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Resumen

El Control Óptimo (CO) es esencialmente un problema matemático de bús-
queda de extremos, consistente en la definición de un criterio a minimizar (o
maximizar), restricciones que deben satisfacerse y condiciones de contorno
que afectan al sistema. La teoŕıa de CO ofrece métodos para derivar una
trayectoria de control que minimiza (o maximiza) ese criterio.

Esta Tesis trata la aplicación del CO en automoción, y especialmente en el
motor de combustión interna. Las herramientas necesarias son un método de
optimización y una representación matemática de la planta motriz. Para ello,
se realiza un análisis cuantitativo de las ventajas e inconvenientes de los tres
métodos de optimización existentes en la literatura: programación dinámica,
principio mı́nimo de Pontryagin y métodos directos. Se desarrollan y describen
los algoritmos para implementar estos métodos aśı como un modelo de planta
motriz, validado experimentalmente, que incluye la dinámica longitudinal del
veh́ıculo, modelos para el motor eléctrico y las bateŕıas, y un modelo de motor
de combustión de valores medios.

El CO puede utilizarse para tres objetivos distintos:

1. Control aplicado, en caso de que las condiciones de contorno estén
definidas. Puede aplicarse al control del motor de combustión para un
ciclo de conducción dado, traduciéndose en un problema matemático de
grandes dimensiones. Se estudian dos casos particulares: la gestión de
un sistema de EGR de doble lazo, y el control completo del motor, en
particular de las consignas de inyección, SOI, EGR y VGT.

2. Obtención de reglas de control cuasi-óptimas, aplicables en casos en los
que no todas las perturbaciones se conocen. A este respecto, se analizan
el cálculo de calibraciones de motor espećıficas para un ciclo, y la gestión
energética de un veh́ıculo h́ıbrido mediante un control estocástico en
bucle cerrado.

3. Empleo de trayectorias de CO como comparativa o referencia para tareas
de diseño y mejora, ofreciendo un criterio objetivo. La ley de combustión
aśı como el dimensionado de una planta motriz h́ıbrida se optimizan
mediante el uso de CO.

Las estrategias de CO han sido aplicadas experimentalmente en los traba-
jos referentes al motor de combustión, poniendo de manifiesto sus ventajas
sustanciales, pero también analizando dificultades y ĺıneas de actuación para
superarlas. Los métodos desarrollados en esta Tesis Doctoral son generales y
aplicables a otros criterios si se dispone de los modelos adecuados.
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Resum

El Control Òptim (CO) és essencialment un problema matemàtic de cerca
d’extrems, que consisteix en la definició d’un criteri a minimitzar (o maxim-
itzar), restriccions que es deuen satisfer i condicions de contorn que afecten
el sistema. La teoria de CO ofereix mètodes per a derivar una trajectòria de
control que minimitza (o maximitza) aquest criteri.

Aquesta Tesi tracta l’aplicació del CO en automoció i especialment al
motor de combustió interna. Les ferramentes necessàries són un mètode
d’optimització i una representació matemàtica de la planta motriu. Per a
això, es realitza una anàlisi quantitatiu dels avantatges i inconvenients dels
tres mètodes d’optimització existents a la literatura: programació dinàmica,
principi mı́nim de Pontryagin i mètodes directes. Es desenvolupen i descriuen
els algoritmes per a implementar aquests mètodes aix́ı com un model de planta
motriu, validat experimentalment, que inclou la dinàmica longitudinal del
vehicle, models per al motor elèctric i les bateries, i un model de motor de
combustió de valors mitjans.

El CO es pot utilitzar per a tres objectius diferents:

1. Control aplicat, en cas que les condicions de contorn estiguen definides.
Es pot aplicar al control del motor de combustió per a un cicle de
conducció particular, traduint-se en un problema matemàtic de grans
dimensions. S’estudien dos casos particulars: la gestió d’un sistema
d’EGR de doble llaç, i el control complet del motor, particularment de
les consignes d’injecció, SOI, EGR i VGT.

2. Obtenció de regles de control quasi-òptimes, aplicables als casos on no
totes les pertorbacions són conegudes. A aquest respecte, s’analitzen
el càlcul de calibratges espećıfics de motor per a un cicle, i la gestió
energètica d’un vehicle h́ıbrid mitjançant un control estocàstic en bucle
tancat.

3. Utilització de trajectòries de CO com comparativa o referència per
a tasques de disseny i millora, oferint un criteri objectiu. La llei de
combustió aix́ı com el dimensionament d’una planta motriu h́ıbrida
s’optimitzen mitjançant l’ús de CO.

Les estratègies de CO han sigut aplicades experimentalment als treballs
referents al motor de combustió, manifestant els seus substancials avantatges,
però també analitzant dificultats i ĺınies d’actuació per superar-les. Els mètodes
desenvolupats a aquesta Tesi Doctoral són generals i aplicables a uns altres
criteris si es disposen dels models adequats.
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Abstract

Optimal Control (OC) is essentially a mathematical extremal problem. The
procedure consists on the definition of a criterion to minimize (or maximize),
some constraints that must be fulfilled and boundary conditions or disturbances
affecting to the system behavior. The OC theory supplies methods to derive a
control trajectory that minimizes (or maximizes) that criterion.

This dissertation addresses the application of OC to automotive control
problems at the powertrain level, with emphasis on the internal combustion
engine. The necessary tools are an optimization method and a mathematical
representation of the powertrain. Thus, the OC theory is reviewed with a
quantitative analysis of the advantages and drawbacks of the three optimization
methods available in literature: dynamic programming, Pontryagin minimum
principle and direct methods. Implementation algorithms for these three
methods are developed and described in detail. In addition to that, an
experimentally validated dynamic powertrain model is developed, comprising
longitudinal vehicle dynamics, electrical motor and battery models, and a
mean value engine model.

OC can be utilized for three different purposes:

1. Applied control, when all boundaries can be accurately defined. The
engine control is addressed with this approach assuming that a the
driving cycle is known in advance, translating into a large mathematical
problem. Two specific cases are studied: the management of a dual-loop
EGR system, and the full control of engine actuators, namely fueling
rate, SOI, EGR and VGT settings.

2. Derivation of near-optimal control rules, to be used if some disturbances
are unknown. In this context, cycle-specific engine calibrations calcula-
tion, and a stochastic feedback control for power-split management in
hybrid vehicles are analyzed.

3. Use of OC trajectories as a benchmark or base line to improve the system
design and efficiency with an objective criterion. OC is used to optimize
the heat release law of a diesel engine and to size a hybrid powertrain
with a further cost analysis.

OC strategies have been applied experimentally in the works related
to the internal combustion engine, showing significant improvements but
non-negligible difficulties, which are analyzed and discussed. The methods
developed in this dissertation are general and can be extended to other criteria
if appropriate models are available.
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Ya hace tiempo convirtió lo que pretend́ıa ser un simple proyecto académico en
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ṁt Turbine gas mass flow
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trol matrix
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Nx Number of states
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p Pressure
p1 Atmospheric pressure
p2 Intake manifold pressure
p2,sp Intake manifold pressure setpoint
p3 Exhaust manifold pressure
p3,0 Turbine inlet pressure at testing conditions
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Pb Battery internal power supply
Pc Compressor power
pclt Clutch contact pressure
Pe Motor electrical power supply

P̂e Maximum battery power output
Pf Fuel power
Pg Electrical generator power
φ Final value function
ϕ Generic function
pi Pressure at point i
Πc Compressor pressure ratio
pic In-cylinder pressure
Pice Engine power output
p̂ic In-cylinder pressure limit

Π̃c Normalized compressor pressure ratio
Πcr Critical pressure ratio
Πegr EGR valve pressure ratio
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Πt Turbine pressure ratio
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Pps,i Power-split device power i
Pr(·) Probability distribution function
prail Fuel rail pressure
prail,sp Fuel rail pressure setpoint
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Pt Turbine power

q Integral constraint function
Qb Battery charge
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Q̇ Heat flow
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r Radius
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Rgb Gear ratio
ρ Density
ρi Gas density
b·e Nearest integer function
rP Radius of the planet
Rps,i Power-split device ratio i
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rS Radius of the sun
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S Total distance of the problem
s Distance
ς Engine pedal position
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T Time duration of the problem
t Time
τegr Pure delay of EGR gas measurements
τexh Pure delay of exhaust gas measurements
τσ Pure delay of opacimeter measurements
TC Torque at the carrier
Tclt,ds Clutch torque at downstream shaft
Tclt,us Clutch torque at upstream shaft
Tgb,ds Gearbox torque at downstream shaft
Tgb,us Gearbox torque at upstream shaft
θ Temperature
θad Adiabatic temperature of combustion
θatm Atmospheric temperature
θcf Cooling fluid temperature
θci Compressor inlet temperature
θci,0 Compressor inlet temperature at testing con-

ditions
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θco Compressor outlet temperature

θ̇em Variation of exhaust manifold temperature

θ̇im Variation of intake manifold temperature
θem Exhaust manifold temperature
θem,0 Turbine inlet temperature at testing condi-

tions
θep Exhaust port temperature
θhpegr HP-EGR outlet temperature
θi Temperature at point i
θic In-cylinder gas temperature
θico Intercooler outlet temperature
θim Intake manifold temperature
θivc In-cylinder temperature at the intake valve

closing
θto Turbine outlet temperature
θwall Cylinder walls temperature
ti Discrete time instant i
Tice Engine effective torque output

T̃ice Prescribed engine torque trajectory
Tind Engine indicated torque

T̂ Total time limit
Tloss Engine torque losses

T̃loss Torque losses of the reference engine
Tm Motor shaft torque
Tm,max Maximum motor shaft torque
Tps,i Power-split device torque i
TR Torque at the ring
TS Torque at the sun
Tw Torque at the wheels

U Space of optimal controls in DP
U Space of permitted control candidates
U Internal energy of a gas
u Vector of discretized control variables
u Discretized control variable
u Vector of control variables
u Control variable
ub Brakes control
ubp Backpressure valve control
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ǔgb Integer gear number trajectory
uclt Clutch control variable
uδf Fueling rate gradient control
uδp Fuel burning rate control that follows the max-

imum in-cylinder pressure derivative δ̂pic
uδsoi SOI difference with respect to factory SOI
uδvgt VGT gradient control
uegr EGR opening control
uf Fueling rate control
ufbr Fuel burning rate control
uf,main Fuel amount injected in main injection
uf,piN Fuel amount injected in pilot injection number

N
uf,poN Fuel amount injected in post injection number

N
ugb Gear number control
ū Upper boundary for control
ui Specific internal energy of gas
uit Ignition timing control
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up Fuel burning rate control that follows the max-

imum in-cylinder pressure p̂ic
ups Power-split control
Υ Motor scaling factor
usoi SOI control
usoi,main Main injection timing
usoi,piN Pilot injection number N timing
usoi,poN Post injection number N timing
uthr Throttle position demand
uthr,egr EGR bypass throttle position demand
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uvgt Turbine geometry control
uwg Waste gate control

V Volume
v Vehicle speed
v0 Initial vehicle speed
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vic In-cylinder specific volume
Vim Intake manifold volume
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ẊO2 Variation of the oxygen mass fraction

ẊO2,em Variation of exhaust manifold oxygen mass
fraction

ẊO2,im Variation of intake manifold oxygen mass frac-
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xf Fueling rate control uf expressed as an aux-
iliary state to the Optimal Control Problem
(OCP)

ξ State of Energy
Xnox NOx emissions fraction
XO2 Oxygen mass fraction
XO2,atm Atmospheric oxygen mass fraction
XO2,c Compressor oxygen mass fraction
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Chapter 1

Introduction

If you don’t know where you are going, any road will get you there.

— Lewis Carroll
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1.1 Background

There is a general rule in engineering: first, things must work; afterwards,
things must work better; and then, things must work in the best way. This is
the common timeline of the evolution of any technology, and the history of
the automobile is a particularly good example. In 1886, Karl Benz patented
the world first production vehicle: the Benz Patent-Motorwagen. Benz’s goal
was to make a working self-moving vehicle, but outperforming any existing
transportation mean was, of course, out of his expectations. It just worked
and that was fine at that time. Later, many technological advances were
progressively introduced. Porsche gave birth to the first Hybrid Electric
Vehicle (HEV) in 1898, the Lohner-Porsche Mixte Hybrid; drum brakes were
introduced by Renault in 1902; gasoline direct injection was devised by Leon

3
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Figure 1.1: Gross amount of goods transported in the EU by road, waterway
and railway. Source: [3].

Levavasseur also in 1902; hydraulic brakes were invented by Malcolm Loughead
in 1919; first automatic transmission was conceived by Hermann Rieseler in
1924; the Mercedes-Benz 380 embodied independent suspension in 1933; self-
leveled suspension was introduced by Citroën in 1954; and first turbocharged
car, the Oldsmobile Jetfire, came into production in 1962, among other
inventions. That was a time of making better engines and vehicles [1, 2].
The modern era is characterized for cutting-edge advances, pushing current
technologies to their limits. Electronics, computer-aided design and a much
better understanding of internal engine processes has brought a technology
that approaches to the best way vehicles can be conceived. However, it is not
over and Internal Combustion Engine (ICE) technology has still quite more
room for improvement. Novel and promising advances are yet to come. In the
current scenario, automotive industry is moving not only towards a higher
standardization for reduced development time an improved economy, but also
to higher efficiency, better performance and lower pollutant emissions, which
unavoidably carries a significant increase in technology complexity.

Transportation is key for the world economy since it gives opportunities for
economic development, social benefits, health and safety. It is the cornerstone
of globalization and markets share in a world where everything is connected.
Transportation and logistics entail a significant part of the final price of goods,
affecting to economy in every single aspect. Road vehicles play a major role
as 87% of goods were carried by road in the European Union (EU) in the
2008–2011 period, as shown in figure 1.1.

Vehicles are also responsible of a significant portion of the energy share.
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Figure 1.2: Energy consumption share (in mega tonnes of oil equivalent) in
the EU during the 1990–2015 period. The left plot shows, from bottom to top,
the contribution of industry, road transportation, other transportation means,
residential, services and other types of energy consumption. The right plot
shows a disaggregation of transport sector with, from bottom to top, road, rail,
domestic aviation, international aviation and waterways energy consumption.
Source: [3].

According to Eurostat data [3]–shown in figure 1.2–transportation takes around
30% of the total energy consumption in the EU, with industry and residential
consumption at similar levels. Road transportation is responsible of 83% of
the total transport energy consumption [3].

The penetration of vehicles in society is a sign of economical and social
development. Motorization indices–vehicles per inhabitant–are rapidly growing
in developing economies and the expectations are that those numbers will
keep on rising. Countries such as China are experiencing a significant increase
in vehicle registration as a consequence of the expanding economy, showing
motorization rates of 20–40%/year, as shown in figure 1.3.

Due to the expansion of vehicle market, environmental issues are a major
drawback. During the last decade the pollution in highly populated cities has
been a critical issue that have forced local governments to take immediate
actions such as banning diesel vehicles in inner cities, restricting traffic entrance
by license plate, or limiting the number of yearly vehicle registrations. This
scenario has brought some interesting solutions such as the use of Electric
Vehicles (EVs) and HEVs in urban areas [6] or car sharing [7].
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Figure 1.3: Motorization rates (growth rate of passenger vehicles) for the
euro area (blue), USA (red) and China (yellow). Note that despite the high
motorization rate, China is still far from western countries indices. In 2014
the euro area, USA and China showed 520, 816 and 80 vehicles per 1000
inhabitants respectively. Sources: [3–5].

1.2 Emissions regulation in automotive industry

The combustion of fossil fuels for road transportation entailed 21% of total
CO2 emissions in 2014. Passenger vehicles are responsible of a 61% of total
road transportation CO2 generation [3]. Greenhouse gas emissions effects
on climate change and human health are well known, and their reduction
are on the agenda of many governments and on the roadmap of the Kyoto
Protocol. During the last decades the EU took actions in order to limit the
generation of pollutants emissions, achieving a significant decrease as it may
be appreciated during the 1990–2014 period in figure 1.4, and the target is
to lessen these figures in the near future with more stringent regulations.
Pollution in major cities have become a critical issue for local governments
and, despite a reduction is visible between 2008 and 2014 (see right plot in
figure 1.4), numbers are still alarming as respiratory diseases are becoming
more frequent in highly populated and congested cities.

The fact is that road transportation and, especially passenger vehicles,
contribute to a significant part of pollutant emissions–13% in the EU in 2014.
These current environmental issues require an emissions regulation framework
to promote cleaner vehicles. This is the target of emission standards that
have been adopted during the last decades in many countries, becoming more
stringent along the years in an attempt to tackle the global environmental
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Figure 1.4: Pollutant trend during last years. On the left, passenger vehicles
(blue) are responsible of 61% of gross road transportation CO2 emissions (red)
and 13% of total EU emissions (yellow) in 2014. On the right, 10 microns
particulate matter measurements in major cities are shown for 2008 (blue)
and 2014 (red). Sources: [3, 8, 9].

issues. These standards impose limits on several pollution agents for a vehicle
to be approved and entails a big challenge for the automotive industry. For
example, NOx emission standards in the EU have fallen from 500 mg/km with
Euro 3 standard–Euro 1 and Euro 2 did not impose any limit–to 80 mg/km
for Compression Ignition (CI) vehicles with Euro 6. Past and current limits
of Euro standards are shown in figure 1.5, illustrating the swift movement to
cleaner technologies. Other current standards are EPA Tier 3 (US), CARB
LEV III (California) or Japanese regulations; many countries stick to current
or past EPA or Euro standards [10].

The approval procedure for the Euro standards has been criticized because
it is not representative of actual driving conditions [11]. The procedure consists
of a prescribed driving cycle, the New European Driving Cycle (NEDC), which
is simulated in a rolling test bench under a number of different conditions. This
cycle, last updated in 1997, shows smooth accelerations and a poor diversity
of operating conditions. Due to the predictability of this procedure, engine
control and vehicles can be calibrated to best perform in this cycle and not
in the road, which is not the goal of emission regulations. These drawbacks
lead to dirtier vehicles on the road with higher fuel and emission levels [12].
In fact, during the last years real pollutant emissions shows no significant
improvements on real driving despite the stricter standards [13]. To this effect,
the EU has adopted a new driving cycle, the Worldwide harmonized Light
vehicles Test Cycle (WLTC) [14], expecting to reduce discrepancy between
approval and real emissions. However, some weakness have already been
pointed out [15] and probably many other will be discovered and exploited by
manufacturers. For this reason, Real Driving Emissions (RDE) with Portable
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Figure 1.5: Pollutant limits of past and current Euro standards for CI (blue)
and SI (red) vehicles. Note that NOx limits were introduced with Euro 3–
former standards set a limit of combined NOx+HC emissions–and PM are
only regulated since Euro 5 for SI engines.

Emissions Measurement System (PEMS) [16] is to be adopted as an alternative
to assess a real evaluation of emissions performance. These tests are scheduled
to be introduced with Euro 6d and consist of a trip that lasts between 90
and 120 minutes, composed of urban (34%), rural (33%) and highway (33%)
roads with several speed constraints [17]. These tests entail an important
challenge for manufacturers as vehicle design and control strategies become
more complex.

Emission standards have a strong impact on engine and control design. In
order to assess the stricter regulations, engine technology has become much
more complex with sophisticated controls and numerous peripherals improving
emissions performance. These new challenges can be faced with two main
approaches: limiting the tail pipe emission of the generated pollutants or
reducing the level of pollutants formation during the combustion. The first
is generally achieved with efficient–but expensive–after-treatment systems
such as Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF)
or Selective Catalytic Reduction (SCR), that promotes chemical reactions
reducing the amount of pollutants or impose physical barriers to the emission
of harmful gases. The latter is addressed in several ways:

• Introducing new engine technologies, such as downsizing, new combus-
tion modes, sophisticated forced induction systems, dual-loop Exhaust
Gas Recirculation (EGR), improved injection systems, or Variable Valve
Timing (VVT) among many others. These are aimed to find a bet-
ter balance between the improvement of the engine thermodynamic
efficiency–less fuel means less CO2–and the reduction of the combustion
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temperature, reducing NOx emissions at the expense of penalizing the
combustion efficiency.

• Alternative powertrain schemes, mainly HEV, EV and fuel cell vehicles.
These exploit alternative energy sources reducing–or eliminating–the
impact of the ICE in emissions performance.

• Sophisticated control strategies, making use of additional sensors–in-
cylinder pressure measurements–, or different control schemes, such as
Model Predictive Controls (MPCs) or Optimal Control (OC), maximizing
the benefits of a given engine technology.

1.3 Control role in vehicular systems

Engines are intrinsically connected to control. Without it, an engine would be
a quiet piece of engineering. It has been like that since Nicolaus Otto made his
first prototype. As long as there are decisions to take or things to regulate in a
system, control is unavoidably necessary. Although control is always somehow
involved, its importance is up to the level of perfection to be achieved, i.e.
how good is the system performing compared to the best it can perform–this
is a pretty good definition of OC. Generally, the more exhaustive the control
task is, the better the performance results.

Traditionally, control has not been always the priority. During the early
years of the automobile the main concern was to make things work. Later, fuel
was so cheap that control was just a question of making comfortable vehicles
with good performance. Efficiency was not critical and efforts in that direction
were limited.

In 1970s the energy crisis changed the scenario. Not only efficiency but
also pollutant emissions became the main concerns in engine development.
The growth of electronics that came across at the beginning of the 1980s and
the new demanding scenario were the critical factors that brought control
to its current importance. Control has experienced an enormous growth in
complexity during the last decades, and nowadays it is a main concern for
manufacturers and object of numerous studies and new approaches [18].

Engine control requirements are increasingly demanding. Like it shows in
figure 1.6, the necessary calculation resources to compute the engine control
has grow rapidly in the last decades and the expectation is to raise much
faster in the next years. The typical approach in today’s engines is mainly
based on calibrated maps that contain control setpoints as a function of
volatile variables. These setpoints are interpolated according to current sensor
readings and estimations, and corrected for dynamic transients. This type of
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Figure 1.6: Past, current and expected engine control requirements for proces-
sor architectures performance in Dhrystone million of instructions per second.
Source: [22].

control is predictable and robust thanks to the extensive heuristic knowledge
in this field. However, it requires lots of experiments for a single calibration
to be done. Automated calibration frameworks [19], model-based [20] and
self-tuning calibrations [21] have been proposed to address this costly and
time demanding solution.

Not only engines are the target for control applications. It plays an impor-
tant role in many automotive devices such as automatic transmission, cruise
control, automatic parking, battery management, HEV energy management,
and the–yet to come–autonomous vehicle.

OC is a branch of control theory that is raising interest. Briefly, it consists
of mathematical methods that guarantee optimality–for a specific target–of
the behavior of the controlled system. It has important contributions in other
fields of engineering such as aviation [23], aerospace [24] and automated trains
[25]. However, its acceptance in the automotive industry is moderate for
several reasons: in first place, the proper definition of the problem to address
and the required boundary conditions for a practical use of OC theory is
difficult; second, the computational burden that OC requires was out of the
hardware capabilities in the past; and third, there have been no special needs
for OC as long as traditional approaches perform sufficiently good for the
current requirements–but that might change in the future.

OC is promising for novel and recent technologies such as autonomous
vehicles [26]. It outperforms traditional control approaches in many fields and
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it might be a question of time that the automotive industry–reticent to big
changes but subject to great challenges–starts adopting OC concepts.

1.4 Objectives

This dissertation aims to extend the current development of applied OC in
the automotive field, particularly on the powertrain side. Applications are
analyzed for three different scenarios: onboard control application, OC for
benchmarking and analysis of powertrains, and OC for designing purposes.
Current state-of-the-art mathematical methods and algorithms are exploited
for engine and powertrain control, providing experimental measurements
and validation in cases where testing facilities are available. The analyzed
applications comprise the control of engine acutators–replacing the Engine
Control Unit (ECU) role–, vehicle and speed control, energy management of
HEVs, dual-loop EGR control, fuel injection system design and powertrain
sizing, all addressed with an OC approach.

The specific objectives that this dissertation attempts to cover are:

• Exploration of the OC potential in automotive applications, especially
in engine and powertrain control, analyzing current state-of-the-art
advances (chapter 2).

• Identification of OC advantages in engine control in order to assess both
fuel and emissions savings for a given engine technology (chapter 6).

• Examination of energy inefficiencies in a vehicle at different levels in
order to identify potential room for improvement from a control point
of view, with the ultimate target of covering a distance in a specified
time (chapter 7).

• Proposal of a technique for a practical implementation of OC in HEVs
energy management with no look-ahead information and near-optimal
performance (chapter 8).

• Providing of tools and methods to benefit from OC in benchmarking
and designing tasks such as fuel injection scheduling and powertrain
components sizing (chapter 9).

1.5 Methodology

This dissertation is structured in four main parts: (i) an overview of current
OC, (ii) tools that have been used and developed for the works presented
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here, (iii) practical cases and their results, and (iv) main conclusions. The
philosophy is quite straightforward. First, a powertrain model is developed
and the corresponding testing facility is provided. Then, an OCP is stated,
describing the control objective–generally the minimization of fuel consumption
subject to emission constraints. Finally, the formulation and implementation
of this OCP is detailed, and simulation or experimental results are shown.
This methodology is followed in chapters 6 to 9. For the ease of clarity, the
dissertation organization is given below.

1.5.1 Dissertation organization

Chapter 1 has introduced the current scenario for the automotive industry. A
brief journey on the social awareness in fuel economy and pollutant emissions
reduction across the last decades has presented the root of current and future
emission standards. The control role for automotive applications and, more
particularly, in powertrain management has been reviewed emphasizing the
importance of new control schemes and methodologies to assess future stringent
regulations, bringing OC to the stage as a promising solution that motivates
this dissertation.

Chapter 2 analyzes the current state-of-the-art advances in OC. First, the
OC mathematical background is introduced with a basic definition of the
OCP, which is a recurrent concept throughout this work. Second, past and
current studies focused to the vehicle control and Advanced Driver-Assistance
Systems (ADAS) are reviewed. Traditional cruise control approaches are
compared to the most recent works that propose optimal and model-based
predictive controls. The novel concept of eco-driving is introduced pointing
out the most interesting advances in vehicle speed control and driver advising
systems. Third, a comprehensive review of OC in powertraing management is
issued. Optimal engine calibration, self-tuning controls, variable calibrations
and the direct application of OC theory in engine control are under review. A
historical journey through the prolific field of energy management in HEVs
shows the most relevant works and the evolution of the OC application in
this topic. Finally, the current scenario in OC applied to powertrain design is
analyzed.

Then, the necessary tools to apply OC are presented and developed in
chapters 3, 4 and 5.

Chapter 3 introduces to the OC theory with some mathematical formalisms.
The mathematical theory and its properties are described from a practical
point of view. The main three families of OC methods–according to [27]–are
introduced and their performance and advantages are analyzed. These meth-
ods are: (i) the Hamilton-Jacobi-Bellman (HJB) equation and its numerical
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implementation, the Dynamic Programming (DP), (ii) indirect methods, which
are derived from the HJB equation, and the well known Pontryagin Minimum
Principle (PMP), and (iii) direct methods, with a brief review of the different
approaches in literature, emphasizing in the direct collocation methodology.
These methods are applied to the works presented in this dissertation and their
corresponding algorithm implementations are also detailed in this chapter.

Chapter 4 describes the mathematical models used in this work. Due to
the diverse objectives of this dissertation, models describing the powertrain
components are supplied. Vehicle dynamics are addressed with a longitudinal
dynamic model. The transmission model includes a quasi-steady gearbox, a
dynamic clutch coupling, and several models of power-split devices. Electrical
path models are included for HEVs, comprising the electric motor and the
batteries. Finally, the ICE is modeled with an airpath Mean Value Engine
Model (MVEM) and a quasi-steady cylinder model experimentally validated.
A quasi-steady version of the engine model is also described in this section.

Chapter 5 pictures the four experimental facilities that have been used for
the works in this dissertation. These setups are: (i) a 4-cylinder Direct Injection
(DI) CI turbocharged engine, (ii) an in-house developed single cylinder engine,
(iii) a conventional passenger vehicle, and (iv) a hybrid powertrain with a
Range Extender (RE). Specifications and instrumentation for these setups
are also provided. In the second part of this chapter, the test campaigns that
have been issued to validate both models and proposed control approaches
are detailed.

From chapter 6 to 9, several OC case studies are applied and discussed.
According to the target of the OC approach, these works can be divided
in: (i) ideal cases with known problem boundaries–where rigorous OC can
be applied–in chapter 6, (ii) applied cases without certain problem bound-
aries–near-optimal strategies are derived from OC–in chapters 7 and 8, and
(iii) laboratory cases where OC is used as a benchmark or assessment tool, in
chapter 9.

Chapter 6 presents two control approaches to apply OC in engine manage-
ment for given engine speed and torque trajectories. The first work addresses
the optimal split between High Pressure (HP)- and Low Pressure (LP)-EGR
for a dual-loop EGR system at the NEDC cycle. A control strategy is devel-
oped from the OC framework and is experimentally validated. The second
part of this chapter addresses the control of engine actuators–fueling rate,
Start of Injection (SOI), EGR position and VGT opening–with an OC method,
replacing the ECU control for a given driving cycle. Experimental results and
the analysis of fuel efficiency and emissions performance for an actual driving
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cycle are also provided. A Pareto analysis is issued to study the optimal
tradeoff between fuel economy and NOx emissions.

Chapter 7 discusses the importance of an appropriate speed control of a
vehicle and its impact on the engine control. A joined vehicle speed and engine
actuators control is performed with the OC techniques from the previous
chapter. The performance of the control in a real route and its effect on both
driving and engine efficiency are reviewed.

Chapter 8 addresses the optimal power-split of a HEV among its two energy
sources: the fuel tank and the battery. The contribution of this approach is a
methodology to provide an onboard-capable algorithm that does not require
look-ahead information for a near-optimal performance. The methodology is
based on the PMP and a stochastic analysis of past driving requirements on a
receding horizon, providing the likelihood-based optimal control.

Chapter 9 extends the previous OC studies to assess the design of a
powertrain. OC is used to explore the boundary efficiency of the powertrain
to provide an objective criterion for two designing scenarios. On the one
hand, OC is applied to analyze the fuel injection scheduling based on the
optimal Heat Release Law (HRL) that can be calculated for maximum pressure,
maximum pressure derivative and NOx constraints. On the other hand, the
optimal sizing of a HEV powertrain devices–engine, motor and battery–is
addressed from an economical point of view, minimizing lifetime costs. This is
issued for city and highway driving cycles in order to find the effect on the
powertrain size of driving conditions.

Chapter 10 finalizes this dissertation with a summary of the conclusions
and main findings that have been collected in previous chapters. Interesting
facts and challenges are discussed for future works.
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Chapter 2

State of the art in automotive
optimal control

If I have seen further than others, it is by standing upon the
shoulders of giants.

— Isaac Newton
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2.1 General overview

When managing a dynamic system to deliver a given task, it seems very
convenient to do it in the very best way among all the possible ways it can be
done. The term best–which might seem vague in this context–could resemble
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to cheapest, not only in the economic sense but also in a general way. Of
course the ability to guarantee that a system acts in such an optimal way
is not a trivial nor an easy problem. The OC approach is to transform this
wish into a mathematical problem where the concept best is translated into a
quantity–the cost index–to be minimized, constrained to the dynamic response
of the system and the particular limitations of the job to be done [1]. This
mathematical problem is known as an OCP.

OC theory originated in the 1950s with the advances of Lev Pontryagin
[2] and Richard Bellman [3]. It brings together the mathematical methods,
properties, conditions and algorithms that allow to–at least–approach an OCP.
The goal of this theory is to serve as a tool to find the time trajectories of the
system controls such that the operation cost is minimum. The drawback is
that the fundamental OC theory is a set of mathematical properties and not
a bundle of optimization methodologies. In [4], Vinter wrote about this fact,

The truth is, solving optimal control problems of scientific or
engineering interest is often extremely difficult. Analytical tools
of Optimal Control, such as the Maximum Principle, provide
equations satisfied by minimizers. They do not tell us how to solve
them or, if we do succeed in solving them, that the “solutions” are
the right ones.

Fortunately, there exist many methodologies in literature that make use of
OC theory to solve OCPs with numerical methods [5] or benefiting from some
particular properties of the problem [1, 6] (see section 3).

OC has been a field of interest in engineering for many decades, but
the reduced calculation resources from the early years limited the chances
of applying such demanding methods to simple approaches. However, the
advances in computational capabilities from the last decades and the existence
of sophisticated state-of-the-art numerical solvers made possible the successful
application of OC to many engineering fields. Some examples are: aerospace
orbit transfers [7], aviation trajectory planning [8], railway control [9] or
robotics applications [10].

The automotive field is not an exception. The increase of engine and
powertrain complexity, the growth of electronic controls and devices, and
autonomous vehicles, among others, made OC especially interesting to address
the technological challenges that are to be faced.

In this chapter, the reader may find a brief introduction to the mathematical
apparatus that founds the basics of OC (section 2.2), followed by the main
works and trends of OC that have been developed in the automotive field
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literature, divided by topics: cruise control and eco-driving (section 2.3),
powertrain management (section 2.4) and design applications (section 2.5).

2.2 Mathematical introduction to optimal control

Formally, an OCP is a mathematical problem that consists in finding the
trajectories of the control variables (quantities to be directly controlled) of
a dynamic system such that a cost index is minimized [6]. The cost index
is an scalar value that quantifies the magnitude to be optimized, such as
energy consumption, economic cost of operation, traveled distance or time
spent during a process, to give some examples. Accordingly, the trajectories
are optimal when the cost is minimum. A general cost index can be written
in terms of states x (variables that determine the condition of the system in a
particular time) and control variables u as the integral of a cost function L,
known as Lagrangian, over the time:

J =

∫ T
0
L(x,u, t) dt (2.1)

where 0 ≤ t ≤ T is the span of the problem. The cost function L represents the
instantaneous cost of operation of the system. An additional term including a
penalization on the terminal state of the problem may be also included. The
aim of the OCP is to minimize this optimality criterion:

J(x∗,u∗, t) = min
u
{J} (2.2)

Note that an asterisk denotes an optimal trajectory.

The states of the dynamic system are driven by Ordinary Differential
Equations (ODEs):

ẋ = f(x,u, t) (2.3)

The system generally starts with a set of prescribed states at t = 0 . Thus,
we arise with an Initial Value Problem (IVP):

x(0) = x0 (2.4)

Usually the system is also constrained to reach a particular set of states–or
a function of the states–at t = T , resulting in a Boundary Value Problem
(BVP):

φ(x(T )) ≤ 0 (2.5)
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In addition to the above boundary constraints, the system may be com-
pleted with two more kind of constraints: the path constraint, which defines a
time varying quantity c that the system must not exceed:

c(x,u, t) ≤ 0 (2.6)

and the integral constraint, which specifies a limit to the accumulation of the
quantity q: ∫ T

0
q(x,u, t) dt ≤ 0 (2.7)

Note that the inequality from any of the above constraints can be replaced by
the corresponding equality constraint if required with no loss of generality.

Therefore, eqs. (2.1)–(2.7) define a general OCP [6]. The next task to
state an OCP is to model the system to particularize the above equations (see
chapter 4).

2.2.1 Considerations on constraints treatment

The constraints stated in eqs. (2.3)–(2.7) are also known as hard constraints
since a solution must fulfill all of them to be accepted as a feasible solution
to the problem. Alternatively, some of them can be interchanged with soft
constraints–adjoining the constraints to the cost index with a weighting factor
as a penalization. The term soft refers to the slackness of these constraints
since a solution would be feasible even not fulfilling the former hard constraints.
However, the trick remains on the fact that there is a value for the weighting
factor such that the problem fulfills the hard constraint and, then, the problem
is equivalent to the original one. It is basically a tradeoff between hard
constraints and additional unknowns–weighting factors–, which can reduce
problem complexity in some situations. Of course, there is an extensive
mathematical artifact behind this idea, but for the sake of practicality it will
be partially simplified in the following sections. A comprehensive development
of this formulation may be found in [6, 11].

The terminal constraint (2.5) can be adjoined to the cost index with a
weighting parameter wb:

J = wbφ(x(T )) +

∫ T
0
L(x,u, t) dt (2.8)

Given that φ(x(T )) ≤ 0, the minimization of this term is more relevant
to the optimal solution as the weight wb is more negative. On the limit,
J∗ = minu {φ(x(T ))} for a sufficiently negative wb, and for wb = 0 J∗ =
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minu

{∫ T
0 L(x,u, t) dt

}
, regardless of φ(x(T )) value. For continuity reasons

there is a value wb
∗ ∈ (−∞, 0] such that φ(x(T )) = 0 for the optimal solution–

φ(x(T )) < 0 is not interesting as this constraint would not be active at the
problem. Given the appropriate wb

∗, the set of x and u trajectories that
minimize this augmented cost index J also minimize the integral term and,
therefore, they are the optimal solution of the original OCP [6].

Path constraints (2.6), integral constraints (2.7) and system dynamics (2.3)
may be adjoined to the cost index with an augmented cost function of the
problem H, also known as Hamiltonian:

H(λ,x,u, t) = L(x,u, t) + λT (t)y(x,u, t) (2.9)

with y = {f, c, q} and λ a vector of Lagrangian multipliers also known as
costates. The above statement is a direct result of the calculus of variations [2,
4]. Unfortunately, costates are generally driven by ODEs and their trajectories
are hard to calculate [1]. However, this approach may help to find the optimal
control trajectories in some particular cases. A detailed discussion on this
formulation is carried out in section 3.3.2, and comprehensive dissertations
are available at [6, 12].

2.3 ADAS: cruise control and eco-driving

Many researching efforts are addressed to the development of engine and
powertrain technologies to improve fuel efficiency of transportation vehicles.
However, the vehicle operating conditions play a major role in global efficiency
and, hence, they must be taken into consideration as well. ADAS are onboard
systems that provide additional information or assistance to the driver in order
to improve comfort, efficiency and safety. ADAS are a growing technology with
a great variety of devices aimed to different tasks: adaptive light control, blind
spot monitor and automatic parking among others [13–15]. Cruise controllers,
which are part of the ADAS systems, are of special interest to vehicle efficiency
optimization.

Several cruise control approaches have been presented in literature so far
such as MPCs [16] using look-ahead information [17, 18], fuzzy logic controllers
[19–21] or even Stochastic Dynamic Programming (SDP) approaches [22].
Despite these systems have been proven to perform much better than the
traditional constant speed Proportional-Integral-Derivative (PID)-based cruise
control, from an OC point of view it is interesting to address this topic as
an OCP. The application of OC, also known as Eco-Driving (ED), provides
optimal trajectories with a significant improvement in fuel efficiency compared
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to other control approaches [23, 24]. Generally, this OCP consists in the
minimization of a cost index:

min
u

{∫ T
0
L(u, v, t) dt

}
(2.10)

with L the fueling rate, electrical consumption, or any other energy resource, u
the vehicle controls and v the vehicle speed, which follows a dynamic equation:

v̇ = f(u, v, t) (2.11)

This problem is generally constrained in both speed and distance since the
driver usually wants to cover a prescribed distance S in a given time T :

v(0) = v0

v(T ) = vf
s(0) = 0
s(T ) = S

(2.12)

Therefore, the ultimate goal is to find the speed trajectory v(t) that minimizes
the cost index. It is important to remark that the above OCP is not only
affected by the powertrain model uncertainty, but also involves a road grade
and vehicle mass identification problem [25]. Note that the above generic
problem is formulated in time to be consistent with the common definition of
an OCP, however it may be more convenient to reformulate it in distance if
disturbances are specified in that domain–which is the typical case–by following
the notes in appendix A. Examples showing these two approaches can be found
in literature, both in time domain [26–28] and in distance domain [29–31].

Schwarzkopf and Leipnik addressed the ED problem for the first time in
literature in 1977 [32]. They used the recently developed PMP–Lev Pontryagin
published his work in 1962–to study the optimal speed profiles of a vehicle
at several road grades. The results showed a typical trend that can be found
in later works: for a given time constraint–i.e. a specific average speed–the
vehicle should keep constant speed, decelerate on top of a hill and accelerate
downhill. It might be a quite intuitive policy but since that moment it was
mathematically demonstrated.

Some years later, Hooker et al. addressed the same problem but focusing
on the speed trajectory between two stops [33]. They found that all examples
that they calculated followed a common strategy: first, the vehicle performs
a strong acceleration, then it cruises for some time, coasts to reduce speed
and, eventually, brakes when reaching the destination. This is another well
known trend for speed optimization of dissipative systems [34]. Unfortunately,
the use of DP and the reduced computational resources at that time only
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allowed to calculate short distance cases. Based on these promising results,
Hooker et al. repeated their study performing a detailed analysis on different
vehicles and road grades [35]. Pointing the importance of ED, up to 30% of
fuel saving–in simulation–was possible thanks to the optimization of vehicle
speed. Addressing the limited computational power, [36] adjoined the time
constraint to the cost index in order to reduce the DP problem dimensions.

During the next decade there was little interest on this topic and few
works exists on literature. Nevertheless, in 2000s ED came to the optimal
control community attention and many comprehensive works analyzed and
extended the previous knowledge on this topic. First, in 2006, [26] analyzed
the ED problem with an analytical PMP approach that allowed to extract
some common conclusions for several road grade situations:

1. Flat road: constant speed is the optimal solution for a long distance
cruise.

2. Uphill: if achievable, constant speed is also the choice; if not, the optimal
control is full throttle.

3. Downhill: if possible, keep speed constant without using the brakes; if
not, the optimal solution is to cut off fuel injection–introducing more
kinetic energy into the vehicle when overspeeding is inefficient due to
the increased losses.

4. On top of a hill: decrease speed such that, considering the downhill
overspeeding that is yet to come, the required average speed is satisfied.

Hellström et al. reached similar conclusions with DP [29]. Following,
[37] addressed the ED problem with Direct Method (DM) and Mixed Integer
Nonlinear Programming (MINLP) to deal with discrete gear shifts. In 2009,
[27] analyzed the optimal speed profile reaching a 4.6% improvement on fuel
efficiency compared to a constant speed PID cruise control. Despite this result
seems to contradict [26], the key point is that the road grade was continuously
varying in [27]. For a case like this, the optimal solution is a question of the
balance between kinetic and potential energy, which is not trivial. Therefore,
[27] remarks the importance of look-ahead road information.

In this sense, [30] used look-ahead road elevation information to implement
ED onboard a truck to minimize fuel consumption on an actual road. However,
for computational reasons, the DP algorithm was applied to a short horizon.
In order to address this issue, the authors proposed in [31] an approximation
of the cost-to-go value at a given horizon in order to virtually apply DP to
the complete route. This approximation is based on a tradeoff between fuel
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consumption and kinetic energy. A similar experiment, using an advisor to
the driver, was carried out in [38]. Authors opted to download a cloud-based
DP solution instead of addressing the ED problem onboard.

A quite different approach to the ED question was followed in [39]. The
authors, after addressing the optimal speed profile calculation with PMP in
[40] and with DP in [41] for an EV, applied the PMP theory explicitly. With
a sufficiently simple model, and neglecting drag forces, a singular control was
obtained (see section 3.3.3 for details on singular control). This enabled to
derive six different phases that the optimal speed profile is made of: (i) positive
torque, (ii) linear decrease of torque, (iii) zero torque, (iv) linear decrease
of torque, (v) negative torque, and (vi) maximum braking force. Therefore,
the speed optimization problem is reduced to the selection of the torque
levels and switching times between phases, such that both the time and
distance constraints are fulfilled. The authors followed the same philosophy
for conventional vehicles and HEV at [28].

2.4 Powertrain management

OC is extensive in powertrain applications with works in the fields of automatic
transmissions, fuel cells, EV batteries or hybrid powertrains. Nevertheless,
and according to the scope of this dissertation, two main topics of interest are
focused below: engine control and hybrid powertrain energy management.

2.4.1 Engine control

ICEs are complex systems with many control actuators, coupled devices and
an extreme nonlinear behavior. Hence, the control of the numerous subsystems
is a challenging task that the control field community has faced during many
decades. The introduction of electronic controls in the 1980s made possible
the use of comprehensive control algorithms that have grown in complexity to
thousands of tunable parameters in modern ECUs. This looks like the perfect
scenario for optimal control: a complex system with a non trivial control.
Surprisingly, it has not been the case until recent years.

So far, engine control has been mostly performed with a set of PID controller
that track setpoints factory calibrated to perform adequately. These setpoints
are mapped by measurable quantities–many times by engine speed and torque
output or fueling rate–and interpolated during operation. Several corrections
are performed to adapt those steady state setpoints to dynamic transients.

Engine control optimization has not been a topic of interest for the com-
munity and few works are available at literature. There are many reasons for
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this, but mainly it is because of two important questions: first, an engine is a
highly nonlinear dynamic system whose complexity exceeds the capabilities of
both optimization methods and computational resources that were available
during most of the history and, second, there are lots of heuristic knowledge
in engine control with modern ECUs performing really well, making optimal
approaches too difficult for the little gain that can be achieved, even in the last
years. Looking for more historical reasons, in 1978 Athans discussed the appli-
cability of OC theory to the engine control field [42]. He stated that dynamic
optimization of engine controls may be desirable, but the necessary models to
describe engine processes were not available at that time. Athans reasoned
that “if the adequate nonlinear dynamic models of the automotive engine
system were available, a wealth of tools from optimal control theory could be
employed”. This was, with the lack of the necessary computational resources
and current state-of-the-art optimization algorithms, the main drawbacks of
OC in this field.

Fortunately, computational power has grown exponentially and nowadays
specialized optimization algorithms are available. Engine dynamics and physi-
cal processes are generally well known, and model-based controls are a frequent
topic in literature. This is, now, the perfect scenario for optimal control.

One of the first works that may be found in engine control optimization
is [43]. Scotson and Wellstead presented in 1990 an algorithm to self-tune
optimized ignition timing parameters. The conventional ECU control scheme
was still used but the ignition timing map was recalibrated with the extremum
seeking method. This was a first approach to engine optimal control.

A similar methodology was followed by several authors. Many works are
based on the same concept: keeping the conventional control scheme, including
an online parameter optimization. They are not optimal control applications
in the rigorous sense, but some kind of optimality is stated while constraining
to the PID-based control. Most of these works are based on extremum seeking
as well, such as [44] where ignition, intake and exhaust timings are tuned, or
[45] that proposed an online calibration for ignition timing that faced the use
of different fuels. Learning algorithms that tune engine control calibration
accounting for driving behavior were also developed in [46, 47]. Not only
a better performance was achieved in those works but also a methodology
to address engine aging effects and offsets. In line with those works, [48]
presented a methodology to optimize the PID parameters of the VGT and
EGR controllers. Guardiola et al. introduced a control strategy based on the
switching among a set of different engine calibrations [49, 50], formulating a
discrete OCP, concluding that there is a potential benefit on the ability to
switch along the pollutants emissions and fuel consumption tradeoff.
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Model-based control has also been a common approach in automotive
purposes. MPCs have been successfully applied to airpath [51, 52], Homoge-
neous Charge Compression Ignition (HCCI) combustion [53], or fuel injection
[54] among others. A detailed review of MPC applications in the automotive
industry may be found in [55].

One of the first dynamic OC works was presented by Sun et al. in 2000
[56]. This work studies the optimal ignition timing and throttle trajectories
for an idle speed controller. To do so, they used a variant of DMs with a
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm that enabled to address
the unconstrained nonlinear problem. The resulting control performed much
faster and smoother than conventional PID controllers, even allowing a lower
idle speed.

Following this philosophy, in 2009, [57] found the optimal throttle trajectory
for an engine speed transient with multiple shooting DM, and [58] calculated
the optimal VGT trajectory for a transient minimizing opacity and maximizing
power output, using BFGS to address the DM. Two years later, [59] included
EGR, VGT, rail pressure, SOI and throttle controls to minimize a weighted
combination of PM and NOx, using a single shooting DM. Following, [60]
addressed the fuel minimization problem during short power transients using
DP and PMP, while [61] applied multiple shooting DM in combination of
Sequential Quadratic Programming (SQP) to minimize time and fuel, with
waste gate, fueling rate and generator power controls in a diesel-electric
powertrain. These studies, whose main characteristics are summarized in table
2.1, calculate the optimal trajectories for the engine controls but limiting to
short transients that last 30 seconds in the best cases. It was in 2014 when
Asprion et al. addressed the complete control of an engine for longer driving
cycles by calculating the optimal trajectories for fueling rate, VGT opening,
SOI and rail pressure, minimizing fuel consumption [62]. This work focused
on the capabilities of different DM approaches to address this OCP, as well as
the potential of the solution to derive dynamic controls. This was the first and,
so far, the only trial to deliver a full optimal control along a driving cycle.

It is remarkable that DM is generally the optimization method of choice in
any of its forms. Despite DP and PMP have been used in some specific works,
DM is, by far, the only method capable of dealing with such a complex OCP
as the one concerning the engine control [63].

The choice of the optimization horizons shown in the above works might
be influenced by computational reasons. A long problem such as the one
addressed in [62] is computationally expensive, and in many situations they
can be avoided. For example, it is pointless to extend the OCP beyond
a couple of seconds for a VGT control to perform a load transient where
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Authors Objective Controls Method Horizon

Sun et al. [56] |∆Nice|,
|∆uit|, u̇thr

uit, uthr DM 1.5–2 s

Saerens et al. [57] mf uthr DM 25–30 s
Omran et al. [58] −Pice, σ uvgt DM 3 s
Benz et al. [59] mnox, mpm prail,sp, usoi,

uvgt, uegr, uthr

DM 4 s

Nilsson et al. [60] mf uf DP,
PMP

10 s

Sivertsson et al. [61] mf , T uf , uwg, Pg DM 0.4 s
Asprion et al. [62] mf uf , uvgt, usoi,

prail,sp

DM 6–295 s

Table 2.1: Main characteristics of engine control related works that can be
found in literature, namely the minimization objective, the controls whose
trajectories are optimized, the optimization method and the control horizon.
Note that when several objectives are present, they are weighted into a
single cost index. The denoted variables are: deviation from target engine
speed |∆Nice|, deviation from ignition timing setpoint |∆uit|, throttle position
uthr, ignition timing uit, total fuel consumption mf , engine output power
Pice, exhaust gases opacity σ, VGT opening uvgt, NOx generation mnox, PM
generation mpm, rail pressure setpoint prail,sp, SOI usoi, EGR position uegr,
fueling rate uf , total time T , waste gate position uwg, and generator power
output Pg.

terminal states are constrained (such as target manifold pressure from ECU
calibration) since the problem is fully defined for that time window. However,
if the optimization target goes farther, such as a driving cycle optimization,
decisions on a given window may jeopardize the performance in the following
phases of the cycle. A compromise solution might be performing sequential
optimizations for a short horizon, but there is no guarantee that this approach
will deliver the optimal solution since estimations or fictitious state constraints
have to be imposed at the end of the control window. Whether that suboptimal
solution is close enough to the rigorous full optimization of a driving cycle
to be acceptable is something that seems unanswered in literature as far as
the author’s information is concerned. Nevertheless, this question will be
addressed again in section 6.3 with optimization results.

Additional few works addressed the engine OCP attending to some other
objectives and control actuators. Some of these works are: [64] calculated
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the optimal gear shift for a 1st to 2nd transition during a transient with DP;
[65] estimated the optimal piston speed during a cycle with PMP in order to
minimize entropy losses and found out that the ideal mechanism must perform
a fast compression, keep minimum volume until pressure reaches its maximum
value, and then expand at maximum rate; [66] applied genetic algorithms to
calculate the optimal set of controls that minimize fuel consumption, NOx

emissions and noise during a cycle for a given steady condition; [60] addressed
the optimal transition between two operating points throughout the engine
operating map. An interesting journey through many more OC examples
applied to different automotive aspects, including engine control, may be found
in [67].

An especially interesting field of application of OC in engine control is the
management of dual EGR systems. This specific topic is reviewed below.

Optimal dual EGR control

A cost-effective approach to NOx control is to consider a dual EGR system with
both LP- and HP-EGR loops. These systems consist of two EGR valves, one
installed between intake and exhaust manifolds (high pressure loop), and the
other mounted between intake and exhaust lines (low pressure loop) as shown
in figure 2.1. Both systems show several drawbacks when used alone. HP-EGR
introduces the exhaust gases into the cylinders at high temperature, despite
using coolers, due to the high temperatures at the turbine inlet. In addition,
the introduction of the EGR close to the cylinders usually leads to a poor
homogeneity in the EGR distribution among cylinders [68]. Both effects impact
negatively the engine efficiency and emissions, especially if Low Temperature
Combustion (LTC) concepts are applied [69]. LP-EGR has been traditionally
avoided because of compressor wheel reliability, but the widespread use of
DPF in current engines allows the use of this configuration [70]. Therefore,
LP-EGR becomes a suitable alternative to HP-EGR since it can provide high
EGR rates without a significant increase in intake temperature and minimizing
cylinder-to-cylinder charge dispersion [71], among other benefits related to the
turbocharger operation [72–74]. In general, due to the better EGR distribution
[75] and lower temperature [72, 76], the use of LP-EGR involves a reduction
in NOx and PM. Nevertheless, the HP-EGR route has a faster settling time
than LP-EGR due to the length of the EGR path [77, 78], produces lower HC
emissions and shows a higher efficiency, especially at cold conditions, due to
the increase in the intake temperature [79].

Different authors propose the dual-loop EGR system as a possible method
to combine the advantages of both routes [80–82]. This control problem
can be addressed with two different approaches. On the one hand, some
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LP-EGR HP-EGR

Figure 2.1: Schematic layout of an engine with LP- and HP-EGR systems.
Coolers, after-treatment and other devices are obviated for the sake of clarity.
The red airpath represents the high pressure loop while the blue is the low
pressure section. The arrows denote the direction of the flow.

manufacturers prefer a sequential EGR control, where only one recirculating
loop can be active, switching from one configuration to another according
to the requirements. On the other hand, another possibility is to perform a
simultaneous control of both systems working together to reach the desired
inlet conditions. The sequential approach entails a significant advantage in
EGR fraction estimation as long as exhaust gases are recirculated through a
single path. On the contrary, the simultaneous control approach requires the
estimation of the EGR fraction at two different loops, not only to guess the
total recirculated amount but also to find out the actual rate between LP- and
HP-EGR, which is critical to reach the required thermodynamic conditions
at the intake manifold [83, 84]. In addition to that, both loops are coupled
together with the VGT control, which increases the complexity of the whole
system. However, this last approach may carry benefits on engine performance
as nearly any desired temperature and oxygen fraction setpoints are affordable,
and higher amounts of EGR are possible with this configuration [81].

Due to the performance advantages of the simultaneous control of LP-
and HP-EGR, several works address this control problem in literature [80–82].
The main idea is to decouple the controls so individual EGR loops can be
controlled separately. To this effect, [80] decomposed the dual-loop system into
two subsystems, each of them with their own control laws and PID controllers,
assuming knowledge of the mass flow through the valves. This allowed to
accurately track oxygen fraction, temperature and pressure setpoints at the
intake manifold. The authors in [81] proposed a model-based approach to
build EGR fraction estimators. The model also allows to calculate the total
EGR fraction and the split between both loops that bring the desired intake
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conditions. Once these decisions are taken, the control of the two valves can
be done separately in order to achieve their individual targets according to
their mass flow estimations.

All the above works focus on the developing of a control able to track a set
of desired intake conditions with an acceptable accuracy and dynamic response.
However, despite the interest on this topic, little research has been carried
out in the field of the OC in order to explore the full potential of this airpath
architecture without constraining to predefined setpoints. Some works such as
[85] already introduced OC strategies to this topic, by linearizing a MVEM
and applying a linear-quadratic regulator. The results of this optimization
show a better response during transient operation but the problem is still
constrained to the tracking of some setpoints.

2.4.2 Hybrid powertrains: power-split control

The availability of two different energy sources in a hybrid vehicle opens the
possibility to operate the powertrain in many different ways, with numerous
advantages in both fuel economy and emission terms [86, 87]. Nevertheless, the
increased architecture complexity comes at the expense of a more sophisticated
control. In a HEV, the control role has several layers. On the one hand, engine,
battery and motor are controlled to deliver the required setpoints according to
a set of individual operational requisites (temperatures, smoothness, safeness,
etc.). This layer is also common to conventional and electric vehicles and
already discussed in 2.4.1. On the other hand, a supervisory layer manages
the interaction between those devices with a global energy management. This
last control layer, also known as power-split, is in charge of dividing the driver
requirements among the available energy sources. This is HEV-specific as
long as the driver plays this role in a vehicle with a single energy source. The
question that arises is how to perform this power-split in order to minimize
fuel consumption–and eventually pollutant emissions. This introduces the
Energy Management Problem (EMP).

The EMP consists in finding the power-split control strategy that best
fits a given criterion [88, 89], usually the fuel consumption. Given that the
driver–or the driving cycle–is requesting a specific amount of torque, both the
electric motor and the engine should fulfill this demand together. The control
has the ability to somehow modulate this driving cycle request on the engine
by splitting the demand, so the benefits of the appropriate power-split on the
powertrain, and especially on the engine efficiency, are comparable to that
from an adequate speed management. In fact, the engine can be run at nearly
whichever operating condition regardless of the driver demand, as long as the
electric motor supplies–or absorbs–the torque difference.
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The history of the EMP gets back to 1980 when Mosbech published the
first work in literature that approached the control of a hybrid vehicle [90]. It
carries out a comprehensive analysis of different hybrid architectures (briefly
described in section 4.3.3; further discussion available at [88]) and introduces
a set of criteria for minimum fuel consumption control strategy: (i) the engine
and other devices must be operated maximizing their efficiency, (ii) as much
kinetic energy as possible must be recovered, and (iii) the stored energy must
be used for maximum benefit. These criteria give a very good idea of the
main three ways a HEV improves global efficiency compared to a conventional
vehicle:

1. The engine is operated mostly on high efficiency regions.

2. Idling is avoided, electric mode is used for very low speed maneuvers.

3. Braking and coasting are replaced by kinetic energy recovering whenever
possible.

In addition to the above, [90] addressed the EMP as an OCP, which is
the approach that was followed by most of the subsequents works on this
topic. Mosbech chose DP (see section 3.2.1 for a detailed description of this
optimization method) to solve this OCP but, unfortunately, this is a heavy
algorithm and computational resources were not enough at that time for such a
complex problem. Mosbech also faced a major drawback of power-split control
with OC: the OCP offers an optimal control trajectory but not a control
strategy–which would be desirable. Due to this, the trajectory is constrained
to the particular driving cycle that is analyzed and, therefore, the cycle must
be known in advance, limiting this methodology to offline purposes. This issue
would be addressed several years later.

The next reference in literature happened in 1987, when Bumby and
Forster addressed the EMP with further analysis on the optimal control [91].
Intuitively they stated that fuel minimization may be achieved by minimizing
a weighted sum of the fuel and battery contributions to the total torque:

L = λ1E1 + λ2E2 (2.13)

where E1 and E2 are, respectively, the fuel and battery energy contribution,
and λ1/λ2 the weighting factors (note that the nomenclature from [91] is
preserved in the above expression). According to this equation, the power-split
optimization is just a question of selecting the control that minimizes L at
each calculation step. Note that, this time, the proposed control can be issued
on real time–no cycle knowledge is assumed–with a minor drawback: λ1/λ2 is
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unknown in advance. The results of the presented simulations in [91] are quite
representative of the typical optimal sequence on a short acceleration-cruising-
coasting-braking cycle: (i) the engine runs at high loads–high efficiency–at
the very beginning of the acceleration phase, (ii) the load is reduced during
cruising but still at a high efficiency region, (iii) the engine is switched off
whenever the total amount that has deliver is enough to keep a similar level of
battery charge between the beginning and the end of the cycle, and (iv) the
vehicle runs in pure electrical mode to the end, recovering as much kinetic
energy as possible.

During the following decade several studies focused on the minimum fuel
EMP with diverse methodologies. In 1993, Farrall and Jones applied fuzzy-
logic techniques to achieve an efficient solution to the EMP [92]. They used
the same driving cycle than the former study from Bumby and Forster [91],
and results were similar, confirming the effectiveness of the inferred control
sequence. Also several works provided heuristic controllers whose rules were
partially based on previous OC results such as [93–96].

Paganelli et al. carried out an interesting study in 2000 [97], with an ex-
tended discussion in [98], which served as the basis of many forthcoming works
on this topic. They proposed that the fuel minimization may be addressed
as the instantaneous minimization of an equivalent fuel consumption. This
equivalent quantity must account for both the actual fuel burnt in the engine
and the necessary fuel to restore the spent electrical energy. This intuitive idea,
which they called Equivalent Consumption Minimization Strategy (ECMS), is
synthesized in the minimization of the following index:

L = Pf + µPb (2.14)

with Pf and Pb the current fuel and battery power supply, and µ a weighting
factor. Note that fuel and battery power values refer to the expenditure of raw
internal energy–from the fuel tank and the battery chemicals respectively–since
the idea is to find a balance between the contribution of different energy sources.
In this study, Paganelli et al. also used an heuristics-based minimization
method to approach the EMP. The comparison between both approaches
showed that results were quite the same. It looked like ECMS method offered
some kind of near optimal control. But it remained just an intuitive idea
without a mathematical background.

It was in 2001 when a more rigorous study was carried out by Delprat et
al. to address the EMP with OC theory [99]. The proposed methodology was
based on the theory of PMP, developed by Lev Pontryagin in his work The
mathematical theory of optimal processes [2] (for an extended review of this
optimization method see section 3.3.1). According to this, the EMP may be
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transcribed into a sequence of two point BVPs. These problems consist in the
instantaneous minimization of the following cost index:

H(t) = ṁf (t) + λ(t)ζ̇(t) (2.15)

where ṁf is the fueling rate and ζ̇ the variation of battery SoC. The costate–
Lagrangian multiplier–λ(t) follows the ODE:

λ̇(t) = −∂H
∂ζ

(2.16)

Note that the nomenclature of the above equations is different to that from
[99] to be consistent with this dissertation.

The work from Delprat et al. concluded that the PMP can be successfully
applied to find the optimal power-split in a HEV. Only one question remains,
which is the fact that the initial costate value λ(0) needs to be specified in
order to solve (2.16). According to PMP, the optimal λ(0) value is such that
fulfills the terminal SoC level. Therefore, this study followed an iterative
methodology to correct λ(0) until terminal constraint is satisfied within a
tolerance.

The resemblance between (2.15) and (2.14) cost indices is more than
obvious. For a constant λ, the PMP approach converges to the ECMS
minimization objective. Therefore, ECMS is just a particular case of PMP,
where the dynamics of the battery are neglected (see section 3.3.2 for a
discussion on the cases where the costate is a constant value). This fact was
demonstrated and discussed in 2009 by Serrao et al. [100]. In addition to
that, and although it has not been discussed in the literature so far, the
ECMS cost index (2.14) and the Bumby and Forster approach in (2.13) from
1987 are identical, with µ = λ2/λ1, which is nothing but a curious fact. All
these similarities mean that [91] and [97] were actually applying OC in their
studies, intuitively, without knowing it; they were just lacking the formal OC
background.

From this point, the EMP rapidly became a common topic in control
literature for several reasons: in first place, HEVs rose as an effective and
promising answer to the increasingly stringent emission limits; second, there
are lots of room for improvement for an adequate power-split; and third, it is a
relatively cheap and easy to solve OC problem with the ECMS simplification.
Since that time, it has been an attractive topic and many authors have been
filling an extensive list of works addressing the EMP with a number of different
approaches. Mainly, DP [101–108] and PMP (including the ECMS approach)
[109–121] are the two usual optimization methods of choice in literature, being
the last the most common. Performance benchmarks of these two methods
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are issued in [122–124], with an detailed discussion in [125]. Other approaches
such as DM [126], fuzzy logic [127], neural networks [128], genetic algorithms
[129, 130], or linear optimization [131] have also been already investigated in
literature with limited acceptance. Heuristics are the topic for some works as
well [132–134], which is the solution usually adopted by the industry, but since
it is an arbitrary question these works fall out of the interest of this thesis.
[89] carried out an interesting review of the main approaches in literature to
address the EMP.

During the years, the topic has transitioned from the basic power-split
EMP to many complex approaches that minimize fuel consumption in HEVs
considering the effect of the thermal state of the engine [135], battery aging
during long-term operation [136], pollutant emissions [108, 120, 137], emissions
in combination of coolant temperature [137], variable composition fuels [138],
additional Noise, Vibration, and Harshness (NVH) constraints [139] and
catalyst temperature [140]. Many of those approaches are reviewed and
analyzed in [141].

Generally, DP and PMP approaches face the EMP assuming perfect
driving cycle knowledge and hence the result is an offline solution. Also, a
simple vehicle model is used because in DP increasing the number of states is
computationally expensive (see section 3.2.1 for a discussion on DP’s curse of
dimensionality) and in PMP it may prevent a numerically stable solution (see
section 3.3.4 for further information about PMP ill-conditioning). Therefore,
a quasi-steady model is used with a simple battery representation which, in
the case of ECMS, has no dynamics.

The main drawback that face the OC approach of the EMP is that all
solutions are inherently cycle-dependent, which may limit the applicability of
OC to offline purposes. Nevertheless, OC is still a valuable tool to benchmark,
analyze and find the optimal boundary of control strategies. Anyhow, since an
online controller is also desirable, several authors have addressed this drawback
with a variety of approaches, which are discussed below.

Addressing cycle-dependency issue

OC in its rigorous form can only be applied with a complete knowledge of
the problem, including the driving cycle, no matter the optimization method:
DP explores backwards the whole cycle, PMP–or ECMS–requires the cycle
to calculate λ(0), and other algorithms assume that the cycle is known in
advance. Due to this, the result of OC application to the power-split is, as
Mosbech stated in [90], “an optimal sequence of control actions for a given
driving schedule, and not an optimal control strategy, which is the ultimate
goal”, limiting the applicability to online purposes.
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This cycle-dependency issue is addressed in literature mainly with three
different approaches: (i) inferring an heuristic controller from optimal trajec-
tories, (ii) including a feedback control, and (iii) estimating future driving
requirements.

Heuristic–i.e. rule-based–controllers can be somehow deducted based on
observations of optimal control trajectories [102, 142]. For example, common
policies that may be found in the optimal control are to recharge the battery
during coasting, to switch off the engine at low loads or to assist with the
motor at launch. These heuristic controllers are no longer optimal, but they
have been constructed around some kind of optimality concerns. Hence, a
set of driving cycles are addressed with DP [102], PMP [142], or any other
optimization algorithm, and the solution is analyzed looking for trends and
relations between variables. The resulting controller is robust and predictable,
but it may perform inefficiently.

Other authors opted to include an additional feedback control to the
OC method [123, 143, 144]. These approaches are based on the ECMS
strategy since it reduces the necessary future knowledge to just the constant
multiplier µ in (2.14). Generally, a PID-like controller is in charge of guessing
the appropriate µ value based on the current deviation of the SoC, with a
proportional response [143], or nonlinear configurations [123, 144].

The estimation of future driving conditions is, by far, the preferred approach
in power-split OC. An adequate prediction of road conditions is quite important
for an efficient control [145]. Nearly all works are based in ECMS to simplify the
cycle prediction into a single parameter guessing. Given that, the approaches
are numerous. Some authors proposed to sample a driving cycle based on past
observations and predictions. ECMS is used to calculate the optimal trajectory
for this cycle and it µ value is applied to the actual driving cycle on real time
[146–149]. Some of these approaches base their predictions on driving pattern
recognition [148], while others characterize driving conditions as a Markov
process [149, 150]. An extensive discussion on driving conditions prediction
may be found in [151]. Another approach is to calculate the optimal trajectory
for a receding horizon and apply its corresponding µ value to the current
driving conditions [152, 153]. In order to speed up calculations in an online
application, [152] used Approximate Dynamic Programming (ADP) (see [154]
for a description of ADP) and an interesting methodology to extract the optimal
µ value from DP results, which is thoroughly discussed in [155, 156]. A third
approach in literature is to perform an stochastic analysis within a receding
horizon and use a likelihood estimation to calculate the appropriate µ value
under some optimality concerns [157], or including geographical information
[158, 159]. Some other works base their methodologies in the estimation of
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potential energy regeneration segments [160], in the relation between average
power requirements and µ value [161, 162], or in the use of an MPC to estimate
the most efficient µ value.

A minor stream is to use the stochastic information to solve directly the
OCP instead of guessing future requirements. This is conducted by applying
SDP (see [163] for a detailed description of SDP) with a likelihood approach
to the driving cycle, usually referred to the power requirements [164–168].

2.5 Design applications of optimal control

OC is generally used to control a system or to derive a control law. However,
one of its main applications is also serving as a benchmark for designing
purposes. Optimal trajectories give a boundary to the efficiency for a given
technology.

2.5.1 Heat release law design

Energy balance [169–172] has been a traditional technique to analyze the
tradeoff between fuel consumption and emissions. It aims to study the mass
and energy flows into and out of the different engine systems in order to
identify possible undesirable energy sinks affecting efficiency. A more refined
approach consists of using both the first and second Law of Thermodynamics
in order to perform an exergy–available energy–balance that takes into account
irreversibility in engine processes such as combustion [173, 174]. Previous
approaches allow the identification of potential efficiency improvements by
recovering part of the thermal energy loss, and particularly, the second one
allows to find an upper bound for efficiency given the engine characteristics
and its operating conditions. However, despite dealing with the minimization
of energy losses, previous methods are not well-suited to take into account
other parameters that impact on engine emissions and design. Another
important issue of previous methods is that the complexity of the combustion
process requires the assumption of an arbitrary HRL. In this sense, traditional
thermodynamic processes such as constant volume, constant pressure and
limited pressure combustions are assumed [173], or more sophisticated Wiebe
functions are considered [174].

In order to address the limitations of prescribed thermodynamic processes,
the HRL can be approached from the OC perspective calculating the fuel
injection strategy that minimizes fuel consumption and, eventually, including
pressure and knock constraints [175, 176]. This enables to estimate a boundary
efficiency in order to properly design and schedule the injection system, without
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using arbitrary combustion laws. Constraints related to non-energy-based
parameters, such as pressure and emission limits, can be also taken into
account.

2.5.2 Sizing of hybrid powertrains

Not only power-split control is key to improve HEVs performance, but also the
design of its powertrain. The proper selection of powertrain components size
is a critical choice during the design phase. A badly sizing may spoil potential
benefits in both fuel and emissions [177]. Engine specifications should meet
the requirements of hybrid operation; for example, engine might work at low
loads if displacement is too large, and limit the capabilities of the powertrain
if it is too small. In fact, HEV efficiency is strongly affected by the engine
characteristics [178]. Also, both the motor and the battery should meet the
characteristics of the ICE [179, 180], which is rather intuitive.

This designing problem might be addressed with a causal analysis of
powertrain specifications and performance requirements [181], but effectiveness
cannot be guaranteed. However, it is possible to benefit from mathematical
optimization algorithms to find the most efficient powertrain design for a given
set of requirements. Hence, the choice of the powertrain components may
be approached as an optimization problem whose unknowns–battery, motor
and engine sizes–must minimize fuel consumption [182], pollutant emissions
[183] or vehicle cost [184], such that some performance constraints [185] are
fulfilled. Several numerical optimization methods have been used in literature
with quite similar performance [186] such as genetic algorithms [130, 183, 187,
188], particle swarm optimization [185, 189], convex optimization [190–193]
or MINLP [184] among others. Despite its designing advantages, it must
be taken into account that optimal approaches to his problem are cycle-
dependent, since the performance of the powertrain is intrinsically linked to
the particular driving cycle. In fact, it was found that charge sustaining HEVs
show significant savings on city driving but negligible advantages in highway
situations, and that Plug-in Hybrid Electric Vehicle (PHEV) benefits are
strongly dependent on the battery size [194].

Many works in literature have focused exclusively to the powertrain sizing
problem [130, 178, 179, 182–187, 190–193, 195]. However, the performance
and efficiency of a HEV is unequivocal related to the power-split control
[196], and an heuristic controller might produce an unfair comparison among
several powertrain schemes [197]. Moreover, a given power-split strategy
may perform efficiently for a specific powertrain size and produce undesirable
results for another, making the size decision specially sensitive to the energy
management control [197]. In order to make the powertrain characteristics the
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only difference, both the sizing problem and the power-split control must be
addressed together [189, 194, 197], resulting in a mixed OC and parametric
optimization problem:

min
u,κ

{∫ T
0
ṁf (u,κ, t) dt

}
(2.17)

where u is the control law, κ the size parameters to optimize and ṁf the fuel
consumption rate. This mixed problem has been addressed in literature in
[188, 198, 199]. Due to the coupling of two problems of different nature, the
typical approach is to surf across a space of different powertrain sizes with a
numerical algorithm and, for each candidate, address the power-split OCP. This
strategy involves a nested optimization of the design and the control problem
by exploring all optimum candidates–which is equivalent to a brute-force
search. This fact guarantees that the solution will be the optimum among the
discretization grid candidates, but may be computationally expensive. Other
approaches that are proposed in the literature are sequential optimization
(the design problem is first addressed and, then, the control problem is solved
for a given design, repeating this scheme iteratively) which cannot guarantee
optimality of the solution, or the methodology proposed in [200].

Some authors also included the vehicle price to the above cost index in
order to account for the tradeoff between fuel efficiency and HEV cost at
different levels of electrification [189, 201]. Accurate cost models are available
at literature [202, 203]. A common conclusion is that full hybrids–with a
strong electrification–offer an improved fuel efficiency but they are much more
expensive; on the contrary, vehicles with a low level of hybridization usually
show an acceptable fuel efficiency benefit at a low cost [189]. According to
Nuesch et al., “the best topology should then be selected according to the
individual preference” [189], suggesting that there is still a lack of an objective
criterion that minimizes the payback and total expenses.
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[29] E. Hellström, A. Fröberg, and L. Nielsen. “A real-time fuel-optimal
cruise controller for heavy trucks using road topography information”.
In: SAE Technical Paper. 2006.

[30] E. Hellström et al. “Look-ahead control for heavy trucks to minimize
trip time and fuel consumption”. In: Control Engineering Practice 17.2
(2009), pp. 245–254.
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[116] D. Ambühl et al. “Explicit optimal control policy and its practical
application for hybrid electric powertrains”. In: Control Engineering
Practice 18.12 (2010), pp. 1429–1439.

[117] S. Stockar et al. “Optimal control for plug-in hybrid electric vehicle
applications”. In: Proceedings of the American Control Conference.
2010, pp. 5024–5030.

[118] J. Bernard et al. “Fuel efficient power management strategy for fuel
cell hybrid powertrains”. In: Control Engineering Practice 18.4 (2010),
pp. 408–417.

[119] A. Chasse and A. Sciarretta. “Supervisory control of hybrid powertrains:
An experimental benchmark of offline optimization and online energy
management”. In: Control Engineering Practice 19.11 (2011), pp. 1253–
1265.

[120] O. Grondin et al. “Energy management strategy for diesel hybrid
electric vehicle”. In: IEEE Vehicle Power and Propulsion Conference.
2011, pp. 1–8.

[121] S. Stockar et al. “Energy-optimal control of plug-in hybrid electric
vehicles for real-world driving cycles”. In: IEEE Transactions on
Vehicular Technology 60.7 (2011), pp. 2949–2962.



References 49

[122] N. Kim, S. Cha, and H. Peng. “Optimal control of hybrid electric vehi-
cles based on Pontryagin’s minimum principle”. In: IEEE Transactions
on Control Systems Technology 19.5 (2011), pp. 1279–1287.

[123] L. Serrao, S. Onori, and G. Rizzoni. “A comparative analysis of energy
management strategies for hybrid electric vehicles”. In: Journal of
Dynamic Systems, Measurement, and Control 133 (2011), pp. 1–9.

[124] Z. Yuan et al. “Comparative study of dynamic programming and
Pontryagin’s minimum principle on energy management for a parallel
hybrid electric vehicle”. In: Energies 6.4 (2013), pp. 2305–2318.

[125] B. De Jager, T. Van Keulen, and J. Kessels. Optimal control of hybrid
vehicles. Springer, 2013.
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Chapter 3

Mathematical methods for
dynamic optimization

Mathematics is the art of giving the same name to different things.

— Jules Henri Poincaré
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3.1 Introduction

The OCP is essentially a minimization problem in time (see section 2.2 for
a detailed description of an OCP). An immediate approach is to solve the
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problem analytically. While it might be possible, interesting OCPs usually
involve complex models and many constraints, which are unfeasible for an
analytical approach. Typical problems can be, however, addressed with
numerical approaches, which take profit of the calculation capabilities of
computers at the expense of discretizing time varying trajectories.

According to [1], numerical methods can be classified in three main groups
attending to the mathematical properties that they exploit to address an
OCP: (i) HJB equation, (ii) Indirect Method (IM), and (iii) DM. This chapter
discusses the particularities of the three previously mentioned methods.

Before describing the above numerical methods, it might be interesting
to briefly introduce the concepts of state, control and disturbance with a
powertrain control example: the speed control of a vehicle. States x are the
variables that unequivocally define the current state of the dynamic system. In
the example at hand, assuming a quasi-steady engine model, it is the vehicle
speed so, the total number of states is Nx = 1. Mathematically, these variables
relate to the ODEs of the model. Controls are the variables that can be
actuated in the system, and finding their optimal trajectories is the aim of OC.
Following with the speed controller example, the control is the engine fueling
rate so, the number of controls is Nu = 1. Disturbances are time-varying
quantities that cannot be controlled, directly affecting to the system behavior.
In the case of the speed problem, it might be speed limits and the road grade
profile. All these characteristic variables are generally discretized in order to
be addressed with a numerical method. Therefore, the state (vehicle speed)
may be gridded arbitrarily into nx = 30 individual candidates, and the control
(fueling rate) into nu = 20 candidates. Similarly, time trajectories must be
divided into discrete time instants (e.g. nt = 100) such that the sample time
results ∆t = T /(nt − 1).

3.2 Hamilton-Jacobi-Bellman

The Hamilton-Jacobi-Bellman (HJB) equation was named after the mathe-
matician Richard Bellman who contributed to the development of OC theory
in the 1950s and introduced the DP. This equation can be deducted from
Bellman’s Principle of Optimality (BPO): An optimal policy has the property
that whatever the initial state and initial decisions are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the
first decisions [2]. This statement directly implies that any sub-trajectory of
an optimal trajectory must be also optimal. It is a rather intuitive idea but
exceptionally important for the control theory because it means that any OCP
may be chopped into as many small problems as desired once initial states are
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given at each portion. The BPO can be expressed with the following equation
[3]:

J (x(t), t) = min
u

{∫ t+δt

t
L(x(τ),u(τ), τ) dτ + J (x(t+ δt), t+ δt)

}
(3.1)

The above denotes that the cost-to-go J (the value of the cost index associated
to the optimal trajectories) from any state vector x at an undetermined time
0 ≤ t ≤ T can be calculated as the sum of the cost index of a differential OCP
with length δt and the cost-to-go from time t + δt. It is possible to replace
J (x(t+ δt), t+ δt) with the first two terms of a Taylor’s expansion around
time t:

J (x(t+ δt), t+ δt) ≈ J (x(t), t)+ J̇ (x(t), t)δt+∇xJ (x(t), t)f(x(t),u(t), t)δt
(3.2)

where f is the dynamic constraints function of the state vector. Substituting,
canceling J (x(t), t), dividing by δt and taking limits when δt→ 0 brings:

J̇ (x(t), t) + min
u
{L(x(t),u(t), t) +∇xJ (x(t), t)f(x(t),u(t), t)} = 0 (3.3)

which is the HJB equation [3]. Both this differential or the integral forms–the
expression derived from BPO at (3.1)–are necessary conditions of optimality
for the OCP when evaluated locally at a particular t [3, 4]. If the OCP is
evaluated globally throughout its time span, the HJB equation is a sufficient
condition [3].

3.2.1 Dynamic Programming

The DP is a numerical method built around the HJB equation and it is a direct
application of the BPO. The underlying idea is to split the complete problem
into a finite number of small problems that can be easily solved. Thus, the
time span of the problem is divided into nt discrete time instants ti where the
following sub-problem is to be addressed:

min
u

{∫ ti+1

ti

L(x,u, t) dt+ J (x, ti+1)

}
(3.4)

subject to the particular constraints of the OCP of interest. This sub-problem
may be approached in numerous ways–other numerical optimization algorithms,
brute force, etc. A common method is to explore the complete (x,u) space
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and choose the u vector that minimizes the above quantity. Anyhow, these
sub-problems are generally affordable to solve regardless of the method.

Once it is solved, nearly any OCP of interest may be addressed by repeating
this step from i = nt − 2 to i = 0 and accumulating J –cost-to-go–for the
whole x space. The resulting J (x, 0) is a space of costs-to-go for the optimal
solution of the OCP from 0 to T as a function of the initial vector of states x.
Choosing J (x0, 0) will deliver the optimal cost-to-go to the problem satisfy-
ing the constraints–and consequently the corresponding optimal trajectories.
Therefore, the OCP will be solved.

The BPO is inherently discrete and so the DP method is. Although any
numerical method demands to approximate time as a finite set of discrete
intervals, DP also requires to grid, at least, the state space so the cost-to-go
function J can be accumulated as a function of the state vector x–otherwise
J should be computed in an analytical form which is not possible in the usual
case. The discretization of the state space restricts the trajectories to be
within a finite set of numbers, while states are continuous functions in R for
most of the cases. As a consequence, equality constraints may be impossible
to fulfill as they might fall out of the discretized grid. In this situation equality
constraints should be considered with an acceptance threshold or the grid
density must be increased. At the end, it is a question of the tradeoff between
constraints precision and computational burden.

A major drawback is what Bellman calls the curse of dimensionality. It
refers to the superlinear increase in the dimensions of the DP problem as the
number of states Nx raises. Bellman argued long ago in his work [5] that the
memory capabilities of 1950s computers would limit DP to problems with
Nx ≤ 3. Despite computer technology has spectacularly evolved from those
days, the curse of dimensionality is still the main handicap to solve an OCP
with DP. The magnitude of this issue can be explained by calculating the
dimensions of a general DP problem. The number of elements that must be
in memory to store the cost-to-go are:

nJ = nx
Nx (3.5)

where nx is the number of elements each state is discretized in. The optimal
controls are also stored in memory to keep track of the optimal trajectory.
The number of elements that they require in the worst case scenario–when
the whole problem has been covered and optimal controls are calculated for
each state value as a function of time–are:

nU = ntnx
NxNu (3.6)
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where nt is the number of elements the total time span T is discretized in and
Nu the number of controls to optimize in the problem. Therefore, the total
amount of elements that must be stored in memory at a time for a generic
DP problem are:

nDP = (ntNu + 1)nx
Nx (3.7)

which increases linearly with time or the number of controls but as a power
of the number of states. Rising the number of states in one unit involves
an increase of ∆Nx = (ntNu + 1)nx

Nx(nx − 1) elements, while a rise of one
unit in nx increases the number of elements in ∆nx > (ntNu + 1)Nxnx

(Nx−1)

(derived from a Taylor expansion of (3.7) around nx for nx + 1) which are still
power functions. The quotient ∆Nx/∆nx = nx(nx− 1)/Nx denotes that ∆Nx

grows faster, meaning that it is cheaper in computational terms to increase
the discretization of the states than their number.

As a reference, figure 3.1 shows the minimum memory allocation require-
ments for a generic DP problem of 600 sample times as calculated with (3.7) in
Megabyte (MB). It can be seen that in general terms a large number of states
demands more memory than a dense grid as stated above. Modern computers
with 64-bit architecture address memory using 48 bits [6, 7], meaning that
they have a technical limitation of 248 bytes, i.e. 256 Terabyte (TB) of total
memory to address (depicted in red). However, in practice, a Random-Access
Memory (RAM) overflow requires the allocation of data in a paging file dra-
matically penalizing the system performance, so a practical limit of a half of
the available RAM capacity is much more realistic. 4 Gigabyte (GB) and 8 GB
limits–representative of modern desktop computers ranging between 8 and 16
GB of RAM–are shown with a green and yellow dashed lines respectively, and
denote that a problem featuring between 3 and 4 states is the limit for current
machines with a moderately populated grid. In the case of discrete states with
a sparse grid, the number of states that can be handled might be twice the
former. Note the logarithmic scale of the figure which is a subtle detail with
major implications: first, Nx is the term that makes (3.7) grow the fastest–it
is the exponent–resulting in an exponential increase of memory requirements
with the number of states–that is the reason why 4 and 8 GB lines are so
close to each other; second, despite the capabilities of a machine to address
a DP problem are based on its RAM capacity, it is somehow insensitive to
the range of memory of nowadays’ technology–perhaps that is why Bellman
was already talking about a limitation at Nx ≤ 3 in the 1950s [5]; and third,
considering that even with an 256 TB RAM machine (thousands of times the
average capacity of modern computers) a limitation of Nx . 5 applies, the
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Figure 3.1: Minimum memory allocation requirements in MB of a generic DP
problem with 600 time samples and Nu = 2 as a function of the number of
states Nx and the number of elements per state nx. 8 Byte variables (double
precision) are assumed. The technical limitation of a 64-bit machine (256 TB)
is depicted with a red dashed line. Also, practical limits of 4 and 8 GB–which
would avoid system slowdown due to paging in most modern computers–are
shown as a green and yellow dashed lines respectively. Note that despite
contours are interpolated iso-memory curves, the number of states and the
discretization grid must be integer values.

curse of dimensionality will continue being a major drawback of DP method
during several decades.

Several workarounds have been proposed in literature to somehow circum-
vent the curse of dimensionality. Bellman himself suggested that his DP
method might be combined with the classical analysis of variations [5]. He
introduced the idea of adjoining Nλ states–or more precisely their dynamics–to
the cost index with a vector of Lagrange multipliers. Hence, he is construct-
ing an equivalent problem with Nx −Nλ states and Nλ unknown Lagrange
multipliers, effectively reducing the dimensions of the problem at the expense
of increasing its complexity, especially with time varying Lagrange multipliers.
Other authors such as Rust introduced pseudo-random techniques to break
the curse of dimensionality in [8]. Those transform some particular subclasses
of problems that are untractable with deterministic algorithms into tractable
problems using Montecarlo integration schemes to estimate the cost-to-go and
multigridding–an iterative re-meshing algorithm that increases grid density.
Another different approach is the approximate DP followed by Powell at [9].
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It is founded in approximating the cost-to-go J with another function J̃ that
might be calculated with a simpler but related problem, some kind of heuristics
or a prescribed suboptimal policy. Hence, the problem can be approached in a
forward fashion, solving the HJB equation from 0 to T . A part from reducing
the impact of the curse of dimensionality, it brings the possibility of building
a real-time controller as this method only requires a rough approximation of
ahead conditions instead of detailed information.

The interested reader is redirected to the works [3, 10, 11] for an extensive
review of DP.

3.2.2 On the algorithm implementation

The DP algorithm used throughout the works presented in the following
chapters is mostly a direct application of the BPO. The procedure to address
an OCP with Nx states and Nu controls begins by dividing the time span
T of the problem1 into nt equidistant points, that is, [t0, t1, . . . , tnt−1], such
that ti+1 − ti = ∆t. States and controls are also discretized into nx and nu
points respectively: x = [x0, x1, . . . , xnx−1], u = [u0, u1, . . . ,unx−1]. The grid
distribution depends upon the particularities of each problem.

Then, the BPO–which is indeed the integral form of the HJB equation–is
applied for each time instant ti starting at i = nt−2 and proceeding backwards.
The particular cost-to-go equation for a discrete state value xj and a control
uk at time ti is:

J i(xj ,uk) = L(xj ,uk, ti)∆t+ J i+1(x̂) + I(xj , uk, ti) (3.8)

where x̂ is the state resulting of applying the above control to the system from
ti to ti+1. It can be calculated as:

x̂ = xj + f(xj , uk, ti)∆t (3.9)

In the case x̂ does not fall within the state grid, the cost-to-go J i+1(x̂) can
be calculated by interpolation of the available grid. The quantity I is a
penalization term to take into account path constraints by assigning a near-
infinity cost to the combinations that violate these constraints:

I(xj , uk, ti) =

{
0, c(xj , uk, ti) ≤ 0

ε, c(xj , uk, ti) > 0
(3.10)

1For the sake of clarity and, in line with OC literature, in this chapter the problem is
solved in time domain, while the transformation to distance or any other monotonic domain
is straightorward by following the procedure introduced in appendix A
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with ε as big as desired. Final value constraints are similarly considered at
the terminal cost-to-go value:

J nt−1(xj) =

{
0, φ(xj) ≤ 0

ε, φ(xj) > 0
(3.11)

The above process is repeated for all the elements at the control grid u
and the minimum cost-to-go is selected:

J i(xj) = min
u
{J i(xj ,u)} (3.12)

This minimization problem is solved by brute-force search. Hence, J i is
evaluated at each time step for the whole grid of state and control values at
the implementation, resulting in a matrix with Nx · Nu dimensions, which
can be much larger than J i. Therefore, the curse of dimensionality may be
even worse than from the theoretical point of view that was shown in the
figure 3.1, where only the memory requisites for the state grid were taken into
account. Figure 3.2 shows the minimum memory requisites for a generic DP
problem when using brute-force search for optimal u. It can be appreciated
that Nu = 5 is hardly tractable for Nx = 1 while, for example, a problem
with Nx = 3 would be intractable with Nu ≥ 3. Fortunately, any problem
with Nu ≤ 2 will, at most, double the memory usage with brute-force search
compared to any other minimization algorithm. Of course, these comments are
a consequence of the chosen grid density and problem length for this example;
however, as discussed in previous sections, the most influential parameter
regarding memory requisites is Nx, so the above conclusions are not far from
being somehow general.

The control that minimizes the above quantity is stored as U i(xj). This
minimization is performed for all xj and all states to build the cost-to-go
matrix J i and U i.

The whole process described in eqs. (3.8)–(3.12) is sequentially reproduced
backwards until reaching t0. Then, choosing J 0(x0) fulfills the initial value
constraints (2.4) and its corresponding U0(x0) yields the optimal control
trajectories of the OCP.

Finally, due to the discrete nature of the DP algorithm, a forward simulation
of the system is performed to guarantee constraints fulfilling. If a constraint is
violated, a grid re-meshing must be performed–with a different discretization
distribution or increasing grid density–or tolerances should be modified for
that particular constraint.

The DP algorithm cannot considerate integral constraints such as (2.7)
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Figure 3.2: Memory requisites for a generic DP problem considering controls
gridding for brute-force search of optimal u. The presented problem features
nx = 30, nu = 20 and nt = 600. Color bars represent, from light blue to
purple, memory requirements to store J0 and U with Nu = 1, . . . , 5. The
corresponding memory allocation for the brute-search algorithm is displayed
with black dots. Orange dashed lines represent, from top to bottom, the
technical limit of a 64-bit machine (256 TB), and two practical limits of 4 and
8 GB. Note that the memory usage of the DP implementation is the sum of
the color bars and the black dots.

explicitly. However, a dummy state xNx+1 may be added to the original
problem with the ODE:

ẋNx+1 = q(x,u, t) (3.13)

and boundary constraints:

xNx+1(0) = 0
xNx+1(T ) ≤ 0

(3.14)

Hence, this additional state is equivalent to the integral constraint. As a
drawback, the original OCP has grown its number of states in one unit,
aggravating the curse of dimensionality issues commented before.

Throughout the works developed in this thesis, two different implementa-
tions have been used. On the one hand, the generic DP function for Matlab
developed by Sundström and Guzzella has been employed in several applica-
tions as it provides out-of-the-box functionality for a user given model. It is
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rather flexible, allowing up to 5 state variables, and distributed under Mozilla
Public License. Despite the basic functionality follows the above algorithm,
more details can be found in [12]. On the other hand, an ad-hoc DP solver has
been implemented in Matlab with the precise algorithm described in this
section. It features a slightly faster calculation but at the expense of reduced
flexibility.

3.3 Indirect method

The IM to approach an OCP was originated in the classical calculus of
variations–a field of mathematical analysis concerned with the calculation
of minima or maxima (extrema) of functionals (informally called functions
of functions). During the 1950s and 1960s Pontryagin et al. developed this
theory further in the field of optimal control theory to finally state the PMP
[13] (originally known as Pontryagin Maximum Principle) named after the
Russian mathematician, and also referenced as minimum principle or simply
as necessary conditions in several works.

The IM describes the necessary optimality conditions of an OCP solution.
The idea that lies behind the IM is to use these necessary conditions to trans-
form the global OCP problem into a much simpler BVP. The term indirect
refers to the fact that a second problem is solved–the BVP–in order to find
the solution of the first, hence the solution is found in a somehow indirect
manner. The main drawbacks of IM are: (i) the resulting system of differential
equations might be too nonlinear and unstable (it is usually ill-conditioned)
for a forward numerical simulation, and (ii) the method is founded around
necessary conditions, not sufficient, and therefore optimality cannot be guar-
anteed beforehand. However, it also features interesting advantages. On the
one hand it offers an exact and explicit form for the optimal trajectories of an
OCP, and on the other hand it reduces the dimensions of the global problem
to a relatively simple BVP, where there is not an explicit time dependency
and, therefore, might be suitable for a real-time application.

The IM, or more particularly the PMP, has been a popular topic in many
fields of engineering, from robotics to aerospace applications. It has been also
the germ of the bang-bang control.

3.3.1 Pontryagin Minimum Principle

The PMP describes the necessary optimality conditions for an OCP solution.
These conditions can be derived from the differential form of the HJB equation
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stated in (3.3). The abbreviation of the cost-to-go gradient, λ = ∇xJ ,
introduces the Hamiltonian:

H(x,u, λ) = L(x,u) + λT f(x,u) (3.15)

where the time dependency of x(t), u(t) and λ(t) has been deliberately obviated
for the sake of clarity. The functions λ are known as costates. The optimal
control trajectory can then be expressed as:

u∗(x, λ) = arg min
u
H(x,u, λ) (3.16)

This particular equation is sometimes referred to as the minimum principle.
It is remarkable that the optimal solution depends on λ (the gradient of the
cost-to-go) and not on J itself. Using the Hamiltonian, the HJB equation
results as:

J̇ (x(t), t) +H(x,u∗, λ) = 0 (3.17)

It is clear that for a given pair of states and costates, the optimal controls are
explicitly defined with (3.16). However, costate trajectories remain unknown.
To extract their governing equations it is necessary to differentiate the above
HJB equation with respect to x assuming that states and controls trajectories
are optimal:

∂2J
∂x∂t

(x∗, t) +
∂H

∂x
(x∗,u∗, λ∗) +

∂H

∂λ
(x∗,u∗, λ∗)

∂λ

∂x
+
∂H

∂u
(x∗,u∗, λ∗)

∂u

∂x
= 0

(3.18)

According to (3.16) it is known that ∂H
∂u (x∗,u∗, λ∗) = 0 to be the optimal

trajectory, so that the last term vanishes. From the definition of the costates,
∂λ
∂x = ∇2

xJ . Also, ∂H
∂λ (x∗,u∗, λ∗) = f(x∗,u∗) according to the definition of

the Hamiltonian. In addition, ∂2J
∂x∂t(x

∗, t) might be rewritten as ∂
∂t∇xJ (x∗, t).

Then the above equation results:

∂

∂t
∇xJ (x∗, t) + f(x∗,u∗)∇2

xJ (x∗, t) +
∂H

∂x
(x∗,u∗, λ∗) = 0 (3.19)

Taking into account that ẋ∗ = f(x∗,u∗), the first two terms of the above
equation can be substituted with d

dt∇xJ (x∗, t) = λ̇
∗
. The expression finally

results:

λ̇
∗

= −∂H
∂x

(x∗,u∗, λ∗) (3.20)
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This ODE governs the dynamics of the costates. In the case of a final
constraint such as (2.5), the corresponding terminal condition can be obtained
differentiating J (x, T ) = φ(x):

λ(T ) = ∇xφ(x∗(T )) (3.21)

Note that the absence of final constraints is equivalent to a null gradient,
yielding the condition λ(T ) = 0.

Expressions (3.16), (3.20) and (3.21) gathers the necessary conditions
for the optimality of an OCP solution that, in combination with the OCP
constraints, can be summarized as:

x∗(0) = x0

ẋ∗(t) = f(x∗(t),u∗(t))
λ∗(T ) = ∇xφ(x∗(T ))

λ̇
∗
(t) = −∇xH(x∗(t),u∗(t), λ∗(t))

u∗(t) = arg minuH(x∗(t),u, λ∗(t))

(3.22)

These conditions formulate a two-point BVP as long as they are given at
the beginning and at the end of the time span. The solutions of this equivalent
problem are candidates to the solution of the original OCP, but the PMP does
not give any clue about which is the optimal solution since it is constructed
around necessary conditions.

3.3.2 Additional constraints

The PMP has been introduced as a methodology to transform a complicated
OCP into a much simpler BVP making use of necessary conditions. However,
only final constraints have been introduced in the formulation so far.

Path constraints on the control variables are pretty straightforward to
include. These simply reduce the seeking space for the control to the permitted
range U when applying the minimum principle:

u∗(t) = arg min
u∈U

H(x∗(t),u, λ∗(t)) (3.23)

The introduction of path constraints on the state variables of the form
c(x,u) ≤ 0 is a much more difficult job as the derivation of costates becomes
more complicated. The main idea is that the ODE results in:

λ̇
∗
(t) = −∇xH(x∗(t),u∗(t), λ∗(t))−∇xc(x

∗(t),u∗(t))µ∗ (3.24)
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where µ∗ is a constant multiplier. The complication lies on the fact that there
is no straightforward way to calculate the appropriate value of this multiplier,
which usually jumps from one value to another when the state trajectory
touches the boundary [3, 4]. In practice this makes the state constraints very
difficult if not impossible to include in many OCPs. The formalism to reach
the above expression is complex and falls out of the scope of this dissertation,
so the interested reader is redirected to one of the numerous works that discuss
this particular case for a complete development, such as [3, 10, 11].

Finally, integral constraints of the form
∫ T

0 q(x,u) dt ≤ 0 can be easily
included in the formulation with an additional state

ẋNx+1 = q(x,u) (3.25)

with conditions

xNx+1(0) = 0
xNx+1(T ) ≤ 0

(3.26)

which is the same philosophy followed to include integral constraints in DP
(see section 3.2). Applying necessary conditions yields to:

λ̇
∗
Nx+1 =

∂H

∂xNx+1
(x∗,u∗, λ∗) (3.27)

Since Hamiltonian does not explicitly depend on xNx+1 but at the correspond-
ing λNx+1 term, the above differential vanishes:

λ̇
∗
Nx+1 = 0 (3.28)

Therefore the costate is a constant multiplier µ:

H(x,u, λ) = L(x,u) + λT f(x,u) + µq(x,u) (3.29)

defined by the costate terminal condition as described previously:

µ = ∇xx
∗
Nx+1(T ) (3.30)

3.3.3 Bang-bang and singular control

An interesting yet complex situation is when the Hamiltonian depends linearly
on the control, e.g.:

H(x, u, λ) = ϕ(x, λ)u+ C (3.31)
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Figure 3.3: Illustration of a Hamiltonian for a bang-bang control situation.
Note that for ϕ < 0 or ϕ > 0 the control that minimizes the Hamiltonian–
represented with a dot–is trivial. However, if ϕ = 0, any value between u and
ū might be the optimal control. PMP theory does not give any additional
information to find which is the correct solution.

The application of PMP yields to:

λ̇
∗

= −u∇xϕ(x, λ) (3.32)

and to the following minimum principle:

u∗ = arg min
u
{ϕ(x∗, λ∗)u} (3.33)

which is trivial for both ϕ(x∗, λ∗) < 0 or ϕ(x∗, λ∗) > 0, but not in the case of
ϕ(x∗, λ∗) = 0. In particular, if u ≤ u ≤ ū:

u∗ =


ū, ϕ(x∗, λ∗) < 0

?, ϕ(x∗, λ∗) = 0

u, ϕ(x∗, λ∗) > 0

(3.34)

Figure 3.3 illustrates the above situation. If ϕ adopts a non-zero value, then
the optimal control trajectory is immediate and only the switching points
between ū and u are to be found. This type of binary control is called bang-
bang control because it jumps between the boundaries of the control variable
[3]. It is the typical control of simple systems (or systems that have been
simplified to a linear model) and can be found in many applications due to its
easy implementation on real systems [4]. Several works deepen the subject
such as [3, 11, 14].

The difficult part lies in determining the control trajectory when ϕ = 0
since the control variable vanishes from (3.33). This particular case is called
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singular control as the PMP gives no clue to find the appropriate value and the
control variable must be deducted from other considerations. One approach
to bypass this issue is to repeatedly differentiate ∂H

∂u with respect to time until
the control variable explicitly appears again [4] which is equivalent to state
that the optimal control is such that the singular case holds for a determined
period of time. Another approach is to use additional information such as the
fact that the costate is constant as long as the singular control holds:

λ̇ =
∂ϕ

∂x
(x∗, λ∗)u = 0 (3.35)

The term ∂ϕ
∂x vanishes as long as ∂ϕ

∂t = 0. Therefore, since the costate during
the singular period must equal its value just before and after this period
of time, it can be calculated and the control trajectory might be indirectly
deducted.

A deeper discussion on singular control can be found in the works [3, 11,
14].

3.3.4 On the algorithm implementation

The numerical approach followed in this thesis is based on a shooting method
to reduce the two-point BVP to a IVP which is easier to solve by forward
integration.

Instead of considering the complete BVP stated in (3.22), the following
IVP is stated:

x∗(0) = x0

ẋ∗(t) = f(x∗(t),u∗(t))
λ∗(0) = λ0

λ̇
∗
(t) = −∇xH(x∗(t),u∗(t), λ∗(t))

u∗(t) = arg minuH(x∗(t),u, λ∗(t))

(3.36)

where the final constraint λ∗(T ) in (3.21) has been exchanged with an initial
condition λ∗(0).

To numerically solve this IVP, the time span is discretized as [t0, t1, . . . ,
tnt−1] with ti+1 − ti = ∆t. The states and costates are known at the first
time instant, so the optimal control can be calculated with the minimum
principle. To do so, a brute-force search is used to find the control variable
that minimizes H(x∗(ti),u, λ

∗(ti)). Then, states and costates may be updated
by forward integration:

x∗(ti+1) = x∗(ti) + f(x∗(ti),u
∗(ti))∆t

λ∗(ti+1) = λ∗(ti)−∇xH(x∗(ti),u
∗(ti), λ

∗(ti))∆t
(3.37)
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The controls, states and costates trajectories can be calculated by repeating
this sequence for all ti from t0 to tnt−1. These are the optimal trajectories
of the IVP but does not necessarily correspond to the optimal solution to
the BVP. Obviously, to be a solution to the BVP it must verify the final
condition of the costates that has been previously neglected in favor of an
initial constraint. Therefore, if λ∗(tnt−1) = ∇xφ(x∗(T )), or more practical, if
φ(x∗(tnt−1)) = 0–note that the inequality in (2.5) has been exchanged for an
equality for the sake of clarity–, it is a solution to the BVP. In any other case,
the value λ0 must be modified accordingly and the whole process should be
repeated until the final condition is fulfilled.

The strategy to choose different values of λ0 is based on a nested intervals
scheme. First, two boundaries, λ0 and λ̄0, are selected to build a first interval
Λ0 of λ0 candidates such that their corresponding values for φ = φ(x∗(tnt−1))
are φ < 0 < φ̄. Then, assuming a linear relation between λ0 and φ, the next
λ0 candidate can be chosen as:

λ0 =
φ̄λ0 − φλ̄0

φ̄− φ
(3.38)

This λ0 candidate will produce a φ0 value. Then, the following nested intervals
can be selected as a function of φ0:

Λi =


[λ0, λ̄0], φ0 < 0

λ0, φ0 = 0

[λ0, λ0], φ0 > 0

(3.39)

A new λ0 is calculated for the chosen interval with (3.38) and a new nested
interval will be built again. The appropriate λ0

∗ value can be approached
as much as desired with this strategy. Of course, the required number of
iterations to deliver a satisfactory accuracy depends on the particular BVP.
Note that in the description of this search algorithm a single costate has been
assumed. Despite the same strategy might be followed with Nx ≥ 2, the search
of λ0

∗ gets much more complicated as cross relations between states affect to
φ.

An important drawback of a numerical approach to PMP is faced when
integrating the costate ODEs since these are generally ill-conditioned [3, 4].
Numerical integration methods produce a divergence from the λ∗(t) trajectory
even with tight tolerances. Many interesting problems suffer from this issue
when PMP is applied and, therefore, they are very difficult to solve numerically.
However, there are several workarounds to avoid the numerical integration of
costates. In the case of systems where bang-bang or singular control applies,
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an analytical solution to the minimum principle is usually possible, eliminating
the need of a numerical approach. Also, if costates are constant multipliers, the
problem can be solved numerically regardless of costates integration. If none
of the two previous cases applies and an OCP is to be solved with PMP, a last
workaround is possible. Recalling that λ = ∇xJ as it was derived in (3.15), if
a previous solution to the OCP is available (e.g. from a DP calculation), λ∗(t)
can be obtained calculating the gradient [15, 16].

It is remarkable that the application of PMP only offers a set of solution
candidates as long as (3.22) form a set of necessary but not sufficient conditions.
However, if the candidate is unique, it must be the optimal solution to the
OCP.

3.4 Direct methods

DM are a family of mathematical algorithms to numerically solve an OCP.
They all share the same philosophy consisting in discretizing the infinite
dimensional control variables to a finite succession of values such that the
continuous time OCP can be transformed into a finite dimensional NLP
problem. For this reason, this approach is often referred to as first discretize,
then optimize [17].

These methods became popular in the last decades among various engineer-
ing fields with the profusion of powerful NLP solvers, with special interest in
aerospace applications [18–21]. DMs have even been used to move the Interna-
tional Space Station with large energy savings compared to other approaches
[22]. Nowadays it is gaining interest in numerous topics and can be found in
many recent works on the optimal control field such as [1, 23–25].

The main advantage of DM is that it takes profit of advances on state-of-
the-art solvers to address the equivalent NLP. This allows to handle large scale
problems featuring numerous states and actuators with reduced computation
time as this method does not suffer the curse of dimensionality. In addition,
as it will be shown in the following points, constraints of any kind are pretty
straightforward to include. However, since NLP algorithms are generally a
combination of a gradient seeking technique and some heuristics–to enhance
convergence and/or robustness of the method–the solutions are local optima
depending on the initial seed. Therefore, there is no guarantee that the global
optimum will be found, and even reaching a solution might be especially
difficult for highly nonlinear systems or problems with many hard constraints.

According to [1], direct methods can be classified in three subgroups:
(i) Direct Single Shooting (DSS), (ii) Direct Multiple Shooting (DMS), and
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(iii) Direct Collocation (DC). These methods differ in the way they transform
the OCP into a NLP.

With the DSS method, the control variables are parametrized by polynomi-
als, piecewise functions, or more generally by piecewise polynomials. The state
trajectories are considered dependent variables of the controls, so they are inte-
grated according to the system dynamics. Therefore, the infinite dimensional
OCP is transformed into a NLP whose unknowns are the parametrization of
the controls, such that the integrated state trajectories fulfill the path, integral
and boundary constraints. The resulting NLP is dense–a control decision not
only affects the present time but also the upcoming behavior of the system
states–and therefore expensive to compute. Thus, this method is usually aimed
to quadratic problems that are much cheaper to solve.

The DMS method proceeds somehow in the same manner than DSS. Control
variables are also parametrized, but the whole time span of the problem is
split in several intervals. At each interval a single shooting problem is solved
with fictitious initial states. An additional continuity constraint such that
the state values at the end of an interval must meet the initial states at the
following one is included to guarantee states continuity across intervals. The
unknowns of the NLP are the control parametrization plus the fictitious initial
states at each interval. The main advantage of this approach compared to DSS
is that the resulting NLP is sparse–in general terms, although dense within
an interval–at the expense of increasing the number of unknowns with the
fictitious initial states, since each interval is an independent problem. This
NLP, if addressed with an sparsity exploiting solver, should be relatively cheap
to solve.

DC methods address the transcription to a NLP by discretizing not only
control variables but also states. An embedded ODE solver is used to transform
the continuous time dynamic system into a large set of algebraic constraints
which also guarantees the continuity of the solution. Following this scheme,
the integration of the state trajectories is no longer necessary. The unknowns
of the NLP are both control and state variables. Note that the NLP solver
itself is also used to simulate the system as the state trajectories are unknowns
to the problem. The main advantage of this method is that the resulting
NLP is extremely sparse and, therefore, much cheaper to solve than the above
methods. On the contrary, the number of unknowns that the solver must
optimize is much larger compared to shooting methods where only controls
are discretized.

Due to computational burden reasons, the DC method is chosen for the
works presented in this thesis. Therefore, this method is described in depth
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in the following points. For a exhaustive discussion on the DSS and DMS
methods, the reader is forwarded to [26].

3.4.1 Direct collocation

This DM is based on the collocation method, which is a numerical algorithm
to solve ODEs, Partial Differential Equations (PDEs) and integral equations.
The idea is to parametrize the solution by a known function, usually piecewise
polynomials. Then, a number of collocation points are chosen and differential
equations are evaluated at these points. The evaluation of the parametrized
solution results in a system of algebraic equations, one for each collocation
point, whose unknowns are the parameters of the candidate solution. This is
the idea behind the DC method.

Similarly to the collocation method described above, the DC method
parametrizes controls and states by piecewise polynomials in general–although
it is very common to find works where piecewise constant functions are used
instead due to their simplicity [27]. Following the philosophy of DMS as well,
the time span is split in a number of independent intervals where the system
dynamics are evaluated. The continuity of the solution is guaranteed including
continuity constraints between intervals, enforcing that the states at the end
of an interval must meet the initial values at the next one.

Within an interval, the parametrized controls and states are evaluated
at each collocation point, resulting in a large system of algebraic equations.
These algebraic equations in combination with the continuity constraints
form a large scale but sparse NLP. Integral equations (namely the cost index
and integral constraints) are approximated with quadrature formulas at the
same collocation points. Path and boundary constraints are enforced at
the unknowns of the NLP, either at the controls and states or at a linear
combination of both.

Thus, the original infinite dimensional OCP has been transcribed into a
finite and large scale NLP where time dependency has vanished. Then, to find
a solution to the OCP the following NLP has to be addressed:

min
x,u

Nt−1∑
i=0

Li(xi,ui) (3.40)
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subject to the following constraints:

x0 − x0 = 0
φ(xNt−1) ≤ 0

f(xi,ui)− ẋi = 0, i = 0, . . . , Nt − 1
c(xi,ui) ≤ 0, i = 0, . . . , Nt − 1∑Nt−1

i=0 q(xi,ui) ≤ 0

(3.41)

namely initial, final, system dynamics, path and integral constraints.
The OCP is no longer a dynamic problem after the transcription, so static

optimization algorithms apply here. Usually, derivatives of the NLP are
recommended–or even mandatory for some algorithms–so the solver has exten-
sive information of the gradients. There are mainly two different approaches
to supply the derivatives: numerical differentiation or explicit derivation of
analytical functions. The first method consists in evaluating the problem func-
tions at the neighborhood of a given value and calculate numerical gradients
with an algebraic approach. This does not require much information about
the NLP and in fact it may allow to handle black-box models. However, the
gradients might be affected by numerical precision and the chosen differentia-
tion step. The calculation of gradients requires numerous evaluations of the
NLP functions and must be performed at each solver iteration, jeopardizing
the performance of the algorithm. On the contrary, analytical differentiation
provides exact derivatives that must be evaluated only once at each solver
iteration. The derivatives may be supplied by hand or, more convenient, by a
symbolic computation package. The main drawback of this approach is that
full knowledge of the NLP functions is required, so only white-box models are
suitable. Of course, to calculate derivatives the functions must show at least
C1 continuity.

The solution to the above NLP may be addressed with a sparsity exploiting
solver. Interior point methods are generally the most efficient for this kind of
problems [28]. Recall that the solution to the NLP might be a local minimum
different from the global optimum. The minimum that is reached by the solver
may depend on the starting seed so an appropriate initial solution is highly
recommended to increase the probabilities of finding the global optimum.
Anyhow, a global optimum is generally hard to guarantee, especially for highly
nonlinear systems.

3.4.2 On the algorithm implementation

The algorithm used in the works presented in this thesis is an implementation
of DC methods. State trajectories are discretized by piecewise polynomials of
degree 1 and controls by piecewise constant functions, or more precisely, by
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a finite set of discrete values situated at each collocation point. Collocation
points are homogeneously distributed along the time span of the OCP with a
constant spacing:

∆t =
T
Nt

(3.42)

where Nt + 1 is the number of collocation points at the state trajectory. The
collocation points are set at different locations for control and state variables
due to smoothness reasons given that they are approximated with different
functions. The collocation grid for states is:

t = k∆t, k = 0, . . . , Nt (3.43)

while for controls it is shifted ∆t/2:

t =

(
1

2
+ k

)
∆t, k = 0, . . . , N − 1 (3.44)

Therefore, control and state trajectories result in the following set of discrete
values:

x = xi, i = 0, . . . , Nt

u = ui, i = 0, . . . , Nt − 1
(3.45)

Due to the fact that at each collocation interval both state and control
trajectories are polynomials of degree 1 and 0 respectively, only continuity
constraints are required to guarantee smoothness between discrete values. To
do so, an embedded ODE solver is necessary to break time dependency and
transform the continuity requisite into an algebraic constraint. The chosen
solver is Euler’s method for several reasons: (i) it is the simplest method to
address differential equations, (ii) it involves only two consecutive collocation
points, so the resulting NLP is as sparse as possible, and (iii) its low order
produce simple algebraic functions that are cheap to evaluate. Of course, as a
drawback, grid spacing should be chosen tight enough to guarantee a sufficient
precision, close to high order methods. The dynamics of the system are then
transcribed into a large number of algebraic constraints:

f

(
xi+1 + xi

2
,ui

)
− xi+1 − xi

∆t
= 0, i = 0, . . . , Nt − 1 (3.46)

Note that the average of two consecutive collocation points is used at f since
a centered method–which is indeed implicit–is used to avoid stability problems
present at forward Euler’s method.
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Boundary constraints present in the OCP, namely (2.4) and (2.5), are
enforced as constraints to the NLP unknowns xi:

x0 = x0

φ(xNt) ≤ 0
(3.47)

Path constraints of the form (2.6) are set individually for each collocation
point:

c

(
xi+1 + xi

2
,ui

)
≤ 0, i = 0, . . . , Nt − 1 (3.48)

Note that if c is only function of one state or control, the above expression
does not apply as long as that path constraint is actually a boundary for the
corresponding state or control.

If integral constraints such as (2.7) are present, they are managed with a
quadrature scheme, particularly the trapezoidal rule:

Nt−1∑
i=0

q

(
xi+1 + xi

2
,ui

)
∆t ≤ 0 (3.49)

The choice of the trapezoidal rule attends to the type of functions used to
parametrize the states.

Finally, the cost index (2.1) is transcribed with the trapezoidal rule at the
same collocation points:

J =

Nt−1∑
i=0

L

(
xi+1 + xi

2
,ui

)
∆t (3.50)

Therefore, the original OCP has been transcribed into the following large
scale NLP where dynamic and time dependent functions have vanished in
favor of algebraic constraints:

min
x,u

Nt−1∑
i=0

L

(
xi+1 + xi

2
,ui

)
∆t (3.51)

subject to the algebraic constraints in eqs. (3.46)–(3.49). Note that although
∆t is constant and may be removed from the above minimization problem, it
is kept in the formulation so that the algorithm supplies the cost index value
in the appropriate units regardless of the chosen time step since it does not
penalize the computation performance.

At this point, many NLP solvers require the user to provide at least first
derivatives of cost index and constraints [29]. Even if it is not mandatory,
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it is highly recommended since they give a very good clue about where the
gradients of the functions point to. Obviously the more information the solver
handles the faster the convergence to the optimal solution is, especially if this
information indicates in which direction should proceed a seeking algorithm.
Particularly, the cost index L, the constraints vector C, the gradient vector of
the cost index G and the Jacobian matrix J–gradient of the constraints–are
given in this implementation.

As stated in previous points, there are several methods to calculate the
derivatives, two of which are common: numerical and symbolic differentiation.
The last is the choice for this work, particularly because of two reasons:
(i) the gradients are exact, avoiding a typical source of numerical errors, and
(ii) once the symbolic derivatives are computed, it is much cheaper to evaluate
those differentials at each solver iteration than calculating numerical gradients
ad-hoc. However, this choice has two drawbacks as well: (i) functions must
show at least C1 continuity, which might be troublesome for discrete systems,
and (ii) symbolic differentiation may be time consuming for complex systems.
These two issues are addressed in this implementation as it will be discussed
in the following points.

The transcription of the OCP is performed with a custom Matlab func-
tion created ad-hoc for this thesis. The function only requires the user to
provide analytical expressions for cost index and constraints; transcription
and optimization are performed automatically without requiring any action
from the user. It makes use of the Symbolic Math Toolbox to perform the
algebra and differentiation of the supplied functions. The Matlab function
accepts theoretically any number of controls and states–there is no limitation
at the code–although it has been tested up to Nx = 8 and Nu = 6. The user
can provide as many constraints as necessary, namely boundary, path and
integral constraints. The function proceeds performing first a simplification of
the functions, following it applies the described DC method and calculates
first derivatives, and finally it constructs individual functions for cost index,
gradient, constraints and Jacobian matrix–note that the Jacobian is declared
as an sparse matrix to save memory. It also builds a function to automatically
call the NLP solver and proceed with the calculation of the solution to the
OCP. The time it takes to transcribe a problem depends upon the number
of states, controls and constraints, and the complexity of the functions–but
not on the number of collocation points. For reference, the simplest problem
addressed in this thesis took < 1 second, while the toughest one–engine model
with Nx = 6 and Nu = 4–took about 75 seconds.
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Concerns on NLP sparsity and memory usage

This NLP is extremely sparse due to the choice of piecewise constant functions
and Euler’s method. As it can be appreciated in (3.46) and (3.48), algebraic
constraints are only a function of states and controls at the neighbor collocation
points i and i+ 1, so a diagonal NLP is to be expected. Only (3.49) and (3.50)
are dense since the sum includes all collocation points. The general sparsity
of the problem makes functions cheap to evaluate with a significant reduction
in the computation time of the optimization task.

The number of non-zero elements of a generic OCP with Nx states, Nu

controls, Nic integral constraints and Npc path constraints can be easily
calculated assuming that all cross relations between controls and states are
present. On the one hand, the cost index L is a single element so:

NL = 1 (3.52)

The constraint vector C ∈ RNC has Nt algebraic constraints for each state
dynamics and path constraint, according to (3.46) and (3.48), while a single
algebraic constraint stands for each integral constraint (3.49). Therefore:

NC = Nt(Nx +Npc) +Nic (3.53)

The gradient vector G has as many components as unknowns of the NLP
since the cost index is differentiated with respect to these unknowns:

NG = (Nt + 1)Nx +NtNu (3.54)

Finally, the Jacobian matrix J ∈ RNC×NG has as many rows as constraints
and one column for each unknown. Taking into account that derivatives with
respect to states depend upon two consecutive collocation points while they do
upon only one collocation point for controls, the number of non-zero elements
of this sparse matrix is no greater than:

NJ = Nt(2Nx
2 +NxNu + (2Npc +Nic)Nx + (Npc +Nic)Nu) (3.55)

Therefore, the total number of non-zero elements that the NLP must
handle is as high as:

Nnz = NL +NC +NG +NJ (3.56)

which represents a tiny fraction of the total size of J, as it can be appreciated in
the depiction of a generic Jacobian matrix in figure 3.4 where non-zero elements
are approximately an 8% of the matrix. The same NLP with an increased
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Figure 3.4: Representation of a generic Jacobian matrix for an OCP with
Nx = 3, Nu = 2, Npc = 2, Nic = 2 and 20 collocation points, where blue dots
represent non-zero values. This matrix contains the derivative of NLP problem
constraints with respect to all unknowns (x and u). Each quadrant correspond
to the derivative of a constraint with respect to a state or a control, from
ti = 0 to ti = T . The diagonal shape is due to the dependency of constraints
on only two consecutive time instants. Constraint functions are referenced
on the left side (dynamic, path and integral constraints from top to bottom),
while state and controls are indicated on top. Note that integral constraints
appear at the bottom of the matrix as dense rows. For reference, this matrix
has 900 non-zero elements out of 10403, roughly representing an 8% of the
full matrix.

number of collocation points–the example at the figure has 20 points only for
a better display–such as Nt = 600, features a 0.3% of non-zero elements.

It is interesting that the amount of information to manage is a polynomial
function of the number of states–degree 2–and control–degree 1. Contrary to
the DP method, where memory requirements are an exponential function of
the number of states, DMs are not affected by the curse of dimensionality.
Functions are light and cheap to evaluate so the DC method can handle bigger
problems with a reasonable computation time. According to the memory
usage shown in figure 3.5, the requisites for this algorithm might lie under 1
MB, which is a very low value compared to DP requirements. To reach the
1 GB barrier, the OCP should feature about 100 states, controls, path and
integral constraints, and 100000 collocation points which would be, of course,
a massive system.
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Figure 3.5: Maximum memory usage in kB for a generic OCP optimization
using the proposed DC algorithm as a function of the number of states and
controls. The number of collocation points for this example is Nt + 1 = 600.
Additional constraints are Npc = 3 and Nic = 3.

Embedded ODE solver precision

The performance of the chosen ODE solver has been evaluated and compared
to two common options: forward Euler and fourth-order Runge-Kutta. To do
so, an arbitrary ODE is used as a benchmark:

dy

dx
= 2y − x2 (3.57)

with initial condition y(0) = 1. The analytical solution to this ODE is:

y =
1

4

(
5e2x − 2x2 − 2x− 1

)
(3.58)

The ODE is addressed with the solver used for the described DC method
as well as with the two additional methods mentioned above at the interval
[0, 1]. The mean error between exact and numerical solutions is calculated as:

E(ỹ) =
1

Nt

Nt−1∑
i=0

∣∣∣∣yi − ỹiyi

∣∣∣∣ (3.59)

and can be found in the figure 3.6 for a number of collocation points ranging
from Nt + 1 = 10 to Nt + 1 = 50. Of course, the error of a numerical method
can be tightened as much as desired by increasing the grid density. However,
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Figure 3.6: Mean error in the solution of the benchmarking ODE for various
numerical methods as a function of the number of collocation points in the
interval [0, 1]. The displayed methods are fourth-order Runge-Kutta (blue),
centered Euler (red) and forward Euler (yellow).

for a given number of collocation points, it can be appreciated that a significant
increase in the solution accuracy–about a factor of four–can be achieved by
shifting from forward Euler to centered Euler. The Runge-Kutta method is
still more accurate than centered Euler, but both methods converge to similar
precision rapidly as Nt increases. Regarding computational burden, forward
Euler took 32% less time than centered Euler while Runge-Kutta took 15%
more for this example. Note that Runge-Kutta not only takes more time
but it also would produce a denser Jacobian matrix, increasing the memory
requirements. Therefore, as Euler’s method produce very simple and cheap to
evaluate algebraic constraints, centered Euler is the choice for the embedded
ODE solver.

Symbolic differentiation

Symbolic differentiation is performed automatically in the Matlab envi-
ronment with the Symbolic Math Toolbox. In order to avoid the expensive
derivation of complex functions, cost index and constraints are first partitioned
in simpler expression as a composition of functions. The derivatives of these
expressions are computed separately and then the chain rule is applied to
rebuild the original function. This not only permits reducing the symbolic
computation burden but also delivers more compact functions to the solver
since expressions that take part in several constraints are only evaluated once.



86 Chapter 3. Mathematical methods for dynamic optimization

NLP solver

The NLP resulting from the transcription of the OCP is addressed with a
third-party solver. Due to the specific characteristics of this NLP, a sparsity
exploiting solver able to handle large scale problems would be more appropriate.
Among all the available options, Ipopt is the choice for its efficiency and ease
of use. It is based on the interior point method and is specifically made to
solve large scale problems. The cross-platform source code can be downloaded
at the COIN-OR initiative website. For further information and a discussion
about its internal algorithms, please check [29]. The interested reader my
found a comprehensive discussion about NLP in [30].

The solver is provided with the cost index, its gradient, the constraints, the
Jacobian, unknowns boundaries and an initial solution. Second derivatives–i.e.
the Hessian–are not supplied explicitly due to the prohibitive computation
time it takes to calculate all cross-derivatives with symbolic differentiation.
Instead, the embedded algorithm for numerical differentiation present in Ipopt–
Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)–is used. More
details about this numerical approximation can be found in [31].

In general, default options are used. Specific tweaks are left for the
particular requisites of each OCP. Iterations limit and convergence tolerance
are tuned individually. Warm start functionality is used in some particular
problems as it will be discussed in following points.

The performance of the solver is strongly related to the quality of the
provided initial solution. There is no general rule to infer which would be good
guess and which would not as it is a problem-specific question. A problem
with many local minima might be affected by a bad initial seed; however, it
is not usually the case, and smooth problems tend to converge to the same
minimum for many different initial guesses. In this last case, the suitability
of a seed lies more on the number of iterations Ipopt requires to find a
minimum, which is not a big issue for problems with functions that are cheap
to evaluate. Given all the above, initial solutions in this dissertation are
specified as constant quantities for each control and state variable–within a
reasonable range according to their physical meaning. Better performance
may be achieved with heuristics to derive a better initial guess, but the impact
of the adopted approach is already small.

Management of discrete systems

The transcription of the OCP requires problem functions to show at least C1

continuity, as it was introduced above. This requisite prevents the application
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of DMs to systems where one or several variables–states or controls–adopt
discrete values.

The straightforward way to handle this issue is to reconsider the transcrip-
tion of the OCP including integer variables on its formulation. Therefore, the
NLP defined above in eqs. (3.40) and (3.41) can be extended to:

minx,u
∑Nt−1

i=0 Li(xi,ui)
s.t. x0 − x0 = 0

φ(xNt−1) ≤ 0
f(xi,ui)− ẋi = 0, i = 0, . . . , Nt − 1

c(xi,ui) ≤ 0, i = 0, . . . , Nt − 1∑Nt−1
i=0 q(xi,ui) ≤ 0

x̌i ∈ ZNx̌ , i = 0, . . . , Nt

ǔi ∈ ZNǔ , i = 0, . . . , Nt − 1

(3.60)

where x̌ and ǔ are subsets of state and control vectors containing integer
variables. The above program is known as a MINLP as long as it combines
integer and continuous variables in a single problem.

Unfortunately, this type of problems are tough to solve. According to the
computational complexity theory, MINLPs are considered NP-hard problems,
i.e. at least as hard to solve as the hardest non-deterministic polynomial (NP)
problem [32]. An NP problem is a class of computational problems that can be
solved in polynomial time (in a limited amount of time given by a polynomial
of the dimensions of the problem or less) with a non-deterministic Turing
machine [33]; on the contrary, NP-hard problems are thought to require super-
polynomial time to be solved (e.g. exponential) or, even worse, an algorithm
different from brute-force search may not exist and only suboptimal guesses
can be achieved [32]. All the above means that, in practice, finding a solution
to an MINLP is a difficult task that might require large amounts of resources
and time. Anyhow, MINLP solvers such as Bonmin [34] or Nomad [35] exist.
They use branch-and-bound [36], branch-and-cut [37] or outer-approximation
[38] techniques that usually end up solving a relaxed NLP–the original program
but assuming x̌, ǔ ∈ R. These algorithms are practical for small problems–or
at least featuring few integer variables. An OCP with a single integer control
will involve hundreds or thousands of integer variables (as many as collocation
points), making this problem untractable with the above techniques.

A simpler approach is proposed in this thesis. First, the relaxed form
of the MINLP described in (3.60)–i.e. removing the last two constraints–is
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addressed as a plain NLP. Then, the resulting continuous trajectories of x̌
and ǔ are rounded to fulfill the integer constraints:

x̌∗ = bx̌e (3.61)

where b·e is the nearest integer function. A second NLP is then addressed
with these integer trajectories as disturbances to the problem. The aim of this
last program is to guarantee that, given the integer trajectories, the optimal
solution fulfills all the constraints. Thankfully, this NLP is relatively cheap
to solve since it features Nx −Nx̌ states and Nu −Nǔ controls. Warm start
is also possible to improve performance as the solution to the second NLP is
usually on the surroundings of the solution to the relaxed problem.

The solution achieved with the proposed workaround is of course sub-
optimal but should be as close to the optimum as the integer variables are to
be smooth functions and does not require significant computational resources
compared to an NLP. On the contrary, this method should not be suitable
for binary variables or integer quantities that are difficult to approximate to
continuous functions.
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Chapter 4

Modeling

You should always bear in mind that entropy is not on your side.

— Elon Musk
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Work (chapter or section) Model

HP- and LP-EGR control (6.2) Experimental measurements
Full engine control (6.3) (4.5) MVEM w/ quasi-steady cylinder
Speed and engine control (7) (4.2) Vehicle dynamics

(4.3) Gearbox and clutch
(4.5) MVEM w/ quasi-steady cylinder

HEV energy management (8) (4.2) Vehicle dynamics
(4.3) Power-split
(4.4) Motor and battery
(4.5) Quasi-steady engine

HRL design (9.2) (4.5.5) Detailed in-cylinder process
HEV powertrain sizing (9.3) (4.2) Vehicle dynamics

(4.3) Gearbox and power-split
(4.4) Motor and battery
(4.5) Quasi-steady engine

Table 4.1: Summary of the models described in this chapter along with the
works in which they have been used.

4.1 Introduction

The states of an OCP are driven by a dynamic model of the system. This
model is usually expressed as a set of ODEs. The model might be a black-box,
gray-box or any other approach if gradients are supplied. In this case, a
physical model is chosen since: (i) it can extrapolate the behavior of a system
with a certain confidence, (ii) it works fine with little experimental information,
and (iii) the physical laws that govern the system are known.

For the works presented in this thesis, models for vehicle dynamics, trans-
mission, electrical path and engine are required. These models are summarized
in table 4.1 according to the study they are aimed to, and described in the
following sections.

4.2 Vehicle dynamics

The vehicle is modeled attending to longitudinal dynamics only, since it is
considered to travel in normal conditions such that transversal dynamics are
negligible. Several forces act on the vehicle as it can be appreciated in figure
4.1, where direction and sign are displayed in a general case. Following this
scheme, all forces are analyzed following.
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Fg
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Fa

β

Figure 4.1: Scheme of forces acting on a vehicle. The sign of the forces
displayed assumes an acceleration in the direction of movement. Note that
forces are applied to different areas, namely the contact between tire and road,
the center of mass and the front.

First, the vehicle is exposed to the aerodynamic drag which is a function of
the vehicle’s frontal area A, the external shape represented by the dimensionless
drag coefficient Cd, the air density ρ and the square of the speed v [1]:

Fa =
1

2
ACdρv

2 (4.1)

The contact between the tire and the road induces a rolling friction [2]. This
is characterized with the dimensionless rolling friction coefficient cr which
depends on the particular tire model and tarmac composition [3]. However it
is commonly accepted to be in the range of 0.010 to 0.015 for passenger cars
[4]. The rolling friction force can then be represented as:

Fr = crmvg cosβ (4.2)

Note the presence of the road grade β in the above equation to account for
the normal component of the weight mvg if the track is not flat. Similarly,
the parallel component entails a deterrent to the progress of the vehicle as it
climbs up:

Fg = mvg sinβ (4.3)

According to Newton’s Second Law, a variation on the speed of the vehicle
produces a force that is proportional to the mass mv:

Fi = mvv̇ (4.4)
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The contribution of the traction torque at the wheels Tw can be accounted
with the wheel radius rw as:

Ft =
Tw
rw

(4.5)

Finally, if brakes are actuated, there is an additional force that can be modeled
as:

Fb = ubF̂b (4.6)

where ub ∈ [0, 1] is the position of the brake pedal and F̂b is the maximum
braking force.

The sum of all the forces acting on the vehicle must count zero. Therefore,
summing all the above and ordering terms results in the following ODE:

v̇ =
Ft − Fa − Fr − Fg − Fb

mv
(4.7)

which is the main equation of the vehicle longitudinal dynamics. Recall that
not all forces are applied to the center of mass, producing a moment and a
variation on the pitch. However, assuming the vehicle as a rigid body, these
moment is canceled by the reaction to the normal Fn on the point of contact
between tire and road and is negligible to longitudinal dynamics.

Most of the required parameters for the above equation have a physical
meaning and, therefore, they can be easily quantified. Mass mv, frontal area A,
drag coefficient Cd and wheel radius rw are found at manufacturer data-sheets.
The road grade β can be obtained from a geographic database. The road
grade profiles displayed in this thesis are gathered from the Google Maps
Elevation API web service that returns the elevation for a given coordinates
by issuing an HTTP request. It must be noted that torque demand is specially
sensible to road grade variations, as long as a 1◦ deviation could make around
25% difference in engine torque. Unfortunately, within the works developed
in this dissertation, there was no other elevation source to contrast the data.
However, for benchmarking studies and comparisons, a reasonable source of
orographic data is enough.

Rolling friction coefficient is much difficult to identify as it depends on
tires, road roughness and weather, but it can be safely set to a value between
0.010 and 0.015.

Further terms might be introduced in (4.7) such as the moment of inertia
of the wheels, or shafts and transmissions efficiency, but their effects on vehicle
dynamics can be also included in (4.7) in its current form. For example, the
introduction of the moment of inertia is equivalent to the use of the corrected
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vehicle mass m̃v = mv + Iω
rw2 , since the dragging force that creates the moment

of inertia Iω is Fω = Iω
rw2 v̇. Similarly, including an efficiency–that penalizes

the tractive force–is equivalent to consider a lower Tw output. If experimental
data is available, a fitting may be performed to account for these effects.

This model has been used for the different vehicles that have been used
during the elaboration of this thesis. Validation is done with experimental data
from a pre-production 4-door sedan with results displayed in figure 4.2. These
plots show two simulations of road load accelerations in 3rd gear starting at
two different speeds. The red and blue simulations are obtained after a fitting
to the experimental data for a fine tune of vehicle parameters, while gray
data makes use of information from manufacturer’s data-sheet only. The error
between simulations and experimental data is always below 1 km/h which
can be considered an acceptable accuracy for most of the cases. If no fitting
is performed errors may be higher, but speed trajectories are still close to
experimental data. Considering that in this particular case the only differences
after fitting are an increase in mass of 40 kg and a reduction of 26 mm in
wheel radius, the use of vehicle’s data-sheet information only may be sufficient
in many situations.

4.3 Transmission

The transmission of energy to wheels is conducted throughout several devices
according to the type of vehicle. The torque is transferred through a clutch,
a gearbox and the final drive in a conventional vehicle with manual gearbox.
In the case of a HEV the power flow gets more complicated since several
architectures may be adopted with the introduction of a power-split device.
The main powertrain architectures and their energy flow layout are shown in
figures 4.3, 4.4 and 4.5. Models for the transmission chain are described in
the following points.

4.3.1 Gearbox

The gearbox is modeled as a discrete set of gear ratios with a fixed efficiency
[4, 5]. Therefore, the kinetic relations in the gearbox are:

ωgb,ds =
ωgb,us
Rgb

(4.8)

Tgb,ds = ηgbRgbTgb,us (4.9)
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Figure 4.2: Validation of vehicle model. Two road load accelerations are shown
in top plot for different initial speeds. Gray lines correspond to the model
using data-sheet information, while red and blue lines are simulations after a
fine tune of model parameters. Experimental data is displayed as black crosses.
Bottom plots quantify model discrepancies by showing the correlation between
simulated and experimental results (left) and the error in speed between both
(right).

Fuel

Battery

ICE

Motor

Power
split GB

Power
split

Figure 4.3: Layout scheme of a parallel HEV. Note that the power-split device
might be present upstream or downstream the gearbox.
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Figure 4.4: Layout scheme of a series HEV.
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Figure 4.5: Layout scheme of a combined HEV.

where the gearbox ratio Rgb is a function of the selected gear number:

Rgb = Rgb(Ngb) (4.10)

4.3.2 Clutch

The clutch is a pair of friction discs that allows the disconnection between the
ICE and the gearbox with the action of a control variable uclt. This element
introduces a discontinuity since discs can be: (i) rigidly coupled, (ii) slipping,
and (iii) separated. In the first case, the model is just a shaft so input and
output variables are the same:

Tclt,ds = Tclt,us (4.11)

ωclt,ds = ωclt,us (4.12)

The slipping case is more complex and is represented with a friction model.
The clutch consists of two annular surfaces that are in contact with a pressure
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pclt [5]. The transferred force in a infinitesimal annular section of radius r and
width dr is:

dF = 2πrµcltpclt dr (4.13)

Therefore, the torque for this slice is:

dT = 2πr2µcltpclt dr (4.14)

Integrating the above expression between the inner and outer radius rclt,i and
rclt,o, the total transferred torque between both friction discs is:

T = 2πµcltpclt
r3
clt,o − r3

clt,i

3
(4.15)

Applying conservation of angular momentum at both upstream and down-
stream discs:

Tclt,us = T + Iclt,usω̇clt,us (4.16)

Tclt,ds = T − Iclt,dsω̇clt,ds (4.17)

Introducing (4.15) in the two above expressions and arranging terms, the
equations for the slipping model result:

ω̇clt,us =
Tclt,us
Iclt,us

−
2πµcltpclt(r

3
clt,o − r3

clt,i)

3Iclt,us
(4.18)

Tclt,ds = 2πµcltpclt
r3
clt,o − r3

clt,i

3
− Iclt,dsω̇clt,ds (4.19)

The slipping model also consider the case where both discs are separated
if pclt = 0. In that situation, the upstream rotational speed is only determined
by the upstream moment of inertia Iclt,us while the downstream torque is just
a consequence of the variation of the rotational speed.

The switch between models is performed attending to the upstream torque
and difference in speed between discs. In the case Tclt,us > T the slipping
model is used regardless of speed since the clutch is unable to transfer that
amount of torque and it will slip. Otherwise, the coupled model is used when
ωclt,us − ωclt,ds = 0.
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4.3.3 Power-split device

Power-split devices manage the supply of energy to the wheels splitting
the demand between two different energy sources. They can be devices of
many different types, both mechanical and electrical. The precise internal
architecture of the power-split device is not relevant for the scope of this work–
only energy transfer relations are of interest. Therefore, they are modeled
as black boxes with a set of input/output relations and a constant efficiency,
specific for each powertrain layout [5, 6].

Parallel HEV

The power-split device in a parallel HEV is a mechanical divisor. It splits the
torque requirements between the electric motor and the ICE. As shown in
figure 4.3 the power-split device may be installed upstream or downstream
the gearbox. Physically, the device can be a mechanical joint with any kind of
gearing or, most of the times, a motor mounted coaxially in the transmission
shaft. In the case of a device installed downstream the gearbox, the motor may
propel an axle while the ICE propels the other, being the road the power-split
device itself. In any case, the kinetic relations that a power-split device must
fulfill are:

ωps,ds =
ωps,us1
Rps,1

(4.20)

ωps,us2 = ωps,dsRps,2 (4.21)

Tps,ds = ηps(Tps,us1Rps,1 + Tps,us2Rps,2) (4.22)

where Rps,1 and Rps,2 are the gear ratios between inputs and output. The
subindices in rotational speeds ωps and torques Tps refer to one of the two
input shafts (upstream, us) or the output shaft (downstream, ds). In the case
of a coaxial motor, the efficiency of the device is ηps = 1 since there is no
kinetic chain involved in the torque transfer.

Series HEV

A series HEV is basically an EV with a gen-set–ICE coupled to a generator,
see figure 4.4–that contributes to the battery charging or eventually delivering
additional current peaks. The power-split device is typically an electric bus fed
by both the gen-set and the batteries through their corresponding converter
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Figure 4.6: Analysis of forces acting on an epicyclic gearing.

and power electronics to deliver energy to the traction motor. The energy
relations in terms of input and output power Pps are:

Pps,ds = ηps(Pps,us1 + Pps,us2) (4.23)

Of course, there are no kinetic relations since the ICE and the wheels are
mechanically decoupled. This offers the advantage of being able to run the
engine at the most efficient speed regardless of the vehicle speed.

Combined HEV

A combined HEV is the most complex hybrid architecture as it doubles the
number of power-split devices, but it is probably the most versatile as well [7,
8]. It can operate as a series HEV, as a parallel HEV or as both at the same
time. To do so, there is a loop that links the engine crankshaft to a generator
to operate in series mode; similarly, the ICE is also mechanically linked to
the wheels together with a coaxial motor to operate in parallel mode. Both
loops can be appreciated in figure 4.5. Usually, the power-split device linking
ICE, motor and generator is an epicyclic gearing [7], while the one connecting
battery and motors is just an electric power bus.

The equations governing the epicyclic gearing can be deducted by analyzing
the forces at each part of the system. According to figure 4.6, the forces
equilibrium on the planet can be written as:

FSrP − FRrP − IP ω̇P = 0 (4.24)

Since the moment of inertia IP of the planet is negligible compared to the rest
of the components–they are linked to big machines such as the engine and
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motors–the identity FS − FR = 0 stands. Therefore, let us call F = FS = FR
henceforth. Analyzing the ring, carrier and sun, leads to the following relations:

FrR + TR − IRω̇R = 0 (4.25)

TC − FrR − FrS − IC ω̇C = 0 (4.26)

FrS + TS − ISω̇S = 0 (4.27)

Solving for F , it results:

(TC − IC ω̇C)
rR

rR + rS
− TR − IRω̇R = 0 (4.28)

(TC − IC ω̇C)
rS

rR + rS
− TS − ISω̇S = 0 (4.29)

The kinematic relation that governs the epicyclic gearing is:

ωR =
ωC(rR + rS)− ωSrS

rR
(4.30)

Combining eqs. (4.28)–(4.30) and introducing the substitution n = rR/rS , the
equations that govern the epicyclic gearing are:

ω̇S =
(n+ 1)TC − (n+ 1)2TS − nIC ω̇R

IC + (n+ 1)2IS
(4.31)

ω̇C =
ω̇S + nω̇R
n+ 1

(4.32)

TR =
TC − IC ω̇C
n+ 1

n− IRω̇R (4.33)

The electric power bus follows the energy conversion mechanism described
in (4.23).

4.4 Electrical path

HEV powertrains include an electric loop with–at least–one motor, a battery
pack, electric buses and power electronics such as converters and inverters
[5]. Electric buses are considered ideal conductors so a model is not needed.
Power electronics are assumed to be included in their corresponding battery
and motor models and therefore no additional equations are required. These
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Figure 4.7: Two different approaches to represent a motor map. On the left,
power consumption is listed by motor speed and torque; on the right, torque
output is represented as a function of motor speed and power supply. These
maps represent the continuous operation region only.

assumptions have no significant impact on the accuracy of the powertrain
model since the main interest of this dissertation is the ICE. A detailed
characterization of these elements may be necessary for other targets such as
low level electric bus controllers.

4.4.1 Electric machines

According to the scope of this dissertation, an electric machine can be modeled
with a quasi-steady approach. This simplification becomes valid as long as
motor response is much faster than ICE dynamics. The torque at the motor
shaft is a consequence of the supplied electrical power at a particular rotational
speed. A typical motor map as supplied by a manufacturer represents electrical
power consumption listed by motor speed and torque. For convenience, this
map has been inverted to list torque output by motor speed and power supply,
which is the causal approach.

A prototype Permanent Magnet Synchronous Machine (PMSM) to be
installed in a RE has been used. Motor maps can be appreciated in figure
4.7. The electrical power supply Pe has been measured upstream the power
electronics, so the maps include the behavior of both machines coupled together.
These maps represent the continuous operation region of the motor; the
consideration of higher torque regions require additional states and would
only be interesting if performance constraints are taken into account, which
is not the case of the works in this dissertation. It is remarkable that the
causal map–right plot–shows a linear surface which is, therefore, easier to fit
to an analytical function. Based on the observation of the available maps, the
following expression is proposed to represent the output torque Tm:
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Figure 4.8: Correlation between experimental measures of the electric motor
and the proposed analytical expression for motor torque.

Tm = Pe(c10e
c11Nm + c20e

c21Nm) (4.34)

where Nm is the motor speed. The agreement between experimental data and
the above analytical fitting can be checked in figure 4.8.

The maximum torque curve is defined by software at the motor controller
and can be expressed as a piecewise function:

Tm,max =

{
c30 + c31Nm, Nm ≤ N̂m

c40 + c41Nm + c42N
2
m, Nm > N̂m

(4.35)

with N̂m the motor speed where the controller switches from maximum torque
to temperature limitation, which is N̂m = 5100 rpm for the motor shown in
this section.

Similarly, additional variables can also be mapped. Motor efficiency ηm
and supplied current im are shown in figure 4.9. Note that the voltage is kept
roughly constant at the battery, resulting in a current map mostly dependent
on the supplied power.

4.4.2 Batteries

The battery pack in a HEV is composed of a number of cells connected both
in parallel and series to deliver the desired voltage and capacity [5, 9]. The
output performance of the assembly is identical to a single cell following the
Thevenin equivalent circuit of the battery pack. According to the Thevenin
theorem [10], the equivalent circuit is composed of an ideal voltage source Voc
and a resistor Rb in series, as displayed in figure 4.10. With this approach,
the battery voltage at terminals is:
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Figure 4.9: Representation of motor efficiency ηm and current im drawn by
the motor, listed by motor speed and electric power consumption. Note that
as long as the supply voltage remains somehow constant thanks to the power
electronics, the current is only a function of the power consumption.

+
Voc(ζ) Vb

ib(t)

R

S

T

to motor

Rb

Figure 4.10: Scheme of the battery model using its Thevenin equivalent circuit.
On the right, the battery pack power electronics whose efficiency is included
in the resistance Rb quantification.

Vb = Voc − ibRb (4.36)

where ib is the current drawn from the battery and Rb its internal resistance.
The current is the variation of the battery charge Qb:

Q̇b = −ib(t) (4.37)

Consequently, the actual charge stored in the battery can be accounted as:

Qb(t) = Qb,0 −
∫ t

0
ib(τ) dτ (4.38)
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The charge level may be also measured as a fraction of the nominal charge of
the battery Qb,0 with the so-call SoC ζ [11]:

ζ(t) = 1−
∫ t

0 ib(τ) dτ

Qb,0
(4.39)

which is generally expressed as a fraction with ζ = 1 the maximum charge of
the battery. Similarly, a State of Energy (SoE) might be defined as a measure
of the energy level in terms of remaining energy relative to the total energy
content of a fully charged battery. The nominal energy stored within the
battery is:

Eb,0 = Qb,0Voc,0 (4.40)

with Voc,0 the open circuit voltage of the battery in a fully charged situation.
The actual energy content is:

Eb = QbVoc (4.41)

Therefore, the SoE ξ can be calculated as:

ξ =
Eb
Eb,0

= ζ
Voc
Voc,0

(4.42)

Note that nominal and actual open circuit voltages may differ, otherwise SoE
and SoC would take the same values. Open circuit voltage in a battery is
SoC-dependent, decreasing with the charge. A typical voltage vs. SoC curve
for a lithium-ion battery is shown in figure 4.11.

More accurate models may be built by introducing several RC sets (resistor
and capacitor) in series with the voltage source in order to capture nonlinear
dynamics. However, the increase in model complexity and the introduction
of additional states to the problem–voltage at each capacitor involves an
additional differential equation–are considered major drawbacks in this work
for a control-oriented model.

4.5 Internal combustion engine

Two different ICE models have been used for the works performed in this
thesis. The most simple one is based on a quasi-steady approach with an
engine map, and it is used for vehicular purposes where no engine control is
performed, such as in HEV energy management. The most detailed model is
aimed for engine controls optimization where no predefined calibration is used
and an engine map may be inappropriate. It is a 0-D MVEM [12] combining



108 Chapter 4. Modeling

Figure 4.11: Typical open circuit voltage relative to the SoC ζ for a lithium
ion battery composed of 100 individual cells. The shown curve is an average
of the charge and discharge curves.

physical and empirical models for the different subsystems. An effort has
been made to produce a continuous and smooth engine model for control
purposes, avoiding any sharpness that might compromise the optimization
procedure. This particularity is the main contribution of this model and the
main difference to other approaches [13, 14].

Models correspond to a light-duty Euro 5 diesel turbocharged ICE with
VGT, LP- and HP-EGR. Model parameters are fitted to experimental data
consisting on two types of tests: (i) a set of 980 steady state experiments that
explore different combinations of operating conditions and controls, and (ii) a
dynamic cycle providing transient information. These tests are described in
deep in section 5.3. The model is validated with an additional cycle featuring
different dynamics in order to provide a fair benchmarking.

Following, the ICE subsystems are described and validated according to
the engine layout shown in figure 4.12. Subsections 4.5.1 to 4.5.6 correspond
to the detailed engine model while subsection 4.5.7 describes the quasi-steady
approach model.

4.5.1 Intake manifold

Intake manifold is modeled as a reservoir [13] where gases coming from the
compressor–through the intercooler–and recirculation gases from the HP-EGR
loop are mixed together. Figure 4.13 depicts this scheme. Cylinders breathe
gases from this reservoir. The equilibrium between the incoming and outgoing
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Figure 4.12: Layout of the modeled engine and its subsystems.
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Figure 4.13: Representation of the reservoir that serves as manifold model
and the incoming and outgoing flows.

gases produces a variation on the reservoir pressure, energy and composition.
These quantities are solved using the mass and energy conservation principles:

ṁ(t) = ṁus(t)− ṁds(t) (4.43)

U̇(t) = Ḣus(t)− Ḣds(t) + Q̇(t) (4.44)

with m the mass of gas in the reservoir, U the internal energy of that gas, H
the enthalpy of incoming and outgoing flows, and Q̇ the heat flow exchanged
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with the environment. Note that the energy conservation principle can be
deducted from the definition of the internal energy stored in a control volume:

U̇ = Q̇− Ẇ + ṁus

(
uus + pvus +

1

2
c2
us + ρuszus

)
−ṁds

(
ṁds + pvds +

1

2
c2
ds + ρdszds

) (4.45)

where the kinetic energy of the fluid, its potential energy and the work W–
manifolds are assumed to be rigid and fixed volumes–are neglected. Also,
since the intake manifold is considered an adiabatic system due to its rapid
dynamics and relatively low temperatures compared to other parts of the
engine, heat flow exchange Q̇ is neglected. The gas inside the reservoir can be
modeled as an ideal gas:

pV = mRθ (4.46)

with R the specific gas constant, obtained by dividing the universal gas constant
by the molar mass of the gas. Note that the explicit dependency on time has
been neglected for simplicity of the nomenclature. The energy associated to
the reservoir gas temperature is:

U = cvmθ (4.47)

Introducing the ideal gas law in the above expression, the energy results:

U =
1

κ− 1
pV (4.48)

Note that the relations R = cp − cv and κ =
cp
cv

have been used to reach
the above expression. The energy of upstream and downstream flows can be
calculated as:

Ḣus = cpṁusθus (4.49)

Ḣds = cpṁdsθds (4.50)

Introducing eqs. (4.48)–(4.50) in the energy conservation relation (4.44), and
neglecting Q̇–adiabatic hypothesis–the variation of the pressure in the reservoir
results:

ṗ =
κR

V
[ṁusθus − ṁdsθds] (4.51)
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Similarly, substituting with eqs. (4.47), (4.49) and (4.50) in (4.44), the reservoir
temperature follows the equation:

θ̇ =
Rθ

pV
[ṁus(κθus − θ)− ṁds(κθds − θ)] (4.52)

Note that the relation U̇ = cv(ṁθ +mθ̇) has been used in the above equation.
The mass conservation principle (4.43) must be verified for every specie in

the gas composition. Therefore, the oxygen mass relation is:

ṁO2 = ṁO2,us − ṁO2,ds (4.53)

Oxygen mass flow can be expressed as a function of the oxygen fraction XO2 :

ṁO2 = ṁXO2 +mẊO2 (4.54)

ṁO2,us = ṁusXO2 ,us (4.55)

ṁO2,ds = ṁdsXO2 ,ds (4.56)

The above expressions can be introduced in the oxygen mass conservation
relation 4.53. Additionally, the gas mass m in the reservoir can be substituted
with the ideal gas law, and ṁ with the total mass conservation principle in
4.43 as well. Therefore, the variation of the oxygen fraction at the reservoir is:

ẊO2 =
Rθ

pV
[ṁus(XO2,us −XO2)− ṁds(XO2,ds −XO2)] (4.57)

The eqs. (4.51), (4.52) and (4.57) can be particularized for the ICE shown
in figure 4.12. Thus, the variation of pressure at the intake manifold is:

ṗ2 =
κR

Vim
[ṁcθico + ṁhpegrθhpegr − ṁipθim] (4.58)

Similarly, the variation of the intake manifold temperature follows the ODE:

θ̇im =
Rθim
p2Vim

[ṁc(κθico − θim) + ṁhpegr(κθhpegr − θim)− ṁipθim(κ− 1)]

(4.59)
Finally, the variation of oxygen fraction ends up as:

ẊO2,im =
Rθim
p2Vim

[ṁc(XO2,c −XO2,im) + ṁhpegr(XO2,hpegr −XO2,im)] (4.60)
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Figure 4.14: Correlation between experimental values of intake and exhaust
manifolds pressure p2 and p3, and the results of a simulation of the complete
engine model at the validation cycle. Bottom plots show the time trajectories
of the experimental (blue) and modeled (red) variables.

Note that the temperature and oxygen fraction of the downstream flow is the
same than at the intake manifold as perfect mixing is assumed.

The intake manifold model can be simplified considering it as an isothermal
system based in the fact that it is rapidly filled of gas and depleted. In this
case, the polytropic coefficient is κ = 1 and the pressure ODE is:

ṗ2 =
κRθim
Vim

[ṁc + ṁhpegr − ṁip] (4.61)

The expression 4.60 remains the same while 4.59 vanishes since there are no
temperature dynamics.

A validation of the manifold model is carried out by simulating the whole
engine model at a benchmarking cycle. The correlation between experimental
and simulated values are shown in the left plot of figure 4.14.
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4.5.2 Exhaust manifold

The exhaust manifold is modeled as an adiabatic reservoir [13] as the intake
manifold. The same mass and energy conservation equations apply here–see
eqs. (4.51), (4.52) and (4.57). Assigning the appropriate quantities to these
equations according to the engine layout, they result in:

ṗ3 =
κR

Vem
[ṁepθep − ṁhpegrθem − ṁtθem] (4.62)

θ̇em =
Rθem
p3Vem

[ṁep(κθep − θem)− ṁhpegrθem(κ− 1)− ṁtθem(κ− 1)] (4.63)

ẊO2,em =
Rθem
p3Vem

ṁep [XO2,ep −XO2,em] (4.64)

The same isothermal hypothesis that was considered in the intake manifold
model can be applied here. In this case, the exhaust manifold pressure variation
is:

ṗ3 =
κRθem
Vem

[ṁep − ṁhpegr − ṁt] (4.65)

Again, 4.64 applies while 4.63 vanishes from the model.

Validation results of the exhaust manifold model can be checked at the
right plot of figure 4.14.

4.5.3 Turbocharger

The turbocharger model is composed of two subsystems, namely a compressor
and a turbine, both coupled together through a shaft. These subsystems are
described in the following points.

Compressor

The compressor forces an amount of air coming from the airbox into the intake
manifold at the expense of mechanical energy produced by a turbine. For a
given pressure ratio Πc, between upstream and downstream, and a corrected
rotational speed, the compressor propels a known mass flow. Note that
the corrected speed is defined as ω̃tc = ωtc

√
θci,0/θci [15] with θci,0 the inlet

temperature at which the compressor map was measured and θci the actual
inlet temperature. Usually, turbocharger manufacturers supply compressor
maps as a function of pressure ratio and turbo speed. In order to have a
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Figure 4.15: Compressor maps as measured in the turbocharger test bench.
Top plots show the mass flow in kg/s (left) and efficiency (right) maps relative to
the corrected speed ω̃tc and pressure ratio Πc, with the surge limit represented
with the black dashed line. The bottom plots show the same quantities but as
a function of the normalized pressure ratio Π̃c.

proper starting point for compressor modeling, both compressor and turbine
have been tested in a turbocharger test bench. The compressor maps for mass
flow and efficiency are shown in figure 4.15.

Compressor surge is a phenomena that happens when the fluid-dynamics
are too unstable to sustain the regular flow inside the compressor. It is
generally produced by an excessive pressure ratio, causing the blades to stall,
and should be avoided [13, 15]. The surge limit on the compressor plays a
critical role in the model, since it represents a discontinuity on the compressor
behavior. In order to take this issue into account, the experimental surge limit
has been approximated with the following exponential equation:

Πsrg = c10 exp(c11ω̃tc) + c20 exp(c21ω̃tc) (4.66)

whose fitting to the actual surge limit can be checked at figure 4.16. Then,
the compressor map can be expressed as a function of a normalized pressure
ratio of the form:

Π̃c =
Πc − 1

Πsrg − 1
(4.67)
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Figure 4.16: Comparison between experimental maps and the proposed ana-
lytical expressions for–from left to right–surge limit Πsrg, compressor mass
flow ṁc and compressor efficiency ηc.

with Πc = p2/p1. Then, Π̃c must be in the range [0, 1] for the surge to be
avoided.

With the above transformation, compressor maps are easier to approximate
to an analytical equation. The following expressions are proposed:

ṁc = c00 + c10ω̃tc + c01Π̃c + c11ω̃tcΠ̃c + c02Π̃2
c (4.68)

ηc =
[
c00 + c10ω̃tc + c01Π̃c + c20ω̃

2
tc + c11ω̃tcΠ̃c + c02Π̃2

c

] [
1− exp(cAΠ̃c + cB)

]
(4.69)

whose agreement with the experimental maps can be checked at figure 4.16.
The compression is considered to be an adiabatic process with an isentropic

efficiency ηc [14]. Therefore, the power required to produce the compression
process is:

Pc =
1

ηc

γR

γ − 1
ṁcθci

(
Π
γ−1
γ

c − 1

)
(4.70)

The temperature increase of the fluid after the adiabatic compression is:

θco =

(
Π
γ−1
γ

c − 1

)
θci
ηc

+ θci (4.71)

The mass flow model is first fitted to the compressor map as a starting
point and, then, to the engine experimental data. The correlation between
measurements and model are displayed in figure 4.17.

Turbine

The turbine is in charge of expanding exhaust gases and taking profit of their
thermal energy to generate a mechanical torque. The turbine is physically
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Figure 4.17: Correlation between experimental values of compressor mass
flow ṁc and the results of a simulation of the complete engine model at the
validation cycle. Bottom plot shows the time trajectories of the experimental
(blue) and modeled (red) variables.

linked to the compressor, which makes use of the mechanical energy to develop
the compression process [15]. Turbines may have movable stator blades in
order to produce a variable pressure drop and control the boost pressure p2.
This type of turbine is known as VGT and its use is widespread in diesel
engines. The turbine modeled in this work is a VGT.

Similarly to the case of the compressor, manufacturers use to supply their
information with a map which is theoretically function of the turbine speed
ωtc, the pressure ratio Πt and the position of the stator blades–which is a
control variable–uvgt. Fortunately, turbines are not affected by the same
fluid-dynamic instabilities than compressors and surge does not happen. The
turbine has been tested in a turbocharger test bench to measure these maps,
which are displayed in figure 4.18. As it can be appreciated, the dependency
on the turbine speed is limited as curves for different speeds overlap. In order
to produce a simple and robust control-oriented model, turbine maps are
simplified and speed dependency is neglected.

Corrected turbine mass flow can be approximated as:

ṁt,cor = c00 + c10Πt + c01uvgt + c20Π2
t + c11Πtuvgt + c02u

2
vgt (4.72)
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Figure 4.18: Turbine maps measured at the turbocharger test bench, repre-
senting the corrected mass flow (left) and efficiency (right) relative to the
expansion ratio (x-axis) and geometry position uvgt (color map). Each uvgt
position contain a number of turbine speeds but, as it can be appreciated,
different rotational speeds collapse into a single curve.

Figure 4.19: Correlation between experimental turbine maps and the proposed
empirical equations for the corrected mass flow (left) and efficiency (right).

where Πt = p3/p4 and ṁt,cor = ṁtp3/p3,0

√
θem,0/θem, with p3,0 and θem,0 the

inlet pressure and temperature at which the turbine maps were measured.

The efficiency was found to be quite accurately represented with the
following empirical equation:

ηt = [1− exp(cA(Πt − 1))]
[
c2u

2
vgt + c1uvgt + c0

]
+ cB(Πt − 1) (4.73)

Correlation between experimental maps and the above expressions is shown in
figure 4.19.

The thermodynamic process in the turbine is considered to be an adiabatic



118 Chapter 4. Modeling

expansion with an isentropic efficiency ηt [14]. The power that this process
develop in the shaft is:

Pt = ηt
γR

γ − 1
ṁtθem

(
1−Π

1−γ
γ

t

)
(4.74)

Since the expansion is an adiabatic process, the temperature of the gas at
the turbine outlet is:

θto = θem − ηtθem
(

1−Π
1−γ
γ

t

)
(4.75)

Note that the turbine inlet temperature is assumed to be the same than the
exhaust manifold temperature θem. It might be an unrealistic hypothesis
due to the heat losses at the exhaust manifold and pipings connecting to the
turbine, but this effect can be included in the turbine efficiency ηt.

The mass flow model is fitted to the measured map first as a baseline and,
then, it is tuned to correlate with the engine experimental data. Figure 4.20
shows the agreement between measurements and the model. Contrary to the
compressor model results, the turbine shows a higher discrepancy between
modeled and experimental variables. This is due to the fact that turbine
temperature measurements are generally complex and less accurate compared
to the compressor due to the high temperature gradients. In addition to that,
the adiabatic hypothesis is less representative of the thermodynamic process
due to the high temperatures at the turbine inlet.

Mechanical coupling

Both compressor and turbine are physically linked through a shaft. There is a
balance between the power developed by the turbine–which is supplied to the
compressor–and the power that the compression process requires. Depending
on the sign of this balance and the moment of inertia of the rotating mass Itc,
the turbocharger will accelerate, decelerate or hold speed. The speed of this
set follows the ODE:

ω̇tc =
Pt − Pc
Itcωtc

(4.76)

Compressor and turbine efficiency models are fitted to the experimental
maps and, then, tuned such that the modeled turbocharger speed fits the
measurements. The correlation between experimental and modeled ωtc is
shown in figure 4.21.
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Figure 4.20: Correlation between experimental values of turbine mass flow ṁt

and the results of a simulation of the complete engine model at the validation
cycle. Bottom plot shows the time trajectories of the experimental (blue) and
modeled (red) variables.

4.5.4 EGR system

Both EGR valves–namely LP- and HP-EGR–are modeled as an isothermal
orifice [13]. The flow through the valve is considered compressible with the
assumptions that: (i) the flow accelerates up to the narrowest point of the
orifice without losses, transferring part of the pressure into kinetic energy, and
(ii) after the orifice the flow is completely turbulent and the kinetic energy is
dissipated into thermal energy with no pressure recuperation. Given these
hypothesis, the mass flow that goes through the valve for a known pressure
drop is:

ṁegr = AegrCd,egr
pus√
Rθus

Ψegr (4.77)

where Aegr is the effective opening of the valve, Cd,egr the discharge coefficient
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Figure 4.21: Correlation between experimental values of turbocharger ro-
tational speed ωtc and the results of a simulation of the complete engine
model at the validation cycle. Bottom plot shows the time trajectories of the
experimental (blue) and modeled (red) variables.

and Ψegr the expansion factor which is a function of the pressure ratio Πegr =
pus/pds [13]:

Ψegr =


√
κ
(

2
κ+1

)κ+1
κ−1

Πegr > Πcr

Π
−1
κ
egr

√
2κ
κ−1

(
1−Π

1−κ
κ

egr

)
Πegr ≤ Πcr

(4.78)

where the critical pressure ratio–when the flow reaches sonic conditions at the
orifice and, therefore, it is chocked–is a function of the adiabatic factor:

Πcr =

(
κ+ 1

2

) κ
κ−1

(4.79)

For the sake of simplicity, the piecewise equation (4.78) is approximated
with the following continuous expression:

Ψegr ≈ Ψ̃egr =

(
1

2
+

1

2
erf(c1Πegr + c0)

)
(c2 exp(c3Πegr) + c4) (4.80)
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The agreement between Ψegr and Ψ̃egr is shown in the left plot of figure 4.22.

The effective opening of the valve as a function of the controlled position
uegr should be approximated with an empirical expression. The following
equation is proposed based on the experimental observations:

Aegr = c2

(
1

2
erf(c1uegr + c0)− 1

2
erf(c0)

)
(4.81)

This EGR valve model is used for both HP-EGR and LP-EGR systems,
substituting the upstream and downstream variables with the corresponding
flow conditions according to the layout.

The mass flow model is tuned for the experimental data. Correlation
between measurements and model estimations is at the right plot of figure 4.22.
EGR mass flow shows a significant level of discrepancy between the model
and experiments. It must be noted that EGR mass flow measurements have a
significant delay (see section 5.2) and transient readings might be unreliable,
obscuring the model results. This is particularly evident in the t = [1100, 1400]
part of the measurements where agreement is poor. However, during most of
the experiment, when dynamics are slow and measurements are reliable, the
EGR model showed a quite good accuracy. Therefore, it may be concluded
that the model performance is sufficient for the scope of this dissertation.

4.5.5 Cylinder

The events taking part at the cylinder are complex and highly nonlinear,
involving chemical, thermodynamic and fluid-dynamic processes at every single
engine cycle [15]. Instantaneous models follow all these processes throughout
the duration of a cycle and can make a pretty good approximation to the
cylinder dynamics. However, from a control point of view–and if no intra-cycle
control is to be performed–, the cylinder is a system whose dynamics extend to
few milliseconds and a mean value is generally already an adequate estimation
[12].

Therefore, two different cylinder model approaches are developed: (i) a
quasi-steady model to be used for high-level engine optimization works, and
(ii) a detailed in-cylinder model for intra-cycle control studies.

Quasi-steady cylinder

This model avoids complex equations that would limit its control capabilities
when the in-cylinder processes are not the control target. The cylinder is
represented as a combination of physically meaningful expressions and black-
box models whose inputs are the thermodynamic conditions of the intake
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Figure 4.22: Agreement between the expansion factor Ψegr and the proposed

empirical approximation Ψ̃egr on the left. On the right, correlation between
experimental values of EGR mass flow ṁegr and the results of a simulation
of the complete engine model at the validation cycle. Bottom plot shows the
time trajectories of the experimental (blue) and modeled (red) variables.

gas and the control variables [13]. The interesting outputs are the indicated
efficiency ηind, the exhaust temperature θep, NOx emissions Xnox and exhaust
gases opacity σ. These black-box models are approached with a second degree
polynomial.

ηind = ηind(Nice, uf , uδsoi, XO2,im, p2)
θep = θep(Nice, uf , uδsoi, XO2,im, p2)

Xnox = Xnox(Nice, uf , uδsoi, XO2,im, p2)
σ = σ(Nice, uf , uδsoi, XO2,im, p2)

(4.82)

Despite this model entails an important simplification, it is a reasonable
hypothesis since the characteristic time of the airpath is several orders of
magnitude higher than in-cylinder phenomena. Accordingly, a step in an
airpath-related control produces a non negligible transient on intake manifold
pressure and mass flow, as seen in figure 4.23. Consequently, torque output
shows a similar transient since it is influenced by the intake thermodynamic
conditions and admitted mass. Conversely, in figure 4.24 it can be appreciated
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Figure 4.23: Dynamic response of airpath and cylinder variables to a VGT
(blue) and EGR (red) opening step from 0% to 100%. Control variable is in
gray. Remaining controls are held constant. Note that all transients, including
effective torque, are affected by the characteristic time of the airpath. Note
that NOx concentration measurement is affected by the sample time and the
delay of the NOx probe.

that a step in an in-cycle control produces a sudden change in cylinder outputs
such as torque, and a slow transient on airpath variables.

Torque generation is modeled as the simultaneous effect of an indicated
torque and engine losses. The indicated torque is a consequence of the fuel
energy liberation during the combustion process. Accordingly:

Tind = ηind
ufHfncyl
4 · 106π

(4.83)

where Hf is the fuel heat of combustion, ncyl the number of cylinders and ηind
accounts for both the thermodynamic and the combustion process efficiencies–
ηind = 1 would mean that all the fuel heat is effectively converted to an
indicated torque. Engine losses are represented by a linear function of the
engine speed, which can be fitted with a motoring experiment:

Tloss = c0 + c1Nice (4.84)

Therefore, the effective torque at the engine crankshaft is:

Tice = Tind − Tloss (4.85)



124 Chapter 4. Modeling

Figure 4.24: Dynamic response of airpath and cylinder variables to a fueling
rate step from 8 to 28 mg/str (blue) and a SOI step from 10 to 0.75◦BTCD
(red). Control variable is in gray. Remaining controls are held constant. Note
that airpath-related variables keep their characteristic time (approximately 3
seconds), while cylinder outputs–torque and NOx–experiment a sudden change
as a consequence of the in-cylinder change. Note that NOx concentration
measurement is affected by the sample time and the delay of the NOx probe.

The advantage of this torque modeling approach is its ability to robustly
represent motoring effects as Tind becomes null when uf = 0, keeping the
physical relation between fuel injection and indicated torque.

In order to model the breathing process, semi-empirical expressions have
been used. In particular, the total mass getting into the cylinders can be
calculated by assuming the intake flow as an ideal gas. Therefore, the trapped
mass can be easily calculated with the ideal gas law for the intake flow
conditions and the engine displacement Vd. Taking into account that cylinders
breath once per cycle–and a cycle takes place every two revolutions–the engine
performs Nice/120 cylinder fillings per second. Therefore, the mass flow getting
into the cylinders is [15]:

ṁip = ηv
p2NiceVd
120Rθim

(4.86)

The term ηv is the volumetric efficiency and accounts for the phenomena that
jeopardizes the ideal admitted gas amount such as residuals or valve timing.
This efficiency is rather variable with engine conditions and quite difficult to
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model capturing the actual events taking effect in the engine. Sticking to a
simple model without considering fluid-dynamic equations of the flow entering
the cylinders, there still exist several approaches that can be found in the
literature. Intuitively, it should be a function of the inlet and outlet conditions
and engine speed, such as the expression proposed in [13] that relates ηv to
pressures and engine speed:

ηv = ηv,p(p1, p2)ηv,N (Nice) (4.87)

with ηv,N a polynomial that is function of the engine speed, and ηv,p:

ηv,p = 1 +
1

Rc
−
(
p3

p2

) 1
κ 1

Rc
(4.88)

Similarly, [16] suggests that the volumetric efficiency might be approximated
with another function of the engine speed, and intake and exhaust pressures:

ηv = c0 + c1Nice + c2N
−1
ice + c3N

−1
ice (p3 − p2) (4.89)

Another engine speed and pressure dependent approximation is that of [14]:

ηv = c2

√
Nice + c1

√
p2 + c0 (4.90)

A different approach may be found in [15], where a physical expression with
no parameters to calibrate is proposed:

ηv =
p2

p1

θatm
θim

AFR

1 + AFR

(
Rc

Rc − 1
− 1

κ(Rc − 1)

[
p3

p2
+ κ− 1

])
(4.91)

Results of all the above models are represented and compared in the left
plot of figure 4.25. Despite these expressions work well in many situations,
due to the numerous phenomena that affect the volumetric efficiency, the
performance of these models may vary from engine to engine. Therefore, based
on the experimental observations of the engine, an additional model for the
volumetric efficiency is proposed in this thesis:

ηv = cA exp

(
c2

c1p2 + c0

)
+ cBuvgt + cC (4.92)

where the presence of uvgt respond to purely empirical reasons and it can be
argued that it is a way to take into account the effect of the backpressure
in the amount of residual gases that remain in the cylinder in a simple way.
The performance of this model is shown in the right plot of figure 4.25. The
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Figure 4.25: Correlation of experimental and modeled volumetric efficiency
ηv. Left plot shows three models available in the literature, namely [13] in
green, [16] in purple, [14] in yellow and [15] in red. Right plot displays the
performance of the model proposed in this thesis.

reasons of the dispersion shown in the results is twofold: on the one hand,
intake temperature variations are neglected in this model for performance
and simplicity reasons, resulting in the inability to capture the effect on the
volumetric efficiency; on the other hand, volumetric efficiency measurements
are subject to the accuracy of EGR measurements since the recirculated mass
flow is required to calculate the mass entering the cylinders. Thus, the poor
transient reliability of EGR mass flow readings is partially responsible of the
dispersion.

Since no reservoirs are considered in the cylinder and mass conservation
must be verified, the total exhaust mass flow is the addition of the incoming
flow and the injected fuel:

ṁep = ṁip + ṁf (4.93)

The fuel mass flow can be directly calculated from the injected rate uf–
which is typically expressed in mg/str–as:

ṁf = uf
ncylNice

120 · 106
(4.94)

where ncyl is the number of cylinders of the engine.

Assuming perfect burning of the injected fuel, the oxygen fraction at the
exhaust gas is a function of the stoichiometric Air to Fuel Ratio (AFR):

XO2,ep =
XO2,imṁip −AFRXO2,atmṁf

ṁep
(4.95)
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Figure 4.26: Agreement between experimental engine data and cylinder black-
box models: effective torque (top left), exhaust port temperature (top right),
NOx emissions (bottom left), and exhaust opacity (bottom right).

Finally, the λe parameter–which measures the quotient between the avail-
able oxygen at the combustion chamber and the stoichiometric oxygen neces-
sary to burn the injected fuel–can be calculated by applying its definition:

λe =
ṁipXO2,im

AFRṁfXO2,atm
(4.96)

Polynomial black-box models as well as the volumetric efficiency model
are fitted to experimental data. Validation results for black-box models are
shown in figure 4.26.
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Detailed in-cylinder process

This cylinder model is aimed for the intra-cycle OC works as long as they
require a detailed description of the in-cylinder processes (particularly, the
works at section 9.2). The compression, combustion and expansion processes
of a CI engine, i.e. between Intake Valve Closing (IVC) and Exhaust Valve
Opening (EVO), can be modeled as a process in a closed system with a
single substance whose properties change with the thermodynamic conditions
according to the correlations from [17].

The combustion process is modeled as a heat addition to the system.
The heat transferred to the cylinder walls is represented as a function of
the temperature difference between the gas and the cylinder walls with a
version of the so called Woschni approach [18]. This system is modeled as
a one-component (gas whose properties are a weighted average of the air,
fuel and exhaust gas properties) homogeneous (gas phase) system. Then, its
thermodynamic state is fully defined by two variables: volume Vic and pressure
pic. This selection is arbitrary but sustained by the fact that Vic depends on
the slider-crank mechanism, so its evolution, for a given engine geometry and
operating speed, is independent of the system variables and can be considered
as a disturbance in the control sense. For a particular operating point the mass
of the system can be considered a priori known, so Vic can be replaced by the
specific volume vic. Regarding the selection of pic as a secondary state variable
instead of the more usual selection of the temperature θic in thermodynamic
problems, the reason is that maximum pressure constraints can be directly
considered. Accordingly, provided the volume during the thermodynamic
cycle, the cylinder pressure evolution can be obtained by integration of the
first law of thermodynamics applied to the closed system between the IVC
and EVO:

dpic
dα

=
γ − 1

vic

(
∂qb
∂α

+
∂qwall
∂α

)
− γpic

vic

dvic
dα

(4.97)

where the dependence of the variables on the crank angle α has been omitted
for the sake of clarity, vic is the specific volume in the cylinder, γ is the heat
capacity ratio, qb and qwall represent the heat released during the combustion
process and the heat transfer to the cylinder walls respectively. Note that
equation (4.97) is obtained from the application of the first law of thermody-
namics to a closed system, which involves that there is not mass exchange
between the system and its surroundings. In the case at hand it means that
since the injection process involves some mass exchange, the fuel mass injected
should be neglected compared to the total mass admitted in the cylinder. As
far as the stoichiometric fuel to air ratio for the considered fuel is 1/14.5 and
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taking into account the lean operation of diesel engines–below 0.7–the fuel
only represents around a 4% of the total mass admitted by the cylinder, so
this assumption can be done without introducing a significant error. The heat
released during the combustion is calculated as:

∂αqb = mfHfufbr (4.98)

where mf is the fuel injected during the cycle, Hf stands for the lower heating
value of the fuel and ufbr represents the fuel burning rate, i.e. the derivative
of the fuel mass fraction burnt respect to the crank angle. Note that ∂α
represents the partial derivative with respect to α.

The heat transfer to the cylinder walls is modeled as:

q̇wall = hwallAwall(θic − θwall) (4.99)

where hwall the heat transfer coefficient, Awall is the heat exchange area and
θwall the temperature of the walls. The heat transfer coefficient is modeled with
a Nusselt like correlation, particularly a variation of the Woschni’s correlation
proposed in [19] and [20]:

hwall = k1b
−0.2p0.8

ic θ
−0.53
ic c0.8

g (4.100)

where k1 is a constant (in the case at hand 0.12), b is the piston bore, pic
and θic represent the pressure and temperature evolution in the combustion
chamber and cg is the gas velocity obtained from the following correlation:

cg = kw1cm + kw2cu + k2
Vdpivc
Vivcθivc

(pic − pmo) (4.101)

where cm and cu are the mean piston speed and the tangential flow velocity
due to swirl respectively, pivc, Vivc and θivc are the cylinder pressure, volume
and temperature at the intake valve closing, Vd is the cylinder displacement,
pmo is the pressure evolution in motoring conditions and kw1, kw1 and k2 are
calibration constants.

The in-cylinder pressure may be calculated from the integration of (4.97)
between IVC and EVO. This pressure can be used to calculate the indicated
work. It is straightforward to compute the indicated efficiency or the Indicated
Specific Fuel Consumption (ISFC).

There are several low computational cost models to predict NOx emissions
in the literature for a given HRL. Some of them rely on correlations that
provide the generated NOx as a function of the operating conditions [21,
22], while others, physically-based, use the evolution of the thermodynamic
variables during the cycle to compute the in-cycle evolution of NOx generation.
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For the works in this thesis, one of the last kind proposed by [23] has been used
because of its good accuracy and the easy combination with the combustion
model previously described. According to the referred model, the thermal
NOx generation can be calculated as:

∂αmnox = kf∂αqb exp

(
− kact
θad − k∆θ

)
(4.102)

where kf represents the proportionality between the heat released and the
amount of reactants passing through the flame front, and kact is a constant
to model the NOx reaction rate with an Arrhenius-like correlation depending
on the temperature of the reactants. This temperature is estimated as the
adiabatic temperature θad with an offset given by the calibration parameter
k∆θ. A deep explanation of the physical background of this expression can be
found in [23]. Note that this model only takes into account NOx formation via
the thermal mechanism, so despite being the most important in diesel engines,
some deviation between the model results and experimental NOx emissions
can be observed, specially when premixed combustion plays an important role
[23].

4.5.6 Coolers

Intake gas coming from the compressor goes through an intercooler to increase
density before going to the intake port. EGR valves also include a cooler for
performance reasons and to avoid excessive exposure of the valve mechanism
to high temperatures. These elements are represented with a simple model
of a heat exchanger that transfers thermal energy from the gas to another
fluid–engine coolant in the case of EGR valves and water for the intercooler
in the testing facility custom setup–with an efficiency ηic:

θds = (1− ηic)θus + ηicθcf (4.103)

where θcf is the temperature of the cooling fluid. Note this expression is also
valid for air-to-air heat exchangers.

4.5.7 Quasi-steady engine approach

Due to the high complexity of the above model, a simplified approach is
performed to assess optimization problems where engine dynamics are not
relevant or when control is performed acting only on the throttle. In those
cases the goal is to assess an engine supervisory control consisting on the
choice of the operating setpoint, neglecting the dynamic response as it would
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Figure 4.27: Two engine maps showing fuel consumption in g/s as a function
of engine speed Nice and torque Tice. Left plot corresponds to a turbocharged
diesel engine and right plot to a naturally aspirated gasoline engine.

be managed by an additional low level controller. Therefore, only steady state
engine performance is interesting.

The classic approach is to reduce the engine to a map as a function of
engine speed Nice and fueling rate uf [13]. Many quantities may be mapped,
but probably the most interesting for a vehicle model is the fuel consumption–
see figure 4.27 for the fuel consumption map of two different engines used in
this thesis. Efficiency, if needed, may be estimated with the quotient between
mechanical power and the heating energy of the fuel:

ηice =
NiceTice
ṁfHf

(4.104)

where Hf is the fuel heating value.
This engine model is not able to reproduce transient effects since only

steady state values are mapped. However, it is usually enough for many control
applications as it is a simple approach to an ICE.
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Chapter 5

Experimental tools

I have had my results for a long time but I do not yet know how I
am to arrive at them.

— Carl Friedrich Gauss
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Work (chapter or section) Setups Experimental
validation

HP- and LP-EGR switching control (6.2) Setup A yes
Full engine control (6.3) Setup A yes
Speed management with engine control (7) Setup C no
HEV energy management (8) Setup D no
HRL design (9.2) Setup B yes
HEV powertrain sizing (9.3) Setup D no

Table 5.1: Summary with the experimental facilities and setups used at the
diverse works presented in this thesis.

5.1 Introduction

Optimal control is intimately related to the actual system it drives. Despite
the theoretical work is somehow universal–the mathematical problem might
differ from case to case, but it is ultimately an optimization problem–, the
chosen method and the practical implementation is system-specific. Also, the
quality of the control-oriented models is critical for the optimization results to
stick to the actual capabilities of the controlled system.

Several experimental tests are performed in this thesis, mainly because of
two reasons: (i) in order to provide realistic models based on the available
experimental information–fitting data and validation cycles–, and (ii) to test
and validate the optimization results on the actual facility.

5.2 System setup

According to the specific requisites of the studies carried out in this thesis,
several experimental tools have been used. On one hand, theoretical works have
been mostly developed with manufacturers’ experimental data, especially those
where quasi-steady models are sufficient. On the other hand, experimental
facilities have been used for studies where a practical validation has been
performed. A summary with the experimental setups that have been used
throughout this thesis can be found in table 5.1. These setups are described
in the following sections.

5.2.1 Setup A

This setup consists of an engine test bench. It is the main experimental facility
used in this thesis to validate the results of optimal control applications.
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Figure 5.1: Engine A layout with location of the factory and additional
instrumentations. Blue arrows denote readings while red arrows represent
controls that can be actuated.

The test bench is composed of an ICE and a dyno that absorbs the engine
power and drives it if necessary. A number of measuring devices and control
electronics are also part of the facility.

Engine

The ICE is a production passenger vehicle 2-liter and 4-cylinder diesel engine,
in compliance with Euro 5 emission standards. Its main characteristics are
summarized in table 5.2 and a schematic diagram of the airpath may be found
in figure 5.1. The engine features two EGR loops, namely the factory standard
HP-EGR and a custom LP-EGR loop installed to explore the capabilities
of this architecture in combination of optimal control. The LP-EGR system
is located downstream the DPF to minimize the amount of exhaust gas
particulate through the compressor and to avoid a premature damage. The
system is mostly the same than the HP loop: it is composed of a water-cooled
heat exchanger and a valve. The heat exchanger is located upstream to avoid
excessive thermal shock in the valve, despite this phenomenon is not as critical
as in the HP system. Due to the low pressure drop in the LP-EGR system–both
sides of the valve are close to the atmospheric pressure–the recirculated flow
amount might be insufficient even when the valve is wide-open. To overcome
this issue, a backpressure valve is installed in the exhaust line, downstream
the joint where the flow diverts to the LP-EGR. This valve raises the pressure
upstream the LP-EGR producing an increased pressure drop.
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Architecture Diesel, inline-four
Displacement 1997 cc
Bore x stroke 85 x 88 mm
Compression ratio 16:1
Valves 16
Injection system Common rail
Breathing system Turbocharged, VGT, intercooled
Emissions control HP- and LP-EGR, DOC, DPF
Emissions standard Euro 5
Power 120 kW @ 3750 rpm
Torque 340 Nm @ 2000 rpm

Table 5.2: Main characteristics of setup A engine.

The remaining of the engine is mainly factory standard, with intercooler,
VGT, DOC and DPF. There are two bypasses on the airpath, one of them
avoiding the intercooler and the other bypassing the EGR cooler. In normal
conditions those bypasses remain closed and gases travel throughout the coolers.
However, if a higher temperature is required at the intake manifold–during
warm up, to reduce CO emissions, in DPF regeneration phases, etc.–throttles
are piloted to let the flow bypass the coolers. Intercooler throttle is also used
to increase the amount of recirculated gas when the EGR valve is already
wide-open by slightly closing it producing a pressure decrease at the intake
manifold.

The engine cooling system is custom-made due to the requisites of an
engine in a stationary setup. The air-to-air intercooler is replaced with an
air-to-liquid heat exchanger. Coolant flow–coming from a cooling tower–is
managed with a PID controller that keeps a constant temperature at the
intercooler. A different circuit is used for the engine coolant with an additional
PID. EGR coolers are also air-to-liquid heat exchangers with an independent
circuit. Since these devices are originally cooled with engine coolant, an
electric resistance in combination with a PID controller is installed to keep
the liquid at the engine temperature. Despite all these changes, differences
from factory cooling system are negligible for the scope of this thesis as long
as all experiments are performed after engine warm up and PID controllers
keep temperatures constant.

The ICE is coupled to a Horiba Dynas3 asynchronous dyno that absorbs
the delivered torque and drives the engine in overrun simulations. The test-
cell is controlled with a Horiba Sparc and interfaced with a Horiba Stars
environment. The facility enables to perform tests with a prescribed engine
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speed trajectory or a road load simulation where speed is updated according
to the vehicle’s parameters.

Factory control scheme

The engine control is performed by a Delphi ECU. The control scheme follows
the factory structure with the manufacturer calibration. This particular ECU,
however, has an additional ETK port that allows to stream data from and to
the ECU memory.

With factory standards, airpath management is performed by actuating
EGR valve and VGT position. Due to the coupling between systems [1], there
are two different operation modes which are switched according to the engine
operation point, whose limits are shown in figure 5.2. The first mode occurs
at low load and low to medium engine speed, where the fresh air mass flow is
controlled in closed-loop. The mass flow meter readings are monitored and the
EGR valve is controlled to reach the desired air mass flow amount: the closer
the valve is, the more the fresh air flows throughout the intake–for a given
volumetric efficiency, less recirculated gases means that more fresh air must
be supplied. The target air mass flow, and consequently an EGR fraction,
is achieved with a PID controller, aiming to reduce the generation of NOx

emissions. The VGT position is set in open-loop according to ECU maps,
producing an intake manifold pressure that is not controlled. The control
sequence of this operating mode is represented in figure 5.3. The second mode
is activated at the rest of the engine operating region. In this case, intake
manifold pressure is controlled in closed-loop. The actual pressure is measured
and kept at the level specified in the ECU calibration by acting on the VGT
position: closing the stator accelerates the flow, spinning the turbine faster,
increasing the mass flow through the compressor and consequently rising the
intake pressure. During this operating mode the EGR is completely closed.
This control sequence is also represented in figure 5.3.

After setting the desired position of the EGR valve and the VGT position
at any of the above two modes, the actual actuator position is measured. This
reading feeds a PID controller–one for each control–that tracks the current
position in order to reach the target accurately. This control variable is
ultimately processed into a Pulse-Width Modulation (PWM) signal to excite
the solenoid that drives the valve.

The fueling rate is calculated from the current engine speed and pedal
position. This injection amount is set in open-loop since there is no instrument
onboard to measure the actual injection settings. An estimation is used instead,
based on the fuel rail pressure and intake conditions. Then, the ECU is able to
predict the necessary injection time to reach the desired fuel amount according
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Figure 5.2: Operation zones for the two air control modes of engine A factory
calibration as a function of engine speed Nice and pedal position ς. The region
in red is the EGR activation area where air mass flow is tracked. In the blue
region the pressure is controlled in closed-loop while the EGR valve remains
closed. This policy corresponds to the factory calibration.

to its calibrated values. This decision is forwarded straight to the injectors,
whose plunger will lift the specified time. This ECU is capable of two pilot,
a main, and two post injections. Pilot injections are scheduled to reduce
engine noise and vibrations and, generally, they represent between 1 and 5%
of the total injected amount. Post injections are disabled during the normal
operation of the engine. SOI is set according to ECU calibrated values. The
crankshaft position sensor permits to schedule all available injection events
at the specified angles. The ECU has several additional safeguards to avoid
potentially dangerous SOI settings that may damage the engine. The fuel
rail pressure is controlled in closed-loop to match the desired value at the
calibration. The pressure is measured and a valve on the rail is actuated.

LP-EGR and backpressure valves are driven with an external PID controller
that monitors the actual position in closed-loop. Setpoints can be externally
introduced but ECU has no real control over the valves.

Factory calibration for the main ECU controls are represented in figure
5.4. Notice that several corrections are applied to these values according to
engine temperature, ambient conditions, etc. Also, additional maps exist for
different operating modes such as DPF regeneration, DPF lightoff, starting or
exhaust heat recovery among others.
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Figure 5.3: Simplified scheme of the EGR and VGT control at the factory
ECU strategy (engine A). Red arrows denote the point where bypass variables
are injected in the control flow.

Instrumentation

The test cell is equipped with a dynamometer, a Horiba Sparc and Stars
system including numerous additional thermocouples and pressure sensors
installed along the engine airpath, a turbo speed measuring sensor, a Horiba
MEXA-7170DEGR exhaust gas analyzer, an AVL 439 Opacimeter, a Horiba
FQ-2100DP fuel meter, an ABB Sensyflow mass flow sensor, two Continental
NOx probes and additional Negative Temperature Coefficient thermistors
(NTCs). A descriptive scheme of the testing facility and these additional
devices is shown in 5.5. The locations where the engine has been instrumented
can be appreciated in the engine layout scheme at figure 5.1.

The dynamometer is an asynchronous machine rated to 250 kW and a
maximum torque of 580 Nm. It is equipped with torque and rotational speed
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Figure 5.4: Factory calibration maps (engine A) as a function of engine speed
Nice and pedal position ς. These quantities (air mass flow ṁc, intake manifold
pressure p2, fueling rate uf and SOI usoi) represent master demands at the
factory ECU calibration for the nominal operating mode. Temperature correc-
tions, other operating modes or safeguards may apply to these setpoints during
engine operation. The shown fuel injection quantity and timing correspond to
the main injection.

sensors that are forwarded to the Sparc system. These measures are used to
control the test bed as well.

Horiba Stars interface interacts with the testing facility. It is used to set up
the experimental tests and to collect measurements from the additional engine
instrumentation. Those additional sensors include numerous thermocouples
and pressure sensors that are spread along the airpath, complementing the ECU
sensors. Those additional measurements are useful to characterize individual
components of the engine with upstream and downstream experimental data.
For example, factory sensors do not include turbine inlet temperature readings,
which may be pretty interesting when analyzing cylinder processes or turbine
performance. In addition, an eddy current turbo speed sensor is mounted in
the compressor case, detecting the pass of the blades and, therefore, accounting
for the rotational speed of the turbocharger. This information is critical for
turbocharging modeling purposes, which are an essential part of the optimal
control.
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Figure 5.5: Scheme of engine A test bench facility and instrumentation. Gas
bleeding is represented with orange links while electrical connections (CAN,
ethernet, ETK or analogical) are represented in blue. The information flow
direction and the main variables transmitted between devices are shown.

The Horiba MEXA-7170DEGR gas analyzer features two probes: one is
installed at the exhaust line, upstream the DOC and other after-treatment
device, and the other is placed at the intake manifold. The measured exhaust
gas composition includes O2 and pollutants such as CO2–measured by a Non-
Dispersive Infrared (NDIR) analyzer–, NOx–using a Heated Chemiluminescent
Detector (HCLD)–, HC–consisting of a Heated Flame Ionization Detector
(HFID)–and CO. The EGR probe measures CO2 concentration in order to
calculate the actual fraction of EGR, which is helpful during the modeling phase.
Readings have a delay due to the length of the probe line and sensor dynamics.
The transport delay can be detected and corrected by performing steps in
both fuel and EGR rate and comparing these steps to sensor readings response.
However, sensor dynamics are neglected for the scope of this dissertation as
only steady state readings are considered for pollutant measurements. Figure
5.6 shows this delay and the performed correction. For the current facility,
these delays have been characterized as τexh = 5.1 seconds and τegr = 7.2
seconds for exhaust and EGR probes respectively.

An AVL 439 opacimeter is used to measure exhaust gases opacity. The
probe is placed upstream DOC and DPF. The opacimeter uses a light source
whose beam crosses the exhaust gas flow, and a photosensor detects the amount
of light that reaches the other side. The measure is expressed as a percentage
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Figure 5.6: Analysis of the delay at pollutants measurement introduced by
the gas analyzer. On top plot, raw CO2 concentration at the exhaust (in red)
is compared against the injected fuel amount (in blue)–CO2 is proportional to
the fuel–. Gas analyzer readings can be synchronized by shifting them a time
τexh (yellow line). Similarly, on bottom plot, raw CO2 concentration at the
intake manifold (in red) is compared against EGR valve actuation (in blue).
Synchronized readings can be achieved by applying a shift of τegr (in yellow).

where zero means that all light reaches the sensor, while 100% occurs when
no photon is captured on the other side. This measure is correlated with the
amount of smoke generated at the engine and can be translated into other
units. First, according to the opacimeter manufacturer, soot in Filter Smoke
Number (FSN) units can be calculated from opacimeter readings σ as:

FSN =

{
0.084 + 0.18σ − 0.0014σ2, σ < 55%
σ
10 , σ ≥ 55%

(5.1)

Then, according to Bosch and as defined in [2], soot mass flow can be
calculated from FSN units as:

ṁsoot =
(
3.97 · FSN + 7.59 · FSN1.83

)
ṁt (5.2)

The opacimeter readings are delayed solely due to the flow of the exhaust
gas throughout the probe–sensor readings do not introduce a noticeable delay.
This delay can also be easily detected and corrected as shown in figure 5.7.
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Figure 5.7: Detail of the delay introduced at the opacimeter readings. A change
in fuel injection rate (blue) produces a variation on the smoke generation (red).
The readings may be phased with the ECU variables by shifting them a time
τσ = 0.5 (yellow). This value is facility-specific.

The Horiba FQ-2100DP fuel meter consists of a balance that offers an
instantaneous fuel consumption value based on the weighted fuel mass deriva-
tive. It is used to measure the actual fuel consumption with an uncertainty of
0.12% at steady state readings.

ABB Sensyflow is a hot wire sensor which is installed upstream the factory
flow sensor. It is preceded and followed by straight ducts in order to achieve a
laminar and cross-section-homogeneous flow through the sensor. A laminar flow
improves readings quality and accuracy. Based on the Sensyflow measurements,
the factory mass flow sensor curves at the ECU have been recalibrated to
deliver the same readings.

The Continental NOx probes are placed upstream and downstream the
DOC. They are heated and CAN-bus ready. The sensor consists of a first
chamber where oxygen is pumped out with an electrode pump, exhaust
products are burned and, as a consequence, NO2 is reduced into NO. Then, in
a second chamber, NO is reduced into N2 and O2 and the oxygen is pumped
out again and measured like in a lambda sensor. The NOx probe measures
the NOx concentration in ppm, but it can be translated into mass flow with:

ṁnox = 10−6cnoxXnoxṁt (5.3)

where Xnox is the NOx concentration in ppm and ṁt the exhaust mass flow.
The coefficient cnox is defined as the quotient of NO2 and air molar masses:

cnox =
MNO2

Mair
= 1.587 (5.4)

The installation of two NOx probes allows to measure raw pollutants formation
at the engine as well as post-DOC NOx concentration to evaluate the after-
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Figure 5.8: Performance analysis of the NOx probe placed upstream the DOC.
Probe readings are in blue and Horiba gas analyzer measurements are in red.
The test consisted of fuel, SOI, EGR and VGT steps with 15 seconds of steady
state operation. The probe sensor was calibrated with previous readings from
the gas analyzer.

treatment performance. Both sensors have been calibrated to the Horiba gas
analyzer readings in steady state measurements–a comparison is shown in
figure 5.8. The robustness of the probes makes them a good candidate for
accurate readings, avoiding the delays present at Horiba measurements–for
the scope of this work, NOx probes readings can be considered instantaneous.

All measurements are ultimately sent to a dSPACE MicroAutobox through
CAN-bus (ECU variables and NOx probes) and analog lines (Sparc/Stars,
gas analyzer, turbo speed sensor, opacimeter, Sensyflow, dynamometer and
NTCs). A list of all the variables measured at the engine with the different
instruments is summarized at table 5.3.

Custom control scheme

In order to be able to interact with the factory engine control and to apply
optimal control policies, a bypass has been set up. The ECU has an ETK port
that grants access to its volatile memory on real time. Variables in the ECU
can be read and overwritten with custom values that are streamed through
the ETK line. An Etas ES910 device is used to interface with the ECU at
the ETK port. The ES910 device can communicate with a bypass-ready ECU,
gather the ECU variables of choice (60 variables in the current setup) and
stream them on an additional CAN line. It can also forward CAN messages to
the ETK port and inject the variables at different places in the factory control
structure.

The optimal control strategies are built and implemented in a rapid pro-
totyping dSPACE MicroAutobox device. This device streams the controls
and gathers ECU variables from the ES910 CAN-bus. Additionally, it collects
information from the aftermarket NOx probes–connected to dSPACE with
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Location θ p Pos ṁ ω T λe+O2 NOx Poll. Soot

1A • • ••
1B •• ••
2A • •
2B •• ••
2C • •
3A • •
3B • •
3C • •
4A •• • •• • • •
4B •• • • •
FR • • •
EB •• • •• •
TC •

HPEGR •
VGT •

LPEGR •
BP •

Pedal •

Table 5.3: Summary of the variables measured at the engine A test bench.
Columns represent the type of measurement (temperature, pressure, position,
mass flow, rotational speed, torque, lambda, NOx concentration, pollutants
and soot). Rows denote the location of that measurement at the engine
according to the nomenclature in figure 5.1. Factory instrumentation is shown
with blue dots and additional instrumentation in red.

an additional CAN line–, NTCs running on an analogical line, and test cell
measurements (turbo speed, dyno torque, thermo couples, pressure sensors,
etc.) at the additional analogical inputs. Opacimeter, Horiba gas analyzer
and Sensyflow measurements are sent through analogical lines as well.

The ECU control variables that have been substituted–bypassed–for custom
dSPACE variables are:

• HP-EGR valve position (0 to 100%), uegr.

• Compressor air mass flow demand, ṁc,sp.

• VGT position demand (0 to 100%), uvgt.

• Boost pressure demand, p2,sp.
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• Fuel amount injected in pilot injections, uf,pi1 and uf,pi2.

• Fuel amount injected in main injection, uf,main.

• Fuel amount injected in post injections, uf,po1 and uf,po2.

• Pilot injections timing, usoi,pi1 and usoi,pi2.

• Main injection timing, usoi,main.

• Post injections timing, usoi,po1 and usoi,po2.

• Fuel rail pressure demand, prail,sp.

• Throttles (intercooler and EGR cooler bypasses) position demand (0 to
100%), uthr,ic and uthr,egr.

• Pedal position, ς.

During all experiments engine is kept in normal operating mode and,
therefore, post injections are set to zero, intercooler throttle is closed and EGR
cooler throttle is closed as well. Bypassed variables are injected in a late stage
at the factory control flow to avoid additional corrections or interferences with
special operating modes. Injection timing is, however, inserted before ECU
safeguards in order to avoid potential damage to the engine due to a wrong
setting.

5.2.2 Setup B

This setup is composed of an engine test bench with a single cylinder engine.
The facility is aimed for in-cylinder pressure-related works.

Engine

The test-cell is fitted with a single cylinder DI CI engine, whose main features
are shown in table 5.4. This single cylinder engine is the result of an in-
house engine design process aimed to develop the minimum size DI CI engine
for automotive applications (specific power around 40 KW/litre and 40%
efficiency) with state-of-the -art technology [3]. The resulting engine, with
150 cm3 displacement, is representative of a small turbocharged ICE. In order
to simulate the forced induction of a multi cylinder engine, the intake line is
equipped with a screw compressor. Between the compressor and the intake
port, a cooler, a dryer and a heater are installed, making possible to achieve
any desired thermodynamical conditions (θ,p) at the cylinder. These devices
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Type Common rail DI
Number of cylinders 1
Bore/Stroke 1.1
Displacement 150 cm3

Compression ratio 17:1
Combustion chamber geometry quiescent
Swirl number 0
Maximum cylinder pressure 180 bar
Number of injection nozzles 6
Nozzle diameter 92 µm

Table 5.4: Main characteristics of the setup B engine.
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Figure 5.9: Engine B layout with measuring locations (blue arrows) and
actuated controls (red arrows).

are powered with external sources and do not jeopardize engine performance.
The exhaust is equipped with a backpressure valve to simulate the effect of a
turbine. In order to avoid pressure pulses to reach the intake port, reservoirs
are placed at the intake and exhaust manifolds that keep a constant pressure
and filter wave effects. The layout of the engine is depicted at figure 5.9.

Instrumentation

The test-cell is equipped with a Horiba MEXA-7170DEGR gas analyzer and
an AVL-415 opacimeter. A descriptive scheme of the facility is available at
figure 5.10. The engine is fully instrumented with temperature, pressure, mass
flow and concentration sensors. Table 5.5 summarizes the variables measured
at the engine according to the nomenclature indicated at figure 5.9. For the
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Gas bleeding is represented with orange links while electrical connections are
represented in blue. The information flow direction and the main variables
transmitted between devices are shown.

works in this thesis, the key signals recorded are the in-cylinder pressure signal
and fuel consumption to compute the ISFC, the air mass flow and intake
conditions to compute the gas conditions at the IVC and the NOx emissions
to assess the emission limits. Dyno, gas analyzer and opacimeter readings are
forwarded to a computer that controls the facility. This computer is in charge
of setting the controls of the engine as well. No ECU is present at this research
engine and, therefore, controls are set manually. The available controls are:

• Fueling rate uf for each injection event. The system is capable of 8
injections per cycle but only two were performed during tests since the
minimum injection quantity is a significant amount for such a small
engine.

• SOI usoi for each injection event.

• Fuel rail pressure prail.

• Intake pressure p2 by actuating the screw compressor.

• Intake temperature θim thanks to the heater.

• Backpressure valve position ubp to simulate the presence of a turbine.
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Location θ p Pos ṁ ω T Poll. Soot

2A •
2B • •
3 • •
4 • •

FR • • •
EB • • • •
CC •
BP •

Table 5.5: Summary of the variables measured at the engine B test bench.
Columns represent the type of measurement (temperature, pressure, position,
mass flow, rotational speed, torque, pollutants and soot). Rows denote the
location of that measurement at the engine according to the nomenclature in
figure 5.9.

Mass 1285 kg
Drag coefficient 0.31
Frontal area 2.12 m2

Rolling coefficient 0.015
Wheel radius 0.31 m
Number of gears 5
Final gear ratios 12.82, 6.81, 4.40, 3.20, 2.56

Table 5.6: Setup C vehicle parameters.

5.2.3 Setup C

This setup consists of a diesel engine and a vehicle model, representing a
B-segment passenger vehicle. This setup is used for vehicle optimal control
works (section 7).

The engine model corresponds to the facility from setup A. It is fitted and
validated to the actual engine. This model considers the effect of HP-EGR
(LP-EGR is always closed in this setup), VGT, SOI and fueling rate in the
engine dynamics, according to the equations described in section 4.5. The
vehicle model follows the scheme described in section 4.2 with the parameters
shown in table 5.6, which are extracted from manufacturer’s data sheets.
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Emission standards Euro 5
Displacement 1199 cm3

Number of cylinders 3
Number of valves 12
Max torque 118 Nm (2750 rpm)
Max power 60 kW (5750 rpm)

Table 5.7: Main characteristics of setup D engine.

5.2.4 Setup D

This setup is a HEV consisting of an engine, a motor and a battery. These
components have been experimentally characterized by the manufacturers at
their facilities. The available data is a set of maps for each component. No
further experimental information is available, but quasi-steady models are
sufficient for the HEV energy management studies presented this thesis. No
experimental validation of the optimal control strategies is performed due to
the absence of the actual system. Therefore, these works are purely theoretical.

Engine

The engine is naturally aspirated and spark ignited. Table 5.7 summarizes
the main characteristics of this engine. Quasi-steady maps for Specific Fuel
Consumption (SFC), NVH, λe and pollutant emissions are provided by the
manufacturer, which are shown at figure 5.11. The engine model is constructed
from this experimental information.

Motor

The electrical motor is a PMSM, with a nominal output power of 50 kW.
The manufacturer provided the operating maps at figure 5.12, showing motor
efficiency, electrical power consumption, drawn current and voltage supply as
a function of motor speed and torque output. Note that electrical variables
are direct current measurements since these readings are done upstream power
electronics and, therefore, converters and inverters performance is included.
This machine is used both as a generator and as a traction motor.

Battery

The battery is made of individual A123 Systems ANR26650M1A lithium ion
cells. The main characteristics of the cell can be found in manufacturer’s
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Figure 5.11: Quasi-steady maps for fuel consumption, noise, λe and raw
pollutants (pre-catalyst), as supplied by the manufacturer. Maps correspond
to a fully warmed up engine.

datasheet, which are summarized in table 5.8. Additionally, experimental
performance of the cell is available at figure 5.13, where charge and discharge
curves are averaged to provide a relation between open circuit voltage and SoC.
A battery model is constructed with this information, following the structure
described in chapter 4 and combining cells both in series and parallel.

5.3 Test description

Several tests have been performed for the different works in this thesis at the
testing facilities described in the previous section. These tests respond to the
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Figure 5.12: Motor (setup D) operating map as supplied by manufacturer.
Efficiency ηm, electrical power consumption Pe, drawn current im and voltage
supply Vb are shown as a function of motor speed Nm and torque output Tm.

requirements of these studies, which can be summarized as gathering data to
calibrate a model first and, then, validating the results of the study in the
same facility. Seven different test campaigns have been carried out. These
tests are classified in the table 5.9 and are described in the following points.

5.3.1 Test 1

This test is a parametric study of engine A varying its main controls. The
controls that have been actuated are: main injection fueling rate uf and SOI

Nominal capacity Qb 2.3 Ah
Nominal voltage Voc 3.3 V
Internal resistance Rb 10 mΩ
Maximum continuous discharge ib,cont 70 A
Maximum pulse discharge ib,pulse 120 A
Weight mb 70 g

Table 5.8: ANR26650M1A lithium ion cell specifications.
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Figure 5.13: Experimental relation between open circuit voltage Voc and SoC
of an ANR26650M1A cell. The shown relation is the average of charge and
discharge curves.

usoi, HP-EGR valve position uegr and VGT opening uvgt. Engine speed varies
from 1800 to 2700 rpm. The engine map is divided into 20 operating points, as
shown in figure 5.14, according to the typical operating points of test 3 cycle.
At each point, a Design of Experiments (DoE) has been set up to configure
the sequence of controls at the parametric study. Table 5.10 summarizes
the range of variation of the actuated controls. These sequences consists
of 49 consecutive steps, randomized and with a settling time of 15 seconds,
where all controls may be changed simultaneously. As an example, one of
those sequences is shown in figure 5.15. Although the settling time might not
be sufficient to reach a thermal steady state condition, all readings–except
temperatures–show a steady behavior after few seconds. Figure 5.16 shows
the evolution of different variables during this settling time.

The objective of this test is to inspect the whole operating range of the
engine without restricting to the factory calibration. Although the main target
of these type of test is to provide steady state measurements, the transition
from one point to another can be used to capture the dynamics of the engine
as well.

5.3.2 Test 2

This test is a simulation of a WLTC with engine A running factory calibration.
The vehicle model used to simulate the road load is factory embedded in the
testing facility with the parameters shown in table 5.11. The vehicle speed
profile of this homologation cycle and the simulated engine speed and torque
can be appreciated in figure 5.17.
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Facility Test no. Description Objective

System A
Test 1 Parametric test campaign Model calibration
Test 2 WLTC with factory control Model calibration
Test 3 Driving cycle with factory

control
Model validation

Test 4 Driving cycle with optimal
control

Results validation

Test 5 NEDC with LP- and HP-
EGR

Model calibration

Test 6 NEDC with optimal EGR
switch

Results validation

System B Test 7 Parametric test campaign Model calibration

Table 5.9: Classification of the different tests that have been carried out at
experimental facilities for the works presented in this thesis.

Figure 5.14: Engine test points for test 1. The distribution of these points
correspond to the typical operating points of test 3 cycle.

Main injection fuel amount, uf [-2, 2] mg/str (around nominal)
SOI, uδsoi [-5, 5]◦Before Factory Calibration (BFC)
EGR valve position, uegr [0, 100]%
VGT opening, uvgt [0, 100]%

Table 5.10: Range of variation of actuated controls in test 1.
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Figure 5.15: Typical controls trajectory for engine characterization at test 1.

Mass, mv 1150 kg
Aerodynamic drag coefficient, Cd 0.31
Frontal area, A 2.1 m2

Rolling friction coefficient, cr 0.015

Table 5.11: Vehicle parameters used to simulate the WLTC at test 2.

The objective of this test is to provide engine measurements with a highly
dynamic behavior, complementing the steady state tests for model calibration.
The WLTC is chosen because it is a well-known cycle that covers a wide region
of the engine operating map.

5.3.3 Test 3

This test is a simulation of a real driving cycle with engine A running factory
calibration. This driving cycle corresponds to a portion of the highway driving
from test 8 route–see 5.3.8–recorded with Global Positioning System (GPS)
and On-Board Diagnostics (OBD)-II devices. It features both positive and
negative slopes, covers approximately 40 km and lasts 25 minutes. The speed
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Figure 5.16: Evolution of different variables (engine torque, intake manifold
pressure, air mass flow and NOx concentration) during the 15 seconds settling
time at test 1.

Figure 5.17: WLTC target speed (top) and experimental engine speed and
torque at test 2.



5.3. Test description 159

Figure 5.18: Engine speed and torque trajectories of the simulated real driving
cycle from test 3.

and torque profiles are shown at figure 5.18. Note that the sharpness of engine
speed is due to test bench limitations which prevented to reproduce the exact
actual trajectory. Therefore, this sharp trajectory was used instead.

This test is only used as a validation to the engine A model, so simulation
results are compared to these readings.

5.3.4 Test 4

This is a set of tests, each of them reproducing the same driving cycle than
test 3 at engine A (figure 5.18). In this case, factory calibration is not used
anymore and optimal control trajectories are applied to the engine. A total of
13 control trajectories are tested with different emission limits. EGR position,
VGT opening and SOI setting may vary in the ranges shown in table 5.10.
Main injection fueling rate is free. Pilot injections are scheduled with factory
calibration and post injections are canceled.

The objective of these tests is to validate the simulation results of the
optimal control trajectories developed in this thesis.

5.3.5 Test 5

This test campaign comprises two different tests, both simulating an NEDC
with factory calibration at engine A (figure 5.19 shows the profile of this cycle).
The tests are conducted according to the methodology described in [4]. One
test uses the factory HP-EGR system while the other uses a custom LP-EGR
loop. The use of one of the system is exclusive during the test, so both systems
are not used simultaneously.

The objective of these two tests is to provide information about performance
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Figure 5.19: NEDC target speed (top) and experimental engine speed (middle)
and torque (bottom) at test 5.

and emissions at a prescribed cycle using two different EGR systems. The
choice of the European homologation cycle responds to the fact that engine
emissions limit must be met with that cycle in practical situations, so the work
is more attractive from an industry point of view. A simple model calibration
is performed with this data.

5.3.6 Test 6

This is a set of two tests, each of them simulating a NEDC with engine A
(figure 5.19). Factory calibration is used but LP- and HP-EGR systems are
activated sequentially. The switching between the two systems correspond to
an optimal control policy that has been previously calculated with test 5 data.
This set of tests correspond to optimal strategies with different constraints. It
should be underlined that different EGR systems are not used simultaneously.

The objective of this test campaign is to validate the optimal control
strategies developed to manage the switching between EGR systems.

5.3.7 Test 7

This test is a parametric study of engine B varying key controls. λe, injection
pressure prail, injection timing usoi and number of injections ninj are varied
during this study within the ranges specified in table 5.12. Intake temperature,
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Engine speed, Nice 3000 rpm
Fuel amount, uf 14.7 mg/str
λe [1.43, 2] mg/str
Intake temperature, θim 35◦C
Injection pressure, prail [1200, 1400] bar
Number of injections, ninj [1, 2]

Table 5.12: Operating conditions of engine B at test 7.

Figure 5.20: Road height z (top) and speed limit v̂ (bottom) profiles. Data
collected from Google Maps API.

engine speed and injected fuel amount are kept constant for these tests with
the values at table 5.12.

The objective of these tests is to gather information about injection system
behavior with different injection settings and number of injection events. A
model is calibrated with this information.

5.3.8 Test 8

This test is a daily commute between two cities, recorded from actual driving
with a GPS device. The road height profile and speed limits are collected from
Google Maps API and shown in figure 5.20. This route covers a total distance
of 60 km. Both the beginning and the end of the route correspond to city
driving where speed limits are low. The intermediate part, which comprises
most of the distance, is highway cruising. This route is used in vehicle speed
optimization works throughout this thesis.
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[2] Internal combustion compression-ignition engines – Measurement appa-
ratus for smoke from engines operating under steady-state conditions –
Filter-type smokemeter. International Organization for Standardization.
Geneva, CH, 1998.

[3] F. Payri et al. “Assessing the limits of downsizing in diesel engines”.
In: SAE Technical Paper. 2014.

[4] A. Broatch et al. “Pollutants instantaneous measurement and data
analysis of engine-in-the-loop tests”. In: Thiesel International Con-
ference on Thermo and Fluid Dynamic processes in Direct Injection
Engines. 2006.



Part III

Applications to powertrain
control, design and

assessment

163





Chapter 6

Optimal engine control for
predefined driving cycles

I don’t sell cars; I sell engines. The cars I throw in for free since
something has to hold the engines in.

— Enzo Ferrari
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6.1 Introduction

A driving cycle, i.e. engine speed and torque profiles, is typically known for
benchmarking purposes. It may be also given for predictable situations such
as cruise control, overtaking maneuver, a hypothetical autonomous driving or
any other case where no external disturbances are present. In those situations,
where the boundary conditions of the problem are quantifiable variables, it
is possible to state the control problem as an OCP. In this scenario, OC
is interesting because it has the potential to offer the control strategy that
minimizes a specific criterion.

Under the hypothesis of a perfectly known engine speed and torque tra-
jectories, the application of OC is analyzed in this chapter. Two different
approaches are shown below: section 6.2 addresses the management of a
dual-loop EGR system, where the decision is the continuous choice of the
loop to be used for a given calibration; section 6.3 applies a full OC of engine
actuators, namely EGR, VGT, SOI and fueling rate settings, overriding ECU
calibration. The target of both approaches is to minimize fuel consumption
subject to an NOx emissions limit.

6.2 LP- and HP-EGR splitting

An interesting approach to control the pollutant emissions of ICEs is to upgrade
the EGR system with an LP loop. The traditional HP-EGR architecture
guides a fraction of the exhaust gas from the exhaust manifold–upstream the
turbine–to the intake manifold–downstream the compressor. The exhaust gas
is redirected into the cylinders at a high temperature despite using an EGR
cooler, due to the high temperatures at the turbine inlet. The introduction
of recirculated gas close to the inlet ports also leads to a poor homogeneity
in EGR distribution. On the contrary, LP-EGR drives a fraction of the
exhaust gas from after-treatment outlet to compressor inlet. It is a suitable
alternative to HP-EGR since it can provide high recirculated rates without
a significant increase in intake temperature–after-treatment outlet is much
colder than turbine inlet and the recirculated flow is also cooled throughout
the intake line, specifically at the cooler–and minimizing cylinder-to-cylinder
charge dispersion [1]. LP-EGR, however, shows other disadvantages such as
compressor reliability issues, condensations, increased pumping losses and
higher HC and Carbon Monoxide (CO) at low temperatures [2].

Several authors propose the dual-loop EGR system as a possible method
to combine the advantages of the LP- and HP-EGR routes [3–5]. Those works
are focused on controlling simultaneously both EGR circuits to reach the
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intake conditions which lead to the desired fuel consumption and emissions.
Considering two different EGR systems working simultaneously makes the
airpath control more complex and important problems concerning the gas
fraction estimation and control must be addressed [6, 7]. A simpler approach
to take advantage of the benefits o both LP- and HP-EGR systems is to choose
which one to use depending on the engine operating conditions but without the
combination of both routes at the same time. The present study follows the
second approach since the EGR loops will not operate simultaneously, i.e. the
EGR is carried out alternatively with the LP- or the HP-EGR systems. The
problem to be addressed consists in finding the optimal sequence of switches
between LP- and HP-EGR circuits to minimize fuel consumption given a
maximum level of NOx emissions, following the philosophy of previous works
of the author [8].

6.2.1 Problem description

The study of the effects of the LP- and HP-EGR architectures on engine
performance and emissions has been issued experimentally with Setup A
which is factory equipped with VGT, intercooler, DOC, DPF and a cooled
HP-EGR loop. The engine is upgraded with a custom LP-EGR circuit and
it is fully instrumented to measure temperatures and pressures in different
locations of the intake and exhaust lines as well as pollutant emissions and
smoke opacity. The engine is installed in a test cell equipped with a variable
frequency fast response dynamometer able to carry out engine-in-the-loop
tests. The interested reader may check section 5.2.1 for a detailed description
of this experimental setup.

To address the effects of the EGR architecture on engine fuel consumption
and pollutant emissions, engine behavior has been analyzed by simulating an
NEDC in the engine test bench, according to Test 5 (see section 5.3.5). The
reason for such selection is that on the one hand, this cycle represents the
operating conditions where the emission limits should be met. On the other
hand, analyzing the engine behavior with both LP- and HP-EGR architectures
provides insight on the conditions where they show their best potential.

The common approach for the airpath control is to actuate EGR and
VGT separately to avoid control problems due to the coupling between both
systems. Therefore, at low speed and load, where EGR may be applied, the
EGR valve is used to follow an air mass flow setpoint, while the turbine is
controlled according to a position setpoint. On the contrary, the EGR valve
is closed and the intake pressure is controlled in closed-loop with the turbine
when far from the homologation region. This control scheme is described for
the current experimental facility at section 5.2.1. Despite the coupling issues
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in the airpath are strongly reduced when the LP-EGR loop is used–the mass
flow through the turbine does not decrease when increasing the EGR amount–,
the standard control strategy with two operating regions has been used with
the LP-EGR configuration. Moreover, the standard engine calibration has
been kept with no changes regardless of the EGR layout used. Then, the
standard engine setpoints, which are optimized for the HP-EGR layout, have
been also applied when the LP-EGR circuit is in use. Of course, in a final
application, the engine calibration is to be adapted to the corresponding EGR
architecture. However, this has been avoided in the present study because of
two main reasons:

• Sharing the same calibration makes the EGR architecture the only dif-
ference between the tested configurations, in such a way that differences
in engine performance can not be attributed to other reasons such as
differences in the injection parameters or other control variables.

• The complexity of carrying out a complete calibration of the engine
exceeds the scope of the present work.

Insight into the effects of LP- and HP-EGR

The evolution of some of the most important parameters during engine opera-
tion in the NEDC are shown in figure 6.1.

As far as the engine calibration has been kept constant with both EGR
architectures, the evolution of the VGT is the same at the tests and it
has important consequences in the intake pressure. In fact, the HP-EGR
architecture prevents the recirculated gas from being expanded in the turbine,
while with the LP-EGR loop all the exhaust gases flow through the turbine.
This increase in the turbine power leads to a higher compressor mass flow and
higher intake pressure as shown in the upper plot of figure 6.1.

Again, as the engine control parameters have not been modified, the
setpoints for the air mass flow with both EGR configurations are roughly the
same. Since the engine speed evolution is imposed by the driving cycle, only
small differences in the air mass flow setpoint may appear due to differences
in the fueling rate required by both systems. In this sense, the air mass flow
with both EGR loops is similar as shown in the second plot of figure 6.1.
To keep the actual air mass flow near the setpoint, the opening of the EGR
valve is continuously modified along the cycle. However, at some parts of the
cycle, the LP-EGR case shows higher air mass flows than demanded. At those
conditions, even with fully open EGR valve, the air mass flow exceeds the
setpoint. The reason for such a deviation from the setpoint is twofold. On
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Figure 6.1: Intake pressure, air mass flow, intake temperature and coolant
temperature at the NEDC using HP-EGR (blue line) and LP-EGR (red line).

the one hand, the mass admitted by the cylinders with the LP-EGR is higher
due to the higher intake density, as a consequence of the higher energy in the
turbine and the lower intake temperature. On the other hand, the limited
pressure ratio in the LP-EGR circuit–between upstream and downstream the
valve–prevents from reaching the high LP-EGR flows necessary to reduce the
air mass flow to the setpoint level.

Intake temperature is also a parameter that plays a major role in the
combustion process. The third plot in figure 6.1 shows an important reduction
in the temperature of the intake gases when the LP-EGR architecture is
used. The lower intake temperature and higher intake pressure lead to a
noticeable increase in intake density, which involves an increase in the mass
admitted by the engine cylinders. As far as the air mass flow is similar with
both architectures, the increase in intake density involves a higher amount of
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recirculated gas in the case of using the LP-EGR circuit. Changes in intake
gas temperature, pressure and composition will lead to noticeable variations
in the engine NOx emissions and fuel consumption depending on the EGR
architecture.

Any ICE is strongly affected by changing temperatures. Particularly, the
NEDC establishes the engine start at some initial temperature between 20◦C
and 30◦C, so the engine behavior evolves during the cycle as the temperature
increases. The engine warm up impacts the fuel consumption due to changes
in the heat transfer performance, affecting the engine thermal efficiency, and
variations in the lubricant viscosity which may affect friction losses. A faster
engine warm up is usually related to a lower fuel consumption, while its effects
on emissions are not so clear to address. Generally, higher temperatures involve
higher NOx emissions, while other pollutants such as unburned HCs may be
lower. The interested reader can find a deep analysis of the effects of engine
temperatures on fuel consumption and emissions in [9, 10]. Regarding the
effects of the EGR architecture during the engine warm up, figure 6.1 shows
the evolution of the coolant temperature, as a representative temperature
of the thermal state of the engine, along the test cycle with the addressed
EGR loops. It may be observed that, despite a slightly lower temperature at
the beginning of the cycle, the engine warm up is faster with the HP-EGR
system, reaching the steady state temperature (78◦C) around 100 seconds
faster than using LP-EGR. This is due to the fact that the gas recirculated at
the HP-EGR system, coming from the exhaust manifold at a high temperature,
contributes to the engine warm up in two ways: on one hand, the gases heat
the coolant in the HP-EGR heat exchanger; on the other hand, those gases
allow a higher intake temperature that impacts to the heat transfer conditions
at the combustion process. On the contrary, with LP-EGR, the recirculated
gases are taken from the end of the exhaust line–specifically from the DPF
outlet–, whose lower temperature has a minor contribution to the engine warm
up.

The differences in the variables discussed in the previous paragraphs, which
are exclusively due to the EGR architecture employed, lead to important
variations in the engine fuel consumption and emissions level. Figure 6.2 shows
the instantaneous and accumulated values for fuel consumption, NOx emissions
and unburned HC emissions. LP-EGR test shows a higher fuel consumption,
excluding some peaks during accelerations that can be attributed to measuring
problems due to the poor dynamic response of the fuel measuring device–a
fuel balance. At the end of the complete cycle, the LP-EGR case needs a
5.2% increase in fuel compared to the corresponding test with HP-EGR. This
increase in fuel consumption is due to two main causes:
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Figure 6.2: Instantaneous and accumulated fuel consumption, NOx and HC
emissions at the NEDC using HP-EGR (blue line) and LP-EGR (red line).

• The higher mass flow through intake and exhaust systems leads to higher
pumping losses [1]. It should be taken into account that the recirculated
flow with LP-EGR travels through elements such as the after-treatment
system and the intercooler, while it is not the case at the HP-EGR
system. In addition, the use of HP-EGR reduces pumping losses since
intake and exhaust manifolds are connected and, consequently, pressure
difference is decreased.

• The lower intake temperature and the higher amount of burnt gases
recirculated both contribute to a later combustion, with lower temper-
atures but also with lower indicated efficiency. The effect of the EGR
and the intake temperature on the engine efficiency are well-known and
extensively addressed in the literature, particularly a detailed analysis of
the effects of the intake temperature and composition in the combustion
process may be found in [11–14].

Regarding the last point, the higher EGR rates and lower intake temper-
atures reached with the LP-EGR system are also responsible for the NOx

reduction and the HC increase. Figure 6.2 shows lower NOx emissions with
the LP-EGR during the whole test, regardless of the operating conditions.
As a consequence, at the end of the cycle, a noticeable reduction of 30% in
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the NOx emissions level can be observed with the LP-EGR architecture. On
the contrary, it also produces an increase of 60% in the HC emissions with
respect to HP-EGR. Figure 6.2 shows that this increase in HC emissions is
mainly produced during the first part of the cycle, after the cold start. This is
consistent with the negative impact of low intake temperatures and high EGR
rates on HC emissions [9]. For further discussion on the effects of the EGR
layout on fuel consumption and emissions the reader is referred to [1, 2, 15].

According to figure 6.2 it is clear that HP-EGR will prevail in any EGR
circuit switching strategy aimed to minimize fuel consumption, and that such
strategy will impact positively in HC emissions. Conversely, the weight of
LP-EGR strategies focused on the NOx reduction is also apparent. The
tradeoff obtained with both EGR architectures regarding fuel consumption
and NOx emissions shows that a proper strategy to combine LP- and HP-EGR
systems is needed to obtain an equilibrium between pollutant emissions and
fuel consumption.

6.2.2 Problem formulation

Consider the Test 5, where the sequence of engine speed and torque is exactly
the same in both cases. Given that both tests share the same engine calibration,
the only difference is the EGR architecture used and the control parameters
associated to the differences in fuel injection needed to follow the engine torque
profile. Therefore, for this particular cycle, the instantaneous fuel consumption
ṁf , resulting from any arbitrary EGR switching strategy, can be represented
by the following linear system:

ṁf (ulphp, t) = ca (t)ulphp (t) + cb (t) (6.1)

where t represents the time spent since the start of the cycle. ca and cb are
time-varying parameters determining the system response and the control
ulphp is defined as a binary variable:

ulphp =

{
0 then use HP-EGR

1 then use LP-EGR
(6.2)

Note that the dependence of ṁf on engine speed Nice and torque Tice is
implicit since their evolution with time is predefined by the NEDC.

Regarding NOx emission, a similar approach than that of (6.1) can be
used, thus:

ṁnox (ulphp, t) = cc (t)ulphp (t) + cd (t) (6.3)
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where parameters cc and cd define the time-varying linear response of NOx to
the EGR architecture used. Note that neither the fuel consumption nor the
NOx emissions show a linear response with the percentage of EGR performed
with LP- or HP-EGR systems. However, as long as the control is a binary
variable and only extreme cases are considered (fully HP-EGR or fully LP-
EGR) the linear approach becomes valid.

Regarding the parameters ca, cb, cc and cd, they can be obtained exper-
imentally from the Test 5 by making ulphp = 0 and ulphp = 1 at (6.1) and
(6.3):

ca (t) = ṁf,lp (t)− ṁf,hp (t)
cb (t) = ṁf,hp (t)
cc (t) = ṁnox,lp (t)− ṁnox,hp (t)
cd (t) = ṁnox,hp (t)

(6.4)

where the subscript indicates the EGR loop employed.

Note the non-causality of the previous representation since the model
provides the fuel consumption given the EGR architecture used and the torque
and speed profiles (time evolution in the NEDC), while the physical process is
exactly the opposite, i.e. given a certain amount of fuel injected, the engine
produces some torque and the balance between the engine torque and the road
load determines the resulting engine speed. However, since the model relies
on experimental information on the particular cycle to study, the physical
causality can be inverted to some extent in order to simplify the model.

The described linear model assumes quasi-steady behavior [16–19] and,
therefore, it has no states, i.e. the instantaneous performance of the engine does
not depend on any previous history. However, changes in the control input–the
EGR architecture–may involve progressive changes in actual engine variables
during transients whose duration can be not negligible, while the model
proposed does not consider those transients. This simplification jeopardizes
the applicability of the proposed model as will be discussed later.

In any case, assuming the model suitability, the control problem consists in
finding the sequence of controls ulphp along the cycle (NEDC) that minimizes
the following cost index:

J =

∫ T
0
ṁf (ulphp, t) dt (6.5)

where the implicit engine speed Nice and torque Tice follow the trajectories
predefined by the NEDC. The problem is constrained since there are restrictions
concerning the maximum amount of pollutants emitted during the complete
driving cycle. In the present study, only NOx emissions are considered since
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there is not a specific widespread after-treatment for NOx while DOC and
DPF are usually able to reduce the rest of pollutants up to regulation limits.
In addition, focusing on NOx results more interesting since a decrease in fuel
consumption generally leads to a reduction of most pollutants such as HC,
except NOx. The constraint on pollutant emissions can be expressed as:∫ T

0
ṁnox (ulphp, t) dt ≤ m̂nox (6.6)

where m̂nox represents the maximum level of permissible NOx emissions. In
any case, constraints on the emissions of other pollutants may be considered
just by adding the corresponding equations.

6.2.3 Optimization approach and implementation

The problem presented in (6.5) and (6.6) is in general difficult to solve due
to the complex relation between the control ulphp and the outputs–the fuel
consumption and NOx emissions. However, as far as the proposed model
neglects the system dynamics by assuming quasi-steady behavior, the OCP
is a static optimization problem that can be addressed by the method of
Lagrange multipliers. This method is extensively described in section 3.3.
Then the integral problem represented by (6.5) and (6.6) can be replaced by
a set of optimization problems in which the following cost function J is to be
minimized at each time step:

J (t, λ1) = ṁf (ulphp, t) + λ1ṁnox (ulphp, t) (6.7)

The optimization process consists in choosing, at any time step of the
driving cycle, the control ulphp, i.e. the EGR loop to be used, which minimizes
the cost function (6.7). As only two discrete values are allowed for ulphp, the
problem is solved just considering the value providing the minimum cost at
the considered time, which defines the optimal control policy u∗lphp (t, λ1).

From (6.7) it follows that the higher the value of λ1, the higher the weight of
the NOx emissions on the cost function value. Then, given the tradeoff between
fuel consumption and NOx, as λ1 increases the NOx emissions corresponding
to the optimal solution decrease progressively at the expense of some fuel
penalty. For that reason, the optimization problem is reduced to find the value
of λ1 which leads to:∫ T

0
ṁnox

(
u∗lphp (t, λ1) , t

)
dt = m̂nox (6.8)



6.2. LP- and HP-EGR splitting 175

A simple cost function as (6.7) might result in a highly oscillating optimal
control policy ulphp, especially due to the fact that the control is a binary
variable, that will not produce desirable results when applying the control to
the actual engine. It should be recalled that, every time a switch between
EGR configurations is issued, the actual engine experiences a transient that
the model is not able to take into account. In this sense, figure 6.3 shows the
evolution of key engine parameters during the switching from HP-EGR to
LP-EGR at idle conditions. After a transient of 2.2 seconds the target air mass
flow is reached. Note that the steady state air mass flow with both systems
is exactly the same since the engine control establishes exactly the same air
mass flow setpoint. Regarding the exhaust pressure, the steady state value is
reached in less than 1 second. Closing the HP-EGR valve has a direct impact
on exhaust pressure while the effect on intake pressure is slower (3.4 seconds)
due to the turbocharger dynamics. Regarding the temperature evolution
in the intake manifold, it can be observed that it slowly decreases due to
the replacement of the hot HP-EGR gas by LP-EGR gas coming from the
intercooler. On the contrary, the temperature at the compressor inlet smoothly
increases due to the arrival of exhaust gases coming from the DPF outlet
through the LP-EGR circuit. It should be noted that the slow response of
temperatures is to a great extent due to the thermal inertia of the temperature
sensors–k-type thermocouples–so the response time in the order of 20 to 30
seconds shown in the figure should exceed the characteristic time of the actual
process. Taking into account the evolution of intake and exhaust pressures
in figure 6.3–exhaust pressure ratio is much higher–, it can be noticed that
the pumping losses are increased with the use of LP-EGR. This increase, in
addition to the higher EGR rate, involves a penalty in fuel consumption that
can be observed in the right-upper part of figure 6.3. Note that there is not an
appreciable delay in the increase in fuel injection rate and, in fact, it is almost
instantaneous after the LP-EGR circuit is activated. Taking into account the
engine displacement (2 liters) and the volume of the intake line (less than 8
liters) the gases from the LP-EGR circuit will need around 4 engine cycles to
arrive to the cylinders. Considering an engine speed of 750 rpm at idle, that
means that in 2.7 ms the cooled gases from the LP-EGR circuit will arrive to
the cylinders, producing the fuel consumption increase to keep holding the
engine speed and torque output. Taking into account that this characteristic
time of the fuel consumption response to an EGR switch is much faster than
the characteristic time of the pedal evolution during the NEDC, a quasi-steady
behavior for the fuel consumption can be considered. On the contrary, figure
6.3 shows that the response of the pollutant emissions to the EGR switching
is not so fast. The response of the HC and NOx emissions show important
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Figure 6.3: Engine operating conditions (left) and engine performance (right)
at idle during an HP-EGR to LP-EGR switch.

nonlinearities such as minimum phase behavior. Despite the slow response
time of the exhaust gas analyzers–which has an important impact on the time
needed to achieve the steady state conditions after the EGR switch–it should
be admitted that the quasi-steady hypothesis is far from the reality in the
case of pollutant emissions. Consequently, the more switches between EGR
systems, the stronger the impact of model uncertainties, especially emission
models, on the optimization.

To deal with this issue the following cost function is proposed:

J (t, λ1, λ2) = ṁf (ulphp, t) + λ1ṁnox (ulphp, t) + λ2 |δulphp(t)| (6.9)

where λ2 is a second Lagrange multiplier that penalizes the changes in the
control variable ulphp. The variation in ulphp is denoted with δulphp, which
can take the discrete values {−1, 0, 1}. Note that other constraints, e.g. limits
on other pollutants, can be added by introducing new Lagrange multipliers.
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Figure 6.4: Tradeoff between fuel consumption and NOx emissions calculated
for λ1 ∈ [0, 1] and λ2 ∈ [0, 1]. The color scale represents the number of switches
between HP- and LP-EGR during the cycle. The red circle and square show
the experimental results obtained with LP-EGR and HP-EGR respectively.

6.2.4 Results and discussion

The optimization problem described in the previous section was addressed
and solved for parameters λ1 and λ2 ranging from 0 to 1. Figure 6.4 shows
these simulation results. This figure represents the tradeoff between fuel
consumption and NOx for the optimal solution. The color scale shows the
number of switches along the cycle between EGR configurations, ranging from
0 in black to 165 in white. The square and the circle show the experimental
results obtained with HP-EGR and LP-EGR architectures respectively.

Several optimal solutions fall near a straight line linking both experimental
points with a relatively low number of switches between EGR systems. How-
ever, the Pareto front–area where a reduction in NOx involves an unavoidable
increase in fuel consumption–is defined by points with high number of switches.
Results are also clearly stratified according to the number of switches. Of
course, that number of switches depends on the weight of δulphp on the cost
function (6.9), and the higher the value of λ2 the lower the number of changes
in the EGR configuration.

To analyze in depth the effects of the Lagrange parameters on the optimal
EGR sequence, figure 6.5 illustrates the results for different values of λ1 and
λ2. The figure shows, for a given row, the optimal sequence of the EGR system
to be used along the cycle, the total fuel consumption, the accumulated NOx

emissions and the number of switches for a range of λ1 values. The results in
the upper row correspond to λ2 = 1, results in the lowest row are with λ2 = 0,
while rows in between contain results for intermediate values of λ2. The gray
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areas in the left plots illustrate LP-EGR usage while white areas are HP-EGR.
According to these results, the following conclusions can be extracted:

• For a given value of λ2, the increase of λ1 involves a reduction in NOx

emissions at the expense of a penalty in fuel consumption. This is
because λ1 weights NOx emissions at (6.9) and, therefore, low emissions
become more important for higher values of λ1. This points out the
tradeoff between NOx and fuel consumption.

• As λ1 increases, the optimal solution tends progressively to LP-EGR
because of its lower NOx emissions. However, HP-EGR prevails in
solutions where fuel consumption is the prime objective.

• Optimal trajectories with low λ2 values show frequent changes between
LP-EGR and HP-EGR architectures, which prevents the quasi-steady
approach from providing good estimations of actual engine fuel consump-
tion and NOx emissions.

• The value of λ1 has a negligible impact on the number of switches, that
are almost exclusively affected by λ2.

• As expected, increasing the value of λ2 has a positive effect in the
number of switches between EGR architectures. Nevertheless, increasing
λ2 involves a penalty in the theoretical minimum fuel consumption and
NOx emissions since the control policy is somehow constrained by the
maximum number of switches.

• Solutions with affordable number of switches for the quasi-steady
hypothesis–when λ2 tends to 1–, show that the LP-EGR architecture
has higher potential at the last part of the cycle, while the HP-EGR
provides maximum benefits during the first phases of the NEDC. This
is due to the fact that the benefits in fuel consumption of the HP-EGR
architecture are more important during the cold start and the warm up
phases, where the increase in temperature provided by it contributes
to a better combustion. On the contrary, in the last phase of the cycle,
where higher vehicle speeds are reached, the weight of NOx emissions is
more important. Therefore, the potential of LP-EGR system to reduce
NOx emissions should be exploited in this part. In addition, since the
engine is already warmed at this phase, the penalty of LP-EGR on the
fuel efficiency is not as important as during the cold start and warm up
processes.
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Figure 6.5: Optimal EGR architecture, total fuel consumption, emissions and
number of switches between HP-EGR and LP-EGR at the NEDC cycle as a
function of λ1 (y-axis) and λ2 (rows). Areas in blue represent HP-EGR while
LP-EGR is shown in red.

According to these results shown at figure 6.5, it is clear that the optimal
control strategy would be to start with HP-EGR and to keep this configuration
for some time until the LP-EGR architecture should be used to meet the NOx

limit. In this sense, such a time is shown in the upper left plot of figure 6.5,
where it may be found that the lower the NOx limit is, the earlier the LP-EGR
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circuit should be used. This is probably the most interesting conclusion to
propose a simple yet effective control strategy based on these optimal results.

Two additional tests–Test 6 described in 5.3.5–have been carried out with
different LP- and HP-EGR switching times, namely 600 and 800 seconds, to
validate the conclusions from the optimization process. The results in terms
of fuel consumption, NOx and HC emissions are compared to the simulated
optimization results at figure 6.6. Experimental and modeling results show a
pretty good agreement, so the optimal switching times as a function of NOx

limits can be used to calibrate the proposed control strategy. In addition, it
can be seen that optimizing the fuel consumption also leads to minimize HC
emissions. Therefore, the quasi-steady approach of the model is suitable for
the optimization when a small number of switches is allowed.

From a calibration point of view, it is more convenient to define the switch
between HP-EGR and LP-EGR in terms of coolant temperature instead of
time. For this engine the 600 to 800 seconds interval corresponds to 70◦C
to 79◦C. Otherwise, in addition to regulation issues, unexpected results for
driving cycles different than the NEDC may happen, e.g. in the case of cold
conditions such as those reached in northern countries where 800 seconds
may be insufficient to warm up the engine. At those conditions, a time based
strategy for the EGR switching will lead to the use of LP-EGR with a cold
engine, and then resulting in excessive HC emissions and fuel consumption or
even promoting misfiring. Hence, EGR switching point may be specified as a
function of coolant temperature as shown in figure 6.7.

6.2.5 Conclusions

This short study proposes the combination of LP- and HP-EGR systems to
minimize fuel consumption with low NOx emissions. Particularly, a methodol-
ogy to find the optimal switching strategy amongst EGR architectures during
the NEDC has been developed. The proposed strategy is based on OC theory
so the control policy depends on the definition of a cost function, which con-
tains three main variables to minimize–fuel consumption, NOx emissions and
number of switches between EGR architectures. Particularly, the number of
switches between EGR systems is a limiting factor that should be taken into ac-
count because of the quasi-steady hypothesis used to develop the optimization
model.

The analysis of the resulting control strategy shows that the optimal control
policy to apply is to start with HP-EGR and to keep this configuration for
some time until LP-EGR architecture should be used to meet the NOx limit.
This result is consistent with the fact that at cold conditions, the higher intake
temperature and lower EGR rate produced with HP-EGR involves noticeable
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Figure 6.6: Total fuel consumption, NOx and HC emissions as a function of
the time HP-EGR is active. Red dots represent experimental measurements
while blue line shows the model results.

benefits in terms of fuel consumption that are progressively diluted as the
engine warms up. On the other hand, at the end of the cycle, NOx emissions
become more important, so LP-EGR becomes a suitable method to decrease
NOx emissions with a lower fuel consumption penalty.

The experimental results validate this strategy and show that combining
both EGR systems sequentially along the NEDC allows to reduce noticeably
the NOx emissions of the HP-EGR system with a reduced impact on the fuel
consumption.

This optimization strategy can be easily extended to take into account
other constraints such as additional pollutants or drivability concerns following
a similar methodology.

6.3 Full engine control

Pollutant emission regulations have pushed ICE technology to deliver cleaner
yet more efficient engines, two concepts that usually take opposite directions.
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Figure 6.7: Total fuel consumption, NOx and HC emissions as a function of
the coolant temperature at the HP- to LP-EGR switch. Red dots represent
experimental measurements while blue line shows the model results.

This ambitious target can be achieved at the expense of a significant increase in
engine complexity, including a huge amount of peripherals, different technolo-
gies, additional systems and after-treatment devices. Engines now are much
complex than those some decades ago. Systems and devices such as EGR,
VGT, double forced induction, VVT, DI, DOC, DPF or SCR are common in
the industry.

These powertrains are complex to manage as well. The numerous systems
are mutually affected by the functioning of the others and all actuators must
be managed with a common strategy. The engine is ultimately controlled by
the ECU whose common approach consists of a set of prescribed maps, PID
controllers and heuristics that are elaborated after many calibration tests. The
increased complexity of the engine involves control issues that may be addressed
by this traditional control scheme, which uses to be a difficult, expensive and
time consuming task. However, the additional degrees of freedom introduced
by engine systems can be seen as an opportunity to exploit those systems
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in order to improve engine performance with an appropriate and innovative
control strategy.

OC theory supplies tools to find out the best control strategy to achieve a
particular objective. In this sense, it is an interesting methodology to–partially–
replace the traditional control scheme. OC can also be used to determine the
maximum level of performance that an engine may be exploited to, for a given
technology. The current study follows this philosophy in order to find, both
theoretical and experimentally, the OC strategy for the main engine actuators:
EGR valve position uegr, VGT opening uvgt, SOI offset uδsoi and fueling rate
uf . Note that these controls are actually setpoints for PWM actuations, but
due to the slow response of the airpath compared to the controls settling time,
this difference is hereinafter neglected. Optimal trajectories are calculated
for an actual driving cycle with different levels of pollutant emissions and
compared to the factory ECU strategy.

6.3.1 Problem description

The control of the main engine actuators, i.e. EGR, VGT, SOI and fueling
rate, is typically performed with PID controllers and mapped setpoints. More
precisely, the airpath control is founded around tabulated air mass flow and
intake pressure setpoints that must be achieved by acting on the controls. At
low loads the air mass flow is controlled by opening or closing the EGR valve
while VGT position is set to a predefined value. At higher loads, far from
the homologation region, EGR valve remains closed and the intake manifold
pressure is monitored to reach the desired values by acting on the VGT position.
This divide and conquer strategy is typically used to avoid coupling issues
between both controls, so only one actuator is managed in closed-loop at a
time. Fueling rate is mainly a function of the engine speed and the driver’s
torque request, whose response is defined at a lookup table. Meanwhile, SOI is
mapped by engine speed and current fueling rate. The factory engine control
is described in more detail at section 5.2.1. Therefore, this approach consists
in the selection of setpoints based on current readings, namely engine speed,
driver’s torque request or some temperatures among others.

Of course, such a control strategy is only optimal for a set of tested
conditions and optimality for any real world situation cannot be guaranteed.
In fact, even assuming that mapped setpoints are optimal, PID controllers are
only responsible of reaching those values, but the transient is not optimal; it
can be faster or slower, smoother or sharper–depending on the calibration–
, but the transition to a different operation point is completely arbitrary.
Furthermore, it might happen that optimal setpoints are not a function of
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current readings, but a consequence of the last history, preventing its mapping
as a lookup table.

According to all these issues, OC theory has been applied to the manage-
ment of the main controls of the engine: uegr, uvgt, uδsoi and uf . This OCP
is interesting since it can be mathematically guaranteed that the obtained
control strategy is the very best policy that can be applied to that engine. Of
course, this strategy is cycle-specific and the results may not be applicable to
a different cycle; however, the methodology is universal. Last but not least,
results can be interpreted as the top performance that can be extracted from
a given engine, and it is a baseline for other control strategies–such as factory
control–to compare to and to have a rough idea of how optimal are those
control policies.

These optimal trajectories have been calculated and experimentally tested
at a light duty Euro 5 turbocharged DI diesel engine with a high pressure
EGR loop, VGT and DOC. This engine is installed at an engine test bench
with additional instrumentation: turbocharger speed measuring, exhaust gas
analyzer, opacimeter, extended set of thermocouples and pressure sensors, NOx

probes, torque meter and engine speed measuring. The ECU is bypass-ready
through an ETK port so main control variables are taken over with an external
rapid prototyping dSPACE system in order to apply the optimal trajectories.
This testing facility is deeply described in section 5.2.1.

In addition, a MVEM of this testing facility has been developed. It has
been tried to reach a balance between fast model calculation and accuracy
in simulation results. Of course, a very detailed model can reproduce engine
variables pretty accurately, but a long simulation time will prevent its use
as a control oriented model. Moreover, complex models tend to have a large
number of states, while many OC methods are not able to deal with such
huge mathematical models. Therefore, for the sake of practicality, a model
following the equations described in section 4.5 has been used in this study.
Its main highlights are summarized in table 6.1.

In order to fit the model to the actual engine, a set of experimental
measurements has been carried out. These tests explore multiple control
combinations as well as the dynamic response of the engine. To this effect,
three test campaigns have been performed:

• Test 1: parametric tests at 20 different engine operating points (see
5.3.1). EGR, VGT, SOI and fueling rate are explored at each operating
point. This provides steady state information at a wide range of engine
conditions (980 different combinations of controls and operating points,
with an approximate total duration of 4 hours).
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Control inputs

EGR valve position, uegr
VGT opening, uvgt
SOI offset setpoint, uδsoi
Fueling rate, uf

Model states

Intake manifold pressure, p2

Intake manifold oxygen fraction, XO2,im

Exhaust manifold pressure, p3

Exhaust manifold oxygen fraction, XO2,em

Turbocharger speed, ωtc

Disturbances Engine speed, Nice

Main simplifications

Isothermal intake manifold
No thermal transients
Quasi-steady cylinder model
Map-based turbocharger model

Table 6.1: Main characteristics of MVEM used for optimal airpath control.

• Test 2: dynamic cycle (WLTC) with factory calibration (see 5.3.2). This
test provides transient information at a quite dynamic and well known
cycle (30 minutes).

• Test 3: actual driving cycle with factory calibration (see 5.3.3). This test
is used as a validation for the model to check that it has an acceptable
accuracy. It is not used during the fitting process to provide a fair
validation (25 minutes).

The performance of the resulting model is shown in figure 6.8. Top plots
show the correlation between experiments and simulations for the main outputs
of the model, namely the torque and NOx emissions. The accuracy of these
outputs are critical since they are part of the OCP constraints. It may be
appreciated that both are well correlated to experiments, especially the total
NOx emissions. Note that this data corresponds to the validation cycle which
the model is not fitted to. On bottom plots, the dynamic response of p2 and
ωtc states is shown. Despite a minor offset at t = [245, 255] s, settling time is
quite similar in both simulations (red) and experiments (blue). Regarding the
computational resources required by the model, a complete simulation of a 25
minutes long driving cycle takes approximately 650 ms with an i5-4440 CPU.

In addition to the model fitting tests, a set of experiments have also
been later executed in order to validate the proposed OC strategy (see 5.3.4).
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Figure 6.8: Model performance analysis. At top plots, correlation between
experiments and simulations are shown for the main outputs of the OCP:
engine torque and accumulated NOx emissions. These results correspond
to the validation cycle (model is not fitted to this cycle, see 5.3.3). On the
bottom plots, dynamics of the model are represented for two model states,
intake manifold pressure p2 and turbocharger speed ωtc. Blue corresponds to
experiments and red to simulations.

These experiments consist of 12 optimal trajectories applied to the engine
controls, following the same engine speed and torque profiles at all tests, and
an additional experiment with factory calibration.
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6.3.2 Problem formulation

The aim of this work is to find an OC strategy that minimizes fuel consumption
with a specific limit on NOx emissions for a real driving cycle. This can be
synthesized as an OCP to minimize the following cost index:

J =

∫ T
0
ṁf (x,u, t) dt (6.10)

with NOx emission limit expressed as an integral constraint:∫ T
0
ṁnox(x,u, t) dt− m̂nox ≤ 0 (6.11)

where m̂nox is the specified total NOx emission limit. State vector x and
control vector u components are the same as previously specified for the
MVEM in table 6.1.

In order to guarantee that the same driving cycle is always followed by the
engine, speed and torque profiles must be specified (see figure 5.18). On the
one hand, engine speed is a disturbance to the problem and, therefore, it is
directly introduced in model equations. On the other hand, engine torque is a
consequence of the controls, so an additional constraint must force the torque
output to deliver the required trajectory T̃ice:

T̃ice − Tice(x,u, t) = 0 (6.12)

An additional constraint may be included to avoid excessive smoke genera-
tion. Despite an opacity model is included in the MVEM (see model equations
at section 4.5), a quasi-steady approach seems too limited for an accurate
estimation of such a complex process. It may be appreciated in figure 4.26
that correlation between experimental and modeled opacity values is poor.
However, a workaround is still possible to limit soot emissions. First of all, it
can be appreciated that there exists a clear relation between opacity and λe
values according to the measurements shown in figure 6.9. It looks obvious
that the less fresh air that takes part in the combustion process the worse it
will be, so the chances to generate more smoke increase. The red line overlaid
in this same figure is the Pareto front, which can be used as a rough relation
between those two variables. Thereby, an opacity limit can be translated into
a λe limit. Of course, this is just a qualitative question, as long as a stronger
limitation in λe values does not guarantee any particular opacity level, but
will surely limit the smoke generation at some point.

Based on the above reasoning, a λe limit has been forced in the OCP:

λ̂e(t)− λ(x,u, t) ≤ 0 (6.13)
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Figure 6.9: Relation between λe and opacity. Blue dots correspond to steady
state measurements from Test 1. The red line is the Pareto front for this
tradeoff.

Figure 6.10: λ̂e lower limit imposed at the OCP to avoid excessive smoke gen-
eration (red line). This value is around λe = 1.5. Blue trajectory corresponds
to factory calibration λe readings.

λ̂e is a lower bound calculated according to the relation from figure 6.9 with
an arbitrary 2% higher opacity level than factory calibration in order to allow
some room for improvement. This limit is shown in figure 6.10 together with
factory calibration λ measurements.

States are initialized to those from the factory calibration in order to start
all experiments with the same engine conditions, providing a fair comparison
between strategies. These initial values are specified at table 6.2.

6.3.3 Optimization approach and implementation

The OCP at hand is complex and heavy. It features 5 states and 4 controls
which is generally considered as a hard problem. The model from section 4.5 is
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Intake manifold pressure, p2 1.53 bar
Intake manifold oxygen concentration, XO2,im 9.9%
Exhaust manifold pressure, p3 1.75 bar
Exhaust manifold oxygen concentration, XO2,em 7.2%
Turbocharger speed, ωtc 107050 rpm

Table 6.2: Initial values of state variables.

large and nonlinear. The main idea here is to calculate the OC trajectories–one
for each control–that satisfy the problem and constraints defined in eqs. (6.10)–
(6.13). A time step of ∆t = 0.05 seconds is to be used–ECU calculations at
the current facility are scheduled at 10 to 100 ms, so it was considered that 50
ms might be enough for this study–for a driving cycle that lasts 25 minutes.
Those are about 120000 unknowns.

According to the discussion carried out at chapter 3, where the three main
families of OC methods were described and analyzed, it is not difficult to realize
that only one of them is able to deal with such a complex problem. On the one
hand, HJB equation and its well known DP implementation will definitely fail
mainly because of computer memory concerns. Figure 3.2 shows an estimation
of the necessary memory to address a short OCP using the DP method with
different number of controls and states. Not only a problem with 5 states and
4 controls exceeds the 8 TB limit of a 64-bit machine, but also the OCP at this
study is 50 times longer than the one at that example. Therefore this OCP is
not affordable with DP. On the other hand, IMs, and more particularly the
PMP method, may not experience memory nor computational burden issues.
This method is based on the construction of an equivalent OCP–an IVP–which
doubles the original number of ODEs with additional costates. Unfortunately,
the additional ODEs use to be ill-conditioned, preventing the calculation of
a valid solution to the problem. Also, initial values for all five costates must
be found, but for complex models, such as the one at hand, it is not possible
to calculate them analytically. An iterative search algorithm should be used
instead, which is time consuming especially for Nx ≥ 2.

DMs do not experience any particular issue when facing OCPs with complex
nonlinear models and many states and controls. The main drawback is that
the solution is a local optimum which may differ from the global one. There is
no way to guarantee that the solution is a global optimum. However, a proper
initial solution increases the chances to find it and, in fact, it may happen
that the problem is convex so only one local optimum exists, or that it is
sufficiently smooth for the solver to reach the global optimum regardless of
the initial solution. Anyhow, most of the times, in practice, this is a minor
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issue. Last but not least, model differentiability–C1 continuity–is mandatory
for this method. The MVEM is completely continuous so DM can be applied.

Among all DMs, DC is the choice for this work (see section 3.4.1 for a
detailed description of DC method) due to computational burden reasons.
According to this method, the original OCP is transcribed into a large and
sparse NLP. States and controls are discretized into Nt + 1 time steps such
that ∆t = T /Nt. The transcription using a centered Euler’s method ends up
with the following NLP:

min
x,u

{
Nt−1∑
i=0

ṁf

(
xi + xi+1

2
,ui

)}
(6.14)

where xi and ui are vectors containing all the five states and four controls
respectively at time ti. The NLP is subject to nearly the same constraints
that applied to the original OCP:

x0 − x0 = 0

f
(
xi+xi+1

2 ,ui

)
− xi+1−xi

∆t = 0, i = 0, . . . , Nt − 1∑Nt−1
i=0 ṁnox

(
xi+xi+1

2 ,ui

)
∆t− m̂nox ≤ 0

T̃ice,i − Tice
(
xi+xi+1

2 ,ui

)
≤ 0, i = 0, . . . , Nt − 1

λ̂e,i − λe
(
xi+xi+1

2 ,ui

)
≤ 0, i = 0, . . . , Nt − 1

(6.15)

From top to bottom, these constraints are: initial state values, set of Nt

algebraic constraints to guarantee the continuity of the solution–such that
original ODEs are satisfied–, NOx emission limit from (6.11), torque path
constraint from (6.12) and λe path constraint from (6.13). Note that continuity
constraints are needed due to the fact that states are treated as free unknowns–
exactly as controls are. These constraints force the states to adopt the values
that correspond to the chosen controls. Although this may seem unnecessary
since states are just a consequence of controls and not free variables, it allows
to use an implicit ODE solver such as the centered Euler’s method. Implicit
numerical methods are possible as long as the simulation is not calculated
forwards or backwards but iteratively. For this reason, the NLP solver not
only finds an optimal solution but also simulates the system.

This NLP is extremely sparse due to the fact that only two consecutive
time steps are related at most of the algebraic constraints (times ti and ti+1).
Integral equations are dense, but they are only a few. Therefore, the Jacobian
of this problem–derivative of constraints with respect to all unknowns, i.e.
discretized states and controls–is made of diagonal submatrices as it can be
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Figure 6.11: Jacobian matrix of the transcribed NLP. Blue dots are non-zero
elements, whose number is 2488433, a 0.0035% of the total number of matrix
elements.

appreciated in figure 6.11. Note that despite the resulting matrix is pretty big
(239855×299816), only few elements are non-zero–a 0.0035% in this case. This
makes possible that, even after exploiting problem dimensions by discretizing
states, controls and constraints, the computational time required to compute
a complete NLP iteration is 1.04 seconds with a total memory stamp of 23.1
MB.

The NLP is approached with Ipopt, a software package for large-scale
nonlinear optimization that is specially efficient with sparse problems [20].
Ipopt is provided with analytical functions for objective and constraint func-
tions as well as with their exact first derivatives. Second derivatives may be
also provided explicitly, however they are numerically approximated with the
quasi-Newton L-BFGS algorithm [21] for computational efficiency reasons.
The provided initial solution–starting point for the solver–is a constant value
trajectory for each state and control. Those constant quantities are arbitrary
but on a reasonable order of magnitude. A more sophisticated initial solution,
such as ECU control trajectories, may reduce the number of iterations needed
to reach the optimal solution and increase the algorithm robustness. However,
as long as computational time is still short with such a simple initial solution,
it has been considered sufficient for this study. The NLP is scaled in order to
normalize all output variables–objective function value, constraints violation
and unknowns. This is a recommended procedure for any NLP solver in order
to facilitate algorithm convergence.

The current NLP does not impose limits to the rate of change of controls.
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It may happen that the OC strategy, according to the model, has an oscillating
behavior. This is not an issue for the SOI scheduling as long as its influence
only comprises the current engine cycle and torque generation, showing low
interaction with other variables. It is neither a problem for the fueling rate
since it has a strong impact on the torque output. The requisite to follow the
driving cycle implicitly constrains the fueling rate to a smooth trajectory as
fluctuating values would deliver an undesired torque curve. However, EGR and
VGT controls are free to show a switching policy, producing pulsating flows
along the airpath and an unstable behavior. This situation is specially harmful
for the turbocharger as it would be spun with too many accelerations and
decelerations. Also, it promotes unrealistic conditions and a highly dynamic
transient operation which, for sure, exceeds the model capabilities to reproduce
the engine behavior accurately.

In order to avoid oscillating situations, a rate of change limitation has been
imposed in the VGT control. As long as this is a constraint on the derivative
of a control, it is necessary to introduce an auxiliary state:

xvgt = uvgt (6.16)

which replaces the original VGT control variable. A new control must be
defined instead:

uδvgt =
∂uvgt
∂t

(6.17)

The dynamics of the additional state are driven by the ODE:

ẋvgt = uδvgt (6.18)

Therefore, it is now possible to specify a limit on the rate of change by
specifying upper and lower bounds to the control uδvgt. Figure 6.12 shows the
rate of change of VGT and EGR controls with (right) and without (left) the
constraint on the control derivative. It may be appreciated that the rate of
change is effectively reduced from a highly oscillating situation to a control
policy that falls within the ±60%/s range. Note that EGR oscillation is
indirectly reduced as well, as a consequence of the coupling between both
controls in the airpath management. For this reason, an additional state to
limit the EGR control derivative was considered unnecessary.

The final OCP implementation features six states–five model states to-
gether with the auxiliary VGT control state–and four controls plus an integral
constraint (6.11) and the two path constraints in eqs. (6.12) and (6.13). A
summary of these variables and their boundaries is available at table 6.3. The
problem has been solved with 11 different levels of emissions.
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Figure 6.12: Derivative of the EGR and VGT optimal controls for an OCP
with (right) and without (left) a constraint on the VGT rate of change. The
colors represent the number of occurrences of the points in these diagrams.
Note that not only the VGT derivative is limited but also EGR behaves
smoother as a consequence of the coupling between these two controls in the
airpath management.

Boundaries Initial solution

States

p2 [p1, 4p1] 1.1 bar
XO2,im [0, 21] 15 %
p3 [p1, 4p1] 1.3 bar
XO2,em [0, 21] 8 %
ωtc [5, 180] 95 krpm
uvgt [0, 100] 1 %

Controls

uf [0, 80] 10 mg/str
uegr [0, 100] 0 %
uδvgt [−60, 60] 0 %/s
uδsoi [−5, 5] 0 ◦BTDC

Table 6.3: Summary of states and actuators present at the final OCP imple-
mentation. The allowed boundaries for the variables and their initial solution
are shown as used at the NLP solver.
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Despite all control strategies deliver the same exact torque in simulation,
due to the model uncertainties–such a simplified engine model cannot com-
pletely represent the actual engine at any situation–experimental tests may
not follow the same results. Torque deviations might happen, resulting in
an unfair comparison between different strategies. In order to approach this
issue, a PID controller monitors the actual torque output during the test in
closed-loop and slightly modifies the fueling rate to deliver the required torque
trajectory. Only the injected fuel amount is corrected, leaving the other three
controls (EGR, VGT and SOI) unmodified. Of course this simple solution
somehow spoils the optimality of the control strategy, but provides a fair and
clear comparison among strategies while keeping a pretty similar control policy
(fueling rate corrections are bounded by ±0.85 mg/str).

6.3.4 Results and discussion

This OCP is solved for a set of different NOx emission levels. Two additional
problems were also issued, one for minimum fuel consumption (constraint
(6.11) is ignored), and another for minimum NOx emission–ṁf is replaced
for ṁnox at the optimization objective (6.10). The resulting OC trajectories
are validated in the experimental setup A (see 5.2.1). NOx limits and the
corresponding experimental results are summarized in table 6.4. An additional
experiment is issued with factory calibration as a reference, which is also
included in the aforementioned table.

The main variables that take part in the OCP are fuel consumption–a
control–, NOx emissions–a constraint–and torque output–another constraint.
Fuel consumption is only a function of the optimal trajectory, so it gives no clue
regarding how close are simulations to the actual engine performance. However,
NOx and torque are outputs of the engine and, therefore, are good indicators
about the agreement between simulated OC and experimental results. It is
interesting that accumulated NOx emissions are pretty well correlated to the
model estimations as shown in figure 6.13. It can be found that differences
are generally less than a gram, so model accuracy is more than acceptable.
Regarding torque output, remember that a PID controller performs online fuel
corrections to guarantee that the driving cycle is followed regardless of model
inaccuracies. The tracking error histogram is shown in the left plot of figure
6.14. This histogram is quite close to a normal variable, with an average of
−0.1 Nm and a standard deviation of 3.3 Nm. Torque error is, in practice,
centered in zero with 80% of the time within the ±3.4 Nm range. The right
plot shows the delivered mechanical energy Eice along the experiments as
a percentage of the required energy Ẽice to follow the driving cycle. These
quotients are nearly the reference with the three cases on the left–lowest NOx
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Case
OCP Experimental results

J
m̂nox mf mnox msoot

[g] [kg] [g] [g]

#1 mf 3 1.395 3.6 1.846
#2 mf 4 1.344 5.2 0.892
#3 mf 5 1.291 6.1 1.001
#4 mf 6.4 1.268 6.8 0.847
#5 mf 7.5 1.262 7.9 0.477
#6 mf 9 1.254 10.5 0.382
#7 mf 11 1.252 12.1 0.282
#8 mf 13.3 1.252 13.9 0.304
#9 mf 17 1.253 17.3 0.218
#10 mf 20 1.257 22.5 0.208
#11 mf 21 1.247 20.5 0.229
#12 mnox – 1.369 3.8 0.936
Factory – – 1.306 11.4 0.340

Table 6.4: Summary of all OCPs that have been issued and their main
experimental results. The information shown is, from left to right, the case
number, the minimization objective, NOx emission limit, experimental fuel
consumption, actual NOx emission and total soot generation.

emissions–in the 99% to 100% range and the rest over 100%. These results
confirm that the different control strategies are comparable since the driving
cycle is followed up to a sufficient threshold.

The key results of the experiments are the total fuel consumption and
accumulated NOx emissions. These results are shown in figure 6.15. Soot
generation is also included in this figure as a reference of how different control
strategies and constraint limits affect to it. Note that soot is just an output
since smoke level is not directly taken into account in the optimization problem
but through a varying λe limit as it was discussed with figure 6.9. It can be
appreciated that all optimal strategies define a Pareto front with different
levels of fuel consumption and emissions. This frontier is the set of points that
minimize fuel consumption for a given level of NOx emissions–or alternatively
the curve that minimizes the emission level for a given fuel consumption. In
this sense, the Pareto front defines the limit where a system operates in the
most efficient way; an OC falls within it, any suboptimal control remains over
the frontier, and operation below is not possible. Factory calibration (red
square) falls over of the Pareto front since this control is not optimal. In fact,
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Figure 6.13: Correlation in accumulated NOx emissions mnox between OCP
solving process simulations and experiments. The average error is −0.86 g
and the standard deviation is 0.75 g.

Figure 6.14: Analysis of the driving cycle tracking. On the left, the histogram of
the error between experimental and reference engine torque for all experiments
is shown. The gray area denotes the region where 80% of the measurements lie
in (±3.4 Nm range). On the right, the bars represent the quotient between the
delivered energy along each single experiment and the reference mechanical
energy. The experiments are sorted, from left to right, according to the NOx

emissions.
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Figure 6.15: Pareto frontier analysis of experimental results for OC strategies
calculated with a variety of NOx limits. Factory calibration is surrounded by
the red square. Total soot generation in grams is shown with the color scale.

several experimental tests show lower fuel consumption and NOx emission
levels. Several conclusions may be drawn from this figure:

• It is possible to decrease fuel consumption with an OC strategy without
any significant impact on both NOx emissions and soot generation levels.
Savings about 4% in fuel are shown in the Pareto frontier analysis for
strategies with factory NOx emissions.

• There are possibilities to reduce both fuel consumption and NOx emis-
sions together. However, there is not too much room for further fuel
efficiency improvements. While NOx can be decreased to less than half,
fuel savings do not exceed 4%. The reason for this is that torque is
mostly a function of the injected fuel amount and, since torque is fixed
for all tests, fuel consumption should be in the same order regardless
of the strategy. Conversely, NOx generation is affected by many other
variables and, therefore, leaves much more room for improvement.

• Optimal solutions with lower NOx emissions show not only a higher
fuel consumption but also an increased soot generation. This may limit
the minimum level of NOx emissions that can be achieved with this
engine. However, these emission levels are raw measurements–before
after-treatments–and a DPF may equate the soot emissions level of all
these control strategies.

The Pareto front is useful to benchmark other control strategies. For
example, the performance of the ECU strategy can be compared to the
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optimal frontier in a quite objective way. According to the results, ECU
control shows about twice NOx emissions than minimum emission solutions
and a 5% increase in fuel consumption compared to minimum consumption
solutions. Comparing ECU control to OC strategies with similar soot emission
level (cases #6 and #7 from table 6.4), NOx reduction is not so clear–OC
shows between 8% reduction to 6% increase–but fuel consumption is improved
by 4%. Therefore, it may be possible to define an optimality coefficient ηoc
to synthesize how far is a given control strategy to completely exploit all the
potential of the engine at a given cycle. The following index is proposed in
this thesis:

ηoc =
1

1 + doc
(6.19)

with doc the expression:

doc =

√√√√(m̃nox −m∗nox
m∗nox

)2

+

(
m̃f −m∗f
m∗f

)2

(6.20)

where m̃nox and m̃f are the NOx emissions and fuel consumption level of the
control strategy to benchmark, while variables with an asterisk correspond to
the OC strategy that minimizes the quantity doc. This index will show 100%
efficiency for an optimal strategy, 50% for a strategy whose weighted sum of
NOx and fuel is double the OC solution, 33% if that sum is three times the
optimum, etc. According to this definition, the optimality of the ECU control
strategy is ηoc = 93%.

The Pareto front shows an asymptotic behavior when reaching the lower
fuel and NOx levels. This happens because of two main reasons. On the one
hand, there is a technical limit on the minimum level that can be achieved
in both fuel and NOx emissions. OC cannot exploit the engine further than
its technology allows to. On the other hand, at extrema the engine operates
on the limits of the model where less information is available. The model
accuracy is penalized preventing the optimal solution results to be reflected in
the actual engine. In this particular case, it can be appreciated that decreasing
fuel consumption below 1.25 kg or NOx emissions under 6 g is pointless.

An interesting question is how do these OC strategies improve the factory
control. Contours in figure 6.16 shows the histogram of the four optimized
controls for all 12 optimization cases that have been issued. Each plot rep-
resents a different control with its range of operation in the x-axis. Y-axis
lists the total NOx emissions of the OC strategy, so each row belongs to a
different case. ECU control is shown at its corresponding row–according to
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its NOx emissions level–and rounded with white lines. The first thing that
can be appreciated is that factory control is quite different from OC. These
differences are analyzed in the following points:

• uegr: EGR valve actuation may be the control that differs the most from
the factory calibration. OC generally focuses in recirculating as much
flow as possible, staying at 100% almost 90% of the time. There are
some exceptions when NOx emissions are neglected (> 15 g), but these
are few. On the contrary, ECU actuates the valve between 40% and
60% most of the times, but it does not stay in any particular setpoint
for more than 30% of the time.

• uvgt: factory control is mostly concentrated between 75% and 80%. OC
tries to keep the turbine slightly more open and this effect is stronger
when fuel consumption is decreased. Only when NOx emissions are very
low, VGT percentage is clearly lower (less turbine opening) than at
factory control.

• uf : both factory and OC show a similar dispersion as long as they follow
the same torque profile. However, OC levels are significant lower with a
slight increase when NOx emissions are reduced.

• uδsoi: factory control is centered in zero since uδsoi = 0 is the factory
calibration. OC is about 1◦ delayed regardless of the case. It looks like
the engine has a strong optimal pole at that SOI setting that differs
from factory calibration in this cycle.

The OC strategy tries to exploit two main aspects. On the one hand it tries
to reduce pumping losses by opening the turbine. This VGT strategy decreases
the intake manifold pressure and, therefore, there is less air available for the
combustion. This might penalize λe values, but recall that λe was explicitly
lower bounded at the OCP so this strategy still keeps AFR at acceptable
values. The decrease of intake pressure also jeopardizes the torque reserve.
Since ECU has no information in advance, it must keep a sufficiently high level
of pressure in order to satisfy a strong load step whenever the driver requests
it with a reduced lag. On the contrary, OC knows the complete cycle so does
not require that torque reserve and avoids an unnecessary pumping effort. On
the other hand, OC tries to decrease NOx emissions by recirculating as much
flow as possible and by delaying the combustion–a later combustion has a
lower temperature–at the expense of jeopardizing the combustion efficiency. In
the case of tighter NOx constraints, VGT is also used to create a backpressure
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Figure 6.16: Histogram of controls (uegr, uvgt, uf and uδsoi) for all 12 optimiza-
tion cases that have been issued. Each plot represents a different control, the
x-axis is its range of operation and the y-axis lists the total NOx emissions of
the OC strategy. Each row belongs to a different case. ECU control is shown
at its corresponding row–according to its NOx emission level–and rounded in
white lines. The color scale shows the level of occurrence of a control as a
percentage.
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upstream the turbine that raises the pressure ratio at the EGR valve and
promotes the increase of recirculated flow.

The OC strategy is, at the end, a question of balance between the efficiency
gain avoiding pumping losses and the penalization of a reduced NOx emission.
According to the results there are many situations where the efficiency gain
is greater than the penalization–several OC strategies improve both fuel
consumption and emissions level as shown in figure 6.15. And, in fact, it is
pretty easy to reformulate the constraints in the OCP to move the equilibrium
to lower NOx emissions or fuel consumption, getting a completely new control
strategy, which is the tradeoff shown in the Pareto front at figure 6.15. However,
the torque reserve is always gone.

Many of the things that have been discussed above can be also appreciated
in the OC trajectories shown in figures 6.17 and 6.18. These trajectories show
the whole driving cycle with factory calibration (dotted black) and three of
the OC strategies:

• Low NOx emissions (blue, case #12): high EGR rates are issued most
of the time. It is interesting that despite VGT is almost closed, intake
manifold pressure is still lower than factory. This happens because VGT
backpressure increases EGR flow and exhaust gases through the turbine
are decreased for that reason. It can be appreciated that fresh air is
some times half of the factory level.

• Low fuel consumption (red, case #11): since fuel consumption is the
priority in this case, EGR rates are much lower. As a consequence, fresh
air and λ are higher. Note that even in this case, uvgt is lower than
factory to reduce pumping losses.

• Factory NOx with lower fuel consumption (yellow, case #6): this is an
intermediate case between the blue and the red. It features an opened
VGT to benefit from a low pumping effort, but it also recirculates a high
rate of exhaust gases. λe is lower than factory but still within the OCP
constraints.

It can be appreciated that intake manifold pressure is lower than factory in
all these trajectories. This means that reducing pumping losses is a must for
the OC strategies regardless of the NOx emissions limit. It is also significant
that sometimes an oscillating behavior happens. This is specially evident in
the red trajectory. It is produced because small variations on the requested
torque and engine speed produces a very different OC in the model. However,
it is not an important issue as long as high frequency oscillations are forbidden
at the OCP with the additional state (6.16).
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It is interesting that factory calibration is operating at similar setpoints
for VGT and EGR valves most of the cycle. This is because of the lack of
future information and, as a consequence, ECU makes a commitment solution
that offers both a low fuel consumption and a reduced NOx emission at any
situation. Conversely, OC can decide which is the most appropriate part of the
cycle where low NOx strategies benefit the most, and where fuel consumption
should be a priority. This is manifest in figure 6.17, where t = [200, 300] s
seems specially attractive for reducing NOx. All OC strategies do recirculate
exhaust gases in this phase regardless of their emission target. On the contrary,
factory control EGR rate is low. Therefore, instead of operating with both
low emissions and fuel consumption along the complete cycle, OC alternates
NOx reduction with low fuel consumption phases based on which is the most
attractive at each part of the cycle.

The discriminating ability that shows the OC strategy may suggest that, in
order to find those NOx reduction and fuel minimization-attractive phases at
the driving cycle, the OCP must account for the whole cycle at once. In that
situation, control strategies addressing short control horizons would not be
able to find the proper balance between fuel consumption and NOx emissions.
In fact, it would be difficult for a short horizon control to deliver the NOx

results shown in the yellow trajectory from figure 6.18: NOx rapidly increase
around t = 200 s since it is more efficient to reduce emissions later but, as long
as a short horizon control is not aware of the characteristics of the rest of the
cycle, it cannot take that kind of decisions. Anyhow, this particular aspect of
OC deserves a further study, which is out of the scope of this dissertation.

6.3.5 Conclusions

OC theory has been applied to the full engine control of a Euro 5 diesel
engine in a real driving cycle. To do so, a methodology to calculate the
optimal trajectories for EGR position, VGT opening, fueling rate and SOI
offset using DC has been presented and described above. These trajectories
have been experimentally validated on a testing facility showing that OC
can effectively improve fuel efficiency and NOx emissions compared to factory
calibration. Several OC strategies can be calculated just by modifying the
NOx limit at the OCP, resulting pretty straightforward to adapt the strategy
to specific emissions requisites. In fact, 12 different strategies have been
calculated in order to get a complete tradeoff between NOx emissions and fuel
consumption. According to the experimental results, a 45% NOx reduction
is possible keeping the factory fuel efficiency, while a 4% fuel consumption
reduction can be achieved with the factory NOx and soot emissions. These
results show that an OC strategy may improve the specifications of an engine
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compared to a fixed calibration, and that there is still room for improvement in
both fuel consumption and NOx emissions with an adequate control strategy
in a real driving cycle.

OC trajectories follow two strategies to achieve lower NOx emissions and
fuel consumption. On the one hand they show a higher VGT opening that
allows to decrease pumping losses improving fuel efficiency. This spoils the
torque reserve but, since cycle is known in advance, it is no longer necessary to
keep a high intake manifold pressure. Simultaneously, EGR rate is increased to
reduce NOx generation jeopardizing combustion efficiency but still taking some
advantage from the reduced pumping losses. On the other hand, OC applies
NOx reduction strategies specifically on the parts of the cycle where it is more
beneficial for the global efficiency. For the rest, the optimal strategy looks
for the best fuel efficiency. ECU has no chance to find out that cycle-specific
balance and, therefore, it has to keep a reasonable tradeoff between NOx and
fuel at any condition which is by far not the best option.
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[15] V. Bermúdez et al. “Effects of low pressure exhaust gas recirculation
on regulated and unregulated gaseous emissions during NEDC in a
light-duty diesel engine”. In: Energy 36.9 (2011), pp. 5655–5665.

[16] G. Rizzoni, L. Guzzella, and B. M. Baumann. “Unified modeling of
hybrid electric vehicle drivetrains”. In: IEEE/ASME Transactions on
Mechatronics 4.3 (1999), pp. 246–257.

[17] C. Guardiola et al. “Representation limits of mean value engine models”.
In: Identification for Automotive Systems. Springer, 2012, pp. 185–206.



References 205

[18] C. Musardo et al. “Supervisory control for NOx reduction of an
HEV with a mixed-mode HCCI/CIDI engine”. In: Proceedings of the
American Control Conference. Vol. 6. 2005, pp. 3877–3881.

[19] T. Nuesch et al. “Optimal energy management and sizing for hybrid
electric vehicles considering transient emissions”. In: Engine and Pow-
ertrain Control, Simulation and Modeling. Vol. 3. 1. 2012, pp. 278–
285.
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Figure 6.17: OC trajectories for the whole driving cycle. From top to bottom,
VGT position, intake manifold pressure, EGR position and fresh air mass flow
are shown. The cases depicted in this figure and their corresponding case
number at table 6.4 are: factory calibration (dotted black), low NOx emissions
(blue, case #12), low fuel consumption (red, case #11) and factory NOx with
lower fuel consumption (yellow, case #6).
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Figure 6.18: OC trajectories for the whole driving cycle. From top to bottom,
λe value, fuel consumption difference with respect to factory and NOx emissions
compared to factory are shown (values greater than zero mean higher mass
than factory). The cases depicted in this figure and their corresponding case
number at table 6.4 are: factory calibration (dotted black), low NOx emissions
(blue, case #12), low fuel consumption (red, case #11) and factory NOx with
lower fuel consumption (yellow, case #6).
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Chapter 7

Optimal engine control with
embedded speed management

To travel is to discover that everyone is wrong about other countries.

— Aldous Huxley
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7.1 Introduction

The replacement of the ECU control with an OC approach has been addressed
in section 6.3, finding that an appropriate cycle-specific OC may improve the
factory control performance, both in terms of fuel and emissions. Another
interesting approach is to include the management of the vehicle speed in that
optimal control strategy. The conversion from mechanical energy to traveled
distance is a quite interesting topic that several authors have already addressed
[1–5]. Engine technology is generally well exploited and a new development
usually involves only a little additional efficiency. On the contrary, an efficient
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use of the available mechanical energy is generally affected by many factors
and delegated to the driver criterion. Therefore, there is much more room for
improvement on this side.

A joined control of vehicle speed and engine management might take the
advantage of an efficient use of the available energy and the exploiting of the
engine technology adapted to that particular utilization. Despite this problem
might be separated into two independent subproblems–a speed management
and an engine control–the aim of this work is to study the coupling of both
systems and the joined optimal solution.

The proposed approach is purely theoretical. It is based on an offline
solution to the OCP with accurate engine and vehicle models. Optimization
is performed with a DM due to the complexity of the problem. Results are
shown from a simulated environment.

7.2 Problem description

The minimization of the mechanical energy required to complete a trip is an
interesting question with lots of room for improvement. This problem has been
already addressed in several works such as [1–5], but always from the point of
view of a speed optimization problem. The engine operation is conditioned
by the driving cycle and, therefore, a change in the speed profile may impact
on engine performance, as demonstrated in section 6.3. According to this,
engine management and speed optimization are not uncoupled problems and
it might be interesting to address the joined OCP. The particular operation
of the engine that may result from a speed optimization could be profitable as
well for a specific engine control.

The complete vehicle optimization problem is addressed in this work. A
route is given between two cities with a specific road grade profile, speed limits
and a time constraint to reach the destination. To do so, the control is free to
decide vehicle speed and engine controls at any time. The particular route
used in this study corresponds to test 8, which comprises a total distance of 60
km to be covered in less than 41 minutes–an average of 88 km/h is required.
Road grade and speed limits are shown in the test description at section 5.3.8.

This OCP is applied to the setup C vehicle (setup A engine and a B-
segment chassis, see section 5.2.3). This engine model is exactly the same used
in section 6.3, which is validated at the engine test bench. Some examples of
the performance of this model were shown in figure 6.8. Vehicle dynamics are
modeled following the approach shown in section 4.2. These equations were
validated with experimental data. Despite this vehicle model is experimentally
validated, this work is purely theoretical due to the inability to dispose of an
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States x

Intake pressure p2

Intake oxygen fraction XO2,im

Exhaust pressure p3

Exhaust oxygen fraction XO2,em

Turbocharger speed ωtc
Vehicle speed v

Controls u

Fueling rate uf
EGR position uegr
VGT opening uvgt
SOI offset setting uδsoi
Gear number ugb
Brakes actuation ub

Table 7.1: Problem states and controls.

experimental facility that allows to modify engine parameters while running
in a vehicle.

7.3 Problem formulation

The task is to control the main vehicle actuators for a specific route in order
to minimize the total fuel consumption. The formulation regarding the engine
is, to a extent, pretty similar to that in 6.3. The following cost index to be
minimized may be defined:

J =

∫ T
0
ṁf (x,u, t) dt (7.1)

where states x and controls u are shown in table 7.3 according to the model
and the OCP requisites.

The specification of a specific route, aside from disturbing the problem
equations with road grade, introduces several constraints. In particular, vehicle
speed must be kept below legal limits:

v(t)− v̂(t) ≤ 0 (7.2)

where v̂ is the speed limit. In addition to that, the vehicle is required to reach
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the destination before a certain time limit–otherwise the optimal solution may
take too much time resulting in an unrealistic control. Therefore:

S − T̂
T

∫ T
0
v(t) dt ≤ 0 (7.3)

with S the total trip distance and T̂ the time limit.

In order to provide a more accurate and realistic control, additional engine-
related constraints might be considered. First of all, the turbocharger speed
may be limited to preserve its health:

ωtc(t)− ω̂tc ≤ 0 (7.4)

Similarly to the approach shown in section 6.3.2 where a variable λe limit
was considered to avoid excessive smoke generation, a λe constraint is also
included in this problem:

λ̂e − λe(t) ≤ 0 (7.5)

Note that in this case a constant limit of λ̂e = 1.3 is considered in order to
simplify the formulation. Finally, a tradeoff between fuel consumption and
NOx emissions may be specify by limiting the NOx generation to a total mass
m̂nox:

∫ T
0
ṁnox(x,u, t) dt− m̂nox ≤ 0 (7.6)

7.4 Optimization approach and implementation

The driving mission consists in covering a fixed distance in a prescribed time.
As long as the route is known in advance, disturbances are location-based;
depending on the vehicle speed–which is a state and, accordingly, unknown in
the problem definition–a hill will be reached at different times but it is always
at the same location. Therefore, it is much more convenient to reformulate the
OCP in distance domain s. Following the procedure described in appendix A,
the OCP stated in eqs. (7.1)–(7.6) can be rewritten as the minimization of
the new cost index:

J =

∫ S
0

ṁf

v(s)
ds (7.7)
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subject to the same constraints, but in space domain:

v(s)− v̂(s) ≤ 0∫ S
0

1

v(s)
ds− T̂ ≤ 0

ωtc(s)− ω̂tc ≤ 0

λ̂e − λe(s) ≤ 0∫ S
0

ṁnox

v(s)
ds− m̂nox ≤ 0

(7.8)

The model equations keep the same formulation. However, in order to adapt
to the space domain, ODEs must be rewritten as:

∂x

∂s
=

1

v
ẋ (7.9)

In principle, a solution to the above problem has the chance to move
controls u with an oscillating strategy. Despite this might not be an issue for
a simulated environment, high frequency switches push the model out of the
fitted region and may cause an unrealistic behavior compared to the actual
engine. Also, abrupt changes in controls could result in a unsafe operation
of the engine and an uncomfortable situation for the driver. Therefore, a
constraint on the derivative of the VGT control is introduced to this OCP.
An auxiliary state is required:

xvgt = uvgt (7.10)

replacing the VGT control variable which is no longer needed. The following
system equation drives this auxiliary state:

ẋvgt = uδvgt (7.11)

where uδvgt is an additional control variable defined as:

uδvgt =
∂uvgt
∂t

(7.12)

This philosophy was followed in section 6.3.3 to limit the oscillating behavior
of both EGR and VGT controls in the optimal solution with successful results.
This workaround eliminates the possibility of an oscillating engine control.
However, there are still chances that gear shifting is managed in an abrupt way.
In order to avoid this situation, a similar procedure is followed limiting the
derivative of the fueling rate. The constraint is set on uf instead of the gear
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shift control because they are equivalent–a gear shift results in a change of the
engine operating point and, consequently, the fueling rate–and the fueling rate
derivative has a more evident physical meaning. Therefore, another additional
state is included in the problem formulation:

xf = uf (7.13)

with state equation:

ẋf = uδf (7.14)

The new control is formulated as:

uδf =
∂uf
∂t

(7.15)

Note that both xvgt and xf state equations must be transcribed into space
domain applying (7.9).

This OCP is obviously a huge problem comprising a total of 8 states–
x = {p2, XO2,im, p3, XO2,em, ωtc, v, xvgt, xf}–, 6 controls–u = {uδf , uegr,
uδvgt, uδsoi, ugb, ub}–and a large set of constraints. According to the discussion
carried out in section 3.4, only DMs are capable to deal with such a complex
nonlinear problem.

The applicability of a DM requires the continuity of all state equations,
constraints and the cost index. Despite model equations are continuous, gear
setting can only take discrete integer values. This would result in an MINLP
which is, as discussed in section 3.4.2, extremely expensive to solve. In order
to overcome this issue, the workaround proposed in that discussion is followed,
splitting the solution process into two sequential steps:

1. The gear setting is assumed as a continuous variable that can take any
finite value between its boundaries. This fully continuous OCP is solved
and the resulting gear setting trajectory ugb(s) is rounded to integer
values producing a quasi-optimal control trajectory ǔgb(s).

2. The gear setting control ugb is removed from the original OCP and
the integer trajectory ǔgb(s) is passed as a disturbance. The number
of actuators of this new OCP is reduced in one unit compared to the
original one.

Of course, it is not guaranteed that the rounding of a continuous trajectory
is an optimal solution to the original OCP. However, as long as the gear setting
has a sufficient number of integer values to be approximated to a continuous
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variable–the vehicle features six gear ratios–the rounded trajectory should not
be too far from the optimal solution while keeping a reasonable computational
effort. In fact, after solving the OCP at the second step, the other five controls
are optimal for the given integer gear shifting trajectory. This methodology is
similar to addressing the OCP with a given–not optimal–gear shifting rule,
with the difference that in this case this rule is based on an optimal trajectory.

The OCP described in eqs. (7.7) and (7.8) is addressed with DC, using a
centered Euler’s method. The reasons of this choice are discussed in sections
3.4.1 and 3.4.2. Accordingly, cost index, state equations and constraints are
transcribed into a large and sparse NLP, similarly to the formulation shown in
(6.15). The resulting NLP is solved with Ipopt [6]. The problem is initialized
to constant values, so the initial solution is not necessarily feasible. A better
initialization may be provided with some heuristics reducing the necessary
number of iterations, but this is an arbitrary question whose effort is not
worth. The main aim of this theoretical study is to produce an analyze the
optimal solution to the OCP, so improving the calculation efficiency is out of
the scope of this work.

The Jacobian matrix to this OCP is shown in figure 7.1. This Jacobian
corresponds to the first step problem, which is by far the most difficult one,
not only due to the additional control variable, but also because the second
problem is initialized to the first solution, being much cheaper to address. The
total amount of non-zero elements is 3768890–a 0.003% of the matrix elements–
so it is extremely sparse. Because of this sparsity, the complete computation
of an NLP iteration takes an average of 2.3 seconds. Taking into account
that the solver converges to an optimal solution in 150 to 200 iterations, the
OCP can be solved in approximately 7 minutes, which is considered a fast and
efficient mark to solve such a complex problem.

7.5 Results and discussion

The OCP described in the above section is implemented and successfully solved
with a custom DC method. The baseline case results and constraints fulfilling
are summarized in table 7.2. Figure 7.2 shows the optimal speed profile for
this case in red, overlaid with the road altitude profile in gray and the speed
limits in black. During the first part of the cycle, the speed is constrained by
low speed limits with the solution trying to accelerate as fast as possible to
reach those limits. During highway operation in the flat section of the road
the speed is mostly constant and is only affected by the speed limit between
kilometers 26 and 32.

This optimal speed profile is also compared to the speed trajectory that
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Figure 7.1: Jacobian matrix of the transcribed NLP (corresponding to the
first step OCP). Blue dots are non-zero elements, whose number is 3768890, a
0.003% of the total number of matrix elements.

Figure 7.2: Baseline case optimal speed trajectory (in red). Road speed
limits are shown in black while the blue dashed trajectory corresponds to the
minimum mechanical energy consumption speed. The road altitude profile is
overlaid in gray. The first 15 km and the 40 to 55 km portion are zoomed
in at the bottom plots for better better appreciation of road grade (left) and
speed limit (right) effects.
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Fuel consumption 1.91 kg
Min margin to speed limit 0.03 > 0 km/h
Average speed 88.8 > 88.7 km/h
Max turbo speed 146 < 200 krpm
Min λe 1.31 > 1.30
NOx emissions 10.8 g
Optimization CPU time 88 seconds

Table 7.2: Summary of baseline case optimization results.

minimizes the mechanical energy consumption at the wheels level–shown with
a blue dashed line. Briefly, this problem consists in minimizing the cost index:

J =

∫ T
0
Ft(t)v(t) dt (7.16)

where Ft is the traction force. This is a simple OCP whose only state is the
vehicle speed, with traction and braking forces as controls and involving just
the vehicle dynamics equation. This problem is solved with a DC method
as well. It is clear that the minimization of the energy consumption is not
equivalent to the complete OCP as long as it does not take into consideration
the effect of engine performance and the potential benefit of driving at efficient
engine points–which do not necessarily correspond to minimum mechanical
energy.

The steep road grades in the first 15 kilometers have a strong impact on
the optimal speed profile as it may be appreciated at the zoomed detail in
the bottom plot of figure 7.2. Compared to the minimum energy speed, the
vehicle prepares to the uphill with an increased initial speed at s = 8 km.
Then, the speed decreases uphill to avoid a high load operation that may spoil
engine efficiency, reaching the minimum at the very top. During the downhill
the vehicle gains speed, transferring potential to kinetic energy in such a way
that speed approaches the limits but does not violate the constraints.

The corresponding optimal control trajectories from the OCP can be
represented in an engine map as shown in figure 7.3. Note that actually the
optimal controls uegr and uvgt are not displayed on this figure but the two
main quantities that are affected by the control, i.e. the fresh air mass flow ṁc

and the intake manifold p2, in order to be consistent with the traditional ECU
control approach. It may be appreciated that those quantities are essentially a
function of engine speed and fueling rate. In some particular regions different
values are shown at the same operating point–especially at high loads–but the
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Figure 7.3: Engine fresh air mass flow ṁc and intake manifold pressure p2,
corresponding to the baseline optimal solution, listed by engine speed and
fueling rate. These quantities are displayed as a reference of the control
trajectories. These results suggest that the optimal control strategy might be
represented by a fixed calibration for this particular cycle.

optimal engine control for this cycle can be potentially mapped into a fixed
calibration.

The OCP has been constrained to two different NOx levels in order to
study its effect on the vehicle control. The problem has been solved with
Euro 5 and Euro 6 regulations NOx limits–180 and 80 mg/km respectively.
Figure 7.4 shows the Euro 5 speed trajectory in red and Euro 6 in blue.
According to figure 7.5, both NOx limits show no significant differences in
engine control variables. Engine operating points are different–see the different
speed trajectories–as long as the problem requirements change, but setpoints
remain the same. This shows that engine control policy is trying to decrease
NOx emissions regardless of the limit because this reduction is almost for
free compared to the effect of the speed profile (in section 6.3 it was shown
that an optimal engine policy allows big NOx reductions with low impact on
fuel efficiency). On the contrary, the tightest NOx limit strongly affects the
optimal speed trajectory. High loads are avoided at the Euro 6 trajectory
in order to keep low NOx emissions. Consequently, the speed is significantly
reduced when facing any positive slope. It may be appreciated that all uphills
match a reduced blue speed compared to red. Therefore, the engine control
does not have much impact on the vehicle efficiency and NOx emissions but
speed optimization plays a major role for a given engine technology.

The time constraint–or similarly the average cruising speed–is a key point
for the speed profile optimization. Fuel consumption and average speed
are strongly correlated since a higher speed produces increased losses. For
example, arriving one minute before to the final destination–which is equivalent
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Figure 7.4: Optimal speed trajectory with Euro 5 (red) and Euro 6 (blue)
NOx constraints. Speed limits are shown in black and the road altitude profile
in gray.
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Figure 7.5: Fresh air mass flow ṁc (left) and intake manifold pressure p2

(right) correlations for optimal setpoints between Euro 5 and Euro 6 NOx

limits. The correlated setpoints correspond to actuations in the same (Nice, uf )
engine operating point.

to an increase of 2 km/h on the average speed in the current cycle–carries
approximately 50 grams of additional fuel consumption if NOx emissions are
held at the same level, according to the results shown in figure 7.6. In order
to put this number into perspective, 50 grams is around a 3% of the total
fuel consumption, i.e. a penalty of 0.1 liters per 100 km. In the worse case of
a 4 minutes difference in this 40 minutes trip, the fuel consumption may be
increased in 0.3 liters per 100 km.

The tradeoff between fuel consumption and average cruising speed from
figure 7.6 has been calculated for two different NOx levels: Euro 5 (180 mg/km)
in blue and Euro 6 (80 mg/km) in red. It is interesting that, while model
corresponds to a Euro 5 engine, both Euro 5 and Euro 6 regulation emission
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Figure 7.6: Tradeoff between average cruising speed–inversely proportional
to trip duration–and fuel efficiency. Red data corresponds to simulations
with Euro 5 regulation NOx emission constraint (180 mg/km) while blue
corresponds to Euro 6 values (80 mg/km). The square denotes the baseline
case.

levels can be assessed with the appropriate speed control in an actual driving
cycle, pointing out the importance of vehicle OC. Of course the reduction
of NOx emissions is not free and it carries a penalty in fuel consumption as
shown in figure 7.6. It may be appreciated that in order to reduce emissions
from Euro 5 to Euro 6 levels in this driving cycle, it is necessary to decrease
the average speed in 2 km/h (with a similar fuel consumption) or to penalize
fuel efficiency with additional 0.1 liters per 100 km while holding the same
trip time.

Another interesting analysis can be drawn from the Pareto front shown
in figure 7.7. This shows the correlation between fuel efficiency and NOx

emissions. All these results are obtained with the same problem constraints
and the only difference is the NOx limit, which ranges from nearly Euro 4
levels (250 mg/km) to Euro 6 (80 mg/km). The engine, the route and the
time constraint are identical. This Pareto front is similar to that from the
previous chapter (figure 6.15) where only engine control optimization was
issued. In fact, results are close despite the driving cycle used in the previous
work was a subset of the current route. It should be remarked that NOx

emissions are strongly affected by the speed management. This is not new,
since in section 6.3 it was found experimentally that only by applying OC to
the engine control, huge differences in emissions were measured. In this case,
the possibilities are even wider, with NOx emissions reduced by a factor of 3.
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Figure 7.7: Pareto front showing the tradeoff between fuel efficiency and NOx

emissions. All cases take the same time to reach the destination. The square
is the baseline case where engine control and speed management are into the
OCP, the circle replaces the engine OC with a fixed calibration based on the
optimal trajectories, and the triangle–which is on a different y-axis–uses the
factory calibration instead. Euro 4, 5 and 6 regulations NOx limit are shown
with dotted vertical lines.

On the contrary, there is not too much room for improvement regarding fuel
consumption, which is something that was also found in the previous chapter.
As it can be appreciated in figure 7.7, while NOx may be reduced to less than
a half, fuel efficiency only gets penalized by an additional 0.05 liters per 100
km.

In addition to the above, figure 7.7 also shows the results with fixed
calibration instead of using optimal trajectories for EGR, VGT and SOI. The
square is the baseline case with OC applied to both speed management and
engine actuators control, the circle exchanges the OC engine management
for fixed maps specifically calibrated for this cycle (maps are obtained from
the optimal control trajectories as shown in figure 7.3), and the triangle
uses the factory engine calibration. The specified NOx constraint is the
same for all three cases (Euro 5) but factory calibration failed to fulfill both
emissions and time limits together, so NOx constraint was relaxed to Euro 4
levels (250 mg/km). As expected, fixing a mapped calibration–based on the
optimal trajectories form the OCP–does not entail a significant penalty in
fuel consumption neither NOx emissions (less than 0.03 liters per 100 km).
However, the factory calibration shows a much more inefficient operation–with
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a 0.53 liters per 100 km penalty–despite the speed profile is optimal for that
route and engine. This is because, on the one hand, the optimal engine control
in combination with optimal speed management can be potentially mapped
and, therefore, a fixed calibration constructed from the optimal trajectories
may perform similarly. On the other hand, the factory calibration is not
specifically designed for this route since it must perform satisfactorily in many
different situations, so it cannot exploit the particularities of this cycle and
benefit of a more efficient speed trajectory.

7.6 Conclusions

The control of engine actuators and the speed management of a vehicle are
stated as a joined OCP. A DC method provided the solution to this problem
for several levels of NOx and average speed in an actual route.

The main conclusion of this work is the importance of an optimal speed
control in order to minimize fuel consumption and emissions. The use of a
joined engine and speed OC management showed that a wide range of emission
levels are affordable with the appropriate controls. In this case, Euro 4 to Euro
6 levels have been reached with an experimentally validated Euro 5 engine
model. This suggests that there are lots of room for improvement on the
emissions side when speed is managed efficiently. Fuel consumption can also
be improved but benefits are moderate.

Another remarkable conclusion is that the optimal engine control can be
somehow mapped to a fixed calibration, showing a similar performance. The
use of such specific engine calibration is key to benefit from an optimal speed
control. Factory calibration exhibited a performance significantly worse in
both emissions and fuel efficiency as long as it is not specifically designed for
the route used at this study. According to this, the speed optimization problem
is strongly coupled to the engine optimal control. The decoupling of vehicle
dynamics and engine optimization problems may help in the proper direction
but it is far from being optimum. In fact, route-specific engine calibrations
are a result of the coupled problem. Therefore OC may be a valuable tool to
calculate those calibrations.
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Chapter 8

Optimal power-split of a
hybrid electric vehicle under
driving cycle uncertainty

Music is the silence between notes.

— Claude Debussy
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8.1 Introduction

HEVs are an attractive option to reduce fuel consumption and pollutant
emissions in vehicles [1]. Instead of enhancing engine technology or engine
control as discussed in previous chapters, hybrids include devices to improve
the way the engine is operated. Particularly, HEVs feature an additional
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electric path that complements the conventional engine, showing three main
ways to increase global efficiency [1]:

• Engine is off during stops and at low speeds as long as the electrical
motor is sufficient to move the vehicle at those situations.

• Braking energy is recovered and stored in the battery for future use.

• Engine works at efficient operating regions avoiding low loads, which are
covered with the electrical motor.

The benefit in both fuel and emissions performance comes at the expense of
a more complex powertrain. A HEV features two different energy sources–fuel
tank and battery–which entail a new degree of freedom. Besides the usual
controls, the amount of energy that may be supplied by each source to fulfill
the driver or driving cycle requirements is an additional decision to take. The
split between the energy sources, known as power-split, may be controlled
with heuristic rules but it is actually strongly affected by the particularities
of the driving cycle [2]. For example, it might be interesting to deplete the
batteries in an uphill if later there is a downhill to charge them; however, if
the road becomes flat or a second uphill follows the first, it could be better to
save some battery before. This is something an heuristic control cannot be
aware of.

OC is a valuable tool to calculate the optimal split control that exploits
the benefits of the hybrid architecture. It is specially attractive for laboratory
analysis where the driving cycles are known in advance. In fact, this topic
has been extensively addressed in literature [3–9]. Unfortunately, in an online
application things get more difficult as long as further driving information is
unknown on real time. Some authors proposed several techniques to apply OC
in combination of closed-loop controllers [10–13]. These guarantee a robust
operation under some kind of optimality. However, they are not true predictors
of future requirements and, therefore, cannot provide an efficient operation
exploiting the particularities of the current driving cycle.

This work proposes a methodology to estimate future driving conditions
based on a statistical quantification of the driving style. This technique is
applied to OC theory in order to provide an optimal power-split in online
applications where no information is known in advance.

8.2 Problem description

Power-split control is a key point to exploit the benefits of HEVs with an
efficient management of the available energy resources. The corresponding
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OCP, i.e. the EMP, is extensively addressed in literature with many different
approaches [14–18]. However, this problem is difficult to face in online appli-
cations due to the lack of future information [2]. Many approaches provide
benchmarking information for offline analysis [19], or closed-loop controls
at the expense of jeopardizing the optimal power-split [10–12]. Those are
interesting techniques to improve HEV operation, but their efficiency in online
implementations is questionable.

The aim of this work is to provide a different OC approach to the EMP
with a simple methodology to estimate future driving conditions. The current
driving style is characterized by means of a histogram-based statistical analysis
of the energy requirements, following the scheme of [20]. This information
is used to address the OCP on real time with no future knowledge. The
methodology is applied to the series HEV from setup D. This vehicle is a
simulation model built with manufacturer’s data and, therefore, this work is a
theoretical study due to the unavailability of the actual HEV. The quasi-steady
models used to represent the powertrain are described at sections 4.3.3, 4.4.1,
4.4.2 and 4.5.7, and the vehicle dynamics at section 4.2. The performance
analysis of the proposed methodology is carried out with city and highway
real driving cycles, recorded from two non-professional drivers at the same
route.

8.3 Problem formulation

The EMP consists on finding the power-split control law ups that minimizes
the HEV fuel consumption. Therefore, the following cost index applies:

J =

∫ T
0
ṁf (x, ups, t) dt (8.1)

According to the quasi-steady approach of the model and assuming that the
driving cycle is known so far, the only state of the problem is the battery
SoC. The control may be any variable defining the power-split among the two
energy sources. For convenience, the battery current is chosen as a control:

ups(t) = ib (8.2)

The dynamics of the state, i.e. the battery, are driven by (4.37). Applying
the definition of SoC from (4.39), the state equation may be also written as:

ζ̇ = − ib
Qb,0

(8.3)
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The OCP is constrained to produce a solution that follows the specified
driving cycle. For given speed and road profile trajectories, the total power
requirements P̃m(t) are known in advance. Therefore, the powertrain output
must meet that value:

P̃m − Pm ≤ 0 (8.4)

where Pm is the power output of the traction motor. The inequality sign
appears because brakes can ultimately be used if power output exceeds the re-
quirements. Also, the power-split must verify energy conservation introducing
an additional constraint as discussed in 4.3.3:

Pg + Pe −
Pm
ηm

= 0 (8.5)

with Pg and Pe the power output of the generator and battery respectively.

Finally, the variation in battery SoC must be constrained. Otherwise, it
will be depleted at the end of the cycle, compromising the efficiency of the
following one. The common policy is to demand that SoC is held at the same
level between the start and the end of the route. This can be represented with
a state terminal constraint:

ζ(T )− ζ(0) = 0 (8.6)

This constraint is of course arbitrary and may be set to a different value
with almost no changes in the formulation.

8.4 Optimization approach and implementation

The SoC describes the dynamics of the OCP from the previous section. Despite
the influence of the SoC on battery performance may be significant, it is quite
interesting from the formulation point of view to neglect this effect. This
assumption might be excessive for a PHEV since battery depletion and full
charge are part of the normal operation and battery performance is strongly
variable. However, variations in charge are narrow in a charge sustaining HEV
and battery performance is somehow constant [18], so this assumption may
be just fine. According to this simplification, the SoC vanishes as a state of
the problem and, therefore, the OCP has no states. Instead of that, there is a
new integral constraint replacing the terminal state condition from (8.6):∫ T

0
ζ(ups, t) dt = 0 (8.7)



8.4. Optimization approach and implementation 229

This integral constraint can be adjoined to the cost function as discussed
in section 3.3.2. Therefore, the extended cost function L results in:

L = ṁf (ups) + µζ̇(ups) (8.8)

As no states are considered in this last OCP, µ is a constant multiplier (see
section 3.3.2 for a detailed discussion on this) that fulfills (3.30). Note that
time dependency also vanishes due to the lack of states.

This problem is specially well fitted for PMP since there are no states and
only one Lagrangian multiplier µ that, in fact, is constant. The Hamiltonian,
defined in (3.15), is exactly the above cost index due to the lack of states.
The application of PMP to this particular problem with the above battery
simplification is known as ECMS [5, 21]. The reason for this name is that
(8.8) may be interpreted as the minimization of not only fuel consumption but
a weighted sum of the fuel and the battery contribution–under this hypothesis
ζ̇ is the instantaneous battery consumption. Battery energy does not actually
come for free but from the recovery of mechanical energy that ultimately came
from fuel. Due to this, the OCP consists in minimizing the contribution of
both energy sources. The multiplier µ weights for the different costs of both
sources: if µ decreases, battery becomes cheaper at (8.8) and the control will
deplete it faster; otherwise, if µ value raises, electrical energy is more expensive
for the cost index so battery use will be reduced.

PMP is also the method of choice because it is the only optimization
algorithm that solves the problem in a forwards step-by-step fashion; both
DP and DMs require the complete problem to be considered for an optimal
solution. From an online application point of view, PMP is interesting as long
as the solution is calculated sequentially from t = 0 to t = T , and therefore
the problem can be solved on real time. In addition to that, µ is the only
unknown to the problem with PMP, and once it is found the solution is
straightforward. Then finally, the original OCP consisting on calculating the
optimal power-split control has been translated into an equivalent problem
where the unknown is just a constant parameter. The solution of this problem
is trivial if the cycle is known in advance; µ may be found by shooting or any
other optimization algorithm in order to fulfill the integral constraint (8.7),
or even analytically by solving (3.30) whenever is possible. However, in an
online application the cycle is unknown and the choice of the appropriate µ
value gets complicated, so it should be estimated in some manner.

The key point of this work is to propose a methodology to obtain an optimal
µ value based on cycle requirement estimations. This value should guarantee
charge sustainability (or any other level of battery charge/depletion) within
a limited time. For the estimated µ value, PMP is used to solve (8.8) and
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Figure 8.1: Driving style and cycle parameters recognition via histogram
comparison. Gray areas correspond to city driving.

the optimal control trajectory that minimizes fuel consumption is calculated.
The constrain (8.7) might look too restrictive or arbitrary, specially because
in an online application it is difficult to say where the end of the cycle is. Due
to this fact, the integral condition is managed somehow differently as long
as t = T is unknown. The constraint is relaxed and the charge sustaining is
not specified at any particular moment but at the end of a forwards horizon.
Therefore, the control does not force a terminal battery level but constantly
keeps track of it.

8.4.1 Histogram-based µ estimation

The optimal power-splitting policy in the current EMP is only determined by
the instantaneous power demand. This requirement together with the cost
balance that draws from (8.8) define unequivocally the optimal control for
a given µ. Therefore, driving pattern may be characterized attending only
to the power demand. To do so, a probability distribution is built from the
history of power demands, i.e. a histogram.

This probability distribution contains information dealing not only with
driving style but also with traffic and road related information. In [22, 23]
probability distributions have demonstrated their potential to recognize driv-
ing patterns as well as different types of roads. In fact, just comparing
similarities between previously trained histograms Pr(Pm) different driving
styles can be detected. In figure 8.1 a cycle was built with the sequence ur-
ban/highway/urban/highway/urban and driving cycle parameters recognition
via histograms was applied to identify both urban and highway parts. A
further discussion on this topic is available in [23].

The OCP at hand–the EMP–consists on minimizing the cost index (8.8).
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PMP reduces this problem to the instantaneous minimization of the Hamilto-
nian which, in this case, is the cost index itself:

min
ups

{
ṁf (ups, Pm) + µζ̇(ups, Pm)

}
(8.9)

Note that the dependency on the power requirements Pm–a disturbance to the
problem–is denoted explicitly to clarify the formulation, while it was implicit on
previous instances of the cost index. The absence of a time reference due to the
lack of states allows to replace the power requirement time trajectory Pm for
its unique values from the probability distribution Pr(Pm). Pm becomes, then,
the independent variable of the OCP. This approach yields to the minimization
of the Hamiltonian for different levels of power requirements Pm, also fulfilling
the integral constraint (8.7) which turns into:∫ ∞

−∞
Pr(Pm) · ζ̇(ups, Pm) dPm = ∇ζ (8.10)

where the constraint is weighted with Pr(Pm) to account for the number of
occurrences of different Pm levels as power requirements that occur the most
have a stronger impact on the SoC variation. Note that this philosophy is
equivalent to the change of the problem domain from time to Pm. The quantity
∇ζ should be zero as deducted from (8.7), but in an online application there
are no clues about where the final destination is. Instead of that, the integral
constraint might be specified for a forwards horizon Γf of arbitrary length
such that ζ(t+ Γf )− ζ(0) = 0. Therefore, ∇ζ ends up as:

∇ζ(t) =
ζ(0)− ζ(t)

Γf
(8.11)

The only thing still to be found is the appropriate value of µ such that ∇ζ is
satisfied. Figure 8.2 illustrates ∇ζ values at different levels of µ for a given
histogram. Then, the optimal control may be calculated for a given power
requirements histogram by applying PMP at every single time instant. This
calculation is continuously updated throughout the cycle as illustrated in figure
8.3: power requirements histogram is constructed with data form a receding
horizon Γr, µ is found such that the current ∇ζ is fulfilled, and PMP–or the
mapped solution at figure 8.4–is applied to calculate the optimal power-split.

It is remarkable that for a given µ, the control is only a function of
instantaneous Pm values since time vanished from the problem. This gives the
opportunity to map it for online applications as done for figure 8.4. On the
contrary, µ depends on the battery drift and histogram–which is a function–so
it should be calculated online applying eqs. (8.9) and (8.10).
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Figure 8.2: ∇ζ levels that can be achieved at the integral constraint (8.10) for
different values of µ. This curve is calculated for a given power requirements
histogram. Note that µ = −0.98 holds the level of charge along any cycle with
this same histogram; values to the left charge the battery up to 0.15%/s while
values to the right produce a battery depletion of the same order.

Figure 8.3: Solving sequence of histogram-based control approach. The SoC
(top plot) is continuously monitored and the gradient ∇ζ to reach the terminal
value (dotted horizontal line) is controlled at a forwards horizon Γf . The
power requirements (bottom plot) from a receding horizon Γr (shadowed in
gray) are used to compute an histogram (on the right side). This histogram
and the optimal control from map in figure 8.4 enables the calculation of the
µ tradeoff shown in figure 8.2. Then, the choice of the appropriate µ value is
trivial and the optimal control can be calculated for the next time step.



8.4. Optimization approach and implementation 233

Figure 8.4: Optimal battery current as a function of power requirements Pm
and the constant Lagrangian multiplier µ. This map is a result from the
application of (8.9). The color scale is shown in amperes.

8.4.2 Histogram geotagging

A power requirement histogram contains information regarding driving style
and road type, but it can only store one pattern–or several mixed together.
However, very different styles may be found in just one trip. As an example, in
figure 8.5 power demand histograms have been calculated along the route each
150 meters and, following the philosophy of [22], they are grouped attending
to their similarities (how much area they share); some examples of these
histograms can be found in the right plot of this same figure. Several contrasts
may be appreciated in different parts of the same trip. Driving through main
avenues show histograms with significant peaks for medium power demands
while lower power requirements and more regeneration potential is appreciated
in small streets. Attending to this, it might be interesting to apply the
histogram-based PMP approach with a set of histograms corresponding to
different locations instead of just one single driving pattern. This is a similar
approach to that used to characterize and predict traffic conditions on Google
Maps [24].

A set of geographically located power demand histograms can be easily built
by means of in-car sensors and a GPS receiver. For this purpose, the relevant
geographic area is discretized into individual clusters. The proposed approach
works as follows: as the vehicle drives through a cluster, power requirements
are stored on it; later, when the clusters are trained, the current location-based
histogram is calculated weighting the four closest clusters according to their
distance to the vehicle. This technique is depicted in figure 8.6. The route
may be known in advance with ease just by requesting it to the driver in a
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Figure 8.5: Different histograms–driving styles–that can be found in a single
trip. Dark blue corresponds to an average of 2 kW and light blue to 5 kW.
Their geographic distribution is displayed in the left plot, and some examples
of these histograms are shown in the right plot.

navigation system, so a set of histograms for that particular trip might be
known in advance.

The histogram-based approach can be applied to this methodology in a
quite straightforward way. Assuming that a set of location-based histograms
Pr(Pm, s) are available with the already described technique, those can be
summarized into a single histogram that accounts for the patterns in a forwards
horizon Γf :

Pr(Pm) =
1

Γf

∫ t+Γf

t
Pr(Pm, s(t)) dt (8.12)

The resulting histogram, weighted according to location, can be introduced
seamlessly into eqs. (8.9) and (8.10) and EMP may be solved analogously to
the previous approach.

8.5 Results and discussion

The histogram-based PMP approach and its location-based variation are
applied to an actual driving cycle. The histograms have been trained before
with four driving cycles covering the same route than the simulated cycle.
No lookahead information different from the histogram is available during
simulation to be representative of on an online application. In addition to
that, the EMP is also addressed with DP–in this case with full knowledge of
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Figure 8.6: Methodology to gather and retrieve location-based histograms.
Power requirements are stored in clusters during normal driving (left), and
then the information from the four closest clusters is weighted with vehicle
distance to construct a location-based histogram (right).

the cycle to optimize–in order to provide a benchmarking solution to compare
to. Results for key variables are shown in figure 8.7.

The proposed methods show a near-optimal solution. Compared to DP
solution, histogram-based approaches result in an almost identical fuel con-
sumption despite some differences in the SoC management. Note that the OCP
addressed with these approaches feature a slightly different SoC constraint
because the terminal value is tracked to be permanently fulfilled within a
forwards horizon. Due to this fact, the SoC trajectory is kept on the surround-
ings of this terminal value. It might be appreciated in the top plot at figure
8.7 that the histogram-based approach (red) is always close to ζ(T ) = 55%,
falling in the ±3% band. The location-based method (yellow) shows a sim-
ilar behavior although its greater knowledge of the cycle (destination and
more accurate power requirements estimation) allows a looser–and potentially
better–management. On the contrary, DP approach (blue) does not show
that anxiety to hold the terminal value as long as it is fulfilled at t = T ,
resulting in a wider SoC variation. Of course, the results shown here are just
an example since horizon length might be tuned to modify the effect of this
anxious behavior.

A very tight fulfilling of the integral constraint–terminal SoC value–can
be appreciated as well. The continuous evaluation of ∇ζ–see eqs. (8.10)
and (8.11)–works as a closed-loop controller that tracks the desired SoC level
with an optimality criterion. It allows to correct misestimations in real time,
even without lookahead information, providing a robust and stable operation.

The use of geographical information to geotag different driving requirements
showed no significant advantages in this example, offering near the same
solution with similar performance. This negligible improvement is due to three
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Figure 8.7: Application of the histogram-based (red) and location-based
(yellow) approaches to the EMP. DP results (blue) are included as benchmark
trajectories. The top plot shows the SoC evolution throughout the cycle.
Integral constraint must fulfill the final SoC value denoted with a dotted line.
Bottom plot shows the accumulated fuel consumption compared to DP results.
Negative values correspond to a fuel consumption lower than DP solution.

factors: first, the homogeneity of the benchmarking cycle makes that specific
histograms for diverse locations does not represent a great improvement; second,
the availability of four additional driving cycles to train the location-based
histograms might not be sufficient to capture individual particularities; and
third, both histogram-based approaches and the benchmarking DP solution
are so close that performance differences are insignificant. Nevertheless, the
additional cycle information gathered with geotagging enables to a better SoC
management that may improve the global results in other situations.

8.6 Conclusions

The use of power demand histograms permitted to characterize and estimate
the driving requirements when no lookahead information is available. This
information can be used to provide an optimal power-split control for HEV
based on a simplified approach of the EMP. On the one hand, the proposed
methodology to address this OCP shows several implementation advantages
that provide a simple and compact formulation to implement an optimal
power-split controller:

• The OCP is transformed into a single parameter (µ) optimization problem
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under several assumptions, so only µ must be found to provide an optimal
control trajectory.

• The parameter µ is only a function of power requirements histogram
and current battery SoC drift.

• For a given µ, control is only a function of instantaneous power require-
ments, so it can be mapped.

On the other hand, this histogram-based approach shows some performance
benefits in online applications:

• The integral constraint (8.10) is updated with the continuous evaluation
of the battery drift from the desired terminal level. This provides an
stable behavior with an optimality criterion.

• Charge sustainability can be fulfilled relaxing the terminal constraint
over a forwards horizon.

• Fuel efficiency shows no significant penalty compared to optimal control
trajectories where full knowledge of the cycle is used.
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Chapter 9

Applications to powertrain
design and assessment

If one does not fail at times, then one has not challenged himself.

— Ferdinand Porsche
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9.1 Introduction

OC is a useful methodology to address designing questions and assess control
decisions. Those are immediate applications of OC theory since the OCP
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boundary conditions can be accurately identified in laboratory conditions.
This methodology enables to approach the development of vehicular systems
from an objective perspective, according to the definition of a criteria–a cost
function–and a set of requisites–constraints–that is strictly minimized (or
maximized) with the application of OC.

The OC-aided designing process can be approached in many different ways.
In the context of this dissertation, two methodologies are presented: (i) in
section 9.2, OC is used to calculate the HRL optimal trajectory, which is a
problem that can be accurately bounded and defined within a cycle, in order
to design the injection schedule and to serve as a boundary for the maximum
combustion efficiency, and (ii) in section 9.3, OC is employed as a tool for
an objective comparison and evaluation of several HEV powertrain scales,
exploiting their particularities and showing individual benefits.

9.2 Optimal heat release law

The tradeoff between fuel consumption and emissions is inherently linked to
the thermodynamic process that occurs in the cylinder. Energy release and
pollutants formation happen during the combustion process, and they are
affected by two main factors: the design and characteristics of the engine
(injector nozzle, combustion chamber configuration, etc.), and the control
law that governs the heat release. Traditionally, simplified thermodynamic
processes such as constant volume, constant pressure and limited pressure
combustions [1] or more sophisticated Wiebe functions [2] were considered.
However, from the OC point of view, it might be much more attractive to
calculate optimal combustion processes instead of constraining to predefined
laws. OC has already been employed in this topic by [3–5]. The aim of the
present work is to find the HRL in an ICE that minimizes fuel consumption
with pressure and NOx constraints, constructing and solving an OCP.

9.2.1 Problem description

The purpose of this work is to obtain by means of OC, the HRL that minimizes
the fuel consumption at some given operating conditions, taking into account
different mechanical and performance constraints, particularly: the maximum
cylinder pressure should be bounded to avoid engine damage; the maximum
pressure derivative in the combustion chamber should be also limited to avoid
both mechanical issues and noise generation; finally, provided the tradeoff
between NOx and fuel in current Diesel engines, some boundary in the maxi-
mum NOx is to be included to fulfill with emission regulations. The proposed
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approach provides both a realistic minimum fuel consumption to compare how
optimal is a given engine calibration and also a HRL pattern to follow in order
to minimize the engine fuel consumption fulfilling the constraints.

Accordingly, the advantages of the OC approach are twofold:

1. Constraints related to non-energy-based parameters can be taken into
account. In this sense, the main advantage of this approach is that it
provides a higher bound for the engine efficiency taking into account
constraints on maximum cylinder pressure, maximum cylinder pressure
derivative and NOx emissions. Moreover, the framework presented in
the following points is completely general and other pollutant emissions
(or criteria) can be also included if a suitable model exists.

2. As far as it is optimal, it provides the best possible combustion scenario
for comparison. Instead of using arbitrary combustion laws such as
constant volume, or Wiebe functions, the OC shows the HRL that
minimizes a cost function while strictly fulfilling the problem constraints.

This work is performed on the setup B single cylinder DI CI engine (see
5.2.2). The experimental facility is used to validate the in-cylinder model
described in section 4.5.5 and to evaluate the engine performance in comparison
with the optimal results provided by the OC approach. The model calibration
is performed according to test 7 procedure (see 5.3.7). For this particular
study, the key signals recorded are the in-cylinder pressure signal and fuel
consumption to compute the ISFC, the air mass flow and intake conditions to
compute the gas conditions at the IVC, and the NOx emissions to assess the
emission limits.

Figure 9.1 shows a comparison between measured and modeled ISFC and
NOx emissions. The agreement between these two quantities for the set of
tested conditions is in the ±2.5% range, and it increases to ±10% in the
case of NOx emissions. While the model uncertainty in terms of ISFC seems
adequate, the error in NOx may appear excessive. Nevertheless, [6] points
out that a variation of ±1% in the estimation of each of the parameters
that affect NOx translates into an error up to ±33% in final NOx prediction.
This extremely high sensitivity is a direct consequence of the involved physic-
chemical mechanisms, and it is independent of the type of model used to
describe these mechanisms. Therefore, it can be concluded that the accuracy
of the presented model is reasonably good.
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Figure 9.1: Comparison between modeled and experimental ISFC and NOx

emissions. Dotted lines correspond to 2.5% differences in the ISFC and 10%
differences in NOx.

9.2.2 Problem formulation

This OCP consists in finding the sequence of burning rates that minimizes the
ISFC over the engine thermodynamic cycle between the IVC and EVO for a
given operating point–engine speed, fuel injected and cylinder gas conditions
at the IVC (temperature, pressure, composition). Given that:

ISFC =
mf

Wi
(9.1)

as the fuel injection mf is included in the operating point definition, minimizing
the ISFC is equivalent to maximizing the indicated work Wi. For the sake of
formulation simplicity, the last option has been chosen. In addition to that,
the optimal burning rate policy should also fulfill the following constraints:

• The maximum cylinder pressure should be below certain limit (pic < p̂ic)
to avoid engine damage.

• The maximum cylinder pressure derivative should be below certain limit
(dpic/ dα < δ̂pic) to avoid engine damage and excessive noise generation.

• The amount of NOx emitted should be below certain limit (mnox < m̂nox).
If this constraint is not included, provided the tradeoff between emissions
and efficiency, the optimal solution may tend to a combustion with
excessive NOx that would make impossible to fulfill with current emission
regulations.
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To deal with the previous objective, consider the following general dynamic
equation of the system:

dx

dα
= f(x, u, α) (9.2)

where the state x is the in-cylinder pressure pic. The generic function f
contains the model from 4.97. The control u is the fuel burning rate ufbr as
introduced in (4.98). Note that the usual time reference has been replaced
by a crank angle α dependency provided that the engine speed is considered
constant. This modification allows to easily deal with the integration limits of
the problem (IVC and EVO) for different operating points without any loss of
generality.

Consider the OCP consisting in finding the optimal control policy u∗fbr(α)
that maximizes the following cost index between IVC (αi) and EVO (αe):

J =

∫ αe

αi

L(pic, ufbr, α) dα (9.3)

The function J represents the work developed along the cycle and, therefore,
the function L is:

L(pic, ufbr, α) = Wi = pic
dVic
dα

(9.4)

where the variation of volume with angle is known a priori since piston
deformations are neglected.

Regarding the problem constraints, the heat released should be limited in
order to assure that the fuel burnt during the cycle does not exceed the fuel
injected: ∫ αe

αi

∂αqb(ufbr) dα ≤ mfHf (9.5)

The above expression may be reformulated using (4.98) in terms of the control
variable: ∫ αe

αi

ufbr(α) dα ≤ 1 (9.6)

where obviously, to maximize the indicated work all the fuel injected should
be burnt, so the equal sign prevails.

Analogously maximum NOx emissions must be accounted with the integral
constraint: ∫ αe

αi

∂αmnox(pic, ufbr, α) dα ≤ m̂nox (9.7)
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where ∂αmnox follows the model expression from (4.102).

9.2.3 Optimization approach and implementation

The optimization problem consists of one control variable–fuel burning rate
ufbr–and one state–in-cylinder pressure pic–, with two additional integral
constraints that may lead to significant complexity in the solution. According
to (3.25), integral constraints can be adjoined to the cost function, vanishing
from an explicit formulation. System dynamics can also be adjoined with the
introduction of the Hamiltonian function (3.15). Therefore, dynamics from
(9.2), and integral constraints in eqs. (9.6) and (9.7) can be summarized in an
augmented cost function:

H(x, ufbr, α) = L(pic, ufbr, α) + λT f(x, ufbr, α) (9.8)

This new OCP has three states x = {pic, qb,mnox}, where the two last members
follow the dynamics from eqs. (9.6) and (9.7). λ is the costate vector λ =
{λp, λq, λm} whose elements are related to the three states of this problem.
According to the discussion carried out in section 3.3.2 and specially to (3.29),
costates introduced with an integral constraint are constant. Therefore λ turns
to be λ = {λp, µq, µm} with µ representing constant parameters.

The advantage of adjoining states to the cost function is that their dynamics
are no longer computed separately but through their corresponding costates,
alleviating the computational burden of a system with many states. However,
the complexity of dealing with three different Lagrange multipliers, even if
some of them are constant, usually exceeds the affordability of an OCP with
several states. Typically, only problems with a single costate are interesting.
Therefore, costates are removed from the Hamiltonian and only µm is kept for
practical reasons:

H(x′, ufbr, α) = L(pic, ufbr, α)− µm∂αmnox(x′, ufbr, α) (9.9)

where x′ is the new state vector x′ = {pic, qb} that includes the state relative
to the constraint (9.5). Replacing the cost function (9.4) by (9.9) allows
to remove one integral constraint from the problem simplifying its solution.
However, a proper µm value should be selected in order to fulfill the NOx

constraint. Note that the Lagrangian parameter weights the tradeoff between
Wi and NOx emissions in the cost function. If µm = 0, the optimization
only considers the Wi term, and the solution will tend to a control policy
minimizing the ISFC regardless of NOx emissions. Conversely, at the limit of
µm tending to ∞, the NOx emissions will be minimized at any cost. Sweeping
µm from 0 to arbitrarily high values allows to obtain the Pareto front of the
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OCP, i.e. the curve where fuel consumption is minimum for a given limit of
NOx emissions.

The small number of states and controls of the problem (2 and 1 respec-
tively) makes it specially well suited for the application of DP (see 3.2.1 for a
description of the method and its implementation). The solver used in this
work is a Matlab-based code presented in [7]. The same code has been used
previously in [3]. Discretization in both control and states can be checked in
table 9.1.

9.2.4 Results and discussion

In this section, the results obtained in the optimization problem are discussed.
The problem constraints are progressively introduced, starting from the HRL
optimization without constraints, then introducing the constraints on the cylin-
der pressure evolution (maximum pressure and maximum pressure derivative),
and finally adding the constraint on the NOx emissions.

Optimal HRL without constraints

Consider the OCP presented in section 9.2.1 without NOx nor pressure re-
strictions. If the system is considered adiabatic, then the solution is the well
known constant volume combustion that essentially consists of an instanta-
neous combustion (heat release) at the Top Dead Center (TDC). From the
control policy perspective, the solution of such OCP is an impulse-like control
action, i.e. releasing all the available heat instantaneously (with an infinite
rate of heat release) at the TDC. Figure 9.2 shows the evolution of the problem
states pic and qb, the last normalized with the total heat released. The light
blue line in figure 9.2 represents the solution provided by the optimization
algorithm without constraints and considering the adiabatic system previously
mentioned.

This solution clearly matches the constant volume combustion validating
the optimization algorithm used. Note the high values of the in-cylinder
pressure (280 bar) and pressure derivative (740 bar/◦) of the optimal solution
that would surely damage the engine in a real application. Figure 9.2 also
shows the effect of the heat transfer on the optimal HRL and pressure evolution
of the OCP without constraints. A constant factor % has been applied to the
heat transfer coefficient from (4.100). It is observed that the higher the heat
transfer, the later the optimal combustion appears in order not to reach too
high pressures, which, as far as they involve high gas temperatures, lead to
important heat losses that jeopardize the engine efficiency. Finally, it can
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Figure 9.2: Effect of the heat transfer on the evolution of the in-cylinder pres-
sure (left plot) and heat release (right plot) without constraints on maximum
pressure nor maximum pressure derivative. The color scale represent the heat
transfer coefficient.

be observed that independently of the considered heat transfer, the optimal
control policy involves an instantaneous heat release.

The effect of the heat transfer on the minimum ISFC–recall that this case
includes no constraints–is described in figure 9.3, resulting in an almost linear
relation. The coefficients for the Woschni heat transfer correlations validated
by the experimental results in figure 9.1 lead to a fuel consumption of 148
g/kWh (circle in figure 9.3), that sets a boundary for the minimum ISFC
of the actual engine that can be achieved if no constraints are considered.
The minimum achievable ISFC if the engine were completely adiabatic at the
studied operating conditions is 131 g/kWh. Accordingly, the heat transfer
involves a penalty of 17 g/kWh. Therefore, despite heat transfer wastes around
30% of the total energy released during the combustion, the improvement of a
completely adiabatic engine will be limited to 11.5%, even in the case of not
considering pressure restrictions. The remaining 18.5% leaves as exhaust gas
energy.

Optimal Heat Release Law with pressure constraints

Figure 9.4 shows the effect of the maximum pressure derivative δ̂pic and
the maximum cylinder pressure p̂ic on the minimum ISFC for different heat
transfer hypothesis. It can be observed how, for a given level of heat transfer
and cylinder pressure limit, the ISFC is progressively reduced as the pressure
derivative limit increases. Particularly, the ISFC tends to a minimum that
becomes lower as higher maximum cylinder pressures are considered. Increasing
the maximum cylinder pressure typically leads to an increase in the area of the
p–V diagram, which naturally drives to higher indicated work and consequently
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Figure 9.3: Effect of the heat transfer coefficient % on the minimum ISFC
without pressure constraints. The circle represents the result for the actual
engine parameters.

to lower ISFC. Also, an asymptotic behavior is observed since there is a δ̂pic
from which the ISFC is not reduced anymore. The minimum ISFC is reached
at lower derivative levels as the maximum pressure is lower as well, since the
lower the maximum in-cylinder pressure the sooner it can be achieved.

The effect of the heat transfer on the engine efficiency is shown in figure
9.4. These results are in line with those presented in section 9.2.4 and figure
9.3: the higher the heat transfer the higher the ISFC. However, figure 9.4 also
shows that the potential of increasing the maximum cylinder pressure as a
method to reduce the ISFC is limited by heat transfer effects. In this sense,
increasing the maximum cylinder pressure limit from 140 to 180 bar involves
a 3.3% rise in the efficiency of the adiabatic engine, while the same pressure
limit increase only leads to a 0.6% improvement in efficiency with the nominal
heat transfer (% = 1).

The impact of the heat transfer on the optimal HRL and in-cylinder
pressure evolution for the constrained OCP is represented in figure 9.5. It
can be appreciated that the higher the heat transfer the later the optimal
combustion takes place, which is in line with the results obtained in the OCP
without constraints. Again, the reason for such behavior is that the earlier
the combustion, the higher the pressure and temperature in the combustion
chamber, so the higher the heat losses. In fact, provided a maximum in-cylinder
pressure of 160 bar and a maximum pressure derivative of 10 bar/◦, the optimal
solution is to burn the available fuel following the maximum allowed pressure
derivative. Then, when p̂ic is reached the fuel burning rate should be reduced
to keep constant the cylinder pressure until all the fuel is burnt. No matter
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Figure 9.4: Effect of the maximum pressure derivative δ̂pic and maximum
in-cylinder pressure p̂ic on the minimum ISFC. Left: adiabatic engine. Center:
engine with half the heat transfer of the nominal engine. Right: Nominal
engine (the circle represents the nominal engine with its actual constraints on
maximum pressure and maximum pressure derivative).

the importance of heat transfer (between the limits considered in this study),
the optimal policy in the evolution of the pressure and heat release remains
the same. The only difference is the start of combustion, which, as previously
stated, should be delayed as the heat transfer increases.

Concerning the effect of the pressure derivative on the optimal HRL and
in-cylinder pressure evolution, figure 9.6 shows that the conditions at the end of
the combustion remain independent of the pressure derivative limit imposed–in
this case the combustion always finishes at 18◦ATDC. Reducing the pressure
derivative limit involves an earlier start of combustion. In short, figure 9.6
shows that the optimal combustion process is divided in two main phases.
In the first one, the heat release rate is limited by the maximum allowed
pressure derivative. The second phase starts once the maximum pressure limit
is reached, where the pressure derivative constraint is not active anymore and
the maximum heat release rate is limited by the maximum cylinder pressure
constraint.

Finally, figure 9.7 shows the effect of the maximum pressure limit on the
optimal HRL and cylinder pressure evolutions, for the same heat transfer
and pressure derivative limit. In this case, the first stages of the combustion
process are not sensitive to the maximum pressure constraint, and the pressure
derivative limit governs the optimal heat release law. Given a constant pressure
derivative, the lower the maximum pressure limit, the sooner it is reached.
Then, once the pressure achieves its limit, the rate of heat release is reduced
to keep the maximum pressure until the end of the combustion process, which
is delayed as pressure limit decreases.
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Figure 9.5: Effect of the heat transfer on the evolution of the in-cylinder
pressure (left plot) and heat release (right plot). The actual constraints of
the nominal engine in terms of maximum pressure and maximum pressure
derivative (160 bar & 10 bar/◦) have been chosen as reference conditions.

Figure 9.6: Effect of the pressure derivative limit δ̂pic on the evolution of
the in-cylinder pressure (left plot) and heat release (right plot). The actual
constraints of the nominal engine in terms of maximum pressure and heat
transfer (160 bar & % = 1) have been chosen as reference conditions.

Figure 9.7: Effect of the cylinder pressure limit p̂ic on the evolution of the
in-cylinder pressure (left plot) and heat release (right plot). The actual
constraints of the nominal engine in terms of heat transfer and maximum
pressure derivative (% = 1 & 10 bar/◦) have been chosen as reference conditions.
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Explicit optimal HRL policy

From previous results, it can be appreciated that regardless of the heat transfer,
maximum pressure or pressure derivative limits, there is a general rule that is
always followed: the optimal policy consists of a fast and early HRL limited
by the pressure constraints. In particular, the optimal HRL rate is initially
limited by the maximum pressure derivative until the maximum in-cylinder
pressure is reached. Then, the optimal HRL rate keeps a constant in-cylinder
pressure until the fuel is completely burnt. In this sense, the following rule
can be identified:

ufbr(α) =

{
0, α ≤ αsoc
arg minu

{
pic(up), pic(uδp), pic(1−

∫ α
αi
ufbr dα)

}
, α > αsoc

(9.10)

where uδp and up are the controls leading to the maximum pressure derivative
and maximum in-cylinder pressure allowed at the current angle α respectively.
The term 1 −

∫ α
αi
ufbr dα ensures that the maximum released heat does not

exceed the fuel energy. The constant αsoc is a calibration parameter represent-
ing the optimal start of combustion, which can be obtained by shooting or
any other optimization method. The use of DP can be replaced for this rule
with a sweep in the variable αsoc to choose the value α∗soc that minimizes the
ISFC. Note that this rule can be easily implemented since uδp and up can be
obtained solving (4.97) for ∂αqb with the proper pressure derivative.

The above control rule has been drawn intuitively but it can also be
deducted from the problem formulation. Assuming that only constraint (9.6)
applies in this case–NOx emissions are neglected–, the Hamiltonian may be
constructed for this situation as:

H = L+ µqufbr (9.11)

being clearly a linear function of the control. According to section 3.3.3,
this particularity results on a bang-bang control that may be expressed as a
set of constant controls–in this case when α ≤ αsoc–and singular arcs–when
α > αsoc.

Figure 9.8 shows the evolution of the ISFC according to the application of
(9.10) to a αsoc swept from -15◦ to 15◦ for the engine with nominal conditions
(δ̂pic = 10 bar/◦, p̂ic = 160 bar and % = 1). The results are compared to DP
optimization results in table 9.1. A perfect matching can be observed: the
optimum start of combustion is 0.5◦ and the minimum ISFC is 167 g/kWh.
Despite obtaining near the same results, the explicit optimal HRL policy
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Figure 9.8: Start of combustion αsoc sweep at equation (9.10) compared to the
optimal ISFC obtained from DP application (circle) for the engine at nominal
conditions (δ̂pic = 10 bar/◦, p̂ic = 160 bar and % = 1).

DP Explicit policy

Angle discretization 0.25◦ 0.25◦

ufbr discretization 200 points continuous
pic discretization 350 points continuous
qb discretization 200 points continuous
Optimal start of combustion αsoc 0.5◦ 0.5◦

Optimal ISFC 167.4 g/kWh 167.2 g/kWh
CPU time (standard laptop) 6120 s 64 s

Table 9.1: Discretization and performance indices of DP and explicit optimal
HRL policy.

presented has some advantages compared to the DP approach. On the one
hand the computation burden is highly reduced (2 orders of magnitude)
despite a swept on αsoc has been done instead of a more efficient optimization
algorithm. On the other hand discretization in states and controls are not
needed, so the accuracy may be higher.

Optimal HRL with NOx constraints

The parameter µm in (9.9) weights the importance of NOx generation reduction
in the optimal solution. The optimal tradeoff between NOx and ISFC can be
calculated with a swept of optimal solutions for a range of µm. Figure 9.9 shows
this tradeoff as a Pareto front. Note that the experimental measurements
shown in this figure correspond to a sweep in the injection parameters and,
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Figure 9.9: Pareto front representing the tradeoff between ISFC and NOx

emissions. The blue data points correspond to the Pareto front obtained
with DP. Red squares show all experimental results with their Pareto front
represented with the red line.

the theoretical Pareto front should be compared to the experimental front.
According to this, ISFC increases from 167 g/kWh when NOx constraints are
neglected (µm=0) to more than 250 g/kWh for high values of µm. The Pareto
front points out the negative effect of NOx emission regulations on engine
efficiency. In fact, if NOx are not limited the ISFC could be theoretically
reduced to 167 g/kWh at the expense of high NOx emissions–around 1.4
g/kWh. If NOx are reduced to 0.5 g/kWh, the minimum ISFC to be attained
is 230 g/kWh. Therefore, a NOx emissions reduction from 1.4 to 0.5 g/kWh
has a penalty of 67 g/kWh on ISFC.

A pattern clearly exists in the relation between the NOx emissions and
the optimal evolution of the pressure and heat release rate. Figure 9.10 shows
these two variables for different NOx emission levels and may give some clues
to shape the optimal combustion rate. The first mechanism to decrease NOx is
to delay the HRL. It can be appreciated that small reductions in NOx around
the case without NOx constraints–highest NOx generation–only produces that
delay with no changes in the pressure derivative. Delaying the HRL law
involves a combustion at lower temperatures with lower NOx emissions–see
the temperature effect in (4.102). If the NOx limit is reduced even more, the
combustion delay is not enough to satisfy the NOx constraint and the rate of
heat release should be reduced–see the effect of qb in (4.98). Once an almost
constant pressure combustion is reached, additional reductions in the NOx

emissions are obtained again by means of delaying the combustion process.
The relation between the NOx emissions and the maximum pressure derivative
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Figure 9.10: Evolution of the in-cylinder pressure (left plot) and heat release
(right plot). The color scale shows the NOx emissions of DP solution while
gray results are experimental data.

Figure 9.11: Relation between NOx emissions and maximum pressure derivative
δ̂pic.

for the optimal HRL is depicted in figure 9.11. The previous three phases can
be clearly identified in this figure: the NOx emissions can be reduced from
1.4 g/kWh to 1.3 g/kWh by delaying the combustion keeping the maximum
allowed pressure derivative. Then, from 1.3 g/kWh to 0.95 g/kWh the NOx

emissions can be decreased with a lower maximum pressure derivative. Finally,
NOx emissions below 0.95 g/kWh can only be reached with an almost constant
pressure (δ̂pic = 2.3 bar/◦) evolution with increasingly later combustions.

Similarly to the explicit HRL described in the previous point, the NOx

constrained case may be also represented with a set of explicit rules. According
to the integral NOx constrain (9.7), and its analytical expression (4.102), it
is clear that the corresponding Hamiltonian is again a linear function of the
control. Therefore, singular control (see section 3.3.3) can be applied as well.
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The experimental results from test 7 (see 5.3.7) are also included in figures
9.10 and 9.11. For a given NOx level, the comparison between experimental
and optimal ISFC allows the assessment of the HRL optimality. According to
these results, the experimental tradeoff is displaced towards higher ISFC and
NOx emissions, showing some potential to optimize the combustion process. It
is clear from results in figure 9.11, that the actual injection-combustion system
is not able to reproduce the calculated optimal HRLs. The optimization shows
that it is necessary to delay the combustion process in order to reduce the NOx

emissions, which is the general approach followed in current DI CI engines, and
also in the current experimental study. In current engines this is achieved by
delaying the SOI, by reducing the injection pressure to lengthen the injection
process or by introducing inert gases in the combustion chamber through EGR.
In the present experimental study the first two factors have been modified.
Nevertheless, the actions taken to delay the combustion in the experimental
facility also involve a noticeable combustion slowdown. Actually, shifting the
combustion towards late phases of the expansion stroke leads to a combustion
process at a lower temperature and, therefore, taking more time. The injection
modulation by using different injection events introduces an additional degree
of freedom that contributes to the decoupling, to some extent, of both effects.
A pilot injection with different timings has been included in the experimental
parametric study. However the delayed and fast combustion from optimization
results has not been reproduced experimentally.

Despite the optimization results provide a lower boundary for the ISFC
and NOx emissions tradeoff of the engine, the considered model uses the HRL
as an input, not being able to take into account the limitations of the injection
system. The application of the OC algorithm to a more physical based model
of the combustion process–considering the injection pattern as input instead
of the HRL–will (at least partially) fill the gap between the model based OC
and experimental results. In fact, since the injection process has not been
taken into account in the performed study, the Pareto front should be taken as
a lower limit for the optimal tradeoff without injection constraints. Since the
optimal HRL and pressure traces are not achievable experimentally it can be
concluded that the injection-combustion system has room for improvements.
In particular, due to the fact that the engine is extremely small, the required
injection split to shape the combustion according to the optimal HRLs will
involve injection quantities below the minimum amount that can be performed
with the current injection system.

In addition to the optimization potential of the current engine, the NOx

model is subject to uncertainties. Despite the NOx model parameters were
identified to reproduce the experimental measurements provided in figure 9.1,
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the model only considers thermal NOx formation, neglecting other NOx sources
such as the fuel NOx formation, prompt NOx formation and NOx production
via N2O. The differences between the experimental and calculated HRLs that
can be appreciated in figure 9.10 may be the consequence of non-negligible
differences in the weight of the different NOx formation mechanisms involving
a model underestimation of the NOx emissions.

9.2.5 Conclusions

OC has been shown as a valid method for shaping the HRL that minimizes
the ISFC with different constraints, namely: maximum cylinder pressure,
maximum cylinder pressure derivative and NOx emissions. For that purpose,
a validated model of the combustion process including the thermal NOx

formation has been employed to approach the OCP with the DP method. The
main conclusions that have been drawn are:

• The use of an OC framework allows to assess the engine performance
with a more representative reference than traditional thermodynamic
combustion processes such as constant volume, constant pressure and
limited pressure or even arbitrary Wiebe functions. Particularly, the OC
approach provides the HRL showing the best efficiency subject to some
predefined constraints as a basis of comparison. In the case at hand,
maximum cylinder pressure, pressure derivative and NOx emissions were
constrained.

• The OCP solution provides a target HRL to define injection strategies
and evaluate the systems or processes with room for improvement. This
analysis has pointed out some limitations in the current injection system
capabilities to shape the injection and therefore the combustion process.

• NOx constraints are fulfilled applying two different mechanism: delaying
the combustion and reducing the pressure gradient. These two strategies
appear sequentially in the optimal solution as NOx constraint becomes
stricter.

• The analysis of optimal solutions allowed to define an explicit optimal
HRL policy if NOx are neglected. The computation time of this method
is two orders of magnitude below DP algorithm and does not require
states or controls discretization.

• Due to the physical limitations of injection systems, additional con-
straints should be included in further works to close the gap between
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the theoretical optimal HRL and the best practically affordable injection
schedule.

9.3 Optimal powertrain sizing

The adequate sizing of powertrain components, in line with the type of use
of the vehicle, is a quite important question to improve the global efficiency.
For example, a light urban vehicle will benefit from a small engine since a
bigger one would operate at very low loads jeopardizing the efficiency. The
target is to fit the powertrain performance in such a way it operates at high
efficiency regions most of the time. This is not a trivial question since this
sizing depends on the particular use of the vehicle. Fitting to the requisites of
many different drivers may be a complex task.

In the case of HEVs, the situation gets more complicated since three
devices should be sized: engine, motor and battery. It is possible to find HEVs
in the same segment and aimed to similar uses with battery packs ranging
from approximately 0.5 kWh to more than 15 kWh. Of course, on one hand an
oversized hybrid system gives an extra performance and versatility that may not
be profited, while weight and price increase; on the other hand, an extremely
mild electrification would reduce the fuel saving capacity to insignificant values.
This issue has motivated the proposal of more sophisticated configurations
such as supercapacitors [8, 9], fuel cell [10–12] and battery-supercapacitors
[13–16] powered hybrid powertrains.

Several studies have been focused on optimal powertrain sizing method-
ologies based on different criteria. These works consider fuel consumption,
pollutant emissions, vehicle cost or performance concerns in the optimization
for a particular type of use [17–22]. Besides those requisites, it is interesting
to analyze two additional factors: the effect of the driving conditions and
the economy of the vehicle from a user point of view. On the one hand,
different driving cycles might require specific powertrain sizes according to
their particular needs. On the other hand, not only vehicle cost is important
for the owner but also efficiency, so a long term economic analysis could be
interesting. It is important to remark that the efficiency of a HEV is strongly
affected by the energy management policy. Therefore, in order to make the
powertrain scale the only difference in the study, and to avoid the effect of an
inefficient control policy, the works in [23, 24] implemented an optimal energy
management in combination to the powertrain sizing.

An additional factor that may affect to a long term analysis is the power-
train wear. This cost could have a strong impact on the economic tradeoff
of the vehicle, specially in a HEV where the battery aging directly affects
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on the performance and efficiency of the powertrain. Battery aging models
have been proposed in the literature [25] and several works address the OC
accounting for battery wear effects [26]. In the context of this study, battery
aging might have a significant impact for very long term analysis; however,
the consideration of this effect is out of the scope of the work and is neglected
for the sake of simplicity.

In line with the above requirements and following previous studies of
the author [27], the present work presents a HEV powertrain optimal sizing
methodology from the user economy point of view, addressing the total cost
of ownership under different driving conditions.

9.3.1 Problem description

The aim of this methodology is to calculate the adequate powertrain component
sizes of a parallel HEV and for a specific type of use. This involves the
evaluation of an optimization problem that includes, not only the traditional
energy management problem [28, 29], but also the selection of the appropriate
engine, motor and battery sizes. The optimization target is both fuel economy
[30, 31] and user initial investment in such a way that the total cost undertaken
by the customer is minimized for the vehicle lifetime cycle. The parallel
layout is arbitrary but the formulation is equivalent for any other topological
architecture and its implementation may be almost straightforward. Different
drivers and cycles are analyzed to study the effect of the use requirements in
the optimal powertrain size.

Therefore, the main targets of this approach are:

• Estimate the optimum fuel economy for different types of driver.

• Propose a methodology to optimally fit a HEV powertrain to a specific
type of vehicle use–i.e. a market niche–maximizing economy based on
expected driving conditions instead of an arbitrary weighted specification.

• Calculate the proper powertrain component size in a parallel HEV for an
expected type of use and mileage, minimizing the lifetime cost including
purchase price.

• Analyze the optimal powertrain size sensitivity to differences in driving
style and cycle, evaluating several drivers and routes.

• Find out the importance of a well sized HEV on fuel efficiency and long
term economy.
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This study is performed based on the setup D (see 5.2.4). It is a simulation
model of a HEV based on manufacturer experimental data. Due to the
unavailability of an actual facility of this kind, this work is purely theoretical.
The vehicle model is kept constant throughout the study. However, engine,
motor and battery must be scalable in order to analyze different sizes. A
simple framework to scale these devices using setup D models and data
is developed following the philosophy of [24]. The optimization procedure
splits the optimum seeking task into two steps: first, OC is applied to the
EMP generating a space of optimum powertrain candidates; then, the size of
powertrain components is optimized attending to the total cost of ownership.

9.3.2 Problem formulation

Let us assume that the driving cycle is known in advance, so vehicle speed
v(t), acceleration v̇(t), track grade β(t) and gear number Ngb(t) are prescribed.
Therefore, the torque trajectory at the wheels Tw(t) can be calculated with the
vehicle dynamics model (4.7). The splitting of this torque between engine and
motor is defined by the Energy Management (EM) control policy and fulfills
(4.22). Motor is modeled with (4.34) so its torque output Tm is a function of
the electric power supplied by the battery:

Tm = Tm(Pe(x, u)) = Tm(x, u) (9.12)

where x = ζ(t) is the state of the battery–SoC–and u = ib(t) is its control
variable, specifically the current that delivers to the motor. For specific x
and u trajectories, the engine torque is completely defined and, therefore, fuel
consumption can be calculated from (4.34) with the corresponding efficiency
map:

ṁf = ṁf (v, v̇, β,Ngb, ζ, ib, t) = ṁf (ζ, ib, t) (9.13)

If engine, motor and battery main design parameters–engine displacement
Vd, motor power rating Pm,n and battery capacity Qb–are considered free
variables, the fuel consumption increases its d.o.f. in three units:

ṁf = ṁf (ζ, ib, Vd, Pm,n, Qb, t) (9.14)

The objective is to minimize the total fuel consumption at the driving
cycle. Thus, the following cost index may be defined:

J =

∫ T
0
ṁf (ζ, ib, Vd, Pm,n, Qb, t) dt (9.15)
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Note that ib is a control variable–consequently it is a time-varying trajectory–
while the powertrain design variables are constant parameters. Therefore, the
minimization of J involves two different optimization techniques: an OCP
varying ib and a parametric optimization to fit the design parameters. In order
to approach this problem, it is split into two nested optimization problems:

min
Vd,Pm,n,Qb

{
min
ib

{∫ T
0
ṁf (ζ, ib, Vd, Pm,n, Qb, t) dt

}}
(9.16)

where the inner is an OCP and the outer the size optimization, which is
performed over the domain of minib{:}. The OCP must be completely defined
in order to be solved–design parameters must be known–so it is addressed for
a particular powertrain size.

The state dynamic is driven by the battery SoC, ζ(t), whose state equation
is drawn from eqs. (4.37) and (4.39):

ζ̇ = − ib
Qb

(9.17)

It indicates the charge content of the battery and its variation is a measure
of the net electrical energy that has been drawn. Since the vehicle at hand
is not a plug-in hybrid where battery depletion is a common policy [32], the
SoC variation is limited to zero in order to provide a fair comparison among
different powertrain sizes. Therefore, the following constraint to the OCP
applies:

− 1

Qb

∫ T
0
ib dt = ζ(T )− ζ(0) = 0 (9.18)

As usual, the state ζ, the control variable ib, as well as intermediate
quantities are constrained because of the physical limits of the powertrain.

This OCP may be pretty nonlinear because of the map-based models.
However, it is quite compact since it only features one state and one control
variable. Due to these facts, this problem seems well fitted to be approached
with DP. The generic Matlab framework provided in [7] is used to apply this
method.

Powertrain scaling

The three main powertrain elements suitable to be scaled in terms of fuel
economy are: engine, electric motor and battery. For the scope of this work,
models for these devices must be scalable, i.e. capable of representing similar
machines of different sizes, both in specifications and weights as stated in [24].



262 Chapter 9. Applications to powertrain design and assessment

The engine is scaled attending to the displacement. On the one hand, per-
formance specifications are defined by maximum and minimum torque curves,
which are given for a specific displacement. For a particular bore/stroke ratio
and engine technology, Mean Effective Pressure (MEP) could be considered
an invariant regardless of the displacement [33]. Then, the maximum and
minimum torque may be calculated for any equivalent engine as:

Tice =
MEP · Vd

2π · nc
(9.19)

where Vd is the displacement and nc = 2 for a four stroke engine. On the other
hand, fuel mass flow ṁf is calculated from the engine efficiency according to
(4.104):

ṁf =
1

ηice

ωiceTice
Hf

(9.20)

Assuming that heat losses increase with cylinder exchange surface, the efficiency
map may be estimated as follows:

ηice =
1

1 + Tloss/Tice
(9.21)

where resized engine losses are calculated as a fraction of the reference engine
losses T̃loss and heat exchange surface Ãex:

Tloss = T̃loss
Aex

Ãex
(9.22)

Numbers for the reference engine can be calculated from its efficiency map
with the above equations.

In order to estimate the mass of the engine a statistical analysis has been
done. The correlation between homologation mass and engine displacement
for several production vehicles is approached to a linear equation as shown in
figure 9.12, where the slope kice is the contribution of the engine to the mass,
under the assumption that different motorizations of the same vehicle do not
include any extra equipment. Therefore, the engine mass is estimated as:

mice = kice · Vd (9.23)

The motor performance is scaled according to its power rating Pm,n. The
efficiency of the reference motor is given for a pair of mechanical power Pm
and rotational speed ωm:

η̃m = η̃m(Pm, ωm) (9.24)
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Figure 9.12: Correlation between vehicle mass and engine displacement for
two vehicles equipped with different gasoline (blue) and diesel (red) engines.

Defining the scaling coefficient Υ = P̃m,n/Pm,n, where asterisk refers to
reference motor quantities, the efficiency of a motor of any size may be
calculated from the reference motor efficiency map:

ηm(Pm, ωm) = η̃m(ΥPm, ωm) (9.25)

Then, the electrical power consumption may be calculated as:

Pe =
Pm
ηm

(9.26)

The motor is considered as a fully reversible machine so the operation map
can be scaled to any of the four speed/torque quadrants following the same
scheme.

The motor mass mm is calculated following the approach described in
[34]. It is divided into the mass of the electronics mm,1 and the mass of the
electrical machine mm,2:

mm = mm,1 +mm,2 (9.27)

The mass mm,1 is considered a fixed quantity regardless of the motor size.
The mass mm,2, however, can be estimated as:

mm,2 = km · Pm,n (9.28)

The battery is modeled according to the model described in 4.4.2. Scaling
the battery capacity is equivalent to placing a different number of cells both
in parallel–increasing maximum power supply–or in series–increasing output
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voltage. The performance of the scaled battery is calculated summing up the
necessary number of individual cells.

The battery mass is also estimated following the approach presented in
[34]. The mass may be divided into the contribution of four terms: the battery
chemicals mb,1, the thermal management system mb,2, the tray mb,3 and buses,
harnesses and terminals mb,4:

mb = mb,1 +mb,2 +mb,3 +mb,4 (9.29)

The first term depends only on the type of battery since the amount of
chemicals of specific energy echem required to store an amount of energy Eb
weights:

mb,1 =
Eb
echem

(9.30)

The second and third terms are expressed as a function of the battery capacity
since the bigger the battery is, the heaviest the thermal system and battery
tray are:

mb,2 = kb,2 ·Qb (9.31)

mb,3 = kb,3 ·Qb (9.32)

The last term is proportional to the maximum battery power output P̂e as
the size of buses, harnesses and terminals depends on the maximum current
that may flow instead of on the capacity of the battery:

mb,4 = kb,4 · P̂e (9.33)

The total mass of the vehicle mv is calculated as the addition of all the
above components with a fixed chassis mass mcha:

mv = mcha +mice +mm +mb (9.34)

Vehicle cost

The optimal powertrain size, from an economic point of view, is influenced
by two factors: the efficiency and the price. Of course, depending on the use
and the mileage one term might become more important than the other. The
price of the powertrain should be estimated in a scalable way as it is done for
the mass and performance in previous paragraphs.
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Figure 9.13: Polynomial fitting of consumer engine price as a function of
displacement. Blue corresponds to naturally aspirated gasoline and red to
turbocharged diesel engines.

The cost of the engine is estimated according to the displacement:

Cice = cice · Vd (9.35)

where the coefficient cice depends only on the type of fuel; the breathing method
is neglected since only turbocharged diesel and naturally aspirated engines are
taking into consideration in this study. This coefficient was estimated from
consumer engine prices (price for a full engine without accessories at original
spare parts service) for both diesel and gasoline engines. The agreement
between equation 9.35 and actual data may be advised on figure 9.13.

The cost for the motor and its electronics is calculated as stated in [34]. It
proposes an empirical equation that estimates the manufacturer cost Cm,man
as:

Cm,man = cm,1 + cm,2 · ln(Pm,n) + cm,3Pm,n (9.36)

However, since engine estimated cost is at the customer level, the above
motor cost must be expressed in the same way. The main differences between
manufacturer and customer costs are taxes and OEM profit. Assuming that
both are a fixed percentage, the final customer cost may be expressed as:

Cm = cm,4 · Cm,man (9.37)

The coefficient cm,4 might be estimated with the tradeoff between prices at
the original spare parts service and their corresponding manufacturing cost
estimations.
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Min Max Points

Engine displacement Vd [cc] 250 2500 19
Motor power rating Pm,n [kW] 0 100 21
Battery capacity Qb [Ah] 0 70 15

Table 9.2: Range of variation of the powertrain components. The combination
of the above values results in a total of 5985 different cases to be considered.

The cost of the battery is also estimated following the method explained
in [34]. Simplifying this algorithm, the battery cost results:

Cb,man = (cb,1 + cb,2) ·mb,1 (9.38)

where cb,1 is a reference battery manufacturing cost and cb,2 the accessories
cost, both expressed per kilogram. mb,1 is the chemicals weight, calculated
in equation 9.30. Again, this cost is expressed as a manufacturing cost, so
following the same philosophy, the customer cost may be estimated as:

Cb = cb,3 · Cb,man (9.39)

where coefficient cb,3 is also estimated with the tradeoff between the price from
the original spare parts service and the manufacturing cost estimation.

The chassis cost Ccha–vehicle without powertrain–is fixed for the whole
work. A reference value was adopted corresponding to a 4-doors and 5-seats
passenger vehicle. Then, the total cost of the vehicle is:

Cv = Ccha + Cice + Cm + Cb (9.40)

9.3.3 Optimization approach and implementation

The optimization problem is solved sequentially in two steps according to
(9.16). First, the inner problem is approached. To do so, the powertrain is
scaled to the set of powertrain sizes shown in table 9.2. Then, the following
OCP is solved for each size individually:

min
ib

{∫ T
0
ṁf (ζ, ib, t) dt

}
(9.41)

subject to constraint (9.18). According to the considered griding in components
size, this problem is solved for 5985 different size combinations at each driving
cycle.
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The dependency on the control strategy of (9.16) vanishes as the above
OCP is solved. Therefore, for a given driving cycle it results in a set of optimum
size candidates whose main variables are only function of the powertrain:

mf = mf (Vd, Pm,n, Qb)
mv = mv(Vd, Pm,n, Qb)
Cv = Cv(Vd, Pm,n, Qb)

(9.42)

The above calculations were done with DP for two types of driving cycles:
city and highway. However, this does not constrain calculations to two single
cycles; as a matter of fact, the methodology consists of building city/highway
mixed cycles from several real cycle samples with different city driving contri-
bution, from 0 to 100%, comprising a wide variety of use conditions.

The minimum fuel consumption among all candidates in (9.42) is selected
and its corresponding powertrain size is adopted as the best constructive
solution that the vehicle may adopt to maximize fuel economy in that particular
driving cycle.

Multi-scenario

The HEV size optimization is analyzed under diverse driving situations and
for different applications. In this sense, the influence of driver style in the
optimal size is studied with driving cycles corresponding to two different
non-professional drivers. For every single cycle the same control strategy
optimization and minimum seeking algorithm is used. The effect of the type
of route is analyzed with a set of city and highway driving cycles. Those
cycles not only represent a different route or type of application but also traffic
conditions and time or day of the week effects, which could lead to a different
vehicle selection to minimize cost.

An HEV must be aimed to a diversity of drivers with different needs, so no
benchmark driving cycle is known in advance. Since the powertrain selection
relies mostly on the use of the vehicle, an evaluation with an incorrect cycle
could lead to a non-efficient HEV size. Therefore, a sensibility analysis is
performed varying the city driving contribution to the vehicle utilization from
an all-highway use to pure city driving. Thus, 11 driving cycles have been
built concatenating 50 city and highway cycles in random order and weighting
the amount of city mileage from 0% to 100%. The resulting cycle is expected
to represent about one month of daily driving, so the constraint (9.18) has a
low impact on the optimization solution.

For the sensitivity analysis, problem discretization is downgraded from
values at table 9.2 to values at table 9.3 for computational reasons, narrowing
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Min Max Points

Engine displacement Vd [cc] 200 2000 6
Motor power rating Pm,n [kW] 0 90 4
Battery capacity Qb [Ah] 0 100 5

Table 9.3: Range of variation of the powertrain components for the sensibility
analysis.

the range closer to the former optimal solution. However, around optimum
the previous discretization was kept.

Long term optimization

For homologation purposes the main indicator is the fuel economy with
compliment to emission regulations. However, from the customer point of
view, the key point is the long-term cost. The vehicle carries a fixed cost at
the time of the purchase, and a variable cost associated to its fuel efficiency.
The best solution is a good tradeoff between both costs that minimizes the
outgoings throughout vehicle’s lifetime. Generally, the best solution does not
imply the cheapest car neither the most efficient one.

This long-term tradeoff may be estimated with a cost optimization. This
consists in the minimization of the total cost per kilometer Ckm defined as
the combination of both fixed and variable costs of the vehicle:

Ckm = cf
mf

S
+

Cv
Syear · nlc

(9.43)

where mf is the fuel mass consumption in the optimization route of length S,
cf is the fuel price per mass unit, Syear is the distance covered per year, Cv is
the total vehicle cost and nlc is the life cycle of the vehicle, for this example 10
years. According to this, the tradeoff between mileage and optimal HEV size
may be computed selecting the cheapest operation cost per kilometer Ckm for
different mileage values.

9.3.4 Results and discussion

The simulation of the multiple HEV powertrain size combinations resulted in
a 3-dimensional space of optimal fuel consumption values as stated in (9.42).
Some contours of this space of solutions at different levels of battery capacity
(driver A, city driving) are shown in figure 9.14. These results show that the
most efficient operation points fall in the lowest engine displacement region.
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Figure 9.14: Optimal fuel economy as a function of engine displacement and
motor power rating. Plots refer to different battery capacity levels. Contours
correspond to fuel consumption with an OC policy at a city cycle with driver
A.

Naturally, increasing the engine size spoils the fuel economy at any situation,
since engine works at lower loads, i.e. at lower efficiency. In contrast, battery
and electric motor size not always impact significantly on fuel economy.

The maximum amount of energy that can flow on one direction is limited
by the battery capacity. Incorporating a bigger electric motor does not mean
that the extra power can be used and, therefore, there exists a boundary
profitable motor power–depending on driving cycle. Any motor above that
power would not offer any advantage and, usually, will decrease fuel economy
due to its greater mass and oversized specifications. In the left hand side
plot of figure 9.14 it may be appreciated that, for a given engine size, above
a motor power of 25 kW the fuel economy does not change too much and,
in fact, it slightly decreases. Of course, increasing the battery size permits
benefiting from a more powerful motor so the motor power for minimum fuel
consumption moves to higher values. In the middle and right plots the turning
point moved upwards out of the figure due to this effect. In addition, since the
battery is mostly like an energy buffer that compensates the power peaks along
the driving cycle, depending on the aggressiveness and–mostly–on the length,
the maximum amount of energy that can be stored–regardless of the motor
power–is limited. Therefore, above that limit no extra energy can be buffered
and an increase in battery size will not improve fuel efficiency. Similarities
in the middle and right plots of figure 9.14 show that the boundary battery
capacity has been reached and eventually exceeded.

Based on the previous discussion it is clear that battery size is bounded
by the bufferable driving cycle energy, while the motor size is bounded by
battery size. Therefore, powertrain size is globally bounded so overcoming
those values does not contribute to improve fuel economy anymore. Based on
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figure 9.14 those limits can be intuited: exceeding 80 kW and 35 Ah makes
no sense and, in fact, the optimum solution is 0.4 liters / 65 kW / 25 Ah
(engine/motor/battery). Small engines work at higher loads, what means
better efficiency, but they also have increased losses compared to their power
output. Hence, there is an optimum engine size that balances both effects,
which can be intuited from figure 9.14 to be about 0.3 to 0.5 liters. However,
since all the vehicle energy comes ultimately from fuel, tiny engines could be
unable to follow the driving cycle. This issue may be also appreciated at figure
9.14 since the bottom left region is empty due to the inability to follow the
cycle.

The 3-dimensional space of solutions could be also evaluated with a Pareto
frontier analysis. The optimal powertrain size and its corresponding fuel
economy is depicted in figure 9.15. The optimal battery size is expressed
as a function of engine displacement and electric motor power. Some of the
conclusions drawn in the previous discussion may be also applied here. The
minimum fuel consumption is quite similar to that from the plots in figure
9.14 that overcome the 35 Ah boundary capacity, since bigger batteries do
not facilitate the energy recovery anymore. Also as the battery limits the
maximum energy that can be buffered, the motor power gets limited, resulting
in a strong relation between motor power and optimal battery size. This may
be appreciated in the right plot from figure 9.15. However, this relation is no
longer valid on the upper left region–very small engine and big motor. The
engine is so small in that region that it cannot follow the driving cycle by
itself–on the bottom, with no motor neither battery, the solution does not exist.
The vehicle is capable of following the cycle with the help of an electric motor,
but this engine inability limits the amount of energy that can be buffered
along the cycle. Anyway, with the sufficient engine performance, there is a
quasi-unequivocal relation between motor and battery sizes regardless of the
engine.

Some size sensitivity conclusions may also be extracted from the Pareto
analysis. It is obvious that engine displacement strongly affects fuel economy,
however motor power (and consequently battery capacity) slightly impacts
on the resulting fuel consumption. Of course, moving close to a non-hybrid
powertrain (small motor and battery) increases this effect. An explicit analysis
evaluating the gradient in fuel efficiency around the optimal powertrain size
also results in the same conclusions. The gradients (in liters per 100 kilometers)
are 0.3/100 cc, 0.003/kW and 0.007/Ah for the engine, motor and battery sizes
respectively. This confirms that the engine has about two orders of magnitude
more influence on the fuel efficiency than motor or battery.

The cost associated to the ownership of a vehicle may be split into two
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Figure 9.15: Pareto frontier analysis of powertrain size listed by engine dis-
placement and motor power. Left plot contours show fuel consumption in
liters per 100 kilometers; right plot shows the battery capacity in Ah. These
results correspond to driver A and city driving.

factors: fixed costs (vehicle price) and variable costs (fuel consumption). Of
course other factors may be included from an economical point of view such
as service, annual taxes, etc., but since those do not explicitly depend on the
powertrain size they are neglected for a long term study. The life-time cost
per kilometer can be calculated for different mileages according to (9.43). The
optimal cost is depicted in the upper left plot of figure 9.16 as a function of
the mileage. Its corresponding powertrain size (engine, motor and battery) is
shown in the right and bottom plots.

Of course, the battery lifespan and efficiency during its lifetime is an
important factor on a long term analysis. Battery life-cycle could modify the
theoretical optimum to, for example, a bigger battery to minimize the number
of charge/discharge cycles for a given mileage. The interested reader may find
an extended discussion of components sizing and battery life-cycle at [21].

Long term cost and sizes tend asymptotically to the minimum fuel con-
sumption solution: for an infinity long distance, the fixed cost loses its weight
so only variable cost matters. On the other side, for zero operation, the
best option is the cheapest vehicle which, of course, consists of the smallest
powertrain–no motor neither battery so basically it is not a hybrid. The tran-
sition from one powertrain to another depends on the relation between fixed
and variable costs. If the most efficient powertrain is not much more expensive
than the cheapest one, the best option rapidly evolves to that optimum with
a little increase in mileage, which is the case of some cycles in figure 9.16.

Optimal solution for different drivers resulted in the long term tradeoff
shown in figure 9.16–blue lines correspond to A-driver’s cycle and red to
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Figure 9.16: Optimal lifetime cost per kilometer (top left) and the correspond-
ing engine displacement (top right), motor power (bottom left) and battery
capacity (bottom right) as a function of mileage per year. Dashed lines and
triangles are city driving while solid lines and circles are highway operation.
Blue color corresponds to A-driver’s cycle while red is B-driver’s cycle. Circles
and triangles on the right of each plot are the best fuel economy solution.

B-driver’s cycle. It may be appreciated that the minimum operation cost as
well as the optimal size is approximately the same for both drivers. Note that
the long term tradeoff is strongly affected by the cost of the vehicle. The
size of expensive components–increasing vehicle cost the most–vary less with
driving cycle since a bigger unit is difficult to redeem with its corresponding
improvement in fuel economy. This means that the gradient between the
long-term and the fuel efficient optima defines the sensitivity of the size with
respect to the driver style. In other words, battery and motor sizes are strongly
driver style-dependent as those machines are slightly cheaper than the engine,
offering a wider variety of long term solutions. For example, as driver B city
driving style is more aggressive than A (average power requirements of 5 and
3 kW respectively), his optimal powertrain size is slightly bigger than that
from driver A.

A similar study may be done for different types of driving cycle. Since
driver A and B recorded their daily routes, both city and highway driving
cycles were available. Another long term tradeoff is computed and depicted in
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figure 9.16–dashed lines correspond to city driving and solid lines to highway.
While for different drivers no significant differences were appreciated in city
operation, highway driving may considerably displace the optimal powertrain
size and its fuel economy. There are two reasons for this behavior: on the one
hand, highway cycles were completely different from each other, since driver A
drove at a constant speed–little chance to recover energy and reduced electrical
path size–while driver B showed variable speed; on the other hand, intuitively,
fuel efficiency may significantly vary from city to highway operation due to
their different nature. Highway driving usually means higher and constant
power requirements. Since energy comes ultimately from fuel, the engine
must fulfill the increased average power requirement. Consequently, since
requirements are more homogeneous over the time, there is less opportunity to
buffer energy on the battery, so the electric path is reduced. These influences
may be appreciated in figure 9.16 as motor and battery are quite reduced in
highway operation. The same philosophy could be followed to evaluate any
kind of driving cycle: on one hand the higher the power requirement, the
bigger the engine; on the other hand the more homogeneous the demand is,
the smaller the motor and battery are.

For the route type analysis the discretization of the optimization grid had
to be downgraded to the values on table 9.3 for computational reasons. On
a second approach the grid was restored to the values at table 9.2 in the
surroundings of the optimum. The results of this analysis are presented in
figure 9.17, showing the optimal size powertrain as a function of mileage and
city driving fraction.

Operation costs slightly change with route type. Due to the low sensitivity
of motor and battery selection, the engine is the only machine that grows
with highway cycles, resulting in a worse fuel efficiency (4.59 compared to
4.13 L/100 km for 30000 km/year) but a cheaper vehicle due to the reduced
motor and battery pack. Since those differences are quite small, the total
operation cost in a long term evaluation is not very different as it was already
appreciated in figure 9.16. The non-hybrid region (on the left-bottom area
of plots in figure 9.17) gets narrow when increasing city contribution since
hybridizing the vehicle is more attractive for economy. The small area at the
bottom of the upper right plot where a different engine is used means that
there is a displacement that fulfills highway but not city cycle. The engine size
decreases as the mileage and the city driving contribution increase, reaching
the smallest displacement on frequent city driving.

Battery follows a similar scheme. The size rises rapidly as the engine
displacement reduces. The increased capacity with city contribution trend is
quite the same. The motor size tradeoff is not so clear because it is a relatively
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Figure 9.17: Optimum cost and size as a function of mileage and city driving
contribution during vehicle lifetime. These results correspond to driver A
cycles.

cheap machine that could be redeemed easily, so its selection depends mostly
on its efficiency and coupling with battery. Highway driving requires a small
motor, while city cycles use to have a greater chance to recover energy, so
motor and battery should be bigger. On the mid area, at low mileages, the
vehicle required a big motor to run a larger displacement engine at high
efficiency levels, mostly during city driving. As engine displacement decreases
with mileage the electric motor size is also reduced.

9.3.5 Conclusions

This study has introduced a systematic methodology to size a HEV powertrain
attending to objective criteria, particularly the type of use–balance between
city and highway driving–and the expected mileage. These criteria have been
translated into an OCP where the power-split and size selection are optimized
together. The same philosophy may be extended with additional criteria with
minor changes.

Results suggests that fuel economy is strongly affected by the engine choice,
while motor and battery have minor effects. In order to efficiently benefit from
the regeneration possibilities of the driving cycle, the motor must be powerful
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enough to recover braking energy and battery size should be somehow related
to the recoverable energy along the cycle. A good choice seems to be a small
engine coupled to an electrical path with sufficient motor power and battery
capacity.

These optimization results are analyzed attending to vehicle cost and fuel
efficiency in terms of yearly cost of operation. This has been evaluated for
several driving conditions, from full city driving to full highway operation
with mixed cycles at different levels. The analysis showed that HEVs are
much more attractive for city driving than for highway utilization, where the
payback mileage is about 40000 kilometers per year. However, even for city
driving, a HEV requires a minimum mileage of 5000 kilometers per year to be
interesting, otherwise fuel efficiency benefits do not compensate the increased
vehicle cost.
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The true sign of intelligence is not knowledge but imagination.

— Albert Einstein
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10.1 Main contributions and conclusions

This dissertation covers the use of OC to manage automotive powertrains
with different applications. The unifying thread is to formulate the control
of different systems as an OCP. This is conducted with the definition of an
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objective function to be minimized–generally the fuel consumption–and a set
of constraints that guarantee the validity of the solution. Vehicle, motor,
battery, engine and transmission models are used to represent the controlled
system. The OCP is addressed with the appropriate OC method according
to the characteristics and requirements of the problem. Methodologies and
techniques shown in this dissertation are not restricted to the examples that
have been addressed. It may be extended to other powertrain applications
following a similar philosophy.

The main conclusions and contributions of the applications that have been
addressed in this document are detailed below.

10.1.1 Control of diesel engines

The application and performance of OC to diesel engine control has been
studied for two different cases. On the one hand, the control of a dual-loop
EGR system is addressed as a first approach to the OC application and
advantages in terms of fuel and NOx emissions are found. On the other
hand, the more general case of the main engine actuators control with OC is
addressed for an actual driving cycle. This replaces the ECU role, exploiting
the capabilities of a given engine technology for a given driving cycle.

Dual-loop EGR control

The control of a dual-loop EGR system, with both LP- and HP-EGR valves,
is addressed. The simultaneous operation of both systems is not allowed
so they are used sequentially. This constraint simplifies the problem and
removes possible EGR fraction estimation issues, and still showing significant
improvements compared to HP-EGR systems. The problem is then reduced
to the calculation of the switching points between both EGR loops. Therefore,
the OCP can be approached with PMP which is a low cost algorithm compared
to other optimization methods.

The application of OC to the NEDC has shown that the optimal control
policy consists in using HP-EGR at the beginning and, after some time,
switching to LP-EGR until the end of the cycle. The higher temperature that
the HP system produces at the intake manifold is beneficial for the engine
warm up, and its lower EGR rate shows a better fuel efficiency. However, these
advantages get diluted as the engine temperature increases. Then, LP-EGR
is able to perform higher EGR rates and a much lower intake temperature,
promoting the reduction of NOx production without a strong impact on engine
efficiency. Different NOx levels can be achieved by modifying the switching
time between LP- and HP-EGR.
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This OC strategy has been experimentally validated showing important
NOx reductions with a low impact on fuel efficiency. However, an important
remark is that the quasi-steady hypothesis of the optimization model makes
necessary to fix a maximum number of switches in order to avoid significant
model discrepancies. This OC approach is also valid for additional optimization
criteria such as other pollutants or performance concerns which may be included
following a similar methodology.

10.1.2 Full engine control

The ECU setpoint and control calculations of the main engine actuators–
fueling rate, SOI, EGR position and VGT opening–are replaced with an OC
strategy. The corresponding OCP consists in minimizing fuel consumption
and is stated with an experimentally validated MVEM, subject to several
safety and pollutants constraints. The resulting OCP is a large problem that
is only affordable with DMs. Particularly, a custom DC algorithm is used.

The use of OC in the lieu of a calibration shows several practical advantages.
On the one hand, the number of experiments needed to build an OC strategy
is determined by the requirements to construct a proper engine model. These
are typically much less than those required to perform a full engine calibration
as long as a physical model may be able to extrapolate most of the operating
conditions with little information. On the other hand, the modification of a
constraint such as emission limits might require a new complete calibration
process while, with OC, it is just a question of solving the same OCP with a
different constraint.

The experimental validation of OC strategies demonstrated that significant
improvements in both fuel consumption and NOx emissions can be achieved.
A reduction of 4% in fuel consumption was obtained holding the factory
calibration NOx emissions; similarly, a reduction of 45% in NOx emissions
was also obtained keeping the factory fuel consumption. Higher gains can be
achieved sacrificing fuel efficiency or NOx emissions. This tradeoff between
fuel and emissions suggests that there are lots of room for improvement in a
ECU calibration that can be exploited with some sort of OC.

The OC policy followed two parallel strategies that allowed the above
improvements. On the one hand, VGT is more open, allowing to decrease
pumping losses and, consequently, raising global performance, although spoiling
the torque reserve. On the other hand, EGR rate is increased to reduce NOx

production, but penalizing the combustion efficiency. The appropriate balance
between those two effects produces significant NOx and fuel consumption
reductions. The torque and engine speed trajectories knowledge that is
assumed with OC, allows a policy that smartly balances those two strategy
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depending on the operating conditions. It promotes NOx reductions in the
parts of the cycle where it can be benefited the most, and prioritizes fuel
efficiency when NOx minimization strategy is not very attractive. This is
something that a calibration cannot perform as long as it is not fed with
look-ahead information.

An interesting remark is that, despite big improvements in both fuel
and NOx emissions were achieved, NOx generation showed a much higher
dependency on the control strategy. As long as pollutant emissions are highly
dependent on the thermodynamic conditions within the combustion chamber,
there are many chances to strongly reduce NOx emission levels by modifying
the operating conditions.

10.1.3 Engine management and speed control

Full engine control and vehicle speed management are approached with OC.
This OCP has some resemblances with the above case and, in fact, the same
engine actuators are controlled. However, in lieu of engine speed and torque
trajectories, which are no longer fixed, a vehicle model and a distance to be
covered in a fixed time are supplied. Despite the huge dimensions of this
problem–8 states and 6 controls–it was successfully addressed with a custom
DC algorithm.

This OCP actually involves two coupled problems that are typically split
apart in literature: engine control and speed trajectory optimization. The
last problem is sometimes addressed as the minimization of energy dissipation
according to vehicle dynamics. In order to check the validity of this assumption,
this dissertation addressed both problems together showing that the optimal
speed profile is far from the minimum energy trajectory.

The main conclusion of this study is that an efficient management of
vehicle speed–especially in roads with varying grade–is key for fuel and NOx

emissions minimization. Although the optimal engine control may produce
some significant benefits in that direction (as concluded in the previous work),
speed management is responsible of most of the fuel and emissions performance.
In fact, it has been possible to assess strong NOx reductions even with a
simultaneous fuel economy improvement–Euro 6 emissions limit was reached
with a Euro 5 engine in an actual driving cycle.

The resulting engine control showed clear trends. This suggested the idea of
representing the optimal policy as a fixed calibration. Despite OC trajectories
do not strictly fall within a map, optimal actuator positions were correlated
to engine speed and fueling rate. The use of this calibration instead of OC
trajectories showed a tight penalization in fuel efficiency of about 0.5% with
similar NOx emissions. On the contrary, the use of the factory calibration
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entailed a grater difference: an additional fuel consumption of 15% and an
NOx increase of 25% to cover the same route. Two conclusions may be drawn
from this. On the one hand, the optimal engine control, although showing an
improvement compared to a fixed calibration, is responsible of minor benefits
compared to the weight of an optimal speed management. On the other hand,
the use of a specific engine calibration, adapted to the particular characteristics
of the driving cycle, entails important benefits in fuel consumption and NOx

emissions. The use of a generic calibration that is aimed to perform well at
any situation may leave lots of room for improvement.

An study on the average speed impact in fuel efficiency showed that one
minute difference on the arrival time–the trip lasts approximately 40 minutes–
carried a 3% difference in fuel consumption (for the same NOx emissions), or
moving from Euro 5 to Euro 6 emissions level (for the same fuel consumption).
This emphasizes the importance of a proper balance between trip time, fuel
efficiency and pollutant emissions.

10.1.4 Power-split of hybrid electric vehicles with no look-
ahead information

The optimal power-split of HEVs is generally addressed in literature with the
PMP method. Under a quasi-steady assumption, PMP can be simplified in
such a way that the OCP is reduced to the selection of a single parameter,
µ. The knowledge of its value is enough to obtain the optimal trajectory of
the power-split. This parameter depends on the past and future operating
conditions and, therefore, it must be estimated for onboard applications. The
suggested approach in this work consists on a statistical analysis of past power
requirements and a stochastic estimation such that battery charge is sustained
in a forwards horizon.

The proposed approach showed a similar performance in terms of fuel
consumption compared to other optimization algorithms that assume a full
knowledge of the driving cycle. The contributions of this methodology are
mainly focused to a practical implementation, and they are twofold: on the one
hand, the optimal power-split can be simplified to a map which is function of
current power requirements and the estimated parameter µ, so no optimization
is required during onboard operation; on the other hand, µ can be estimated
with simple algebraic equations based on a power requirement probability
chart–extrapolated from a receding horizon–and the drift in battery SoC
compared to the target value. These allow a fast computation of the optimal
power-split ratio.

This approach is possible due to the quasi-steady hypothesis; a more
detailed powertrain model may show discrepancies with this methodology.
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Nevertheless, the proposed approach is inherently a feedback control and,
despite inefficiencies may happen in a real powertrain, it should show robustness
and SoC sustain following optimality concerns.

10.1.5 Design applications of optimal control

OC theory has been shown as a valid tool to facilitate design decisions from
an optimal and objective point of view. The definition of a minimization
objective and a set of constraints in the shape of an OCP helps to find the
boundary efficiency of a system. In this dissertation, this philosophy has been
applied to two different processes: the injection scheduling in a diesel engine
and the sizing of a HEV powertrain.

Injection scheduling

The combustion process can be addressed as an OCP instead of sticking to
arbitrary HRLs, enabling to calculate the exact HRL shape that minimizes
fuel consumption. Due to engine integrity concerns, maximum pressure and
maximum pressure derivative constraints are included. NOx limit is also
considered in the formulation.

A comprehensive analysis of the optimal HRL under several considerations,
showed some interesting facts:

1. If pressure constraints are active, the HRL is such that the pressure trace
follows the maximum pressure gradient until the maximum pressure is
reached. Then, that pressure level is held until the full release of fuel is
completed. These constraints penalize the fuel efficiency, with a higher
ISFC as maximum pressure and gradient decrease.

2. If NOx constraints are introduced, the optimal HRL follows two strategies
to limit the thermal NOx generation: delaying the combustion and
reducing the pressure gradient. The sharpness of these mechanisms is
up to the tightness of NOx limit.

Based on the above conclusions, an explicit HRL can be shaped if NOx

constraints are neglected. This law reduces the OCP to the search of the
start of combustion value that maximizes the fuel efficiency. The result of
this approach is equivalent to the OCP but with much lower computation
requirements.

The optimal HRL may be used to calibrate the injection schedule in order
to follow the optimal shape.
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Powertrain sizing

A systematic methodology to size a HEV powertrain attending to objective
criteria has been presented. An OCP is stated where the optimization pa-
rameters are the power-split and the sizes of engine, motor and battery. The
consideration of the power-split together with the sizing problem makes the
size choice the only difference and avoids misestimations due to an inefficient
control that might benefit a particular powertrain size. The inputs to this
problem, i.e. the designing criteria, are the type of expected driving–city,
highway or a combination at different levels–and the estimated mileage per
year.

The impact of the engine size in the vehicle efficiency is critical. An
incorrect choice might produce a significant increase in fuel consumption due
to an engine operating at low load conditions. On the contrary, motor and
battery sizes are more flexible and the impact on fuel efficiency of a wrong
choice is moderate. A Pareto analysis of the results showed that optimal
battery and motor sizes are somehow related. The motor size is determines
the maximum amount of energy that can be recovered, and the battery size
sets a boundary to the amount of that recovered energy that may be stored
for a future use. According to that, a bigger motor allows to recover more
energy during braking and coasting, but battery size should be also increased
to take advantage of that opportunity. The precise choice of sizes is a question
of the balance between the recoverable energy and the increased weight of the
vehicle.

In the case of a lifetime cost analysis, the benefits of an efficient HEV
dilute. It takes around 40000 kilometers per year to redeem it if its main use
is on highway driving. The relatively low benefit in that situation compared
to a conventional vehicle increases significantly the HEV payback period.
In addition to that, the optimal powertrain requires a bigger engine and
smaller electrical path for highway cycles. City driving may be much more
interesting for a hybrid since fuel savings are high when energy recovering
chances increase. However, the high price of a hybrid powertrain shows that
a minimum mileage of 5000 kilometers are needed to make a HEV more
attractive than a conventional powertrain.

10.2 Future works

This dissertation attempted to show the applicability and potential of OC
in powertrains with some success. Despite experimental validations have
demonstrated that OC can perform better than traditional control schemes,
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the complexity of engines and powertrains indicate that there is still a long
way to implement robust and standalone onboard optimal controllers. The
necessity of look-ahead information to properly define the boundaries of the
OCP is a major issue that must be taken into account as it might condition
the future applicability of OC.

Weaknesses deserving a further review and interesting future works that
may follow the studies presented in this dissertation, attempting to close
the gap between the laboratory and the road implementation of OC, are
commented below.

10.2.1 Powertrain modeling

The availability of accurate powertrain models is key for any kind of model-
based control, and OC is not an exception. The quality of the control is mostly
related to the model ability to represent the actual system. Unfortunately,
powertrain and, especially, engines are complex systems with many states and
controls that usually require sophisticated models to be represented accurately.
Additional peripherals such as after-treatment devices are highly nonlinear
and their modeling tend to be tedious.

Anyhow, several models presented in this dissertation might deserve an
additional turn of screw in order to analyze further situations and condi-
tions. A dynamic LP- and HP-EGR modeling–a quasi-steady approach was
implemented for this dissertation–may address switching strategies that are
far from a real application. In addition to that, a dynamic model might be
able to properly represent the combined operation of both systems together.
Similarly, a dynamic HEV model with a detailed battery model would be key
to address a comprehensive validation of the proposed strategies, emphasizing
on the battery sustaining robustness. The introduction of additional pollutants
might be interesting in order to check control strategies performance not only
for NOx, but also regarding PM, HC or CO. Particularly, the thermal NOx

model used for the HRL calculation may be extended to other NOx formation
mechanism in order to close the gap between simulations and experimental
measurements. Thermal transients might also be interesting to assess the
control policy in cold or warm up conditions.

10.2.2 Additional constraints

The addressed OCPs included a set of constraints related to safety and
emissions concerns as well as specific problem requirements. However, the
advantages of considering additional constraints is twofold: a more realistic
approach can be assessed and the impact of model uncertainties might be
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reduced. Particularly, the introduction of performance constraints in the
engine control problem may enable to find a more robust and practical control
policy that takes into account the response smoothness or the torque reserve
among other concerns, which are key for onboard applications. Additionally,
a proper identification of fuel injection system constraints would significantly
improve the ability to produce a feasible optimal HRL.

10.2.3 Comprehensive experimental validation

The experimental validations of the OC strategies is a necessary step to analyze
real-world performance and advantages of the proposed methods. Despite
some works have included a detailed set of experiments, the unavailability of
testing facilities for all the studies presented so far limited some approaches to
the theoretical plane. In this sense, HEV power-split control and, especially,
the optimal speed management problem may deserve a further experimental
validation in order to prove that the advantages found in simulation can be
translated to an actual vehicle.

In addition to that, a deeper experimental work can be also carried out
for those OC approaches that have been already experimentally validated.
A comprehensive analysis of OC performance under a bundle of different
operating conditions and driving cycles is out of the scope of this dissertation,
but it might throw some interesting results.

10.2.4 Adaption to onboard applications

The ultimate goal of an OC work is to be implemented for onboard applications.
Due to its mathematical complexity, the requirement of a detailed model and
the dependency on future operating conditions on a rigorous sense, an online
optimal algorithm has been always a difficult task. Although most of the
works presented in this dissertation can be directly applied for benchmarking,
powertrain analysis or control calibration, their onboard implementation in an
standalone form requires an extended research.

In an attempt to close the gap between offline and onboard applications,
two main philosophies can be followed. On the one hand, models and methods
can be simplified in order to find a sufficiently compact control law. An
interesting work in this sense might be the use of variable engine calibrations
extracted from several optimization instances for different levels of pollutant
emissions. This way, the tedious OCP may be simplified to a smart selection
of one of those available calibrations keeping the traditional control scheme,
which is something that can be implemented onboard in a straightforward
form. On the other hand, methodologies to estimate future requirements may
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be used together with an OC strategy in order to evaluate the performance
of an standalone approach. These techniques may range from a road profile
look-ahead control to any kind of sophisticated estimator feeding the OCP.
Of course, other numerical or stochastic algorithm may be also used in lieu of
OC for onboard applications, but the optimality concern will vanish.

10.2.5 Potential applications

The proper definition of an OCP requires accurate look-ahead information
which is not available in many automotive applications. Despite this is a
major drawback that will prevent OC use in some fields, there are many other
vehicular control problems whose boundary conditions can be easily guessed.

In this sense, some automotive control problems that may be affordable
for OC are:

• Engine control during an overtaking maneuver. If the controller detects
a slower vehicle ahead and the driver activates the direction indicator, it
can be assumed that an overtaking maneuver is about to be performed.
In this situation, the vehicle must accelerate and place in front of the
other vehicle, whose speed is known, in a given time, so the situation
can be accurately defined.

• Engine control during transients. In the event of an operating engine
point change, a different setpoint in engine variables must be reached.
Since the transient only lasts a couple of seconds, this problem is well
defined–engine speed and torque request are known, similarly to the
work presented in section 6.3–and optimal trajectories for the VGT, the
EGR or any other actuator can be calculated.

• Cruise control with look-ahead information. A speed controller in com-
bination of a GPS device may have a quite good look of the road. If the
driver introduces a destination, the elevation profile and traffic condi-
tions can be known beforehand. Then, the optimal speed profile–and
eventually a specific engine calibration as done in chapter 7–can be
computed.

• Management of vehicle dynamics in extreme situations. The picture in
the event of tire slip may be defined accurately. At that very moment,
roll, yaw, pitch and accelerations can be measured, and the road friction
may be estimated [1–3]. The boundaries are clear: going back to a non
sliding condition in the minimum time or distance. The OCP is pretty
well defined and OC might be used for Anti-lock Braking System (ABS)
or Electronic Stability Program (ESP) systems.
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• Control of an autonomous vehicle. In a road where all vehicles are
self-driven and connected together in order to exchange information, all
boundaries are perfectly known and no external disturbances exist. In
this context, an OCP can be accurately defined.

The unequivocal definition of an OCP in any of the above control problems–
and many other the reader might imagine–enables for a practical application of
OC. The methods developed and discussed in this dissertation may be applied
to any of these problems as long as the necessary models are available.
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Appendix A

From time domain to
distance domain

The OCP formulation has been stated in time domain so far. Despite a
dynamic system is generally represented with time dependent functions, an
OCP can be expressed in other domains with a simple variable change. This
is especially useful when the system can be easily modeled as a function of a
monotonic quantity rather than time. In fact, many transportation systems
might be better defined as a function of the traveled distance–speed limits or
track gradient are naturally related to a position.

A domain change from time t to distance s can be addressed as a variable
change:

dt =
ds

v
(A.1)

where speed v relates both domain variables.

Applying the above variable change the cost index stays as:

J =

∫ S
0

L(x,u)

v
ds (A.2)

Note that states x and control variables u are no longer functions of time but
of distance.

The dynamics of the system are also affected by the domain change:

dx

ds
=
f(x,u)

v
(A.3)

Again x and u are functions of the distance and thus the differential is defined
with respect to s.
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The boundary conditions (2.4) and (2.5) are not functions of time but
constraints at the bounds of the problem. Therefore, they apply to the
distance-domain OCP with minor changes, referring to the bounds of the
distance domain:

x(0) = x0 (A.4)

φ(x(S)) ≤ 0 (A.5)

where 0 ≤ s ≤ S are the bounds of the distance domain such that S = s(T ).
Regarding the path constraints it might happen one of three different

scenarios. First, if there is not an explicit time dependency, i.e. c(x,u) ≤ 0,
(2.6) applies without changes. Second, if the constraint is an explicit function
of time, the variable change t =

∫ s
0 1/v ds must be issued. This introduces the

time as an additional state due to the presence of the integral term, making
the domain change unattractive. And third, if a path constraint can be easily
defined in distance, but in time it requires to introduce the distance as an
additional state, the constraint can be directly defined in distance as:

c(x,u, s) ≤ 0 (A.6)

This is the main advantage of the domain change.
Integral constraints can be expressed in the distance domain as:∫ S

0

q(x,u)

v
ds ≤ 0 (A.7)

Note that if q ∝ v the integrand may vanish. The constraint is then propor-
tional to S, which is a constant quantity for the problem. This occurs because
while the integral constraint was originally defined in time domain to fix a
distance limit, in the distance domain this limit is implicitly included in the
boundaries of the domain, leaving this constraint unnecessary. A different
definition of the integral constraint is required in this situation–usually it may
be interesting to fix a terminal time of the form

∫ S
0 1/v ds ≤ T instead.

Therefore, the time domain OCP described in eqs. (2.1)–(2.7) can be
easily transformed into the equivalent problem at eqs. (A.2)–(A.7) which is
defined in distance domain to reduce the OCP complexity in the appropriate
situations. Note that, despite the process has been described to write the
problem in distance domain, it can be moved to any other domain whose
describing variable is a monotonic function (increasing or decreasing) following
the same procedure.
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