 

• OF1: flood damage in the risk zone. This OF is calculated 
according to the maximum flow (𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚) in the risk zone. Its 
evaluation is based in a curve. If 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 does not exceed a 
specific value, there is no economical cost. Between two 
specific values, an equation estimates the damage cost. 
Finally, if the 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 exceed the second threshold, a constant 
cost is assigned (detailed expressions in Annex 4). 

• OF2: revenue in the hydropower plants and the pumping cost. 
To evaluate the second OF the difference between the 
maximum cumulated revenue (in optimal condition) and the 
optimized cumulated revenue is calculated. Furthermore, the 
cost of the pumping between reservoirs is also considered.  

• OF3: potential revenue of future uses of the stored water. This 
function is evaluated according to the maximum volumes of 
the reservoirs, their final volume and a unitary cost per cubic 
meter associated to the potential revenue. 

Besides the OFs, two restrictions are considered in this optimization 
problem: 

• In order to avoid the turbines from being activated and 
deactivated every ten minutes, a restriction is added 
preventing at least one hour in the same state (on or off).  

• The other restriction is added directly into the model. The 
spillways curve in the reservoir is modified to consider the 
failure of this reservoir. In this case, the damage cost in the risk 
zone is not acceptable and the EA will discard this solution.  
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A set of optimizations was conducted for each flood forecast available 
series (7) and for each EA (SCE-UA and NSGA-II). In Figure 24, the results 
achieved with both algorithms (b and c) and the results obtained without 
a specific flood management (a) are presented for one forecast series 
(forecast 6, more results in Annex 4). In order to compare the results, the 
NSGA-II results represent the solution with the minimum sum of three 
individual OFs. 

 
a6) 

 
b6) 

 
c6) 

 

Figure 24: Result comparative using SCE-UA (b), NSGA-II (c) and without optimization (a). 
Where [Qmanagement Visp] = [Qnatural Visp]+[Upper river flow of Visp]+[Zer Turbine] 

(adapted from Lerma et al., 2017). 

Results presented in Annex 4 demonstrated the optimization process 
efficacy. In the example exposed in this point, the EA optimizations 
acquire an optimal management, saving a significant amount of money 
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compared to the situation without a specific flood management (Table 6). 
In this situation, the optimization tool demonstrates the importance of its 
use. Without the optimization, the cost amounts to CHF 162 Million. 
However, both algorithms obtain the same reduction of the cost, around 
CHF 161 Million. This reduction is due to the peak flood decreases from 
more than 200 m3/s to less than 190 m3/s, making the damage cost in the 
flood zone disappear. 

Comparing both EAs, their solution is the same in some of the forecast 
series used (just in terms of final cost; the decision variables could be 
different) and in other cases NSGA-II results are better than SCE-UA. This 
last algorithm has different stop criteria (e.g. maximum number of 
iterations or variation percentage of the OF) and the range of its time 
computation (equivalent to the OF evaluations) is normally less than 
NSGA-II. The computation time of NSGA-II algorithm is the same in the 
different optimizations because the number of individuals and the 
generations is equal in all of them. The value of these two parameters was 
fixed in order to the computation time will be similar for both algorithms.  

Table 6: OF values for the analyzed forecast (6) without optimization (a) and with SCE-UA 
(b) and NSGA-II (c) algorithms (adapted from Lerma et al., 2017).  

 

OF1 OF2 OF3 �𝑶𝑶𝑶𝑶𝒌𝒌 

a6)  CHF  161,922,749   CHF     -1,774  CHF  323,423  CHF          162,244,397 

b6)  CHF          -     CHF    56,841  CHF  314,389  CHF                  371,230  

c6)  CHF          -     CHF    56,841  CHF  314,389  CHF                  371,230  

The evolution of the individuals of both algorithms is shown in Figure 25. 
The figure contains one 3D plot and its corresponding 2D projections (OF1 
vs OF2, OF1 vs OF3 and OF2 vs OF3). The SCE-UA individuals were 
represented with blue points and NSGA-II individuals with orange 
triangles. 
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6-i) 

 

6-ii) 

 

6-iii) 

 

6-iv) 

 

Figure 25: NSGA-II (orange) vs SCE-UA (blue) search space for the analyzed forecast (6). 
3D view (i), OF1 vs OF2 (ii), OF1 vs OF3 (iii) and OF2 vs OF3 (iv) (adapted from Lerma et 

al., 2017). 
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i) 

 

ii) 

 

iii) 

 

iv) 

 

Figure 26: Colored plots of the NSGA-II solutions for the forecast 6. 3D view (i), OF1 vs 
OF2 (ii), OF1 vs OF3 (iii) and OF2 vs OF3 (iv). From the worst solutions (red) to the best 

ones (green) (source Lerma et al., 2017). 

As it has been commented previously, NSGA-II is defined to find solutions 
that represent a Pareto front. For this reason, orange triangle points try to 
represent that front. In this sense, it seems that the optimal search of NSGA-
II, as a multi-objective algorithm, is better and more effective than the SCE-
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UA algorithm. Moreover, this Pareto front could be the best tool for decision 
makers to select the best management for the system according to the 
different objectives and priorities. It is due to the fact that the front contains 
only non-dominated solutions. When a management rule of the Pareto front 
is selected based on a specific OF (e.g. cost in flood zone), the two other OF 
values will be the minimum possible. 

Figure 26 represents another alternative in case the solution set does not 
contain a defined Pareto front. The points of the plots included in this figure 
are colored according to the global OF value (sum of the individual OFs). 
These plots allow to identify quickly the best rules obtained in the 
optimization process (considering that the best rule is obtained by 
minimizing all individual functions).
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4. CONCLUSIONS 

This thesis is a compendium of five research papers. All of them apply a 
methodology to obtain optimal MRs in WRS. The manuscript published in a 
Conference Proceedings is also focused in the comparative of three 
simulation models. In each manuscript, different EAs were assessed 
combining them with SIMGES module or RS MINERVE software. Moreover, 
in each one, the approach is applied to a different case study. The EAs 
assessed in the manuscripts were Pikaia, SCE-UA, Scatter Search and NSGA-
II. A parameter analysis of the first three algorithms was developed in order 
to estimate the best parameters in the search of optimal MRs in WRS. The 
case studies where the methodology was applied were to the Júcar River 
basin, Mijares River basin, the Tirso-Flumendosa-Campidano system and the 
Visp basin. 

This section presents the conclusions reached in the different manuscripts 
that compose this thesis. The section is subdivided into four points. In the 
first point, the conclusions about the algorithms parameters analysis are 
presented. The second point details the main conclusions of the 
methodology application in the case studies. The third point summarizes the 
main conclusions reached in this study and the last point presents some 
future research lines. 

4.1. Algorithms parameters 

The parameters of three algorithms used in this thesis were analyzed in 
the research papers (Annex 1 and Annex 3). The conclusions obtained in 
these analyses are presented in the following lines and they will allow for 
selecting the proper parameters when some of these algorithms will be 
used to obtain optimal MRs in WRS. 

Pikaia algorithm 

For this algorithm, the initial population, the elitism, the number of digits 
of codification, the number of individuals, the crossover probability and 
the mutation method were analyzed. 
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The analysis concluded that optimal values were reached taking into 
account the minimum number of three codification digits, including the 
elitism criteria, and a minimum population of 50 individuals. Less than 
three codification digits did not reach acceptable solutions and, 
furthermore, this parameter does not affect the execution time. 
Regarding the elitism criteria, when it was not considered, the optimal 
values were obtained just at the end of the optimization process. The 
tests with the number of individuals indicated that with a small number 
of individuals (25) the optimal solution is not so if compared with a 
population of 50, 100 or 150 individuals. 

The initial population tests, associated with the seed parameter, showed 
that all the initial populations considered reach almost the same optimal 
value and, for this reason, this parameter is not a key parameter in the 
optimization process. Finally, in the analysis with the mutation methods 
and the crossover modes, all the tests reached optimal values in the 
middle of the optimization process. 

SCE-UA algorithm 

Five parameters were studied in the SCE-UA algorithm. One of them 
affects the improvement of individuals (NGS), the other two (KSTOP and 
PCENTO) affect the stopping criteria, and the last two (ISEED and IFLAG) 
condition the initial values for the decision variables and generate new 
values as the individuals evolve. 

Tests with NGS parameter showed that it is not convenient to choose 
either a low or a high value for this parameter. In the first case, because 
the optimizations reached worse values for the OF. And in the second 
case, because the number of evaluations, and therefore the execution 
time, increased. Therefore, NGS values between 3 and 8 would be 
appropriate.  

Regarding the convergence/termination criteria, KSTOP and PCENTO 
parameters are important. In this sense, PCENTO is the most influential 
parameter. Choosing an incorrect value can make the algorithm finish 
prematurely and sub-optimal results could be reached. Or, on the 
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contrary, the algorithm can take more time to complete the optimization 
than is strictly needed to reach the optimal solution. 

Regarding ISEED and IFLAG, they have a certain random nature and better 
or worse results can be obtained depending on the practical case. 

Scatter Search algorithm 

In the analysis developed for the Scatter Search algorithm parameters, 
three of them were analyzed. Each one affected in some way the 
computation time.  

Regarding to the SIZEPOP parameter, the tests indicated that the 
algorithm is not efficient for high values (more than 20 solutions) because 
a high computation time is required, obtaining similar results when lower 
population sizes are used (10 or fewer solutions). 

The REFSET parameter is quite influential in optimized solutions. 
Considering SIZEPOP values less than or equal to 10, it is observed that 
low values of REFSET are most appropriate because optimal solutions are 
reached with a lower number of evaluations. 

For the last parameter (ITER), values near 10 but lower than 20 obtained 
results with a low number of evaluations and optimal values for the OF. 
This parameter controls the stop condition of the algorithm.  

4.2. Methodology application 

In Annex 1, the research paper presented an approach for obtaining MRs 
in a real and very complex WRS, the Júcar River basin system. The main 
goal was to obtain an optimal water allocation between the agricultural 
demands during drought periods. 

The proposed approach in that research coupled the Pikaia EA with the 
SIMGES flow network model for obtaining optimal decision rule curves. 
The addressed problem had the objective of reducing the maximum 
annual deficits and the maximum accumulated deficits in the long term. 



                                                                                                                              
4. Conclusions 

 

58 

 

Each iteration in the optimization process implied the computation of the 
simulation model with a new MR obtained by the EA. With the results of 
this model, for example the deficit of the demands, the OF was evaluated. 

The research paper includes several tests (commented in the previous 
point) to define the most suitable parameters for the EA. Applying the 
methodology to the case study, three possible MRs were analyzed. Each 
one was based on different months for decision-making and application. 
For this case study, the research concluded that it is sufficient to make a 
decision in the month of April and apply it from then until September to 
obtain an optimal management. Moreover, this demonstrated that, in 
some cases, simple MRs could be used for the management of very 
complex WRSs. 

The second research paper presented in this thesis showed the 
optimization of MRs based on the coupling of the NSGA-II multi-objective 
EA with the SIMGES flow network. This methodology was applied to the 
Mijares River basin, a water resources system characterized by severe 
droughts and the possibility of the conjunctive use of surface and 
groundwater resources. 

Applying this approach to the case study, different types of MRs were 
tested. The optimization decision variables were the trigger volume of 
applying the MRs and the restriction coefficient for supplying demands. 
The methodology proposed required the use of the simulation model 
SIMGES, for Mijares basin, to estimate the deficits of the demands and 
pumps and therefore, to evaluate the OFs. 

In this approach, a multi-objective point of view allowed to take into 
account the short and long terms of the deficit and the pumping resource. 
Moreover, this implementation helps users or managers of the water 
system to decide the best, or the most convenient, management for the 
river basin. 

In the manuscript of Annex 3, two EAs were assessed as optimization 
tools to design optimal MRs in a WRS. In this research, each algorithm’s 
parameter was analyzed and the approach was applied to the Tirso-
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Flumendosa-Campidano system, as a real case, using both EAs. The 
assessed algorithms were the SCE-UA and the Scatter Search. 

In the real case study application, aspects related to the decision-makers 
were considered apart from checking the validity of the methodology. In 
this research, it was concluded that a correct representation of the results 
is needed for the post-process, where the decision-makers must have all 
the information necessary to make the best decisions that yield the most 
appropriate management protocols for the WRS. 

Comparing both algorithms, the SCE-UA needed less iterations to reach 
an optimal solution in the real case study, and the solution obtained is 
better than the one obtained using the Scatter Search algorithm. 
Therefore, it was concluded that the SCE-UA algorithm is a more efficient 
algorithm for realistic problems and that it obtains better nearly globally 
optimized solutions than Scatter Search algorithm. However, the Scatter 
Search could be considered flexible and able to provide quality solutions 
in an expanded range of real-world applications. 

In the last research paper (Annex 4), an approach to optimize the 
management in hydropower plants and reservoirs during flood events 
was presented. The mono-objective SCE-UA algorithm and the multi-
objective NSGA-II algorithm were assessed combining them with the RS 
MINERVE precipitation-runoff model. The methodology was applied in 
Visp basin (Switzerland) using seven available forecast series.  

The results obtained applying both algorithms according to the proposed 
methodology showed the efficacy of them in finding optimal solutions 
and to reduce the final cost of the flood. Comparing the EAs, both of them 
obtained the same results (in terms of final cost) in some of the forecast 
series tested and in other cases, NSGA-II achieved better solutions than 
SCE-UA.  

The version of the SCE-UA algorithm used has different stop criteria, 
which give it some advantages. For example, the algorithm can reduce its 
computation time because the process stops when the solution is not 
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improved in consecutives steps without having to wait to reach a specific 
number of iterations. Meanwhile, NSGA-II always took the same time 
because the number of iterations based on the number of individuals and 
generations was predefined. However, this last algorithm has the 
advantage of finding a Pareto front, as 3D plots showed. For decision 
makers, the 3D view, its 2D projections and the Pareto front can help to 
select the best management rule for the system according to the different 
objectives. 

Finally, in Annex 5 (Conference manuscript) an in-depth analysis was 
developed comparing three simulation models: WARGI, SIMGES and 
AQUATOR. Although in the Conference manuscript, it merely described 
the methodology proposed in this thesis, it was completely applied to the 
research paper in Annex 3. To carry out the mentioned analysis, a model 
of the Tirso-Flumendosa-Campidano system was developed. Moreover, in 
this research 15 scenarios were defined, including future water demands 
and infrastructure failures. For each one, the management of the system 
was modified to try to minimize the demands with deficits. This process 
was supervised by ENAS (the Water Management Authority of Sardinia).   

The results obtained for the three simulations models and for all the 
scenarios are similar in terms of deficits of the demands, stored water in 
reservoirs and pumping. However, SIMGES is the model that reaches the 
best results in terms of minimizing deficits in the demands. This was the 
main objective for ENAS. These SIMGES results are reached due to the 
optimization executed in each time step of the simulation process. 
Moreover, this model allows to define more types and more detailed 
MRs. 

4.3. Final remarks 

The proposed approach in this thesis combines an EA with a simulation 
model. The main goal of its application is to obtain optimal MRs in WRS in 
two main fields. The first one, for an optimal resources distribution 
between different uses and, the second one, for avoiding damages in 
flood areas and increase the hydropower plants revenues in flood events. 
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The methodology was applied in four different real case studies. Both 
simulation models used in this research, SIMGES model (included in the 
DSSS AQUATOOL) and RS MINERVE, allowed their integration in the 
proposed methodology. The results reached in all the case studies 
demonstrate the validity of the approach. The obtained MR generated a 
more optimal system management than the base scenario of each case. 
Usually, it is translated into a decrease of the economic costs in the 
management of the water resources. 

The four algorithms assessed in this study obtained an optimal 
management with respect to the base situation, as discussed above. 
However, SCE-UA algorithm is the most efficient due to the different 
stop/convergence criteria and its formulation.  Nevertheless, NSGA-II is 
the most recommended if computation time is not a limitation. This 
algorithm is multi-objective and its search is focused on different 
objectives equally. Moreover, the decision makers can make the best 
decision for the system with the results of this algorithm and the 
proposed representation of them.  

4.4. Future researches 

In this point, future research lines are considered as a result of this thesis. 
The following lines correspond with some interesting features that would 
complete an extended research about this study topic.  

The first two proposed future researches are linked with the algorithms 
used in the optimization process. In the bibliography, there are some 
other EAs that could be tested. Especially, multi-objective algorithms to 
compare them with the NSGA-II algorithm assessed in this thesis. This 
feature would enhance the conclusions reached in the four manuscripts 
presented. 

Another interesting study about the algorithms could be to compare 
these EAs with other recent techniques that might be more efficient. 
These optimization processes require a high computation time and, 
sometimes, the decision should be made in a shorter time, e.g. during 
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flood events. This is the main reason to research algorithms that are even 
more efficient that the tested EA in this thesis. 

The last research paper, presented in Annex 4, was focused in the 
optimization of MR during flood events. Although the results reached 
were satisfactory, more studies in this field should be done. Moreover, if 
forecast series were more in line with reality, a combined optimization-
simulation process could be defined to obtain the MR in real time in these 
types of events. 

The last feature proposed is related with the decision makers. They are 
responsible of making the best decision for the system. For this reason, 
developing a user interface to manage the optimization process and the 
results could be interesting. With the help of this tool, it would be possible 
to select a specific EA, the OFs and, at the end of the process, to show the 
results according to the different objectives as it was proposed in this 
thesis. 

All these studies are proposed to obtain the best management of the 
water resources systems and, at the same time, to reduce the economic 
costs and to save water.  
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A.1. Development of operating rules for a complex 
multireservoir system by coupling genetic algorithms 
and network optimisation.1 
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Instituto de Ingeniería del Agua y Medio Ambiente. Universitat Politècnica de 
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Abstract: An alternative procedure for assessment of Operation Rules (ORs) 
under drought situations is proposed in this paper. The definition of ORs for 
multireservoir water resources systems (WRSs) is a topic that has been 
widely studied by means of optimisation and simulation techniques. A 
traditional approach is to link optimisation methods with simulation models. 
The objective of this paper is to obtain drought ORs for a real and complex 
WRS: the Júcar River basin in Spain. One of the main issues in this basin is the 
resource allocation among agricultural demands in periods of drought. To 
deal with this problem we present a method based on the combined use of 
Genetic Algorithms (GA) and Network Flow Optimisation (NFO). The GA used 
was PIKAIA, which has previously been used in other water resources related 
fields. This algorithm was linked to the SIMGES simulation model, a part of 
the AQUATOOL Decision Support System (DSS). Several tests were developed 
for defining the parameters of the GA. The optimisation of various ORs was 
analysed with the objective of minimising short-term and long-term water 
deficits. Results show that simple ORs produce similar results than more 

                                                           
1 Lerma, N., Paredes-Arquiola, J., Andreu, J., and Solera, A. 2013. Development of 
operating rules for a complex multi-reservoir system by coupling genetic algorithms 
and network optimization. Hydrol. Sci. J., 58 (4), 797–812. 
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sophisticated ones. This paper demonstrates the usefulness of this approach 
in the assessment of ORs for complex multireservoir systems.  

Key words water resources system, genetic algorithms, Pikaia, operating 
rules, decision support system, Aquatool, simulation, optimisation, 
agricultural demands, drought, deficits 

Développement de règles de fonctionnement d’un système complexe 
multi-réservoirs par couplage d’algorithmes génétiques et d’une 
optimisation en réseau 

Résumé  

Une méthode alternative pour l’évaluation des règles de fonctionnement 
(ORs) dans des situations de sécheresse est proposée dans cet article. La 
définition des ORs pour des systèmes multi-réservoirs de ressources en eau 
(WRSs) est un topique qui a largement été étudié par le moyen de techniques 
d’optimisation et de simulation. L’approche traditionnelle est de relier les 
méthodes d’optimisation avec les modèles de simulation. L’objectif de cet 
article est d’obtenir les ORs de sécheresse pour un WRS réel et complexe: le 
bassin de la rivière Jucar en Espagne. L'une des problématiques principales 
de ce bassin est la répartition des ressources entre les différents besoins 
agricoles en période de sécheresse. Pour faire face à ce problème, une 
méthode basée sur l'utilisation combinée d'algorithmes génétiques (GA) et 
optimisation de réseaux de flux (NFO) est présentée. L’algorithme génétique 
utilisé est Pikaia, qui a déjà été employé dans d'autres domaines liés aux 
ressources en eau. Cet algorithme a été introduit par exemple dans le modèle 
de simulation SIMGES, qui est un module du système d’aide à la décision 
AQUATOOL (DSS). Plusieurs tests ont été développés pour définir les 
paramètres du GA. Les optimisations de différents ORs ont été analysées 
dans le but de minimiser les déficits en eau à court et à long terme. Les 
résultats montrent que les ORs simples produisent des résultats semblables 
aux ORs plus sophistiqués. Cet article démontre l'utilité de cette approche 
dans l'évaluation des ORs pour les systèmes complexes multi-réservoirs. 

Mots clés: système de ressources en eau, algorithme génétique, Pikaia, 
règles de fonctionnement, système d’aide à la décision, Aquatool, 
simulation, optimisation, besoins agricoles, sécheresse, déficits. 
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1. INTRODUCTION 

Several authors have noted the lack of application of optimisation models to 
the practical management of multireservoir WRSs (Yeh 1985, Wurbs 1993, 
Labadie 2004). One of the main reasons for this shortcoming is the 
necessarily high degree of simplification of these models that removes them 
excessively far from reality, with the result that water managers lack 
sufficient confidence in their results to base decisions on model 
prescriptions. Nevertheless, Oliveira and Loucks (1997) argue that this fact is 
more likely due to institutional limitations than to technological or 
mathematical difficulties. 

As pointed out by Yeh (1985), there is no general method for optimising 
reservoir operations; it ranges from simulation to optimization models. 
Typical methods of optimising reservoir operations are: Linear Programming, 
Heuristic Approaches, Stochastic Dynamic Programming methods (Mousavi 
2004, Celeste and Billib 2009, Tilmanta 2002), Evolutionary Optimisation 
(Oliveira and Loucks 1997) and other approaches. These methods, used in 
optimal control of reservoir systems, require a large number of control 
variables, which are typically the sequences of releases from all reservoirs 
and for all time steps of the control period (Koutsoyiannis and Economou 
2003). 

Simulation models are generally preferred instead of typical optimisation 
schemes (such as linear, dynamic or stochastic dynamic programming 
models); the latter suffer both, from the high dimensionality, and the 
exaggerated and often unrealistic simplifications that are unavoidably made, 
concerning the operation of the real-world system (Efstratiadis et al. 2004). 
Simulation models allow for a more detailed representation of the system 
than optimisation models (Loucks and Sigvaldason 1982). Thus, in general, 
river basin management is performed with the support of simulation models 
that are characterised by their flexibility and capacity for representing very 
complex elements. However, these models require the establishment of 
predetermined ORs or a definition of system management. 
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The design of Operating Rules (ORs) for multireservoir systems is a topic that 
has been studied deeply in the history of water resources management. ORs 
can be obtained from the results of optimisation models using linear 
regression (Young 1967), multiple linear regression (Bhaskar and Withlach 
1980) and the use of simple statistics or tables and diagrams (Lund and 
Ferreira 1996). Unfortunately, regression analysis may yield poor correlation 
results, invalidating the ORs so obtained (Labadie 2004). 

It is desirable to use a modelling approach combining adherence and 
flexibility of simulation models with the efficient exploration of mathematical 
optimization models (Wurbs 1993). Labadie (2004) and Rani and Moreira 
(2010) reviewed the state-of-the-art regarding the optimization techniques 
used for multi-reservoir systems, which represent the majority of water 
allocation problems. Both authors said that the most favored technique for 
water allocation models has been linear programming. This technique is the 
most traditional (ReVelle 1999) and has been used for optimizing resources 
management of whole river basin schemes (Zoltay et al. 2010), developing 
decision support systems for urban water supply areas (Yamout and El-Fadel 
2005), and optimizing irrigation water allocation in complex agricultural 
schemes (Reca et al. 2001a, b). Network flow programming is a 
computationally efficient form of linear programming and, as was shown by 
Kuczera (1989) and Kuczera (1993), is more suitable than linear programming 
for solving large multi-reservoir multi-period models.   

Moreover, the combination of nonlinear algorithms with linear or network 
flow programming is a specific and very efficient in water resources models. 
For example, Cai et al. (2001) described strategies for solving large nonlinear 
water resource management models combining GA with linear 
programming, in which a GA/LP approach was applied to a reservoir 
operation model with a nonlinear hydropower generation and to a long-term 
dynamic river basin planning model. Another methodology was proposed by 
Nalbantis and Koutsoyiannis (1997) introducing a parametric rule based in 
two parameters per reservoir. They proposed and tested a multireservoir 
parametric rule where parameters are estimated by means of linear and 
nonlinear optimization methods, using simulation to evaluate the objective 
function for each trial set of parameter values. The advantage of this 
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approach is the parsimonious formulation with just two parameters per 
reservoir making searching most effective than other optimisation 
approaches.  Efstratiadis et al. (2004) make use of the aforementioned 
operation rules to represent the system parameterization, an NFP method to 
solve the simulation problem and an evolutionary algorithm to determine 
the optimal parameters.   

However, even with these methodologies, and despite potential for the use 
of optimization in the search for efficient alternatives, full integration 
between simulation and optimization has not yet been achieved to close the 
gap between research and real-world application.  

Although various strategies have been defined for using optimization and 
simulation techniques in combination, few of these have been employed in 
real-world multireservoir and multiuse water systems (Sechhi et al. 2009). In 
many real water systems, especially systems affected by droughts, managers 
employ OR based on taking decisions depending on the storage of the system 
and/or last inflows. The decisions are normally related to reduction of the 
demand or increment of the resource. In particular, ORs for drought 
mitigation are developed defining some thresholds values (Rossi et al. 2011).  
These ORs can be considered Trigger ORs (TORs) because one or several 
actions are triggered when the system reaches a specific situation.  Although 
some authors have criticised the use of this kind of ORs because of their 
relative inefficiency (Karamouz et al. 2000), the practical management of 
systems is usually performed with these kinds of rules due to their ease of 
application and comprehension. Additionally, there are several aspects of 
these curves that give them special relevance. First, a great number of 
multireservoir systems are managed by the division of reservoirs into layers 
(Pool-Based Rule systems). For example, many of the reservoirs built by the 
US Corp of Engineers are managed on the basis of defined layers or storage 
zones divided by reservoir curves (Lund and Ferreira 1996). Moreover, TORs 
have other advantages: they are easy to understand for both users and basin 
managers, they can be implemented into a legal framework, and they are 
extremely useful as triggers for decision making during periods of drought. 
Typically, these decisions concern restrictions on transfers, restrictions on 
nonpriority demands, and the initiation of special measures such as drought 



                                                                                                                              
Research manuscript 1 

 

84 

 

wells. Historically, these curves have been widely used in WRS planning and 
management. 

A typical technique for obtaining TORs is the iteration with basin simulation 
models. These iterations can be controlled by an optimisation algorithm that 
varies the ORs according to the results of the simulation model runs. Among 
the possible optimisation algorithms than can be used, Genetic Algorithms 
(GAs) are characterised by their flexibility for adaptation to any kind of 
problem and by avoiding local optima better than gradient methods. Nicklow 
et al. (2010) recently reviewed the state of the art of GAs and evolutionary 
techniques applied to water resource planning and management. In the 
particular case of ORs, Oliveira and Loucks (1997), and later Ahmed and 
Sarma (2005), presented an approach for optimising ORs for multireservoir 
systems using GAs. Among recent application cases, Chen et al. (2007) 
applied a multiobjective GA to optimise the rule curves of a multipurpose 
reservoir system in Taiwan; Elferchichi et al. (2009) also applied a real-coded 
GA to optimise the operation of reservoirs in an on-demand irrigation 
system, and this was later applied to the Sinista Ofanto irrigation scheme 
(Foggia, Italy).  

 In this paper we propose a methodology for obtaining TORs for a real and 
very complex WRS. The novelty of the approach resides in the combination 
of short term and long term reliability and vulnerability indicators in a 
multiobjective function for the definition of the parameters of a TOR. The 
engineering interest is demonstrating that the coupled simulation 
optimization model based on SIMGES and a GA (PIKAIA) is able to solve the 
problem in a robust way for complex real cases. This methodology is applied 
to the Júcar River basin in Spain. This basin is a complex system with intensive 
use of its resources, principally for irrigation demands, although other uses 
such as hydropower production and urban supply were also considered. To 
deal with this problem we present a method for the development of TORs 
for multireservoir systems by coupling GA with Network Flow optimization 
(NFO) basin simulation models.  
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2. METHODOLOGY 

Analysis of reservoirs management under drought conditions has received 
increasing attention in the last years, specially the optimization of the rule 
curves and the operational procedures (Hsu et al. 2004, Chang et al. 2005, 
Cañon et al. 2009). Reservoir ORs under drought conditions are based on 
proactive measures, to be adopted before drought impacts occur (Rossi et 
al. 2011). 

The proposed methodology, depicted in Figure P1. 1, is based on the 
estimation of TORs of the rule curve type for a complex multireservoir system 
with a basin simulation model through an iterative process. The optimisation 
search model used is PIKAIA (Charbonneau and Knapp 1995), a flexible and 
easy-to-use GA. For the evaluation of the objective function (OF), a basin 
management simulation model is required. This model represents the 
system situation in a proposed operational mode. The basin simulation 
model was developed with the SIMGES program (Andreu et al. 1996), which 
is part of the AQUATOOL DSS (Andreu et al. 1996). In the following, the 
characteristics of the optimisation algorithm, the simulation model and the 
coupling method are briefly explained. 

2.1 Trigger Operation Rules 

Generally, ORs are a set of guidelines to define releases from the reservoir 
that serves as a protocol for the operators. The difference between 
operation rules that are pre-specified and rules that are determined through 
optimization is that this are typically characterised as parametric, given that 
their parameters are handled as control variables to an optimization 
problem. There are many types from simple to very complex and usually 
relate outflows from reservoir with the storages volume and/or past or 
future hydrological variables.  Among the best known are the Rule curves 
specifying the target storage at the end of each month. These rules have 
been widely used in practice for its simplicity. Different adaptations of ORs 
Curves, as parametric, have been developed and its usefulness has been 
tested (Koutsoyiannis and Economou 2003). 
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Figure P1. 1: Scheme of the methodological approach applied for the coupling of Pikaia GA 
and SIMGES water management simulation model. 
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Other ORs related to Rule Curves, but where the curve is not a goal to be 
achieved but a threshold at which a decision is made are, as defined 
previously, TOR. These types of ORs are formed by a curve of an indicator 
and an action. The indicator can be the storage in one or more reservoirs, the 
inflows of last months in a system or the level of an aquifer. The action is 
related to a decision to be made that affects water supply of demands or 
alternative resources. This type of operation rules is applied in situations of 
drought in real systems. For example, in Spain, in the development of the 
Drought Special Plans (GPEASAS 2005) many systems based their Plans in 
defining this kind of ORs. 

2.2 The PIKAIA algorithm 

PIKAIA is a GA that, as all GA, is based on the search for an optimum using 
Darwinian evolutionary theory. Although its application has been more 
frequent in astrophysics, it has also been used in the calibration of water 
quality parameters with the QUAL2K model (Pelletier et al. 2006). The 
algorithm is based on six steps: initial population generation, fitness 
evaluation, selection, crossover, mutation, replacement and evaluation. It 
has two basic genetic operators: uniform crossover and mutation.  

PIKAIA is based on a decimal codification as other GA packages, for example 
GENOCOP or GEATbx. There are three reproduction plans: complete 
generational replacement, random elimination and worst individual 
elimination. Elitism is also available and is a default option.  

The mutation rate can be dynamically controlled by modifying the aptitude 
difference between the best individuals and the median of the population 
(also a default option). Selection is based on stochastic sample selection and 
individual arrangement, making use of the roulette-wheel algorithm (the 
probability of choosing an individual is proportional to its aptitude). The 
mutation modes implemented in PIKAIA are one-point mutation with:  fixed 
rate, adjustable rate based on fitness, or an adjustable rate based on 
distance. PIKAIA has been used the version adapted for Microsoft Excel by 
Pelletier et al. (2006). 
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2.3 The SIMGES simulation model 

The proposed method requires multiple iterations of a representative 
simulation model of the studied WRS. For this purpose, we used SIMGES 
module of the DSS AQUATOOL. Both, the simulation module and the DSS, 
have been widely applied to river basins in Spain and abroad (CHJ 1998, 
MIMAM 2000, DICTUC 2010, UNICA 2012, Jamieson 1997). SIMGES model is 
based on the conceptualization of a river basin as a set of interconnected 
elements that represent the real components of the WRS and their 
interactions.  A large variety of elements is available, as reservoirs, river 
reaches, channels, aquifers, hydroelectricity generation facilities, 
groundwater pumping facilities, return flows, demands and intakes, etc. 

In the simulation process, for every time step (one month in this case) 
SIMGES model translates different water resources elements such as inflows, 
demands, rivers, reservoirs, into a Network Flow Optimization (NFO) 
problem. The NFO is composed by arcs and nodes where each arc is defined 
by a maximum, a minimum, and a flow cost. The minimum value is zero 
where using the Out of Kilter algorithm (Ford and Fulkerson 1962). The 
consideration of the different elements of the system is achieved by means 
of artificial arcs and nodes. For example, environmental, for minimum flows, 
are considered two virtual arcs one having the capacity equal to the desirable 
environmental flow and a negative cost and the other without cost and a high 
upper limit. 

The arcs are defined by their initial and final nodes, the maximum and 
minimum flows passing through them, and the cost of circulating a single unit 
of flow. In this case, costs are not real costs, but pseudo-costs designed to 
reflect priorities, physical infeasibilities, preferences, etc. This problem is 
expressed mathematically as follows: 

∑∑
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where xij is the flow circulating through the arc from node i to node j, cij is the 
cost for each circulated flow unit, and lij and uij are the lower and upper flow 
limits, respectively, of the arc starting at node i and ending at node j. Actually, 
the model allows flows lower than the minimum flow limit but does not allow 
flows greater than the maximum limit. Under these assumptions, the 
optimisation problem can be efficiently solved using the Out-of-Kilter 
algorithm (Ford and Fulkerson 1962). 

Although the pure mathematical form is the one presented previously, the 
setting of the arcs, nodes and costs makes that the practical objective 
function of the model is composed by different terms, one for each element 
of the system. Depending on the type of element, its contribution to the 
objective function is different. The equivalent objective function defined in 
SIMGES model and simplified for reservoirs and demands is the following: 

(3) 

Where I is the total number of reservoirs in the model; Vn,i is the volume of 
the reservoir i in the pool n; m is the number of pools in a reservoir; Cn is the 
cost/benefit of storage water into the pool n; pni is the priority number 
assigned to the reservoir I; Spi is the spill of the reservoir I; and Csp is the cost 
of spills in the reservoirs; J is the total number of conduits (either river 
reaches, or channels, or pipes) in the model; DRj is the Deficit of the minimum 



                                                                                                                              
Research manuscript 1 

 

90 

 

flow established for conduit j;  Cdr is the cost of deficit of a minimum flow; pnj 
is the priority number of the conduit j; K is the number of demands in the 
model; DDk is the deficit of a demand k; CDD  is the cost associated to deficits 
of demands and pnk is the priority number of demand k. 

As it can be seen, the above equation is comprised of costs and priorities. 
The costs, set by default and previously calibrated, allow for the rational 
behaviour of the model between different types of items: for example, 
supplying water to demands before storing in the reservoirs. Although this 
“rational behaviour” usually is not changed, a user can modify it altering 
these costs. On the other hand, priorities also set behaviour between 
elements of the same type. For example, the priorities identified in the 
demands establish the order of supplying demands.  Priorities between 
environmental flows and between hydroelectric plants also have to be set. 
The same system of priorities combined with a definition of pools or zones is 
used for reservoirs. In each reservoir different pools have to be defined and 
a priority. Releases start from the reservoirs of less priority and all reservoirs 
are maintained in the same zone whenever possible.  

Along with the pools and priority system, the management of reservoirs is 
defined with ORs.  In SIMGES there are ORs that allow modelling decision 
making based on indicators, as TORs defined previously. Some examples of 
indicators are the stored volume in one or more reservoirs and the 
accumulated in stream flow during various months at one or more points of 
the system. The resulting decisions include the restriction to a certain 
percentage of one or more demands, turbine flow, environmental flow or 
pumping from an aquifer. Environmental aspects are also considered in the 
form of ecological flows to be satisfied. 

An important feature of SIMGES is the joint consideration of surface water 
and groundwater. The program allows to model different types of aquifers 
and surface and ground connections. Among the models that can be used to 
represent aquifers are: deposit or reservoir, single cell with discharge 
through spring, aquifer hydraulically connected to a surface stream, 
connected to two surface streams, and also distributed heterogeneous 
aquifer of irregular shape (Andreu and Sahuquillo 1987). 
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It has to be noticed that the NFO, as formulated above, is used every time 
step (i.e., one month in the case study) as a mechanism to find a set of flows 
through the system, storage in reservoirs, and water assignment to demands 
that fulfils the physical restrictions and fits as best as possible to the ORs and 
priorities. Therefore, SIMGES is not an optimization model, but rather a 
simulation model that uses NFO every time step for the mentioned purpose. 
In fact, NFO has to be solved several times in every time step (i.e., month) in 
order to deal with nonlinearities in some processes (e.g., evaporation from 
reservoirs), aquifer simulation (which is made apart, after each NFO 
optimization), and the resulting surface-groundwater interaction. 

2.4 Simulation and Optimization Models coupling 

The methodology used is based on the construction of an optimisation model 
with the following characteristics: the Objective Function (OF) considers the 
short-term and long term deficits of the demands:  

               (4) 

Where MaxShortTermDeft represents the maximum annual deficit of several 
demands, and MaxLongTermDeft represents the accumulated deficit in a 
period of time (several years, 10 years in the case of study).  Both terms are 
weighted by w1 and w2 to incorporate the importance of each concept. 

As illustrated schematically in Figure P1. 1, in the PIKAIA optimisation model, 
each individual operating condition consists of a proposed TOR and a 
restriction coefficient, and each evaluation of the OF requires a run of the 
basin management simulation model with that TOR. The simulation model 
estimates, among other things, the deficit in demands due to the proposed 
TOR. The results files with the series of deficits are then read to calculate the 
OF that is included into the optimisation model. 

3. THE JÚCAR RIVER BASIN. 

The Júcar River basin is located at the eastern end of the Iberian Peninsula 
(Figure P1. 2). It covers an area of 22,378 km2, and the length of the main 
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stream is almost 550 km. Its management is complex due to the high degree 
of use of its resources. The average basin precipitation of 510 mm/year 
implies a water resources average of 1,200 hm3/year including surface water 
and groundwater. Agriculture is the major water consumption demand, at 
1,000 hm3/year, mainly between April and September. The storage capacity 
is 2,000 hm3. Although the average values may indicate that its resources are 
sufficient, the Mediterranean climatology, with a strong winter-summer 
gradient and series of dry years between wet periods, causes the system to 
suffer frequent over-annual droughts. 

 

Figure P1. 2: Location of the Júcar River Basin. 

The topology of the system is illustrated in Figure P1. 3, which shows the 
main elements located along the Júcar River itself and its main tributary, the 
Cabriel River; these include the principal reservoirs, the demands and other 
elements. The demands can be classified by their supply source into surface, 
groundwater, and mixed supplies. The majority of the demand is for 
irrigation, although there are some important urban demands. The 
agricultural demands are shown in Figure P1. 4. 

The practical management of the system depends on the negotiations 
occurring in the meetings of the “Comisiones de Desembalse” (Reservoir 
Withdrawal Commission, RWC). Currently, there are no defined ORs. These 
are meetings among basin agency technicians, users and other stakeholders 
at different times of the year (almost monthly frequency). The most 
important one occurs in April, when the water assignments for the irrigation 
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demands are defined for the rest of the hydrologic year. The assignments are 
defined according to the system state, although there are a series of 
principles that must be maintained: 

• Water storage is preferably performed first in Alarcón, then in 
Contreras, and finally in Tous. In this way, the upstream storage 
priority is held above the downstream as long as the probability of 
spills from the Alarcón reservoir is minimal. Moreover, the Contreras 
reservoir suffers from a high filtration rate to the underlying aquifer. 

• Although all agricultural demands face supply restrictions during 
droughts, the priority for surface water supply of traditional 
demands over mixed demands is taken into account. The demands 
for the Ribera Alta, the Ribera Baja and the Mancha Oriental (MO) 
aquifer are considered to have a higher priority than the demands 
from the Júcar-Turia Canal Irrigation system and part of the mixed 
irrigation schemes from the Mancha Aquifer. Conjunctive use of 
surface and groundwater is performed with intensities depending on 
the surface water reserves. 

• Environmental flows have been defined at several points along the 
basin. By law, these must be maintained at all times, except when 
the drinking water supply is threatened. 

The model developed for the Júcar River represents the current situation of 
the system and simplifies some aspects that did not affect the objective of 
this study. Six inflows elements were considered, for which the values were 
obtained by naturalised streamflows. Even though the available series covers 
the period from 1940 to 2008, only the period corresponding to the last 28 
years was used because the longest periods of drought were concentrated in 
this time, allowing the running time to be reduced without loss of validity.  
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Figure P1. 3: Simplified scheme of the Júcar Water Resources System. 

 
Figure P1. 4: Basic features of Júcar river basin demands. 
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Also, only the four most important reservoirs were taken into account 
(Alarcón, Contreras, Tous and Bellús). None of the other existing reservoirs 
were considered, as they do not play any role in the regulation of the system 
and are only used for hydropower production. The demands were 
aggregated to a level sufficient to represent each different irrigation scheme. 
In the system schema we identified nine aggregated demands: four urban 
demands (Valencia, Sagunto, Albacete and the Manchuela) and five 
agricultural demands (Ribera Alta, Ribera Baja, La MO and the Júcar-Turia 
Canal). Among the aquifers existing in the basin, the La MO aquifer was 
considered (another aquifer was introduced to take into account the 
groundwater infiltration at the Contreras reservoir). MO aquifer is important 
because the demands from La Mancha are mainly supplied from it, and 
because there is a very strong relationship with the Jucar river, affecting the 
flows in the river. SIMGES includes a broad spectrum of approaches for 
modelling groundwater: reservoir type, aquifer with discharge through 
spring, aquifer hydraulically connected to a surface stream, connected to two 
streams and a distributed model. The aquifer model approaches are 
documented in the user-manual (Andreu et al. 1996).  In the NFO after initial 
values for the decisions are obtained by the optimization algorithm 
simulations of aquifers are performed and this gives values for the surface-
water groundwater relationships which are updated within the networks 
(Andreu et al. 1996). Environmental flows defined at several points along the 
basin were considered in the model by placing them and certain streams of 
the Júcar River, with flows ranging from 0.5 to 6 m3/s (1.3 to 15.3 
hm3/month). 

3.1 Specific methodology for the Júcar basin 

The OF that is defined for Júcar Basin is an adaptation of equation (1) and is 
as follows: 

  (5) 

The first two terms, as discussed in section 2.4 correspond to the deficit in 
the short and long term, respectively. In the Spanish Hydrologic Planning 



                                                                                                                              
Research manuscript 1 

 

96 

 

Instruction (IPH 2008) maximum deficit of one year as short-term deficit and 
the 10 consecutive years as long-term deficit are commonly used. 

The w1 and w2 represent the selected weights associated with the maximum 
deficits for one and 10 consecutive years, summing to one. Max(Def1,Trd) 
represents the maximum deficit in one year for all the traditional demands 
as a percentage of the whole demand. Max(Def10,Trd) represents the 
maximum deficit for 10 consecutive years of all the traditional demands as a 
percentage of the annual demand.  It has to be noted that in equation (5), 
and also in the rest of the paper, all deficits are expressed in terms of 
percentage of a value equal to the annual demand. 

The values of 50% and 100% were included in the function used for the 
reliability criteria as they are the limits established by the IPH-2008 for 
agricultural demand satisfaction criteria. Therefore, in Spanish law the 
reliability criteria for agricultural demand was defined so that a demand is 
satisfied when the maximum annual deficit is less than 50% of the annual 
demand, the maximum consecutive two-year deficit is below 75% of the 
annual demand, and the maximum consecutive ten-year deficit is below 
100% of the annual demand. The expected results will be negative values as 
long as the desired deficits are lower than 50 and 100%.  

The last term in equation (5) is added to ensure that the algorithm searches 
the minimum reservoir volume among different possibilities. The factor w3 is 
the weight associated with this term, and here, its value was fixed at 0.01, a 
sufficiently low value to ensure that deficits are always more important. The 
rest of the term is the sum of the volumes in the different months that are 
considered to be decision variables; this value is reduced by the number of 
months multiplied by 2,000 (considered the upper volume limit). Similarly, to 
the deficits, the term is divided by the number of months multiplied by 2,000 
for a standardized result. 

The mixed demand deficits do not appear in the OF because it is assumed 
that the restriction coefficient for these demands with respect to surface 
water supply is twice that of the traditional demands. This is an established 
factor traditionally applied in Júcar River management and accepted by all 
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stakeholders, since they can resource to groundwater. The weights chosen 
for the OF were w1 = 0.667 and w2 = 0.333. The reason to choose these 
particular values was the desire to diminish large annual deficits and so avoid 
damage to the agricultural areas due to drought. Even so, a series of 
preliminary simulations was performed, and the results obtained for 
different weight values were the same or similar than those for the values 
finally chosen. 

The decision variables for the optimisation problem are the sum of the 
volumes of the three reservoirs (Alarcón, Contreras and Tous) and a 
restriction coefficient for the demands. The volume of water stored in the 
three reservoirs indicates the water reserve for scarcity periods. The upper 
limit of this variable is considered to be 2000 hm3 and the lower 75 hm3 due 
to dead and environmental volume. On the demand side, the restriction 
coefficient is applied to the traditional demands, multiplying it by two for the 
mixed demand as explained above. The value of this coefficient ranges 
between zero and unity. 

4. SELECTION OF PARAMETERS FOR THE GA 

A characteristic of GA is that there are several options available to define the 
search process. This section describes the results of the various tests 
performed on the PIKAIA algorithm that permitted the definition of the best 
parameters for the TORs. The studied parameters were the initial population, 
the number of digits of codification, the mutation method, the crossover 
probability, the elitism and the number of individuals. 

As discussed below, there are several possibilities for proposing TORs 
depending on when each decision is made and for how long that decision is 
applied. The rule known as “Decision making from April until September” was 
chosen for analysing the GA parameter selection, as it is the most similar to 
the actual basin management process. 

Figure P1. 5 (a–f) represents the OF (in positive values) obtained by the best 
individual in each generation of the different tests conducted. The results of 
the tests performed with different initial population (Figure P1. 5-a) reflect 
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that the first three initial population obtained an optimum before or near 
generation 30, whereas the last three initial population obtained it by the 
last generation. Even so, it is apparent that all initial population yielded 
almost the same results by generation 30. The analysis of the number of 
digits considered in the parameter codification, with results depicted in 
Figure P1. 5-b, revealed that the use of only one or two digits did not yield 
acceptable solutions compared to the other options. Therefore, we 
concluded that a minimum of three digits is necessary to provide good 
results. As the use of three digits does not affect the execution time, it is 
preferable to the use of the maximum number of digits. 

On analysis of the different options related to mutation and crossover 
modes, with the results compiled in Figure P1. 5-c and 5-d, we observed that 
all generations above the 25th presented the same (or very similar) optimum 
values. Regarding the mutation methods, for which the names of the 
simulations are listed in Table P1. 1, tests 1 and 5 appear to display the most 
efficient paths in the search for the optimum. With regard to the OF, 
although all the tests reached nearly the same value, actually the last one 
result obtained the best value, with a difference in the fifth decimal position. 

 
Code Explanation 
1PMyTIABA one-point, adjustable rate based on fitness 
1PMyTIF one-point mutation, fixed rate 
1PMyTIABD one-point, adjustable rate based on distance 
1PM+RyTIF one-point+creep, fixed rate 
1PM+RyTIABA one-point+creep, adjustable rate based on fitness 
1PM+RyTIABD one-point+creep, adjustable rate based on distance 

Table P1. 1: Explanation of different simulations developed to define GA-parameters. 

As presented in Figure P1. 5-e, slightly better results were obtained when 
elitism was taken into account. This test showed that the optimum was 
obtained at the 29th generation, whereas it was obtained at generation 47 if 
elitism was not considered. 
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Figure P1. 5 a-f: Results of the Objective Function for different test developed for definition of 

the GA-parameters. 

Finally, with regard to the number of individuals, as shown in Figure P1. 5-f, 
all tests reached the same (or very similar) optimum values from the 20th 
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generation onwards, but the test with 25 individuals did not reach an 
optimum comparable with the others. Simulations with 50, 100 and 200 
individuals seemed to reach optimum values faster than the others. 

Given this analysis, we concluded that from a minimum number of three 
codification digits and taking elitism into account, most of the other options 
yielded near optimum values by the 30th generation. This implies that, for the 
particular problem of the Júcar River basin, the search is quite robust 
regarding the different options considered by the PIKAIA algorithm. It 
remains to be determined if this holds true for different systems and for 
different types of ORs. 

5.  ANALYSIS OF THE RESULTS AND ASSESSMENT OF TORS 

Once the search parameters of the GA optimisation algorithm were defined, 
different TORs search possibilities were studied. Among the aspects analysed 
were different decision curves and restriction values. In all the cases, the 
decision indicator was considered to be the stored volume at the three main 
reservoirs.  

Three different types of TORs were analysed. First we studied the rule of 
making a single decision in April and using it until the end of the hydrological 
year. This TOR has been named “April-September” OR.  It is based in the fact 
that most of the demand is realised between the months of April and 
September, which coincides with the irrigation period. Moreover, in stream 
flows are always reduced in the summer. The second proposed rule is a 
parametric curve using decision variables for only four months and 
estimating the rest by linear interpolation. It has been named “4 months” 
OR.  Finally, “12 months” OR is based on the most general case, i.e., making 
decisions each month of the year. This implies 13 decision variables, taking 
into account the restriction coefficient as one of them. In all the cases it has 
been considered a restriction coefficient of the mixed demands double than 
the one for the traditional demands. 

The “April-September” OR is the one that most resembles the current system 
management because the resource allocation decisions in the Júcar River 
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basin are now made during the meeting of the RWC that takes place at the 
end of March or the beginning of April. At these meetings, it is decided how 
much water will be supplied during the coming irrigation campaign. 
Therefore, attempting to imitate this form of management, the decision 
variables here are the total stored volume in the month of April and the 
restriction coefficients of the traditional agricultural demands, with the 
objective of simultaneously minimizing the one- and ten-year deficits. 

For the “4 months” OR the decision variables were the total stored volume 
in the reservoirs in October, March, April and September. The selection was 
based on the fact that October and September correspond to the beginning 
and the end, respectively, of the hydrological year. April is when the bulk of 
the irrigation campaign starts, and March falls in between winter and spring. 
Previous tests using January instead of March yielded slightly worse results. 
The remaining months were calculated by linear interpolation. Once again, 
volume and restriction coefficient were the decision variables.  

Decision variables of the “12 months” OR were the volume of each month of 
the year with a complete possibility of variation between the operational 
volume and the maximum storage capacity of all three reservoirs. The 
restriction coefficient was also considered to be a decision variable. While in 
the other TORs the optimisation process lasts a couple of hours, for the “12 
months” OR a simulation with 150 individuals and 1,200 generations took 
approximately 136 hours (almost 6 days) on an Intel® Core ™ Duo CPU E 7300 
running at 2.66 GHz. This technique has been applied on a real system whose 
management is complicated. However, in the case of much bigger systems, 
the computation time can be very high and therefore constitute a drawback. 
This is due to the high computational burden involved in GA. 

Once the optimisation procedure has been performed for the three 
possibilities three optimal TORs (“April-September”, “4 Months”, and “12 
Months”) were obtained (Figure P1. 6). WRS simulation model was run for 
each TOR and the results are compared with a situation denoted “basic” OR. 
The management of the “basic” OR is performed only according to the water 
distribution order between demands and the water storage order of 
reservoirs in each month. The order between the demands is imposed by a 
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system of priorities. This rule, commonly called the “blind rule”, does not 
consider saving water for coming months during dry periods. This situation is 
used as a reference because it essentially represents a blind policy or the 
option of reactive rather than proactive management. 

 
Figure P1. 6: Definition of the three ORs obtained from the optimization process. 

In Figure P1. 6 it can be seen that the curve for “April–September” was fairly 
similar to the “4 months” parametric curve. However, the optimisation over 
twelve months yielded a curve with the highest provision in March instead 
of April. Moreover, this curve presents a very low value in May. This is 
because this month has very low effect in the results due to high values of 
flows in dry years in the month of May. Notice that curves with irregular 
shapes are not practical and do not inspire confidence. However, test of this 
curve changing the May value presents similar results.  

A summary of the results comparing the three TORs and the “basic” 
simulation can be found in Table P1. 2 and Figures P1.7 to P1.9. The evolution 
of the total stored volume in the three main regulation reservoirs is shown 
in Figure P1. 7; the stored volume significantly increased with ORs compared 
with the situation without a rule. However, the volume evolution was almost 
the same among the scenarios with different rules.  
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Figure P1. 7: Temporal evolution of total volume stored in the three reservoirs (Alarcón, 

Contreras and Tous) for the optimized ORs and the “basic” OR. 

With respect to the maximum deficits occurring in the demands, see Table 
P1. 2, the reduction of the annual deficits versus the “basic” case was very 
high for the traditional demands and in the Júcar-Turia Canal. Nevertheless, 
the two demands from La Mancha worsened the situation due to their 
pumping possibilities. The results of the maximum ten-year deficit are not as 
clear as for the annual deficits. Regarding the “basic” OR, the situation was 
generally worsened for the demands in the zone of La Mancha but improved 
for the remaining areas. It must be emphasised that the 12-month curve 
yielded the worst result for this indicator, increasing the deficit for the 
demands of La Mancha and the Júcar-Turia Canal compared with any other 
alternative, including the “basic” OR. However, the deterioration of this 
indicator was expected because the proposed OF, and the objective of the 
TOR, is to diminish the annual deficit; therefore, the deficit must be 
distributed over time. 

For example, the demand from the Ribera Alta presents the greatest benefit 
with any TOR. As presented in Table P1. 2 and Figure P1. 8, which shows the 
percentages of annual demand, the maximum deficit for one year in the 
demand of the Ribera Alta dropped from 58% without an OR to 7–8% when 
applying the TORs obtained. Moreover, the ten-year deficit also decreased. 
The demand of the Ribera Baja reflects the same behaviour. 
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O.R. Restriction 
Coefficient O.F. Deficits (% of annual Demand) Traditional 

demands 
Mixed 

Demands 

MaxDef1year 40.84 % 34.90 % 

MaxDef10years 72.35 % 102.34 % 

MaxDef1year 9.37 % 22.20 % 

MaxDef10years 90.10 % 139.13 % 

MaxDef1year 9.43 % 22.27 % 

MaxDef10years 90.76 % 140.09 % 

MaxDef1year 9.31 % 23.51 % 

MaxDef10years 89.72 % 154.01 % 

Table P1. 2: Maximum Deficits for 1 year and 10 years accumulated for the irrigation 
demands obtained from the simulation model testing optimized ORs. Deficits are in % of 

annual demand. 

 
Figure P1. 8: Agricultural demands Deficits obtained from the simulations of the different 

optimized ORs. Deficits are in % of annual demand. 
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The irrigation demands from La Mancha, ranging from almost no deficit in 
their demand to approximately 10% in the annual deficits and 100% in the 
ten-year deficits. This indicates, as it does for the other demands, that the 
restriction associated with the defined TOR is applied, at least during one 
month each year. For the demands of La Mancha, these demands worsen 
slightly their results with respect to the "basic" OR, but getting with this a 
significant improvement for the demands of the Ribera Alta and Baja, as 
discussed above. 

The demand of the Júcar-Turia Canal made a reduction in the maximum 
annual deficit by one-half when any of the three TORs was applied, whereas 
the maximum accumulated deficit for 10 years decreased slightly for the first 
two TORs defined (April–September and the 4-month parametric curve) and 
was unaffected by the 12-month rule. 

Moreover, Figure P1. 9 summarizes the results related to pumping from 
groundwater in the La Mancha Oriental zones. As observed with all three 
TORs, the pumped flow was decreased thanks to the imposed restriction with 
respect the “basic” situation.  The mean monthly pumping decreased from 
28 to 22 hm3/month, and the maximum went from 95 to 70 hm3/month. The 
maximum annual pumping changed from 393 to 320 hm3/year, 
corresponding to a decrease of approximately 20–30%. 

 
Figure P1. 9: Results for the groundwater abstraction in M. Oriental aquifer for the different 

optimized ORs. 
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Taken together, these results demonstrate that the three TORs are quite 
similar, justifying, in this case, that it is not necessary to define very complex 
rules; i.e., decisions made in April and applied for the rest of the irrigation 
campaign are sufficient to achieve the objective of minimizing the annual and 
ten-year deficits. 

Finally, Figure P1. 10-a shows the three-dimensional evolution of the two 
decision variables (total volume and the restriction coefficients of the 
traditional demands) versus the OF with the results obtained using PIKAIA. 
This particular case corresponds to the “April-September” OR. Notice that 
the OF axis represents values of opposite sign; i.e., values near 1 correspond 
to the best results. Here, the maximum and minimum imposed volumes are 
2,000 and 75 hm3, respectively. In the cases where the restriction coefficients 
for the traditional demands are between 0 and 50%, the solutions tend to 
cluster near a restriction of 10%. Therefore, it adopts a profile with a marked 
gradient towards this value, which is maintained as the optimal restriction 
value for any volume. Figure P1. 10-b, illustrates the relationship between 
the two decision variables, i.e., volume versus restriction coefficient. Here, it 
can be seen how the best results are grouped in the vicinity of volumes above 
1,000 hm3 and restriction values between 5 and 15%. Simultaneously, a 
narrower band is observed near the same restriction values for volumes 
below 1,000 hm3. 

The remaining space is filled with dispersed points, indicating that the 
algorithm searched for combinations over the entire solution space. Figure 
P1. 10-c plots the evolution of the volume versus the OF. Unlike in the 
previous case, the two zones in this space contain no points because, for 
these volumes and for any of their combinations with the restriction 
coefficient, specific values of the OF were not reached. In this case, the 
highest concentration of points was reached for a value of the OF of 0.6, 
corresponding to volumes over 1,000 hm3.  
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a) b) 

c) d) 

Figure P1. 10: a-d. Evolution of the objective function, volume stored, and restriction 
coefficient for the “April–September” OR. 

The most interesting result is the minimum volume for which the maximum 
value of the OF is reached, which is approximately 1,000 hm3. We also 
observed that it is impossible to obtain values of the OF above 0.2 or below 
-0.2 with volume values lower than 400 hm3. Finally, Figure P1. 10-d shows 
the other decision variable, the restriction coefficient, versus the OF. This 
figure is the one with the most number of blank spaces, implying that the OF 
is highly related to the restriction applied. The greatest concentration of 
points is near a restriction of 5 to 20% and a value above 0.2 for the OF. The 
maximum value of the OF is achieved with a restriction coefficient of 
approximately 11% (10.7%, as stated previously). The blank spaces indicate 
that, for example, for a restriction of 25%, it is impossible to find a 
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combination with any storage value that yields a value of the OF less than 
zero. 

6. CONCLUSIONS 

This study presents a new approach for obtaining TORs in a real and very 
complex WRS. This approach has been applied to the Jucar Basin System. The 
main problem of the basin is water allocation between the agricultural 
demands during periods of drought. 

The approach proposed is based on the coupling of GAs with NFO based basin 
simulation models. This has allowed obtaining optimal decision rule curves 
for water allocation among various demands in periods of scarcity. The GA 
chosen was PIKAIA, used previously in the optimisation of water quality 
model parameters. The basin simulation model was developed in the 
AQUATOOL DSS environment using the SIMGES program, which uses NFO as 
a tool for river basin water allocation simulations. The problem addressed 
had the objective of reducing the weighted sum of the maximum annual 
deficits and the maximum accumulated deficits in the long term. Each 
evaluation of the OF implies a run of the simulation model with a new TOR 
and the estimation of the deficit of the demands. 

Prior to the application of the approach, several tests were run to define the 
most suitable parameters for the GA. Next, three possible TORs were 
analysed, each based on different periods for decision making and 
application. For the case of the Júcar River, it was concluded that it is 
sufficient to make a decision in the month of April and apply it from then 
until September, using a restriction coefficient of 10.7% for surface water 
supply when the total volume stored at the three regulation reservoirs falls 
below 1,125 hm3. This demonstrates that, in some cases, simple ORs can be 
used for the management of very complex WRSs. 
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A.2. Evolutionary network flow models for obtaining 
operation rules in multi-reservoir water systems. 2 
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Abstract 

Obtaining Operation Rules (OR) for multi-reservoir water systems through 
optimization and simulation processes has been an intensely studied topic. 
However, an innovative approach for the integration of two approaches, 
network flow simulation models and Evolutionary Multi-objective 
Optimization (EMO), is proposed for obtaining the operation rules for 
Integrated Water Resource Management (IWRM). This paper shows a 
methodology based on the coupling of an EMO algorithm (NSGA-II) with an 
existing water resources allocation simulation network flow model (SIMGES). 
The implementation is made for a real case study, the Mijares River basin 
(Spain), which is characterized by severe drought events, by a very traditional 
water rights system, and by its historical implementation of the conjunctive 
use of surface and ground water. The established operation rules aim to 
minimize the maximum deficit in the short term without compromising the 

                                                           
2 Lerma, N., Paredes-Arquiola, J., Molina, J. L. and Andreu, J. 2014. Evolutionary 
network flow models for obtaining operation rules in multi-reservoir water systems. 
Journal of Hydroinformatics, 16.1, pp. 33-49 DOI:10.2166/hydro.2013.151. 
 
Adapted from J. Hydro volume 16(1), 33-49, with permission from the copyright 
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maximum deficits in the long term. This research proves the utility of the 
proposed methodology by coupling NSGA-II and SIMGES to find the optimal 
reservoir operation rules in multi-reservoir water systems. 

water resources system, genetic algorithms, NSGA-II, operating rules, 
decision support system shell, AQUATOOL, SIMGES, simulation, optimization, 
agricultural demands, drought, deficits 

1 Introduction 

Several authors have noted the absence of the application of optimization 
models to the real management of multi-reservoir water systems (Yeh, 1985; 
Wurbs, 1993; and Labadie, 2004). The applicability of most reservoir 
operation models is limited because of the ‘high degree of abstraction’ 
necessary for the efficient application of optimization techniques (Akter and 
Simonovic, 2004; Moeni et al., 2011). On the other hand, other authors such 
as Oliviera & Loucks (1997) maintain that this is because of institutional 
limitations rather than technological or mathematical ones. 

Decision making in environmental and hydrological projects can be complex 
and inflexible because of the inherent trade-offs among economic, socio-
political, environmental and technical factors. The selection of the 
appropriate management strategies often involves multiple conflicting 
objectives that should be ‘optimized’ simultaneously (Makropoulos et al., 
2008). Thus, there exists the concept of Pareto optimal solutions, i.e., 
solutions for which it is not possible to improve on the attainment of one 
objective without making at least one of the others worse. Evolutionary 
Multi-objective Optimization (EMO) algorithms offer a means of finding the 
optimal Pareto front (Farmani et al., 2005a; Cisty, 2010; Abd-Elhamid and 
Javadi, 2011). The decision maker can consequently be provided with a set 
of non-dominated solutions to select a final design solution from that set. 
Although the efficiency of these algorithms in solving a number of 
complicated real-world problems in electrical, hydraulic, structural or 
aeronautical engineering has been illustrated (Molina-Cristobal et al., 2005; 
Hanne and Nickel, 2005; Osman et al., 2005; Farmani et al., 2005b, 2006 and 
2007; Murugan et al., 2009), there have been limited applications in the 
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policy analysis of water resources management (Farmani et al., 2009; Molina 
et al., 2011). There are recent applications of EMO algorithms related to 
other water resources research studies, such as the optimal design of water 
distribution systems or reservoirs (Cisty, 2010; Nazif et al., 2010; Haghighi et 
al., 2011; Hınçal et al., 2011; Louati et al., 2011), the Conjunctive Use of 
Surface Water and Groundwater (Safavi et al., 2010), the control of Seawater 
Intrusion in Coastal Aquifers (Kourakos and Mantoglou, 2011; Abd-Elhamid 
and Javadi, 2011; Sedki and Ouazar, 2011), or hydrological studies (Dumedah 
et al., 2010; Hassanzadeh et al., 2011; Gorev et al., 2011). In this work, an 
evolutionary multi-objective optimization algorithm, NSGA-II (Deb et al., 
2002), is coupled with the flow network model SIMGES (Andreu et al., 1996) 
and used to assist in the selection of the best operation rules in multi-
reservoir water systems. 

Despite the development and growing use of optimization models (Labadie, 
1997), most reservoir planning and operation studies are based on 
simulation modelling and thus require the intelligent specification of 
Operation Rules (OR). Lund and Guzman (1996) review the derived single-
purpose operating rules for reservoirs in series and in parallel for different 
purposes, with the derived rules supported by conceptual or mathematical 
deduction. Obtaining OR from the results of optimization models can be 
done using simple (Young, 1967) or multiple (Bhaskar and Withlach, 1980) 
linear regressions and the use of simple statistics, tables and graphs (Lund 
and Ferreira, 1996). Unfortunately, a regression analysis can produce poor 
results, limiting the use of the obtained OR (Labadie, 2004). On the other 
hand, empirical OR like the space rule (Bower et al., 1962) or the New York 
City rule (Clark, 1956) have limited applicability.  

In many real systems, the typical OR is defined by a volume target for a 
reservoir that had to be maintained. Another typical OR is defined by a curve 
(variable monthly and constant year by year) for a reservoir or a group of 
reservoirs that defines a threshold to trigger an action, for example, "reduce 
demands" or "start pumping groundwater". These types of OR are commonly 
called Rule Curves (RC), and although they are not always the most efficient 
rules, they are considered the most practical and accepted by users. 
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This paper aims to show the findings of RC for multi-reservoir water systems 
by means of the coupling of an EMO (NSGA-II) (Deb et al., 2002) with the 
simulation flow network model SIMGES (Andreu et al., 1996). The proposed 
method is applied to the Mijares River basin water system (Spain), which is 
characterized by strong drought events, by a very traditional water rights 
system, and by its historical implementation of the conjunctive use of surface 
and ground water. 

The paper is structured as follows. First, a theoretical background on 
reservoir operation rules and EMO is developed. Next, the case study is 
presented, followed by a description of the integrated methodology in which 
the implementation of the SIMGES and EMO methods is described. The 
results are then discussed, and several conclusions are drawn. 

2 Reservoirs operation rules and Evolutionary Multi-objective 
Optimization (EMO) 

Traditionally, reservoir operation is based on heuristic procedures, RC and 
subjective judgments by the operator. This provides general operation 
strategies for reservoir releases according to the current reservoir level, 
hydrological conditions, water demands, and the time of year (Hakimi-
Asiabar, 2010; Moeni et al., 2011). Therefore, in practice, reservoir operators 
usually follow RC, which stipulate the actions that should be taken depending 
on the current state of the system (Alcigeimes and Billib, 2009). Rule curves, 
or guide curves, are used to denote the operating rules that define the ideal 
or target storage levels and provide a mechanism for release rules to be 
specified as a function of water storage (Mohan and Sivakumar, 2007; Hakmi-
Asiabar et al., 2010). Moreover, RC can be defined as a trigger indicator to 
start different measures, or actions, for water management. Obtaining RC 
from the results given by optimization models by linear regressions is a 
complex task (Young, 1967). Revelle et al. (1969) proposed a linear decision 
rule; Lund y Ferreira (1996) used tables and statistics of the results from an 
optimization model to obtain the OR of the Missouri River water system. A 
common technique for obtaining OR and RC is based on an iteration method 
for river basin simulation models. These iterations are controlled by an 
optimization algorithm that varies the operation rules depending on the 
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results. For example, Cai et al. (2001) described strategies for solving large 
nonlinear water resource management models combining genetic algorithm 
(GA) with linear programming, in which a GA/LP approach was applied to a 
reservoir operation model with hydropower generation and to a long-term 
dynamic river basin planning model. Simulation models are the most 
widespread tool for the analysis and planning of water systems. These 
models are characterized by their flexibility and by the possibility of including 
very complex elements in the modelling. They allow a more detailed 
representation of the systems than the optimization models (Loucks y 
Sigvaldason, 1982). Thus, in general, river basin management decisions are 
made with the support of simulation models.  

Quantitative compromises for the objectives and constraints presented in 
the methodology section are developed in this study using a multi-objective 
evolutionary algorithm (MOEA), Non-Dominated Sorting Genetic Algorithm 
II (e-NSGA-II) (Deb et al., 2002). The concept of Pareto optimality is used to 
define the multi-objective compromises for a system. A solution is Pareto 
optimal (or non-dominated) if no other solution in the solution space gives a 
better value for one objective without also degrading the performance of at 
least one other objective. MOEAs are heuristic search algorithms that change 
the approximation to the Pareto optimal set using crossover, selection, and 
mutation operators to mimic natural selection in the populations of 
organisms in nature. The evolutionary algorithm search process is an 
iterative process of selection that preserves and reproduces high-quality 
solutions and that varies to introduce innovation in order to improve the 
population of solutions. There are many examples demonstrating that 
MOEAs can solve complex nonlinear and non-convex multi-objective 
problems (a detailed review is given by Coello-Coello et al., 2007). Examples 
of applications in water resources engineering include groundwater 
monitoring design (Cieniawski et al., 1995; Reed and Minsker, 2004; Kollat 
and Reed, 2006), groundwater remediation (Beckford et al., 2003; Chan 
Hilton and Culver, 2005; Singh and Minsker, 2008), and water resources 
systems management (Suen and Eheart, 2006). Furthermore, in the last 
years, there have been new advances and improvements for the NSGA-II 
MOEA. e-NSGA-II represents an improvement over the original NSGA-II 
developed by Deb et al. (2002) by incorporating epsilon-dominance archiving 
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(Laumanns and Ocenasek, 2002) and adaptive population sizing (Harik et al., 
1997). Epsilon-dominance archiving helps to reduce the computational 
demand of solving high-dimensional optimization problems (Kollat and Reed, 
2007) by allowing the user to control the resolution at which the objectives 
are evaluated and ranked. However, the use of NSGA-II to couple flow 
network models, which is the application of this research (SIMGES), is a new 
topic in the literature. The studies on coupling network flow models and EMO 
algorithms like NSGA-II are scarce or even non-existent in the literature. 
NSGA-II algorithm can be coupled to several other simulation models to 
provide optimized solutions by taking advantage of the power of those 
models (Farmani et al., 2010, Molina et al., 2011). 

Most of the OR optimization problems have a multi-objective nature. 
Consequently, a multi-objective analysis is necessary for identifying the best 
solutions and simultaneously considering several objectives that are 
frequently in conflict (trade-offs). Many studies have used multi-objective 
techniques to address the multi-reservoir optimization problem. Classical 
multi-objective approaches such as the weighting approach or the constrain 
method were used for this purpose (Croley and Rao, 1979; Liang et al., 1996; 
Wang et al., 2005; Yeh and Becker, 1982). More recent applications use 
evolutionary multi-objective techniques for the same purpose. Reddy and 
Kumar (2007) developed a multi-objective differential evolutionary 
algorithm and applied it to the Hirakud reservoir project (India). Kim et al. 
(2006) applied the NSGA-II algorithm to the Han River basin multi-reservoir 
system. Chen et al. (2007) developed a macro evolutionary, multi-objective 
genetic algorithm for optimizing the rule curves of a water resources system 
in Taiwan. Malekmohammadi et al. (2011) presented an approach for 
incorporating flood control and water supply objectives for a cascade system 
of reservoirs by coupling the NSGA-II algorithm with an ELECTRE-TR1 
postprocessor. Janga et al. (2006) presented a multi-objective evolutionary 
algorithm to derive operation rules to the multi-purpose Bhadra reservoir 
system (India). Furthermore, Chang et al. (2009) applied the NSGA-II 
algorithm in other reservoir systems in Taiwan to optimize state curves. Lin 
et al. (2008) modified the algorithm SCE-UA to use it as a multi-objective tool 
for getting the optimal water policy for the hydroelectric system of Huanren 
(NE China).  
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3 Case study: Mijares River basin 

The Mijares River Basin is located in the eastern slope of the Iberian 
Peninsula (Figure P2. 1). The water system comprises a surface of 5,466 km2. 
The total population of the zone is 363,578 inhabitants, and the urban supply 
is made from the exploitation of pumping wells and the use of springs. The 
total cropped surface is 124,310 ha, of which 43,530 ha (35 %) corresponds 
to irrigated land, whereas the rest (65 %) is occupied by dry-land farming. 
Citruses constitute the predominant crop, with a percentage of 
approximately 87 % of the irrigated area. The length of the main river branch 
is approximately 156 km, with an average runoff of 380 Mm3/year.  

 

Figure P2. 1: Location of the Mijares River Basin. 

Two climatologically different geographical areas can be distinguished: a 
coastal climate with a Mediterranean coastline and a continental climate 
area located upstream of the Arenós reservoir. The mean annual rainfall of 
the area is 505 mm, and the average temperature is 14.4 ºC according to the 
Basin Water Plan (CHJ, 1998). The maximum altitude is 2024 m above sea 
level.  

Regarding the storage infrastructure of the basin, there are three main 
reservoirs: the largest in terms of capacity is the Arenós reservoir (95 Mm3); 
located downstream is the Sichar reservoir (49 Mm3); and finally, located in 
the tributary “Rambla de la Viuda” is the María Cristina reservoir (19.7 Mm3). 
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Traditional Irrigated area 
Mixed Irrigated areas 

(Mm3/year) Channel 100 Channel 220 María 
Cristina 

Surface water 65 

Groundwater   

Table P2. 1: Values of the water demand for the irrigated areas of the basin. 

The topology of the model for the Mijares water system is shown in Figure 
P2. 2. The model includes a main course that represents the Mijares River 
where the Arenós and Sichar reservoirs are located. The other river 
considered is the tributary “Rambla de la Viuda”, in which the María Cristina 
reservoir is located. The different sources of runoff considered are the runoff 
of the basin upstream of the Arenós reservoir, the runoff from the mid basin 
of the Mijares River between the Arenós and Sichar reservoirs, and the runoff 
from the “Rambla de la Viuda” river flowing to the María Cristina reservoir. 
The irrigation demand can be grouped into four main zones: “traditional”, 
“channel 220”, “channel 100” and “María Cristina”. The main features of 
these demands are shown in Table P2. 1. The urban supply comes from the 
Plana de Castellón aquifer, which is located mainly beneath the coastal plain 
and recharged by precipitation, infiltration from irrigation, and Mijares 
riverbed infiltration.  

One of the main issues of the basin is the allocation of the resource between 
the agricultural demands. The traditionally irrigated area in the low part of 
the basin is more than a millennium old, so its water rights are predominant 
over other agricultural uses. On the other hand, the irrigation of the mid part 
of the basin represents modern irrigation (Channel 220, Channel 100, and 
María Cristina), also called "mixed irrigation" because of the possibility of 
using both surface and ground water. In this situation, it is necessary to 
establish an OR in order to protect the rights of traditional irrigation over 
surface water by imposing the use of ground water for modern irrigation. 
Current management is based on a RC defined in 1970, called “Agreement 
70” (Figure P2. 3). The indicator of this RC is the storage of the Sichar and 
Arenós reservoirs. If the sum of the volume of both reservoirs is greater than 
the defined RC, then all the demands can use cheaper surface water. On the 
other hand, when the volume storage goes down, the RC mixed irrigation 
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demands have to pump water, and the remaining surface water is reserved 
for the traditionally irrigated area.    

 
Figure P2. 2: Topology of the simulation model developed for the Mijares River Basin. 

 
Figure P2. 3: Rule Curve of “Agreement 70”. 
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4 Methodology. 

The methodology estimates the RC for a complex multi-reservoir water 
system through the iterative use of a river basin simulation model. A popular 
EMO algorithm that is usually applied in water resources engineering called 
NSGA-II has been used. NSGA-II is an EMO algorithm with a specific operator 
to handle constraints. Furthermore, the simulation of a water basin 
management model is required. The results obtained by this model 
represent the situation of the water system under the proposed water 
management policies. The water basin management model has been 
developed using the SIMGES module (Andreu et al., 1996) included in the 
Decision Support System Shell (DSSS) AQUATOOL (Andreu et al., 1996). The 
combination of nonlinear algorithms together with linear programming is 
common in water resources models.  

4.1 Implementation of the Simulation Model: SIMGES 

The method requires multiple iterations of a simulation model that 
accurately represents the water system. For this purpose, the simulation 
module SIMGES included in the DSSS AQUATOOL has been used. SIMGES is 
based on the conceptualization of river basins by networks comprising arc 
and nodes. Nodes usually represent the most important elements of the 
water system, such as divergence and confluence points, reservoirs, and 
demands. On the other hand, arcs represent any water conveyance element 
(natural or artificial). Furthermore, an internal combination of arcs and nodes 
within the model allows modelling other types of elements such as hydro-
electric plants and water returns in the internal flow network. Arcs are 
defined by the initial and final nodes, by the maximum and minimum flows, 
and by the cost that produces each resource unit that flows through it. 
Mathematically, the simulation model is based on the resolution for each 
time step (monthly in this case) of an internal conservative flow network.  

The equivalent objective function defined in the SIMGES model and 
simplified for our problem is the following: 
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𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹 = ∑ �∑ �𝑉𝑉𝑛𝑛,𝑖𝑖,𝑡𝑡(𝐶𝐶𝑛𝑛 + 𝑝𝑝𝑝𝑝𝑖𝑖)�𝑚𝑚
𝑛𝑛=1 + �𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡𝐶𝐶𝑠𝑠𝑠𝑠�� 𝐼𝐼

𝑖𝑖=1 + ∑ 𝐷𝐷𝐷𝐷𝑗𝑗,𝑡𝑡(𝐶𝐶𝑑𝑑𝑑𝑑 +𝐽𝐽
𝑗𝑗=1

𝑝𝑝𝑝𝑝𝑗𝑗) + ∑ 𝐷𝐷𝐷𝐷𝑘𝑘,𝑡𝑡(𝐶𝐶𝐷𝐷𝐷𝐷 + 𝑝𝑝𝑝𝑝𝑘𝑘)𝐾𝐾
𝑘𝑘=1      (1) 

where t is the index for time; i is the index for reservoir; I is the total number 
of reservoirs in the model; Vn,i is the volume of reservoir i in pool n; m is the 
number of pools in a reservoir; Cn is the cost/benefit of the storage water 
into pool n; pni is the priority number assigned to reservoir I; Spi is the spill 
of reservoir I; Csp is the cost of spills in the reservoirs; DRj is the deficit of the 
minimum flow established for river or channel j; Cdr is the cost of deficit of a 
minimum flow; J is the number of rivers and channels; pnj is the priority 
number of river j; DDk is the deficit of demand k; K is the number of demands 
in the model; CDD is the cost associated with the deficits of the demands; and 
pnk is the priority number of demand k.  

As usual, restrictions are related to physical constraints or other types of 
constraints such as legal or environmental constraints. Moreover, other 
constraints such as the balance in each junction or diversion are taken into 
account. Figure P2. 4 shows a diagram of SIMGES which takes into account 
the above aspects and data water system (demands, inflows, etc.) to 
translate this problem into an internal network flow optimization problem 
that is resolved using the Out-of-Kilter algorithm (Ford and Fulkerson, 1962).  

 
Figure P2. 4: Flowchart of SIMGES. Interaction between data and management system. 
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The water management within the simulation model is defined in several 
ways. Firstly, among the water demands, a priority system that sets demands 
in order of priority (hierarchical order) is established. Similarly, a hierarchical 
system is established to define the releases among the reservoirs. 
Furthermore, the reservoirs are divided into zones such that the model tries 
to keep all reservoirs in the same zone and starts releasing depending on the 
priority. Finally, there are operation rules that allow the triggering of 
decisions based on indicators. These indicators can be the volume stored in 
one or several reservoirs or the cumulative runoff of several months. The 
decision can represent the application of a restriction on the demands, 
expressed as a percentage of one or several demands, on the flow through 
the turbines, on the ecological flow, or on the activation of pumping from the 
aquifer.  

The model developed for the Mijares River basin (Figure P2. 2) represents 
quite well the current situation of the system. Three runoff inflow elements 
are considered (one for each reservoir), with historical monthly data 
obtained from re-naturalized monthly flows for the period 1940-2008. 
Additionally, the three existing reservoirs have been taken into account 
(Arenós, Sichar and María Cristina). The demands are considered at the 
correct aggregation level to represent the different irrigators. Six demands 
have been considered in the model: two urban demands, Castellón de la 
Plana and Borriol-Benicassim, and the four above-mentioned agricultural 
demands. SIMGES allows modelling the surface-groundwater interaction in a 
very complete way with several types of aquifers and river reaches 
connected to the aquifers. There are requirements for the ecological flows 
established in several parts of the basin. Within the model, the flows are 
considered in two specific river reaches, with a constant flow of 0.5 m3/s (1.3 
Mm3/month). 

4.2 NSGA-II Implementation  

NSGA-II (Deb et al., 2002) (Elitist Non-Dominated Sorting Genetic Algorithm) 
is an EMO algorithm with a specific operator to handle constraints. In this 
method, a fast, non-dominated sorting approach with a selection operator is 
used to create a mating pool by combining the parent and offspring 
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populations and selecting the best solutions with respect to the fitness and 
the spread (Deb et al., 2002; Dumedah et al., 2010). The next generation is 
populated starting with the best non-dominated front and progresses 
through the rest of the fronts until the population size is reached, and if, in 
the final stage, there are more individuals in the non-dominated front than 
there is available space, a crowded distance-based niching strategy is used to 
choose which individuals of that front are entered into the next population. 
The crowding distance value of a solution provides an estimate of the density 
of solutions surrounding that solution (Raquel and Naval, 2005). In this 
research, NSGA-II is used for the evaluation of the objective functions that 
allow knowing the aptitude of the operation rules. 

Through this algorithm, the descendant population Qt (size N) is created 
using the parent population Pt (size N). Then, both populations are combined 
to form Rt with a size of 2N. After this, by means of non-dominated sorting, 
the population Rt is classified in different Pareto fronts. Although this process 
requires more effort, it is necessary because dominance testing between the 
parent and descendant populations is developed. Once the sorting process is 
over, the new population is generated from the configurations of the non-
dominated Pareto fronts. This new population is first built with the best non-
dominated Pareto front (F1), and then the process continues with the 
solutions from the second front (F2), the third front and so on (F3). Because 
the population Rt has a size of 2N and there are only N configurations that 
form the descendant population, not all of the front configurations belonging 
to the Rt population will be placed in the new population. Those fronts that 
cannot be placed are ignored.  

When the last front is under consideration, the solutions that belong to this 
front can exceed future solutions to be placed in the descendant population 
(Figure P2. 5). In this case, it is useful to use strategies that allow those 
configurations to be selected at a scarcely populated area that is far away 
from the other solutions. This will fill up the rest of the positions of the 
descendant population instead of choosing configurations randomly.  
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Figure P2. 5: Schematic diagram of the mechanism for promoting individuals of NSGA-II. 

These strategies are irrelevant for the first generational cycles of the 
algorithm because there are many fronts that persist to the next generation. 
However, as the process moves forward, several configurations become part 
of the first generation, and this front may have more than N genes or 
individuals. Thus, it is important that the non-rejected configurations are 
chosen through a methodology that guarantees diversity. When the 
population as a whole converges to the Pareto front, the algorithm assures 
that the solutions are separated from each other.  

Initially, a parent population P0 is created in the NSGA-II algorithm (randomly 
or by an initialization technique). The population is sorted according to the 
non-dominance of the different levels (sorting of Pareto fronts F1, F2...). For 
each solution, a flair function is assigned according to its dominance level (1 
for the best level), which decreases throughout the process. Sorting by 
Tournament (using a Crowding Tournament Operator), crossing and 
mutation are used to create the population of descendants Q0 with a size N. 
The main phases followed by NSGA-II are described as follows:  

1. A combination of parents and descendants to create Rt =Pt ∪ Qt. 

Developing the non-dominated sorting to Rt and identifying fronts Fi, i=1, 
2…, etc.   
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2. To make Pt+1=∅, and i=1. While |Pt+1 |+| Fi |< N, make |Pt+1 |=|Pt+1 | ∪ 
| Fi | and i=i+1. 
3. Sorting by crowding (Fi’ < C, described below) and including at Pi the N-
|Pt+1 | most widespread solutions using the crowding distance values 
associated with the front Fi.  
4. Creating the descendant population Qi+1 from Pi+1 using selection by 
Crowding Tournament, crossing and mutation.  

4.3 Coupling of methods: the multi-objective optimization model 

NSGA-II is used to define and test RC for the water allocation model 
developed with SIMGES. Each individual is composed of 13 values 
representing the value of the RC in each month of the year (12) and the 
restriction coefficient (1). The indicator of this RC is the storage of the Sichar 
and Arenós reservoirs. This RC is imposed in the water allocation model, and 
a run is performed. The results of this run are used to estimate the objective 
functions, which will be explained later. The value of this objective functions 
is translated to the multi-objective algorithm to define the aptitude of the RC 
proposed.  

NSGA-II (Deb et al., 2002) is used to examine the SIMGES model and inspect 
it for inconsistencies or errors and to generate optimal trade-offs between 
conflicting objectives considering alternative management scenarios 
simultaneously. Consistency checks can help provide some confidence in the 
representation of the decision maker’s preferences. In checking for 
consistency, it is important to detect errors in the decision-making utility 
function. For utility functions implying a complex preference structure, there 
is a greater need and opportunity for meaningful consistency checks 
(Castelletti and Soncini-Sessa, 2007).  

Attempting to achieve the multiple goals simultaneously requires identifying 
a compromise in the Pareto optimality. EMO algorithms employ a 
population-based search to find many Pareto efficient solutions in a single 
run. Once the probability of all the linked nodes has been updated by 
compiling the SIMGES model, the objective function values are returned to 
the optimization tool, and the process is repeated. Consistency is critical to 
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be able to identify a preferred alternative with confidence. In the proposed 
method, the first step in the consistency check occurs after the evolutionary 
algorithm has generated a set of non-dominated policy or management 
options. Usually, solutions generated by the evolutionary algorithm are a 
good indicator of shortcomings of the network flow model structure. For 
example, if changes in a node should have an effect on the utility function 
and this has been ignored intentionally or unintentionally in the SIMGES 
model, the results generated by EMO will exploit this weakness in the flow 
network and generate solutions that should have corresponded to higher 
utility function values. 

The objective functions of the problem take into account the maximum 
deficit of the demands as well as the resilience of the water system. For that, 
three objective functions are proposed.  

The problem can be mathematically expressed as follows: 

Given three objective functions: 

x= f(β)         (2) 

y= g(β)         (3) 

z = h(β)        (4) 

where 

x = maximum annual deficit for agricultural demands (MaxDef1Year) 
(Minimized) 
y = maximum ten consecutive years deficit for agricultural demands 
(MaxDef10Years) (Minimized) 
z = years of pumping (Minimized) 

These objective functions are optimized by coupling NSGA-II algorithm and 
SIMGES. Results from this optimization running represent the outcome 
of SIMGES model. For this reason, these three functions are restricted by the 
solutions of equation (1). On the other hand, β represents a combination of 
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n non-ranked and non-weighted management options, which are 
the decision nodes of the SIMGES model and represent the RC. They also 
represent the genes of the chromosome of the algorithm.  

β = (g0, g2…gn)           (5) 

These n input variables, representing RC, denote the set of feasible 
parameters over which the model produces a realistic output. Thus, there 
are j optimized solutions placed at the Pareto front expressed as j 
combinations of the different operation rules belonging to each input 
variable. 

βa = xa, ya, za 
βb = xb, yb, zb 
. 
. 
. 
βj = xj, yj, zj        (6) 

Each β (the RC) is represented by the volume threshold in each month of the 
OR and the restriction coefficient corresponding to each of them. These 
variables (volume threshold and restriction coefficient) are discretized at 
certain intervals. The volume level is between a minimum (5 Mm3) and a 
maximum (87 Mm3) value depending on the associated reservoirs (Sichar and 
Arenós), and the restriction coefficient varies between 0 and 1 or, in other 
words, between not applying and applying a total restriction (100%). 

Two constraints related to the deficit objective functions were defined: 

MaxDef1Year<50%       (7) 

MaxDef10Years<100%       (8) 



                                                                                                                              
Research manuscript 2 

 

132 

 

 
Figure P2. 6: Schematic model coupling. 

Each evaluation of the objective functions requires running the simulation 
model under this operation rule. To do this, the process is as follows (Figure 
P2. 6): first, the parameters of the EMO and the minimum and maximum 
thresholds of the decision variables are defined in a Master Application that 
is responsible for controlling the whole process. After this, the Mater 
Application runs NSGA-II, which defines the first individual (set of decision 
variables), and with these variables, the data files needed for SIMGES are 
created. SIMGES is run, and the Master Application imports the results and 
calculates deficits. The aquifer pumping allows the OFs to be evaluated, and 
this value is returned to the optimization model to create the next individual. 

Regarding EMO, the initial population for the optimization was 200, with a 
crossover probability of 0.9, a single-point binary crossover, a bitwise 
mutation probability of 0.005 and a seed for a random number generator of 
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0.123457. This setting was the most suitable for handling the problem after 
developing a deep test with different configurations.  

5 Results and Discussion. 

The results drawn from this analysis are shown in the different figures 
representing, on the one hand, the Pareto front that links the different 
objective functions and, on the other hand, the operation rule parameters 
that are the decision variables of the algorithm. The results presented herein 
correspond to different tests conducted with the NSGA-II algorithm for the 
different OR proposed.  

 
Figure P2. 7: Pareto front 1; maximum deficits for the agricultural demands (for colour-

marker coding, see Table P2. 2). 

Two hundred points are represented in Figures P2.7 to P2.10. Each of these 
points represents the result applying SIMGES for each combination of 
parameters obtained using NSGA-II to define the RC mentioned at the 
beginning of the previous point (4.3). These two hundred points represents 
an optimized solution for the OFs defined in equations (2), (3) and (4), RC’s 
parameters or interesting variables (maximum pumping of the Mixed 
Irrigation), drawn from the last population found by NSGA-II algorithm. Thus, 
this is how RC’s are obtained. To relate the solutions of one figure with the 

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

O
.F

.: 
M

ax
D

ef
10

Ye
ar

s(
%

)

O.F.: MaxDef1Year (%)



                                                                                                                              
Research manuscript 2 

 

134 

 

rest of the figures, a color scale gradient has been fixed, sorting the solutions 
according to the maximum annual deficit of the agricultural demands 
(abscissa of Figure P2. 7). Table P2. 2 shows the color coding adopted in 
Figures P2.7 to P2.11. For example, the points (in any figure) with colors 
between orange and yellow are related with OR that provide a maximum 
annual deficit of the agricultural demands between 5 and 10%. 

Colour (marker) Maximum annual deficit of the agricultural demands 
(%) 

Red (▲) –orange (■) 0–5 

Orange (■) –yellow (■) 5–10 

Yellow (■) –green (x) 10–20 

Green (x) –cyan  (♦) 20–25 

Blue (Ж) –purple (●) 25–30 

Purple (●) –pink (●) 30–35 

Pink (●) –dark red (+) 35–37 

Table P2. 2: Colour-marker coding adopted in Figures 7–11. 

Figure P2. 7 shows the Pareto front corresponding to the short term (1 year) 
and the long term (10 years) of the deficit of agricultural demands. Notice 
that an inferior front can be distinguished by the dispersing point over this 
line. This OR represents a great variety of possible solutions with deficits 
ranging from 0 to 36% for the short term deficit and up to 100% of the long 
term deficit (in percentage over the annual demand).  
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Figure P2. 8: Pareto front 2; number years pumped versus deficit of the agricultural demands 

(for colour-marker coding, see Table P2. 2). 

The growing trend of this figure is due to the conditions of the basin. First 
storages in the reservoirs and, on the other hand, the fact that agricultural 
uses with more demand can be supplied with groundwater. Therefore, the 
set of demands that can receive groundwater can achieve a state of no 
deficit. From this situation and as shown in the figure, increasing the annual 
deficit implies that the growth also accumulated 10 years of deficit. The 
optimal solution is not the one with zero deficits, and the number of years 
pumped must also be taken into account. 

Figure P2. 8 shows the number of years pumped, sorted according to the 
annual deficit of the agricultural demands. Notice that this figure indicates 
the number of years of pumping required for achieving specific deficits. This 
parameter (the number of years) was taken into account because pumping 
has an associated cost, which decreases while reducing the pumping time. It 
is possible to distinguish three zones in the figure, the first one approximately 
between 0 and 20% of the annual deficit in which the pump is above 55 years. 
Therefore, to result in fewer deficits, it is necessary to pump up to 68 years, 
which is the number of years simulated. The second zone is associated with 
annual deficits between 20 and 28%, with ten years of accumulated deficits 
ranging between 20 and 100%, hence the high values of these deficits. By not 
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restricting the demand, constant pumping is not necessary, and the number 
of years pumped decreases to 35. This lower value of years pumped means 
that no matter which operating rules apply, it is always necessary to pump at 
least 35 of the 68 years of the simulation because the surface water is not 
enough to supply the whole water demand of the basin. Finally, the third 
zone corresponds to a large number of years pumped, but this time, the zone 
is associated with high values of the maximum deficits, whereby this set of 
solutions are not indicated, neither or both deficits as pumped years. 

 
Figure P2. 9: Maximum pumping of 1 and 10 years for the mixed irrigation (for colour-marker 

coding, see Table P2. 2). 

In addition to the number of years pumped, it is important to represent the 
maximum annual pumping of the Mixed Irrigation facing the maximum long 
term pumping of the same demand (Figure P2. 9). The figure shows a scatter 
cloud of points and much more restrictive intervals of variation of the 
pumping than for the deficits of the agricultural demands. The annual 
pumping is between 87 and 100% of the maximum annual pumping and of 
ten years of pumping and between 67 and 90% of the accumulated ten years 
of pumping. Very high values for both indicators imply that water is scarce 
and requires high pumping for agricultural areas of channel 100, channel 220 
and María Cristina (Mixed Irrigation) to not suffer deficits. 
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Looking at the color distribution discussed above, it can be seen that the first 
stage (between 0 and 15% of the annual deficits) of the Pareto front for the 
deficits is associated with a change of ten years of pumping between 90 and 
84%. The rest of the Pareto front (between 15 and 35% of the annual deficits) 
corresponds to a variation of annual pumping between 100 and 87%. Thus, 
there is an area that varies depending on ten years of pumping and another 
area that depends on the annual pumping. 

 
Figure P2. 10: Restriction coefficient (for colour-marker coding, see Table P2. 2). 

Figure P2. 10 represents the coefficient of restriction, the OR parameter, and 
the decision variable algorithm depending on the maximum deficit agrarian 
demands. The obtained restriction is around 100%, more specifically 
between 92 and 100%, although the largest set of solutions is between 96 
and 100%. The figure reveals that a very high restriction has to be applied 
regardless of the results obtained. However, the restriction also influences 
the volume level (the other parameter of the operating rules) in these results 
to be obtained. 

In Figures P2.7 and P2.8, the 200 points shown in each figure (last population 
found by NSGA-II) represent two Pareto fronts, the first between the short 
term (1 year) and the long term (10 years) of the deficit of agricultural 
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demands and the second between the short term deficit and the number of 
pumping years. 

As mentioned above, there are 200 results that provide different 
combinations of objective functions. These results translate into 200 RC that 
the NSGA-II algorithm obtains. Each of these RC is a curve defined with 
thirteen values, twelve corresponding to the months of a year and another 
to the coefficient of restriction. Because representing and analyzing 200 
curves is not feasible, and given that some curves are not applicable to real 
management scenarios because of the complexity and variability of their 
definitions, four curves have been selected to represent various parts of the 
Pareto front (Figure P2. 11). 

 
Figure P2. 11: Curves at the volume level, parameter of the operation rule (for colour-marker 

coding, see Table P2. 2). 

Curve "A" (orange) corresponds to solutions close to the origin of Pareto 
front reference 1 (Figure P2. 7), i.e., the maximum annual deficits and ten 
years of claims of 5% of the agricultural environment. This implies, as already 
explained, a large number of years pumped (Figure P2. 8) and high values of 
these pumps (Figure P2. 9). To achieve these results, the OR are defined with 
fairly high levels (compared with the other three curves). Thus, when the sum 
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of the volumes of the Arenós and Sichar reservoirs are below those levels, 
which indicates that the RC of the Mixed Irrigation are not supplied with the 
water surface, only traditional irrigation has to be taken into account, and 
Mixed Irrigation have to pump water. Curve "B" (cyan) is associated with 
annual maximum deficits between 20 and 25% of the agrarian demands and 
between 30 and 100% in the case of the maximum deficits of 10 years. This 
curve is defined with a level lower than curve "A", allowing a larger surface 
to supply the Mixed Irrigation and, therefore, somewhat less by pumping. 
Curve "C" (dark blue) is similar to "B", differing mainly in the first months of 
the hydrological year, i.e., November to January. Those months can be seen 
as the curve "B" reserve supplying more water to the surface for Traditional 
Irrigation. However, curve "C" allows for a greater surface to supply Mixed 
Irrigation, and for this reason, Traditional Irrigation, and therefore the 
agrarian demands, increase deficits. Finally, curve "D" (violet) corresponds to 
maximum annual deficits between 25 and 30% of the agricultural demands 
and between 30 and 100% in the case of the greatest deficiencies of 10 years. 
This RC is defined with low levels and is associated with a very small reserve 
for Traditional Irrigation, causing high deficits of traditional demands. 

 
Without OR 

(%) 
“Agreement 
70” RC (%) 

Maximum deficit of 
one year 

37.12 23.35 

Maximum deficit of 
ten years 

217.28 55.77 

Maximum pumping 
of one year 

87.4 97.85 

Maximum pumping 
of ten years 

59.64 73.3 

Table P2. 3: Results of deficits and pumping without OR and with the RC “Agreement 70”. 

Table P2. 3 shows the results (deficit and pumping) of the water system 
without OR and with RC “Agreement 70”. The results without OR are not in 
the solutions of the NSGA-II algorithm because it has a maximum deficit of 
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ten years of the traditionally irrigated area, which is larger than the limit 
established in official studies developed by the Jucar Basin Authority. The 
results with “Agreement 70” RC follow a similar behavior to the green points 
of the figures, and this curve (Figure P2. 3) corresponds to curve “C” (Figure 
P2. 11) but with a slightly lower level. 

6 Conclusions 

This paper shows the optimization of operating rules based on the coupling 
of an EMO with a flow network model. This approach allows a set of rule 
curves of a reservoir to be obtained for the allocation of water between 
demands during a drought. The EMO used was the NSGA-II algorithm. The 
simulation model was developed with the program SIMGES of the Decision 
Support System Shell AQUATOOL based on network flow algorithms. The 
problem that arises is aimed at reducing the highest annual deficits and the 
maximum long-term deficits while taking into account the cost of additional 
pumping. The optimization decision variables are the trigger volume of 
applying the OR and the restriction coefficient. The coupling methodology is 
based on the evaluation of the objective function, which represents a run of 
the simulation model for watershed management to estimate the demand 
deficits and pumps. 

This methodology has been applied to the Mijares River basin, a system that 
is characterized by severe droughts, a well-established system of rights 
between users, and the possibility of the joint use of surface and 
groundwater resources. From applying this approach, different types of 
operating rules have been tested to provide results in terms of deficits and 
similar pumps. A multi-objective point of view allowed taking into account 
the short and long terms of the deficit and the pumping resource. Moreover, 
this implementation helps users or managers of the water system on 
deciding the best or most convenient management for the river basin. 
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optimal operating rules design in real water resource 
systems.3 
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Abstract 

Two evolutionary algorithms (EAs) are assessed in this paper to design 
optimal operating rules (ORs) for Water Resource Systems (WRS). The 
assessment is established through a parameter analysis of both algorithms in 
a theoretical case, and the methodology described in this paper is applied to 
a complex, real case. These two applications allow us to analyse an 
algorithm’s properties and performance by defining ORs, how an algorithm’s 
termination/convergence criteria affect the results and the importance of 
decision-makers participating in the optimisation process. The former 
analysis reflects the need for correctly defining the important algorithm 
parameters to ensure an optimal result and how the greater number of 
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termination conditions makes the algorithm an efficient tool for obtaining 
optimal ORs in less time. Finally, in the complex real case application, we 
discuss the participation value of decision-makers toward correctly defining 
the objectives and making decisions in the post-process. 

Keywords: Evolutionary Algorithms, Water Resource System, Decision-Makers, AQUATOOL, 
SIMGES, Management, Optimisation, Operating Rules 

 
1. Introduction 

Over the last two decades, Evolutionary algorithms (EAs) have been applied 
extensively to a number of areas of water resources, such as water 
distribution systems (Goldberg and Kuo 1987; Savic and Walters, 1997), 
urban drainage and sewage systems (Guo et al. 2008), water supply and 
sewage treatment systems (Murthy and Vengal 2006), hydrologic and fluvial 
models (Muleta and Nicklow 2005) and subterranean systems (Dougherty 
and Marryott 1991), as highlighted in a review by Nicklow et al. (2009).  
However, while EAs have been applied successfully to many academic 
problems, additional research is required to enable them to be applied in 
real-life context (Maier et al., 2014).  For example, there is a need to 
determine which searching mechanisms and termination/convergence 
criteria are best for real-life problems and the best way to convey the results 
of the optimisation process to decision makers (Maier et al., 2014).  
Consequently, these issues are the focus of this paper. 

Simulation models are the most commonly used tool to analyse the 
integrated planning and management of WRS. These models allow for more 
detailed representations of the systems than do the optimisation models 
(Loucks and Sigvaldason, 1982). Moreover, the applicability of optimisation 
models to system management for most real reservoirs is limited due to the 
"high level of abstraction" needed for the efficient implementation of 
optimisation techniques (Akter and Simonovic, 2004; Moeni et al. 2010).  

Normally, simulations of water management systems use operating rules 
(ORs) to model the efficient management of water resources. Designing and 
obtaining ORs for multi-reservoir systems is a complex task and has been 
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widely developed during the scientific history of water resource studies 
(Young, 1967; Bhaskar and Withlach, 1980; Lund and Ferreira, 1996). On the 
other side, ORs must be implementable in real applications and therefore 
need to be robust as well as simple to be defined by a set of indicators and 
parameters. 

A common technique used to design ORs is based upon iterative simulations 
of water management models. In this case, the goal is to find an OR that 
optimises system management. Therefore, the iterative process to find such 
an OR can be controlled by an optimisation algorithm that is responsible for 
varying the OR parameters based upon the results obtained from the 
simulation. EAs afford several benefits compared with classical optimisation 
techniques because they can be implemented without heavy a-priori model 
requirements, and thanks to their ability to manage discrete variables, EA 
optimisation procedures can directly address alternatives when applied to 
OR optimisation. To this end, EAs present effective an optimisation algorithm 
for searching for optimal rules in WRSs. For example, Oliviera and Loucks 
(1997), and later Ahmed and Sarma (2005), presented an approach for the 
optimisation of ORs in multi-reservoir systems using EAs. Other cases are 
reported by Cai et al. (2001) to solve nonlinear models of water management 
using a combination of an EA and linear programming; by Momtahen and 
Dariane (2007), who used a direct search approach to optimize the 
parameters of reservoir operating policies with a EA as an optimization 
method; or by Elferchichi et al. (2009), who applied an EA to optimise 
reservoir operations in the Sinistra Ofanto (Foggia, Italy) irrigation system. 
Furthermore, in the literature were used another metaheuristic approaches 
such as Guo et al. (2013), who incorporated a multi-population mechanism 
into a non-dominated sorting particle swarm optimization to obtain optimal 
rules for a water-supply reservoir; or as in Hossain and Shafie (2014) where 
a nonlinear reservoir release optimization problem was resolved by 
comparing evolutionary methods and swarm intelligences. 

The main purpose of this paper is to test EAs and scattered search 
approaches to design ORs that optimise WRS management. The EAs used are 
the SCE-UA (Duan et al. 1992) and the Scatter Search (Glover, 1997), which 
are combined with the SIMGES network flow simulation model to design 
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optimal ORs. In addition, an analysis of the parameters of both algorithms is 
carried out, which allows us to determine which termination/convergence 
criteria are most appropriate for realistic problems, apart from showing the 
most influential parameters that affect the optimisation process. On the 
other hand, the previous analysis and the use of one of these EAs in a real 
complex case demonstrate which of the two studied algorithms is the best 
for solving this type of problem. Finally, a method of transmitting the 
optimisation results is presented to make the decision-making easier. To 
analyse the parameters, a simple theoretical model representing a fictitious 
WRS is used. In the application for a real complex WRS, the Tirso-
Flumendosa-Campidano system located on Sardinia Island (Italy) is used. 

2. Materials and Methods 

We propose a connection between EAs (SCE-UA or Scatter Search) and a 
traditional water allocation model (SIMGES) in the water resources field to 
design optimal ORs for real WRSs. The approach developed is detailed in 
Figure P3. 1. Decision variables, OR parameters, are defined by the user and 
are sought by the EA to design optimal ORs for the WRS to which it is applied. 
Moreover, some algorithm-specific parameters, such as population size, the 
number of subgroups or the maximum number of iterations should be 
indicated to the EA, apart from the decision variables, to allow optimisation. 
Every EA implements the optimisation process as outlined below; the EA 
generates several individuals (or solutions) that belong to an OR collection. 
In our case, each OR aptitude depends on how it affects the WRS 
management. For this reason, WRS management is simulated through the 
SIMGES network flow for each OR, and the obtained results allow the EA to 
evaluate the objective function (OF). Given the value for each individual (or 
solution) of that OF, the algorithm obtains new values for the decision 
variables defining the OR, and the process is repeated until the stop 
condition for each EA is fulfilled. 
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Figure P3. 1: Methodology. EA combined with the network flow SIMGES. 

Both algorithms have been repeatedly used in different areas of research. 
The SCE-UA algorithm is implemented in this study due to its demonstrated 
efficiency, which has been widely recognised in calibrating hydrological 
problems with a large number of parameters and with a high nonlinearity 
(Duan et al., 1992; Luce and Cundy, 1994; Kuczera, 1997; Boyle et al., 2000). 
On the contrary, the use of the Scatter Search application to design OR is 
currently uncommon but has been successfully applied in distribution 
network calibration problems (Liberatore and Sechi, 2009) as well as a wide 
range of more general optimisation problems (Martí, 2006; Campos et al, 
2001; Scheuerer and Wendolsky, 2006; Adenso-Díaz et al., 2006). However, 
we have chosen the second algorithm because, unlike most conventional EAs 
such as the SCE-UA, thanks to the adoption of search and selection 
techniques, the population is much smaller than when using other EAs. 

2.1. SCE-UA algorithm 

The SCE-UA optimisation mechanism (the Shuffled Complex Evolution) was 
developed by Duan et al. (1992) at the University of Arizona. As mentioned 
above, its efficiency has been successfully tested to calibrate problems of 
hydrological models with a large number of parameters and with a high 
nonlinearity. The basic operation of the SCE-UA algorithm, inspired by the 
principles of natural selection and genetics, is a combination of deterministic 
and random processes. The departing point is from different search points 
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(individuals) that are organised by teams (complexes). Searching for the 
globally optimised solution, an evolutionary process (evolution) is designed. 
This process is based on different reproduction methods such as crossing, 
mutation or recombination, and team mixing (shuffle). An extended SCE-UA 
technical details can be found in Duan et al. (1992). 

2.2. Scatter Search algorithm 

The Scatter Search algorithm (Glover, 1997) is a metaheuristic procedure 
based upon formulations of strategies for generating candidate solutions, 
and thanks to the adoption of search and selection techniques, the point 
population used is much smaller than is necessary for other techniques. The 
concepts and principles of this method are based on the strategy of 
combining decision rules. The Scatter Search operates on a set of solutions, 
called the Reference Set, and combines them to create new solutions that 
improve the original ones. In this sense, the Scatter Search should be 
considered as an EA. However, contrary to other evolutionary methods, such 
as genetic algorithms, the Scatter Search algorithm is not based upon 
randomness over a relatively large group of solutions but is based upon 
systematic and strategic choices over a small group. Typically, genetic 
algorithms consider large population sizes (100 solutions as an order of 
magnitude), whereas the Scatter Search utilises an equivalent set of only 10 
solutions. 

It is worth noting that the Reference Set retains the “good” solutions, but the 
meaning of good is not restricted to the quality of the solution; the diversity 
given to the Reference Set is also taken into account. The optimisation path 
is guided by the gradual inflow of data on the admissible solutions level and 
in its neighbourhood. Indeed, Scatter Search can acquire information both 
from the points “visited” and from those generated separately through 
flexible management of the problem’s data set. 

One of the most interesting characteristics of the Scatter Search is that it 
integrates the combination of solutions with the local search. This local 
search can contain a memory structure, although it is not needed. In most 
cases, it is simply implementing a conventional local search. 
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Figure P3. 2 shows the baseline method diagram. The detailed process that 
is followed by the Scatter Search starts with the generation of a collection P 
of several solutions. This group of solutions is improved through local search, 
although if the obtained solution does not improve the results, the initial 
solution is maintained. Once group P is generated and improved, the 
Reference Set is applied, following given criteria, including the quality of the 
solutions and how different they are to each other (quality and diversity). 
The Reference Set solutions are evaluated and ordered from best to worst 
with respect to the fitness values. 

 

Figure P3. 2: Flowchart of Scatter Search algorithm (Adaptation of Martí and Laguna, 2003). 

The Reference Set is divided into subgroups. A simple method to generate 
these subgroups consists of creating all couples that can be formed with the 
elements of the Reference Set, but these subgroups can be formed by three-
person groups or by any other solution sizes. Once these subgroups are 
designed, the solutions are combined to find new solutions. These new 
solutions are obtained from combinations that can be either immediately 
introduced to the Reference Set (dynamic actualisation), or temporarily 
stored in a list until all the combinations are formed to analyse which 
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solutions are finally chosen for that Set (static actualisation). Note that the 
algorithm stops when it attempts to combine solutions, and the Reference 
Set is empty. 

2.3. Water allocation model 

To design an optimal OR, we combined EAs with the water allocation model 
SIMGES (Andreu et al., 1996), which is responsible for evaluating the 
management of WRS. SIMGES is a module of the Decision Support System 
Shell (DSSS) AQUATOOL (Andreu et al., 1996). The DSSS AQUATOOL includes 
different modules, apart from SIMGES, for evaluating the water quality of 
water bodies and for evaluating probabilities for drought analysis and 
drought risk assessment. This DSSS and its SIMGES model have both been 
extensively used for water basins in Spain (Júcar, Segura, Tajo, etc.) (CHJ, 
1998; MIMAM, 2004; Andreu et al., 1996) and in other countries (e.g., 
Argentina, Chile, Brazil, Italy, Bosnia, Cyprus, Algeria). Generally, a DSSS 
facilitates the negotiation of socially conflicting decisions by users and 
stakeholders (as the implementation of environmental flows) and helps 
decision-makers in their task. 

The SIMGES model transforms the WRS into an internal network flow 
optimisation problem that is solved for every time step (step-by-step) to find 
a flow solution compatible with the physical constraints, system priorities 
and other management constraints. An OF is used to solve this network flow, 
evaluated as a sum of different terms that depend on the type of element 
(reservoir, demand, arcs, etc.). A simplified OF example (Frd), for the case of 
reservoirs and demands, is shown in Equation 1. Frd is minimised to optimise 
the water allocation problem. 

𝐹𝐹𝑟𝑟𝑟𝑟 = ∑ �∑ �𝑉𝑉𝑗𝑗,𝑖𝑖�𝐶𝐶𝑗𝑗 + 𝑃𝑃𝑃𝑃𝑖𝑖�� + 𝑆𝑆𝑆𝑆𝑖𝑖𝐶𝐶𝑠𝑠𝑠𝑠𝐿𝐿
𝑗𝑗=1 � + ∑ 𝐷𝐷𝐷𝐷𝑘𝑘(𝐶𝐶𝐷𝐷𝐷𝐷 + 𝑃𝑃𝑃𝑃𝑘𝑘)𝐷𝐷

𝑘𝑘=1
𝑅𝑅
𝑖𝑖=1  

 (Eq. 1) 

where R is the number of reservoirs in the network flow, Vj,i is the volume at 
level j for reservoir I, L is the number of levels in a reservoir, Cj is the 
benefit/cost of water storage at level j and PRi is the priority number for 
reservoir i. The last part of the reservoir term is defined by Spi, which is the 
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probability of a spill to the reservoir i, and Csp, which is the cost of spills to 
the reservoirs. The second term of Frd is associated with demands. D is the 
total number of demands, and DDk is the deficit of demand k. The cost 
associated with the deficits of demand is CDD, and PDk is the priority of 
demand k. Eq. 1 is composed of costs (set by default and previously 
calibrated) and priorities that the user can change. 

Furthermore, the SIMGES model allows a user to define ORs to model 
decision-making based upon specific indicators. Examples of some of these 
indicators are the stored volume in one or more reservoirs and the 
accumulated in-stream flow during several months at one or more points 
within the system. The application of these ORs includes the restriction to a 
certain percentage of one or more demands, environmental flow or the 
pumping system. This type of OR is used to anticipate droughts to avoid 
dramatic failures of the WRS. 

2.4. Optimization problem’s statement 

The optimization problem carried out in this paper to obtain optimal 
operating rules involves different statements like the EA’s parameters, the 
OR to optimise, the OF or the problem restrictions.  

Both algorithms analysed in this manuscript have several parameters that 
affect the performance of the optimization process, and for each algorithm, 
these parameters are analysed in section 3. Moreover, the aim of the 
optimization is to find an optimal OR, which is defined by some parameters 
such as the volume stored in a reservoir or the restriction coefficient to 
supply more or less amount of water to a demand. Depending on the case 
analysed (theoretical – section 3 or real – section 4) the OR may be defined 
with different amounts of parameters. The OR’s parameters are the decision 
variables of the EA and they will be defined in the appropriate section.  

Furthermore, the algorithms use an OF to optimise the problem. Scatter 
Search and SCE-UA are single-objective algorithms. For this reason, in the real 
case studied in the document, the OF is a combination of several objectives. 
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The main objectives will be related, for each case, to the demands (deficits) 
or to the pumping system (economic cost). 

In addition, WRS usually have legal restrictions such as reliability criteria of 
the demands or economic bounds. These type of restriction are considered 
in the theoretical and real cases. 

3. Parameter analysis 

In this section, an analysis of the aforementioned EA is carried out. This 
analysis studies the influence of the SCE-UA and the Scatter Search 
parameters when used as a tool to design optimal ORs in WRS. According to 
Duan et al., (1994), the effectiveness and efficiency of an algorithm are 
influenced by the choice of the algorithmic parameters. Typically, these 
algorithms have a higher or lower number of parameters and provide a 
certain flexibility, i.e., these parameters determine the algorithm 
performance and allow the user to decide how the algorithms should work. 
Examples of these parameters are aspects related to the stopping criteria of 
the optimisation process (maximum number of iterations, variation 
percentage of the OF or the decision variables, etc.), population size, number 
and size of the subgroups in which the population is divided to evolve, seed 
for the calculation of random numbers, etc. 

This analysis aims to determine which parameters are the most influential 
ones to the OR optimisation process. This will allow us to identify which 
parameters should be specially treated when defining them in new 
optimisation processes, and eventually, it will enable us to conduct several 
optimisation processes by modifying those parameters for the specific 
problem to obtain optimal results. 

To this end, a group of optimisations (OPT) is carried out, modifying 
parameters in each group. Each optimisation is implemented following the 
methodology described in the previous section. A fairly simple WRS has been 
used, which is likely a naïve simplification of reality. This system is modelled 
through SIMGES and is composed of a reservoir, two demands and two 
inflows to the system (Figure P3. 3). The demand with greater priority 
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(demand 1) and, therefore, the one that should be supplied first, is the one 
located downstream of reservoir 1. Given the system conditions, it is not 
possible to supply both demands completely; however, it is possible to 
supply enough for demand 1 at the expense of not providing any water to 
the other demand (demand 2) during some time period. This result is 
typically unacceptable; thus, we look for an OR in which the imposed 
reliability level for demand 1 is assured while maintaining the maximum 
possible volume of water supplied to demand 2, as the system allows. In 
general, for this type of problem, the OF is defined to minimise the deficit of 
the demands or to maximise the water supplied to them. For this simple case, 
it is assumed that the supply to demand 1 meets the vulnerability criterion if 
the maximum annual deficit does not reach 50% of the target annual 
assignment.  

Restriction: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (%)
≤  50% 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔       (𝐸𝐸𝐸𝐸.  2) 

To obtain this water allocation, an OR is defined in the system for the stored 
volume in the reservoir. If the stored volume in the reservoir is above a 
certain threshold (to be optimised), a certain percentage (to be optimised) 
of the assignment of demand 2 is supplied. Therefore, a simple OR is 
considered for this analysis and is defined using two parameters (EA decision 
variables). 

OR (decision variables): 

𝐷𝐷𝐷𝐷1 = 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 1)       (𝐸𝐸𝐸𝐸.  3)  

𝐷𝐷𝐷𝐷2 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2)       (𝐸𝐸𝐸𝐸.  4) 
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Figure P3. 3: Diagram of the example used for the analysis of the algorithms. 

 

Once this simple example and the purpose for analysis are explained, we will 
discuss how the EA must maximise the resources supplied to demand 2. With 
this intention, an OF is defined and evaluated using the following expression, 
as long as the vulnerability criterion for demand 1 is assured: 

𝑂𝑂𝑂𝑂 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2

        (𝐸𝐸𝐸𝐸.  5) 

The best value for this OF term (Eq. 5) is 1, when demand 2 is completely 
supplied, and 0 is the worst value, representing the case in which no water 
resources are supplied to demand 2. 

3.1. The SCE-UA parameter analysis 

The basic parameters that the SCE-UA optimisation process depends upon 
are specified in Table P3. 1. The maximum number of OF evaluations (MAXN), 
as will be seen in the several optimisations carried out, has not been 
necessary to modify its value, at least in the simple system used for this 
analysis. In complex optimisations requiring a high number of decision 
variables, there will be a need for a large number of iterations and thus a 
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large number of evaluations of the OF as well. In these cases, it is advisable 
to adjust the MAXN to limit the maximum algorithm process time. The 
influence of the other five parameters is not trivial, which is why they were 
also analysed. 

This analysis is formed using five groups of optimisations, one for each 
parameter in Table P3. 1 (except for MAXN, as previously mentioned). In the 
first group, 12 optimisations have been carried out in which the NGS 
parameter has been modified. This NGS has been the first parameter in the 
analysis because, a priori, it seems to affect the obtained result the most. In 
the second and subsequent groups, KSTOP, PCENTO, ISEED and IFLAG have 
been modified. 

Description Parameter Initial Values 
Maximum number of function evaluation MAXN 10000 
Number of shuffling loops in which the 
criterion value must change by PECNTO 
before optimisation is terminated 

KSTOP 10 

Percentage by which the criterion value must 
change in KSTOP shuffling loops PECNTO 0.1 

Number of complexes (sub-populations) NGS 3 
Random number ISEED 123456 
Considering initial parameters IFLAG 1 

Table P3. 1: Parameter description and initial values considered in the SCE-UA analysis. 

In the first group of optimisations, some parameter values are defined (Table 
P3. 1), based upon several simulations that have been performed with the 
SCE-UA algorithm for the calibration of different types of parameters. 

Table A1.1 summarises all the optimisation processes carried out in the SCE-
UA analysis, showing the value of each parameter, the number of OF 
evaluations reached in each trial (EVALS) and the OF value. 

The numbers of subgroups (NGS) in which the SCE-UA sample is divided to 
find new improved individual in the first OPT are 1-10, 15 and 20. A great 
number of possibilities have been analysed, focusing on divisions below 10 
NGS, and two higher NGS values are subsequently tested. Figure P3. 4a 
shows the evolution of EVALS and the OF according to the NGS. If we consider 
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first EVALS obtained, an increasing trend is observed when the NGS 
increases. For sizes smaller than 10 NGS, EVALS is below 1500; for sizes larger 
than 10 NGS, this number substantially increases, reaching more than 3000 
OF evaluations. However, in the first 10 OPT, the evolution is not completely 
linear; for example, a lower EVALS is obtained with 6 NGS than with 5 NGS.  

EVALS alone does not allow us to correctly analyse the algorithm because it 
does not show us how optimal the identified solution is in reality. For that 
reason, the figure also shows the OF value, which represents the fitness 
reached in each OPT. It is worth noting that the range of OF values is quite 
narrow (Figure P3. 4a), between 0.537 and 0.539, which means that different 
OPT could reach quite similar results. Similarly, as often occurs with the 
evolution of EVALS, the OF does not follow a linear, positive trend. It is 
observed that the OF value is lowest when NGS=1 (not shown in Figure P3. 
4a because it requires an OF value of 0.534), 2, or even 4. For values above 5 
NGS, the OF values obtained are higher and thus represent better solutions. 
The optimal result of this group of OPT is obtained with an NGS=7, requiring 
nearly 1500 evaluations and resulting in an OF value of 0.5385. 

With this solution, the KSTOP parameter is analysed. This parameter has 
been modified using the following values: 2, 5, 10 (GROUP=1), 15 and 20. 
Figure P3. 4b shows the results obtained. In this figure, an increasing trend 
of EVALS is observed when KSTOP increases. This is normal because a hard 
stop criterion is defined for the algorithm. For the KSTOP value that is double 
the value analysed in GROUP=1 (that is, KSTOP=20), the EVALS required is 
lower than double that required for a KSTOP=10, which shows that it does 
not follow a completely linear evolution. For the lowest values of KSTOP, the 
increase for EVALS is greater than the increase for higher KSTOP values. 
Regarding the OF values reached, for KSTOP values lower than 10, the OF 
value was below 0.538; however, for KSTOP, the values of 10, 15 and 20 
resulted in the same OF value (0.5385). 

With the same parameters as in OPT=7, the PCENTO parameter is analysed. 
In this OPT group, the values adopted for PCENTO were 0.05, 0.1 (GROUP=1), 
0.2 and 0.5. Figure P3. 4c shows the results for this parameter. Contrary to 
the two previous parameters analysed, when the PCENTO value increases 
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(the term condition is less restrictive), EVALS is reduced along with the OF 
value. For values of 0.05 and 0.1 for PCENTO, the same result is reached, both 
for EVALS and the OF value. Similarly, for the values of 0.2 and 0.5, the OF 
reaches the same value, and EVALS is nearly the same; however, because the 
algorithm ends earlier, the results are worse than in the other case. 

  

  

 

Figure P3. 4: Performed test with SCE-UA algorithm. 
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The next parameter studied is the ISEED, which is related to the random 
number generation upon which the algorithm is based. Apart from the ISEED 
analysed in GROUP=1 (123456), three others have been considered, as 
shown in Figure P3. 4d. The ISEED affects the obtained results without a clear 
criterion, i.e., there are ISEEDs with high OF values and high EVALS; others 
with low values for both of them; and still others with high OF values and low 
values of EVALS (the best scenario). In these OPT, the optimal result is 
reached with a seed of 967217, an OF value of 0.5389 and 589 OF 
evaluations. 

The last parameter analysed is IFLAG, which allows the user to consider initial 
values (X0) or random values for the decision variables. For this group of OPT, 
the ISEED of GROUP=1 has been used, and the ISEED with the best result 
originates from GROUP=4. The minimum, the maximum or a random value 
for each decision variable have been considered as the initial value for both 
ISEED parameters. Figure P3. 4e shows how the initial values affect the result, 
depending upon the ISEED. In the case with the best results for ISEED 
(GROUP=4), the initial value does not affect the result, and in all cases, the 
same EVALS and OF value are returned. By contrast, with the ISEED from 
GROUP=1, for which random initial values and a higher EVALS are required 
(compared to the minimum or maximum initial values), higher values of the 
OF are obtained. 

3.2. The Scatter Search parameter analysis 

The difference for SCE-UA is that the Scatter Search only needs to define (in 
the basic configuration) the size of the population (SIZEPOP), Reference Set 
(REFSET), and number of iterations (ITER). 

For this algorithm and in the WRS field, we do not have initial values from 
experience, and only the explanation in section 2.2 is considered, where it is 
discussed that this algorithm often works with a small SIZEPOP, typically of 
10 individuals, and a small value for the REFSET. 

In contrast of the SCE-UA algorithm analysis, and for the reasons mentioned 
above, a higher number of optimisations have been conducted for this 
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algorithm to analyse its parameters (see Table A1.2). Nevertheless, they have 
been collected in 4 GROUPS, depending on SIZEPOP. In the first group, a 
value of 5 is adopted, and the size of REFSET and ITER vary. Figure P3. 5a 
shows EVALS and the OF value reached in each OPT. On the one hand, it is 
observed that EVALS increases as the ITER parameter increases for three 
REFSET sizes (1, 2 and 5). These values for REFSET have been chosen because 
they were lower than the value for SIZEPOP, and in an extreme case, they 
have the same value. For the three values of REFSET, it is observed that EVALS 
increases, which is even more important for the REFSET=5 case. Note that in 
those OPT, a very high EVALS (more than 5000) is needed to reach the 
stopping point for the algorithm, except in the case of ITER=1, in which the 
algorithm ends with 164 OF evaluations without finding any valid solution. 
For REFSET values of 1 and 2, the trend is almost the same, reaching the 
requirement of more than 8000 OF evaluations in the case where ITER=50. 
However, for ITER values below 20, this number is reduced to less than 3300 
OF evaluations, with nearly 1600 evaluations for ITER=10 and almost half that 
value for ITER=5. Figure P3. 5a also shows the OF values, which are between 
0.52 and 0.537. It is worth noting that for REFSET=5, in which a high EVALS 
value was required, the OF result is worse than that obtained with REFSET 
equal to 1 and 2. The best result (OF=0.5367) was obtained with REFSET=1 
and 10 ITER (or more). 

The second GROUP of OPT has been carried out with SIZEPOP=10. In this 
case, the initial values of REFSET have been kept, to see if they are affected 
by the increasing of SIZEPOP. 

Figure P3. 5b and Figure P3. 5a are similar in regard to EVALS. For values of 1 
and 2 for REFSET, the trend is almost the same in either case, reaching more 
than 10000 OF evaluations for a value of ITER=50. Moreover, for REFSET=5, 
the increase in EVALS is larger, although slightly lower than that for 
SIZEPOP=5. However, the OF value does not similarly evolve, in this group of 
OPT; for REFSET=1, the solutions obtained are less optimal than those for the 
other two values, which obtained almost identical values for the OF (0.5378) 
using values for ITER greater than 5. 
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Figure P3. 5: Performed test with Scatter Search algorithm. 

To summarise these two groups of OPT, Figure P3. 5c shows the most optimal 
solutions of each GROUP. For the first group, SIZEPOP=5 and REFSET=1 were 
used, and for the second group, SIZEPOP=10 and REFSET=2. It is clear to see 
that the proportion SIZEPOP/REFSET is maintained. Considering both 
solutions, SIZEPOP=10 is the one with the best value for OF but requires a 
higher EVALS value. The optimal solution is obtained with SIZEPOP=10, 
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REFSET=2 and 5 ITER, requiring 1030 OF evaluations and reaching an OF value 
of 0.5380. 

Subsequently, we analysed the Scatter Search behaviour for higher values of 
SIZEPOP, specifically sizes of 50 and 100. In both cases, a value of 10 has been 
chosen for REFSET size, a lower value than SIZEPOP to maintain the 
proportion of SIZEPOP to REFSET that was used in previous OPTs. The result 
shown in Figure P3. 5d reflects the need for a very high EVALS value (from 
2377 to more than 64000). With the lowest EVALS value, an OF value of 
0.5367 is reached, which is a worse result than that generated through a 
previous analysis. An OF value of 0.5385 is obtained only for EVALS values 
higher than 30000 OF evaluations (the highest registered value in the Scatter 
Search analysis). 

With the Scatter Search study, we check to see if higher values of EVALS are 
reached in many OPT, which is not desirable because it is related to a higher 
computation time. To compare to the ranges of EVALS obtained with the SCE-
UA, Figures 5e and 5f show some OPT conducted with the Scatter Search. 
Figure P3. 5e shows 6 OPT with fewer than 1000 OF evaluations, with OF 
values lower than 0.5334. Figure P3. 5f shows 3 OPT requiring between 1000 
and 2000 OF evaluations. In those cases, an OF value of 0.538 is reached, 
with 1030 OF evaluations, although this is worse than the best result of the 
SCE-UA (0.5389). 

3.3. Discussion 

The assessment of both algorithms yields some conclusions about the 
parameters, the stop condition of the algorithm, and which algorithm 
obtained the best results in this simple case study. Zielinski et al. (2005) 
provide six convergence/termination criteria for EAs. These EAs use some of 
these criteria, the SCE-UA uses three of them, and the Scatter Search uses 
only one. 

In the SCE-UA, six parameters have been studied, although MAXN has not 
been used in the analysis because it was not limiting for the example, as 
mentioned above. From the other five parameters, two of them affect the 
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stopping criteria (KSTOP and PCENTO), one affects the improvements of 
individuals (NGS), and the last two (ISEED and IFLAG) condition the initial 
values for the decision variables and generate new values as the individuals 
evolve. 

On the one hand, the NGS parameter has an influence on EVALS and thus on 
the optimisation time, and on the other hand, it affects the obtained result 
in certain ways. The results obtained in section 3.1 show that it is not 
convenient to choose either a low or a high value for NGS in the first case 
because of worse values for OF and in the second because EVALS increases. 
Therefore, NGS values between 3 and 8 would be appropriate.  

Parameters affecting the convergence/termination criteria (KSTOP and 
PCENTO) are important. Choosing an incorrect value can make the algorithm 
end before it is convenient, and sub-optimal results will thus be reached, or, 
on the contrary, more time will be taken to complete the algorithms than is 
strictly needed to reach the optimal solution. In the former case, if some slack 
is introduced to the stop criteria, the process can finish in a shorter time, but 
it will not be certain if the result is a globally optimised value. However, in 
the latter case, EVALS will increase because it is quite strict in the termination 
condition of the SCE-UA, using a higher computation time than would be 
necessary if these parameters were appropriately defined. PCENTO is the 
most influential parameter. 

Regarding ISEED and IFLAG, they have a certain random nature. A priori, 
better or worse results can be obtained depending upon the practical case 
and this randomness. 

A more rigorous method has been developed to corroborate the two 
previous analysis. This method is the ANOVA statistical analysis, which 
enables us to know the statistical significance of the parameters analysed. 
The tables below (Table P3. 2 and Table P3. 3) show the results of this 
analysis, identifying the statistical significance of each parameter analysed 
(independent variables) versus EVALS and OF value (dependent variables). 
Low values of this significance indicates a higher probability that the 
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dependent variable values (EVALS or OF) are modified when the value of the 
parameter analysed is changed.  

With this aim, SCEUA algorithm has been used in a larger sample than in the 
previous section, with a total of 180 OPT (which includes OPTs of Table A1.1).  

 
EVALS OF 

KSTOP 0.000 *** 0.011 ** 
PCENTO 0.097 * 0.767 

 

NGS 0.000 *** 0.000 *** 
ISEED 0.331 

 
0.003 *** 

Table P3. 2: Parameter significance of the SCE-UA algorithm. ANOVA results. 

Statistical significance displayed in Table P3. 2 shows how the parameters 
affect in the obtaining process of optimal solutions. KSTOP and NGS are the 
two parameters most significant, therefore if these parameters are modified 
the EVALS and OF value will be changed. Similarly, ISEED is statistically 
significant in OF value. However, the analysis indicates that the variation of 
PCENTO does not influence much as the previous ones. In contrast to the 
foregoing analysis (section 3.1), ISEED does not affect to EVALS, maybe due 
to the ANOVA performed here ignores the interaction between parameters. 

In the Scatter Search algorithm, three parameters were analysed, each 
affecting EVALS in some way and thus affecting the computation time. 
Increasing the knowledge about this algorithm, the trials that have been 
carried out have demonstrated that the algorithm is not efficient for higher 
SIZEPOP values (more than 20 solutions) because a high EVLAS is required, 
obtaining similar results as when lower population sizes are used (10 or fewer 
solutions). 

The REFSET parameter, for which the size is lower than SIZEPOP, is quite 
influential in optimised solutions. Considering SIZEPOP values less than or 
equal to 10, it is observed that low values of REFSET are most appropriate 
because, for different SIZEPOP values, optimal solutions are reached with a 
lower EVALS than in the case of higher REFSET values (as an example, 
REFSET=5). 
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Finally, for ITER values near 10 but lower than 20, the results obtained are 
reached with low EVALS values and optimal values for OF. This last parameter 
controls the stop condition of the algorithm. Given the results obtained with 
the Scatter Search and as Bhandari et al. (2012) have suggested, the 
statistical variance of the values of the best fitness should be considered as 
a termination criterion. 

The same ANOVA analysis developed with SCE-UA algorithm has been done 
with Scatter Search algorithm. In this case, the sample used is equal to the 
analysis carried out in section 3.2. 

 
EVALS OF 

REFSET 0.001 *** 0.004 *** 
SIZEPOP 0.018 ** 0.006 *** 
ITER 0.402 

 
0.999 

 

Table P3. 3: Parameter significance of the Scatter Search algorithm. ANOVA results. 

Table P3. 3 shows the statistical significance of Scatter Search parameters 
versus EVALS and OF value. REFSET and SIZEPOP are the most significant 
parameters that affect to the two dependent variables. This ANOVA analysis 
indicates how ITER is not significant unlike the descriptive analysis in section 
3.2 (maybe for the same reason that ISEED in the SCE-UA statistical analysis). 

It should be noted that in the analysis performed in sections 3.1 and 3.2, we 
have focused on the OF values and have looked for those results whereby OF 
was improved to the largest number of significant figures (up to the fourth 
decimal). Nevertheless, those OF values are related to the supply of demand 
2, as seen in section 3. If we take 0.538 and 0.5389 as an example of OF 
values, the annual supply for demand 2 is 77.472 Mm3/year and 77.6016 
Mm3/year, respectively. It can be observed that the difference is not very 
significant. This fact can be even more important in greater assignment 
demands, or in other problems with more complex OF, and depends on more 
variables. 

Given this statement and considering the results of this analysis, it can be 
said that all the results are within the optimal range. This does not 
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underestimate the analysis because these differences in the OF can be 
important in other problems, and, moreover, the conclusions obtained 
regarding the convergence/termination criteria of the algorithm and EVALS 
used in analysis are valid for any problem. 

Comparing the results of the SCE-UA and the Scatter Search, the latter 
typically uses a higher EVALS than the former. Moreover, the SCE-UA obtains 
more optimal values of OF (inside the range considered to be optimal); 
nevertheless, the Scatter Search approach makes it flexible and able to 
provide excellent quality solutions, even when there are fewer parameters 
to vary for the global optimisation. Both algorithms allow the user to obtain 
optimal ORs combined with network flow SIMGES, noting that the SCE-UA is 
more efficient. Therefore, decision-makers could rely on both algorithms to 
determine the best management for the WRS. 

4. Application real case: Tirso-Flumendosa-Campidano 

This section has three objectives: first, to demonstrate the usefulness of both 
EAs analysed in designing ORs for real WRSs; second, to determine which 
algorithm is better; and finally, to analyse the influence of decision-makers 
upon the optimisation pre-process and post-process (using an analysis of the 
results). 

The proposed methodology in section 2 is applied to the Tirso-Flumendosa-
Campidano system located on the island of Sardinia (Italy). The system has a 
Mediterranean climate and is characterised by irregular distributions of 
water resources in time and space and by an irregular distribution of demand 
in time. All these factors suggest that the system can be considered one of 
the most complex systems to manage in the region. The average hydrological 
inflow of water resources to the system is approximately 750 hm3/year. 
Furthermore, the total system demand is 383.25 hm3/year. The water supply 
system is mainly characterised by the use of surface water that is stored and 
regulated by the reservoir. Groundwater is used only for small localised 
requirements. Figure P3. 6 shows the complexity of the Tirso-Flumendosa-
Campidano system, with 23 reservoirs, 14 diversion dams, 23 pumps and 44 
demands. The main problem of the system is to carry water from areas with 
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a high volume of resources to those with less availability. For this reason, the 
system has many pumping systems and pipelines that facilitate transport of 
the water to areas that need it, with a consequent economic cost. An 
important goal is to minimise the management cost of such pumping 
systems, while meeting as much of the demand as possible. 

 
Figure P3. 6: Schematic of Tirso-Flumendosa-Campidano system for SIMGES model. 

The Water Management Authority of Sardinia (ENAS) advised the building of 
the Tirso-Flumendosa-Campidano model. Once the simulation model of the 
management system was developed with SIMGES, the analysis was 
conducted, the most representative results of which are shown in Table P3. 
4. The results included in this table are the annual maximum deficit, the 
number of demands with a deficit and the total cost of operating the 
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pumping system. These three aspects are considered in the OR optimisation 
process, given recommendations from ENAS. This demonstrates the 
participation of decision-makers in the optimisation pre-process because for 
ENAS, the priority is two-fold: to reduce the pumping costs and to reduce the 
demand deficits, which are both given the same level of importance. 

a) 

Number of demands with deficits 4 

Average annual cost of pumping 3,675,330.24 € 

b) 

Demand Maximum annual deficit 

GIO-A 86 % 

GUS-C 47.04 % 

LEN-A 80.2 % 

IGL-A 2.9 % 

Table P3. 4: Results of the current management system for the case study. 

Four demands in the system suffer deficits (Table P3. 4a), and one of them is 
an urban demand (GUS-C). The reason for this demand to suffer deficits is 
due to its location (in the upper sub-basins) and the lack of hydrological 
contributions in that area. These circumstances cause that demand to have 
two periods of several months in which it is not supplied with 100% of its 
water requirements. All other demands with deficits are agrarian demands. 
The average annual cost of pumping is 3,675,330.24 €, which is calculated 
using the volume pumped for each pumping system and their unit operating 
cost, all on an annual basis. 

Departing from defined system management protocols, an optimisation 
problem is proposed to improve it, where the OF (Eq. 6) minimises the 
weighted sum of the maximum annual deficit, number of demands with a 
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deficit and pumping costs. The goal of the optimisation for this case study is 
to design ORs that obtain the least number of demands with a deficit and, at 
the same time, the lowest possible value for their maximum annual deficit. 
On the one hand, this approach is expected to affect the least number of 
users, considering user priority (urban demands have the highest priority). In 
contrast, when deficits occur, they are less damaging if they are distributed 
over a number of years than if significant deficits occur in any single year. 
Furthermore, the Tirso-Flumendosa-Campidano system has a complex 
infrastructure consisting of pipelines and pumping systems. The latter have 
a strong influence on management due to the significant economic costs of 
pumping. Because of this, the lowest pumping rate is also required to reduce 
the economic costs of higher operating rates for this pumping system. The 
problem with these two goals is that typically, in this type of system, the 
reduction in supply deficit for demands implies an increase in net pumping 
and, hence, the WRS operating cost. Therefore, the defined OF tries to 
minimise both quantities for optimal management. 

𝑂𝑂𝑂𝑂 = �0.3 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝐶𝐶𝑁𝑁𝑁𝑁 + 0.2 ∗
∑𝐷𝐷𝐷𝐷𝐷𝐷
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

∗ 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷�+ 0.5 ∗�𝐶𝐶𝐶𝐶

∗ 𝐶𝐶𝐶𝐶𝐶𝐶      (𝐸𝐸𝐸𝐸.  6) 

NDCD is the number of deficit demands, and CND is a coefficient that makes 
the term NDCD * CND be between 0 and 1. However, it also takes into account 
the type of deficit demands. In the case where more than one urban demand 
suffers a deficit (Eq. 7), the term NDCD * CND has a value of 1000. This implies 
that any solution where more than one urban demand suffers a deficit is not 
acceptable. DMA is the maximum annual deficit of each demand, and CDMA is 
a similar coefficient to CND. In this case, it takes into account the vulnerability 
criteria (MARMA, 2008) used in Spain to verify the compliance of agrarian 
demands (Eq. 8-10). These criteria are based on the establishment of 
maximum limits for deficits that may occur over a given time period. 
Specifically, the time periods considered are 1, 2 and 10 years, and the 
threshold compliance rates for these periods are 50%, 75%, and 100% of the 
annual demand, respectively. In this way, the supply to the demand is 
considered "satisfactory" as long as the maximum annual deficit of the 
simulated series is less than 50% of the annual demand, the maximum deficit 
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of two consecutive years is less than 75% of the annual demand, and the 
maximum deficit of 10 consecutive years is less than 100% of the annual 
demand. The last term of Eq. 3 takes into account the economic costs of the 
pumping systems (CB). The CCB term is another coefficient that normalises 
the term CB * CCB, and only for cases where the pumping cost exceeds a 
certain value (considered to be the upper limit) (Eq. 11); this term takes a 
value of 1000, designating any solutions above this upper cost limit to be 
unfeasible. Final values of OF will be between 0 (best solutions) and 1 (worse 
solutions), but as explained before, it can also take the value of 1000, 
indicating undesirable solutions. 

Restrictions: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤  1     (𝐸𝐸𝐸𝐸.  7) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (%) < 50% 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐸𝐸𝐸𝐸. 8) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 2 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (%) < 75% 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐸𝐸𝐸𝐸. 9) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 10 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (%) <
100% 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐸𝐸𝐸𝐸. 10) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (€) < 5.000.000€ (𝐸𝐸𝐸𝐸. 11) 

The OR for this real case is defined by six parameters, which represent the 
thresholds of different reservoirs of the system. These parameters are 
considered by the experience of the decision makers in the WRS. Based on 
these thresholds, the supply demands are restricted to a greater or lesser 
level and, at the same time, this affect to the volume pumped. 

Optimisation has been carried out with both EAs previously described, the 
SCE-UA and the Scatter Search. The combination of parameters used in this 
real case reflects the best option considered in section 3. In the case of SCE-
UA algorithm the OPT number is 20 and for the Scatter Search algorithm OPT 
number is 24. The results obtained, by using these parameters for each 
algorithm, are described below. To be able to compare these results with the 
current management of the system results, a value of 0.626 is obtained by 
evaluating the OF (Eq. 6). 
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For each EA, a figure with all the ORs analysed is displayed, showing the 
number of demands with a deficit (x-axis) and the average annual cost of 
pumping (y-axis). A decision-maker using this methodology can select 
between alternatives for what they consider to be the most desirable for the 
interests of the system in the post-process. For example, in this case, the 
decision-maker may choose an alternative with a greater number of 
demands with deficits, but with a lower net pump flow rate and thus lower 
pumping costs. These figures do not show the maximum annual deficits of 
demands with deficits because in most solutions, they remain constant. 
Nevertheless, in other cases, these figures alone would not be sufficient 
because they do not show all aspects of the WRS management needed for 
making objective decisions. For those cases, a collection of figures can be 
created to show all important aspects and relate different solutions across 
the figures using a colour code (Lerma et al., 2014). 

 

Figure P3. 7: Obtained results using the SCE-UA algorithm. 

The optimisation performed with the SCE-UA algorithm employed 1594 
iterations to complete the process. The best value for the OF is 0.570, with 
an average annual pumping cost of 3,161,191.56 € and a total number of 
three demands with a water deficit. As shown in Figure P3. 7 (which shows 
the results of all iterations), this is the solution with the fewest number of 
demands having a deficit and the lowest average annual cost of pumping; 
simultaneously, there is a significant reduction in the average annual cost of 
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pumping, from 3,675,330.24 € to 3,161,191.56 €, a decrease of 
approximately half a million euros. 

Alternatively, 3989 evaluations of OF were made using the Scatter Search 
algorithm (Figure P3. 8), and the optimal solution obtained is one with three 
demands having a deficit and having an average annual cost of pumping of 
3,251,280.22 €. The value of OF reached is 0.579. 

The three demands that have deficits (in the best solution using both 
algorithms) show the same values of maximum annual deficit that are 
observed in the current management system (Table P3. 4b). 

 

Figure P3. 8: Obtained results using the Scatter Search algorithm. 

At this point, we want to show the similarities and differences between the 
two EAs analysed. First, it can be seen that the number of iterations using the 
SCE-UA algorithm is smaller than that when using the Scatter Search 
algorithm, and without looking at any further aspect, one could say that the 
first algorithm is more efficient. Considering the OF and the results obtained, 
the best solution obtained by the algorithms is more optimal than the current 
management system, in terms of water supply deficits and pumping costs. 
Both algorithms are able to reduce the number of demands suffering a deficit 
from four to three. However, the SCE-UA obtains an average annual cost of 
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SCE-UA obtains a better solution, but the Scatter Search nevertheless has 
fewer parameters, which makes it flexible and able to provide good 
solutions. 

Figure P3. 8 shows that the solutions found by the Scatter Search algorithm 
are focused on specific values for the average annual cost of pumping, in 
contrast to the more or less homogeneous distribution that is shown in 
Figure P3. 7 for the SCE-UA, i.e., there are ranges of the average annual cost 
of pumping that the Scatter Search does not analyse or does not provide any 
solutions for. 

5. Conclusions 

In this paper, two EAs have been assessed as optimisation tools to design 
optimal ORs in a WRS. Several aspects have been considered through analysis 
of each algorithm’s parameters and a real case. The discussed aspects are 
aimed at a particular study of EAs: which is the best in real case applications, 
the convergence/termination criteria, and the influence of decision-makers 
in the optimisation process. 

The parameter analysis allows us to better understand the behaviour of the 
SCE-UA and Scatter Search algorithms, detecting the most relevant 
parameters for the optimisation process. Simultaneously, their stop 
condition is also studied, through the parameters defined for that objective. 
The SCE-UA has three parameters for this purpose, while there is only one 
parameter for the Scatter Search, which gives SCE-UA more flexibility and 
therefore greater efficiency because it requires a lower number of OF 
evaluations in many cases. Regarding the remaining parameters, the NGS is 
quite important in the SCE-UA, in which neither values lower than 3 nor 
values higher than 8 are recommended to obtain optimal results in an 
efficient way. In the Scatter Search approach, to provide good solutions, 
parameters related to the population size and the Reference Set are most 
influential during the optimisation process. 

When the EAs were applied to a real case study, other aspects related to the 
decision-makers were considered, apart from checking the methodology to 
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design optimal OR using these algorithms. The participation of decision-
makers in the optimisation pre-process is important in correctly addressing 
this problem, a correct representation of the results is needed for the post-
process, and the decision-makers must have all the information necessary to 
make the best decisions that yield the most appropriate management 
protocols for the WRS. 

Regarding the comparison of both algorithms, the SCE-UA needs fewer 
iterations to reach an optimal solution, and the solution obtained is typically 
better than the one obtained using the Scatter Search algorithm. Therefore, 
the conclusion is that the SCE-UA algorithm is a more efficient algorithm for 
realistic problems and obtains better, nearly globally optimised solutions 
when searching for ORs than does the Scatter Search, even if this second 
approach could be considered flexible and able to provide quality solutions 
in an expanded range of real-world applications. 
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Appendix 1. Test suite. 

The next two tables contain the optimisation groups for SCE-UA and Scatter 
Search algorithms for the academic case. These tables mainly show the 
algorithm parameters, the evaluation number of the OF (EVALS) and the 
normalised OF value. 

Table A1.1: Optimisations summary performed in SCE-UA algorithm 

analysis. 

OPT GROUP KSTOP PCENTO NGS ISEED EVALS OF 

1 1 10 0.1 1 123456 172 0.5239 

2 1 10 0.1 2 123456 476 0.5372 

3 1 10 0.1 3 123456 419 0.5378 

4 1 10 0.1 4 123456 441 0.5370 

5 1 10 0.1 5 123456 1017 0.5382 

6 1 10 0.1 6 123456 574 0.5378 

7 1 10 0.1 7 123456 1531 0.5385 

8 1 10 0.1 8 123456 1173 0.5379 

9 1 10 0.1 9 123456 1493 0.5382 

10 1 10 0.1 10 123456 1456 0.5382 

11 1 10 0.1 15 123456 2893 0.5385 

12 1 10 0.1 20 123456 3269 0.5383 

13 2 2 0.1 7 123456 122 0.5333 
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14 2 5 0.1 7 123456 722 0.5375 

15 2 15 0.1 7 123456 1841 0.5385 

16 2 20 0.1 7 123456 2159 0.5385 

17 3 10 0.2 7 123456 1043 0.5383 

18 3 10 0.5 7 123456 978 0.5383 

19 3 10 0.05 7 123456 1531 0.5385 

20 4 10 0.1 7 967217 589 0.5389 

21 4 10 0.1 7 583569 663 0.5369 

22 4 10 0.1 7 657424 881 0.5378 

23 5 10 0.1 7 967217 616 0.5389 

24 5 10 0.1 7 967217 592 0.5389 

25 5 10 0.1 7 123456 1043 0.5379 

26 5 10 0.1 7 123456 1170 0.5381 
 

Table A1.2: Summary of optimisations performed using Scatter Search 

algorithm analysis. 

OPT GROUP REFSET SIZEPOP ITER EVALS OF 

1 1 1 5 1 164 0 

2 1 1 5 2 164 0 

3 1 1 5 5 655 0.5331 
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4 1 1 5 10 1200 0.5367 

5 1 1 5 20 2377 0.5367 

6 1 1 5 40 4907 0.5367 

7 1 1 5 50 6212 0.5367 

8 1 2 5 1 164 0 

9 1 2 5 5 795 0.5334 

10 1 2 5 10 1578 0.5334 

11 1 2 5 20 3222 0.5334 

12 1 2 5 50 8430 0.5334 

13 1 5 5 1 164 0 

14 1 5 5 5 5784 0.5184 

15 1 5 5 10 13487 0.5190 

16 1 5 5 20 25444 0.5223 

17 1 5 5 50 44444 0.5278 

18 2 1 10 1 414 0.5331 

19 2 1 10 2 414 0.5331 

20 2 1 10 10 2377 0.5367 

21 2 1 10 20 4907 0.5367 

22 2 1 10 50 12018 0.5367 

23 2 2 10 1 414 0.5331 
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24 2 2 10 5 1030 0.5380 

25 2 2 10 10 2155 0.5380 

26 2 2 10 20 4788 0.5380 

27 2 2 10 50 12015 0.5380 

28 2 5 10 1 414 0.5331 

29 2 5 10 5 6184 0.5378 

30 2 5 10 10 12717 0.5378 

31 2 5 10 20 23996 0.5378 

32 2 10 10 1 414 0.5331 

33 2 10 10 5 28548 0.5380 

34 2 10 10 10 40700 0.5380 

35 3 10 50 1 2377 0.5367 

36 3 10 50 5 30864 0.5379 

37 3 10 50 10 64761 0.5379 

38 4 10 100 1 4907 0.5367 

39 4 10 100 5 30571 0.5385 

40 4 10 100 10 64630 0.5385 
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A.4. Optimization assessment of hydropower plants 
during floods in Visp basin (Switzerland) using 
evolutionary algorithms.4 
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Environmental Engineering, (IIAMA). Ciudad Politécnica de la Innovación, Camino de 
Vera, 46022 Valencia, Spain. e-mail: nestorlerma@upv.es; 

(2) Centre de Recherche sur l’Environnement Alpin, Rue de l'Industrie 45, CH-1951, 
Sion, Switzerland. 

Abstract 

Flood events can exceed the river capacity with important economic costs 
associated. Sometimes, flood mitigation is a complementary effect when a 
dam is built. When this is not enough, an optimal management of this type 
of infrastructures and, usually, of hydropower plants, is necessary. In this 
research, an optimization approach based on real forecasts and using 
evolutionary algorithms is assessed with the main purpose of obtaining 
optimal management rules in Visp basin (Switzerland) during floods. A 
methodology is developed coupling two evolutionary algorithms (SCE-UA 
and NSGA-II) and the hydrological-hydraulic tool RS MINERVE. Both 
algorithms are assessed to know their validity to optimize management rules 
in flood events and to identify the advantages of each one. The tests carried 
out indicate the importance of this methodology to save energy losses and 
reduce significantly the damage in flood areas. The results achieved highlight 
the algorithms advantages and disadvantages in the optimization process. 

Reservoir, Hydropower plant, Water Management, Flood event, Evolutionary 
algorithms, Optimization 

                                                           
4 In Revision in the Journal of Flood Risk Management. 
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1. Introduction 

The study of flood events is necessary to avoid catastrophic damages due to 
high water flow in risk zones where it could cause important economic costs 
and could affect human life.  

The hydrologic-hydraulic network global analysis is essential in several 
decision-making situations including water resources management, 
hydropower plant operations optimization, spillways design and regulation 
or the appropriate flood protection development (García et al., 2016). 
Reservoirs are important structures due to the possibilities given to system 
operators to make decisions about storing and releasing water (Farhangi et 
al., 2012). Determining an effective reservoir operation strategy minimizing 
downstream damage, keeping dam safety and maximizing the volume 
reservoir at the end of the flood event is an essential task of flood 
management (Malekmohammadi et al., 2010; Uysal et al., 2016). But also, 
when the system includes hydropower plants, more objectives, like the 
revenue maximization of these infrastructures, are taken into account. 

In this field, the time frame for decision-making is very short, with scarce 
available information and a very limited forecast of the hydro-meteorological 
situation (Malekmohammadi et al., 2010). Moreover, in reservoir systems 
this short-term operation is challenging due to conflicting objectives, 
constraints and the need for taking firm decisions in real-time (Uysal et al., 
2016). Trying to achieve this issue, some studies were carried out using 
mathematical models for reservoir operations (summarized in Yeh, 1985) or 
optimizing power generation requirements and flood control in multi-
purpose reservoir (Dias et al., 1985).  Many other optimization methods have 
been developed to solve the short-term optimal schedule problem with the 
aid of network flow methods and linear programming (Lian and Jiang, 2005; 
Needham et al., 2000; Zeng et al., 2003), nonlinear programming (Lyra and 
Ferreira, 1995; Piekutowski et al., 1994), dynamic programming (Zhang and 
Zhang, 2003), mathematical decomposition (Ni et al., 1999) or artificial 
neural networks (Naresh and Sharma, 2000). 



Assessment and implementation of evolutionary algorithms for optimal management rules 
design in water resources systems 

191 

 

An alternative way to conduct a search in a diverse range of optimization 
problems is successfully provided by genetic algorithms, even in a complex 
system and in the absence of domain knowledge (Chang and Chen, 1998). In 
the same field, evolutionary algorithms (EAs) have been applied to solve an 
optimal multi-objective dispatch of hydroelectric generating units (Villasanti 
et al., 2004), to optimize a flood control reservoir (Chang and Chen, 1998), to 
obtain a daily energy demand in an economic and safe way (Hidalgo et al., 
2015) or for real-time flood management in river-reservoir system 
(Malekmohammadi et al., 2010). EAs are based on the theory of evolution 
making a population of individuals evolves by subjecting it to similar 
processes than the biological evolution (crosses and mutations). The 
population is also subjected to a selection process which depends on the 
fittest individuals who will survive and the less suitable who will be discarded. 

Real management problems often involve multiple conflicting objectives that 
should be optimized simultaneously (Makropoulos et al., 2008). To do so, 
multi-objective evolutionary algorithms offer a means to find the optimal 
Pareto front (Abd-Elhamid and Javadi, 2011; Cisty, 2010; Farmani et al., 2005; 
Zhou et al., 2015). The Pareto Front contains solutions that cannot improve 
one of its objectives without worsening at least another one. Thus, the 
decision maker can select a final design solution from a set of non-dominated 
solutions. 

Regarding to the data availability, different approaches to optimize 
management rules could be developed. For example, when only the 
observed data is accessible, these data would be used to optimize the 
management of the system in several history flood events. Optimizations 
results would be analysed and management rules based on different trigger 
indicators would be obtained. However, if forecast series are available, these 
series could be used to obtain optimal management rules and to apply them 
to the real flood of the forecast period. 

This research defines an optimization approach based on real forecasts to get 
optimal management rules in reservoirs and hydropower plants of Visp 
basin, in Switzerland, during flood events. In the optimization process two 
EAs are coupled with the hydrological-hydraulic tool RS MINERVE (García et 
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al., 2016). The case study, like a real management problem, involves different 
objectives and, that is why a multi-objective NSGA-II algorithm (Deb et al., 
2002) is analysed. SCE-UA (Duan et al., 1992), as a mono-objective algorithm, 
is also studied due to its demonstrated efficiency. Both EAs are assessed in 
this field to optimize the system management during flood events. 

This document describes, in the following section, the optimization approach 
to reduce energy losses in hydropower plant and flood damages, both 
algorithms and the hydrological-hydraulic tool. In the third section, the case 
study and its methodology implementation is presented. The results are 
discussed in the fourth section, and the conclusions are remarked at the end. 

2. Methods and tools 

An optimization approach is presented in this research to acquire optimal 
management rules in Visp basin during flood events. To reach this target, the 
EAs are coupled with RS MINERVE freeware software. This software is a 
hydrological-hydraulic tool to compute the water balance in a water system 
according to different predefined rules. RS MINERVE is used due to its 
application for studying basins in several projects and thesis in Switzerland, 
Spain, Peru, China, Brazil or Mexico (Astorayme et al., 2016, 2015; Deval et 
al., 2011; Drenkhan et al., 2016; García et al., 2014; Jordan et al., 2012; Perez 
et al., 2016; Rodrigues et al., 2016). 

EAs are responsible for searching optimal definition of these rules testing 
different combinations. Each defined rule represents an individual in the EAs, 
who are responsible for creating new rules through processes like crossing, 
mutation or recombination, with the aim of improve an objective function 
(OF). In this study, SCE-UA and NSGA-II are used to optimize the water 
management in reservoirs with hydropower plants. The SCE-UA algorithm is 
assessed in this study due to its demonstrated efficiency, which has been 
widely recognized to calibrate hydrological problems with a large number of 
parameters and high nonlinearity (Boyle et al., 2000; Duan et al., 1992; 
Kuczera, 1997; Luce and Cundy, 1994). The method was designed for solving 
problems encountered in conceptual watershed model calibration (Muttil 
and Liong, 2004), but has also been satisfyingly used in water resources 



Assessment and implementation of evolutionary algorithms for optimal management rules 
design in water resources systems 

193 

 

management and its optimization (Lerma et al., 2013; Lin et al., 2008; Wang 
et al., 2010; Zhu et al., 2006). Instead, NSGA-II is one of the most currently 
used multi-objective algorithms. In the last years, the multi-objective 
algorithms (including the NSGA-II algorithm) are used in the hydraulic and 
hydrologic field in real cases (Chang and Chang, 2009; Chen et al., 2007; Lin 
et al., 2008; Reddy and Kumar, 2006). 

 
Figure P4. 1: Flowchart approach to optimize water management in flood events. 

Figure P4. 1 describes the optimization methodology, which is responsible 
for obtaining optimal rules for a specific hydrological-hydraulic model. Each 



                                                                                                                              
Research manuscript 4 

 

194 

 

optimization process uses one EA (like SCE-UA or NSGA-II) included in the 
Optimization Tool (OT) and a RS MINERVE model with one of the forecast 
flow event series. When the selected EA starts, a set of individuals is created. 
Each individual is composed by a set of variables, which defines the 
management rules of the system. For each individual, the RS MINERVE model 
is modified applying new rules, and then it is computed to obtain series of 
results. These results are used to evaluate an OF (single objective algorithm) 
or different OFs (multi objective algorithm). The values obtained allow the 
algorithm to generate new individuals (new rules) with the aim of getting 
new management options better than the previous ones. The process is 
repeated until one of the EA stop criteria is satisfied. 

The required OF in the optimizations depends on the case study. However, 
the main target in flood events is normally to reduce as much as possible the 
peak flow in risk areas to reduce the possibilities of occurrence of these 
events and the costs caused by them. To achieve this objective, it is necessary 
to implement a proper hydraulic system management. Usually, a preventive 
turbine program is carried out to create an additional volume in reservoirs 
allowing to store the flood water. In other occasions when it is not possible 
to control certain flow that reaches the flood area, it should be necessary to 
stop regular turbine program to avoid an excessive flow in this zone. 
However, it is advisable to store the maximum possible water in the 
reservoirs at the end of the optimization process to accomplish the regular 
turbine programs after the flood event. In all these situations, the aim is to 
maximize the revenue in the hydropower plants without increasing the 
damage costs in flood areas. These aims will define the OFs used by the EAs 
to optimize the management rules. 

2.1. Hydrological and Hydraulic tool 

As it was mentioned previously, RS MINERVE is used in this approach as a 
hydrological- hydraulic tool. RS MINERVE (García et al., 2016) is a software 
for the simulation of free surface run-off flow formation and propagation. 
This tool is in continuous development since 2007 at the Research Centre on 
Alpine Environment CREALP and the engineering office HydroCosmos SA 
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(Switzerland), in collaboration with the École Polytechnique Fédérale de 
Lausanne (Switzerland) and Universitat Politècnica de València (Spain). 

Complex hydrological and hydraulic networks are modelled according to a 
semi-distributed conceptual scheme. Snowmelt, glacier melt, surface or 
underground flow as particular hydrological processes and gates, spillways, 
diversions, junctions, turbines or pumps as hydraulic control elements are 
included in the modelling process. RS MINERVE contains different 
hydrological models for rainfall-runoff, such as SOCONT, SAC-SMA or HBV. 
Their combination with hydraulic structure models (reservoirs, turbines or 
spillways) can reproduce complex water resources systems. 

The user-friendly interface of RS MINERVE allows carry out different analysis 
such as the management or planning of water resources, the optimization of 
hydropower plant operations or the development of flood protection rules.  

This software is based on the concept that every simulation keeps the correct 
balance of water volume in each element of the whole system (reservoirs, 
junctions or turbines) at each time step. For example, simulations in 
reservoirs consider the retention equation, as shown in (Eq 1). Due to short 
time simulation period, evaporation and infiltration may be neglected.  

𝑉𝑉𝑡𝑡+1 = 𝑉𝑉𝑡𝑡 + 𝑄𝑄𝑖𝑖𝑖𝑖,𝑡𝑡∆𝑡𝑡 − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜,𝑡𝑡∆𝑡𝑡      (1)  

with Vt+1: Volume at time t+1 [L3]; Vt: Volume at time t [L3]; ∆t: time step [T]; 
Qin,t: total inflow at time t [L3/T]; Qout,t: total outflow at time t [L3/T].  

Particular physical constraints are also considered for adequate and 
physically-based simulations. The volume cannot be lower than Vmin in any 
case, assuming that Vmin corresponds to the minimum operational volume for 
turbines or bottom outlets. When volume exceeds the maximum capacity of 
the reservoir (Vmax), spillways automatically release water to limit the level in 
the reservoir. 

As other system elements, the hydropower models compute the linear 
pressure losses and the net height, providing the energy production values 
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and the total income based on the turbine performance and on the sale price 
of energy (more details in García Hernández et al., 2016).  

Moreover, a new regulation element, called “Planner”, was created to 
perform this research. It is composed by different rules, where each one can 
modify one output value to this element (flows, temperature, precipitation 
or others). The output value could be calculated from a defined series, from 
the regulation input, from a database or from a specific value. The 
application of each rule depends on a set of conditions defined for each one. 
The conditions can be of different types: from the result of other object of 
the model (e.g. Resevoir1.Qinput>100m3/s) or from the state of another rule. 
Moreover, the rule also has a time schedule limitation and it could be 
satisfied if the current time step is equal to a specific day, month or if it is 
between two dates or two different times. 

In the field of this research, the new regulation object could be used as a 
turbine, a spillway or a bottom outlet among others. 

2.2. Evolutionary algorithms 
2.2.1. SCE-UA algorithm: 

SCE-UA is an optimisation mechanism (the Shuffled Complex Evolution) 
developed by Duan et al. (1992) at the University of Arizona. This algorithm 
is inspired by the principles of natural selection and genetics where its basic 
operation is a combination of deterministic and random processes. The 
algorithm starts from different points (individuals) organising them by teams 
(complexes). The globally optimised solution search is designed as an 
evolutionary process (evolution), based upon reproduction (crossing, 
mutation, recombination) and team mixing (shuffle). 

The SCE-UA process starts with the number of parameters to be optimised 
(nopt) and the number of complexes (ngs), which allows to calculate the total 
number of sample points (npt). Knowing the value of npt, a uniform 
distribution is used by default to generate the sample, taking into account 
the possible range of parameters. For each individual, the fitness is calculated 
and then, the EA generates a ranking. At that point, a looped process starts 
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until stop criteria are satisfied (Figure P4. 2). During this process, the sample 
is divided into subgroups (size npg = 2*nopt+1). Individuals are divided in 
such a way that the first group has all points located in ngs* (k-1)+1 (of the 
ordered sample), the second group has all points located in ngs* (k-1)+2 
positions, and so on, where k = 1, 2,..., npg. Each group evolves 
independently, taking the allowed number of steps (nspl=npg) or 
evolutionary stages. 

 

Figure P4. 2: Flowchart of the SCE-UA algorithm (Source: adaptation of Duan et al. (1992)). 

This version of the SCE-UA includes three types of evolution methods: 
reflection, contraction and mutation. In the reflection stage, the worst 
subgroup point (of three) is reflected through the gravity centre of the other 
two points. If the reflected point has a lower value than the worst point, the 
worst point is switched by the new point. If this method does not increase 
the fitness of the individual, the contraction is implemented, where the new 
point is in the middle of the worst point and the gravity centre of the other 
points. If in reflection method the resulting point is out of range of the 
parameters or, if after reflection and contraction the fitness of the individual 
is not improved, then a mutation is carried out. This process randomly 
generates a point in the space of possible parameters. 
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Replace each 
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Is convergence 
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If stop criteria (like maximum number of iteration or like fitness level 
improvement in a percentage in the different loops) are not satisfied, all 
groups are combined and the process is repeated, sorting the new 
population in order to increase the fitness value. 

2.2.2. NSGA-II algorithm: 

NSGA-II (Elitist Non-Dominated Sorting Genetic Algorithm) (Deb et al., 2002) 
is an evolutionary multi-objective optimization algorithm. This algorithm has 
a fast and non-dominated sorting approach, with a selection operator, used 
to create a new population by combining the parent and offspring 
populations and selecting the best solutions respecting the fitness and the 
spread (Deb et al., 2002; Dumedah et al., 2010).  

This algorithm creates the descendant population Qt (size N) using the parent 
population Pt (size N) and then, both populations are combined to generate 
Rt with a size of 2N. After this, by means of non-dominated sorting, the 
population Rt is classified in different Pareto fronts. Although this process 
requires more effort, it is necessary because dominance testing between the 
parent and descendant populations is developed. Once the sorting process is 
over, the new population is generated from the configurations of the non-
dominated Pareto fronts. This new population is first built with the best non-
dominated Pareto front (F1), and then the process continues with the 
solutions from the second front (F2), the third front and so on (F3). Because 
the population Rt has a size of 2N and there are only N configurations that 
form the descendant population, not all of the front configurations belonging 
to the Rt population will be placed in the new population. The fronts that 
cannot be placed are rejected.  

When the last front is under consideration, the solutions that belong to this 
front can exceed the descendant population size (Figure P4. 3). In this case, 
it is useful to use strategies that allow to select those configurations at a 
scarcely populated area that is far away from the other solutions. This will fill 
up the rest of the descendant population positions instead of choosing 
configurations randomly.  
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Figure P4. 3: Schematic diagram of the NSGA-II promoting individual’s mechanism (Source: 
adaptation of Correa Flórez et al., 2008). 

For the first generational cycles of the algorithm, these strategies are not 
very relevant because there are many fronts that persist to the next 
generation. However, in the next generation cycles, several configurations 
become part of the first generation, and this front may have more than N 
genes or individuals. Thus, it is important that the non-rejected 
configurations are chosen through a methodology that guarantees diversity. 
When the population as a whole converges to the Pareto front, the algorithm 
assures that the solutions are separated from each other.  

3. Case Study 

Visp River is located in Upper Rhone River basin, Valais Canton, in Switzerland 
(Figure P4. 4). Although the system is small (778 km2) compared with the 
whole basin (5520 km2), it has a real and complex regulation system with two 
reservoirs and its hydropower plants. The Visp River has a length of around 
40 km and its average discharge is about 17.2 m3/s. Its basin varies from 450 
masl to up to 4000 masl and contains 3% of glacier surface. 
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Figure P4. 4: Case Study location. Visp basin in Valais Canton (Switzerland). 

The main reservoir is Mattmark with an approximately storage capacity of 
100 Hm3. However, the system has another tank reservoir, called 
Zermeiggern, and it is used as compensation basins for short time storage 
(0.12 Hm3 of capacity). Both reservoirs have a hydropower plant to allow 
turbine water in regular conditions. Due to the configuration of the system, 
Zermeiggern hydropower plant generates more energy than Mattmark 
hydropower plant. For this reason, Zermeiggern reservoir and its 
hydropower plant are also included in RS MINERVE model. In Visp basin, each 
reservoir has a spillway, and only Mattmark has a bottom outlet system. As 
Figure P4. 5 shows, the water from the spillways and the Mattmark bottom 
outlet goes to the downstream river network, taking into account a fixed 
transit time between the elements. 

There are three model inputs represented as TimeSeries Objects. One for 
each reservoir and another one in the checkpoint of the flood zone 
(VISP_OFEV). In Mattmark, this flow series represents the natural inflow to 
the basin. In Zermeiggern reservoir, the values consider natural inflows and 
the inflows from intakes. The last one, in the checkpoint, collects the water 
from a part of subbasin not represented in this model, but that goes to this 
point, downstream of the reservoirs. For each input, seven forecast series 
are available every 12 hours, with a duration of 3 days for each one. 
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Figure P4. 5: Case study model in RS MINERVE software. 

The regulation element is an important item in this model and in this 
research because it is responsible for the system management in regular 
episodes and specifically in flood events. Regarding to the characteristics of 
the Visp basin, the model includes three regulation elements. Mat_T_BO 
manages the turbine system and the bottom outlet of Mattmark reservoir. 
Zer_T only regulates the turbines in Zermeiggern reservoir. The last one, 
Zer_Pump, manages the pumping between Zermeiggern and Mattmark 
reservoirs. Table P4. 1 summarizes the different rules and conditions that 
define each regulation system. Some of the conditions depend on values 
(Var1 to Var12) that should be optimized and they represent the decision 
variables of the EA selected to this process, i.e., the algorithm would define 
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the values for these variables in order to obtain an optimal management of 
the system. 

Table P4. 1: Rules and conditions definition (with the decision variables of the EAs) in the 3 
regulation elements. 

Name 
Regulation 

Code 
Rule 

Name Rule Output Conditions 

Mat_T_BO R1 Regular Turbine 
Program 

Qtur=19 
m3/s 

[Hmat>=2113masl OR 
[Hmat>2111masl AND 
Hmat<2113masl AND R1=true]] 
AND [8:00-20:00] 

Mat_T_BO R2 Preventive 
Turbine 
Program 

Qtur=19 
m3/s 

Hmat>Var1masl AND 
TS_Mattmark.QIn>Var2m3/s 

Mat_T_BO R3 Stop Regular 
Turbine 
Program 

Qtur= 0 
m3/s 

Hmat<=2111masl 

Mat_T_BO R4 Stop Turbine 
Program 

Qtur= 0 
m3/s 

Visp.Q>Var3m3/s OR 
[Visp.Q>Var4m3/s AND R4=true] 

Mat_T_BO R5 Bottom Outlet Qbo=58 
m3/s 

Hmat>Var5masl AND 
TS_Mattmark.QIn>Var6m3/s 

Mat_T_BO R6 Stop Bottom 
Outlet 

Qbo= 0 
m3/s 

Visp.Q>Var7m3/s OR 
[Visp.Q>Var8m3/s AND R6=true] 

Zer_T R1 Regular Turbine 
Program 

Qtur=20 
m3/s 

[Hzer>=1738masl OR 
[Hzer>1736.5masl AND 
Hzer<1738masl AND R1=true]] 
AND [8:00-20:00] 

Zer_T R2 Preventive 
Turbine 
Program 

Qtur=20 
m3/s 

Hzer>Var9masl AND 
TS_Zermeiggern.QIn>Var10m3/s 

Zer_T R3 Stop Regular 
Turbine 
Program 

Qtur= 0 
m3/s 

Hzer <=1736.5masl 

Zer_T R4 Stop Turbine 
Program 

Qtur= 0 
m3/s 

[Visp.Q>Var11m3/s OR 
[Visp.Q>Var12m3/s AND 
R4=true]] AND 
Mat_T_BO.QDown1=0m3/s 

Zer_Pump R1 Normal 
Pumping 

Qpump=9 
m3/s 

[[Hzer>1733masl AND 
Hzer<=1736masl AND R1=true] OR 
Hzer>1736masl] AND [Vmat< 
88.139hm3] AND [00:00 – 06:00] 

Zer_Pump R2 Stop Pumping Qpump=0 
m3/s 

Hzer<1733masl OR 
Vmat>=88.139hm3 OR 
Zer_T.QDown1>0m3/s 
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3.1. Optimization methodology implementation 

To reach an optimal solution, the EAs need one or more OFs. With the mono-
objective SCE-UA algorithm and for Visp basin, the OF to minimize (Eq 2) is 
composed of three different objectives as they are described below. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑂𝑂𝑂𝑂 = 𝑂𝑂𝑂𝑂1 + 𝑂𝑂𝑂𝑂2 + 𝑂𝑂𝑂𝑂3    (2) 

The first objective (Eq 3) is related to the flood damage in the risk zone. 

𝑂𝑂𝑂𝑂1  =  �

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑄𝑄𝑓𝑓𝑓𝑓 → 0

𝑄𝑄𝑓𝑓𝑓𝑓 < 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑄𝑄𝑒𝑒𝑒𝑒 → 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚[𝛿𝛿 + (1 − 𝛿𝛿)(𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚− 𝑄𝑄𝑓𝑓𝑓𝑓
𝑄𝑄𝑒𝑒𝑒𝑒−𝑄𝑄𝑓𝑓𝑓𝑓

)(1−𝜑𝜑)]

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑄𝑄𝑒𝑒𝑒𝑒 →  𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

�(3) 

Where Qfl is the theoretical discharge for flooding (190 m3/s), Qex is the 
probable maximum flood discharge (590 m3/s), Qmax is the maximum 
predicted discharge, EDmax is a theoretical maximum expected damages in 
VISP area (CHF 441,000,000.00), 𝛿𝛿 is the initial damage parameter (0.2) and 
𝜑𝜑 is a power function parameter (0.5). 

The second OF (Eq 4) considers the revenue in the hydropower plants and 
the pumping cost. 

𝑂𝑂𝑂𝑂2 = ∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 −  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶,𝑖𝑖)2
𝑖𝑖=1 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (4) 

Where RevenueC,i is the cumulated revenue in the full optimization period 
for reservoir i; Revenuemax,i is the revenue obtained if the height of the 
reservoir i was always Hmax and the turbinated flow was the maximum; and 
CostPump is the cost of pumping from Zermeiggern to Mattmark. A cost of 0.1 
€/KWh for peak hours and 0.01 €/KWh for off-peak hours are used to 
compute the revenue in the hydropower plants. 

The last OF (Eq 5) is defined to take in account the potential revenue of future 
uses of the stored water. 

𝑂𝑂𝑂𝑂3 = ∑ (𝐴𝐴𝐴𝐴𝐴𝐴(𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 −  𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖) ∗ 𝐶𝐶𝑃𝑃𝑃𝑃,𝑖𝑖)2
𝑖𝑖=1    (5) 
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Where Vmax,i is the maximum admissible volume in the reservoir i; Vend,i is the 
volume stored at the end of the optimization period; and CPR,i is the unitary 
cost per cubic meter associated to this potential revenue. 

The final target is to reduce the peak flow in the risk zone to minimize the 
cost computed with OF1. However, sometimes it will be necessary to stop the 
turbine process. For this reason, OF2 is defined to minimize the difference 
between the maximum revenue in normal conditions and the revenue 
obtained in the optimization. In other situations, it will be necessary to make 
preventive turbine programs providing enough space in the reservoirs to be 
able to store the flood water when it arrives. To avoid turbine all the time, 
the OF3 is defined in order to get more benefit storing the water in the 
reservoir at the end of the optimization period for future turbines. 

Besides the OFs, two restrictions are considered in that optimization 
problem. Due to the time step of the simulation, defined in ten minutes, a 
non-valid operation in turbines could occur, i.e., the turbines could be 
activated and deactivated each ten minutes and this situation does not occur 
in the real cases. For this reason, a restriction is added to prevent this 
behaviour, remaining at least one hour in the same state (on or off). The 
other restriction is related to the maximum level in the reservoirs before the 
dam failure. In this case, the restriction is not included directly in the 
optimization process, but in the model. The spillways curve is modified to 
consider that if the level of the reservoir is bigger than a certain maximum 
level, the output flow thrown by the spillway is so big that the damage cost 
in the risk zone is not acceptable and the EA will discard this solution.  

A combined OF is not needed in a multi-objective algorithm like NSGA-II, 
instead, the individual OFs (Eq 3, 4 and 5) are used to optimize the problem. 

4. Results and analysis 

The methodology previously exposed in Figure P4. 1 is applied to Visp basin 
with the goal of obtaining optimal management rules to minimize damages 
in flood zones and losses in hydropower plants. Both EAs detailed in this 
research are assessed to validate them as optimization tools in this field and 
to identify the best one. In this point, the set of tests is detailed and the 
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general results are presented. Following this, the comparison between the 
algorithms and some techniques to select the system management by 
decision makers are shown.  

A set of optimizations was conducted for each flood forecast available series. 
Furthermore, for each algorithm (SCE-UA and NSGA-II), the OT runs an 
optimization. Therefore, 14 optimization processes were carried out. Figure 
P4. 6 summarizes the results achieved with both algorithms (b and c) and the 
results obtained without a specific flood management (a). In order to 
compare the results, the NSGA-II results represent the solution with the 
minimum sum of three individual functions (Eq 3, 4 and 5). This figure shows 
the four most representative forecast optimizations out of seven available 
forecasts. 
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b7) 

 
c7) 

 

Figure P4. 6: Result comparative of four different forecasts using SCE-UA (b), NSGA-II (c) and 
without optimization (a). Where [Qmanagement Visp] = [Qnatural Visp]+[Upper river flow of 

Visp]+[Zer Turbine]. 

With Figure P4. 6 and Table P4. 2 the optimization process effectivity is 
demonstrated. In the four scenarios, the EA optimizations acquire an optimal 
management, saving a significant amount of money compared to the 
situation without a specific flood management. The saving range is from 
approximately CHF 15,000 (forecast 4) to CHF 160 million (forecast 6). 

Table P4. 2: OF values for the analysed forecasts without optimization (a) and with SCE-UA 
(b) and NSGA-II (c)  algorithms.  

 

OF1 OF2 OF3 �𝑶𝑶𝑶𝑶𝒌𝒌 

a1)  CHF  252,100,947  CHF       3,143  CHF  160,626  CHF          252,264,717  

b1)  CHF  231,792,308   CHF  155,438  CHF  122,491  CHF          232,070,238  

c1)  CHF  231,819,935  CHF  104,665  CHF  141,751  CHF          232,066,352  

a4)  CHF          -     CHF     -1,967  CHF  204,731  CHF                  202,764  

B4)  CHF          -     CHF   -54,097  CHF  241,608  CHF                  187,510  

c4)  CHF          -     CHF   -53,266  CHF  240,784  CHF                  187,517  

a6)  CHF  161,922,749   CHF     -1,774  CHF  323,423  CHF          162,244,397 

b6)  CHF          -     CHF    56,841  CHF  314,389  CHF                  371,230  

c6)  CHF          -     CHF    56,841  CHF  314,389  CHF                  371,230  

a7)  CHF  204,299,345   CHF      2,337  CHF  381,429  CHF          204,683,112 

b7)  CHF  170,256,342   CHF  156,194  CHF  334,484   CHF          170,747,021 

c7)  CHF  160,473,643  CHF  154,984   CHF  334,484   CHF          160,963,112  
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In forecast 1, the peak of the flood is reached at the end of the optimized 
period and its value is 276 m3/s without a specific flood management (a). This 
value is reduced to 256 m3/s with both optimizations (b and c). This 
difference in the peak flood generates about CHF 20 Million of reduction in 
the damage costs (OF1). However, the lost costs of hydropower plants (OF2) 
are increased in only between CHF 100,000 (c) and CHF 150,000 (b). The OF3 
is reduced between CHF 20,000 (c) and CHF 40,000 (b) because the reservoir 
level is higher than the situation without flood management (a). In case 4, 
both algorithms obtain the same solution, with a saving of CHF 15,000. This 
small reduction is due to the fact that the flood forecast is not very 
important, and without a specific flood management the flood does not 
cause any damage in the risk zone. Even so, this forecast is optimized because 
it is between two flood forecasts. In this situation, the improvement in the 
total OF is due to the reduction of the hydropower plant costs although the 
OF3 is increased. The OF2 negative value represents a preventive turbine 
program in addition to the normal turbine. Forecast 6 is the situation where 
the optimization tool demonstrates the importance of its use. In this case, 
without the optimization, the cost amounts to CHF 162 Million. However, 
both algorithms obtain the same reduction of the cost, around CHF 161 
Million. Since the peak flood goes from more than 200 m3/s to less than 190 
m3/s, disappearing the damage cost in the flood zone, the previously 
mentioned reduction of costs is achieved. The behaviour of the OF2 and OF3 
is similar to forecast 1. The last forecast (7) is also similar to case 1, but the 
peak is reached now at the beginning of the optimization period and there is 
a difference of CHF 10 Million between NSGA-II and SCE-UA solutions. This 
difference is focused in the damages reduction in the flood risk area. 

Table P4. 3: Values for each optimized variable (b: SCE-UA; c:NSGA-II) in the four analysed 
forecast. 

 

1b 1c 4b 4c 6b 6c 7b 7c 
Var1 (masl) 2112.3 2209.4 2179.3 2118 2212.2 2212.2 2208.4 2113.1 

Var2 (m3/s) 36.5 40.1 23.2 23.4 37 65 2.9 83.4 

Var3 (m3/s) 69.6 142.7 144.5 170.4 186.4 186.2 128.2 61.1 

Var4 (m3/s) 22.9 26.6 15.4 47.9 39.3 48.7 29 14.9 

Var5 (masl) 2123.5 2121.7 2217 2218.3 2198.8 2210.9 2152.7 2174.2 
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Var6 (m3/s) 66.9 40.5 4.8 67.8 37.7 55.1 74.9 69.2 

Var7 (m3/s) 88.9 55.3 175.2 102.2 87.7 126.1 145.5 67.5 

Var8 (m3/s) 7.5 43.7 40.6 13.8 18.6 17.3 40.7 37.6 

Var9 (masl) 1730.5 1732.1 1729.9 1735.1 1735.2 1736.1 1729.1 1735.4 

Var10 (m3/s) 16.6 16.5 18.5 15.3 5.7 20.5 16.9 18 

Var11 (m3/s) 177.3 187.7 137.1 170.6 60.2 144.9 198.2 197.7 

Var12 (m3/s) 49.7 17.7 2.7 21.7 39.5 45.7 24.5 23.4 

Table P4. 3 shows the values for each decision variable (Var1-Var12) for SCE-
UA (b) and NSGA-II (c) algorithms. Although these values are different 
between both algorithms for the same forecast (1, 4, 6 or 7), in turbines or 
bottom outlets on/off criteria represents almost the same. Only in forecast 
4, the results of both algorithms are different (as shown in Figure P4. 6, 
graphs b7 and c7). 

4.1. Algorithms assessment 

As it has been previously mentioned, both EAs optimize the management of 
the system in flood events. In some cases, the solution of the two algorithms 
is the same (just in terms of final cost; the decision variables could be 
different as Table P4. 3 shows) and in other cases NSGA-II results are better 
than SCE-UA. 

SCE-UA has different stop criteria (e.g. maximum number of iterations or 
variation percentage of the OF) and the range of its time computation is 
between 18 and 35 minutes. However, NSGA-II computation time is the same 
in the different optimizations (30 minutes) because the number of individuals 
and the generations is equal in all of them. The value of these two 
parameters is fixed in order to the computation time will be similar for both 
algorithms. All optimizations are run with an Intel(R) Core(TM) i7-4790 CPU 
@ 3.60Ghz computer with 8 Gb of RAM. 

In Table P4. 4 the iterations needed for each algorithm are represented. In 
all of the four forecast analysed in this section, SCE-UA algorithm takes less 
iterations than NSGA-II algorithms. However, in some other optimizations 
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carried out in the research, SCE-UA requires more iterations to stop the 
optimization process, it sometimes reaches until 3242 iterations. 

Table P4. 4: Optimization iterations for both algorithms in the four analysed forecasts. 

 
SCE-UA NSGA-II 

1) 2239 2500 

4) 2151 2500 

6) 1447 2500 

7) 1764 2500 

Comparing the results of both algorithms on Table P4. 2, NSGA-II obtains 
better solutions than SCE-UA algorithm (only with NSGA-II result as sum of 
the different OFs). In forecast 1, NSGA-II reaches a bigger reduction of the 
hydropower plants (OF2) at the expense of an increment of damage costs 
(OF1). The Pareto front could contain other solutions with less damage costs. 
However, in forecast 4, NSGA-II gets best results in OF2 and OF3 (OF1 is equal 
to CHF 0 in both cases), in forecast 6 has the same results for both algorithms 
and in forecast 7, the OF1 and OF2 are better with NSGA-II, where OF3 is equal 
in both of them. 

The evolution of the individuals of both algorithms is shown in Figure P4. 7 
for the four forecast series analysed. For each one, the figure contains one 
3D plot and their corresponding 2D projections (OF1 vs OF2, OF1 vs OF3 and 
OF2 vs OF3). In all plots, the SCE-UA individuals are represented with blue 
points and NSGA-II individuals with orange triangles. Only the solutions that 
satisfy all restrictions are represented. 

Figure P4. 7 1 and 4 manifest how management rules tested by SCE-UA cover 
more space than NSGA-II. It could be an advantage of this algorithm because, 
that way, it could obtain a better solution in some points of the search space. 
However, in Visp basin is not applicable because NSGA-II found the same or 
best solution without testing in a larger space. 
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Figure P4. 7: NSGA-II (orange) vs SCE-UA (blue) search space for four different forecast. 3D 
view (i), OF1 vs OF2 (ii), OF1 vs OF3 (iii) and OF2 vs OF3 (iv). 

In forecast 4 all the solutions demonstrate that a cost free management in 
risk zone (OF1) is possible. For this reason, analysing this situation is easier 
because only 4-iv projection (OF2 vs OF3) contains points. Actually, this 
forecast does not cause any flood in the risk zone. However, the optimization 
is carried out because it is between two forecasts that cause floods. 
Moreover, depending on the levels of the reservoirs, the OT is useful to 
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optimize the hydropower plants turbines and therefore, optimize the 
revenue. 

In forecast 6 plots it is not easy to see the previous behaviour. In this case, 
there is a part of the space where there are more SCE-UA points and other 
space section where NSGA-II solutions are predominant. Even so, both 
algorithms reach the same best solution. Finally, in the last forecast of Figure 
P4. 7, solutions of both algorithms are grouped into two significant space 
zones regarding to OF1. There is a range in this OF in which any algorithm 
could find a valid solution. The reason of this issue is because of its own 
definition. The difference between the cost when the flow is higher or lower 
than 190 m3/s, is reasonably significant. Moreover, in the NSGA-II 
optimization, it is possible to see how the best solution (less than CHF 175 M 
in OF1) is isolated from the main set of solutions (sited in CHF 175 M of OF1). 
It could indicate that this solution was reached at the end of the process.  

As it has been explained previously, NSGA-II is defined to find solutions that 
represent a Pareto front. This front contains all the rules that, in the solution 
space, individually satisfy the following: one rule gives a better value for one 
objective without also degrading the performance of at least another 
objective. For this reason, orange triangle points try to represent a Pareto 
front in all 3D plots (in forecast 6 is less noticeable). In this sense, it seems 
that the optimal search of NSGA-II, as a multi-objective algorithm, is better 
and more effective than SCE-UA algorithm. 

4.2. Management decision 

Once finished the optimization process, decision makers are responsible for 
selecting the best management to the system according to the different 
objectives and priorities. To facilitate this task, Pareto fronts could be the 
best tool because they only contain non-dominated solutions. When a 
management rule of the Pareto front is selected based on a specific OF (e.g. 
cost in flood zone), the two other OF values will be the minimum possible. If 
the solution set does not contain a defined Pareto front, Figure P4. 8 shows 
another alternative. This figure contains four plots whose points are coloured 
according to the global OF value. These plots allow to quickly identify the 
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best rules obtained in the optimization process (considering that the best 
rule is obtained by minimizing all individual functions). In this case, only 
solutions achieved by NSGA-II algorithm, which provides better solutions, are 
represented.  

 

i) 

 

ii) 

 

iii) 

 

iv) 

 

Figure P4. 8: Coloured plots of the NSGA-II solutions for the forecast 6. 3D view (i), OF1 vs 
OF2 (ii), OF1 vs OF3 (iii) and OF2 vs OF3 (iv). From the worst solutions (red) to the best ones 

(green). 

In this case, decision makers could have a look to the green points, which 
represent better solutions, and, from this set of points, select the best 
management for the system according to the three different OFs. 

 

5. Conclusions 

This research presents an approach to optimize the management in 
hydropower plants and reservoirs during flood events in Visp basin 
(Switzerland). A set of optimization processes is computed combining EAs 
with RS MINERVE tool. SCE-UA and NSGA-II algorithms were assessed as EAs 
to optimize this problem. Seven forecast series were available in Visp basin 
to apply the proposed methodology. 
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Results of the optimization methodology show the effectivity of both 
algorithms to find optimal solutions and to reduce the final cost of the flood. 
In some cases, the two EAs obtained the same results (in terms of final cost) 
and in other cases, NSGA-II achieves better solutions than SCE-UA. Focusing 
on the individual OFs, when both algorithms found the same final OF, NSGA-
II usually gets better values for hydropower plants costs (OF2) than SCE-UA 
which gets some more reduction of damages in the risk zone (OF1). The 
advantage of the SCE-UA version used is its different stop criteria. They allow 
the algorithm, for example, to stop the optimization when the solution is not 
improved in consecutives steps without waiting to reach a specific number 
of iterations. This fact reduces the compute time of this algorithm. 
Meanwhile, NSGA-II always uses the same time because it has predefined the 
number of iterations based on the number of individuals and generations. 
Besides the advantage of reaching better solutions than SCE-UA in this 
research, it tries to find a Pareto front as 3D plots show. This Pareto front and 
its 3D view and 2D projections could help to the decision maker to select the 
best management rule for the system according to the different objectives. 

The proposed approach is applied with forecast series, and the optimal 
management rules obtained are valid for these flood events. Normally, the 
forecast series does not represent perfectly the reality. For this reason, in our 
following research, a comparison between forecast series and real flow will 
be developed. We will try to identify if the optimization tool is useful when 
the management rules obtained with forecasts are applied in the system with 
real flood events. 
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A.5. Comparativa de herramientas para el desarrollo 
de Sistemas Soporte a la Decisión para los sistemas de 
recursos hídricos de Cerdeña, Italia.5 

N. Lerma Elvira, A. Solera Solera, J. Andreu Álvarez, J. Paredes Arquiola 

Instituto de Ingeniería del Agua y del Medio Ambiente (IIAMA). Área de 
Recursos Hídricos. Universitat Politècnica de València. Cno. de Vera s/n, 
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G. Sechi, R. Zucca 

Dipartimento di Ingegneria Civile, Ambientale e Architettura (DICAAR). 
Universidad de Cagliari. Via Marengo 2, 09131 Cagliari, Italia. 

1. Introducción 

Para el análisis y la planificación de sistemas de recursos hídricos se suele 
emplear habitualmente los modelos de simulación como herramienta de 
trabajo. Estos modelos se caracterizan por su flexibilidad y por su capacidad 
para contener elementos muy complejos en la modelización. Además, 
permiten una representación más detallada de los sistemas que los modelos 
de optimización (Loucks y Sigvaldason, 1982).  

En general, la gestión de las cuencas se realiza mediante el apoyo de modelos 
de simulación. Esto no impide que para un paso de la simulación (por ejemplo 

                                                           
5 Lerma Elvira, Néstor; Solera Solera, Abel; Andreu Álvarez, Joaquín, Paredes 
Arquiola, Javier; Sechi, Giovanni M. y Zucca, Riccardo (2014). Comparativa de 
herramientas para el desarrollo de Sistemas Soporte a la Decisión para los sistemas 
de recursos hídricos de Cerdeña, Italia. Aplicaciones de Sistemas Soporte a la Decisión 
en Planificación y Gestión Integradas de Cuencas Hidrográficas (ed. Solera Solera A. 
et al.), pp. 85-94, Ed. Marcombo, Barcelona. 
 
“Marcombo Técnicas Unidas” offered the reuse of its content for this thesis. 
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el mes), se empleen técnicas de optimización (como las redes de flujo) para 
optimizar el reparto del recurso entre los distintos usuarios, y la procedencia 
del recurso entre las distintas fuentes o masas de agua. Labadie (2004) y Rani 
& Moreira (2010) revisaron el estado del arte respecto a las técnicas de 
optimización utilizadas para sistemas multi-embalse, que representan la 
mayoría de los problemas de asignación de agua. En ambos artículos se indica 
que la técnica más favorable para los modelos de asignación de recursos 
hídricos ha sido la programación lineal. Sin embargo, la programación de 
redes de flujo es un método más eficiente computacionalmente en la 
programación lineal y, como demostró Kuczera (1989 y 1993), es más 
adecuado para resolver grandes sistemas multi-embalse. 

En el proyecto RAS (RAS, 2013) se han analizado distintos Sistemas Soporte 
a la Decisión (SSD) con el fin de estudiar el sistema Tirso-Flumendosa-
Campidano. Para ello se ha desarrollado un modelo que describe su estado 
actual. A parte de este modelo, se han definido distintos escenarios que 
permiten tener en cuenta aspectos como la influencia de diferentes valores 
de caudales ecológicos, el posible fallo de infraestructuras, o también nuevas 
demandas e infraestructuras actualmente en construcción. Además, se han 
analizado una serie de nueve escenarios que permiten evaluar el 
comportamiento del sistema al aumentar la dotación de las demandas 
agrarias. Todos estos escenarios, incluyendo el modelo de la situación actual, 
se desarrollan con el fin de conocer en detalle el funcionamiento del sistema 
y analizar los distintos SSD. 

2. Datos y Herramientas disponibles 

2.1 Caso de estudio 

Cerdeña se encuentra en el mar Mediterráneo, entre la península Ibérica y la 
Italiana, y cubre un área aproximada de 24.000 km2 con una población de 
1.648.000 habitantes. Comparándola con la Comunidad Valenciana, ésta 
tiene una superficie de 23.000 km2, prácticamente iguales, sin embargo, su 
población es de casi 5.000.000 de habitantes. El clima de Cerdeña se clasifica 
generalmente como mediterráneo, con inviernos suaves y relativamente 
húmedos y veranos secos y cálidos. 
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En Cerdeña, el sistema de suministro de agua se caracteriza principalmente 
por el uso de agua superficial almacenada y regulada por los embalses. El 
agua subterránea se utiliza únicamente para pequeños requerimientos 
locales. La zona presenta un gran número de sistemas de bombeo y 
conducciones para transportar el agua desde los embalses hasta los puntos 
de suministro. Un objetivo importante en su gestión consiste en reducir el 
coste de dichos bombeos, minimizando al mismo tiempo los déficits de las 
demandas. 

2.2 Herramientas 

Las herramientas estudiadas para analizar el sistema de recursos hídrico 
Tirso-Flumendosa-Campidano han sido: WARGI, AQUATOOL y AQUATOR. 

WARGI (Water Resources System Optimization Aided by Graphical Interface) 
(Sechi & Zuddas, 2000) fue desarrollado por CRIFOR-CINSA (Centro di Ricerca 
e Formazione delle Reti del Centro Interdipartimentale CINSA) de la 
Universidad de Cagliari y básicamente consta de tres módulos: uno para la 
simulación (WARGI -SIM), uno para la optimización (WARGI -OPT) y uno para 
el análisis de la calidad del recurso (WARGI -QUAL). El SSD WARGI está 
dirigido principalmente para aplicarlo a los sistemas de suministro de 
recursos hídricos superficiales de varios embalses y multiusuario. 

AQUATOOL (Andreu et al., 1996) es un entorno de desarrollo de SSD para 
planificación y gestión de cuencas o de sistemas de recursos hídricos. Como 
SSD proporciona recursos para ayudar al análisis de diversos problemas 
relacionados con la gestión del agua. La interfaz de usuario (AQUATOOLDMA) 
facilita el diseño de esquemas de trabajo y la gestión de datos y resultados. 
Dentro de esta interfaz se incluyen diversos módulos que ayudan a la 
planificación y gestión de sistemas de recursos hídricos como SIMGES, 
GESCAL, OPTIGES o SIMRISK. El módulo SIMGES (Andreu et al., 1992) es un 
modelo general para la Simulación de la Gestión de cuencas, o sistemas de 
recursos hidráulicos complejos, en los que se dispone de elementos de 
regulación o almacenamiento tanto superficiales como subterráneos, de 
captación, de transporte, de utilización y/o consumo, y de dispositivos de 
recarga artificial.  
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AQUATOR es un software dedicado a la simulación de sistemas complejos de 
gestión del agua, desarrollado por Oxford Scientific Software desde 2001 y 
continuamente actualizado. Al igual que en los otros dos software, AQUATOR 
también permite la definición gráfica del sistema mediante la técnica de 
arrastrar y soltar los elementos (embalses, tuberías, equipos de bombeo, 
plantas de agua potable, pozos, etc.). El conjunto de componentes 
disponibles es, por supuesto, muy similar a la de otro software, pero con 
algunas diferencias debido al hecho de que AQUATOR ha sido concebido y 
diseñado para realizar la simulación de sistemas de agua en escala de tiempo 
corto, típicamente los días, con una gestión del flujo predominantemente 
controlada por la infraestructura, pero también tratando de modelar las 
interacciones con áreas de captación natural en el sistema. 

Cada software y modelo de simulación tienen sus características únicas. No 
obstante, hay que señalar un aspecto que diferencia a los modelos de 
simulación considerados: AQUATOOL y AQUATOR utilizan módulos internos 
de optimización, algoritmos basados en out-of-kilter y programación lineal. 
Sin embargo, WARGI-SIM utiliza una técnica de simulación pura 
fundamentalmente sobre la base de un enfoque lógico "si-entonces". Aun 
así, dentro de WARGI-SIM hay una forma de definir el flujo óptimo, la cual se 
basa en la identificación del camino de menor coste entre un nudo y el nudo 
de aplicación del recurso empleando el algoritmo de Dijkstra (1959). 

3. Desarrollo del modelo 

Para analizar la gestión del sistema Tirso-Flumendosa-Campidano se ha 
desarrollado un modelo de simulación que representa el estado actual del 
sistema en términos de infraestructuras y dotación de las distintas 
demandas. Además de este modelo, se han implementado una serie de 
escenarios que contemplan distintas circunstancias: diferentes caudales 
ecológicos, fallo de infraestructuras, etc. 

Tanto para el modelo que representa la situación actual como para los 
distintos escenarios desarrollados, el sistema completo Tirso-Flumendosa-
Campidano se divide en seis zonas: Taloro, Tirso (Oristanese), Ogliastra, 
Flumendosa-Campidano, Cixerri y Sulcis (Figura C1. 1). 
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3.1 Situación Actual 

Los aportes hidrológicos aplicados al sistema hidráulico se han obtenido a 
partir del documento regional de Cerdeña “Piano Stralcio di Utilizzo delle 
Risorse Idriche”. En dicho documento se calculan series evaluadas a partir de 
las series temporales de precipitación. Concretamente series comprendidas 
entre los periodos 1922-1975 y 1986-2002. Estas series tienen en cuenta los 
efectos de las sequías producidas por la disminución de las aportaciones. 
Constituyen un período de 53 años y están asociadas a los embalses y azudes 
del sistema. 

 Aportación media (hm3/año) 
Taloro 83.5 
Tirso 289.63 

Ogliastra 59.78 
Flum-Camp 356.22 

Cixerri 14.56 
Sulcis 39.55 

Tabla C1. 1: Valores medios de las aportaciones al sistema en las distintas zonas del sistema. 

El sistema consta de 23 embalses cuyas capacidades varían entre los 0.94 
hm3 y los 450 hm3. Los más importantes son los embalses de Cantoneira (450 
hm3), Monte Su Rei (323 hm3) y Nuraghe Arrubiu (300 hm3). El primero de 
estos tres embalses se encuentra en el río Tirso, en la zona de Oristanese y 
los otros dos en la zona Flumendosa-Campidano.  
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Figura C1. 1: Esquema del sistema Tirso-Flumendosa-Campidano. 

En cuanto a los azudes, el sistema presenta un total de 14 infraestructuras 
con distintos caudales de extracción de agua. Estos caudales varían entre 0.2 
y 36 m3/s. Los más importantes son los de la cabecera del río Flumendosa, 
en la zona de Ogliastra (Bau Mela y Bau Mandara), al este de los embalse de 
Monte Su Rei y Nuraghe Arrubiu (Ponte Maxia), y al oeste de éstos (Casa 
Fiume). 

El número total de centrales hidroeléctricas es de 14, donde sus caudales 
turbinados varían entre los 0.5 y 95 m3/s. La más importante es la que se 
encuentra aguas abajo del embalse de Gusana, en la zona de Taloro. 

Los sistemas de bombeo son obras de infraestructuras a las cuales se les da 
gran importancia debido al coste económico que suponen. El sistema consta 
de 23 bombeos cuyo caudal máximo está comprendido entre los 0.07 y los 6 
m3/s. Sus coste unitarios varían entre los 0.005 y los 0.11 €/m3. 

El sistema tiene un total de 15 demandas urbanas, 6 industriales y 23 
agrarias. Las demandas urbanas tienen dotaciones comprendidas entre los 
0.2 y los 41.4 hm3/año, siendo la más importante la de la ciudad de Cagliari. 
Las demandas industriales varían entre 0.04 y 11.6 hm3/año y las agrarias 
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entre 0.1 y 75 hm3/año. Como se puede observar, los valores de las 
dotaciones son muy dispares. Respecto a las demandas agrarias, las dos 
demandas más importantes son las de Oristanese con 43 y 75 hm3/año. 

La gestión de las demandas conlleva dar más prioridad a las urbanas, 
seguidas de las industriales y por último las agrarias. En el caso de los 
bombeos, se tiene en cuenta el coste económico unitario de cada sistema de 
bombeo. En el caso de AQUATOOL, en algunos bombeos se han impuesto 
unos costes en función del valor económico asociado a cada uno de ellos, y 
en otros casos se han definido otros costes en AQUATOOL con el objetivo de 
minimizar al máximo el coste económico producido por los sistemas de 
bombeos. Además de esta gestión, en AQUATOOL se introducen prioridades 
entre las demandas, entre los embalses, reglas de operación, etc. 

3.2 Escenarios 

Como se ha comentado anteriormente, se han simulado una serie de 
escenarios para introducir distintas casuísticas, además de permitir entender 
con más detalle el comportamiento del sistema. 

Los dos primeros escenarios tienen en cuenta la influencia de los caudales 
ecológicos. Cada escenario introduce un caudal distinto en 17 tramos de río 
aguas abajo de algunos de los embalses del sistema. La diferencia entre los 
dos escenarios es la obtención de dichos caudales ecológicos. Uno se obtiene 
a partir de la repartición espacial (según la superficie de los embalses) de una 
cantidad teórica de 42 hm3 distribuidos en los meses de verano. En el 
segundo caso, el caudal ecológico se considera el 5% de las aportaciones que 
entran a los embalses. En estos escenarios se le ha dado mayor prioridad al 
suministro a las demandas que al propio caudal ecológico, debido a que en 
Cerdeña no se le da la misma importancia que en España. 

El primer escenario es el que más se acerca a la gestión actual del caudal 
ecológico. Por esto, ha sido definido como “modelo base” y utilizado para la 
primera comparación entre los tres SSD. Además, los valores de caudal 
ecológico de este primer escenario han sido utilizados en el resto de 
escenarios (fallo de infraestructuras y escenarios futuros). 
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Los siguientes escenarios analizan el posible fallo de infraestructuras. Tratan 
de analizar qué podría ocurrir y a qué demandas afectaría el fallo de alguna 
infraestructura durante un periodo determinado de la simulación. En 
concreto, se han desarrollado tres escenarios de este tipo. En el primero se 
ven afectados una serie de bombeos de la zona sur del sistema durante un 
periodo de 6 meses. En el segundo escenario, un embalse sufre filtraciones y 
debe estar un periodo de dos años reparándose y, por tanto, sin poder 
almacenar agua. El tercer y último escenario de este tipo afecta a una central 
hidroeléctrica, aguas abajo de uno de los embalses principales del sistema, 
la cual está 6 meses fuera de servicio. 

Otro escenario permite tener en cuenta la aparición de nuevas demandas e 
infraestructuras, actualmente en construcción. Este escenario define la 
situación futura del sistema. Se introducen nuevos sistemas de bombeo, 
nuevas demandas (suministradas por dichos bombeos), un nuevo azud (con 
su aportación) y una conducción desde un embalse que evitará el uso de un 
bombeo que se emplea actualmente. 

Los últimos nueve escenarios definidos permiten evaluar el comportamiento 
del sistema al aumentar la dotación de las demandas agrarias. En cada 
escenario se va incrementando dicha dotación en distintas zonas del sistema, 
llegando al quinto escenario en el que empiezan a aumentarse todas las 
demandas agrarias del sistema al mismo tiempo. En el último escenario, 
todas estas demandas alcanzan la dotación que históricamente les 
correspondería tener, y que actualmente se ve reducida por la falta de 
recursos en el sistema. 

Para cada uno de los distintos escenarios se ha ido ajustando la gestión para 
adaptarse a los nuevos cambios, evitando que las demandas sufran más 
déficits (en la medida de lo posible).  

4. Resultados 

Los resultados obtenidos en los distintos SSD se resumen en este punto. En 
primer lugar, se muestran los correspondientes al modelo base que 
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representa el estado actual con la primera hipótesis de caudal ecológico y, 
seguidamente, los proporcionados por los otros escenarios diseñados. 

4.1. Modelo base 

Una vez simulada la gestión del sistema mediante los distintos módulos de 
cálculo se obtienen una serie de resultados. De todos estos resultados, aquí 
se comentan únicamente resultados de déficits en las demandas, volúmenes 
almacenados y caudales bombeados, los cuales proporcionan una buena 
descripción del estado del sistema. 

 WARGI AQUATOR AQUATOOL 

 
Déficit 

Promedio 
(%) 

Máximo 
déficit 
anual 
(%) 

Déficit 
Promedio 

(%) 

Máximo 
déficit 
anual 
(%) 

Déficit 
Promedio 

(%) 

Máximo 
déficit 
anual 
(%) 

Urbano 0.29 4.97 0.34 5.29 0.15 3.30 

Industrial 0 0 0.03 0.21 0 0 

Agrario 0.60 5.92 0.29 4.33 0.41 3.30 

Total 0.46 5.23 0.29 4.39 0.30 3.10 

Tabla C1. 2: Déficits por tipo de demanda para los distintos SSD (modelo base). 

En la Tabla C1. 2 se muestra para cada SSD el déficit promedio y el máximo 
déficit anual de las demandas urbanas, industriales y agrarias. Para todos los 
SSD las demandas que menos déficit deberían sufrir son las urbanas (debido 
a la prioridad que tienen frente al resto). Principalmente el déficit que se 
muestra es debido a una demanda de la zona de Taloro que debido a su 
ubicación en la cabecera del sistema y a la falta de aportaciones en dicha 
zona, no puede ser suministrada al 100%. Las industriales tienen menos 
déficits que las urbanas debido a que el número de demandas de este tipo 
es mucho menor y debido a su localización pueden ser suministradas en 
WARGI y AQUATOOL al 100% y en AQUATOR prácticamente al máximo. Por 
último, las demandas agrarias son las que mayor déficit tienen (déficit 
promedio), siendo AQUATOR el que consigue reducir más el déficit de estas 
demandas. Si se atiende al déficit de todas las demandas, es en AQUATOOL 
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donde se consigue reducir más el máximo déficit anual. AQUATOR consigue 
reducir el déficit promedio total, aunque obtiene los déficits más altos 
(promedio y máximo anual) para las dos demandas prioritarias (urbanas e 
industriales). 

En relación al caudal ecológico, de los 17 tramos de río con éste, el número 
de tramos que sufren déficits en su suministro son: 7 en WARGI, 5 en 
AQUATOR y 4 en AQUATOOL. 

En la Tabla C1. 3 se observa un resumen de los volúmenes almacenados en 
todos los embalses del sistema y el caudal bombeado por todos los sistemas 
de bombeo. Fijándose en el primer aspecto, el SSD que más volumen 
almacena es AQUATOOL, seguido de AQUATOR y por último WARGI. En el 
caso del caudal bombeado ocurre algo similar, en este caso también es 
AQUATOOL el SSD que menos caudal bombea, seguido de AQUATOR. 

 WARGI AQUATOR AQUATOOL 

Volumen almacenado (%) 63 68 77 

Bombeo (Hm3/año) 76.91 70.57 67.07 

Tabla C1. 3: Volúmenes almacenados en los embalses y caudales bombeados en los distintos 
SSD. 

En general se puede ver cómo los resultados de AQUATOOL son más óptimos 
en términos de déficits, volúmenes almacenados y caudales bombeados que 
los obtenidos con WARGI y AQUATOR. Pero también habría que estudiar 
otros aspectos como el coste económico del bombeo (puesto que no todos 
los sistemas de bombeo tienen el mismo precio) o las centrales 
hidroeléctricas. Aún con ello, estos resultados pueden deberse al hecho que 
se ha comentado anteriormente de que AQUATOR y AQUATOOL emplean 
técnicas de optimización en cada uno de los pasos de tiempo de la 
simulación. 

4.2. Escenarios 

En el otro escenario que incluye diferentes valores de caudal ecológico se 
obtienen los mismos resultados mostrados para el “modelo base” de déficits 
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en las demandas (debido a la prioridad más alta de suministro a las 
demandas) y pequeñas modificaciones en los volúmenes almacenados y en 
los caudales bombeados. 

En el caso de los escenarios desarrollados para analizar el posible fallo de 
infraestructuras se observa como durante el periodo de fallo, y según la 
infraestructura que tiene el problema, afecta a un mayor o menor número 
de demandas. En el caso de aquellas infraestructuras que están al sur del 
sistema, afectan a un número reducido de demandas (1-2); sin embargo, si 
se encuentran en un punto estratégico de suministro, afectan a gran parte 
de las demandas de la zona de Flumendosa-Campidano. En este caso los tres 
SSD han proporcionado resultados similares. 

Gracias a la nueva aportación y los nuevos bombeos introducidos en el 
escenario que representa la situación futura del sistema, se consigue 
disminuir el número de demandas con déficit, aumentando el coste 
económico de los bombeos, ya que para suministrar a las nuevas demandas 
se requiere su funcionamiento. Los resultados obtenidos reflejan las mismas 
diferencias entre los tres SSD que en el “modelo base”. 

 
Figura C1. 2: Caudal bombeado en los escenarios futuros. 

Para terminar, los escenarios de incremento de la dotación de las demandas 
agrarias. En los cuatro primeros escenarios de este tipo sólo se ve afectada 
la zona de Cixerri que ya sufría déficits en el “modelo base”. A partir del 
quinto escenario, en que se aumentan todas las dotaciones de las demandas 
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agrarias del sistema a la vez, el déficit y los caudales bombeados se ven 
incrementados alcanzando valores más elevados a los actuales. 

En la Figura C1. 2 se observa la evolución del caudal bombeado en los nueve 
escenarios (step 1-9) de incremento de dotaciones agrarias. Respecto al 
déficit, la Tabla C1. 4 muestra los valores de tres escenarios (tercero, sexto y 
noveno) representativos del análisis. 

 Déficit Promedio (%) 

 Step 3 Step 6 Step 9 

 WARGI AQUATOR AQUATOOL WARGI AQUATOR AQUATOOL WARGI AQUATOR AQUATOOL 

Urb. 0.3 3.3 0.1 0.3 12.1 0.2 0.3 18.9 0.2 

Ind. 0 1.1 0 0 5.6 0 0 8.4 0 

Agr. 5.9 4.0 2.3 21.3 14.0 17.0 39.5 28.3 35.1 

Tot. 4.0 3.5 1.6 16.2 13.3 12.9 32.3 26.5 28.7 

Tabla C1. 4: Déficits promedio por tipo de demanda para los distintos SSD en los escenarios 
futuros. 

La Figura C1. 2 muestra como AQUATOOL es el que más caudal bombea 
(buscando reducir los déficits), frente a valores similares entre WARGI y 
AQUATOR. Atendiendo a los déficits, WARGI y AQUATOOL mantienen valores 
similares al escenario actual (modelo base) para las demandas urbanas e 
industriales, al contrario que AQUATOR que no consigue mantener la 
prioridad de los usuarios. 

En general, se puede afirmar que AQUATOR es lo que proporciona resultados 
menos apropiados, AQUATOOL obtiene déficits menores en las demandas 
frente a un uso mayor de los bombeos, al contrario que WARGI que 
proporciona más déficit frente a un ahorro de caudal bombeado. 

5. Optimización 

Tras el análisis de los distintos escenarios, se plantea la aplicación de una 
metodología que permita optimizar las reglas de gestión que se han definido 
en el modelo con el fin de minimizar los déficits obtenidos en las demandas, 
así como reducir el coste económico de los sistemas de bombeo. Con este 
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fin, se ha empleado, por un lado, el módulo SIMGES para la simulación de la 
gestión del SSD AQUATOOL, y por otro lado, algoritmos evolutivos, como 
herramientas que permiten controlar las sucesivas simulaciones de SIMGES. 
Los algoritmos empleados son el SCE-UA y el Scatter Search. 

El mecanismo de optimización SCE-UA (The Shuffled Complex Evolution) 
(Duan et al. 1992) tiene una eficiencia que ha sido ampliamente reconocida 
ante problemas de calibración de modelos hidrológicos con un elevado 
número de parámetros y una alta no linealidad. El funcionamiento básico del 
algoritmo está inspirado en los principios de selección natural y la genética y 
es una combinación de procedimientos deterministas y aleatorios. Se parte 
de diferentes puntos de búsqueda (individuos) que se organizan por equipos. 
De esta manera, la búsqueda de la solución global óptima se plantea como 
un proceso evolutivo basado en la reproducción (cruce, mutación, 
recombinación) existiendo, además, mezcla de equipos. 

Por otro lado, el Scatter Search (Glover, F. 1997), también conocido en 
castellano como Búsqueda Dispersa, es un procedimiento metaheurístico. 
Los conceptos y principios fundamentales del método están basados en las 
estrategias para combinar reglas de decisión. Scatter Search opera sobre un 
conjunto de soluciones, llamado conjunto de referencia, combinando éstas 
para crear nuevas soluciones de modo que mejoren a las que las originaron. 
En este sentido se dice que es un método evolutivo. Sin embargo, a diferencia 
de otros métodos evolutivos, como los algoritmos genéticos, Scatter Search 
no está fundamentado en la aleatorización sobre un conjunto relativamente 
grande de soluciones sino en elecciones sistemáticas y estratégicas sobre un 
conjunto pequeño. 

La metodología a emplear se lleva a cabo a través de una aplicación en MS 
Excel, en la que se incluye los códigos de los algoritmos evolutivos, así como 
distintas hojas de cálculo con los resultados de la simulación con SIMGES. Lo 
primero que el usuario debe hacer es imponer los parámetros con los que se 
quiere lanzar el algoritmo (semillas, probabilidad de cruce, tipo de mutación, 
número de complejos, etc.). A continuación se definen las variables que el 
algoritmo ha de ir modificando (variables de decisión), en este caso las reglas 
de decisión que se pretendan optimizar, así como los límites inferiores y 
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superiores de estas variables. Llegados a este punto, se ejecuta el algoritmo 
de optimización, el cual va generando esas variables de decisión. Para cada 
generación (o iteración) se escribe el archivo de datos necesario para la 
simulación y, una vez escrito se lanza SIMGES, que simula la gestión 
propuesta guardando los resultados en un archivo. Este archivo permite 
obtener entre otras cosas los déficits de las distintas zonas y los bombeos, y 
así poder evaluar una función objetivo. Ésta es utilizada por los algoritmos 
evolutivos para buscar el resultado más óptimo. Una vez evaluada, si no se 
cumple el criterio de parada, se repite el mismo proceso a partir de la 
generación de las variables de decisión, buscando la optimización de la 
gestión.  

Finalizado el proceso realizado por la aplicación, es el turno del usuario para 
analizar los resultados y tomar decisiones. Los resultados obtenidos en este 
trabajo, para el modelo que representa el estado actual del sistema, 
muestran un descenso en el número de demandas con déficit y en su máximo 
déficit anual. Además, también se consigue reducir el coste económico 
producido por el empleo de los sistemas de bombeos. 

6. Conclusiones 

En este trabajo se han examinado distintos SSD (WARGI, AQUATOR y 
AQUATOOL) para analizar la gestión en el sistema Tirso-Flumendosa-
Campidano, en la isla de Cerdeña (Italia), a través de un modelo de 
simulación. Junto con este modelo, se han desarrollado también una serie de 
escenarios que han permitido tener en cuenta y analizar distintos aspectos 
como los caudales ecológicos, el fallo de infraestructuras, escenarios futuros 
e incrementos en las demandas. 

Los tres SSD analizados proporcionan resultados semejantes en términos de 
déficits de demandas, volúmenes almacenados en los embalses y caudales 
bombeados, sin embargo, AQUATOOL parece proporcionar resultados algo 
más óptimos , en términos de minimización de déficits. Este hecho puede ser 
debido a que AQUATOOL emplea técnicas de optimización para cada 
intervalo de tiempo de la simulación, pero además, hay que tener en cuenta 
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que en AQUATOOL se puede definir más aspectos para regular la gestión del 
sistema. 

Respecto a la optimización llevada a cabo, se ha demostrado una mejora en 
la gestión del sistema con menos déficits y costes de bombeo. Esta técnica 
se pretende emplear en los distintos escenarios desarrollados, con el fin de 
obtener en cada uno de ellos una gestión más óptima de la alcanzada. 
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