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“For a successful technology,  

reality must take precedence over public relations,  

for Nature cannot be fooled.” 

 

 

“… And therefore when we go to investigate  

we shouldn’t pre-decide what it is we are trying to do  

except to find out more about it.” 

Richard Feynman 
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Resumen 

La presente tesis titulada: “Componentes de aceites esenciales 

encapsulados en soportes mesoporosos de sílice: una evaluación de sus 

propiedades bioactivas y un enfoque toxicológico” se centra en la evaluación de 

las propiedades funcionales y organolépticas de agentes naturales bioactivos, 

derivados de componentes de aceites esenciales, encapsulados en materiales 

mesoporosos de sílice; a la vez que evalua la toxicidad de los soportes utilizados, 

con el fin de proponer nuevos sistemas de liberación controlada por vía oral. 

La primera sección de esta tesis muestra el efecto de la encapsulación de 

los compuestos de aceites esenciales (EOCs, por sus siglas en inglés) en soportes 

mesoporosos de sílice. Por un lado, se evalúa la eficiencia de los EOCs libres y 

encapsulados para reducir la viabilidad en líneas celulares de cáncer de colon. 

Además, se evalúa la selectividad de los EOCs frente a células de colon normales 

(líneas no tumorales). Por otro lado, se estudia la capacidad de enmascaramiento 

de olor de los soportes. Los resultados obtenidos, evidencian en primer lugar, que 

los EOCs encapsulados mejoran su actividad frente a células de cáncer, en 

comparación con la respuesta de los compuestos sin encapsular. La encapsulación 

hace que el efecto de los EOCs sea sostenido en el tiempo, y muestra índices de 

especificidad prometedores, cuando se evalua el efecto toxico de los EOCs frente 

a células de cáncer de colon y células normales. Los resultados de esta primera 
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sección, indican que los soportes basados en partículas de sílice mesoporosa 

(MSPs, por sus siglas en inglés) protegen y liberan eficientemente los compuestos, 

sino que, a la vez que la funcionalización de la superficie de las MSPs permite 

enmascarar el olor de los compuestos de mayor volatilidad, y con mayores 

inconvenientes a nivel sensorial (p.e. compuestos derivados del ajo). Por lo tanto, 

el sistema de encapsulación se plantea como una excelente alternativa para (i) 

promover la liberación controlada de EOCs, (ii) aprovechar y mejorar el efecto de 

sus propiedades bioactivas en células de cáncer de colón y (iii) controlar las 

desventajas técnicas relacionadas con la volatilidad y limitaciones organolepticas. 

Por último, se ha comprobado que los soportes empleados en la encapsulación de 

los compuestos derivados de ajo, mantienen su funcionalidad luego der ser 

inmovilizados en nanofibras de nylon. Con esto, se busca desarrollar un material 

híbrido y homogéneo, fácil de manejar, que libera controladamente los 

compuestos encapsulados desde soportes tipo fibras (composites). Esto expande 

el abanico de aplicaciones de los EOCs en la industria alimentaria y farmacológica. 

La segunda sección de esta tesis, evalúa la toxicidad de los soportes de sílice 

mesoporosa (MSPs) mediante ensayos in vitro e in vivo. En primer lugar, la 

viabilidad celular permite identificar el impacto citotóxico de los MSPs sobre 

líneas celulares de colón. En particular, se evalúa los soportes mesoporosos de 

sílice, tipo MCM41, en función de (i) las dosis empleadas, (ii) la diferencia de 
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tamaño (micro y nanopartículas) y (iii) el efecto que la funcionalización de la 

superficie genera en la viabilidad celular. Por otro lado, empleando el modelo in 

vivo de los nematodos, Caednorhabditis elegans, y administrando por vía oral las 

MSPs, se evalua la influencia de las características de las partículas (MSPs) en 

función de la esperanza de vida (lifespan) y la calidad con la que viven y envejecen 

(healthspan) los nematodos. Los resultados de este estudio, muestran que el 

tamaño y la estructura de la superficie de las partículas, son parámetros 

determinantes al momento de diseñar soportes de bajo riesgo toxicológico. 

En resumen, la presente tesis ha evaluado las características de la sílice 

mesoporosa, micro y nanoparticulada, como soporte de encapsulación para 

mejorar la actividad y las aplicaciones de los compuestos de aceites esenciales, al 

mismo tiempo que evalua su riesgo toxicológico. Los resultados obtenidos 

muestran la posibilidad de desarrollar soportes de sílice mesoporosa de bajo 

impacto toxicológico, de modo que puedan administrarse vía oral para la 

liberación controlada de compuestos de interés alimentario o farmacológico. 
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Resum 

La present tesi titulada: "Components d'olis essencials encapsulats en 

suports mesoporosos de sílica: una avaluació de les seves propietats bioactives i 

un enfocament toxicològic" se centra en estudis de protecció i alliberament 

controlat d'agents naturals bioactius, derivats de components d'olis essencials, 

encapsulats en materials mesoporosos de sílica. Els components d'olis essencials 

encapsulats milloren les seves propietats funcionals i redueixen els problemes 

sensorials per aplicacions futures, garantint, al mateix temps, la baixa toxicitat 

dels suports desenvolupats. 

La primera secció de la tesi mostra l’efecte d’encapsulació dels components 

d'olis essencials (EOCs, per les seves sigles en anglès) en suports mesoporosos de 

sílica sobre la millora de les seues propietats bioactives i el camuflament de 

problemes sensorials. Este estudi avalua l’eficiència dels EOCs lliures i encapsulats 

per a reduir la viabilitat en línies cel·lulars de càncer còlon. A més, la selectivitat 

dels EOCs es va provar enfront de cèl·lules de còlon normals (no canceroses). Els 

resultats han demostrat que l’efecte dels EOCs pot ser millorat i sostingut en el 

temps quan els EOCs estan encapsulats. Encara més, l’encapsulació dels EOCs 

mostra índexs d’especificitat prometedors, arribant a duplicar la toxicitat en les 

cèl·lules de càncer de còlon amb comparacio en les cèl·lules normals. Els resultats 

també mostren que els suports basats en partícules de sílice mesoporoses (MSPs, 
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per les seves sigles en anglès) no sols protegixen i alliberen EOCs eficientment, 

sinó que, a més, la funcionlització en superfície de les MSPs permet emmascarar 

l’olor dels EOCs d’alta volatilitat, que té una aplicació limitada a causa dels seus 

problemes sensorials (p.e. compostos derivats de l’all). Per tant, el sistema de 

subministrament proposat resulta una excel·lent alternativa per a (i) promoure 

l’alliberament controlat de EOCs, (ii) avançant en les seues propietats bioactives 

en cel·lulas de càncer còlon i (iii) controlant els desavantatges tècnics relacionats 

amb la volatilitat i la disseminació desagradable de les olors. Finalmet, les mostres 

utilitzades per encapsulació de compostos d’all es van immobilitzar en nanofibres 

per a proporcionar un sistema híbrid homogeni i fàcil de manejar amb 

administració controlada i característiques bioactives, per aplicacions potencials 

en l’àrea d’alimentació, farmacologia, medicina o enginyeria. 

La segona secció avalua la toxicitat del suports de sílice mesoporosa per 

mitjà d’avaluacions in vitro e in vivo. La viabilitat cel·lular permet identificar 

l’impacte citotòxic basat en el tipus de suport base de sílice i les seues 

característiques (rang de dosi, grandària i canvis en l’estructura superficial). A 

més, utilitzant el model in vivo de nematodes, Caednorhabditis elegants, s'ha 

estudiat la influència de les característiques de la sílice mesoporosa, administrant 

micro i nanopartícules de base sílice, no sols en l’esperança de vida, sinó també en 

el comportament dels nematodes durant el seu envelliment. Aquest estudi ha 
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demostrat que la grandària i l’estructura superficial, són decisius per a reduir el 

risc de toxicitat dels suports de sílice mesoporosa i obrir la possibilitat d’utilitzar 

estos materials en aplicacions d’ingesta oral.  

En resum, la present tesi ha avaluat les característiques de les partícules de 

sílice mesoporosa, com a suports d’encapsulació per a millorar l’activitat i les 

aplicacions dels EOCs, alhora que es va avaluar el seu principal risc tòxicologic. En 

conseqüència, els resultats obrin una opció adequada i de seguretat per als 

dispositius d’administració oral. 
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Abstract 

The present PhD thesis, entitled: “Essential oil components encapsulated in 

mesoporous silica supports: a bioactive properties evaluation and a toxicological 

approach” focuses on the study of protection and controlled release of natural 

bioactive agents, derived from essential oil components (EOCs), encapsulated in 

mesoporous silica particles (MSPs). In addition, this thesis evaluates the silica-

based supports to reduce the EOCs’ undesirable sensorial properties and for 

ensuring a low-health risk. 

The first section of the thesis shows the effect of encapsulation of EOCs in 

mesoporous silica supports. This study evaluates the efficiency of free and 

encapsulated EOCs to reduce the viability of cancer colon cell lines. This section 

also shows the selectivity of encapsulated EOCs against cancer lines and their 

effect on normal (non-cancer) colon cells. Results indicate that EOCs effect can be 

enhanced and sustained in time when EOCs are encapsulated. Moreover, EOCs’ 

encapsulation shows promising specificity indices, reaching to double effect on 

colon cancer cells above normal cells. On the other hand, the encapsulation 

supports and their surface functionalization allows the odour masking of high 

volatility EOCs. Therefore, the delivery system based on MSPs represents an 

excellent alternative to promote controlled EOCs release, taking advance of their 

bioactive properties and solving the technical disadvantages related to volatility 
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and unpleasant odours. Finally, samples used for garlic components encapsulation 

were immobilised in nanofibers to provide homogeneous and easy-to-handle 

hybrid system for controlling delivery. The developed ‘composite’ has potential 

applications on food, pharmacology, medical or engineering fields. 

The second section of the thesis evaluates the toxicity of the mesoporous 

silica supports through in vitro and in vivo assessments. Cell viability allows to 

identify the cytotoxic impact based on the kind of silica-based support, and their 

features (doses range, size and surface structure changes). Furthermore, the use 

of Caednorhabditis elegans model, shows the in vivo effects after MSPs ingestion. 

The toxicological study confirms that size and surface structure, are decisive 

MSPs’ features for reducing the toxicity risks for health.  

In summary, the present thesis evaluates the mesoporous silica-based 

particles as supports for EOCs encapsulation and identifies the main MSPs’ 

features for reducing the health-toxicity impact. Results of this thesis show that 

MSPs improve the EOCs activity and help to solve technical problems related to 

sensorial features of EOCs. Moreover, these results open up a suitable and safety 

option for oral delivery devices. 
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3 

PREAMBLE 
 

This PhD thesis forms part of the projects “Improvement of the stability and 

control release of biomolecules by using microcapsules functionalized with 

molecular gates (AGL2012-39597-C02-01)” and “Use of biocompatible supports 

for the development of new antimicrobials and controlled release systems 

(AGL2015-70235-C2-1-R)”, funded by the 2013-2016 and 2016-2019 National 

Research Plan of the Spanish Ministry of Economy and Competitiveness, 

respectively. 

In order to evaluate and enhance the functional properties of bioactive 

components from essential oils, the use of encapsulation supports to protect and 

controll the components’ delivery is an interesting research area. In particular, 

design of oral release devices opens a wide range of food and pharmaceutical 

uses. However, some bioactive molecules are not compatible with real industrial 

application due to their physicochemical and organoleptic features. In addition, is 

needed to confirm the non-toxicity of encapsulation supports once they are 

administered by oral intake. 

In this context, mesoporous silica particles (MSPs) are interesting supports for 

the bioactive components. In addition, a switchable “gate-like” ensemble, 

functionalised on the MSPs’ surface, is capable of being “open” or “closed” when 
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certain external stimuli are applied. Thus, the surface functionalisation allows the 

controlled release while protect the encapsulated components. 

Based on that, through the project, “Use of biocompatible supports for the 

development of new antimicrobials and controlled release systems”, the 

research focuses to evaluate the mesoporous silica-based particles as 

encapsulation supports of bioactive components derived from essential oils. The 

developed system applies the concepts for controlling release which also help to 

mask some unpleasant sensorial features of essential oil components (EOCs). 

Therefore, to confirm the possibilities of silica-based supports as oral devices 

geared towards the delivery on digestive tract, the project:"Improvement of the 

stability and control release of biomolecules by using microcapsules 

functionalized with molecular gates” focuses the research on the in vitro and in 

vivo toxicity of the developed supports. 

The doctoral thesis entitled “Essential oil components encapsulated in 

mesoporous silica supports: an evaluation of their bioactive properties and a 

toxicological approach" is the third doctoral thesis undertaken within this 

framework. 
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7 

OBJECTIVES 
 

The main objective of this PhD thesis was to encapsulated and evaluate the 
bioactive properties of components from essential oils and evaluate the toxic 
effect of mesoporous silica supports used for encapsulation. 

To meet the main objective, the present thesis was divided into two different 
approaches with the following specific objectives: 

I. Bioactive properties of essential oils components encapsulated in 
mesoporous silica supports. This was addressed to create functional 
supports by encapsulation, to take advance of the anticancer properties of 
components from essential oils in digestive tract, while reduce the 
drawbacks from their unpleasant sensorial features. 

i. To evaluate the anticancer properties of selected bioactive 
components on colon cells. 

ii. To assess the masking odour properties of the gated materials. 

iii. To combine technologies for widening the range of industrial 
applications of bioactive components using hybrid materials. 

II. Nanotoxicological evaluation of mesoporous silica supports. This was 
addressed to evaluate the toxic effect of mesoporous silica particles of 
different sizes and different surface structure. 

i. To evaluate the cell viability of colon cell lines after incubation with 
different features of mesoporous silica supports. 

ii. To assess the effects on life expectancy and healthy aging of in vivo 
model fed with mesoprous silica supports. 
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3 GENERAL CONSIDERATIONS 
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3.1 Amorphous and mesoporous silica-based materials, a background 

To understand the amorphous concept on silica materials, it is need to 

know about crystalline structures. In mineralogy and crystallography, an ordered 

arrangement of atoms, ions or molecules shape a crystalline material. The 

smallest set of atoms arranged and periodically repeated along the three-

dimensional space is named the unit cell (Yanchitsky & Timoshevskii 2001). Which, 

can be associate to a specific pattern evaluated through X-ray powder diffraction 

(Toraya 1986). 

In particular, silicon is a fourfold coordinate atom, normally tetrahedrally 

bonded to four neighbouring silicon atoms. Silicon crystallizes in a diamond cubic 

crystal structure; a face-centred diamond-cubic (Figure 3-1A). But rarely occurs as 

the pure element; instead, silicon has great chemical affinity for oxygen, making 

silicon dioxide, SiO2 (silica). In silica, the silicon atom shows tetrahedral 

coordination, with four oxygen atoms surrounding a central silicon atom as shows 

Figure 3-1B (Bergna & Colloid 1994). Silicon–oxygen bond lengths vary between 

the different crystal forms (polymorphs), and deviations from these parameters 

constitute the amorphous structure (Lippincott et al. 1958). Thus, amorphous 

silica has silicon-oxygen bonds but exhibit only a short-range ordering of their 

atoms, with non-repeating pattern and no predictable order (Figure 3-1C). In this 
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manner, the amount of crystalline structure in amorphous silica is negligible 

(between 0.01 and 0.3 %) (Fruijtier-Pölloth 2012). 

 

Figure 3-1. Silicon and silica chemical structures. A. Silicon atom and its crystal structure 
B. Coordination of silicon and oxygen atoms in silica C. Order of atoms on crystalline and 
amorphous silica 

Amorphous silica can be synthesised as silica gel, precipitated, colloidal and 

pyrogenic (fumed) silica (Bergna & Colloid 1994). In general, synthetic amorphous 

silica (SAS) consists of nano-sized primary particles, which agglomerate on nano- 

and micrometer-size range. Due to the empty spaces left by the agglomeration a 

narrow pore distribution could appear. However, those pores are very unevenly 

distributed and do not associate to porous structure, hence SAS is defined as a 

non-porous structure (EOCD 2004; ECETOC 2006). 

In contrast, mesoporous silica particles (MSPs) have well-ordered pore 

arrangements, which can give diffraction patterns on powder X-ray diffraction 
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(PXRD). MSPs structures do not have long-range order in the direction of a 

crystalline material (Figure 3-2A); but diffraction is due to periodically repletion of 

the homogeneous and ordered pore arrangement. Figure 3-2B shows the PXRD of 

a widely used MSPs; the unidirectional channels (hexagonal, cubic, or lamellar) 

produce a diffraction pattern (Figure 3-2A), which is nothing compared to 

crystalline structures. Thus, silica frameworks on MSPs are characterised by PXRD, 

but their structure is amorphous (Perez-Pariente, 2006). 

 

Figure 3-2. Diffraction X-ray patterns A. Repeating pattern of ordered atoms from 
crystalline silica structure B. Silica structures from uniform porous structure of MSPs 
with unidirectional chanels ordered as: hexagonal (MCM41), cubic (MCM-48) and 
lamellar (MCM50).  

3.2 Mesoporous silica particles (MSPs) 

The need of supports with pores of larger dimensions than the ones found 

in microporous zeolites (pore sizes less than 2 nm), motivated the research on 

mesoporous materials (pore sizes between 2-50 nm). In the 90’s porous silica 

materials with uniform pore size were described; Mobil company divulged the 

synthesis and characterisation of a type of silica-based mesoporous materials, a 
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family of uniform pore materials named M41S. These materials present a large 

number of mesopores that confers high specific surface areas (700-1000 m2·g-1), a 

great loading capacity, a large specific pore volume (0.6-1 cm3·g-1) and an elevated 

total surface (1000 cm2·g-1) (Schmidt et al. 1995; Cong-Yan et al. 1993; Beck et al. 

1992). 

3.2.1 Synthesis of the MSPs 

Ordered mesoporous silica relies on a bottom-up synthesis, via 

supramolecular self-assembly (also called soft-templating). Basically, two main 

components are used: (i) a surfactant template, able to form micelles in water 

solution which acts as a structure-directing agent, and (ii) an inorganic silica 

polymeric precursor, which self-organizes around the template to condensate and 

polymerize. It builds up the final mesostructured with regular arrays of uniformly 

organized mesochannel pores (Pal & Bhaumik 2013). Mechanisms involved on the 

fabrication of these materials are mainly based on the liquid crystal templating 

(Kresge, Leonowicz, Roth, Vartuli, & Beck, 1992). First a formation of surfactant 

micelles in solution (e.g. N-cetyltrimethylammonium bromide (CTABr)) occurs, 

then, surfactant micelles shape cylindrical micelles, and their stacking conform a 

regular array of micelle liquid crystals. Finally, as Figure 3-3 shows, the inorganic 

siliceous precursor (e.g. tetraethyl orthosilicate, sodium metasilicate) hydrolyses 

and condensates onto the positively charged surfaces of the micelle liquid 

http://www.chemspider.com/Chemical-Structure.5754.html
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crystals. The final material is obtained after removing the surfactant template 

using either solvent extraction or calcination (500 - 600 °C) (Yang et al. 2004). 

 

Figure 3-3. Synthesis of mesoporous silica-based materials from surfactant micelles to an 
ordered hexagonal porous structure (MCM-41 type material). 

The mesoporous inorganic scaffold obtained in these conditions has cylindrical 

unidirectional empty channels of approximately 3 nm of diameter (when CTABr is 

used as surfactant) arranged in a uniform two-dimensional (2D) distribution. 

Depending on surfactant to silica ratio the hexagonal (MCM41), cubic (MCM48) o 

lamellar (MCM50) structure is obtained (Wang et al. 2003; Chan et al. 2001). Pore 

arrangement evaluation was shown in previous section, vide supra. Typically, the 

obtained material is spherical, rod or oval shaped among the nanometre size 

(under 100 nm). 

The original approach of M41S family has been extended and silica-based 

mesoporous materials can be synthesised by alternative pathways. Variables such 

as time, concentration, temperature, pH, ionic strength, type of surfactant and 

type of silica precursor (fumed silica, sodium silicate, or a tetra-alkyl oxide of 

silane) can be modified to get MSPs with different features (Trewyn et al. 2007). 
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The synthetic protocol can include chelators agents, such as triethanolamine 

(TEAH), to control the hydrolysis and condensation process through ‘atrane 

route’, which modify the final size of materials (Telalović et al. 2010; Cabrera et al. 

2000; C. T. Kresge et al. 1992).  

In recent years, other MSPs’ types have been synthesised, such as, folding 

sheet materials (FSM) (Yanagisawa et al. 1990), hexagonal mesoporous silica 

(HMS) (Tanev & Pinnavaia 1995), Santa Barbara amorphous silica (SBA-15) (Zhao 

et al. 1998; Kruk et al. 2000), Technische Universiteit Delft material (TUD-1) 

(Telalović et al. 2010; Jansen et al. 2001) Universidad Valencia material (UVM-7) 

(Cabrera et al. 2000; el Haskouri et al. 2002), anionic-templated mesoporous silica 

material (AMS-6) (Garcia-Bennett et al. 2004), Korea Advanced Institute of Science 

and Technology material (KIT-6) (Wang et al. 2014) and an extensive diversity of 

porous silica-based materials.  

3.2.2 Modification of MSPs surface 

Apart from homogeneous pore size distribution and high specific surface 

area and volume, MSPs highlights for exhibiting a high concentration of structural 

defects on their surface in the form of silanol (Si-OH) groups that can easily react 

with trialkoxysilane derivatives ((R’O)3-Si-R), allowing the possibility of generating 

organic−inorganic hybrid materials (Vinu et al. 2005). These hybrid materials offer 

a wide range of new perspectives in the development of delivery systems through 



General considerations 

17 

the gated supports (Aznar et al., 2009; Coti et al., 2009; Giri et al., 2005). These 

supports contain switchable molecular-based entities which control the on-

command delivery of cargo encapsulated. Gated materials are based on the 

combination of two components: (i) a suitable inorganic support acting as a 

carrier and (ii) a switchable supramolecular-based ensemble, that is attached to 

supports’ surface. The “gate-like” system is  able to be “opened” upon the 

application or the presence of a predefined stimulus (Coll et al. 2013), and thus 

cargo release can be controlled at will (Aznar et al., 2009). 

In line with this concept, examples of MSPs functionalised with a number of 

different molecules and biomolecules, able to deliver the cargo upon the 

applications of physical (light, temperature, magnetic fields, ultrasounds) (Aznar 

et al., 2011; Johansson, Choi, Angelos, Liong, & Zinck, 2008; Saha & Stoddart, 

2007), chemical (anions, cations, neutral molecules, redox-active species and pH) 

(Pérez-Esteve, Fuentes, et al. 2015; Casasús et al. 2008) and biochemical (such as 

enzymes, DNA and antibodies) (Oroval et al. 2013; Mamaeva et al. 2011) stimuli 

have been reported. 

In particular, capped MSPs offer an interesting strategy for encapsulation, 

protecting, transporting and later administration of bioactive molecules (basic 

nutrients, bioactive components, sensory appeal compounds, and pre- and 

probiotics, and even drugs) under specific stimuli in the gastrointestinal tract 
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which opens up a wide range of possibilities to oral delivery devices (Pérez-Esteve, 

Ruiz-Rico, et al. 2015). 

Among the gastrointestinal stimuli for on-command delivery applications, 

enzymes specific activities and pH variations are the most extended systems 

evaluated to date. Amylases presence for starch digestion motivates the use of 

polysaccharides as gates (Bernardos et al. 2010; Bernardos et al. 2009). Similarly, 

proteases, lipases and other digestive enzymes such as ribonucleases and 

deoxyribonucleases, in conjunction to salts from pancreatic juices complete the 

digestion between stomach and small intestine. Thus, molecules based on amino 

acids (peptides, proteins) or fats result interesting for capping MSPs supports (Coll 

et al. 2011; Coll et al. 2013; Shi et al. 2012). Additionally the pH variation along the 

mouth activity to stomach and intestine also have motivated the design of 

molecular gates based on polyamines and molecules that can be able to adopt 

different conformations in function of pH changes (Casasús et al. 2008; Bernardos 

et al. 2008). Applications for these capped supports can be motivating for new 

functional food or medical and pharmaceutical applications. 
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Bioactive properties from essential oils components 

encapsulated in mesoporous silica supports. 
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4.1 Introduction: Bioactive components derived from essential oils 

Essential oils derived from plants are one of the more important 

agricultural products used in the industry. Essential oils are complex natural 

mixtures which can contain about 20-100 components at different 

concentrations. In particular, essential oils are primarily composed by two or 

three major components at high concentrations (20-70 %). Terpenoids and 

phenylpropanoids constitute the major constituents of the essential oils. Aromatic 

and aliphatic constituents are also present, as well as, monoterpenes, 

sesquiterpenes and oxygenated derivatives (Raut & Karuppavil 2014). For 

instance, carvacrol (30 %) and thymol (27 %) are the major components of the 

Origanum compactum essential oil, a-phellandrene (36 %) and limonene (31 %) of 

leaf and carvone (58 %) and limonene (37 %) of seed Anethum graveolens 

essential oil, menthol (59 %) and menthone (19 %) of Mentha piperita essential 

oil. Commonly, these major components determine the bioctive properties of the 

essential oils (Adorjan & Buchbauer 2010). A wide variety of bioactive properties 

are interesting for health, pharmaceutical, cosmetic and food applications. Among 

the properties associated to EOCs, antimicrobial, antioxidant, anti-inflammatory, 

antimutagenic and anticancer effect draw the attention of latest studies. 

 



SECTION I - Introduction 

26 

4.1.1 Antimicrobial and antifungal activity 

Metabolites from herbs and spices are involved in plant chemical defence 

system. Among plant extracts components, aldehydes, phenolic and mainly, 

oxygenated terpenoids have been related to antimicrobial and antifungal activity. 

EOCs from Curcuma, Thymus, Origanum, Allium, and Cinnamomum species have 

been mainly tested against Staphylococcus aureus, Bacillus cereus, Escherichia 

coli, Pseudomonas aeruginosa, Clostridium perfringens, Listeria monocytogenes 

and Vibrio parahaemolyticus, and most of EOCs have shown high selectivity 

against those food pathogens (Ruiz-Rico et al. 2017; Burt 2004; Hammer & Carson 

2011; Bassolé & Juliani 2012). Moreover, EOCs such as carvacrol, eugenol, thymol, 

cinnamaldehyde, limonene, eucalyptol, and other terpenoids, have been tested 

against Aspergillus flavus, Aspergillus niger, Penicillium expansum, 

Zygosaccharomyces rouxii and Zygosaccharomyces bailii displaying remarkable 

antifungal properties (Ribes et al. 2016; Janatova et al. 2015). 

Efficiencies of EOCs are determined in function of concentrations required 

to inhibit the growth of target organisms. Usually, minimum growth inhibitory 

concentrations (MICs), minimum lethal concentrations (MLCs), as well as 

concentration where viability decrease fewer than half of the population, EC50, 

MIC50 and LD50 are values used for compared the components’ bioactivity 

(Hammer & Carson 2011). 
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4.1.2 Antioxidant and Anti-inflammation activity 

The high amount of oxygenated monoterpenes and phenolic components 

of EOCs, give them a high antioxidant capacity. Colorimetric tests of free-radical 

scavenging have shown the antioxidant activity of essential oils due to thymol, 

carvacrol, eugenol, terpineol, menthol, limonene, and citronellol components. 

Although mono and sesquiterpenes are related to antioxidant properties, studies 

have shown that phenols and flavonoids components are major responsibles of 

EOCs’ antioxidant capacity (Adorjan & Buchbauer 2010; Miguel 2010). 

On the other hand, inflammation, as the initial response of protective 

reaction to harmful stimuli, is currently treated with anti-inflammatory drugs. But, 

recently, EOCs’ components have been shown anti-inflammatory effects. 

Thymoquinone, a component of the volatile oil of Nigella sativa L., suppressed 

adjuvant-induced arthritis in rats, as well as decrease the expression of pro-

inflammatory cytokines of induced colitis in mice. Thyme, as major component 

from oregano oil, also showed decrease of inflammatory cytokines of colitis 

(Botsaris 2007). Other promising inhibition of inflammation have been evidenced 

by components such as citronellol, limonene, camphene, curcumene, rosmarininc 

acid and carvacrol (Adorjan & Buchbauer 2010).  
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4.1.3 Anticancer evidences 

Findings suggest that bioactive properties of EOCs are associated to 

mitochondrial dysfunction and changes in intracellular redox potential. It opens 

interesting applications beyond the well-known antimicrobial and antibacterial 

properties, and focuses the attention on anti-cancer studies (Adorjan & 

Buchbauer 2010). Tumour cell lines of melanomas breast, prostate and cervical 

adenocarcinomas, as well as glioblastoma, and lung fibroblasts have been 

evaluated with wide variety of EOCs. Results suggest that EOCs are suitable for 

treat cancer cells (Llana-Ruiz-Cabello et al. 2014; Oliveira et al. 2015). 

Phytochemicals from essential oils not only have shown a significant potential as 

chemo-preventive agents, but also, some studies have shown the EOCs effect on 

multi-drug resistant cancer cells (Bakkali et al. 2008). In contrast to cytotoxic 

agents such as doxorubicin, camptothecin, and other synthetic products used 

currently in chemotherapy (Heikkilä et al. 2010; Lai et al. 2012), the use of EOCs 

offers a suitable alternative in the field of anti-cancer natural products (Raut & 

Karuppavil 2014; Kris-Etherton et al. 2002). Latest studies suggest that depending 

on type and doses, EOCs exhibit cytotoxic effects due to pro-oxidant effects at 

cellular level but few results are associated to DNA damage (Bakkali et al. 2008). 

In particular, EOCs in vitro assays have shown chain reactions from the cell 

wall or the outer cell membrane, through organelles like mitochondria and 
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peroxisomes. These effects suggest a phenolic-like prooxidant activity. Hence, 

studies point apoptosis as the main route of EOCs’ cytotoxic effect with a small 

number of genotoxic effects (Jaganathan & Supriyanto 2012). 

4.1.4 Gastrointestinal studies with EOCs 

Alternative products based on plants-derived metabolites motivate their 

use and evaluation to deal with current drugs limitations. In life science the use of 

EOCs have shown interesting application for treat gastrointestinal tract. In cases 

of diarrheal control, carminative and digestive effects, as well as hepato-

protective effects and other gastrointestinal disorders. Natural-derived products 

from EOCs are traditionally used (Botsaris 2007). Among gastrointestinal 

approaches, the focus on anticancer therapies using EOCs has drawn the interest 

of food and medical science. In vitro studies have shown interesting results of 

EOCs effect on liver and colon carcinoma cell lines (Oliveira et al. 2015). 

Currently, the third most common malignancy that affect people worldwide 

and one of the major causes of cancer-related to death is colon cancer. Latest 

studies have pointed six-main components from essential oils: allyl-

isothiocyanate, cinnamaldehyde, eugenol, diallyl disulphide, carvacrol and thymol 

(see Figure 4-1); which displayed a remarkable in vitro activity against colon 

cancer (Coussens & Werb 2002). 
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Figure 4-1. Chemical structures of mainly EOCs used on colon cancer studies. 

Allyl isothiocyanate (AI) 

A volatile organic compound, found in horseradish (Armoracia rusticana, 

syn. Cochlearia armoracia) of the Brassicaceae family, which also includes 

mustard, wasabi, and cruciferous vegetables such as broccoli, and cabbage. The 3-

isothiocyanato-1-propene, has strong antibacterial properties and some studies 

have shown the cytotoxic effect on colon cells (Geng et al. 2011; Musk & Johnson 

1993; Zhang 2010).  
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Cinnamaldehyde (CN) 

From the stem bark of Cinnamomum cassia, the (2E)-3-phenylprop-2-enal, 

is known to possess several biological activities, including antifungal, cytotoxic and 

anti-mutagenic properties with a noticeable antitumor effects in vivo and in vitro, 

on colon cancer.(Li et al. 2016; Jeong et al. 2003; Yu et al. 2014; Ribes et al. 2016)  

Eugenol (EU)  

Component of Syzigium aromaticum (cloves), the 4-allyl-2-methoxyphenol, 

has been used as analgesic and antibacterial agent and it has been reported to 

possess anticancer and antigenotoxic activity (Jaganathan et al. 2011; Hussain et 

al. 2011; Jaganathan & Supriyanto 2012). 

Diallyl disulphide (DA)  

A sulphur-containing component found in the Alliaceae family such as garlic 

and onion, the 4,5-dithia-1,7-octadiene is responsible for health-benefit effects 

related to antimicrobial, antithrombotic and antitumor activity 

(Rattanachaikunsopon & Phumkhachorn 2008; Casella et al. 2013; Sundaram & 

Milner 1996; Song et al. 2009; Jo et al. 2008). 

Carvacrol (CV) 

Carvacrol, 5-isopropyl-2-methylphenol, one of the major phenolic 

constituents of many of the essential oils of Origanum species. CV have 

antibacterial, antifungal, insecticidal, and antioxidant effects as well as general 
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antiseptic properties. The in vitro evaluations of CV on colon cancer cells have 

shown a pro-oxidant activity, which induce cellular apoptosis (Llana-Ruiz-Cabello 

et al. 2014; Llana-Ruiz-Cabello et al. 2015; Fan et al. 2015; Arunasree 2010). 

Thymol (TY) 

A natural monoterpene phenol derivative, 2-isopropyl-5-methylphenol, 

isomeric with carvacrol; mainly found in oil of thyme and extracted from Thymus 

vulgaris (common thyme). Thymol has been used as fungicide and antibacterial, 

studies show that sinergical effect of CV and TY reduces bacterial resistance to 

antibiotics. On the other hand, some evidences suggest thymol for the treatment 

of gastrointestinal disseases. In particular, CV and TY have shown antimutagenic 

and antitumor properties (Llana-Ruiz-Cabello et al. 2014; Llana-Ruiz-Cabello et al. 

2015). 

4.1.5 Legal aspects 

Most of EOCs are registered by the European Commission for use as 

flavourings in food industry. Registered additives such as flavourings, do not 

present risk to the health of the consumer. Among others carvacrol, 

cinnamaldehyde, eugenol, limonene, menthol and thymol are registered. 

However, components such as estragole and methyl eugenol were deleted from 

the list in 2001 due to their being genotoxic (Commission Decision of 23 January, 

2002). 
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In order to considering a safety additive, need to be evaluated by 

toxicological and metabolic studies, according to Commission Decision of 23 

February, 1999; Commission Regulation (EC) No 1565/2000; Commission 

Regulation (EC) No. 622/2002; and regulation (EC) No 2232/96. When 

components are added to food preparations for purpose other than flavouring, 

the components may be treated as new food additives. However, approval as a 

food additive would involve toxic and metabolic studies to confirm their safety 

use. 

4.1.6 Safety data 

In spite of the fact that a considerable number of EOCs are registered as 

food flavourings, some studies indicate irritation and toxicity. For instance, 

eugenol, menthol and thymol, when applied in root canal treatments, have been 

known to cause irritation of mouth tissues. Results suggest that gum irritation 

may be related to membrane lysis and surface activity and that tissue penetration 

may be related at least partly to membrane affinity and lipid solubility (Manabe et 

al., 1987). Cinnamaldehyde, carvacrol and thymol appear to have no significant or 

marginal effects in vivo whilst in vitro they exhibit mild to moderate toxic effects 

at the cellular level. Genotoxicity data appear not to raise concern in view of the 

present levels of use (Stammati et al. 1999). 
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On the other hand, some EOCs have been known to cause allergic contact 

dermatitis in people who use them frequently (Carson and Riley, 2001; Bleasel et 

al., 2002). It is recommended that more safety studies be carried out before EOCs 

are more widely used or at greater concentrations in foods or pharmaceutical 

applications. 

4.1.7 Organoleptic aspects 

Among the technical disadvantages for industrial use of EOCs, the easy 

volatility and the spread of unpleasant or intense odours, reduce the applicability 

in food or pharmaceutical devices. For instance, although carvacrol produces a 

‘warmly pungent’ aroma (Kim et al., 1995b), it has been tested without causing 

adverse organoleptic changes (Roller and Seedhar, 2002). However, the use of 

sulphur derivatives; mainly found in garlic and onion components, involves a 

complete damage in the final products (Maldonado et al. 2005). 
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The synthesis of micro- and nano-sized mesoporous silica particles (MSPs) 

for encapsulating essential oil components (EOCs) and their use against colon 

cancer cells is described. Allyl-isothiocyanate, cinnamaldehyde, eugenol, diallyl 

disulphide, carvacrol and thymol, free and encapsulated in MSPs were evaluated 

against the colon carcinoma HCT116 cell line. It was found that encapsulated EOCs 

displayed remarkable enhanced anticancer activity than when free. In addition, 

EOCs and encapsulated EOCs in MSPs were also tested against the human colon 

normal (non-tumour) cell line CCD112-CoN, and was found that some 

encapsulated EOCs displayed an enhanced toxicity to colon cancer cells when 

compared to non-malignant cells. As far as the authors know, this is the first 

example of the use of EOCs encapsulated in MSPs as natural-derived agents 

showing selectivity against colon cancer cells in comparison with non-tumour 

colon cells. 

 

Keywords: essential oil components; encapsulation; mesoporous silica 

particles; controlled release; cancer colon cells. 

  



SECTION I – Article 1 

44 

INTRODUCTION 

Secondary metabolites found in plant extracts, such as essential oil 

components (EOCs), have been widely studied for their insecticidal, antifungal and 

antibacterial activity (Maldonado et al. 2005; Ribes et al. 2016; Adorjan & 

Buchbauer 2010; Flesar et al. 2010; Jing et al. 2014; Shaffer et al. 2016). 

Moreover, numerous bioactive components from plant-derived EOCs have been 

studied as anti-cancer agents with promising results (de Mesquita et al. 2009). 

Recent studies have evaluated the cytotoxic potential of EOCs against tumour cell 

lines and it was found a substantial anti-proliferative effect due to EOCs (Jeong et 

al. 2003; Geng et al. 2011; Jaganathan & Supriyanto 2012; Bianchini & Vainio 

2001). Moreover, direct exposure of cancer cells to EOCs have demonstrated to 

be dose-dependent, and some values of EC50 (absolute concentration, whereby 

cell viability decrease fewer than 50 % of population) have been established 

above 10 µg·mL-1 (Oliveira et al. 2015; Jaganathan & Supriyanto 2012). In contrast 

to common anticancer drugs, which achieve EC50 values at concentrations lower 

than 30 µg·mL-1 (Suffness & Pezzuto 1990), natural-derived components, such as 

EOCs, have a potential anticancer activity and are suitable candidates to be used 

in prevention and therapeutic strategies. In particular, combined therapies of 

EOCs and current synthetic cytotoxic agents have shown promising results (Yu et 

al. 2014; Adorjan & Buchbauer 2010). The synergistic interaction not only enhance 
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the therapy efficacy, but also reduce the chemotherapeutic-associated gene 

expressions, which are related to collateral health troubles (Li et al. 2016; Yu et al. 

2014; Hussain et al. 2011). In contrast to common cytotoxic agents such as 

doxorubicin, camptothecin, and others currently used in chemotherapy (Heikkilä 

et al. 2010), EOCs do not promote the expression of drugs-resistance, neither in 

vitro nor in vivo studies (Ravizza et al. 2008; Lai et al. 2012). Hence, the use of 

EOCs as cytotoxic is a timely field of research (Raut & Karuppavil 2014; Kris-

Etherton et al. 2002; Oliveira et al. 2015). In fact, recent studies have 

demonstrated the therapeutic potential of EOCs for prevention and treatment of 

colon cancer (Liao et al. 2009; Ogasawara et al. 2001; Li et al. 2016). In particular, 

among EOCs, allyl-isothiocyanate, cinnamaldehyde, eugenol, diallyl disulphide, 

carvacrol and thymol have displayed a remarkable in vitro activity against colon 

cancer cells. Allyl isothiocyanate (AI), 3-isothiocyanato-1-propene, is a volatile 

organic compound, found in horseradish (Armoracia rusticana, syn. Cochlearia 

armoracia) of the Brassicaceae family, and in mustard, wasabi and cruciferous 

vegetables such as broccoli and cabbage. AI, has strong antibacterial properties 

and some studies have shown its cytotoxic and anti-tumorigenic activity on colon 

cells (Geng et al. 2011; Musk & Johnson 1993; Zhang 2010). Cinnamaldehyde (CN), 

(2E)-3-phenylprop-2-enal, is obtained from the stem bark of Cinnamomum verum 

or C. casia. CN is known to possess several biological activities, including 
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antifungal, cytotoxic and anti-mutagenic with a noticeable in vivo and in vitro 

antitumor effects on colon cancer (Li et al. 2016; Jeong et al. 2003; Yu et al. 2014; 

Ribes et al., 2016; Hussain et al. 2011). Eugenol (EU), 4-allyl-2-methoxyphenol, is a 

component of Syzigium aromaticum (cloves). EU has been used as analgesic and 

antibacterial agent and it has been reported to possess anticancer and 

antigenotoxic activity (Jaganathan et al. 2011; Hussain et al. 2011; Jaganathan & 

Supriyanto 2012). Diallyl disulphide (DA), 4,5-dithia-1,7-octadiene, is a sulphur-

containing component found in the Alliaceae family such as in garlic and onion. 

DA is responsible for health-benefit effects related to antimicrobial, 

antithrombotic and antitumor activity (Rattanachaikunsopon & Phumkhachorn 

2008; Casella et al. 2013; Sundaram & Milner 1996; Song et al. 2009; Jo et al. 

2008). Carvacrol (CV), 5-isopropyl-2-methylphenol, is one of the major phenolic 

constituents of essential oils from Origanum species, whereas thymol (TY), 2-

isopropyl-5-methylphenol, is a natural monoterpene phenol derivative (isomeric 

with carvacrol) mainly found in oil from Thymus vulgaris (common thyme). CV and 

TY have antibacterial, antifungal, insecticidal, and antioxidant effects as well as 

general antiseptic properties. The in vitro evaluations of CV and TY on colon 

cancer cells have shown a pro-oxidant activity, which induce cellular apoptosis 

(Llana-Ruiz-Cabello et al. 2014; Llana-Ruiz-Cabello et al. 2015; Fan et al. 2015; 

Arunasree 2010). 
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However, the employment of EOCs shows technical disadvantages, such as 

easy volatility, low water solubility and instability in presence of oxygen, light and 

temperature (Guimarães et al. 2015). In this scenario, encapsulation has been 

used recently for controlling these drawbacks (Marques 2010). Among potential 

encapsulation systems organic structures based on polysaccharides, proteins, 

polymers, emulsions or liposomes have been widely studied (Sherry et al. 2013). 

These traditional delivery systems, usually release their cargo via diffusion-

controlled processes, or through the simple degradation of the polymeric matrix 

(Johnson et al. 2008). As an alternative, recent studies have also suggested that 

silica supports can be used for the encapsulation of different cargoes to prevent 

degradation and increase bioavailability (Pérez-Esteve et al., 2015; Wong et al. 

2011). Among silica-based supports, mesoporous silica particles (MSPs) have been 

used as inorganic scaffolds for the storage and release of drugs and (bio)organic 

molecules (C. Kresge et al. 1992; Dirk 2006; Vallet-Regi F. et al. 2007; Muñoz et al. 

2003), for applications in diagnosis and cancer therapy (Xie et al. 2016). MSPs can 

be prepared in sizes from micrometres to nanometres, with pores in the 2-10 nm 

range. MSPs have a very large specific surface area (up to 1200 m2·g−1) and 

volume, rendering them a large loading capacity. In addition, the good 

biocompatibility of MSPs, their high inertness, ease of functionalization and 

chemical stability, make MSPs an ideal support for encapsulation (Salonen et al. 
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2008; Muñoz et al. 2003). Recent studies have shown that encapsulation of EOCs 

into MSPs are a suitable approach for the development of antifungal and 

antibacterial systems, able to release EOCs along the time and improve their 

antimicrobial activity (Bernardos et al. 2015; Janatova et al. 2015; Park & 

Pendleton 2012). However, as far as we known, there are not evidences on the 

use of encapsulated EOCs into MSPs as potential materials for cancer therapy. 

Bearing in mind that supports based on silica nanomaterials will be an 

interesting oral administration system, gastrointestinal diseases could be treated 

with natural-derived agents such as EOCs encapsulated into silica nanomaterials. 

Furthermore, the use of bioactive components from essential oil against colon 

cancer cells has drawn much attention nowadays, showing the therapeutic 

potential of EOCs for prevention and treatment of colon cancer (Liao et al. 2009; 

Ogasawara et al. 2001; Li et al. 2016). 

Taking into account the above mentioned facts, we report herein the effect 

of EOCs free and encapsulated against colon cells. Six-EOCs: allyl-isothiocyanate, 

cinnamaldehyde, eugenol, diallyl disulphide, carvacrol and thymol, were 

incubated on human colon carcinoma and normal (non-tumour) colon cell lines. 

Mesoporous silica microparticles and mesoporous silica nanoparticles (MSMs and 

MSNs, respectively), were selected as supports for EOCs encapsulation. As far as 

we know, examples related with the use of EOCs encapsulated in MSPs against 
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colon cancer cells have not yet been reported. Our results pointed to the potential 

use of EOCs encapsulated in MSPs as potential materials for decrease the viability 

of colon cancer cells. 

EXPERIMENTAL SECTION 

Chemicals 

All the chemicals were purchased at the highest possible grade available 

and were directly used with no further purification. Tetraethylorthosilicate (TEOS), 

N-cetyltrimethylammonium bromide (CTABr), sodium hydroxide (NaOH), 

triethanolamine (TEAH) and 3-aminopropyltriethoxysilane (APTES) were provided 

by Sigma Aldrich. Essential oil components (EOCs): allyl-isothiocyanate, 

cinnamaldehyde, eugenol, diallyl disulphide, carvacrol and thymol were 

purchased from Sigma-Aldrich-UK. Fetal bovine serum (FBS), trypan blue solution 

(0.4 %) cell culture grade, trypsin, penicillin, streptomycin and DMEM-low glucose, 

and McCoy’s 5A culture media were provided by Gibco-Invitrogen. The cell 

proliferation reagent WST-1 was obtained from Roche Applied Science. 

Synthesis of mesoporous silica microparticles  

Mesoporous silica micro-sized particles (MSMs) were synthesized following 

reported procedures (Cabrera et al., 2000), in which 4.68 g of CTABr were added 

at 118 °C to a TEAH solution (25.79 g) that contained 0.045 mol of a silatrane 

derivative (TEOS, 11 mL). Next 80 mL of water were slowly added with vigorous 

stirring at 70 °C. After a few minutes, a white suspension was formed. This 
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mixture was aged at room temperature overnight. The resulting powder (MSMs 

as-synthesised) was collected by filtration, washed and dried at 70 °C. In order to 

remove the template phase, the powder was calcined at 550 °C for 5 h in an 

oxidant atmosphere to obtain the micro-sized particles. 

Synthesis of mesoporous silica nanoparticles 

Mesoporous silica nano-sized particles (MSNs) were synthesized using the 

procedure previously reported by Bernardos et al. (2010): n-

cetyltrimethylammoniumbromide (CTABr, 2.0 g, 5.48 mmol) was first dissolved in 

960 mL of deionised water. NaOH (aq) (2.0 M, 7.0 mL) was then added and the 

temperature was adjusted to 95 °C. TEOS (10.0 mL, 44.8 mmol) was added 

dropwise to the surfactant solution. The mixture was allowed to stir for 3 h to give 

a white precipitate. The product was centrifuged, and washed with deionised 

water and ethanol. Finally, the resulting powder (MSNs as-synthesised) was dried 

at 60 °C (Bernardos et al., 2010). To prepare the final porous support, as-

synthesised material was calcined at 550 °C using an oxidant atmosphere for 5 h 

in order to remove the template phase and obtain the nano-sized particles. 

Methods of characterization 

Powder X-ray diffraction (PRXD), transmission electron microscope (TEM), 

N2 adsorption-desorption isotherms, thermogravimetric analyses (TGA) and 

elemental analysis (EA) were employed to characterize the mesoporous silica 

particles. PXRD measurements were taken on a Seifert 3000TT diffractometer 
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using CuKα radiation. The TEM images were obtained with a 100 kV Philips CM10 

microscope. N2 adsorption-desorption isotherms were recorded with a 

Micromeritics ASAP2010 automated sorption analyzer. The samples were 

degassed at 120 °C in vacuum overnight. The specific surface areas were 

calculated from the adsorption data in the low pressure range using the BET 

model, and pore size was determined following the BJH method (Brunauer et al., 

1938). TGA were carried out on a TGA/SDTA 851e Mettler Toledo balance in an 

oxidant atmosphere (air, 80 mL·min-1) with a heating program that consisted of a 

heating ramp of 10 °C per minute from 120 to 1000 °C, and an isothermal heating 

step at this temperature for 30 min. The elemental analysis was performed in a 

EA-1110 CHN Elemental Analyser. Finally, the EOCs detection was determined 

through gas chromatography mass spectrometry, GC-MS, Agilent Technologies 

6890N Network Gas Chromatography System equipped with an Agilent 

Technologies 5973 inert mass selective detector, fitted with an HS-5MS column 

(30 m × 0.25 mm × 0.25 μm film thickness, (5% phenil)-methyl silox Agilent 

Technologies). 

Encapsulation of EOCs in MSPs (EOCs-MSPs) 

According to previous procedures, micro and nano-sized particles, MSMs 

and MSNs respectively, loading with EOCs was achieved via vapor adsorption by 

mixing EOCs (50 mg) with the MSPs (50 mg) in a tightly closed vial (Bernardos et 
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al., 2015; Janatova et al., 2015; Park et al., 2011). The mixture was incubated in an 

oven at 40 °C for 24 h while being continuously shaken. After 24 h, vials remained 

overnight (10-12 h) uncapped at room temperature, to evaporate the excess of 

EOCs. Using this approach, the final EOCs encapsulated were prepared in MSMs. 

EOCs-MSMs: AI-MSM, CN-MSM, EU-MSM, DA-MSM, CV-MSM and TY-MSM 

loaded with allyl-isothiocyanate (AI), cinnamaldehyde (CN), eugenol (EU), diallyl 

disulphide (DA), carvacrol (CV) and thymol (TY) respectively. Similarly, EOCs 

encapsulated in MSNs, EOCs-MSNs: AI-MSN, CN-MSN, EU-MSN, DA-MSN, CV-MSN 

and TY-MSN were prepared. 

Release studies 

In a typical experiment, 1 mg of encapsulated particles (EOCs-MSMs or 

EOCs-MSNs) was suspended in 2 mL of culture media, and at a certain time, 

suspensions were centrifuged. The supernatant liquid was separated and 

extracted with hexane (2 mL of hexane at a time, three extractions). 

Gas chromatography mass spectrometry (GC-MS) was used and an aliquot 

of 1 µL was injected with a pulsed split ratio of 10:1. Injection temperature was 

240 °C, the interface set to 250 °C and the ion source adjusted to 200 °C. The 

carrier gas used was helium set at a constant flow rate of 1 mL·min−1. The 

temperature program was 3 min isothermal heating at 60 °C, followed by a 10 

°C·min−1 oven temperature ramp to 120 °C, 8 °C·min−1 ramp to 180 °C and a final 6 
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°C·min−1 oven temperature ramp to 230 °C with 2 min heating at 230 °C. Mass 

spectra were recorded at two scans per sec with an m/z 50-600 scanning range. A 

retention time and mass spectral library for peak identification was implemented. 

Cell culture 

The human colon cell lines were obtained from ATCC–LGC Standards. 

HCT116 cells were grown in McCoy’s 5A culture medium, and CCD112-CoN cells 

were grown in DMEM-low glucose. Culture medium were supplemented with FBS 

at 10 % and antibiotics (100 U·mL-1 of penicillin, 100 μg·mL-1 of streptomycin). 

Cells were maintained at 37 °C in an atmosphere of 5 % CO2 and 95 % air, cells 

undergone passage twice a week. 

Samples preparation for viability assay 

Samples of free EOCs, EOCs-MSMs and EOCs-MSNs were weighed and 

sterilised by UV irradiation for 20 min. Then were dispersed in culture medium 

(McCoys’ 5A and DMEM for HCT116 and CCD112-CoN, respectively) and disposed 

in an ultrasound bath for 10 min to reduce particle aggregates. The required 

amount of the corresponding suspension was used to prepare dispersions in 

range from 2.0 to 200 µg·mL-1 of equivalent concentration of EOCs (based on 

release evaluation the equivalent EOCs encapsulated concentration was 

determined).  
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WST-1 Cell Viability Assay 

Cells were cultured in sterile 96-well plates at a seeding density of 2.5×103 

cells per well, and they were allowed to settle for 24 h. Then, previously prepared 

EOCs dispersions (free and encapsulated) were added to cells and after 24 h and 

48 h, WST-1 (10 µL) was added to each well. After WST-1 was added, cells were 

further incubated for 2 h and absorbance was measured at 450 and 620 nm. 

Statistical analyses 

Cell viability was evaluated through sigmoidal fit of dose-response curves, 

and the Origin software package was used. Statistical analyses were determined 

by One-Way and factorial ANOVA through SPSS software. 

RESULTS AND DISCUSSION 

Synthesis and characterisation of the EOCs-encapsulated systems 

MSMs and MSNs were synthesised using well-known procedures (see 

experimental section), and selected EOCs (i.e. allyl isothiocyanate, 

cinnamaldehyde, eugenol, diallyl disulphide, carvacrol and thymol) were 

encapsulated through vapour adsorption procedures inside the mesopores 

(Scheme 4.2-1). 
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Scheme 4.2-1. Encapsulation of EOCs into mesoporous silica supports. 

The materials were characterised by powder X-ray diffraction (PXRD), TEM 

and N2 adsorption-desorption studies (see Figure 4.2-1 and 4.2-2 for MSMs and 

MSNs, respectively). The X-ray patterns of the as-synthesised particles show four 

low-angle reflections, typical of a hexagonal array, which can be indexed as (100), 

(110), (200) and (210) Bragg reflections (see Figures 4.2-1A and 4.2-2A). A 

significant shift of the (100) reflection in the PXRD patterns for the calcined 

samples was clearly observed which corresponds to an approximate cell 

contraction of ca. 4.8 and 4.5 Å (see Figures 4.2-1B and 4.2-2B for MSMs and 

MSNs, respectively). This displacement and the also observed broadening of the 

(110) and (200) peaks, were more likely related to the condensation of silanols in 

the calcination step when the template was removed. For the loaded solids EOCs-

MSMs and EOCs-MSNs, the PXRD pattern showed the characteristic (100) 

reflection (Figures 4.2-1C and 4.2-2C, respectively); which indicated that 

mesoporous structure was preserved after the loading process (see Figures 4.2-1C 

and 4.2-2C, data shown for cinnamaldehyde encapsulation). 

EOCs

EOCs
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TEM images of the calcined MSMs and MSNs solids showed the typical 

channels of the mesoporous matrix, visualised as alternate black and white stripes 

(see Figure 4.2-1D and Figure 4.2-2D). As TEM images show, MSMs were obtained 

as irregular micrometric particles with a size in the 1000 – 3000 nm range, 

whereas MSNs were obtained as spherical particles with diameters ranging from 

80 to 100 nm. After EOCs encapsulation, TEM images showed that the 

mesoporous structure remained in all cases (Figures 4.2-1E and 4.2-2E). 

 

 

Figure 4.2-1. Characterisation of micro-sized particles MSMs, data for cinnamaldehyde 
encapsulation. First the PRXD pattern shows: A. MSMs As-synthesised material, B. 
calcined MSMs and C. EOCs (cinnamaldehyde) loaded in MSMs. Then the TEM images 
show: D. the MSMs support and E. the loaded particles (CN-MSM) shows the 
preservation of the mesopore structure. F. The nitrogen adsorption-desorption isotherm 
of calcined material (MSMs) and inset shows pore size distribution of material before 
the EOCs loading. 

N2 adsorption–desorption isotherms of calcined MSMs and MSNs particles 
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P/P0 value (0.1 – 0.4) which can be related to the nitrogen condensation inside the 

mesopores by capillarity (see Figure 4.2-1F and Figure 4.2-2F for MSMs and MSNs, 

respectively). The absence of a hysteresis loop in this interval and the narrow pore 

distribution (insets in Figures 4.2-1F and 4.2-2F) suggests the existence of uniform 

cylindrical mesopores. Through the BJH model on the adsorption branch of the 

isotherms, pore diameters and pore volumes were calculated. Micro and nanp- 

sized particles has similar pore diameters (2.5 and 2.2 nm, respectively), but pore 

volumes are slightly different, 0.78 and 0.68 cm3·g-1, for MSMs and MSNs, 

respectively (Brunauer P.H. Teller, E., 1938).  

 
Figure 4.2-2. Characterisation of nano-sized particles, MSNs, data shown for 
cinnamaldehyde encapsulation. PRXD pattern of: A. MSNs as-synthesised, B. Calcined 
MSNs, C. Nano-sized particles loaded with cinnamaldehyde, D.TEM images of MSNs, E. 
TEM images of loaded particles (CN-MSN) and F. Nitrogen adsorption-desorption 
isotherms of MSNs and inset shows the pore size distribution. 

The application of BET model resulted in values of 989.8 and 875.4 m2·g-1 

for the total specific surface for micro (MSMs) and nano-sized (MSNs) particles, 

respectively. The N2 adsorption–desorption isotherm of EOCs-MSMs and EOCs-
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MSNs are typical of mesoporous systems with filled mesopores (data shown for 

encapsulation of cinnamaldehyde). Consequently, relatively low N2 adsorbed 

volume and surface area values were registered.  

The quantification of EOCs in the loaded materials was assessed through 

elemental (EA) and thermogravimetry analyses (TGA) (data in Table 4.2-1). Typical 

cargo contents of ca. 0.5 mg of EOCs per mg of SiO2 were found. 

Table 4.2-1. Content (α) in grams of EOCs per gram of SiO2. 

Sample 
(EOCs-MSMs) 

αcargo Sample 
(EOCs-MSNs) 

αcargo 

(g/g SiO2) (g/g SiO2) 
AI–MSM 0.19 ± 0.01 AI–MSN 0.36 ± 0.09 
CN–MSM 0.52 ± 0.04 CN–MSN 0.53 ± 0.01 
EU–MSM 0.45 ± 0.05 EU–MSN 0.48 ± 0.04 
DA–MSM 0.40 ± 0.08 DA–MSN 0.41 ± 0.06 
CV–MSM 0.44 ± 0.05 CV–MSN 0.45 ± 0.04 
TY–MSM 0.49 ± 0.03 TY–MSN 0.32 ± 0.03 

 

Release studies 

Release experiments of EOCs from EOCs-MSMs and EOCs-MSNs were 

carried out. In a typical experiment 1 mg of the EOCs-loaded particles were 

suspended in 2 mL of culture media and aliquots taken at certain times were 

extracted with hexane. The hexane-extracts were analysed through GC-MS and 

release responses were obtained (Figure 4.2-3). First result shows that any of 

EOCs-loaded particle was able to deliver a 100 % of the encapsulated EOCs. The 

limitations to reach the 100 % release is tentatively ascribed to the interactions of 
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the EOCs’ structures with the surface of the silica support. This evidence is in line 

with previous studies, where silica pore networks have been reported to bound 

strongly the cargo (Park et al. 2011). On the other hand, except for AI-MSM the 

cargo of EOCs loaded was similar for micro and nanoparticles. Hence, we can 

assume that the proposed method for loading EOCs into MSPs, is able to reach a 

similar range of EOCs per grams of particles (SiO2), no matter MSPs’ size. 

However, the same can not be said for EOCs type. As Table 4.2-1 shows, AI-MSM 

has the minimum content of encapsulated component (significantly lower than 

the range observed). So, it is worth recalling the Figure 4-1, and the AI differences 

from other EOCs’ structure, where, the nitrogen presence can to influence the 

encapsulation yield. Although the main goal of this project is not to optimize the 

loaded cargo or go further to the chemical structures. It should be noted that the 

EOCs’ structure need to be taking into account, because EOCs’structure is related 

not only with encapsulation but also with release mechanisms.  

As Figure 4.2-2 shows, there are no significant differences on delivery 

profile of EOCs released from micro or nano-sized particles. However, the 

released percentage varies depending on the component evaluated. Once again, 

AI has the minimum data, reaching just a 40 % of release, which is significantly 

lower than the 80 % of 90 % of release of DA and CV, respectively. 
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Figure 4.2-3. Release profile of EOCs encapsulated from micro particles EOCs-MSMs [] 
and nano particles EOCs-MSNs [] A. Allyl isothiocyanate, B. Cinnamaldehyde C. 
Eugenol D. Diallyl disulphide E. Carvacrol and F. Thymol.  
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Evaluation of EOCs and encapsulated EOCs against cancer colon 

cells 

The effect that EOCs encapsulated in mesoporous silica particles have on 

cancer cells is an appealing research field. Herein, different amounts of EOCs free 

and encapsulated (at equivalent EOCs’ concentrations) were incubated with the 

colon cancer cell line HCT116 and cell viability was measured after 24 and 48 h. In 

parallel, both MSMs and MSNs (without any cargo loaded inside the pores), were 

also incubated with cells at concentrations from 10 to 100 µg of particles per mL 

of culture medium. Results indicated that unloaded MSPs induced no significant 

cell viability reduction. This is in line with previous reports, which indicated that 

mesoporous silica-based particles have no significant toxicity in cells below 100 

µg·mL-1 (Heikkilä et al. 2010). 

Figure 4.2-4 shows the equivalent concentration of EOCs (free and 

encapsulated) to reduce cell viability by 50 percent (EC50) at 24 and 48 h. Results 

suggest that free EOCs required higher concentrations than encapsulated EOCs 

(EOCs-MSPs) to reduce viability in colon cancer cells. In most cases, EOCs free 

require more than 100 µg·mL-1 to reduce cell viability. However, once EOCs are 

encapsulated, EC50 is significantly reduced. 
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Figure 4.2-4. Concentration of EOCs needed to reduce the cell viability of HCT116 to 50 % 
(EC50), comparing 6-EOCs free and encapsulated into micro-sized (EOCs-MSMs) and 
nano-sized particles (EOCs-MSNs) after 24 h, grey bars and 48 h, dark bars. a. Allyl 
isothyocianate (AI) b. Cinnamaldehyde (CN) c. Eugenol (EU) d. Diallyl disulfide (DA) e. 
Carvacrol (CV) and f. Thymol (TY). 

Significant differences for EOCs-MSPs compared to the free EOCs, at *24 h and **48 h.  
(means and standard deviations, n = 3). 

Previous studies of the six selected EOCs on colon cancer cell lines such as 
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when concentrations above 100 µg·mL-1 (Llana-Ruiz-Cabello et al. 2014; 

Jaganathan et al. 2011; Li et al. 2016; Sundaram & Milner 1996). In particular, in 

vitro studies with HCT116, with free cinnamaldehyde and carvacrol indicated that 

concentrations up to 80 µg·mL-1 reduce cell viability to 50 % (Li et al. 2016; Fan et 

al. 2015), which is a significantly higher concentration than that we need when 

using CN-MSPs and CV-MSPs. Hence, it is possible to enhance the EOCs activity 

through encapsulation into MSPs. 

Viability studies for 24 h and 48 h, allowed us to find that viability reduction 

was sustained in time when EOCs are encapsulated in MSPs, which is in line with 

previous antifungal studies of encapsulated EOCs (Bernardos et al. 2015). We may 

assume that encapsulation inhibit the losses due to volatilisation of EOCs and 

enhance their distribution in cell medium, reducing EOCs doses to achieve the 

same cell viability decrease in comparison with free-EOCs. 

Few studies have evaluated the effect on cancer cells of encapsulated EOCs. 

Specifically, on colon cancer, Majeet et al (2014) performed an in vitro evaluation 

of eugenol encapsulated in nanoemulsions. The authors found a major level of 

apoptosis via reactive oxygen species (ROS) generation after 24 h. In particular, 

nanoemulsions of eugenol increased its bioactivity (Majeed et al. 2014). 

Nevertheless, the nanoemulsion showed a EC50 at concentrations of eugenol 

close to 100 µg·mL-1, which is higher than equivalent concentration of eugenol 
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encapsulated (EU-MSPs). It suggests that MSPs offer suitable alternative option to 

traditional encapsulation systems, which opens a range of industrial and 

pharmaceutical applications. In addition, encapsulated EOCs decrease colon 

cancer cells viability, while the amount of MSPs used is low and did not display 

any toxicity. 

Evaluation of EOCs on normal colon cells 

During last years, the molecular cytotoxic mechanisms of our six selected 

EOCs have been widely studied on cancer cell lines. Proliferation inhibition and 

cell death due to pro-apoptotic signals are the main ways described which affect 

in a dose and time-dependent manner (Bottone et al. 2002; Yang et al. 2009; 

Llana-Ruiz-Cabello et al. 2014; Li et al. 2016; Jaganathan et al. 2011). However, 

there are few evaluations of the effect that EOCs have on non-tumour cell lines. 

So far, essential oil components from garlic has been tested on human prostate 

cancer and normal cells. According to authors, an induction of cell cycle arrest in 

G(2)-M phase was observed, and it was related to reactive oxygen species (ROS) 

generation, which mainly affected prostate cancer cells than normal cells (Xiao et 

al. 2005). 

In addition, a recent study evaluated a combination of eugenol and 

gemcitabine (a common chemotherapeutic agent) against cervical cells, which 

results in an interesting synergistic interaction, eugenol enhances the efficacy of 
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gemcitabine while minimize the toxicity on normal cells. The study showed a 

dose-dependent and selective cytotoxicity toward cervical cancer cells compared 

to non-tumour cells (Hussain et al. 2011). In the context of our study, there are 

not, as far as we are aware, any evaluation which compares free and 

encapsulated EOCs on non-tumour colon cells. 

In this section, cell viability of colon normal cell, CCD112-CoN, was 

evaluated after incubation with free-EOCs and EOCs-MSPs, and the results are 

compared with those obtained for colon cancer cells. We first confirmed that 

unloaded supports MSMs and MSNs were not toxic for CCD112-CoN cells.  

Figure 4.2-5 shows that the viability of normal colon cells incubated with 

free EOCs was reduced at same level as cancer cells. However, higher dose of 

equivalent EOCs amount from EOCs-MSPs was required to reduce the cell viability 

of normal cells (data at 24 h in Figure 4.2-5 is not shown, because, significant 

results on viability decrease were achieved after 48 h). In particular, EC50 for 

encapsulated thymol and cinnamaldehyde in MSMs and MSNs, was reached using 

a significantly larger concentration for normal cells than for cancer cells (Figures 

4.3-5F and 5B, respectively). Besides, carvacrol and allyl isothiocyanate have a 

selective effect, when they are encapsulated in nano-sized particles CV-MSN and 

AI-MSN, respectively (Figures 4.2-5E and 5A).  Although supports’ size did not 
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affect the behaviour release, the way in which particles interact with cells may 

change in function of other factors. 

 

Figure 4.2-5. Concentration needed to reduce the cell viability to 50 % (EC50), comparing 
free compound and encapsulated into microparticles (EOCs-MSMs) and nanoparticles 
(EOCs-MSNs) after 48 h. Evaluation on HCT116 cells and CCD112-CoN cells, dark and 
striped bars, respectively. a. Allyl isothiocyanate (AI) b. Cinnamaldehyde (CN) c. Eugenol 
(EU) d. Diallyl disulphide (DA) e. Carvacrol (CV) and f. Thymol (TY). *Significant differences 
of the EC50 compared EOCs-MSPs effect between normal and cancer cells (means and standard 
deviations, n = 3). 
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For instance, depends on the EOCs structures, the interactions between the 

membrane’s cells and particles can be altered, which will impact directly on cell 

viability. Although the toxic mechanisms of EOCs-MSPs would need further 

investigation, we demonstrate here the possibility to use low doses of EOCs-MSPs 

to reduce cancer cells viability without affecting normal cells. To the best of our 

knowledge, this is the first study to show that colon cancer cells are more 

sensitive to EOCs-MSPs than normal colon cells.  

In this scenario, and in order to compare the obtained results, a selectivity 

index (SI) for the EOCs tested against the tumour cell line versus the non-tumour 

cell line at 48 h, was calculated (see Table 4.2-2). SI values for EOCs encapsulated 

were higher than those for free-EOCs. SI value greater than 2.0, means that the 

component tested is at least twice more cytotoxic on cancer cells than normal 

ones, and SI values equal to zero, means that component is toxic for normal cells 

as well as the tumour one (Suffness & Pezzuto 1990; Oliveira et al. 2015). 

Table 4.2-2. Toxicity selectivity (SI) at 48 h of EOCs incubated into cancer cells  
compared with normal cells. 

Sample  
(Free EOCs) SI Sample 

(EOCs-MSMs) SI Sample 
(EOCs-MSNs) SI 

AI 1.0 AI–MSM 1.0 AI–MSN 2.1 
CN 1.0 CN–MSM 4.8 CN–MSN 2.0 
EU 1.0 EU–MSM 1.7 EU–MSN 0.9 
DA 0.2 DA–MSM 0.5 DA–MSN 0.0 
CV 0.8 CV–MSM 1.2 CV–MSN 2.1 
TY 1.0 TY–MSM 2.7 TY–MSN 3.5 
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In particular, thymol and cinnamaldehyde encapsulated into MSMs and 

MSNs had SI values above 2.0. It can be concluded that EOCs might be suitable 

natural-derived molecules for alternative therapies and MSPs are interesting 

supports for encapsulate bioactive components. 

CONCLUSIONS 

We have reported herein a study of the in vitro toxicity of EOCs free and 

encapsulated in silica mesoporous particles (both micro and nanometric) to colon 

cancer and normal cells. Our study revealed that both free EOCs and encapsulated 

showed activity against cancer colon cells. The use of MSPs as encapsulation 

system not only protected volatile EOCs enhancing their functionality, but also 

MSPs allows a controlled release of EOCs into the culture media, which assure 

higher and sustained effect along the time. In particular, MSPs, both micro- and 

nano-sized, loaded with cinnamaldehyde and thymol decreased the 

concentrations necessary to reduce to HCT116 cell population (EC50), without 

reducing normal colon cells viability. These results open new possibilities for 

cancer treatments minimizing the adverse effects on non-tumour tissues. In 

further research, preclinical and clinical studies should provide additional insights 

for determining the optimal use of EOCs-MSPs. 
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The masking odour properties of a capped-mesoporous silica support were 

evaluated. A bioactive component from garlic (diallyl disulphide, DA) was 

encapsulated in mesoporous silica particles. Additionally, the particles’ surface 

was functionalised with a polysaccharide derivative, which has been described as 

gate-like ensemble for cargo controlled delivery applications. The garlic-

associated odour was monitored by sensory analysis, head space solid phase 

microextraction and electronic nose. The quantitative and qualitative evaluation 

of functionalised samples did not show volatile components garlic-odour 

associated. Moreover, panellists from sensory analysis non-differentiate blank 

samples (bare and empty supports, without DA) from functionalised ones, but 

they did from samples with DA without the functionalised polysaccharide. Hence, 

surface functionalization was able to mask the unpleased garlic-related odours. In 

addition, the capped system was able to trigger an on-command delivery in 

presence of specific enzymatic stimuli. As far as the authors know, this is the first 

example of odour masking, using an enzyme-induced delivery capped silica-based 

support, which promotes the use of interesting bioactive components with 

unpleasant sensorial features for food or pharmaceutical applications. 

 

Keywords: Diallyl disulfide, masking odour, capped mesoporous silica 

particles, e-nose, headspace. 
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Introduction  

Bioactive components from garlic are interesting because their 

antimicrobial, antifungal and antibacterial activity (Ankri & Mirelman 1999; 

Cavallito & Bailey 1944; Yamada & Azuma 1977). Among the garlic bioactive 

components, the organosulphur derivatives are strongly related to atherosclerosis 

and thrombosis prevention (Kris-Etherton et al. 2002; Liu et al. 2005; Bayan et al. 

2014). In particular, sulphides from allicin decomposition have been recently 

reported as anticancer agents, and specifically, diallyl disulphide (DA) shows 

promising results against colon cancer cells (Bottone et al. 2002; Yang et al. 2009). 

However, the sulphur components are the major responsibles of unpleasant 

garlic-related odour, which limit the industrial applications. Hence, the design of 

systems able to encapsulate and mask the non-desired odour, results interesting 

for industrial process. 

In relation to encapsulation studies, β-cyclodextrin is mainly used 

(Hadaruga et al. 2007; Astray et al. 2009), in particular, Ayala-Zavala and co-

workers (2010) tested sensory quality of fresh-cut tomato exposed to a 

cyclodextrine garlic oil-complex. Results indicated that sensorial quality of tomato 

was not affect, indeed, the tomato samples were recommended for salad 

mixtures due to compatibility of tomato and garlic flavour (Ayala-Zavala & 

González-Aguilar 2010). However, the panellists’ sensorial acceptability should not 
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be confussed with a masking garlic-odour capacity of the cyclodextrine complex. 

So far, results only show the non-detection of unpleasant flavors, but, there are 

not quantitative evaluations to confirm the masking of garlic components 

associated to their unpleasant odour. In this context, encapsulation for preserving 

functional activity while reducing unpleasure sensorial features of organosulphur 

garlic derived components has been proposed. 

Recent works suggest that mesoporous silica-based supports could provide 

a system for masking sensorial inconvenient of cargo entrapped (Ruiz-Rico et al. 

2015). The inorganic mesoporous silica particles (MSPs) have shown to provide 

unique features such as stability, biocompatibility, high inertness and 

homogenous porosity (Kresge et al. 1992; Wang 2009; Slowing et al. 2007). 

Additionally, their surface is easy to functionalise, which make systems able to 

deliver the entrapped cargo using several external stimuli (Bernardos et al. 2010; 

Aznar et al. 2009; Pérez-Esteve et al. 2015). In particular, recent studies have 

encapsulated essential oil components in MSPs, and results have displayed 

remarkable enhanced antifungal activity and a long-term effectiveness (Bernardos 

et al. 2015; Janatova et al. 2015; Park et al. 2012). In this sense, MSPs protect 

bioactive components and their functionalities. However, neither sensorial, nor 

analytical evaluation has been done on MSPs as encapsulation system for masking 

odour. 
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In a previous work, MSPs were used as supports for garlic extract 

encapsulation and the functionalisation of the surface was developed for a 

sustained and on-command release of garlic components, which were evaluated 

as DA (Acosta et al. 2014). Based on that, we hypothesised that surface 

modifications on MSPs prevent the outflow of sulphurs’ volatile components, 

which mask the unpleasant garlic-related odours. 

We herein synthesised micro-sized MSPs, where DA was encapsulated. The 

particle surface of the loaded MSPs was functionalised with a polysacharide, a 

hydrolysed starch, named Glucidex 47 (Bernardos et al. 2010; Llopis-Lorente et al. 

2017). And the influence of surface functionalization on masking odour features 

was evaluated. 

DA release in headspace was evaluated and results suggest that 

polysaccharides anchoring on MSPs’ surface are responsible for the non garlic-

related odour detection. Additionally, only in presence of the specific enzyme 

stimuli, the MSPs-capped system was able to deliver the DA. As far as we known, 

it is the first attempt to completely evaluate MSPs as systems with odour masking 

capacity, besides, it is the first attempt which it is possible mask unpleasant garlic-

related odour in function of the absence of specific stimuli; which opens 

interesting possibilities for industrial applications. 
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Materials and methods 

Chemicals 

All chemicals were purchased at the highest grade available and used 

directly without any further purification. Diallyl-disulphide, DA, (tech., 80 %) was 

purchased from Sigma Aldrich. Acetonitrile and hexane were provided by Fisher 

Scientific. The chemicals, tetraethylorthosilicate (TEOS), n-

cetyltrimethylammonium bromide (CTAB), sodium hydroxide, triethanolamine 

(TEAH), 3-aminopropyltriethoxysilane (APTES), the phosphate buffered saline 

(PBS) for molecular biology 0.2 µm filtered (with a phosphate buffer 

concentration of 0.01 M and a sodium chloride concentration of 0.154 M. The 

solution pH will be 7.4.), and the enzyme, pancreatin from porcine pancreas were 

provided by Aldrich. The hydrolysed starch Glucidex-47® (5 % glucose, 50 % 

maltose, 45 % oligosaccharides and polysaccharides) was provided by Roquette. 

Solids characterisation  

PXRD measurements were taken on a Seifert 3000TT diffractometer using 

CuKα radiation. TEM images were obtained under a 100 kV Philips CM10 

microscope. N2 adsorption-desorption isotherms were recorded in a 

Micromeritics ASAP2010 automated sorption analyser. Samples were degassed at 

120 °C in vacuum overnight. The specific surface areas were calculated from the 

adsorption data within the low pressure range using the BET model (Brunauer & 

Teller, 1938). Dynamic light scattering (DLS) studies for size distribution were 
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conducted at 20 °C using a Malvern Mastersizer 2000. Data analysis was based on 

the Mie theory using refractive indices of 1.33 and 1.45 for the dispersant and 

MSPs, respectively. To determine the zeta potential (ζ) of solids, a Zetasizer Nano 

ZS was used. Zeta potential was calculated from the particle mobility values by 

applying the Smoluchowski model. The average of five recordings was reported as 

the zeta potential. All the measurements in Malvern Zetasizer Nano ZS and 

Malvern Mastersizer 2000 were performed at 20 °C in triplicate, samples were 

dispersed in PBS buffer. Before each measurement, samples were sonicated for 

10 min to preclude potential aggregation. Finally, the elemental analysis was 

performed in a EA-1110 CHN Elemental Analyser. 

Synthesis of mesoporous silica micro-sized particles (blank sample, M0) 

The mesoporous MCM-41 type support, was first synthesised as micro-sized 

particles by “atrane route” (Cabrera et al. 2000) in which 4.68 g of CTAB was 

added at 118 °C to a solution of TEAH (25.79 g) containing 0.045 mol of a silatrane 

derivative (TEOS, 11 mL). Next, 80 mL of water was slowly added with vigorous 

stirring at 70 °C. After a few minutes, a white suspension was formed. This 

mixture was aged at room temperature overnight. The resulting powder was 

collected by filtration and washed. As-synthesised solid was obtained, it was dried 

at 70 °C and finally, in order to obtain M0, template phase was removed by 

calcination at 550 °C for 5 h, using an oxidant atmosphere. 
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Impregnation of garlic components (loaded-solids: M1, M2 and M3) 

Diallyl disulphide (DA), was suspended in acetonitrile, and three different 

dissolutions were prepared (0.1 1 and 10 µg·mL-1). Then, based on the 

impregnation loading procedure described by Pérez-Esteve and co-workers 

(Pérez-Esteve et al. 2016), 100 mg of M0 were impregnated with 100 uL of each 

dissolution, dropped over the solid. To improve the loading yield through porous 

impregnation, five cycles of addition were carried out (total of 500 µL of DA). After 

each addition cycle, solids were dried at room temperature to evaporate 

acetonitrile. Finally, solids M1, M2 and M3 were obtained, corresponding to 

loading dissolutions 0.1, 1 and 10 µg of DA·mL-1, respectively. 

Synthesis of functionalised-solids (G1, G2 and G3)  

Surface functionalisation was developed in two steps. First (Step 1), a 

solution of 3-aminopropyltriethoxysilane (APTES, 0.14 mL) was added to a 

dispersion of loaded-solids (M1, M2 and M3) in deionised water (4 mL). The 

reaction mixture was stirred for 5.5 h at room temperature in an inert 

atmosphere of nitrogen. The obtained solids were filtered and washed with acid 

solution at pH 2.0 and dried for 12 h at 35 °C. Intermediated solids obtained after 

Step 1 of functionalization, were named g1, g2 and g3, respectively.  

Then (Step 2) a suspension of hydrolysed starch (Glucidex-47) in water (12 

mL) was added to in a 1:1 w/w relation (0.6 g of Glucidex and 0.6 g of solids g1, g2 

and g3). 
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Final mixture was stirred for 24 h at room temperature in an inert 

atmosphere of nitrogen. The solids were filtered and washed with deionised 

water, and dried at for 12 h at 35 ºC, to obtain the final capped solids G1, G2 and 

G3, respectively. 

Release studies 

In a typical experiment, 1 mg of loaded-solids were suspended in 2 mL of 

PBS and stirred at 200 rpm. On the other hand, delivery evaluation of 

functionalised-solids (G1, G2, G3) was constituted by 50 mg of solids in 5 mL of 

PBS buffer. Delivery studies were carried out in PBS with and without enzymatic 

stimuli (pancreatin at 1 mg per mL PBS). At certain time, suspensions were 

centrifuged. The supernatant was separated and extracted thrice with hexane, 

(final volume of 10 mL). The resulting samples (after hexane extraction) were 

monitored via gas chromatography mass spectrometry (GC/MS).  

Release quantification: Hexane extract sample volumes of 1 μl were 

injected with a pulsed split-less ratio of 10:1 using a hot-needle technique. The 

GC–MS system consisted of an Agilent7890A gas chromatograph with 5975C Mass 

Spectrometer. Gas chromatography was performed on a 30 m Agilent BPX5 

column with 0.25 mm inner diameter and 0.25 μm film thicknesses. Injection 

temperature was 240 °C, the interface set to 250 °C and the ion source adjusted 

to 200 °C. The carrier gas used was helium set at a constant flow rate of 1 
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ml·min−1. The temperature program was 3 min isothermal heating at 60 °C, 

followed by a 10 °C·min−1 oven temperature ramp to 120 °C, 8 °C·min−1 ramp to 

180 °C and a final 6 °C·min−1 oven temperature ramp to 230 °C with 2 min heating 

at 230 °C. Mass spectra were recorded at two scans per sec with an m/z 30–600 

scanning range and spectra were recorded in selective ion monitoring (SIM) 

mode: m/z 41, 81 and 146 for diallyl-disulphide (DA). The chromatograms and 

mass spectra were evaluated using the masslab program. A retention time and 

mass spectral library for automatic peak quantification of metabolite derivatives 

was implemented within the masslab method format. 

Sensory analysis 

The triangle different discrimination test was used. Panellists were students 

and staff members of our department; all of them had good experience in sensory 

evaluation. The triangle difference test was performed with 24 panellists and each 

group of samples were tested thrice in a randomized complete block design. No 

information was given to the panellists about the origin of the samples. 

Solids were presented in 10 mL disposable glass cups provided with gas 

tight cover and coded with 3-digit random numbers. Groups of three samples (0.1 

g each) were assessed, and just one sample was different. Each panellist was 

instructed to open the cover of the cup, to smell the headspace carefully and then 
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to close it. For nose-clearing, before opening each sample, panellists were asked 

to smelling their un-fragranced forearm.  

The panellists aim was to determine in each group the solid perceived to be 

different from the other two by smelling only. Two different tests were assessed.  

First assay: to measure if people can differentiate between the 

functionalised-solids and a sample without garlic-loaded (blank sample, M0). 

Group of samples were formed with two blank-samples and the functionalised-

ones. Three groups were disposed for each G1, G2 and G3 solids.  

Second assay: to measure differentiation between the loaded- and 

functionalised-solids. One loaded solid was disposed with two of their 

corresponded functionalised-solid. Three measurement groups were formed for 

M1, M2 and M3 and their respective functionalised-solid G1, G2 and G3. 

Head Space Solid Phase Microextraction (HS-SPME) and GC-MS 

detection 

A known amount (0.1 g) of solid was added to a 10 mL headspace (HS) vial 

and sealed with a PTFE-faced silicone septum. The vials were maintained at 37 °C 

and vapour were withdrawn from the vial by fibre assembly 65 um PDMS/DVB, 

stableflex, 23 Ga and injected in the chromatographic column via a transfer line. 

The volatile sulphur-containing compound from solids was analysed using 

an Agilent Technologies 6890N Network Gas Chromatography System equipped 

with an Agilent Technologies 5973 inert mass selective detector fitted with an HS-
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5MS column (30 m × 0.25 mm × 0.25 μm film thickness, (5 % phenil)-methyl silox 

Agilent Technologies).  

Helium gas was used as a carrier gas at a flow rate of 1 µL·min-1. The 

chromatography run was started by warming the column at 40 °C for 1 min, 

heated to 200 °C at a rate of 10 °C·min-1, with 1 min of hold time. Then, increased 

to 250 °C at a rate 15 °C·min-1, and held at 250 °C for 3 min.   

The components were identified by comparison with authentic standards. 

Quantification of flavour components was done by comparing the sample peak 

area to that of a known amount of pure component in hexane. 

Electronic nose detection 

A known amount (0.1 g) of solids was added to a 10 mL headspace (HS) vial 

and sealed with a PTFE-faced silicone septum. The vials were maintained at 25 °C 

for 20 min, afterwards, vial was placed inside e-nose chamber and headspace was 

measure along 20 min. 

The e-nose system, consists of an array of commercial metal oxide 

semiconductor (MOS) sensors for different gases (hydrogen, carbon, monoxide, 

butane, methane, etc.), two LM35DZ for temperature sensing, a sample handling 

system for the management for the gases to be measured, and a data acquisition 

system to control the configuration of the sensors and the data collected, in order 

to manage the sensor cleaning.  
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Each group of samples (blank sample: M0, loaded-solids: M1, M2 and M3 

and functionalised-solids: G1, G2 and G3) were evaluated five times. 

Data analyses 

Statistical analyses from chromatography and sensory data were developed 

by the SPSS statistical software package. While e-nose data were evaluated by 

Stand Alone Chemometrics Software (Solo). A first approach used Principal 

Component Analysis (PCA); the leave one out cross validation was implemented 

on the entire datasets. We also conducted a Partial Least Square (PLS) analyses, 

Support Vector Machine Discriminant Analysis (SVMDA) and Multilayer 

Perceptron (MLP) study. Five sets of measurements were analised, three of them 

were used to calibration the model and the other two to test the models.  

Results and Discussion 

Mesoporous silica materials 

The mesoporous silica-based particles used in this study were micro-sized 

MCM-41 type. In this work, solids were synthesised and subsequently, three 

different DA dissolutions (0.1 1 and 10 g·mL-1) were used to impregnate in M0 

solids and obtaine M1, M2 and M3, respectively. The carbohydrate polymer used 

for capping the surface particles was hydrolysed starch Glucidex-47 (5 % glucose, 

50 % maltose, 45 % oligosaccharides and polysaccharides), a polysaccharide 

previously reported for capping MSPs (Bernardos et al. 2010). In this approach, 

loaded-solids (M1, M2 and M3) were functionalised in two steps. First APTES was 
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anchored to surface particles and solids g1, g2 and g3 were obtained, then the 

hydrolysed starch, Glucidex-47 was covalent bonded to amine and the final 

functionalised solids G1, G2 and G3 were obtained (see Scheme 4.3-1). 

 

Scheme 4.3-1. Samples synthesis. First: loaded-solids and Second: Two steps to obtain 
functionalised-solids. 

Characterisation of encapsulation system   

The characterisation of the solids was performed using well-known 

techniques. Powder X-ray diffraction (PXRD) patterns of the prepared silica 

mesoporous MCM-41 type micro-sized particles (as-synthesised and calcined) are 

shown in Figure 4.3-1A. The PXRD of as-synthesised solids shows four low-angle 

   

    

Second: Two-steps s  

M1, M2 and M3 g1,      

Garlic component  

FIRST: Garlic component (DA) loading 

SECOND: Two-steps of Surface functionalisation 

M-samples (M1, M2, M3)           g-samples (g1, g2, g3)              G-samples (G1,G2,G3) 

Garlic component (DA) 

Empty and bare sample (M0)                  M-samples (M1, M2, M3) 

  APTES                                                                       Glucidex 47 



SECTION I - Article 2 

92 

reflections typical of a hexagonal array that can be indexed as (100), (110), (200) 

and (210). A significant shift of the (100) reflection in the PXRD of the M0 calcined 

solid is observed (Figure 4.3-1A), corresponding to an approximate cell 

contraction of ca. 4.9 Å. PXRD pattern of loaded and functionalised solids (Figure 

4.4-1A) only shows the characteristic (100) reflection. The presence of this peak 

indicates that the mesoporous structure was preserved through the filling process 

with the garlic component (DA) and after the anchoring of hydrolysed starch. 

Figure 4.3-1B shows the typical porosity associated with the pseudo hexagonal 

array of calcined mesoporous silica particles (M0), TEM images show that 

mesoporous structure remains after loading and functionalization. Additionally, 

TEM images indicate that solids were obtained as micrometric particles of ca. 

1000-4000 nm (Figure 4.3-1B).  

N2 adsorption–desorption isotherms of the M0 calcined phase shows 

typical curves which can be related to the nitrogen condensation inside the 

mesopores by capillarity, as corresponds to a type IV isotherm (see Figure 4.3-1C). 

The absence of a hysteresis loop in this interval and the narrow pore distribution 

suggests the existence of uniform cylindrical mesopores (2.71 nm, 0.88 cm3·g-1). 
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Figure 4.3-1. Materials characterisation: A. Powder X-ray patterns, B. TEM images of 
micro-sized particles (empty and bare particles, M0; loaded-solids, M3 and 
functionalised-solids, G3), C. Nitrogen adsorption-desorption isotherms: Calcined 
material M0 [], Solid M3 [] and solid G3 [].  

A total specific surface of 989.4 m2·g-1 was obtained by using the BET model 

to calcined material. In contrast, the N2 adsorption–desorption isotherms of the 

loaded-solids and the final functionalised-solids, show in each case a flat curve 

with specific surfaces of 220 and 100 m2·g-1 and pore volumes of 0.25 and 0.17 

cm3·g-1 for M3 and G3, respectively (data non shown for other samples). Decrease 

of surface and pore volume confirm the significant pore blocking due molecular 

gates anchorage. 

Finally, zeta potential (ζ) was performed in aqueous dispersion (PBS), data 

shown in Table 4.3-1. Calcined and loaded-solids had a negative zeta potential due 
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to the presence of anionic silanol groups on their surface. Upon functionalisation, 

the surface potential changed from negative to positive, which was ascribed to 

the grafting of starch onto the surface of solids. 

Table 4.3-1. Characteristics of synthesised solids 

 
SBET 
(m2g-1) 

Pore volume 
(cm3g-1) 

Mean size 
(nm)* 

Z potential 
(ζ) (mV) 

M0 989.419 0.884 2566  -18.60 
M3 220.089 0.248 1930  -8.06  
G3 100.081 0.171 1189  11.06  

* Single-particle size determined by TEM 

Diallyl disulphide encapsulation 

Based on the DA concentration used for loading M1, M2 and M3 solids, the 

theoretical amount of DA encapsulated was determined as 0.5, 5 and 50 µg of DA 

per mg of solid, respectively. Then, to identify the loading-yield, elemental 

analysis (EA) was performed. Based on sulphur content obtained by EA, the real 

DA amount was determined and loading-yield was calculated (see Table 4.3-2A).  

In addition, the steps of gate-anchorage were monitored through sulphur 

and nitrogen content from EA data. Functionalised-solids showed a DA decreased 

amount, mainly from M3 to G3 (see Table 4.3-2B). Based on loading yield of M3 

and G3, we hypothesised that the highest DA concentration tested (10 µg·mL-1) 

did not was effectively encapsulated, and some leaks along functionalised process 

may decrease the encapsulation yield. Despite DA loses, the sulphur content 
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inside G1, G2 and G3 solids confirms the DA presence after the surface 

functionalization.  

Table 4.3-2. Encapsulated content of garlic,  
as diallyl disulphide (DA) loaded concentration. 

A Garlic content 
(µg DA·mg solid-1) 

Loading  
yield (%) 

M1 0.46 91.2 

M2 0.91 18.2 

M3 13.23 26.5 

 

B Garlic content 
(µg DA·mg solid-1) 

Loading  
yield (%) 

G1 0.45 90.0 

G2 0.81 16.2 

G3 5.47 10.9 

 

On the other hand, the nitrogen amount was associated with APTES 

content, which did not change from first (Intermediate solids: g1, g2 and g3) to 

second (Final solids: G1, G2 and G3) step of functionalization. In this sense, the 

functionalization through 2-steps, should works as the 1-step method, previously 

reported (Bernardos et al. 2010; Acosta et al. 2014).  
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Controlled release studies 

The gate-like system is associated to enzymatic stimuli. A polysaccharide 

(hydrolysed starch Glucidex 47) is grafted on MSPs surface and inhibits cargo 

delivery due to the formation, around the pore outlets, of a dense monolayer of 

sugar molecules. In the presence of pancreatin (a pool of enzymes that contain 

amylases), the 1→4 glycosidic bond between α-D-glucoses from the starch is 

hydrolysed with the subsequent uncapping of the pores and cargo delivery 

(Bernardos et al. 2010), as Scheme 4.3-2 shows. 

 

Scheme 4.3-2. Representation of uncap system after hydrolysis of the saccharide 
anchored on the MSPs surface 

Based on the DA amount calculated by EA, the maximum capacity of 

release (mrc) was determined (See Figure 4.3-2). 

G1, G2 and G3

 

    
Garlic component (DA)          Anchorage between APTES and G47         Starch after hydrolysis of α-D-glucose 

G-samples (G1, G2, G3)           Enzymatic stimuli                           DA released 
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Figure 4.3-2. Release evaluation: A. Loaded-solids suspended in PBS, (inset shows a 
zoom of the boost release at first 40 min) and B. Functionalised-solids suspended in PBS 
with pancreatin (maximum release after 150min); the mean release of G1, G2 and G3 in 
PBS (without enzyme stimuli) [▼]. 

Loaded-solids showed a 60 % of release within the first 20 min; and ca. 80 % 

of maximum release capacity (mrc) was released in one hour, see Figure 4.3-2A. 
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On the other hand, functionalised-solids did not show a DA release in PBS (Figure 

4.4-2B), but once they were dispersed in PBS dissolution with pancreatin enzyme, 

a controlled released was identified. Along first hour, just the 40 % of mrc was 

released, and the next two hours 60 % of mrc was achieved. Finally, after 5 h, the 

maximum release (80 % of mrc) was achieved. As Figure 4.3-2 shows, a controlled 

release was observed, which is in line with previous systems based on Glucidex-47 

(Bernardos et al. 2010). 

Sensory evaluation 

To evaluate the effect of gate-like system on the garlic-related odour 

detection, two triangle different discrimination tests were done. According to 

statistical tables for triangle tests, for 24 panellists, the number of correct 

responses should be at least 14.1 In relation to Table 4.3-3A, 80 % of panellists did 

not identify any characteristic odour in functionalised-solids, so, functionalised-

solids were non significantly different from solids with anything encapsulated 

inside their pores (blank samples, M0). 

On the other hand, Table 4.3-3B shows the differences between loaded 

solids with and without capped system. Results were not statistical significantly to 

declare differences either G1 to M1 nor G2 to M2. Except to G3 from M3, where 

                                                            
1 http://www.fao.org/docrep/v7180e/V7180E12.HTM ; http://www.mikromarkt.eu/pdfs/uk_modul_9_t4.pdf 

http://www.fao.org/docrep/v7180e/V7180E12.HTM
http://www.mikromarkt.eu/pdfs/uk_modul_9_t4.pdf
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results indicated a significant differentiation of functionalised-solid from the 

loaded-solid.  

Table 4.3-3. Sensory results from triangle different discrimination tests. 

 

In this regard, panellists recognise a slight and strange but not unpleasant 

odour in M1 and M2 samples. They did not associate any garlic-odour to M1 or 

M2 samples, however they did not clearly identify the blank sample. On the other 

hand, panellists identify a garlic-related odour from M3, and the absence to 

strange odour in G3 samples. As Table 4.3-2 shows, DA content in M1 and M2 is 

significantly lower than M3. We therefore assume that small DA amount is not 

easily recognised by panellists, as they certainly did with the largest DA 

concentration, in M3 sample. 

Here, the ability of functionalisation for masking garlic odour is 

demonstrated. However, the inconclusive results from sensory analyses with 

loaded-solids M1 and M2, show that sensory results are not enough to confirm 

our hypothesis, and it is needed the use of analytical and quantitative studies. 

  

Correct answers
G1 - M1 - G1 9.0  ± 0.6
G2 - M2 - G2 11.0 ± 0.7
G3 - M3 - G3 18.0  ± 0.9

Correct answers
G1 - B - G1 4.0 ± 1.2
G2 - B - G2 5.0 ± 0.6
G3 - B - G3 5.0 ± 0.6

A. B.
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Head Space Evaluation (HS-SPME with GC-MS detection) 

Taking into account the above results, it is needed to confirm that the non-

detection of garlic-related odour, is a result of masking effect and not as a 

consequence of small amount of DA encapsulated nor due to DA losses. 

In this context, DA evaluation of loaded-solids (M1, M2, and M3 solids) and 

functionalised-solids (G1, G2 and G3) using headspace HS-SPME was performed. 

Also, solids obtained after the first step of functionalization, g1, g2 and g3 

dispersed in PBS with and without pancreatin, were evaluated. 

Figure 4.3-3 shows the intensity response related to DA detection. The 

three loaded-solids (M1, M2 and M3) showed the major DA detection. As well as 

results were correlated with DA content. It confirms the significant high DA 

content of M3. Then, after the complete surface functionalization, any of three 

functionalised-solids (G1, G2 and G3) did not show any DA detection.  

Despite this, results from testing solids g1, g2 and g3, after the first step of 

surface functionalization (with only APTES anchorage), a small DA amount was 

detected. It confirms not only the DA presence, (there are not lack of DA along 

functionalization steps), but also, results indicate that first step of APTES 

functionalization is not enough to mask the complete garlic-related odour 

detection. In relation to detection of DA-released, PBS dispersions had non-DA 

detection, but a significant DA signal was detected for enzyme suspensions.  
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Figure 4.3-3. Head space of garlic-related odour detection, evaluated as diallyl 
disulphide content. A. Head-space detection of dry-samples: Loaded-solids (M1, M2 and 
M3), intermediate solids after first step of functionalization (g1, g2 and g3) and Final 
functionalised solids (G1, G2, G3). B. Head-space detection of functionalised samples on 
PBS suspensions: With and without enzyme presence.  
Grey bars correspond to solids of DA dispersion of loading of 0.1 µg·mL-1 (M1, g1 and G1), Dark 
grey bars are solids of DA loading dispersion of 1 µg·mL-1 (M2, g2 and G2), and black bars are of DA 
loading dispersion of 10 µg·mL-1 (M3, g3 and G3). 
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Hence, the HS-SPME monitoring confirms the masking odour due to surface 

functionalization. Results also indicated that a complete surface capping is needed 

for enhancing the masking properties of gate-like systems. Moreover, monitoring 

of release dispersions not only validate the on-command delivery but also 

confirms that DA component remains inside the pores. Additionally, results 

showed that capped-system mask the unpleasant odour unless the specific 

enzymatic stimulus appears. 

Electronic nose evaluation 

In order to get a rapid system to detect the presence or odour absence. An 

electronic nose (e-nose) was used to evaluate the headspace. First, a protocol was 

developed to detect DA disolutions in hexane. A dynamic data analysis showed 

that e-nose was able to differentiate DA in function to three different 

concentrations. The protocol established was able to differentiate DA solutions 

from their respective controls (hexane without DA). It means that the developed 

e-nose protocole has a dose-manner response. 

Data exploration and dimension reduction on the datasets were performed 

by Principal Components Analysis (PCA). Attending to the three DA concentrations 

and all the functionalised-samples. This model had four principal components 

whit a cumulative variance of 91.4 %, a Root Mean Square Error of Calibration 

(RMSEC) of 0.276 and a Root Mean Square Error of Cross Validation of 2.071, and 
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a 67.5 % of representatively from the datasets. Due to low representatively of two 

components, see Appendix 4.3-Figure S1, we tried a concretely PCA with three 

components. Figure 4.3-4 shows the data clustering for each loaded-samples (M1, 

M2 and M3). The cluster corresponding to functionalised-samples, show a reliable 

result. Which confirms the differences between the loaded and functionalised-

samples. 

 
Figure 4.3-4 Principal Components Analyse with 3 principal components to differentiate 
two main groups: The bigger circle with all the functionalised- samples, and clearly 
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differentiate, on the other side: the loaded-samples, without surface functionalization 
are grouped in function of concentration of DA loaded.  

We also conducted a Partial Least Square (PLS), see Appendix 4.3-Figure S2, 

analysis attending to the four different classes assuming that functionalised-

samples should take the same response, ideally. In this case, the model had a R2 

of 0.79 which indicate the probability level to predict the right sample using the 

model obtained, (taking into account a Cross Validation). PLS model had four 

principal components whit a cumulative variance of 87.6 %, a Root Mean Square 

Error of Calibration (RMSEC) of 1.063 and a Root Mean Square Error of Cross 

Validation of 1.882 (Supplementary information, Appendix 4.3-Figure S3). A 

SVMDA analyses was also carried out (Supplementary information, Appendix 4.3-

Figure S4), it indicated that 90 % of samples were properly classified among the 

four classes defined.  

Finally, we carried out a Multilayer Perceptron (MLP). Bearing in mind that 

when MLP is used as a classification tool, the numbers of neurons in the input 

layer is equal to the dimension of the feature space and the number of neurons in 

the output layer is usually chosen to be the number of classes. In our case we 

define architecture of twelve inputs neurons, six neurons in one hidden layer and 

four output neurons. We achieved, with all samples measured, a 100 % 

classification accuracy through leave-one-out cross validation method.  
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Table 4.3-4 shows the confusion matrix of MLP classifier using leave-one-

out cross validation method. Hence, e-nose responses confirmed the differences 

along samples with garlic odour and samples with non-garlic detection. Based on 

results obtained with electronic nose, we conducted a PLS, using data from DA 

release quantification studies, to obtain a real approaching. 

Table 1.3-4 Confusion matrix of MLP 

Target  
Output M1 M2 M3 Loaded-solids 

M1 5 0 0 0 

M2 0 5 0 0 

M3 0 0 5 0 

Loaded-solids 0 0 0 15 

 

In this case, although the model had a R2 of 0.794, RMSEP and RMSECV 

were high; hence, using a real approach to the samples measured, e-nose method 

developed is able to identify garlic odour. 

Conclusions 

A masking encapsulation system for garlic-related odour was described. 

Major bioactive component in garlic (diallyl disulphide, DA) was encapsulated in 

mesoporous silica supports, and the surface functionalisation not only provides an 

on-command release by enzyme presence, but also retains the DA inside the 

pores which mask the garlic-related odour. 
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Sensory and headspace monitoring of DA showed that MSPs support by 

itself does not represent a masking odour solution, but surface functionalisation 

achieves the non-odour detection. Additionally, this study showed that electronic-

nose can be used as a rapid system for monitoring. 
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Polyamidic nanofibrous membranes containing gated silica mesoporous 

particles, acting as carriers, are described as novel hybrid composite materials for 

encapsulation and on-command delivery of garlic extracts. The carrier system 

consists of MCM-41 solids functionalized in the outer surface, with linear 

polyamines (Solid P1) and with hydrolyzed starch (Solid P2), both acting as 

molecular gates. Those particles were adsorbed on electospun nylon-6 

nanofibrous membranes yielding to composite materials M1 and M2. FE-SEM 

analysis confirmed the presence of particles incorporated on the nylon 

nanofibers. The release of the entrapped molecules (garlic extract) from the P1, 

P2, M1 and M2 materials was evaluated using cyclic voltammetry measurements. 

Electrochemical studies showed that at acidic pH P1 and M1 were unable to 

release their entrapped cargo (closed gate), whereas at neutral pH both materials 

release their loading (open gate). Dealing with P2 and M2 materials, in the 

absence of pancreatin a negligible release is observed (closed gate), whereas in 

the presence of enzyme the load is freely to diffuse to the solution. These newly 

developed composite nanomaterials, provide a homogeneous easy-to-handle 

system with controlled delivery and bioactive-protective features, having 

potential applications on pharmacology, medical and engineering fields. 
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Introduction 

In the last years, anchoring organic or biological molecules on certain 

inorganic supports has resulted in the design of hybrid materials which show 

advanced cooperative functional behaviors (Descalzo et al., 2006). One appealing 

concept in this area is related with the design of gated supports for advanced 

delivery applications (Aznar et al., 2009; Coti et al., 2009). These new materials 

contain switchable molecular-based entities which control the on-command 

release of previously entrapped guests. These gated materials are based on the 

combination of two components: (i) a suitable inorganic support acting as a 

container (for loading the cargo) and (ii) a switchable “gate-like” ensemble able to 

be “opened” upon the application or the presence of a predefined stimulus (Coll 

et al., 2013). Selection of both components is important and determines the 

controlled release performances of the final support.  

As inorganic scaffolds, mesoporous silica of different pore sizes and 

morphologies have been widely used (Carino et al., 2007; Heikkila et al., 2007; 

Tang et al., 2012). Mesoporous supports can be prepared in different forms (from 

nanometric to micrometric) with tailor-made pores in the 2-10 nm range. 

Moreover, they have a very high specific surface area (up to 1200 m2g-1), have 

homogeneous porosity, high inertness, a large loading capacity and are easy to 

functionalize (Kresge et al., 1992). These properties make silica mesoporous 
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structures ideal candidates as scaffolds for delivery applications. In relation to the 

gated ensemble, currently several molecular, supramolecular and 

nanoparticulated systems have been used. Those systems are able to deliver the 

entrapped cargo using several external stimuli such as light (Agostini et al., 2012; 

Mal et al., 2003), pH (Angelos et al., 2009; Casasús et al., 2008), changes in redox 

potential (Fujiwara et al., 2006; Giri et al., 2005), temperatura (Aznar et al., 2011; 

Fu et al., 2003) and the presence of certain ions, molecules or biomolecules 

(Oroval et al., 2013; Park et al., 2009; Schlossbauer et al., 2009). 

In particular, the design of gated mesoporous materials has been proved to 

be a promising starting point for applying the versatility of molecular and 

supramolecular concepts to the design of gating solids, and a way of studying the 

factors that can influence the design of molecular gating functions with advanced 

delivery functionalities. These concepts contrast with the design of traditional 

delivery systems which are often based on simple diffusion controlled processes 

(Muñoz et al., 2003). 

On the other hand, nanofibers are especially appealing for the development 

of novel composites with potential applications on areas such as vascularization, 

cell migration and attachment processes (Arecchi et al., 2010; Loh et al., 2010; 

Venugopal and Ramakrishna, 2005). There are a number of different processing 

techniques used for the synthesis of nanofibers including drawing, self-assembly 
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or phase separation, however electrospining is probably the most widely studied 

(Kriegel et al., 2008). Electrospun nanofibers have surface properties that can be 

specially tailored to adjust and control porosity, composition and morphology, 

with a highly controllable three-dimensional structure and high surface area-to-

volume ratios, for providing support on the inclusion of antimicrobial agents, 

drugs, flavors, colors, antioxidants, enzymes and other functional compounds (Jia 

et al., 2002; Price et al., 2003; Rajesh and Dhirendra, 2006). Nanofibers have also 

been used in delivery applications, however there are few examples where 

release only occurs triggered by specific and selected stimuli and as stated above, 

sustained delivery is still the most common principle. Very recently, nanofibers 

that incorporate different types of silica mesoporous materials have been 

prepared and characterized (Kim et al., 2011; Madhugiri et al., 2003; Zhuang et al., 

2010). However, in these papers only the synthesis and the physical properties of 

the prepared fabrics are studied.  

Taking into account the above mentioned facts we believe that a new range 

of potential applications can be envisioned by the combination of nanofibers to 

support gated silica mesoporous particles in order to obtain composites with the 

potential ability to deliver a certain cargo upon the application of target stimuli 

while cargo is protected until its specific delivery. In order to achieve this goal and 

as a proof of concept we have selected for this particular work two mesoporous 
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systems able to protect and deliver the cargo upon changes in the pH or in the 

presence of a target enzyme (vide infra) (Bernardos et al., 2010, 2008). Those 

mesoporous scaffolds are then supported on nylon-6 nanofibers to provide a 

homogenous material for delivery. 

As cargo we selected a garlic extract whose bioactive components have 

been reported to have antimicrobial, antiatherosclerotic and antioxidative 

properties (Block, 2010; Feldberg et al., 1988). Garlic extract contain among other 

substances allicin and diallyl disulfide, organosulfurs responsible of the functional 

properties of garlic. However, some of these functional compounds from garlic 

extract are unstable and have sensorial trouble for certain applications.  In this 

context, the design of supports able to protect the cargo and induce delivery on-

command is of importance. 

Experimental Procedure 

All chemicals were purchased at the highest grade available and used 

directly without any further purification. Diallyldisulfide (tech., 80%) and NaClO4 

(ACS Reagent, 98%) were purchased from Sigma Aldrich, NaBr was purchased 

from May and Baker Ltd, UK. All solutions were prepared with acetonitrile (HPLC 

Gradient grade, Fisher Scientific) and deionized water of resistivity not less than 

18.2 MΩ·cm-1 at 25 °C (Millipore UHQ, Vivendi, UK). The chemicals nylon-6, formic 

acid (98 %), tetraethylorthosilicate (TEOS), n-cetyltrimethylammonium bromide 
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(CTAB), sodium hydroxide, triethanolamine (TEAH3), 3-

aminopropyltriethoxysilane, 3-[2-(2-aminoethylamino) ethylamino]-propyl-

trimethoxysilane and pancreatin from porcine pancreas were provided by Aldrich. 

The hydrolyzed starch Glucidex@ 47 (5% glucose, 50% maltose, 45% 

oligosaccharides and polysaccharides) was provided by Roquette. 

Synthesis of mesoporous silica microparticles 

The mesoporous MCM-41 type support, was first synthesized by “atrane 

route” (Cabrera et al. 2000) in which 4.68 g of CTAB was added at 118 °C to a 

solution of TEAH3 (25.79 g) containing 0.045 mol of a silatrane derivative (TEOS, 

11 mL). Next 80 mL of water was slowly added with vigorous stirring at 70 °C. 

After a few minutes, a white suspension was formed. This mixture was aged at 

room temperature overnight. The resulting powder was collected by filtration and 

washed. Solid was dried at 70 °C and finally, in order to remove the template 

phase was calcined at 550 °C for 5 h using an oxidant atmosphere.  

Synthesis of starch derivative (Glu-N1) 

A solution of 3-aminopropyltriethoxysilane (N1, 5.85 mL, 25 mmol) was 

added to a suspension of hydrolyzed starch (Glucidex@ 47) in ethanol. The 

reaction mixture was stirred for 24 h at room temperature and heated at 60 °C for 

30 min. The solvent was evaporated under reduced pressure. 
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Garlic bioactive compounds extraction  

Garlic was obtained in local market. The garlic cloves were peeled and 

chopped. A certain amount of acetonitrile was used to crush the garlic and get a 

sample with a garlic acetonitrile relation of 1:10 w/v where principal 

organosulfures were extracted. Solution was shaken by vortex for 3-5 min and 

then filtered and kept at 4 °C.  

Garlic bioactive compounds loading (P0) 

100 mg of mesoporous particle MCM-41 were suspended in 40 mL of garlic 

acetonitrile extract inside a round-bottom flask. The mixture was stirred for 24 h 

at room temperature. This mixture was filtered and dried at room temperature 

for 12 h. 

Synthesis of P1 

An excess of 3-[2-(2-aminoethylamino)-ethylamino]-propyl-

trimethoxysilane (N3, 0.43 mL) was added to 0.1 g P0 in 40 ml acetonitrile. The 

final mixture was stirred for 5.5 h at room temperature in an inert atmosphere of 

nitrogen. Solid was filtered and washed with acid solution at pH 2.0 (acidified with 

sulfuric acid) and dried for 12 h at 35 °C.  

Synthesis of P2 

Glu-N1 was added to P0 in a 1:1 w/w relation. The final mixture was stirred 

for 5.5 h at room temperature under argon. The solid was filtered and washed 

with deionised water, and dried at for 12 h at 35 °C.  
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Particles immobilization – Composites M1 and M2 

Polymer solution was made with 8 g of nylon-6 pellets dissolved in 26.6 mL 

of a formic acid (88 %) aqueous solution. The dispersion obtained was stirred for 

about 24 h to make a clear sol–gel. Then 80 mg of solid (P1 for membrane M1 and 

P2 for membrane M2) were added and stirred for 5 h at 300 rpm. 5 mL syringe 

(Hamilton) was filled with the entire composite polymer solution and placed in a 

KDP100 syringe pump (KD-Scientific) at a flow rate of 0.20 mL min-1. The needle of 

the syringe was linked to the Spellman SL150 high voltage power supply by an 

alligator clip, while a copper lamina, positioned at 11 cm in front of the needle, 

was used as collector and grounded. The electrical potential was set at 25 kV. 

Production time of a single membrane was stopped at 10 min.  

Release studies 

Aqueous suspensions of the four materials were stirred for 5 h at 200 rpm. 

Each hour an aliquot from solution was taken, passed through nylon 0.45 um 

filters and then evaluated by cyclic voltammetry. Delivery sample was constituted 

by 12 mg of solid P1 or P2 and 30 cm2 for M1 or M2 and suspended in 30 mL of 

the corresponding release solution. Delivery studies of solid P1 and membrane 

M1 were carried out in aqueous solution containing sulfate anion (10-2 M) and at 

pH 7.0 and pH 2.0. Solid P2 and membrane M2 were suspended in aqueous 

solutions at pH 7.0 in the absence and in the presence of pancreatin.  
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Cyclic voltammetry 

A CHI 1010 Electrochemical Analyzer (CH Instruments, Austin Texas) with a 

three electrode setup consisting of a glassy carbon working electrode, platinum 

auxiliary electrode and an Ag/AgCl reference electrode was employed.  Cyclic 

voltammogram experiments were acquired with a scan rate of 50 mVs-1 and were 

obtained by running a series of FIA. Experiments in which the potential was 

stepped incrementally from -0.1 to +1.5 V (vs. Ag/AgCl) and the current was 

measured.  

Experiments were performed in aqueous reference solution with 

acetonitrile (50:50), sodium bromide 15 mM in 0.1 M of sodium perchlorate 

(Martindale et al., 2011). The measure solution has a 1:1 v/v ratio between 

reference solution (blank) and sample. 

Characterization of materials  

PXRD measurements were performed on a Seifert 3000TT diffractometer 

using CuKα radiation. Field Emission Scanning Electron Microscope images were 

acquired by FE-SEM ULTRA 55-44-22, evaluated by secondary (SE2) and 

backscattered electrons (AsB) detectors. Samples were coated with platinum and 

examined at 5kV.  An X-ray EDS detector was used for qualitative elements 

analysis. Dynamic Light Scattering (DLS) studies were conducted at 25 °C using a 

Malvern Zetasizer Nano ZS. Back-scattered light was detected at 173 °, and the 

mean particle diameter was calculated from the quadratic fitting of the 
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correlation function over 3 runs of 10 s duration. All measurements were 

performed in triplicate on previously sonnicated highly dilute aqueous 

dispersions. Thermogravimetric analyses were carried out on a TGA/SDTA 851e 

Mettler Toledo balance, using an oxidant atmosphere (air, 80 mL·min-1) with a 

heating program consisting of a heating ramp of 10 °C per minute from 393 to 

1273 K and an isothermal heating step at this temperature for 30 min. TEM 

images were obtained with a 100 kV Philips CM10 microscope. N2 adsorption-

desorption isotherms were recorded with a Micromeritics ASAP2010 automated 

sorption analyzer. The samples were degassed at 120 °C in vacuum overnight. The 

specific surface areas were calculated from the adsorption data in the low 

pressure range using the BET model (Brunauer & Teller, 1938). 

Results and Discussion 

The gated materials 

In this approach, MCM-41 was used as inorganic scaffold in the form of 

microparticles. The prepared MCM-41 support contains mesopores in the 2-3 nm 

range which allow the encapsulation of certain guests. In relation to the capping 

component two previously reported gates were selected; one based in the use of 

linear polyamines (for the preparation of P1 material) and other based in the use 

of hydrolyzed starch (for the preparation of P2 material). Scheme 4.4-1 shows the 

proposed paradigm for the preparation of the gated materials.  
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Scheme 4.4-1. Synthesis of mesoporous particles P1 (capped with N3) and P2 (capped 
with Glu-N1). Preparation of the composites M1 and M2 is also shown. 

For the synthesis of the pH-responsive gated material (P1) the derivative 3-

[2-(2 aminoethylamino)-ethylamino]propyl-trimethoxysilane (N3) was selected as 

simple, yet suitable, open-chain molecular pH-responsive system that was 

anchored through covalent bonds on the pore outlets of the MCM-41 support. For 

the preparation of the enzyme-responsive material (P2) the commercially 

available hydrolyzed starch Glucidex® 47 was selected. The hydrolyzed starch was 

properly derivatized, through reaction with 3-aminopropyltriethoxysilane (N1), in 
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order to yield the alkoxysilane derivative (Glu-N1) which was then anchored on 

the external surface of the MCM-41 support. 

In the P1 solid changes in the pH control the state of the gate (open or 

closed). In particular, open-closed cycle relies on protonation/deprotonation 

processes of the grafted polyamines. At acidic pH, the nitrogen atoms of the 

polyamines are fully protonated and strong electrostatic repulsions between the 

grafted polyamines occur. These strong repulsions pushed away the protonated 

polyamines blocking the pores of the inorganic support and, as a consequence, 

inhibit cargo release. Also certain anion-controlled outcome is observed because 

negatively charged anions interact with the positively charged ammonium 

moieties leading to a more pronounced pore blocking. At neutral pH the 

polyamines are only partly deprotonated and the electrostatic repulsions are 

highly diminished. This allow pore opening due to the more flexible 

conformational of polyamines (when compared with polyammonium) with the 

subsequent cargo release. 

In solid P2, the opening mechanism deals with an enzymatic hydrolysis of 

the grafted starch, which acts as molecular gate. The anchoring of the saccharides 

inhibits cargo delivery due to the formation, around the pore outlets, of a dense 

monolayer of starch molecules. In the presence of pancreatin (a pool of enzymes 

that contain amylase), the 1→4 glycosidic bond between β-D-glucoses present in 
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the starch is hydrolyzed with the subsequent uncapping of the pores and cargo 

delivery. Scheme 4.4-2 shows the release mechanism. 

 

Scheme 4.4-2. Mechanism of pH and enzyme induce release of the entrapped cargo 
from P1 and P2. 

The composite materials  

The final goal of this work was to incorporate the materials P1 and P2 on 

nanofibers as a suitable approach for the development of composite fabrics able 

to deliver the cargo upon the presence of specific stimuli. Polymer solutions were 

made based on one of the most standardized protocols. Nylon-6 pellets were 

dissolved in an aqueous solution containing formic acid. The dispersion obtained 

was stirred for ca. 24 h to make a clear sol–gel. Then 80 mg of solids P1 or P2 

were added and the mixture was stirred. The final composites M1 (containing 
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solid P1) and M2 (containing solid P2) were obtained by exposition of the 

prepared mixtures on an electrical field using the well-known electrospinning 

technique and collected as non-woven membranes on a plate that acts as the 

counter electrode. 

Materials characterization  

The characterization of the materials P1 and P2 was performed using well-

known techniques. Powder X-ray diffraction (PXRD) patterns of the prepared silica 

mesoporous MCM-41 solids are shown in Figure 4.4-1. The PXRD of siliceous as 

synthesized MCM-41 shows four low-angle reflections typical of a hexagonal array 

that can be indexed as (100), (110), (200) and (210). A significant shift of the (100) 

reflection in the PXRD of the MCM-41 calcined sample is clearly observed (curve b 

in Figure 4.4-1) corresponding to an approximate cell contraction of ca. 5 Å. This 

displacement and the broadening of the (110) and (200) peaks are most likely 

related to condensation of silanols during the calcination step, when CTAB is 

removed. In the case of P1 and P2, the PXRD pattern (Figure 4.4-1C and 1D) only 

shows the characteristic (100) reflection. The presence of this peak indicates that 

the mesoporous structure was preserved through the filling process with the 

garlic extract and the anchoring of molecular gates. 
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Figure 4.4-1. Powder X-ray patterns of a) as-synthesized MCM-41, b) calcined MCM-41, 
c) solid P2, and d) solid P1.  

Figure 4.4-2 shows TEM images of MCM-41 solid support showing the 

typical porosity associated with this type of inorganic support. The images also 

show that the mesoporous solid was obtained as micrometric particles. In fact, 

Dynamic Light Scattering (DLS) studies carried out with the starting MCM-41 

confirmed the presence of micrometric particles with a mean average diameter of 

ca. 1 µm (see Figure 4.4-2). 
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Figure 4.4-2 A. TEM image of MCM-41 particles and B. statistical representation of 
particle size of MCM-41obtained by DLS (Dynamic Light Scattering) studies.  

N2 Adsorption–desorption isotherms of the MCM-41 calcined phase show 

typical curves consisting of one single adsorption step at the intermediate P/P0 

value (0.1-0.4) which can be related to the nitrogen condensation inside the 

mesopores by capillarity, as corresponds to a type IV isotherm (see Figure 4.4-3). 

The absence of a hysteresis loop in this interval and the narrow pore distribution 

suggests the existence of uniform cylindrical mesopores (2.71 nm, 0.88 cm3 g-1). 

The application of the BET model to calcined material gave a value for the total 

specific surface of 979.6 m2 g-1. In contrast, the N2 adsorption–desorption 

isotherms of the loaded solid P0 and the final functionalized solids (P1 and P2), 

show in each case a flat curve with specific surfaces of 220, 100 and 193 m2 g-1 

and pore volumes of 0.25 0.17 and 0.19 cm3 g-1 for P0, P1 and P2, respectively. 

This not only shows an appreciable absence of mesopority but also indicates a 

significant pore blocking due molecular gates anchorage being as decrease of 
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specific surface and volume pore from solid loaded P0 to final functionalized 

solids P1 and P2. 

 

Figure 4.4-3. Nitrogen adsorption-desorption isotherms: () MCM-41 calcined material, 
() P0 solid, (), P1 solid, and (▲) P2 solid. 

The organic contents in the loaded solid were determined through 

thermogravimetric studies. TGA curves showed a weight loss between 100-600 °C 

due to the organic matter combustion corresponding to the entrapped cargo in P0 

and, in the case of P1 and P2, corresponding to the entrapped cargo and the 

molecular gate. In particular, the amount of organic matter in the MCM-41 

scaffolding loaded with the garlic extract was of ca. 0.18 g garlic extract/g SiO2, 

whereas the final gated materials P1 and P2 have a content of organic matter of 

0.38 and 0.25 g/g SiO2, respectively. (See Appendix 4.4-Figure S1, for TGA curves). 
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The morphology of composites M1 and M2 was studied by means of FE-

SEM. Micrographs of the nanofibrous structures are shown in Figure 4.4-4. Nylon-

6 ultra-thin fibers, with an average thickness of 160 nm (Figure 4.4-4A), exhibited 

a non-woven arrangement. Several chain entanglements can be observed, which 

results in a highly porous structure. The absence of beads and fiber bundles 

indicated that the electrospinning conditions were adequate for a proper and 

stable solvent evaporation. FE-SEM images of M1 and M2 (Figure 4.4-4B) show 

the presence of entrapped P1 and P2 particles, distributed randomly across the 

nanofibrous matrix. The gated silica particles appear to be partially wrapped in 

the fibers external surface, suggesting the occurrence of relatively strong adhesive 

forces. The presence of hydrogen bonding interactions between the polyamide 

chains of the fibers and the capping molecules covering P1 and P2 (polyamines 

and polysaccharides, respectively) cannot be excluded. The formation of covalent 

bonds between the fibers and the capping molecules is unlikely considering the 

preparation conditions for the final M1 and M2 composites. It should be noticed 

that, regardless the nature of the interactions occurring between particles and 

fibers, the adhesion forces seem to be strong enough for maintaining the 

composite structure together after the release procedure (Figure 4.4-4C). This was 

confirmed by FE-SEM-EDX studies that showed the presence of silicon in the 

composite membranes after release completion, and even after long-term (24h) 
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soaking, in the different release environments tested. (See Appendix 4.4-Figure S2 

for EDX spectra) 

 

Figure 4-4-4. Representative FE-SEM images of a) nylon6 nanofiber, b) composite with 
entangled microparticles before the released procedure, and c) the same composite 
after the release procedure. 

Controlled release behavior  

Controlled release studies were performed on P1, P2 and M1 and M2. 

Cargo delivery was monitored by cyclic voltammetry studies using a reported 

procedure based in the detection of disulfides (diallyl disulfide – DA, is one of the 

major components of the garlic extract) in the presence of bromide. The detection 

is based on the electrogeneration of bromine on a carbon electrode, which reacts 

with disulfides to catalytically regenerate bromide. This redox reaction induced 

the appearance of a peak in the voltammogram in the 1.0-1.2 V range, whose 

intensity is proportional to the amount of disulfides present in the garlic extract. 

(See Appendix 4.4-Figure S3, for Voltammetric evaluations).  
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Figure 4.4-5. Efficiency delivery curves of diallyl disulfide (DA) in garlic extract from pH-
sensitive materials a) P1 particles and b) M1 composites. Release at pH 7.0 () and 
pH2.0 (▲).  

In a first step controlled release features of the pH-sensitive materials P1 

and M1 were evaluated. In a typical experiment 12.5 mg of P1 or 80 mg of M1 

were suspended in 25 mL of water at pH 2.0 and pH 7.0 (in the presence of 

sulfates). Then at certain time intervals, fractions of both suspensions were taken 

and the solid (P1 or M1) was removed. Cargo delivery into the solution was then 

measured via the electrochemical procedure described above. Diallyl disulfide 

delivery process was followed by voltammetric responses of the clear solutions. In 

Figure 5 the delivery profiles at pH 2.0 and 7.0 for P1 and M1 are displayed. The 

results have been represented as the delivery efficiency, the percentage of the 

voltammetry signal of each aliquot relative to the signal that would be obtained 

for the complete delivery of the cargo for each material.  
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From Figure 4.4-5 it can be seen that aqueous suspensions of solid P1 at pH 

2.0 show a poor release of the garlic extract even after some hours in solution 

(see Figure 5a). This very low release is clearly related with the presence of the 

polyamine-based gated ensemble. However, when the experiments are carried 

out in water suspensions at pH 7.0 a release of the cargo is observed as indicated 

by the time-dependent enhancement of the intensity of the oxidation peak in the 

1.0-1.2 V range. In the case of composite M1, similar delivery profiles have been 

obtained this fact clearly indicating that the release process has not been 

modified when the microcarriers have been dispersed into the membrane. As it 

can be seen in the FE-SEM images (Figure 4.4-4) the particles are not embedded 

within the fibers but only located on the fiber outer surfaces, so the gated 

mesopores of the microcarriers are accessible and the opening/closing 

mechanism is fully operational. However, some differences between P1 and M1 

delivery profiles may be observed. Release from M1 composite reaches a lower 

efficiency and the process looks slower, than for P1 solid. The curve for M1 does 

not clearly reach the saturation as it does for P1 delivery. This fact could be 

related with some kinetic difficulties for the cargo to be delivered from the M1 

composite due to the intricate morphology of the membrane.  
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Figure 4.4-6. Delivery of garlic extract from enzyme-response materials a) P2 particles 
and b) M2 composite. Release in the presence of pancreatine () and release in the 
enzyme absence (▲). 

Similar delivery experiments were carried out with materials P2 and M2. In 

particular, 12.5 mg of P2 or 80 mg of M2 were suspended in 25 mL of water in the 

presence and in the absence of pancreatin at neutral pH.  Then, at a certain time, 

aliquots of both suspensions were taken and the solid materials (P2 or M2) 

removed. As in the above case cargo release was measured via the 

electrochemical procedure described previously.  

The delivery profiles for P2 and M2 in the presence and absence of 

pancreatin are displayed in Figure 4.4-6. Suspensions of P2 at neutral pH in the 

absence of enzyme shows no delivery of the garlic extract which is attributed to 

the presence of the starch derivative anchored on the external surface of the 

mesoporous material. In contrast, when the experiments are carried out in the 
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presence of pancreatin a clear release of the cargo is observed and attributed to 

the enzyme-induced hydrolysis of glycosidic bonds of the grafted polysaccharides. 

In the case of M2, the same basic behavior can be observed, the lack of delivery in 

the absence of the enzyme and the delivery when the enzyme is present, so the 

release mechanism may not be affected by the fact of having the micro-carriers 

embedded into the membrane. However, in this case we can observe a higher 

difference in the delivery speed for M2 when comparing with P2 than for the 

P1/M1 system. This, in fact supports the explanation given above for the M1 

behavior. As in the case of M2 composite the mechanism for opening the gate is 

more complex than for M1 because it needs the enzyme to get the micro-carrier 

surface in order to get the gate open, the intricate morphology of the composite 

produce a higher effect giving rise to a more pronounced slowdown of the whole 

process. 

This slightly different behavior of the composites M1 and M2 respect to the 

parent P1 and P2 materials could be seen as an appropriate method to get a 

better control of the delivery process, enhancing the closed conditions and 

allowing a more maintained released of the cargo.  

Conclusions 

Two new composite materials (M1 and M2) based on the incorporation of 

two gated silica mesoporous hybrid solids (P1 and P2) on a electrospun 
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polyamidic nanofiber have been prepared and their controlled release behaviour 

studied. Those composites presented a fibrous structure with entangled 

microparticles. At pH 2.0 aqueous suspensions of M1 showed negligible release of 

the entrapped extract whereas when the pH is increased to 7.0 a clear cargo 

delivery from M1 is observed. In the case of M2, the mesoporous gated 

microparticles are equipped with a polysaccharide able to inhibit cargo release. 

Addition of pancreatin to aqueous suspensions of M2 induced cargo delivery due 

to the progressive enzyme-induced hydrolysis of the grafted polysaccharide. We 

believe that the development of composite materials based on silica mesoporous 

microparticles equipped with gate-like systems is an interesting way to prepare 

smart fabrics showing “zero” release that can be opened at will using appropriate 

stimuli. These systems are homogenous and offer an efficient way for the cargo 

protection, opening a wide range of research opportunities for this delivery 

concept to be applied in several industries. 
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5.1 Introduction: Understanding the MSPs’ toxicicity 

Extended use of nanomaterials have increased the interest to regulate 

nanotechnology applications and the associated toxicity. In particular, the toxic 

responses of many silica nanomaterials has not yet been fully evaluated. To 

address this issue, some companies are participating in the European Nanosafe 

consortium, which evaluates the health risks of nanomaterials (Sahoo, Parveen, & 

Panda, 2007). Along with JRC the European Nanotechnology Gateway and 

European Nanobusiness Association (ENA), have been established general 

parameters for working nanoparticles materials, defining physical and chemical 

properties to identify its behaviour as metabolisable compound. Focus on identify 

reliably methods which predict the possible spectra of toxic risks and health 

hazard associated for persistence, bio-acumulation and translocation of these 

particles by current exposure ways such as dermal contact, inhalation or 

ingestion, where in-vitro and in-vivo techniques to identify effects on exposure 

target (organism, organ, tissue or cell) are widely used (Cushen, Kerry, Morris, 

Cruz-Romero, & Cummins, 2012). 

5.1.1 MSPs’ toxicity: In vitro studies  

In vitro assays are used to evaluate cell viability and cell damage. Cell 

viability is mainly based on compounds present in healthy cells that be directly 

related with metabolic activity, biological functionality of membranes or cells as 
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well as compounds related with the physiological function of the respiratory 

chain. But, cell viability is not always based on the integrity of the metabolism 

compounds, it could also be measure by the leakage of components that go out 

from cytoplasm when the cellular metabolism is affected. All those compounds 

are the markers used to evaluate the cell viability.  

Currently, direct and indirectly reactions conducted by dye compounds are 

used for identify the markers of cell viability. Colorimetrical or fluorescently 

methods relate the light emission or fluorescent response with concentration of 

markers, which is proportional to number of living cells (X. He et al., 2008; 

Mönkäre et al., 2011; Totsuka et al., 2009). In vitro assays use different cell types 

include phagocytic, neural, hepatic, epithelial, endothelial and red blood cells as 

well cancer cell lines. The identification from cell endpoints that reflect 

physiological stress, toxicity or some other phenomenon try to model what is 

developed in human body (Heikkilä et al., 2010). 

On the other hand, damage in cellular activity is not only related with 

decreasing in cell viability, is also related with apoptotic process. Apoptosis reachs 

a general collapse, which affects nucleus process and could trigger necrotic 

activity. Apoptosis is a biochemical reactions set that include alteration in cell 

membrane, cytosol condensation and collapse of chromatin and shrinkage 

cellular. Cell is disintegrated into vesicles (apoptotic bodies), which are engulf and 
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removed by phagocytic cells. The spilling out of that content into surrounding cells 

increases the damage and conduce a necrotic cell level.  Necrosis is a form of 

traumatic cell death, it results from acute cellular injury and generates defence 

responses as inflammation. Death cells by necrosis usually don’t send the same 

chemical signals to the immune system that cells undergoing apoptosis do. 

Necrosis typically has disruption of the chromatin, the plasma membrane and also 

the organelle membranes. Late necrosis is characterized by extensive DNA 

hydrolysis, vacuolation of the endoplasmic reticulum, organelle breakdown, and 

cell lysis. The release of intracellular content after plasma membrane rupture is 

the cause of inflammation in necrosis (Kim, Nam, & An, 2012). 

In cases of cell damage, caspases are a family of cysteine proteases that 

play essential roles in inflammation, apoptosis and necrosis. Among the caspases 

family, effector caspases cleavage the cytosolic and nuclear proteins to intra-

nucleosomal degradation of DNA and leads the apoptosis process. Based on the 

evaluation of those enzymes activity, is determinate the relation between 

apoptotic and necrotic cells.  

Cell viability studies 

Cell viability evaluated for silica nanoparticles showed a significant 

descended in metabolic activity, where smallest size particles and highest doses 

represent the major damage (Oberdorster et al., 2005). Those studies have 
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revealed that viability drop is caused meanly by internalization of particles. Once 

particles go inside the cells a loss of mitochondrial membrane is produced and the 

mitochondrial membrane potential is reduced. The decrease of deshydrogenase 

activity in mitochondria trigger a dysfunction and posterior damage cellular. 

Human neuroblastom cells showed a viability decrease from 92 % to 40 % 

before exposure to MCM-41 nanoparticles (Q. He, Zhang, Gao, Li, & Shi, 2011), 

and analyses realized in fibroblasts show a viability decreased to 83.8 and 73.9 % 

by particles under 80 nm. However, 500 nm particles showed weak effects, with 

91.4 % of cell viability, even at 200 ug·ml-1 (Q. He et al., 2011; Li et al., 2011). 

Other studies have revealed that particles larger than 1000 nm were unable to 

pass tissues as intestinal mucus barrier (Release, Medicine, Damm, Received, & 

Szentkuti, 1997), which confirms the size-effect relation.  

It is important to determinate the risk related as a function of whole 

particle features. Latest studies showed that metabolic activity decrease is due 

not only by smallest size particles and high concentrations but also by all the 

entire interaction cell-particle. An interesting behaviour showed by silica particles 

is related to surfactant removing; when solids were treated with refluxing in 

acidified methanol, generates a 60 % of cell depletion, while through the calcined 

procedure, silica particles kept the cell survival percentage above 80 % 

(Savolainen et al., 2010). Another important factor on toxic response is the 
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interaction with chemical surface structure. Recent studies shown a significant 

influence in ATP drop depends on the particles’ surface treatment; thus, 

carbonized particles affect in different manner than oxidized particles (Santos et 

al., 2010). Alike when surface is functionalized, particles change the way to 

endocytoses (Tao, Toms, Goodisman, & Asefa, 2009) and the cell damage could 

decrease. In this context, nanoparticles have been functionalized with different 

systems such as amino-propyl and mercaptopropyl to decrease the dose lethal in 

neuroblastoma cells (Di Pasqua et al., 2008). 

Cell damage studies 

Size particle still as an important feature to determine toxicity, studies 

revealed that particles under 21 nm exposed to myocardial cells showed damage 

for nuclear condensation as an increase in cell debris. It has beed related with 

cycle arrest, where there was a significantly decrease of cell percentage in S phase 

cycle. Besides, monitoring of p53 and p21 protein levels became more marked 

with doses increased with these particles (Takagi et al., 2008; Ye, Liu, Chen, Sun, & 

Lan, 2010)(Ye et al., 2010), which are related with arrest cycle in G1-phase. On the 

other hand, the apoptosis process was induced for a time and concentration 

dependent, with an early apoptotic rate for 100 µg·ml-1 and necrosis process 

above 200 µg·ml-1 in HEPG2 cells. Throug caspase-3 expression by western blot 

analyses, human endothelial cells also showed a necrosis process with the smaller 
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particles. So the smallest nanoparticles develop apoptotic and necrotic effects 

(Marquis, Love, Braun, & Haynes, 2009; Napierska et al., 2009). 

Caspases activity indicate similar effect between different silica materials 

such as MCM or SBA, not only by size-relation but also by chemical structure 

differences. In cases of cell viability decrease the surface chemistry is important to 

determinate the toxicity of particles. Hydrophilic/hydrophobic character induces 

the way they interact with cells; depends on surface structure there are 

differences into influence in cell-particle interactions, which is stronger with Si-C-

Hx and Si-Cx bonds in surface’s particle, than Si-Ox surfaces, which is less harmful. 

Surface structure influences the cellular damage by apoptosis and necrotic cells 

produced, as well as decrease of cellular viability (Bimbo et al., 2010).  

Hydrophilicity facilitate protein adsorption and cell-adhesion whereas 

hydrophobic particle could form links with proteins which may cause 

conformational changes or denaturation . Hydrophobic surfaces have been shown 

increment in apoptotic cells, more evident in smaller size fractions, and related 

with amount of particles in contact with each cell. However it is needed to identify 

not only acute effects but only chronic responses, which needs in vivo assays.   
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Oxidative studies 

Another important factor to consider in cell damage is the influence of the 

oxidative state regulated by the electron transport chain (ETC). ETC is a complex 

of redox reactions in which electrons are transferred from a donor molecule to an 

acceptor molecule. In mitochondria, it is the conversion of oxygen to water, NADH 

to NAD+ and succinate to fumarate that generates an electrochemical proton 

gradient to form energy as ATP.  Atomic oxygen, a strong oxidizing agent is the 

electron acceptor. In ETC, it has two unpaired electrons in separate orbits in its 

outer electron shell. This electron structure makes oxygen susceptible to radical 

formation. The sequential reduction of oxygen through the addition of electrons 

leads to the formation of a number of reactive oxygen species, ROS including: 

superoxide, hydrogen peroxide, hydroxyl radical, hydroxyl ion and nitric oxide. 

Superoxide radical is an oxidative specie precursor and the most proximal ROS 

considering the mitochondrial function (Thannickal & Fanburg, 2000).  

The deleterious effect of oxidative stress on the proper function of cells is 

well known, Caco-2 cells  have been reported as sensitive by silica as initiators of  

ROS generation and O2 formation, at highest doses of MCM41 and SBA15 

(Gebhardt  J. Caspary, W.F. Boehles, H. Stein, J., 1999). As well as smallest 

particles can trigger the release of reactive oxygen species and cause oxidative 
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stress. It also trigger an inflammation response by means of interaction with the 

reticule-endothelial system.  

Similarly, ROS could be related with chemical surface. In fact, ROS can be 

induced by hydrophobic/hydrophilic interactions and/or redox reactions between 

cell and the particles surface. Process to craft surface, influence oxidation or 

thermally oxidation surface treatments reduce the efficiency electron transfer 

from the excitons to the surface molecules, which decrease ROS production. For 

instance, carbonized surface particles increased amounts of hydrogen peroxide 

and superoxide anion, which induces a mitochondrial dysfunction. Mitochondrial 

damages increase cell apoptosis and subsequent cell membrane damage and cell 

death (Santos 2010). Further oxidative stress could generate deleterious by lipid 

in membrane, causing injury to lipids, proteins and DNA (Bayir & Kagan, 2008). 

So that, the principal evaluation for particles in in-vitro assays is the 

response as cell viability and cell damage as well as ROS production to identify the 

principal cellular risks that influence injuries in organs and target tissues. 

5.1.2 MSPs’ toxicity: In vivo studies 

Toxicity evaluation requires not only a cellular level analyse but also needs 

real scenery to study the adverse effects on living beings. In vivo assays are 

developed principally on mice, raised in specific conditions by care procedures 

accord with the local care committee. Weigh, temperature, age of treatment and 
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quarantine conditions before analyses are the control parameters to take in 

count.  

In vivo analyses expose the target component in selected animals by direct 

ingestion or intravenously or subcutaneous injection. Time and doses are defined 

and a monitoring in blood and tissues is done (Aillon, Xie, El-Gendy, Berkland, & 

Forrest, 2009). Fixation and freezing preserve tissues samples before are staining 

and sectioned for microscope analyze in the histopathological examinations. 

Organs such as liver, spleen, kidney, intestine, heart and lungs are exciding 

to determinate lesions, congestion or haemorrhage (Cha & Myung, 2007). Specific 

studies, separate into organs tissues by parenchymal and non-parenchymal cells 

trough procedures that allow analyse a subcellular level the toxicological damage. 

Genotoxic and mutation evaluation apply PCR analyses to determinate DNA 

sequences on mouse model, known as GPT delta mice, which deletions in lambda 

DNA integrated in the chromosome are preferentially selected for molecular 

analysis (Ogawara et al., 1999; Totsuka et al., 2009).  

Some MSPs studies have been developed in mice by subcutaneous 

administration and direct ingestion, and it has not shown a significant damage by 

exposure of microparticles for 2 and 4 weeks (Kilpeläinen et al., 2009). However, 

silica nanoparticles oral administered in rats (Aleshin, Lee, Park, & Akagi, 2004), 

reported particles distribution to kidneys, liver, lungs and spleen. It is important to 



SECTION II - Introduction 

152 

notice that silica particles were easily decomposed and eliminated via urinary and 

faecal excretion after oral exposure. The smaller the particles, the more rapidly 

they are secreted, presumably because they are more easily decomposed. Those 

studies shown that once absorbed, particles are transported via the portal vein to 

the liver and are then eliminated during a 7-day period by faecal excretion, and 

also through urine, without changing the kidney microstructure.  

In line with this, an in vivo study with male nude mice (Souris et al., 2010), 

confirmed that after oral administration, silica nanoparticles located in the liver 

could be excreted into the intestine by the hepatobiliary excretion process.  

Although in most of cases particle size is determining to concern about pass 

through essential human barriers; shape, surface coating, charges associated and 

much more features associated with physical and chemical behaviour influence 

the toxic response, even more deep than size distribution, because not only small 

size has tendency to diffuse faster through mucus layers, also particle charge 

influence the diffusion.  

Some anionic particles have been shown to reach the epithelial surface, 

whereas cationic particles were trapped in the mucus (Hagens, Oomen, de Jong, 

Cassee, & Sips, 2007). When particles go through the mucus layer, they cross by 

paracellular or transcellular route, first one is modulated by polymers that act as 

expanders into the tight junctions of the epithelium (Salamat-Miller & Johnston, 
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2005), reason why nanomaterials cannot be excluded from that way. Second 

route is the endocytosis, where attachments of ligands or coating surfactants by 

charge particles could influence the transcellular uptake and depending the 

material characteristic could enter both the blood and lymphoid circulation intact 

(Joye, Davidov-Pardo, & McClements, 2014) besides interaction with body-

components depend on surface chemistry, hydrophobic surfaces are susceptible 

to opsonization and clearance by the reticulo-endothelial system, resulting driving 

particles to liver and spleen (Letchford & Burt, 2007). 

5.1.3 Potential risks of MSPs due to oral intake  

Gastrointestinal tract (GIT) is complex and also includes the resident 

microbiome/microbiota; accordingly, evaluation of oral nanomaterials uptake  has 

to considerate not only cell absorption and extra intestinal organ accumulation 

but also the potential alteration of gut microbes and the effects on the host 

(Bergin & Witzmann, 2013). 

5.1.4 Some concerns about gastrointestinal tract (GIT) and oral intake 
pathways  

GIT is composed of the oral cavity, the oesophagus, the stomach and the 

intestine. Liver and pancreas are extra intestinal organs involved in 

gastrointestinal functions of digestion, absorption, distribution, metabolism and 

excretion of the swallowed substances. GIT is a selective mucosal barrier, consist 
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of epithelium and mucus layer, which mechanically protect and lubricate the 

entire tract and the underlying tissue (Bergin & Witzmann, 2013; Eleonore 

Roblegg., 2012). 

Mucosal barrier has an estimated surface area of 200 m2, which gives a 

potential interaction with ingested substances. In addition, studies have shown 

that mucus barrier allows a selectively materials permeation (Kaunitz, 1999; 

Macierzanka et al., 2011; Sigurdsson, Kirch, & Lehr, 2013). Epithelium represent 

the highest resistance against it; so it is necessary identify the entire tract features 

to understand the interaction of ingested nanomaterials and their potential risks. 

Brief physicochemical considerations 

GIT activity begins in the mouth where the ingested food is chewed and 

mixed with saliva (Humphrey and Williamson 2001; Chen 2009). Saliva mainly 

consists in water (98 %) and inorganic salts, organic substances, including 

proteins, enzymes, mucins and others (Levine et al. 1987). Saliva also contains 

enzymatic activity of lipases and amylases, however residence time in the oral 

cavity is short (2-5 min). Thus enzyme activity is low and the influence of the 

mouth on the translocation pathways is negligible. 

Once substances are swallowed, they pass through the oesophagus, which 

have a mucus layer produced by oesophageal and exocrine glands. Substances 

directly pass to the stomach, where the residence time varies between 2 to 6 h. 
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Protein digestion starts by protease action, which depends of hydrochloric acid 

secretion from epithelium, which confers an intensive acidic medium (pH 1-2). 

The stomach mucus layer and posterior small and large intestine mucus is 

secreted mainly by intraepithelial cells.  However, thickness and composition of 

mucus layer varies along GIT. As well as thickness increase from proximal to distal 

parts of the intestine, maximal thickness has been reported in the stomach 

(Eleonore Roblegg., 2012). Likewise, thickness of epithelium also varies along the 

GIT (Diaz del Consuelo et al., 2005) (Atuma et al., 2001; Matsuo et al., 1997). 

The mucosal surface area in small intestine significantly increases, due to 

folds and elongation to facilitate the absorption by enterocytes (gut epithelial 

cells). Mucus layer of small intestine has several enzymes, to finish the digestive 

process. Most substances absorption takes place in the upper small intestine, 

where the mucus pH is around to 6 (within the 5.7 to 6.2 range) and gradually 

increases through the small intestine to pH 7.5 (within the 7.3 to 7.7 range) 

(Fallingborg., 1999). 

Otherwise, small intestine has a large number of cell associations, 

enterocytes, intraepithelial lymphocytes, goblet cells, dendritic cells and cells 

belonging to the immune system (M-cells), are linked together. M-cells are 

located in the epithelium overlying the follicle associated epithelium (FAE) or 

Peyer’s Patches. M-cells are responsible to initiate mucosal immunity responses, 
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allowing the substances transport across the epithelial cell layer (Hazzard, Hodges, 

Scott, McGuinness, & Carr, 1996). In particular, the small intestine is where mostly 

occurs the digestion and absorption, with a residence time of ingested substances 

between 2 to 5 h. However, distal small intestine and colon have specialized 

absorptive roles in water, vitamins, and fatty acid absorption (Bergin & Witzmann, 

2013). Even though, the main barriers for GIT permeation are the mucus layer and 

the epithelium, this barrier resides in a basal membrane, separated from 

connective tissue; hence, for reaching the systemic circulation by capillaries 

substances have not only to cross entire epithelium but also the basal membrane. 

5.1.5 Oral intake of MSPs  

Studies suggest tha once MSPs are ingested they are absorbed through gut 

enterocytes and through epithelial cells of the Peyer’s patches in the gut-

associated lymphoid tissue, which mainly reach liver, kidney and spleen (Jani, 

Halbert, Langridge, & Florence, 1990). Also, the absorbed particles stimulate 

phagocytosis at gastrointestinal mucosa to cause antigen-antibody trigger 

inflammation responses  (Hussain et al., 2011). Other studies report that MSPs are 

taken up by recticuloendothelial system, where, the smaller is the ingested 

material the maximal is the absorption (Vong, Yoshitomi, Matsui, & Nagasaki, 

2015; Yu, Hubbard, Ray, & Ghandehari, 2012). 
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Mucus membrane pathway elucidates MSPs behavior through the 

endodermal cells, where absorption and secretion are involved. In fact, depends 

on mucus - MSPs interaction, muco-adhesive capacity changes and facilitate 

translocation which promotes the cytotoxic effects (Sigurdsson et al., 2013). In the 

same way, phagocytosis and contact fibroblasts B cells are interesting patways 

due to their association with gut lymphoid tissue and blood circulatory system 

(Murdock, Braydich-Stolle, Schrand, Schlager, & Hussain, 2008; Oberdorster et al., 

2005).  

Once particles pass through cell membrane, they affect the cellular activity. 

This cell-particle interaction generates membrane perturbations, modification on 

signalling responses by influence on the cellular electron transfer and vesicle 

trafficking pathways. It induces the release of endosomal substances, reactive 

oxygen species, cytokines and chemokines, thus stimulate inflammatory 

responses and metabolism damage. The intercellular transport of those substance 

affect the gene regulation of cellular injuries and could trigger the apoptosis and 

necrosis process (Fruijtier-Pölloth, 2012; Jones, Grainger, & Clinton  D., 2009). 
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Evaluation of cell viability of colon cancer cells exposed to mesoporous 

silica particles was determined. The effect of size, doses and surface 

functionalisation of mesoporous silica particles was studied. Cells were incubated 

with concentrations range between 0.1 to 10 mg·mL-1 of micro- and nano-sized 

particles dispersions. In addition, surface of particles was capped with a 

polysaccharide molecule. Results indicate that depletion of cell viability depends 

of size and surface characteristics. These effects were significant in a doses-

manner after 24 to 48 h exposure times. Thus, data shown that metabolic cell 

activity reduction and subsequent toxicity can be lowered through synthesis 

pathway changes and surface modification. 
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Introduction 

Silicon element exhibits a vast array of different chemistries, in which size, 

shape, and surface of the nano- and micro-structures can be easily manipulated. 

Among its oxide forms, silicon dioxide, also known as silica (-SiO2-), can be 

prepared as porous structure in different forms (from nanometric to micrometric 

size). In particular, the mesoporous support has pores in the 2-10 nm range which 

means a very high specific surface area (up to 1200 m2·g-1) (Perez-Pariente 2006). 

These properties make silica mesoporous structures ideal candidates as carriers 

for delivery applications. 

In food and pharmaceutical industry, mesoporous silica-based supports are 

interesting devices. In contrast to current organic polymer supports, the inorganic 

structure of silica-based supports resists the harsh conditions of the 

gastrointestinal tract, while their high surface area allows a large encapsulation 

capacity. In addition, the surface structure is easy to functionalise with organic 

molecules, which can be attached after cargo encapsulation and are able to 

release the entrapped guest in function of specific targets such as, enzymatic or 

pH changes (Vallet-Regi F. Arcos, D. et al. 2007). These features can be used to 

modulate the bioaccessibility of target molecules along the gastrointestinal tract. 

In particular, silica-based materials in form of synthetic amorphous silica 

are recognized as safe for food use (GRAS by FDA regulations), and it is also an 
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authorised additive in Europe, E-551 classification (Contado et al., 2013). 

However, according to current regulation, mesoporous silica particles (MSPs), 

both, micro and nano-sized, they can be intentionally synthesised to modulate 

porous above the order of 100 nm, which is associated to engineered 

nanomaterials. In this context, physicochemical properties can differ from those 

of the non-nanoscale as well as can differ the toxic effects. Thus, in order to use 

MSPs for oral delivery applications, they need a nanotoxicological evaluation to 

assure their safety. 

In particular, in vitro cytotoxic studies of MSPs has shown mainly a dose-

dependent effect and particle size influence (smaller particles showed higher 

cytotoxicity). And citotoxic effects have been related to particles-cells 

interactions, which trigger apoptotic signalling. Studies on colon cell lines pointed 

to mitochondrial disruption due to ATP depletion due as well as reactive oxygen 

species production induced by MSPs’ surface features.  

So far, the potential biological effects of MSPs with surface modifications 

have not been widely studied in the gastrointestinal tract (GIT). To our knowledge, 

the in vitro quantification of capped MSPs hve been reported for four types of 

micro-sized mesoporous silica-based particles. Pérez-Esteve and coworkers (2016) 

encapsulate folic acid and functionalised the particles’ surface with amine 

molecules. They suggested that cells from gastrointestinal tract tolerated the 
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particles at concentrations of 50, 100, 150 and 200 µg·mL-1 (Pérez-Esteve et al. 

2016).  

Similar levels of biocompatibility of functionalised porous silica have been 

reported by other authors  (Souris et al. 2010; Si et al. 1997; Xie et al. 2016). This 

high biocompatibility is most likely related with both, the particle size employed 

and the surface functionalisation. The cytotoxic effect of MSPs (190 and 420 nm) 

showed significant cytotoxicity at concentrations above 25 mg·mL-1, while micro-

scale particles of 1220 nm showed only slight cytotoxicity due to decreased 

endocytosis (He et al. 2011; He et al. 2008). Moreover, the interaction of silanol 

groups (ca. 6% of total MSPs’ surface) with biological molecules, such as cellular 

membrane lipids and proteins, may strongly interact and modify the structure of 

these molecules. But the functionalisation could prevent those effects. The 

purpose of the present study was to compare in vitro data on the effects of the 

ordered mesoporous silica-based micro and nanoparticles, both with and without 

surface functionalisation, on intestinal epithelial cells (colon cell lines).  

Herein, we wanted to evaluate a doses range to define a particle 

concentration threshold for cytotoxic effects on cell lines with similarities in 

morphology and physiology than gastrointestinal tract.  
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Materials and methods 

All the chemicals were purchased at the highest possible grade available and were 

directly used with no further purification. Chemicals tetraethylorthosilicate 

(TEOS), N-cetyltrimethylammonium bromide (CTABr), sodium hydroxide (NaOH), 

triethanolamine (TEAH), 3-aminopropyl-triethoxysilane (APTES) and N-((3-

trimethoxysilylpropyl) diethylenetriamine) (N3), were provided by Aldrich. 

Hydrolysed starch Glucidex® 47 (5 % glucose, 50 % maltose, 45 % oligosaccharides 

and polysaccharides) was provided by Roquette. 

Mesoporous silica-based particles synthesis 

MSPs were synthesised as micro and nano sized particles. Following the so-

called ‘‘atrane route”(Cabrera et al. 2000), microparticles (M) were obtained. 4.68 

g of CTABr was used as the structure-directing agent, and added at 118 ºC to a 

TEAH solution (25.79 g) that contained 0.045 mol of a silatrane derivative (TEOS, 

11 mL).  The molar ratio of the reagents was fixed to 7 TEAH3:2 TEOS:0.52 

CTABr:0.5 NaOH:180 H2O. After dissolving CTABr in the solution, water was slowly 

added with vigorous stirring at 70 °C. After a few minutes, a white suspension was 

formed. This mixture was aged in an autoclave at 100 °C for 24 h. 

Nanoparticles (N) were obtained using the following procedure: CTABr 

(2.00 g, 5.48 mmol) was first dissolved in 960 mL of deionised water. NaOH (aq) 

(2.00 M, 7.00 mL) was added to the CTABr solution, followed by adjusting the 
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solution temperature to 95 °C. TEOS (10.00 mL, 44.8 mmol) was then added 

dropwise to the surfactant solution. The mixture was allowed to stir for 3 h to give 

a white precipitate. The product was centrifuged, and washed with deionised 

water and ethanol. And the resulting powder (as-synthesised) was dried at 60 °C.  

For all samples (M and N) to prepare the final mesoporous materials, the 

as-synthesized solids were calcined at 550 °C using an oxidant atmosphere for 5 h 

in order to remove the template phase. 

Synthesis of functionalised particles (M1, N1) 

An excess of 3-[2-(2-aminoethylamino)-ethylamino]-propyl-

trimethoxysilane (N3, 0.43 mL) was added to 0.1 g bare particles (M and N) in 40 

ml acetonitrile. The final mixture was stirred for 5.5 h at room temperature in an 

inert atmosphere of nitrogen. Solid was filtered and washed with acid solution at 

pH 2.0 (acidified with sulfuric acid) and dried for 12 h at 35 °C.  

Methods to characterise 

Powder X-ray diffraction (PRXD), transmission electron microscope (TEM), 

N2 adsorption-desorption isotherms, thermogravimetric analyses (TGA) and Z-

potential measurements were employed to characterize the synthesised supports. 

PXRD measurements were taken on a Seifert 3000TT diffractometer using CuKα 

radiation. The TEM images were obtained with a 100 kV Philips CM10 microscope. 

The equilibrium adsorption isotherms of nitrogen were measured at -196 °C using 
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static volumetric adsorption systems (ASAP 2020 analyser, Micrometrics). TGA 

were carried out on a TGA/SDTA 851e Mettler Toledo balance in an oxidant 

atmosphere (air, 80 mL·min-1) with a heating program that consisted of a heating 

ramp of 10 °C per minute from 120 to 1000 °C, and an isothermal heating step at 

this temperature for 30 min. Finally, to determine the zeta potential (ζ) of the 

bare and functionalised MSPs, a Zetasizer Nano ZS equipment (Malvern 

Instruments, Malvern, UK) was used. Samples were dispersed in distilled water at 

a concentration of 1 mg·mL-1. Before each measurement, samples were sonicated 

for 15 min to preclude aggregation. The zeta potential was calculated from the 

particle mobility values by applying the Smoluchowski model. The average of five 

recordings was reported as zeta potential. The measurements were performed at 

25 °C. Measurements were performed in triplicate. 

Cell culture 

The human colon cell lines were obtained from ATCC–LGC Standards. 

HCT116 and CaCO2 cells were grown in McCoy’s 5A culture medium, and DMEM, 

respectively. Culture medium was supplemented with 10 % FBS and antibiotics 

(100 U·mL-1 of penicillin, 100 μg·mL-1 of streptomycin). Cells were maintained at 

37 °C in an atmosphere of 5 % CO2 and 95 % air and undergone passage twice a 

week. 
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WST-1 Cell Viability Assay 

Cells were cultured in sterile 96-well plates at a seeding density of 2.5×10 3 

cells per well, and they were allowed to settle for 24 h. Equivalent concentration 

of particles were added to cells in range from 0.1 to 10 mg·mL-1. After 24 and 48 h, 

WST-1 (10 µL) was added to each well; cells were further incubated for 2 h and 

absorbance was measured at 450 and 620 nm. 

Statistical analyses 

Cell viability was evaluated through sigmoidal fit of dose-response curves, 

and the Origin software package was used. Statistical analyses were determined 

by One-Way and factorial ANOVA through SPSS software. 

Results and discussion 

Particles characterisation 

The particles were characterised by TEM, powder X-ray diffraction (PXRD) 

and N2 adsorption-desorption studies (see Figure 5.2-1). The X-ray patterns the 

typical four low-angle reflections of hexagonal array. Which remains after surface 

functionalisation. TEM images confirm the hexagonal porous structures, visualised 

as alternate black and white stripes (see Figure 5.2-1A and 1B). As TEM images 

show, micro-sized particles were obtained as irregular micrometric particles with 

a size in the 1000 – 3000 nm range, whereas nano-sized ones were obtained as 

spherical particles with diameters ranging from 80 to 100 nm. And 
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functionalisation did not affect the size range. On the other hand, adsorption-

desorption isotherms, shows typical type IV curves, they consisting of one single 

adsorption step at the intermediate P/P0 value (0.1-0.4). In contrast, the 

isotherms of the functionalised particles (M1 and N1), shows a flat curve which 

indicates the pore blocking due functionalisation on particles’ surface. 

 

Figure 5.2-1. Characterisation of MSPs A. TEM images of micro and nano-particles (inset 
shows the porosity of micro particles). B. X-ray diffraction patterns of micro (M0) and 
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nano (N0) particles. C. Absorption-desorption curves for bare (M0 and N0) and 
functionalised (M1 and N1) particles. 

In addition, the zeta potential value changes in function of surface 

structure. Bared particles have a negative zeta potential (about -18 mV), while 

functionalisation increase the values to positive ranges (Above 15 mV). 

(Supporting info, Apendix 5.2 S1) 

Cell viability studies 

In vitro data, showed a significant reduction of cell viability, both in HCT-

116 and Caco-2 cell lines, for doses higher of 2 mg·mL-1 (See figure 5.2-2), and 

with higher viability reduction for nano-sized particles. However, 

independent of size the threshold dose for mesoporous silica particles, MCM-

41 type, was about 1 to 2 mg·mL-1.  
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Figure 5.2-2. Doses and size-effect on HCT116 cell viability when nano and micro-sized 
MSPs are incubated for 24h at 37 °C. 

Results suggest no significant differences between cell lines. But, studies 

above particles concentrations of 1 mg·mL-1 showed the visible effect of surface, 

incubation time and size on cells. In addition, results showed that after 48 h, the 

complete effect of particles presence was evidenced. Based on that, the 

concentration through half of population is reduced (the lethal dose LD50) was 

determined at 48 h (See Table 5.2-1). But Caco-2 cell line showed differences 

related with time only, no differences showed the concentration increase, and 

viability reduction there was no remarkable, in all cases cell viability was up to 

80%. 

Table 5.2-1. Lethal dose (LD50) on colon cancer cells incubated 
 with mesoporous silica particles 
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 At 24 h  
(mg·mL-1) 

After 48 h 
(mg·mL-1) 

M0 0.8 1.2 
M1 0.9 1.5 
N0 0.3 0.5 
N1 0.7 0.9 

 

First, lowest doses did not show a significant cell viability reduction. This 

was generally between 0.02 to 0.08 mg·mL-1. Beyond 0.3 to 1.0 mg·mL-1, the size 

effect was confirmed, nano-sized particles caused more damage than micro-ones. 

However, the surface functionalization increases the particles’ biocompatibility, 

more significant to nano-sized particles.  

Global results indicated that features such as size and surface structure of 

mesoporous silica particles MCM41 type, are modifiable tools for synthesizing 

particles with low cytotoxic impact. Studies on epithelial cells of gastrointestinal 

tract elucidate the particles’ behavior after being oral ingested. However, to 

confirm the non-toxicity of these particles, it is need to go a step forward and 

evaluate the oral intake through in vivo models. 

Acknowledgement 

We thank the Spanish Government (projects AGL2015-70235-C2-1-R, 

AGL2015-70235-C2-2-R and MAT2015-64139-C4-1-R (MINECO/FEDER)) and the 

Generalitat Valenciana (project PROMETEOII/2014/047) for support. C.A. thanks 

Colciencias for her predoctoral fellowship. The authors also thank the Electron 



SECTION II 
 

179 

Microscopy Service at the UPV for support and We thank Roquette for the 

Glucidex samples. 

 

  



SECTION II – Article 4 

180 

References 

Cabrera, S. et al., 2000. Generalised syntheses of ordered mesoporous oxides: the atrane 
route. Solid State Sci., 2(4), pp.405–420. 

He, Q. et al., 2011. In vivo biodistribution and urinary excretion of mesoporous silica 
nanoparticles: Effects of particle size and PEGylation. Small, 7(2), pp.271–280. 

He, X. et al., 2008. In vivo study of biodistribution and urinary excretion of surface-
modified silica nanoparticles. Analytical chemistry, 80(24), pp.9597–603 

Pérez-Esteve, É. et al., 2016. Encapsulation of folic acid in different silica porous supports: 
a comparative study. Food Chemistry, 196, pp.66–75. 

Perez-Pariente, J., Materiales mesoporosos de óxido de silicio. Liberación de fármacos en 
matrices biocerámicas: avances y perspectivas, pp.39–64. 

Si, U. et al., 1997. Comprehensive Study of Surface Chemistry of MCM-41 Comprehensive 
Study of Surface Chemistry of MCM-41 Using. , 5647(97), pp.6525–6531. 

Souris, J.S. et al., 2010. Surface charge-mediated rapid hepatobiliary excretion of 
mesoporous silica nanoparticles. Biomaterials, 31(21), pp.5564–5574.  

Vallet-Regi  F. Arcos, D., M.B. et al., 2007. Mesoporous materials for drug delivery. 
Angewandte Chemie - International Edition, 46(40), pp.7548–7558.  

Xie, X. et al., 2016. EpCAM aptamer-functionalized mesoporous silica nanoparticles for 
efficient colon cancer cell-targeted drug delivery. European Journal of 
Pharmaceutical Sciences, 83, pp.28–35.  

 



 

181 

 

 

 

 

 

 

 

 

 

 

5.3 A C. elegans in vivo nanotoxicology evaluation of bare and 

functionalised micro and nano mesoporous silica particles  





 

183 

 

A C. elegans in vivo nanotoxicology evaluation of bare and 

functionalised micro and nano mesoporous silica particles 

 

 

Carolina Acosta,a* Jose M. Barat,a Ramón Martínez-

Máñez,b,c Félix Sancenón,b,c Silvia Llopis,d Nuria González,d 

Salvador Genovés,d Daniel Ramón,d and Patricia Martorelld 

 

aGrupo de Investigación e Innovación Alimentaria - Departamento de Tecnología de Alimentos, Universitat Politècnica de 
València, Spain 

bInstituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM). Universitat 
Politecnica de València, Universitat de València, Camino de Vera s/n, 46022-Valencia, Spain 

cCIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain 
dDepartment of Food Biotechnology, Biopolis S.L., Parc Científic Universitat de València, Spain 

* Corresponding author: cararo@upvnet.upv.es 

 

 

 

 

 

 

Submitted 2017 



 

184 



SECTION II 

185 

Here we show a study about the toxicologic evaluation of mesoporous silica 

particles (MSPs) in the nematode C. elegans. The effect on C. elegans ageing 

parameters of bare micro- (M0) and nano-sized (N0) MSPs, and the corresponding 

functionalised particles with a starch derivative (Glu-N) (M1 and N1), was 

investigated. To analise the toxicity of MSPs, their impact on C. elegans lifespan, 

movement capacity, progeny and ability to survive upon an acute oxidative stress 

was assesed. This study demonstrated that both size of particles (M0 and N0), 

labelled with rhodamine and monitored through fluorescence microscopy, are 

ingested by nematodes. Moreover, toxicity assays indicated that bare nano-sized 

particles (N0) have a negative impact on C. elegans lifespan, reducing mobility and 

progeny production in nematodes. Contrary, micro-sized particles (M0) are 

inocuous for the nematodes. Furthermore, functionalization of nanoparticles with 

starch derivative reduced their toxicity on C. elegans. Thus, oral intake of N1 

considerably increased the mean lifespan and movement activity as well as the 

resistance to oxidative stress. The overall findings here presented pointed out the 

influence of size and surface of MSPs on their potential toxicity in vivo, and 

evidenciate the silica-based mesoporous particles as a potential support for 

encapsulation in life sciences applications. Furthermore, the good correlation 

obtained between healthy aging variables and viability (mean lifespan) validates 

the use of C. elegans as a multicellular organism for nanotoxicology studies. 
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Introduction 

In recent years, inorganic nanomaterials have drawn the attention as 

suitable tools for developing delivery systems (Mo et al., 2014). Among inorganic 

supports for controlled release applications, mesoporous silica particles (MSPs) 

have received great interest (Valtchev et al., 2013; Stein et al., 2003; Soler-Illia et 

al., 2011; Angelos et al., 2007). MSPs have tunable and homogeneous pore size 

distribution (in the 2–10 nm range in diameter), and high specific surface area and 

volume, which provide large loading capacity (Salonen et al., 2008; Wight et al., 

2002). Apart from voids, MSPs highlights for exhibiting a high concentration of 

structural defects on their surface in the form of silanol (Si-OH) groups that can 

easily react with trialkoxysilane derivatives ((R’O)3-Si-R), allowing the possibility of 

generating organic−inorganic hybrid supports (Vinu et al., 2005; Kickelbink et al., 

2004). This strategy offers a wide range of new perspectives in the development 

of delivery systems (Coll et al., 2013), while opening the design of on-command 

release particles to control the delivery of previously entrapped guest (Angelos et 

al., 2007; Aznar et al., 2016; Sancenón et al., 2015). In line with this concept, 

examples of MSPs functionalised with a number of different molecules and 

biomolecules able to deliver the cargo upon the applications of physical (light, 

temperature, magnetic fields, ultrasounds) (Mal et al., 2003; Agostini et al., 2012; 

Fu et al., 2003; Aznar et al., 2011; Giri et al., 2005), chemical (anions, cations, 
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neutral molecules, redox-active species and pH) (Fujiwara et al., 2006; Angelos et 

al., 2009) and biochemical (such as enzymes, DNA and antibodies) (Oroval et al., 

2013; Schlossbauer et al., 2009; Bernardos et al., 2010; Park et al., 2009) stimuli 

have been reported. 

However, in spite of the promising applicability of MSPs as advanced 

delivery systems, and despite silica not being considered harmful for humans, the 

effect of particle size and surface functionalisation of MSP on in vivo toxicity after 

MSP is oral administered remains poorly understood, and more studies in this 

context are essential to obtain useful information for the future design of safe and 

non-toxic oral delivery systems based in MSP. 

From another point of view, the nematode Caenorhabditis elegans has 

emerged as a well-suited in vivo model for toxicological studies owing to its 

established biology and readily scorable life traits. C. elegans is a multicellular 

organism with a short lifespan (21 days), a well-studied biological system and is 

simple to maintain. In addition, experiments with C. elegans are less expensive 

than those carried out with vertebrate models and allow to carrying out a wide 

set of tests at different conditions in a short time (C. elegans Consortium, 1998). 

Moreover, it has been reported that results obtained with C. elegans can be 

predictive of those in higher eukaryotes because many physiological processes, 

signal transduction pathways and genes are conserved (Leung et al., 2008). These 



SECTION II – Article 5 

188 

features have led to an increasing use of C. elegans as a suitable model in 

toxicological studies. Quantitative parameters of C. elegans that can be assayed 

include gene expression, growth, size, progeny production, and mortality. 

Moreover, behavioural parameters related with toxicity on healthy aging 

(healthspan), such as changes on movement capacity and sensitivity to oxidative 

stress can also be easily determined. 

Recent studies have confirmed that different inorganic nanomaterials are 

efficiently ingested by C. elegans and toxicological studies using different 

materials have been carried out (Cha et al., 2012; Wang et al., 2009; Gonzalez-

Moragas et al., 2015). Nonetheless, very few studies have been reported with C. 

elegans and silica-based particles. In particular, toxicological studies have been 

carried out with amorphous (non-porous) silica nanoparticles (Pluskota et al., 

2009; Scharf et al., 2013). These studies suggested that these nanoparticles 

(smaller than 50 nm) induce premature aging, due to progeny reduction and 

alterations of phenotypes related to aging. However, as far as we know, there are 

not studies with C. elegans and mesoporous silica-based particles nor about the 

nematodes’ lifespan after fed with MSPs neither studies of nematodes’ behaviour 

in relation to different features associated to MSPs such as size or particles’ 

surface functionalisation.  
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In this scenario, and taking into account the above mentioned facts and out 

interest in the design and use of mesoporous silica particles for delivery 

applications, we report herein a study on the interaction of C. elegans with nano- 

and micro-sized MSP after particles were oral administered. Moreover, both, bare 

particles and particles functionalised in the external surface with hydrolysed 

starch, have been studied. We have carried out studies not only on population 

viability by lifespan, but also studied worm’s behaviour by healthspan variables 

(movement capacity, resistance to acute oxidative stress and offspring). The 

results showed that surface functionalisation of MSPs is a suitable procedure to 

significantly reduce toxicity of these particles in C. elegans. This is especially so for 

mesoporous silica in the form of nanoparticles. 

Materials and methods 

Chemicals 

All the chemicals were purchased at the highest possible grade available 

and were directly used with no further purification. Chemicals 

tetraethylorthosilicate (TEOS), N-cetyltrimethylammonium bromide (CTABr), 

sodium hydroxide, triethanolamine (TEAH), 3-aminopropyl-triethoxysilane (APTES) 

were provided by Aldrich. Hydrolysed starch Glucidex® 47 (5% glucose, 50% 

maltose, 45% oligosaccharides and polysaccharides) was provided by Roquette. 
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C. elegans strain and maintenance  

C. elegans strain Bristol (wild-type) N2 was obtained from the 

Caenorhabditis Genetics Center at the University of Minnesota and was 

maintained at 20 °C on nematode growth medium (NGM). Strain Escherichia coli 

OP50 used as normal diet for nematodes was obtained from the Caenorhabditis 

Genetics Center.  

Synthesis of micro-sized mesoporous silica particles (M0) 

Micro-sized mesoporous silica particles were synthesised by the “atrane 

route” [32] in which 4.68 g of CTABr were added at 118 °C to a TEAH solution 

(25.79 g) that contained 0.045 mol of a silatrane derivative (TEOS, 11 mL). Next 80 

mL of water were slowly added with vigorous stirring at 70 °C. After a few 

minutes, a white suspension formed. This mixture was aged at room temperature 

overnight. The resulting powder (as-synthesised material) was collected by 

filtration and washed. The solid was dried at 70 °C and was finally calcined at 550 

°C for 5 h in an oxidant atmosphere in order to remove the template phase. 

Synthesis of nano-sized mesoporous silica-based particles (N0) 

Nano-sized mesoporous silica particles were synthesised by the following 

procedure: N-cetyltrimethylammoniumbromide (CTABr, 1.00 g, 2.74 mmol) was 

first dissolved in 480 mL of deionised water. Then 3.5 mL of a NaOH 2.00 mol·L-1 

solution was added, followed by an adjustment of temperature to 80 °C. TEOS 

(5.00 mL, 22.4 mmol) was then added dropwise to the surfactant solution. The 
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mixture was stirred for 2 h to give a white precipitate. Finally, the solid was 

collected by centrifugation, washed with deionised water and dried at 70 °C 

overnight (as-synthesised material). To prepare the final mesoporous 

nanoparticles (N0), the as-synthesised solid was calcined at 550 °C in an oxidant 

atmosphere for 5 h to remove the template phase. 

Synthesis of the starch derivative (Glu-N) 

A solution of APTES (5.85 mL, 25 mmol) was added to a suspension of 

hydrolysed starch (Glucidex@ 47) in ethanol (Bernardos et al., 2010). The reaction 

mixture was stirred for 24 h at room temperature and heated at 60 °C for 30 min. 

The solvent was evaporated under reduced pressure. 

Synthesis of starch-functionalized mesoporous silica particles (M1, N1)  

To prepare the starch-functionalised mesoporous silica particles M1 and 

N1, Glu-N was added to M0 and N0 in a 1:1 w/w ratio. The final mixture was 

stirred for 5.5 h at room temperature under argon. The solid was filtered, washed 

with abundant deionised water and dried for 12 h at 35 °C. 

Synthesis of labelled particles (M0-rhd and N0-rhd)  

Particles M0 and N0 were labelled with rhodamine B using a similar 

procedure to that reported by Xu and co-workers (Xu et al., 2014). First the solid 

surface was modified with APTES. For this purpose, M0 or N0 nanoparticles were 

suspended in toluene (30 mL) and APTES (0.19 mL, 0.8 mmol) was added. The final 

suspension was refluxed at 110 °C for 20 h. Afterward 50 mg of the corresponding 
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solid was suspended in ethanol with 50 mg B rhodamine isothiocyanate (RITC) for 

20 h to obtain M0-rhd and N0-rhd.  

Finally, ethanol suspensions were filtered and solids were washed with 

abundant deionised water, and dried for 12 h at 35 °C.  

Materials characterisation  

PXRD measurements were taken on a Seifert 3000TT diffractometer using 

CuKα radiation. TEM images were obtained under a 100 kV Philips CM10 

microscope. Thermogravimetric analyses were carried out on a TGA/SDTA 851e 

Mettler Toledo balance in an oxidant atmosphere (air, 80 mL·min-1) with a 

heating program that consisted of a heating ramp of 10 °C per minute from 120 to 

1000 °C, and an isothermal heating step at this temperature for 30 min. 

N2 adsorption-desorption isotherms were recorded in a Micromeritics 

ASAP2010 automated sorption analyser. Samples were degassed at 120 °C in 

vacuum overnight. The specific surface areas were calculated from the adsorption 

data within the low pressure range using the BET model (Brunauer et al., 1938). 

Dynamic light scattering (DLS) studies for size distribution were conducted 

at 25 °C using a Malvern Zetasizer Nano ZS and Malvern Mastersizer 2000. Data 

analysis was based on the Mie theory using refractive indices of 1.33 and 1.45 for 

the dispersant and MSP, respectively. To determine the zeta potential (ζ) of bare 

and functionalised MSP, a Zetasizer Nano ZS was used. Zeta potential was 
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calculated from the particle mobility values by applying the Smoluchowski model. 

The average of five recordings was reported as the zeta potential. All the 

measurements in Malvern Zetasizer Nano ZS and Malvern Mastersizer 2000 were 

performed at 20 °C in triplicate, samples were dispersed in M9 buffer at 

concentration of 1 mg·L-1. Before each measurement, samples were sonicated for 

10 min to preclude potential aggregation. 

Particles suspension  

Particles M0, M1, N0 and N1 were sterilised by UV for 30 min after particles 

were dispersed at a known volume fraction of M9 buffer (KHPO4 3 g·L-1, Na2HPO4 

6 g·L-1, NaCl 5 g·L-1, MgSO4 1 mmol), and disposed in an ultrasound bath with 2 

pulses of 15 min to reduce particle aggregates. The required amount of the 

corresponding suspension was used to prepare each doses evaluated (three 

doses: 0.5, 5.0 and 50 µg·mL-1 of M0, N0, M1 and N1). For better handling, 

dispersions were aliquoted and stored at -20 °C until used. 

Worms synchronisation 

Ten reproductive worms of the wild-type strain were laid on NGM agar 

plates (nematode growth medium: agar 17.5 g·L-1, sodium chloride 3.0 g·L-1, 

peptone 2.5 g·L-1, cholesterol 0.005 g·L-1) with E. coli OP50. Worms were 

incubated for 2.5 h and then the initial population was eliminated. Laid eggs and 

the larvae were raised to young adulthood at 20 °C for 72 h. After the final larval 

molt, when animals became reproductive adults, worms were considered 
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synchronised and were selected for the assays. Worms were selected and placed 

on NGM plates for evaluations, and C. elegans was defined as young adults (0-day 

adults). 

Lifespan assays in C. elegans 

Synchronised worms of the wild-type strain were grown at 20 °C and 

transferred to NGM agar. For control population (standard feeding, without 

particles), worms were just transferred to NGM plates (10 worms per plate). 

Worms fed with MSPs were transferred to NGM plates supplemented with the 

corresponding particle suspension (i.e. M0, M1, N0 or N1). Animals were moved 

periodically to new plates and scored every 2 days, and were considered dead if 

they failed to respond to a platinum wire. Three independent assays (10 plates 

per assay) were carried out for 21 days (lifespan extension) for control population 

and for each dose and each particle (and three doses: 0.5, 5.0 and 50 µg·mL-1 of 

M0, N0, M1 and N1). Every 2 days, the initial population was transferred to fresh 

NGM plates and addition of the particles was maintained. 

Oxidative stress on C. elegans 

To measure the survival rates of C. elegans after exposure to oxidative 

stress, synchronised worms, which had hatched in NGM on the agar plates that 

contained the E. coli OP50 strain, and in the presence or absence of the 

corresponding particles (i.e. M0, N0, M1 or N1) were used. After 5 days of growth 

at 20 °C, worms were transferred to MB medium (Basal medium: agar 17 g·L-1, 
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sodium chloride 5.85 g·L-1, cholesterol 0.005 g·L-1) plates that contained 2 mM 

H2O2, and were incubated for 5 h. Then viability of worms was measured. Worms 

were considered dead when they no longer responded to prodding. Each 

experiment was done with 70 individuals and evaluations were carried out in 

triplicate for control population, and for each dose and each particle. 

Healthspan studies  

A synchronised nematode population was obtained. For all the studies, 

young adult worms (0-day adults) were selected and transferred to plates for each 

dose and each particle (three doses: 0.5, 5.0, 50 µg·mL-1 of M0, N0, M1 and N1). A 

control population was also evaluated. Movement activity: Locomotion activity 

was monitored on 2-day adult and 9-day adult worms. Synchronised worms (70 

individuals) were transferred to plates containing the particles and movement 

was determined as the total right bends achieved in 35 seconds. Evaluations were 

made in triplicate. Offspring: Synchronised worms were selected and individually 

transferred to NGM plates daily for 5 days (10 plates per each dose and each 

particle). The progeny (larvae) laid in each plate was counted to determine the 

offspring. Evaluations were made in triplicate. 

Fluorescence Microscopy 

A 5 µg·mL-1 solution of M0-rdh or N0-rhd was seeded on NGM plates. 

Synchronised worms were transferred to the plates (5 plates per each solid). 

Worms were treated and transferred as in lifespan assays. After 5 days of 
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incubation, worms (10 worms per plate) were placed in a sample-holder with 2% 

agarose pads, and were anesthetised with levamisol solution; a coverslip was 

overlaid to fix the worms’ position. Finally, DIC (Nomarsky) and epi-fluorescence 

digital images were acquired with an Eclipse 90i Nikon microscope with an 20x 

objective equipped with a digital camera (Nikon DS-5Mc) and a fluorescence filter 

TRITC (G-2E/C). Images were processed and analysed by the Nis Elements BR 2.32 

software. 

Statistical analysis 

Statistical analyses were determined by One-Way ANOVA. Survival curves 

were evaluated by the Kaplan Meier model and compared using the log rank 

survival significance test. The SPSS statistical software package was used. 

Results and discussion 

Mesoporous silica synthesis 

Bare micro- (M0) and nano-sized (N0) MSPs, were synthesised using well-

known procedures. Moreover, both M0 and N0 particles were functionalised with 

hydrolysed starch to obtain the corresponding micro- (M1) and nano-sized (N1) 

starch-functionalised particles. Functionalisation was carried out by simple 

reaction of M0 and N0 with Glu-N that was prepared by reaction of APTES with 

hydrolysed starch (Glucidex@ 47) in ethanol (see Scheme 5.3-1). The solids were 

thoughtfully washed with water and dried before use. 1H NMR spectrum of Glu-N 

was consistent with that described in the literature (Appendix 5.3-Figure S1) 
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(Bernardos et al., 2010). Moreover, particles M0 and N0 were labelled with a red 

fluorescent dye (i.e. rhodamine B isothiocyanate, RITC) (Xu et al.,2014), to obtain 

M0-rhd and N0-rhd, respectively. 

 

Scheme 5.3-1. Synthesis of mesoporous silica particles capped with Glu-N 

Material characterisation  

The characterisation of the synthesised materials was performed by well-

known standard techniques. Powder X-ray diffraction (PXRD) patterns of bare M0 

and N0 (as-synthesised and calcined) and starch-functionalised M1 and N1 

particles are shown in Figure 5.3-1A. PXRD patterns of bare particles show the 

typical four low-angle reflections of mesoporous silica solids, which can be 

indexed as (100), (110), (200) and (210) Bragg peaks. From the PXRD data, a0 cell 

parameters of 47.89 and 49.73 Å (d100 spacing of 41.48 and 43.07 Å) were 

calculated for as-synthesised M0 and N0, respectively. A significant shift of the 

(100) reflection in the PXRD in the calcined samples was clearly observed which 
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corresponds to an approximate cell contraction of ca. 4.8 and 4.5 Å for calcined 

M0 and N0, respectively (see Figure 5.3-1A). This is related to the condensation of 

silanols in the calcination step when CTABr was removed. For the starch-

functionalised M1 and N1 particles, PXRD patterns showed only the characteristic 

(100) reflection. However, the presence of this peak clearly indicated that the 

mesoporous structure was preserved after anchoring of the Glu-N derivative. TEM 

images also showed, for all particles, the typical porosity associated with this type 

of inorganic supports as a pseudo hexagonal array of pore voids. TEM images also 

showed that M0 and M1 are irregular micrometric particles, whereas N0 and N1 

are spherical nano-size particles (see Figure 5.3-1B for typical TEM images of M0 

and N0). 

N2 adsorption–desorption isotherms of M0 and N0 showed typical curves 

consisting of one single adsorption step at intermediate P/P0 values (0.1-0.4), 

which is related to nitrogen condensation inside mesopores by capillarity (Figure 

5.3-1C). Absence of a hysteresis loop in this interval and a narrow pore 

distribution suggested the existence of uniform cylindrical mesopores with pore 

diameter and specific volume of 3.19 nm and 0.78 cm3·g-1 respectively for M0 and 

3.51 nm and 0.74 cm3·g-1 for N0 (calculated by the BJH model on the adsorption 

branch of the isotherm). The application of the BET model to calcined materials 

gave a total specific surface value of 979.6 m2·g-1 and 843.9 m2·g-1 for M0 and N0, 
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respectively. In contrast, N2 adsorption–desorption isotherms of functionalised 

solids showed nearly flat curves when compared with un-functionalised starting 

materials and an appreciable reduction of porosity, due to the grafting of Glu-N, 

was observed. A specific surface area of 509.6 and 220.1 m2·g-1 and pore volumes 

of 0.34 and 0.24 cm3·g-1 were calculated for M1 and N1, respectively. Table 5.3-1 

lists BET specific surface values and pore volumes calculated from the N2 

adsorption-desorption isotherms. 

Thermogravimetric analyses (TGA), zeta potential and size distribution 

studies were also performed. TGA curves of M1 and N1 showed a weight loss at 

100-600 °C due to the organic matter combustion that corresponded to the 

anchored starch derivative (see Supplementary material, Appendix 5.3-Figure S2). 

From TGA analyses organic matter contents of 0.10 and 0.13 g per g SiO2 for solids 

M1 and N1, respectively, were calculated. 

As particles were administered to worms in a buffered aqueous dispersion 

(M9 buffer for C. elegans, vide infra), zeta potential (ζ) and particle distribution 

sizes were determined in M9 buffer (see Table 5.3-1). M0 and N0 had a negative 

zeta potential due to the presence of anionic silanol groups on their surface. Upon 

functionalisation, the surface potential changed from negative to positive, which 

was ascribed to the effective grafting of starch derivative Glu-N onto the surface 

of both materials. 
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Figure 5.3-1. Materials characterisation (a) Powder X-ray patterns (b) TEM images of 
micro-sized particles, M0 and nano-sized particles, N0 and (c) Nitrogen adsorption-
desorption isotherms: Calcined material M0 [], and Solid M1 []. Calcined material N0 
[▲], and solid N1 []. 

Dynamic light scattering (DLS) studies gave a mean size of 1930 μm for M0 

and of 1114 μm for M1, whereas mean sizes of 338 and 141 nm were found for 

N0 and N1, respectively (see Table 5.3-1 and Appendix 5.3-Figure S3). When 
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comparing size distribution and single-particle size, as determined by TEM (Table 

5.3-1), mean particle size increased in the M9 buffer most likely as a result of 

partial particle aggregation, which agreed with previous studies (Pérez-Esteve et 

al., 2014). 

Table 5.3-1. Characteristics of synthesised materials 

*Single-particle size determined by TEM. § Mean size determined by Light Diffraction (dispersed in M9-buffer). 
The same letters indicate singnificant differences between group memberships (p < 0.05). 

 

As stated above, bare M0 and N0, MSP, were both labelled with rhodamine 

B isothiocyanate (RITC) using post-synthesis grafting procedure to obtain M0-rhd 

and N0-rhd, respectively (Xu et al., 2014). A thermogravimetric evaluation 

indicated a rhodamine content of 4.8 % and 5.2 % in M0-Rhd and N0-Rhd, 

respectively. 

Validation of oral intake of MSPs by C. elegans 

Recent evaluations made on C. elegans have confirmed the ability of 

nematodes to directly ingest inorganic nanomaterials (Leung et al., 2008; Cha et 

al., 2012; Wang et al., 2009; Gonzalez-Moragues et al., 2015). In order to validate 

the ability of nematodes to ingest the the different size of MSPs sythetized, a 

SBET

(m2g-1)
pore volume

(cm3g-1)
Single-particle size 

(nm)* Mean size (nm)§ Z potential (ζ)
(mV)

M0 979.619a 0.784b 1566 ± 42c 1930 ± 284 d -18.60 ± 0.89 e

M1 509.591a 0.343b 1189 ± 81c 1114 ± 133 d 11.06 ± 0.40 e

N0 843.899f 0.741g 97 ± 13 338 ± 11.82 h -15.35 ± 2.14i

N1 220.089f 0.247g 90 ± 13 141 ± 5.89 h 9.06 ± 0.28 i
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monitoring study of the administered particles M0-rhd and N0-rhd was 

performed by means fluorescent microscopy. 

Once particle suspension is seeded on plates, it was hypothesised that 

particles become available and can be swallowed by nematodes. After 5 days of 

M0-rhd and N0-rhd administration, nematodes were prepared for fluorescent 

microscopy and the oral intake of particles was monitored. Results showed that 

both M0-rhd and N0-rhd were ingested by nematodes and both particles were 

clearly located along the gastrointestinal tract (GIT) (Figure 5.3-2a and b). Both 

micro and nano-sized particles were located mainly in the lumen and pharynx. In 

addition, an uptake-gradient with a major concentration in the anterior intestine 

region was noticed, in agreement with results obtained in previous studies for 

other inorganic nanoparticles (Pluskota et al., 2009; Scharf et al., 2013). 

In order to evaluate the permanence of particles in the GIT and the ability 

of nematodes to excrete the ingested particles, 5-day old nematodes fed with M0-

rhd and N0-rhd were divided into two groups. Group one (1) was prepared for 

fluorescence analyses as described above.To purge particles from nematodes, 

group two (2) was collected with M9-buffer and transferred to NGM plates 

without MSPs for2 days,after the two days, nematodes from group two (2) were 

prepared for fluorescent microscopy. Results strongly indicated the ability of C. 

elegans to ingest and excrete MSPs (Figure 5.3-2c and d). This was specially 
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remarkable in nematodes fed with N0-rhd (Figure 5.3-2d), as nano-sized MSPs 

showed a higher trend to remain in the GIT (especially in the pharynx) when 

compared with micro-sized MSPs. 

Although resolution and sensitivity of microscope limit the possibility of 

identifying endocytosis of particles, the lack of fluorescence outside the GIT of 

worms from group (2) suggested neither translocation nor accumulation of MSPs 

in secondary organs. 

Finally, the progeny of nematodes fed with M0-rhd and N0-rhd was studied 

and no fluorescence was detected (Appendix 5.3-Figure S4), suggesting that there 

was not translocation of MSPs to the germ line. 

 

Figure 5.3-2. Particles monitored by fluorescence microscopy. (a) Micro-sized, MSP were 
effectively ingested by C. elegans, as well as (b) nano-sized, N0-rhd. No translocation 

(1) (2) (1) (2)

(a) (b)

(c) (d)

micro-sized MSP nano-sized MSP
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was confirmed by a lower fluorescence intensity between the worms of group (1) and 
group (2) for the worms fed with MSP (c) micro-sized, M0-rhd and (d) nano-sized, N0-
rhd. 

Influence of MSP size in C. elegans toxicity 

The effect of M0 and N0 MSPs on C. elegans lifespan was then analyzed. By 

using the above mentioned procedure to seed MSPs on agar plates, nematodes 

were fed throughout their life expectancy with three doses (0.5, 5 and 50 µg ml-1) 

of M0 and N0. In parallel, nematodes fed only on bacterial food were evaluated as 

the control population. Survival curves andmean lifespan (defined as the time 

when 50 % of worms were dead) were obtained. 

Results showed that both control population and nematodes fed with M0 

displayed a similar lifespan at the three doses assayed (Figure 5.3-3A and 

Appendix 5.3 Figure S5). Thus, mean lifespan of M0-fed nematodes was similar 

than control fed nematodes, obtaining very similar survival curves. Only slight 

reduction of viability was observed with the higher dose (50 µg/mL), probable due 

to a reduction of confort of nematodes by the high density of microparticles in the 

agar. 

In contrast, mean lifespan was significantly reduced at the three N0 doses 

compared to the control population (p-values: 0.001; 0.007 and 0.002, for 0.5; 

5.0; and 50 μg∙ml-1, respectively) (Figure 5.3-3A) . Moreover, survival curves 

showed a shortened lifespan for worms fed with N0 at the three doses assayed 
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(Figure 5.3-3B, and Appendix 5.3-Figure 6S). These results clearly indicated that 

bare nano-sized MSPs are harmful for C. elegans,because a significant reduction in 

nematode survival was observed. 

In order to further analyze the impact of feeding nano and micro-sized 

MSPs by nematodes, the movement capacity of C. elegans exposed to MSPs was 

evaluated. It has been previsouly reported that a declining of body movement is a 

change associated with premature aging (Pluskota et al., 2009; Scharf et al., 

2013), Therefore, movement capacity (quantified as the total right bends per 

minute) of 2-day adult worms (Figure 5.3-3C) and 9-day adults (Figure 5.3-3D) was 

evaluated in C. elegans fed with 0.5, 5 and 50 μg ml-1 of M0 and N0 respectively, 

and compared with the control population. 
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Figure 5.3-3. Evaluation of C. elegans behaviour after micro and nano-sized MSP were 
oral administered. (a) Mean lifespan of three MSP doses, X-axis: 0.5 µg∙ml-1 5 µg∙ml-1 
and 50 µg∙ml-1, showed a significant reduction due to nano-sized MSP. Dotted line 
represents the control population, grey Bars the M0 and darker bars the N0. (b) Lifespan 
of the nematodes fed with the same concentration, 0.5 µg∙ml-1 of M0 and N0, showed a 
significantly reduced whole life cycle in the nematodes fed with N0 and not with M0 
(Lifespan with other doses in Supporting material, Appendix 5-3 Figure S5-S6).  

The dotted line represents the control population, the solid line denotes M0 and the dotted line (-- 
∙∙ --) indicates N0. Movement capacity analysed as a mean speed (ner curves per min) of the worms 
administered the three M0 and N0 doses was evaluated in the (c) 2-day adult stage and (d) the 9-
day adult stage. the dotted line (---) represent the control population, grey bars denote M0, and 
darker bars represent N0 (lifespan and movement evaluations were made in triplicate). 
Significant differences as p < 0.01: *Mean lifespan data of the worms fed with N0 compared to the control population gave the following p-values: 

0.001; 0.007 and 0.002, for 0.5; 5.0; and 50 µg∙ml-1, respectively (means and standard deviations, n = 300). **Movement capacity of the worms fed 

with N0 compared to the control population resulted in p-value: 0.04 and 0.08 for the 5 and 50 µg∙ml-1concentrations, respectively. P-values for 9-day 

adults: 0.05, 0.01 and 0.002 for 0.5; 5.0; and 50 µg∙ml-1, respectively (means and standard deviations, n=210). 
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In 2-day adult, the movement capacity of nematodes fed with low M0 doses 

did not differ from that of the control population (Figure 5.3-3C). A slightly 

reduced movement was noticed in worms fed with 50 μg ml-1 of M0, but this was 

not statistically significant. In contrast, the effect of N0 on depletion of movement 

was already evident and was significant in a dose-response manner (p-value: 0.04 

and 0.08 for the 5 and 50 µg∙ml-1, respectively) (Figure 5.3-3C). 

On the assumption that as worms aged, their motility begins to progressively 

slowdown, the  movement of 9-day adults was quantified. The movement 

capacity of nematodes fed with M0 showed similar number of curves per minute 

compared to the control population (Figure 5.3-3D). However, a significant 

reduction in movement capacity was also clearly evident in nematodes fed with 

N0 (p-values for 9-day adults: 0.05, 0.01 and 0.002 for 0.5; 5.0; and 50 μg∙ml-1, 

respectively). The changes noted in nematodes’ movement capacity feedingh N0 

suggested that bare mesoporous silica nano-sized particles have a toxic-impact on 

C. elegans. This clearly contrast with micro-sized MSPs, which have no significant 

effect on nematodes’ movement or mean lifespan. 

Effect of surface functionalisation on MSPs toxicity  

The hypothesis of improving biocompatibility of inorganic nanomaterials 

through surface functionalisation was considered in this section (Wu et al., 2011; 

Caballero-Díaz et al., 2013; Santos et al., 2010; Bimbo et al., 2010). Evidence from 
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studies in cells has revealed that surface modification by anchoring organic groups 

in silica-based particles may modulate toxicity and may mitigate undesirable 

biological effects (Lankoff et al., 2013). Thus, in this context, evaluation of C. 

elegans fed with M1 and N1 in terms of lifespan and movement capacity was 

studied. 

Lifespan evaluation showed no appreciable viability reduction in worms fed 

with M1 compared with the control population and no significant differences 

between M0 and M1 were evidenced (Figure 5.3-4A). However, remarkable 

differences were found between nematodes fed with N0 and N1 (p-value: 0.017), 

see Figure 5.3-4B. As state above, mean lifespan of nematodes fed with N0 

significantly reduced compared to the control population, whereas mean lifespan 

of C. elegans fed with N1 considerably increased when compared with N0 

(Appendix 5.3-Table S1) and was similar to that of the control population. This 

indicates a remarkable positive effect by coating nano-sized MSPs with the starch 

derivative.  

Regarding movement capacity in C. elegans, no significant differences were 

found between nematodes fed with M0 and M1 (Figure 5.3-4C), whereas a 

significant increase in mobility was determined in N1-fed nematodes compared 

with N0-fed ones (see Figure 5.3-4D). This observation was specifically significant 

in 2-day adult nematodes fed with 0.5, 5 and 50 μg ml-1 of N1 (p-value: 0.002) and 
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also in 9-day adult nematodes fed with 0.5 and 5 µg ml-1 (p-value: 0.015). In 

contrast, the 9-day adult nematodes fed with 50 μg ml-1N0 or N1 displayed a 

similar movement capacity, which suggests that the positive starch 

functionalisation effect observed in young adult nematodes became less effective 

as they aged specially when using large concentration of the nanoparticles. 

The above lifespan and movement capacity data are well correlated. 

Results demonstrated that toxicity of mesoporous silica particles is related to 

particle size and doses, and may be reduced by surface functionalisation. 

Regarding C. elegans’ body movement, some authors have pointed out that 

depletion in movement is associated with reduced motor function, muscle 

structure and cellular deterioration (Garigan et al., 2002; Herndon et al., 2002).  
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Figure 5.3-4. Influence of surface functionalisation of MSPs on C. elegans 
toxicity. (a) Lifespan assays were carried out with 5 µg mL-1 of particles M0 and 
M1, and (b) N0 and N1 (Lifespan other concentrations, see Appendix 5-3 Figure 
S7-S8). Dotted line represents the control population, the grey line indicates bare particles (M0 
and N0) and the black line denotes functionalised particles M1 and N1. Movement capacity 
analysed as the mean speed (ner curves/min) of the worms fed with different concentrations of (c) 
M0 and M1 and (d) N0 and N1. Striped bars represent the control population; light grey bars 
indicate bare particles and dark grey bars show functionalised particles. 
Significant differences as p < 0.01 compared to the control population: the evaluation on day 2 
showed differences *between N0 and the control population. a Differences between N0 
administered at three doses, with a p-value: 0.025 and b differences between: N0-N1, with a p-
value: 0.017. The evaluation on day 9 showed differences **between N0 and the control population, 
c differences between N0 administered at three doses, with a p-value: 0.002, and d between N1 
concentrations with p-value: 0.015 (means and standard deviations, n=210). 
 

Therefore, it could be hypothesised that functionalisation with starch modifies 

the way nano-sized particles interact and influence functions in nematodes 

resulting in less toxicity. The functionalisation of the mesoporous silica 

nanoparticles with (Glu-N) (when compared to bare nanoparticles) improve 

biocompatibility and induces a recovery of lifespan and movement capacity of C. 

elegans. 

Taking into account that nano-size particles can produce toxicity in C. 

elegans, we further studied other health-related variables, such resistance to 

oxidative stress and offspring. In C. elegans, a positive connection between 

lifespan and stress-resistance has been demonstrated for a variety of studies 

(Amrit et al., 2010; Grompone et al., 2012).  

Therefore, in this section, changes in sensitivity to oxidative stress of C. 

elegans fed with the mesoporous silica particles was studied. The percentage of 
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nematodes survival after H2O2-induced oxidative stress was determined in a 

population fed with bare and functionalised nano- (N0 and N1) particles. The 

control population was seeded on NGM plates with only bacterial food. The 

positive population was placed on NGM plates with antioxidant ascorbic acid (10 

µg mL-1) added along with bacterial food. According with previous results, C. 

elegans fed with N1 showed better resistance to oxidative stress than those fed 

with N0 (p-value: 0.009 and 0.029 to 0.5 and 5 μg∙ml-1, respectively), see Figure 

5.3-5a. 

 

Figure 5.3-5. a) Resistance to oxidative stress in the worms fed with MSP. Three doses 
were evaluated (X axis) 0.5; 5 and 50 µg∙ml-1. Grey bars correspond to N0 and darker 
bars to N1. B) Progeny distribution showed a decrease on day 2 for the worms fed with 
MSP (5 µg∙ml-1): grey bars refer to the offspring of the worms fed with N0, darker bars 
indicate the worms fed with N1 and the dotted line denotes the control population 

The dotted line (- -) represents the survival rate for the control population; the dotted line (-- ∙∙ --) 
is the survival rate of the vitamin C-treated worms. Three independent experiments with 5 NGM 
plates and 15 individuals per plate were tested per treatment. 
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Significant differences between uncoated and coated particles, (grey and dark bars) with p < 
0.01: a for concentrations 0.5 µg∙ml-1 (p-value: 0.009), and b 5 µg∙ml-1 (p-value: 0.029) (means 
and standard deviations, n=210) 
 

Apart from reduction on resistance to oxidative stress, previous studies on C. 

elegans have shown that particles smaller than 50 nm, directly affect ovoposition 

due to translocation of the nanoparticles from primary organs, such as epithelial 

cells of the intestine, to secondary organs that belong to the reproductive tract. It 

was mainly found for amorphous (non-porous) silica particles, particles 

accumulate around nematodes and block certain organs, such as the vulva, which 

induce egg hatching in the parent’s body (Pluskota et al., 2009). Although the 

present study evaluated mesoporous-silica and relatively larger particles (nano-

sized MSPs are in a size range of 80-100 nm), and no accumulation of the MSPs in 

the vulva and in  the germ line (vide ante) was observed, an additional progeny 

analysis was performed on worms fed with bare and functionalised nano-sized 

MSPs. 

Laid eggs and the subsequent progeny of worms fed with three different 

doses of N0 and N1 particles were measured. Progeny distribution of worms fed 

with doses of 5 μg∙ml-1 is shown in Figure 5.3-5b (to see the effect of additional 

dose see Appendix 5.3-Figure S9). 

Progeny evaluation indicated that C. elegans (control population) laid the 

most eggs on adult day 1 and that the offspring rate was depleted in adult worm 
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day 2 and 3 (Figure 5.3-5b). Results suggest that nanoparticles generate acute 

stress on fertility because ovoposition was significantly affected from day 1 to 

adult day 2. In particular, nematodes fed with N0 showed an oviposition rate 

significantly lowered on adult day 2 compared to the control population (p-value: 

0.01). In contrast, nematodes fed with N1 showed a minor depletion, which was 

not significant compared with control population (p-value: 0.6). These indicates 

that functionalised particlesexhibited a slightly improvingin the reproductive 

status of nematodes. 

Since there was no reason to associate progeny depletion to only 

accumulation in the vulva, we suggested that the functions associated with 

fertility could be more sensitive to external stress due to the exposition to nano-

size MSPs. It could somehow be related to the depletion of the healthspan 

variables, which agrees according with previous reports, where nervous 

parameters were related with movement and egg-laying phenotypes (Scharf et 

al., 2013). In any case, the heatlhspan evaluation performed in C. elegans offers 

an interesting methodology for evaluating the influence of the surface 

modification of MSPs on nanotoxicity. Nonetheless, more extensive studies into 

phenotype expressions and stress biomarkerswould be of interest and will be 

carried out in due course. 

Conclusions 
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Here we show the feasibility of using C. elegans as in vivo model to evaluate 

the toxicity of MSPs. The intake of micro and nano-sized MSPs has been 

demostrated, being the gastrointestinal tract and the pharinx the main body 

regions for its accumulation. Evaluation of lifespan and other age-related 

parameters in nematodes exposed to micro and nanoparticels has allowed to 

demostrate the safety of micro-sized MSPs. Moreover, toxicity of nano-sized 

MSPs has been evidenciated through the decrease of lifespan, a reduction of 

movement, a depletion of the reproductive status and an increase in the 

sensitivity to oxidative stress. Furthermore, the starch-functionalized mesoporous 

silica nanoparticles (N1) have no significant effect in lifespan and healthspan of C. 

elegans. These results strongly suggested that surface functionalisation of MSPs is 

a suitable strategy to reduce toxicity and enhance biocompatibility of the smallest 

particles. 
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In order to evaluate the mesoporous silica particles (MSPs) as supports for 

encapsulation of bioactive components. The present PhD thesis has encapsulated 

essential oil components (EOCs) in nano and micro sized MSPs. 

To offer a better understanding of methodology and relevant findings; and 

according to the main objectives, results were divided into two sections:  

Section I deals with three different scenarios, where release of essential oils 

components (EOCs) encapsulated in mesoporous silica particles (MSPs) was 

evaluated. Section II addresses the toxicological in vitro and in vivo impact of 

MSPs. 

Mesoporous silica-based particles are interesting supports for controlled 

delivery materials design. On the other hand, EOCs have shown bioactive 

properties asociated with gastrointestinal health, which can be valuable in future 

food or drug applications. Bearing in mind these facts, encapsulation may improve 

the biological stability of bioactive components while protects against adverse 

conditions. In addition, a controlled relase system can modulate the 

bioaccessibility of target components. In that sense, oral delivery results an 

interesting uptake route for functional products. However, the directly ingestion 

of inorganic materials, like MSPs, is still viewed as challenging. 

Among the bioactive properties related to EOCs, the anticancer effect on 

colon cell lines was the focus of the first study. Article 1 evaluates the viability 
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decrease of colon cells incubated with EOCs. Six-EOCs were selected: allyl 

thiocyanate, diallyl disulphide, eugenol, thymol, cinnamaldehyde and carvacrol. 

Activity of free and encapsulated EOCs was assessed on cancer and normal (no 

cancer) colon cells, and two main results were obtained: (i) A sustained anticancer 

effect along time, confirms the stability improvement of EOCs when encapsulated. 

(ii) The amount of encapsulated EOCs for viability decreasing of colon cancer cells 

is lower than required for non-cancer cells. This suggests a selectively effect of 

encapsulated EOCs. 

Once the EOCs encapsulation and delivery was confirmed, the hypothesis to 

encapsulation may control the release of volatiles components and mask the 

unpleasant odours, was addressed. In a second scenary, diallyl disulphide, main 

responsible of unpleasant odour in garlic, was selected and encapsulated in micro 

sized MSPs. Article 2 includes qualitative and quantitative assays to identify the 

diallyl disulphide release. Findings show that encapsulation is not enough to mask 

the unpleasant odours. For efficiently odour masking it is needed to coat the 

MSPs’ surface. In particular, a previously described polysaccharide (hydrolysed 

starch, Glucidex 47) was grafted on MSPs surface. The dense monolayer of sugar 

molecules shapes an anchoring system, which deals with enzymatic stmuli. It 

means that release of encapsulated diallyl disulphide is only due to amylases 
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presence. Thus, starch-functionalised MSPs not only mask the unpleasant garlic-

related odour, but also, control the masking effect with an enzymatic manner. 

The final scene for EOCs’ evaluation includes a hybrid support design for 

encapsulation and controlled release of diallyl disulphide-associated components. 

Article 3 combines a composite material with “gate-like” structures based on 

MSPs. Micro-sized MSPs with two different anchoring systems were entangled on 

polyamidic nanofibers. Main results point that: (i) The hybrid composites show a 

sustained delivery in function of pH changes and enzymatic stimuli. (ii) The MSPs 

are effectively immobilised in nanofibers, even after release tests. 

Section II evaluates mesoporous silica particles’ toxicity, and the hypothesis of 

toxic decrease after surface functionalisation was considered. Two approaches 

were addressed: an in vitro study of viability of colon cells incubated with MSPs, 

and an in vivo evaluation through C. elegans model. 

Article 4 evaluated cell viability, in relation to three MSPs features: doses, size 

and starch capped system. Results show that significant decrease of cell viability is 

obtained with smaller particles, higer doses, and bare particles. In function of the 

threshold dose of MSPs stablished on cell viability assays, the doses range of 

micro and nano sized MSPs was fixed for in vivo model. Article 5, analyses the 

lifespan and healthspan of C. elegans fed for 21 days with MSPs. Results confirm 
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two interesting facts: (i) There is a size-influence on MSPs toxicity risks, which are 

mainly associated to decrease of mean lifespan and damage in aging behaviour. 

(ii) Nematodes population fed with functionalised particles showed a health 

recovering in relation to population fed with smaller and bare particles. 

Toxicity study of MSPs requires a whole particles characterization as well as is 

important identify possible uptake routes to define the assessments to apply. 

Thus, despite unknowledge MSPs heatlh effects, the findings of Section II suggest 

that certain particles are well tolerated by both cells and superior animals. 

Therefore, it is hard to draw conclusive conclusions about the biocompatibility 

and toxicity of MSPs as a unique concept. In any case, the use of biocompatible 

organic molecules to functionalise the MSPs’ surface appears as a good strategy 

to minimize associated-risks while improves the controlled delivery of 

encapsulated components. 

In this way, throughout both sections, the findings of all the studies carried 

out to asses the general objective of this thesis have been sequentially and 

relatedly discussed. 

 

 



General discussion 
 

225 

 

 

 

 

 

 

 

 

 

 

7 CONCLUSIONS AND PERSPECTIVES 

 



 

226 



Conclusions and perspectives 

227 

Conclusions 

• Mesoporous silica particles (MSPs) are suitable supports to encapsulated and 

control the release of essential oil components (EOCs). 

 

• The in vitro effect of EOCs against colon cancer cells was confirmed. In 

addition, the encapsulation of EOCs enhace their anticancer effect due to a 

sustained effect along the time and a yield improvement. 

 

• Encapsulated EOCs showed a selectively effect on cancer cells, while a mild 

effect was evidenced on normal colon cells. 

 

• A masking encapsulation system for garlic-related odour was described. Major 

bioactive component in garlic (diallyl disulphide, DA) was encapsulated in 

mesoporous silica supports, and the surface functionalisation allows the 

masking of unpleasant odours while control the delivery in function of an 

enzyme stimuli. 

 

• A new composite material based on the incorporation of two gated silica 

mesoporous hybrid solids on a electrospun polyamidic nanofiber have been 

prepared and their controlled release behaviour was confirmed.  

 

• Composites development including gate-like systems based on silica are 

interesting way to prepare smart fabrics showing “zero” release that can be 

opened at will using appropriate stimuli.  

 

• The effect of size, doses and surface functionalisation of mesoporous silica 

particles was evaluated to determine a low toxicity system. 

 

• Depletion of cell viability not only depends of size and surface characteristics 

but also it strongly depends on synthesis process to obtain MSPs. 
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• The in vivo studies confirm that MSPs are effectively ingested by a 

multicellular model. 

 

• The oral administration of MSPs to C. elegans strongly suggest that surface 

functionalisation (especially for nanoparticles) is a suitable strategy to reduce 

toxicity and enhance biocompatibility. 

 

• The encapsulation approach evaluated in this thesis offers new opportunities 

for the development of functional products. And also motivate the future 

design of new hybrid supports for oral delivery applications with low and 

zero-risk for health. 

 

Future Perspectives 

• These results can be extrapolated to the encapsulation and protection of 

other bioactive components of nutritional and industrial interest. 

• In vivo evaluations need to be assessed to evaluate the EOCs anticancer 

effect. 

• The nanotoxicological evaluation of bare and functionalised MSPs need to be 

studied in murine models, to identify the acute and chronic toxicity.  

• The future developments related with on-command delivery of natural-

derived anticancer agents and their application on in vivo models should 

include omics techniques to understand the associated mechanisms.  
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Appendix 4.3: A study of capped mesoporous silica 
supports as masking garlic odour systems 

 

 

 

Figure S1. Principal Component Analysis with two principal components 
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Figure S2: Partial Least Square analysis 
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Figure S3 Partial Least Square analysis with release data 
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Figure S4. Support Vector Machine, SVMDA 
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Appendix 4.4: Polymer composites containing gated 
mesoporous materials for on-command controlled 
release 
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Figure S1. TGA Analyses for solids a) Mesoporous microparticle MCM-41 
loaded with garlic extract, (P0), b) Particle loaded and functionalized with 
N3-gate (P1) and c) Particle loaded and functionalized with G47-gate (P2).   
Curve of weight loss (- - -) and 1st derivative of the weight loss curve (--)  
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Figure S2. Representative EDX spectra a) Composites M1 with 
microparticles entangled before release procedure and (b) Composites M1 
after release procedure. c) Composites M2 with microparticles entangled 
before release procedure and d) Composites M2 after release procedure 
analysed by FE-SEM2    

                                                            
2 EDX analyses were carried out by FE-SEM ULTRA 55-44-22 evaluated by secondary (SE2) 

and backscattered electrons (AsB) detectors. In specific case of M2 before release procedure (Figure S2 a. 
EDX assay were done by Field Emission Scanning Electron Microscope JEOL JSM6300, were samples 
were sputter coated with graphite.) 

a)

Si

b) Si

Si
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Figure S3.  a) Voltammetric evaluations of garlic extract and diallyl disulfide 
(DAD) pattern b) Brief sampling of voltammetric evaluations of release 
studies 
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Appendix 5.3: A C. elegans in vivo nanotoxicology 
evaluation of bare and functionalised micro and nano 
mesoporous silica particles 

 

 
Figure S1. 1H-NMR spectrum of Glu-N.  Starch derivative was obtained after 
starch reaction with amino group from hemiacetal hydroxyl of APTES, which 
is compatible with the shift from 2.4 ppm to 2.8 ppm. Signal at 2.4 ppm 
appears to APTES methylene which is bonded to amino group. 
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Figure S2. TGA Analyses for MSPs A. Functionalised micro-sized particles, 
M1 and B. Functionalisednano-sized particles N1. Curveofweight loss (- - -) 
and 1st derivative of the weight loss curve (--) 
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Figure S3. Size distribution by Intensity, Determined by dynamic light 
scattering, DLS, to: A. N0, B. N1, C. M0 and D. M1 
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Figure S4. There was no evidence of significant red signal in progeny of 
worms from group (2) fed withA.Worms fed withM0-rhd, a representative 
image of pharynxregion and B. worms fed N0-rhd, a representative image 
of intestine. 

 

A. B.
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Figure S5. Lifespan of C. elegans oral administered with MSPs, doses 

evaluation: A. 0.5 µg∙ml
-1

B. 5 µg∙ml
-1

 and C. 50 µg∙ml
-1

. Dotted line: NG 
curve (control response) and line in black worms fed with bare micro-sized 
particles M0. 

B

C
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Figure S6.Lifespan of C. elegans oral administered with MSPs, doses 

evaluation: A. 0.5 µg∙ml
-1

B. 5 µg∙ml
-1

 and C. 50 µg∙ml
-1

. Dotted line: NG 
curve (control response) and line in black worms fed with bare nano-sized 
particles N0. 

 

A B

C



 Appendix 5.3 

247 

 
Figure S7. Lifespan of C. elegans oral administered with MSPs, doses 

evaluation: A. 0.5 µg∙ml
-1

B. 5 µg∙ml
-1

 and C. 50 µg∙ml
-1

. Dotted line: NG 
curve (control response) Grey line: particles without functionalisation (M0) 
and black line: Functionalised particles (M1) 

B.A.

C.
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Figure S8. Lifespan of C. elegans oral administered with MSPs, doses 
evaluation: A. 0.5 µg∙ml

-1
B. 5 µg∙ml

-1
 and C. 50 µg∙ml

-1
. Dotted line: NG 

curve (control response) Grey line: particles without functionalisation (N0) 
and black line: Functionalised particles (N1) 

 
 
 

 

A. B.

C.
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Figure S9. Progeny distribution for the worms fed withA. Micro-sized 
particles, at three doses (0.5, 5 and 50µg∙ml-1), and B. For the worms fed 
with Nano-sized particles. Grey bars refer to the offspring of the worms fed 
with bare particles, darker bars indicate the worms fed withfunctionalised 
particles and the dotted line denotes the control population. 

 
 

Table S1. Mean lifespan of the worms fed with different MSPs 
concentrations 

 0.5 µg mL-1 5 µg mL-1 50 µg mL-1 

M0 11.8 ± 0.4 12.6 ± 0.7 10.3 ± 0.4 
M1 10.2 ± 0.6 11.5 ± 0.6 10.6 ± 0.6 
N0 8.5  ± 0.5 *.a 9.3 ± 0.5 *.a 8.6 ± 0.4 *.a 

N1 10.0 ± 0.6 a 11.3 ± 0.4 a 10.1 ± 0.4 a 
*Significant differences related to the mean lifespan of the control population (p<0.01) (means and standard 

deviations, n=300) a Significant difference between N0 and N1 at the same concentration had p-values: 0.001; 
0.003 and 0.001for 0.5; 5.0; and 50 µg∙ml-1, respectively. 
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