
1

Design and implementation of a high-

performance stream-based computing

platform on multigenerational GPUs.

By Pablo Lamilla Álvarez

September 27, 2010

Supervised by:

Professor Shinichi Yamagiwa

Kochi University of Technology, Japan

Professor Francisco José Abad Cerdá

Universidad Politécnica de Valencia, Spain

2

Table of Contents

Chapter 1 Introduction.. 4
1.1 Overview of the Project.. 4
1.2 Objective of research .. 6
1.3 Expected Outcomes .. 7
1.4 Disposition of the document... 7

Chapter 2 Background and Definitions .. 9
2.1 Stream computing... 9
2.2 GPGPU... 10
2.3 GPGPU computing platforms... 13

2.3.1 Caravela Platform.. 14
2.3.2 OpenCL ... 17

Chapter 3 Stream-based computing platform on multigenerational GPUs 27

3.1 Caravela implementation.. 27
3.2 Caravela low-level functions.. 28
3.3 Flow Model .. 33

3.3.1 Constant values structure... 35
3.4 Flow Model Creator ... 36
3.5 Kernel Structure.. 38
3.6 Swap Mechanism.. 39
3.7 Implementation conclusions... 41

Chapter 4 Performance Evaluation... 42
4.1 Straightforward application: Matrix multiply... 42
4.2 Recursive application: IIR filter ... 46

Chapter 5 Conclusions and future work ... 50
Bibliography (references) ... 52
Apendix I User guide of Flow Model Creator GUI..55

1 Introduction ... 55
1.1 FlowModelCreator ... 55
1.2 Authors ... 55

2 Functionality.. 56
2.1 Basics concepts... 56
2.2 Top Window... 57
2.3 Set constant values window... 61

3

List of Figures

Figure 1. A typical system organization with legacy GPU 10
Figure 2. Graphics processing steps ... 11
Figure 3 Recent GPU architecture.. 12
Figure 4. Structure of the flow-model .. 14
Figure 5. Resource hierachy in a processing unit. .. 15
Figure 6. Swap mechanism... 17
Figure 7. Companies that support OpenCL.. 18
Figure 8. Platform Model of OpenCL ..18
Figure 9. Example of 2-dimensional NDRange ... 20
Figure 10. Conceptual OpenCL architecture.. 21
Figure 11. VectorAdd example in OpenCL kernel language 23
Figure 12. OpenCL host code VectorAdd example. Part one 24
Figure 13. OpenCL host code VectorAdd example. Part two................................ 25
Figure 14. Structure of the Caravela functions... 28
Figure 15. Flow Model of VectorAdd example ... 35
Figure 16. Changes in the top window of FlowModelCreator 37
Figure 17. New interface for introducing the constant values................................ 38
Figure 18. Example of kernel header for Caravela... 39
Figure 19. Execution times using matrix multiply ... 43
Figure 20 MatrixMultiply Kernels ... 44
Figure 21 Execution times using IIR filter ... 46
Figure 22 Kernel code of IIR program ... 47
Figure 23. VectorAdd execution times with 5000 swaps....................................... 48
Figure 24. VectorAdd execution times with 10000 swaps..................................... 49

List of tables

Table 1. Main functions of Caravela library...16
Table 2. Environment for the evaluation .. 42

4

Chapter 1 Introduction

1.1 Overview of the Project

During this decade, high performance computation demand has been increasing more

and more, for example in the field of humanities [1]. Scientists and investigators are in

need of high speed and performance environments for their research, which need to

perform millions of floating points operations per second [2].

One way to achieve this goal is to increase the power of the hardware. Multi-core

CPUs and Supercomputers [3] are an example of the evolution of this path. However,

even this type of hardware (Supercomputers) has their limits. Supercomputers, besides

being very expensive and complicate to build, have a very high electricity consumption

[22].

 In the meanwhile, another kind of processors, the GPUs, have experimented a great

improvement within this decade, and a single GPU IC chip is able to achieve 10

TFLOPS. This performance attracts HPC researchers to the potential computing power

of GPUs, so in the last decade the field called GPGPU [17] (General-Purpose

computation on Graphics Processing Units) has gained more importance. However

programming on the GPU entails a great difficulty, due to its architecture, that is

categorized into two types nowadays.

One type of GPU architecture has three kinds of processors called, vertex processors,

rasterizer and fragment processors that are dedicated respectively to transform the

vertices that define the graphics primitives, to transform a primitive into a set of pixels

and finally to compute each pixel color, taking into account an illumination equation

and maybe a texture. This graphics pipeline can be programmed using graphics libraries

such as DirectX 9[7] and OpenGL 2.0 [8]. Also, this architecture is generally called

legacy architecture, to distinguish from the newest architectures that have a different

structure.

These newest architectures integrate tens or hundreds of a standardized general

purpose stream processor that can execute any type of shader. When the computational

units are unified like this, the architecture is called Unified Shading Architecture. Each

5

processor invokes a program to generate element(s) of output data stream(s) from

element(s) of input one(s). Emulating the three-step graphics processes performed by

the former architecture, this recent architecture implements the similar operations of the

graphics runtimes. In addition, it releases the stream processor resources to general

purpose computing via special runtimes such as CUDA [11] and OpenCL [12].

During the era of the legacy GPU architecture the main problem of GPGPU

applications was the complete different style of programming compared to CPU

programming, due to the fact that legacy GPUs environments were originally designed

for graphics processing. Therefore some applications that tried to cover and abstract

those differences for the programmers were developed such as Brook [9] and Sh [10].

Brook introduced a programming model for GPUs called stream computing.

 Stream Computing [4] is a programming paradigm in which the data is processed in

a continuous way, as a unique piece of information. This piece is called an element of

stream. The point in the stream computing is to manipulate and to operate each element

of the stream in a parallel pipeline, i.e. all at the same time. The operations applied to

the stream are packed into a function called kernel. For instance, if we want to sum the

elements of two vectors (output[i] = inputA[i] + inputB[i]), using the old-sequential

style the elements have to be summed one after another inside of a loop. However,

using stream computing, each vector is treated as a stream and the sum operation is

programmed inside a kernel. Then, this kernel will receive each stream and will apply

the sum operation to all the elements of these streams in a parallel way, so the elements

of the resulting vector are obtained all at once.

 Another GPGPU platform, the Caravela [13], was developed to form the true

stream-based computing based on the flow-model [14]. This model, used by the

Caravela in its execution, is defined by the number of I/O streams, constant values and a

program (kernel) invoked on a targeted GPU .

The problem with these architectures is that their programming style is not

compatible because for programming in the recent architecture one must follow a

stream-based computing style, which is not the same style that is followed when

programming in the legacy architecture. Therefore algorithms or optimization

techniques cannot be shared between architectures. However the Caravela platform has

a unified framework to implement stream-based computing using the flow-model, just

6

by defining the number of I/O streams and the target program. This flow-model also can

be defined easily with a GUI called FlowModelCreator, which is included in the

Caravela package. Thus, the Caravela platform can provide a unified programming style

between different GPU generations, because the stream-based computing concept is

standardized.

This project is focused on the migration of the Caravela platform to OpenCL. Now

the Caravela is implemented on the DirectX9 and the OpenGL environments, but the

OpenCL support, as a standard and platform-independent language, will allow the

Calavera to run into any modern GPU environment. Therefore with this migration

process the following problems will be solved:

1) Impossibility to run the Caravela into any GPU environment.

2) Disparities in the programming style of the runtimes of the legacy and recent

GPU architectures.

This project will be developed in C/C++. C# will also be used in the Graphical User

Interface (GUI) that allows the creation of the “Flow Model”, the structure that packs all

the information used by Calavera.

1.2 Objective of research

There are three main objectives of this research project as listed below:

1) OpenCL support in Caravela platform.

This objective will cover the necessity of Caravela platform to run on any GPU

environment. To achieve this objective, the relationship between the OpenCL functions

and the Caravela functions will be studied and established.

2) OpenCL support in FlowModelCreator GUI.

This objective will allow the FlowModelCreator GUI to automatically generate a

flow-model XML file with all the new parameters that OpenCL implementation needs.

7

3) Exploiting maximum performance from GPUs in any generation.

This objective will focus on preserving the performance of Caravela execution on

GPUs of any generation.

1.3 Expected Outcomes

There are two outcomes expected by this research project.

1) A software package that includes the new Caravela software with OpenCL

support.

This package will include the Caravela platform with the new functionalities to

support OpenCL environment, as well as the support of the previous environments

(OpenGL and DirectX).

2) Multi-Platform “FlowModelCreator” GUI with OpenCL o ption.

This GUI application will generate the flow-model structure for Caravela. With the

release of the new version, the changes that allow the support of OpenCL will be

implemented.

3) Application examples for the Caravela.

 Programs samples used for the performance evaluation are also added. This includes

the matrix-multiplication and the IIR filter kernel programs, both written in OpenCL,

and the main programs using the Caravela API functions to execute the kernels.

Thus, with the package of these outcomes, a high-performance stream-based platform

on OpenCL will be developed.

1.4 Structure of the document

Chapter 2 explains the background of this project’s field, specifically “Stream

computing” and GPGPU, as well as a description of the two main environments used in

this project, the “Caravela” and the OpenCL.

Chapter 3 illustrates the implementation of the new version of Caravela. Technical

problems encountered along the migration process and their solutions are explained in

detail.

8

Chapter 4 presents the results obtained with the new software. Various performance

evaluations are carried out, and their results are commented.

The last chapter describes the conclusions for this project and proposes future

directions.

Finally in the appendix, the User’s Guide of the application and the GUI

“FlowModelCreator” are attached at the end of this document.

9

Chapter 2 Background and Definitions

2.1 Stream computing

Stream computing (or stream processing) is a computer programming paradigm that

allows some applications to easily exploit a limited form of parallel processing [4].

These applications are able to use multiple computational units without the necessity of

explicitly managing allocation, synchronization, or communication among those units.

Stream computing takes advantage of a SIMD [21] (Single Instruction, Multiple

Data) architecture, where the same instruction can be applied to various instances of

different data.

The main point of stream computing is to use a continuous flow of data called stream

as the input and output of the program. A stream is a collection of data which can be

operated on in parallel. Each element of a stream is a record of data requiring a similar

computation; however it is, in general, independent of the other elements. A series of

operations will be applied to each element in the stream all at once. These operations are

packed in a function called kernel. Typically, the same kernel function is applied to all

elements in the stream (Uniform streaming), but it is not the only option.

The benefit of stream computing stems from the highly parallel architecture of GPUs,

whereby tens to hundreds of parallel floating points operations are performed with each

clock cycle.

For this reason, nowadays stream computing is primarily used in the realm of the

GPUs, where stream computing can easily take advantage of the large number of

parallel processors of GPUs. Stream computing on the GPU was mainly used for

graphics purposes, but in the recent years, there has been an increasing interest to use it

for general purpose applications [5]. This recently new high performance computing

field is called GPGPU [17] and is explained in the next section.

10

2.2 GPGPU

 As mentioned above, GPGPU is the technique of using a GPU to perform general

purpose, i.e. not only for computer graphics, computation in applications that

traditionally have been executed in the CPU. This field has become popular in recent

years due to the high demand of high performance computation platforms. Also the

results achieved in fields like Bioinformatics [15] are good enough to continue this path

in the future.

The evolution of this field is directly related to the evolution of GPUs, specially their

architecture and the communication with the host memory and the CPU. Figure 1

illustrates the typical organization around a legacy GPU.

Figure 1. A typical system organization with legacy GPU

In this figure, a video adaptor that includes a GPU and a Video RAM (VRAM) is

connected to a peripheral bus of a CPU and the main memory, linked to the “host

processor’s bus”. The GPU inside the video adapter is controlled by the CPU to execute

a part of the rendering tasks in the systems.

In order to use the GPU as a computing resource for GPGPU applications, the CPU

downloads the application program to the GPUs instruction memory and also has to

prepare the input data for the program. This data is copied into the VRAM by the CPU

and then the GPU reads/writes the VRAM directly to execute the calculations. Finally

11

the CPU has to read again the VRAM to copy the results written by the GPU to the

main memory.

In recent GPUs, it is possible to access the main memory directly. The area is pinned

[16] not to be moved by a paging function of the operating system. With this method,

there is no need to perform copy operations to transfer data from the main memory to

the device memory.

Next, let’s see in detail the two different architectures of a GPU mentioned in the

introduction: the legacy architecture and the new architecture.

The legacy architecture is based on the graphics pipeline showed in figure 2.

Figure 2. Graphics processing steps

This figure shows the processing steps done by the GPU to create a graphical image

to be later displayed in a screen. First, the graphics data is prepared as a set of

normalized vertices of objects on a local coordinate system defined by the graphics

designer (Figure 2(a)). The vertices are sent to a vertex processor to apply different

transformations, such as translations, scales and rotations. In this step all the objects will

be mapped to a standardized referential axis (the Camera Coordinate System). Further

operations will apply a perspective transformation and will project the 3D vertices of

the objects into a 2D plane. In the next step, a rasterizer interpolates the coordinates and

defines fragments that represent the graphics objects (Figure 2(b)). Finally, a pixel

processor receives those fragments from the rasterizer and creates color data to send to

the frame buffer, after calculating the composed RGB colors from the textures of the

12

Shared
memory

Global
memory

objects (Figure 2(c)). The color data is written into the frame buffer, which is connected

with the pixels of the screen.

The GPGPU with this architecture used graphics runtimes such as OpenGL and

DirectX that operate in the CPU domain in order to control the GPU. The problem was

that, because these environments had been firstly designed for graphics processing, the

environments had an interface that non-graphics programmers were not familiar to.

For instance, when an application wants to output an NxN matrix, the programmer

must setup a frame buffer and must understand that the output will be written to an NxN

pixel plane in the frame buffer. Despite this method being correct for graphics

applications, for programmers that are not familiar with these graphic programming

details it is hard to understand and to write non-graphics related programs. For this

reason, there was a necessity of APIs that hides this graphical legacy of GPU.

Nowadays there is another type of architecture for GPUs, as shown in figure 3.

Figure 3. Recent GPU architecture

The recent GPU architecture has only a kind of processor called stream processor or

thread processor. This type of processor can be configured to perform any stage in the

graphics pipeline. However, the computing style follows to stream-based one with

distributing elements of streams into multiple stream processors. Employing a dedicated

13

stream-based programming interface (CUDA, OpenCL, DirectCompute [23]), the

graphics processing on the new architecture is emulated by the OpenGL and the

DirectX providing the equivalent interfaces to the vertex and the fragment processors.

Furthermore, in this architecture, memory has been divided into two types called

global and shared memory, as shown in figure 3. Global memory is provided by the

memory placed outside the GPU such as DDR3 VRAM. On the other hand, shared

memory is placed besides of the stream processor to work as a cache.

This new architecture is being supported by many runtimes for GPGPU (CUDA,

OpenCL or DirectCompute) that hides the problems of disparities in the programming

style between GPU and CPU. Moreover, the new distribution of the architecture is more

suitable for GPGPU than the legacy one. Thus, the application treated in this project,

Caravela, must give support to this new architecture to take advantage of the new

features that helps GPGPU.

2.3 GPGPU computing platforms.

In the recent years, researches in the HPC (high performance computing) field have

been giving efforts to use GPUs for a supercomputer platform as tried in the web site

[17]. As explained in the previous section, during the era of legacy architecture, there

was the problem of disparities between graphics runtime environments and general

purpose processing on GPGPU applications. To solve this problem some solutions have

been proposed, such as Sh, Scout, Brook and Caravela. Sh [10] is a graphics processing

interface with an object oriented interface for C++. Scout [18] is another wrapper for

graphics which uses a language based on C* [24]. Although details of graphics runtimes

are hidden by these two systems, they are still targeted for visual applications. Thus,

graphical dependent issues cannot be completely eliminated. Brook [9] was a compiler-

oriented interface for GPU-based applications in which the programmer just needs to

identify functions to be transposed to programs on the fragment processor specified

with a special keyword kernel. This computer style is inherited by the newest GPGPU

environments (CUDA, OpenCL, etc). Finally the Caravela provides a stream-based

computing platform in which the programmer can just concentrate in the design of a

14

flow-model data structure that follows a stream computing manner. Thus,

implementation details such as the calculation of the GPUs are hidden.

This project is focused on Caravela and its porting to OpenCL language in order to be

compatible with any GPU environment. In the next two sections, Caravela and OpenCL

are explained in detail.

2.3.1 Caravela Platform

The Caravela platform is an interface for stream-based computing that uses the

concept of flow-model, shown in Figure 4.

Figure 4. Structure of the flow-model

The flow-model is composed of input/output data streams, constant parameter inputs

and a program which processes the input data streams and generates the output data

streams. Therefore, it can be applied to any kind of stream processor such as the ones in

the new architecture of GPUs. The program part of the flow-model can include multiple

stream-based programs suitable for supported environments. Currently the Caravela

supports OpenGL and DirectX, so the program can be written in GLSL or HLSL.

15

To create the flow-model, the Caravela environment provides a GUI to help in the

creation process. This GUI is called “FlowModelCreator” and, a user guide is provided

in Appendix A.

The Caravela is composed by a library that supports an API for GPGPU. Figure 5

shows the resource hierarchy in this library. The Caravela library has been adapted to

the definitions for the processing units represented in Figure 5

-Machine: host machine of a video adapter.

-Adapter: video adapter that includes one or multiple GPUs.

-Shader: a GPU.

Figure 5. Resource hierachy in a processing unit.

An application just needs to map a flow-model into a shader to execute it.

The main functions of Caravela library are shown in Table 1.

16

Table 1. Main functions of Caravela library

 With these functions, the programmer can implement target applications in the

framework of flow-models just mapping flow-models into one or more shaders. Thus,

the programmer does not have the necessity of knowing about graphics runtime

environment details, so Caravela can become to a solution to relieve the problem of

disparities between graphical environments mentioned in Section 2.2.

Moreover, the Caravela platform incorporates optimization functions of the flow-

model execution itself, called swap mechanism [19], which allows executing recursive

iterations of a flow-model exchanging the input and the output buffers in the GPU side

without copy operations between the host memory and the GPU memory. Avoiding this

data transfer between the host memory and the GPU memory, we reduce the execution

time of the program considerably. Figure 6 shows this mechanism.

17

Figure 6. Swap mechanism

Currently, as mentioned before, the Caravela platform supports the legacy

architecture of GPUs, so graphics runtime functions must be used to perform the

stream-based computation. Also, recently Caravela has been ported to CUDA, so

support for the recent architecture of GPUs has been added. However, because CUDA

was developed by NVIDIA, it can be used only on NVIDIA GPUs. Thus, we must give

support to Caravela for a runtime that can be used with any GPU regardless of the

manufacturer, and the chosen language is OpenCL.

The next section gives an overview of this API.

2.3.2 OpenCL

OpenCL (Open Computing Language) is an open royalty-free standard, initially

proposed by Apple and finally developed by The Khronos Group [20], for general

purpose parallel programming across CPUs, GPUs and other processors. Moreover, its

most important characteristic compared for example to CUDA, is that OpenCL is cross-

platform. It also supports a wide range of applications, from embedded and consumer

software to HPC solutions, through a low-level, high-performance, portable abstraction.

Besides Khronos Group, many industry-leading companies and institutes have

participated and have supported the development of OpenCL. Figure 7 shows many of

them.

18

Figure 7. Companies that support OpenCL

The objective of OpenCL is to help expert programmers, such as library writers and

middleware vendors, to write portable yet efficient code. Therefore OpenCL provides a

low-level hardware abstraction as well as a framework to support programming.

To explain the main ideas behind this language, we will describe these four models

for OpenCL: i) platform, ii) memory, iii) execution and iv) programming models.

i) Platform Model

The platform model for OpenCL is shown in Figure 8. A host connected to one or

more OpenCL devices, such as GPUs, CPUs… Each device is divided into one or more

compute units. These compute units are further divided into one or more processing

elements which is where the computation occurs.

Figure 8. Platform Model of OpenCL

19

The program written in OpenCL runs on the host side submitting commands to

execute computations on the processing elements within a device. The processing

elements execute a single stream of instructions.

ii) Execution Model

OpenCL execution can be separated in two parts.

First a host program, which defines a context (environment where the kernels execute

and the domain in which synchronization and memory management is defined). The

context manages the execution of the kernels. Then the kernel functions are executed on

one or more OpenCL devices.

When the host program submits a kernel for execution, an index space, called

NDRange, is defined. For each point of this space an instance of the kernel is executed.

This kernel instance is called in OpenCL work-item, which is identified by a global ID

in the index space. Each work-item executes the same code but the execution pathway

and the data operated can vary per work-item.

Moreover, work-items can be organized into work-groups, which provide a more

coarse-grained decomposition of the index space. For each work-group a work-group ID

is assigned and for each work-item within a work-group a local ID is assigned also. So

in summary, each work-item has two IDs (global and local) and each work-group has

one ID.

The NDRange can be one, two or three dimensional, so each work-item ID will be N-

dimensional tuples, where N is the dimension of the NDRange. Figure 9 shows an

example of 2-dimensional NDRange.

20

Figure 9. Example of 2-dimensional NDRange

In this example each little square is a work-item and each of the nine bigger squares

is a work-group. The NDRange is used to identify and to have control of all the work-

items that are executed. So for example, if we want to execute a program that does the

matrix operation A+B=C, each work-item, when we launch the kernel a NDRange like

the above will be created. Each work-item of the NDRange will perform a sum

operation to calculate one element of the matrix C, so for example the work-item with

the ID (0,0) will perform the operation A[0][0]+B[0][0]=C[0][0]. Because we have the

control of all the work-items using the NDRange and the IDs, the sum operation inside

the kernel function is just A[x] [y] +B[x] [y] =C[x] [y] where x and y are the IDs of

each work-item.

As mentioned before, the host program creates a context to manage the executions of

the kernel. The context includes the devices, the kernels, the program objects (source

and executable that implement the kernels) and memory objects visible to the host and

the device.

The method to submit orders from the host to the kernel is through a data structure

called command-queue, created on the host side. The host program places commands

into this structure which are then scheduled onto the device within the context.

21

Examples of commands are the one that executes a kernel, synchronization commands

or memory commands which transfer data between memory objects (host->device,

device->host or device->device).

iii) Memory Model

OpenCL divides the memory into four distinct regions:

• Global memory. Any work-item has read/write permission to this region.

• Constant memory. Is a region of the global memory that remains constant

during the execution of a kernel. The host must allocate and initialize the

memory objects placed in this region.

• Local memory. This region is local to a work-group, which means that is

shared only by all the work-items in that work-group.

• Private memory. Memory private to a work-item. Any variable defined

there is only accessible by this work-item.

Figure 10 shows these four regions of memory and how they relate to the platform

model.

Figure 10. Conceptual OpenCL architecture

22

The host application uses the OpenCL API to create memory objects in global

memory, and to enqueue memory commands, to write/read to/from these memory

objects.

The host and the device memory are almost completely independent of each other,

because the host side is defined outside of OpenCL, i.e. everything that is used by

OpenCL during the execution (NDRange, memory regions …) is inside the OpenCL

device. The host can only communicate with the OpenCL device thorough the OpenCL

API functions. However they need to interact in order to pass data between memory

objects. This occurs in one of these two ways: by copying data or by mapping and

unmapping regions of a memory object.

To copy data explicitly, the host has to submit commands to transfer data between a

memory object and host memory, which can be blocking or non-blocking. On the other

hand, to map/unmap regions of a memory object, the host can map a region from this

memory object into its address space. Once a region from the memory object has been

mapped, the host is allowed to write/red to this region. When the host finishes all the

write/read accesses, the region is unmapped.

iv) Programming Model

Two types of programming models are supported by OpenCL: data parallel and task

parallel models, as well as hybrids of these two.

In the data parallel programming model a sequence of instructions (kernel) is applied

to multiple elements of a memory object. The index space associated with the OpenCL

execution model defines the work-items and how the data maps onto the work-items.

Strict one-to-one mapping between the work-item and the element in a memory object

is not a requirement.

On the other hand, the task parallel programming model defines a model in which a

single instance of a kernel is executed independent of any index space. It is equivalent

to executing a kernel on a computing unit with an NDRange of 1 work-item and 1

work-group.

The programming language of OpenCL kernels is based on C99. Figure 11 shows an

example of the vector addition problem written in this language.

23

Figure 11. VectorAdd example in OpenCL kernel language

A kernel function must be defined with the __kernel directive. Memory objects

created and initialized on the host side are passed to the kernel function as parameters.

These parameters can have the directives __global, __local, etc. depending on the

memory region that we want to use. In this example we have 3 arrays of floats (2 inputs

and 1 output) declared as __global and a single int. The two inputs have also the

keyword “const” so they are placed into the Constant Memory region.

Inside the kernel function the sum operation is executed for each element of the

arrays. Before the operation, we must get the ID to identify the work-item inside the

NDRange, stored in the variable iGID, so each work-item will perform one sum

operation.

This code would be executed on the GPU side, so previously the host side must build

and execute this code using the OpenCL API. The following code (Figure 12 and 13)

shows the basic steps to prepare the OpenCL environment, execute the kernel function

and retrieve the results from it for this VectorAdd example.

24

Figure 12. OpenCL host code VectorAdd example. Part one

const unsigned int cnBlockSize = 512;
const unsigned int cnBlocks = 3;
const unsigned int cnDimension = cnBlocks * cnBlock Size;

// create OpenCL device & context
cl_context hContext;
hContext = clCreateContextFromType(0, CL_DEVICE_TYP E_GPU,
0, 0, 0);

// query all devices available to the context
size_t nContextDescriptorSize;
clGetContextInfo(hContext, CL_CONTEXT_DEVICES,
0, 0, &nContextDescriptorSize);
cl_device_id * aDevices = malloc(nContextDescriptor Size);
clGetContextInfo(hContext, CL_CONTEXT_DEVICES,
nContextDescriptorSize, aDevices, 0);

// create a command queue for first device the cont ext reported
cl_command_queue hCmdQueue;
hCmdQueue = clCreateCommandQueue(hContext, aDevices [0], 0, 0);

// create & compile program
cl_program hProgram;
hProgram = clCreateProgramWithSource(hContext, 1,
sProgramSource, 0, 0);
clBuildProgram(hProgram, 0, 0, 0, 0, 0);

// create kernel
cl_kernel hKernel;
hKernel = clCreateKernel(hProgram, “vectorAdd”, 0);

// allocate host vectors
float * pA = new float[cnDimension];
float * pB = new float[cnDimension];
float * pC = new float[cnDimension];

// initialize host memory
randomInit(pA, cnDimension);
randomInit(pB, cnDimension);

// allocate device memory
cl_mem hDeviceMemA, hDeviceMemB, hDeviceMemC;
hDeviceMemA = clCreateBuffer(hContext,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
cnDimension * sizeof(cl_float),
pA,
0);
hDeviceMemB = clCreateBuffer(hContext,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
cnDimension * sizeof(cl_float),
pA,
0);
hDeviceMemC = clCreateBuffer(hContext,
CL_MEM_WRITE_ONLY,
cnDimension * sizeof(cl_float),
0, 0);

25

Figure 13. OpenCL host code VectorAdd example. Part two

These API functions would be written on the host side to manage the execution of the

kernel function.

Summarizing, OpenCL provides an API and a C-based kernel language that make an

easy and transparent interface for GPGPU. It can be used in most modern GPU due to

its platform-independent design. Therefore, the Caravela platform, which has potentially

a stream-based computing style, can take advantage of OpenCL characteristics to

become almost 100% compatible with any GPU.

In order to port the Caravela to OpenCL, we must take care of these issues:

• Relationship between the functionality of the Caravela functions and the

OpenCL API functions.

• Modifications in the flow-model structure in order to pack all the

OpenCL information needed.

• Modifications in the GUI “FlowModelCreator” in order to accept the

new modifications done in the flow-model structure.

// setup parameter values
clSetKernelArg(hKernel, 0, sizeof(cl_mem), (void
*)&hDeviceMemA);
clSetKernelArg(hKernel, 1, sizeof(cl_mem), (void
*)&hDeviceMemB);
clSetKernelArg(hKernel, 2, sizeof(cl_mem), (void
*)&hDeviceMemC);

// execute kernel
clEnqueueNDRangeKernel(hCmdQueue, hKernel, 1, 0,
&cnDimension, 0, 0, 0, 0);

// copy results from device back to host
clEnqueueReadBuffer(hContext, hDeviceMemC, CL_TRUE, 0,
cnDimension * sizeof(cl_float),
pC, 0, 0, 0);
delete[] pA;
delete[] pB;
delete[] pC;
clReleaseMemObj(hDeviceMemA);
clReleaseMemObj(hDeviceMemB);
clReleaseMemObj(hDeviceMemC);

26

• Design of a header pattern that an OpenCL kernel function must follow

to be accepted by Caravela Platform.

• Find a method in OpenCL for the implementation of the swap

mechanism provided by Caravela platform.

The next chapter will explain all the process followed to achieve the previous

objectives.

27

Chapter 3 Stream-based computing platform on
multigenerational GPUs

After explaining all the background related to this project, in this chapter the process

followed to migrate the Caravela to OpenCL is explained.

First of all we will describe the organization of the Caravela, i.e. the files which is

composed of, the structure of the code, etc.

3.1 Caravela implementation

The Caravela application is mainly composed of 3 project files:

-“CaravelaFlowModelClass”. This project contains the definition of the

“FlowModel” class, which is used in the rest of the files.

-“CaravelaFlowModelCreator”. This project contains the GUI application used to

create a flow-model XML file, which is read by Caravela to fill the flow-model class.

-“Caravela”. This .DLL project contains the main code of Caravela (Caravela API

functions and mid-level functions). When compiled it creates a dynamic library file with

the Caravela API.

The structure of the code of the last project file, “Caravela”, is a 3-level stratum,

showed in Figure 14.

28

Figure 14. Structure of the Caravela functions

In the highest level we have the API functions of Caravela (named in Table 1). Each

function can call 1 or more mid level functions. The functionality of these functions is

basically to select the appropriate low-level function depending on the environment we

are using. Finally the low-level functions have the functionality of each environment

supported by Caravela. These functions are defined inside a .DLL project, one for each

supported environment. When compiled, each project produces a DLL library with the

functionality of the environment.

In summary, to give the OpenCL support to Caravela, we will only have to create a

new .DLL project with the low-level functions programmed with the OpenCL API, as

well as modify the mid-level functions just by adding a new condition for the OpenCL

support. With this, the rest of the environments will not be affected by the porting

process.

3.2 Caravela low-level functions

The next step is to analyze the functionality of the Caravela low-level functions in

order to establish a relationship between these functions and the OpenCL functions.

Next, a list of the low-level functions and a brief explanation of its functionality is

provided:

1) _InitializeLowlevel

Initializes the environment and creates the structures that will be used in the rest

of the functions.

29

2) _GetAllShaderInLocalMachine

This functions searches all the shader devices in the local machine and returns

the first one available. Also, it obtains and returns technical information of the

device in order to set maximum values such as “Maximum number of input streams

allowed”, “Maximum data size”, etc.

3) _CompileShaderProgram

Read and compiles the shader/kernel program written by the user.

4) _AllocateOutputBufferToShader

This function creates one buffer for each output data stream. These buffers are

stored in an array and the function returns a pointer to this array.

5) _MapProgramToShader

Links the shader program previously compiled to the current shader.

6) _SetConstants

Creates the necessary memory for the constant values and allocates these values

into the buffers.

7) _GetInputBuffer

Creates and returns the buffers that will be used to store the input data.

8) _MapInputBufferToShader

Writes the input data initialized in the host into the buffers in the device side.

9) _FireShader

This function executes the program shader.

10) _GetOutputBuffer

Obtains the buffer that contains the output data after the execution.

30

11) _FreeOutputBufferFromShader

Free the memory used for the output data.

12) _UnmapInputBufferFromShader

Free the memory used for the input data.

13) _FinalizeLowlevel

Finalizes the environment and free all the strutures and memory used in the

whole process.

The previous functions are listed in the execution order of a program that uses the

Caravela API.

Now that we know the functionality of each low-level function, we can decide the

OpenCL code for each function. The following list explains the implementation of each

function and the OpenCL API functions used in each one.

1) _InitializeLowLevel

Although OpenCL does not need an explicit initialization, this function will get

the OpenCL platform with clGetPlatformIDs API function. This function was

chosen to be placed here because if there is no platform for OpenCL there is no

reason to continue the execution. Also this function will create a structure called

__GPGPUOCL_Device_Info in which all the information needed by OpenCL

(context, kernel, buffer pointers, etc.) will be stored.

2) _GetAllShaderInLocalMachine

This function will use the OpenCL API function clGetDeviceIDs to get an

available device. Also to get the information of this device, the function

clGetDeviceInfo will be used too.

31

3) _CompileShaderProgram

Here we must create and build the kernel program, so previously we must create a

context to manage the program. Therefore we will use clCreateContext,

clCreateProgramWithSource, clBuildProgram and clCreateKernel.Also,

although is not used in this function, a command queue with

clCreateCommandQueue is created after the context creation. This is placed here

because this function is always executed only once, but the next functions may be

executed more than one time, due to the possibility of using the swap mechanism.

4) _AllocateOutputBufferToShader

This function must create the output buffers so the function clCreateBuffer is

used one time for each output stream. These buffers are stored in an array of

“number of output streams” length. Because these buffers are in the device side, we

must create also buffers for the host side, so that the data can go back from the

device to the host. The reason why these host-side buffers are created is explained in

point 7) of this list. These host buffers will be created using dynamic memory

(malloc).

5) _MapProgramToShader

OpenCL does not need to explicitly link the program to the device because this is

already managed by the context. Therefore, there is nothing to do in this function.

6) _SetConstants

In this function the buffers for the constant values are created with

clCreateBuffer. These buffers are also filled up with the values of the constants.

7) _GetInputBuffer

This function does almost the same as the

_AllocateOutputBufferToShader but with the input buffers. So we create

one buffer per input stream with clCreateBuffer for the device side, and one

buffer per input stream with dynamic memory for the host side. The host side

buffers are needed because Calavera initializes the input buffers at the API functions

32

level (the top), so if we return directly an OpenCL buffer, this buffer cannot be

initialize without using the OpenCL API function clEnqueueWriteBuffer, and if

we force the user to use this function, the way of programming with Calavera-

OpenCL would drastically change compared to the previous versions of Caravela.

Therefore, the creation of host side buffers is the best solution to preserve the way

of programming with Caravela.

The array of buffers for the host side is returned in order to initialize them in the

main program.

8) _MapInputBufferToShader

Here we should transfer the input data from the host buffers to the device buffers.

Therefore we use the function clEnqueueWriteBuffer for each input stream to

execute the copy operation.

9) _FireShader

In this function we should prepare the kernel arguments for the execution and run

this kernel. Thus, we use the clSetKernelArg function to assign the input buffers,

the output buffers and the constant buffers to the kernel. Then, the function

clEnqueueNDRangeKernel is used to execute the kernel. Because the parameters of

the clEnqueueNDRangeKernel function change depending on the NDRange

dimension selected by the user (for example, if the dimension is one the function

expects just an int in the GlobalWorkSize and LocalWorkSize parameters but if the

dimension is more than one the function expects an array in those parameters), we

have implemented in the code three different calls to the function (one for each

dimension) controlled by a conditional operator.

10) _GetOutputBuffer

In this function we must return the host side output buffer with the output data

after the execution. But before we must transfer the data between the buffers (device

to host) so we use the function clEnqueueReadBuffer.

33

11) _FreeOutputBufferFromShader

This function frees both the device buffers and the host buffers. Therefore for the

device buffers we use the function clReleaseMemObject. We must free also the

arrays that contain the buffers.

12) _UnmapInputBufferFromShader

The same as the previous function but for the input buffers (device and host).

13) _FinalizeLowlevel

Here we release all the OpenCL resources used in the process like the kernel,

program, command queue and the context. So the functions clReleaseKernel,

clReleaseProgram, clReleaseCommandQueue and clReleaseContext are used.

All these low-level functions will be programmed in a new .DLL project called

“CaravelaOCL”, and will be used by the Caravela API functions.

Next we will explain the FlowModel structure used by Caravela and the changes in

this structure required for the OpenCL version.

3.3 Flow Model

The flow-model is a structure that packs all the information used by the Caravela in a

XML file to execute the program. Using this structure, the programmer only has to

worry about writing a flow-model and mapping it to the Caravela environment using the

Caravela API functions. Then the Caravela uses the information of this flow-model to

perform the execution of the kernel.

The values required by the flow-model are:

i) NumData. The number of data that will be processed. For example, if we want

to add 2 vectors of 1024 elements, NumData will be 1024.

ii) DataType. The type of the values of the streams (FLOAT, INT, SHORT).

iii) NumInput . Number of input streams.

iv) NumOutput . Number of output streams.

34

v) ShaderProgram. Here we write the kernel program that will be executed on the

GPU.

vi) FunctionName. The name of the function of the kernel program.

vii) LangType. Language used to write the shader program.

viii) RuntimeType. Runtime that we want to use to execute the program.

ix) ShaderVersion. Version of the shader language (not used in OpenCL).

x) ConstValues. List of the constant values used in the kernel. This list has a

special format that will be explained in the next section.

xi) ConstTypes. List of types (FLOAT, INT, SHORT) of the constant values.

xii) ConstNames. List of names of the constant values.

xiii) NumConstant. Number of constant values.

In addition to the previous parameters, OpenCL needs the user to introduce 3 more

values to execute the kernel. These are:

xiv) Dimension. The dimension (1, 2, 3) of the NDRange.

xv) Threads. This list of 3 elements is the GlobalWorkSize in each dimension.

xvi) Blocks. This list of 3 elements is the LocalWorkSize in each dimension.

The Figure 15 shows an example of an XML flow-model.

35

Figure 15. Flow Model of VectorAdd example

Next we will explain the pattern designed for the constant values list.

3.3.1 Constant values structure

In the previous version of the Caravela, each constant value had the structure of

texture data, i.e. 4 data per pixel (Red, Green, Blue, and Alpha) because it used the

graphics runtimes OpenGL and DirectX. However OpenCL does not need that structure,

so a new one has been designed.

The new structure is described as follows: a list of arrays in which each array is a list

of constant values of the same type. Each array is considered one constant value, so if

<?xml version="1.0"?>

<FlowModelInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <NumData>8</NumData>

 <DataType>FLOAT</DataType>

 <NumInput>2</NumInput>

 <NumOutput>1</NumOutput>

 <ShaderProgram>

 __kernel void VectorAdd(__global const float* input1, __global const float*

input2, __global const float* const1, __global float* output){

 int iGID = get_global_id(0);

 if (iGID >= const1[0])

 {

 return ;

 }

 output[iGID] = input1[iGID] + input2[iGID];

 }

 </ShaderProgram>

 <FunctionName>VectorAdd</FunctionName>

 <LangType>SHADERLANG_OPENCL1.0</LangType>

 <RuntimeType>RUNTIME_OPENCL</RuntimeType>

 <ShaderVersion>0</ShaderVersion>

 <ConstValues>1,256,0,0,0</ConstValues>

 <ConstTypes>FLOAT4</ConstTypes>

 <ConstNames>const_1</ConstNames>

 <NumConstant>1</NumConstant>

 <Dimension>1</Dimension>

 <Threads>256,1,1</Threads>

 <Blocks>256,1,1</Blocks>

</FlowModelInfo>

36

we have 3 in the flow-model NumConstant parameter it means that we have 3 arrays of

constant values. Each array can have any number of constant values.

The ConstValues list follows this pattern: (X, x1,…x(4*X) , Y, y1,…y(4*Y), Z,

z1,…z(4*Z)). The first number of each array (X, Y, Z) sets the number of constant

values of the array multiplied per 4. Then, the values of the constant values of each

array are written. So, for example in this list (1,256,0,0,0), we have 1 array of constant

values with only one value “256”. The rest three “0” appear in the list because the

FlowModelCreator reads a whole row of four values, due to the interface design, so it

may be extra non-used values, like in this case. The user can access inside the kernel to

every constant value in the arrays.

However, the user has not to worry about these implementation details because with

the GUI Flow Model Creator, explained in the next section, these issues are hidden.

3.4 Flow Model Creator

The FlowModelCreator is a graphical user interface (GUI), programmed in C#, that

allows the user to easily create a XML flow-model file. A more detailed explanation of

this interface is provided in the appendix A, so in this section we will only explain the

changes performed to the GUI in order to create a flow-model for OpenCL. The Figure

16 shows the top window with the new features highlighted.

37

Figure 16. Changes in the top window of FlowModelCreator

First of all we modified the combo boxes “Shader Program” and “Runtime type” in

order to add a new item for OpenCL. Then new methods for introducing the new

OpenCL parameters of the flow-model (dimension, local work size and global work

size) were added in the left side of the screen. Finally, a completely new window for

introducing the constant values has been developed, as shown in Figure 17.

Input Streams

Output Stream

38

Figure 17. New interface for introducing the constant values

This multi-tab window dynamically generates one tab for each constant array. The

name of each array is automatically generated. Then, inside each tab we can introduce

the type and values of the constants of the array. After closing the window the changes

performed remain until we close the FlowModelCreator.

3.5 Kernel Structure

In this section we will explain the structure of the kernel header that must be followed

in order to be accepted by the Caravela.

As stated before, a flow-model has 2 kinds of inputs (input stream and constant

values) and 1 kind of output (output stream). There may be more than one of each kind

of these. Therefore the kernel parameters must match this structure of the flow-model.

In the CUDA version of the Caravela the solution was to make each parameter an array

of arrays like this: function (**input, **constant, **output). With this pattern, each

array contains all the streams of one kind (input, output and constants). However this is

not possible in OpenCL because the buffers are 1-dimensional, so the parameters in an

OpenCL kernel cannot be an array of arrays, i.e. 2-dimensional. Therefore the solution

developed is to follow this pattern: function (*input1, *input2 …, *inputN, *const1,

*const2 …, *constN, *output1, *output2 …, *outputN).

39

This means that the user has to write the kernel header as follows: first all the input

streams, then the constant values arrays and finally the output streams. There must be at

least one input stream and one output stream, but the constant value parameter is

optional. If this order is not strictly followed the Caravela will not work properly and

the results may be unexpected. Also if the number of kernel parameters does not match

with the sum of the flow-model parameters “NumInput”, “NumOutput” and

“NumConstant”, the Caravela will return an error warning this issue.

Figure 18 shows a correct example of kernel header for the Caravela.

Figure 18. Example of kernel header for Caravela

3.6 Swap Mechanism

As mentioned in section 2.3.1, the swap mechanism of the Caravela allows the user to

change (swap) the output and the input streams of the flow-model in order to perform

repeated executions of a kernel without copying the results from the device to the host

side. Therefore the data remains on the device side until it is required by the CPU.

In OpenCL, the implementation of this mechanism has been realized using the

clSetKernelArg function. First we defined a new low-level function called

_SwapFlowmodelIOOCL that swaps the pointers of the device-side buffers of a

previously defined I/O pair with the Caravela API function

CARAVELA_CreateSwapIoPair . In order to know which input buffers have been

swapped to not make a data transfer on them, we use a global array of bools called

“swapped”. So for instance, “swapped [2] == true”, means that the buffer with the index

2 has been swapped. The values of this array are changed in the _SwapFlowmodelIOOCL ,

and are reinitialized after each execution. The _SwapFlowmodelIOOCL function also

makes “TRUE” a global flag called “swap” in order to warn the Caravela that we are

using the swap mechanism so the input buffers do not have to be rewritten during the

_MapInputBufferToShader function.

Then during the new fire operation, the swapped buffers are linked again to the kernel

using the clSetKernelArg, , , , so the data is never copied back to the host side.

__kernel void VectorAdd(__global const float* input1,

 __global const float* input2,

 __global const float* const1,

 __global float* output)

40

The implementation of this mechanism allows the user to rewrite with new data the

input buffers that are not swapped. As mentioned before, if we use the swap mechanism

the _MapInputBufferToShader function does not rewrite the input buffers, but the

user can change this using the GetInputData API function. If we use this function

before the execution, the input buffer that we retrieve will be rewritten in the

_MapInputBufferToShader function even if we are using the swap mechanism. Notice

that a swapped buffer will not be rewritten never even if we retrieve it with the

GetInputData function. We have implemented this mechanism using a global array of

bools called “rewrite”. If rewrite[i] == “true” the input buffer with the index i will be

rewritten. The values of the array are changed in the _GetInputBuffer function and

are reinitialized after each execution.

Because we swap also the host side buffers during the _SwapFlowmodelIOOCL

function, the user does not have to worry about which buffer contains the real output

data after the last execution, so he can retrieve the output data normally using the

Caravela API function GetOutputData .

Therefore with this method we can repeatedly execute a kernel without losing time

copying the data to the host side after one execution and transfer it again to the device

side before the next execution.

41

3.7 Implementation conclusions

According to the implementation showed in this chapter, the flow-model for the

OpenCL presents the same structure and behavior implemented on the previous versions

of the Caravela. Also the GUI FlowModelCreator keeps the compatibility between

different versions of the Caravela, and the user just has to select the runtime and the

language in which the kernel program is written. Therefore, just creating a flow-model,

the execution framework of the Caravela supports the runtimes with the legacy

architecture of the GPUs and the runtimes with the recent architecture. Moreover, since

OpenCL is a platform-independent API, the Caravela can be executed in any new GPU

independently of the manufacturer.

In the next chapter we will discuss the performance aspect on this implementation.

42

Chapter 4 Performance Evaluation

In this section we will evaluate the performance between the new Caravela version

using OpenCL and the legacy implementation of the Caravela using OpenGL.

Two different applications are evaluated: one is a straight forward execution flow-

model without iteration, using a matrix-multiply program; another is an infinite impulse

response (IIR) filter that iterates recursively the flow-model.

We have measured the time to execute an OpenCL program with and without using

the Caravela platform. Also two version of each OpenCL program have been measured:

one using only global memory and another using shared memory. Finally we have

measured the execution time of the Caravela OpenGL version to compare the

performance of recent GPU architecture to the legacy one. The environment for the

evaluation is listed in the Table 2.

Table 2. Environment for the evaluation

CPU Intel® Core™ 2 Duo E7500 @ 2.93GHz

GPU GeForce Gt 220

(Core: 625GHz / DDR3 VRAM: 1GB)

OS Windows 7 Professional

OpenCL Version 1.0

4.1 Straightforward application: Matrix multiply

The matrix multiplication program processes A* B of NxN matrices straightforward,

i.e. does not have any iteration or recursive I/O. Figure 19 shows the execution times of

this program varying the matrix size N from 512 to 1024.

43

0,32

0,4210,39

0,602

0,44

0,702

0,55

0,33 0,381
0,296

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

512*512 1024*1024

Size of Matrix

Execution time

(sec)

OCL GM

Caravela (OCL) SM

Caravela (OCL) GM

OCL SM

Caravela(OpenGL)

Figure 19. Execution times using matrix multiply

We are measuring five different versions of the matrix multiply program:

i) OCL GM: OpenCL version using only global memory.

ii) OCL SM: OpenCL version using shared memory.

iii) Caravela (OCL) GM: Caravela-OpenCL version using only global memory.

iv) Caravela (OCL) SM: Caravela-OpenCL version using shared memory.

v) Caravela (OpenGL): Caravela-OpenGL version.

All OpenCL versions show better performance than the OpenGL version over the

Caravela because the flow-model execution mechanism of the OpenGL version

potentially includes redundant processes following the graphics processing method in

the legacy architecture. When OpenCL uses the global memory (GM) the execution

times become 1.12-1.45 times longer than the ones with shared memory (SM). Let’s

take a look at the kernels to see the differences of using shared memory or not. The left

code of Figure 20 is the GM version and the right code is the SM version.

44

Figure 20 Matrix Multiply Kernels

In this program (A*B = C), each work-item reads one row of the matrix A, one

column of the matrix B and calculates one element of the result matrix. If we use only

global memory, we read the same data from global memory more than once, decreasing

the execution time. For example, the first row of the matrix A is read by all the work

items that calculate the first row of the matrix C and the first column of the matrix B is

read by all the items that calculate the first column of matrix C. This happens with every

row and column.

To avoid this, we use shared memory as shown in the right code of Figure 19. We

create two arrays of shared memory As and Bs. In these arrays we store a whole row

and a whole column of the matrix A and B respectively, reading only once from the

global memory. This shared memory is shared by all the work-items within a work-

group so these work-items will read the values from shared memory, which is faster

than reading from global memory. To synchronize the work-items we put a barrier

__kernel void matrixMultOCL(__global
float* a,
 __global float* b,
 __global float* c)
 {
 int TileDIM = 1024;
 int row = get_global_id(1);
 int col = get_global_id(0);
 float sum = 0.0f;
 for (int i = 0; i < TileDIM; i++){
 sum += a[row*TileDIM+i] *
b[i*TileDIM+col];
 }
 c[row*TileDIM+col] = sum;
 }

#define AS(i, j) As[j + i * 1024]
#define BS(i, j) Bs[j + i * 1024]

 __kernel void matrixMultOCL(__global
float* a,
 __global float* b,
 __global float* c)
 {
 int TileDIM = 1024;
 __local float As[TileDIM* TileDIM];
 __local float Bs[TileDIM]* TileDIM];
 int row = get_global_id(1);
 int col = get_global_id(0);
 int x = get_local_id(0);
 int y = get_local_id(1);
 float sum = 0.0f;
 AS(y, x) = a[row* TileDIM +x];
 BS(y, x) = b[y* TileDIM +col];
 barrier(CLK_LOCAL_MEM_FENCE);
 for (int i = 0; i < TileDIM; i++) {
 sum += AS(y, i) * BS(i, x);
 }
 c[row* TileDIM +col] = sum;
 }

45

(barrier (CLK_LOCAL_MEM_FENCE)) to stop the execution of all the work-items

until the shared memory is completely created.

Thus, to achieve a maximum performance, the OpenCL version needs to use the

shared memory, otherwise the performance would be close to the OpenGL version, as

shown in the 1024*1024 sample.

Also, we have measured the matrix multiply problem (1024*1024) using the CPU to

see the power of a GPU compared to a CPU. The CPU needs 20.765 seconds to

calculate the result, very far from the times achieved by using the GPU.

Comparing the versions with/without Caravela runtime, the OpenCL versions with

Caravela are slower than the versions without it due to these reasons.

1) The Caravela over OpenCL needs to access the driver level or the OpenCL

runtime API via several dynamic linked libraries that causes calling overhead to

load nested functions.

2) Also the Caravela needs to load and analyze the flow-model including in a XML

file.

However this overhead caused by the Caravela is fixed, so it is independent of the

data size.

Therefore the Caravela over OpenCL keeps better performances than Caravela over

the legacy GPU architectures with OpenGL. Moreover, the overhead of the Caravela

runtime itself is not significant and is independent of the data size.

46

4.2 Recursive application: IIR filter

This evaluation analyzes the performance compatibility of the swap mechanism using

a recursive program as the Infinite Impulse Response (IIR), in which the output is

calculated using its previous output. In Figure 21 the execution times of this program

varying the input data size from 16K to 64K are shown.

5,447

5,308

51.839

56.319

5,203

50.273

9,04

84.018

4,205

52.074

1

10

100

1000

10000

100000

16K 64K
Size of Data

Execution time

(sec)

OCL with copy

device to device

Caravela (OCL)

with swap

OCL with swap

OCL with copy

device to host

Caravela(OpenGL)

with swap

Figure 21 Execution times using IIR filter

We are measuring five different versions of the IIR filter program:

i) OCL with copy device to device: OpenCL version using an OpenCL API

function to transfer the data from the output buffer to the input buffer in the

device side.

ii) OCL with swap: OpenCL version using the swap mechanism used in

Calavera i.e. using the SetKernelArg function to set the output buffer as an

input parameter.

iii) Caravela (OCL) with swap: Caravela-OpenCL version using the swap

mechanism.

iv) OCL with copy device to host: OpenCL version using the OpenCL API

functions to read and write the buffers to transfer the data from the device to

the host and vice versa after each iteration.

v) Caravela (OpenGL): Caravela-OpenGL version with the swap mechanism.

47

Figure 22 shows the kernel code of this program.

Figure 22 Kernel code of IIR program

As mentioned before, with this program we are measuring the performance of the

swap mechanism implemented in the OpenCL version of Calavera. We test the program

with two different sizes (16K and 64K) of the input data. The number of iterations

(swaps) is the same as the input data (16K times and 64K times).

 The data presented in Figure 20 shows, as expected, that the execution times of the

versions that use this mechanism are faster than the version that makes copy operations

between host side and device side. This improvement is greater as the data size

increases, because the bandwidth of the bus that connects the host to the GPU device is

lower than the bus inside the GPU device.

__kernel void IIR(__global float *x1, __global float *x2, __global float *y){
 int bx = get_group_id(0);

 int idx = get_global_id(0);
 __local float a[8 + 1];
 __local float b[8 + 1];
 int i;
 float res;
 if (idx < 8)
 {
 a[idx] = ((float)((idx * 191) % 101) / 100 - 0.5) / 2;
 b[idx] = ((float)((idx * 191) % 101) / 100 - 0.5) / 2;
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 res = 0;
 for(i = 0; i < 8; i++)
 {
 if (idx - i >= 0){
 res += b[i] * x1[idx - i];
 }
 if (idx - (i + 1) >= 0)
 {
 res += a[i] * x2[idx - (i + 1)];
 }
 }
 y[idx] = res;
 return;
 }

48

However when comparing the two OpenCL versions that do not transfer data back to

the host side, we see that the execution time is almost the same in both versions. In the

“OCL with copy device to device” version we use the OpenCL API function

clEnqueueCopyBuffer to copy the data from the output buffer to the input buffer after

each execution of the kernel. On the other hand, in the “OCL with swap” version we do

not use this function because we just change the kernel arguments before the executions.

For example, if we have a kernel with two arguments “kernel void test(float *input,

float *output)” and two read/write buffers “src” and “dst”, in the first execution we use

the clSetKernelArg function to set the buffer “src”, initialized with the input data, to

the argument 0 (the input) and the buffer “dst” to the argument 1 (the output). Then

before the second execution we change the order and we set the buffer “dst” to the

argument 0 and the buffer “src” to the argument 1. This way the data stored in “dst”

from the first execution is the input data in the second execution without explicitly

perform a copy operation between buffers.

Because the execution time of these versions is very similar, the function

clSetKernelArg might implicitly perform a copy operation using the device bus when

setting the buffers to the kernel. Due to this, the swap mechanism implemented in the

Calavera, which also uses the clSetKernelArg function to make the swap, may not be

a “true” swap between buffer pointers without any kind of copy operation.

To clarify this issue, we have performed an extra evaluation. We have measured the

execution times of a simple VectorAdd (a [] + b [] = c []) program, swapping the output

and the input buffer using the previously mentioned swap methods. The results obtained

are showed in figure 23 and 24.

VectorAdd 5000 Swaps

115,044

146,46

9,22
7,5780

50

100

150

200

256K 1MB 16MB
Data size

E
x

ec
u

ti
o

n
 T

im
e

(s

e
cs

)

Copy method

SetKernelArg
method

Figure 23. VectorAdd execution times with 5000 swaps

49

VectorAdd 10000 Swaps

233,647

292,355

18,455
15,228

0
50

100
150
200
250
300
350

256K 1MB 16MB
Data size

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

Copy method

SetKernelArg
method

Figure 24. VectorAdd execution times with 10000 swaps

As we see in the above graphs, there is difference in the execution time between these

two methods. Using the data of the figure 24, we see that using 16 MB of data size there

is a difference of approximately 60 seconds between the methods. Supposing that the

cost of SetKernelArg function is 0, a single transference of 16MB of data between

buffers on the device side takes approximately 60/10000 = 0,006 seconds. This time still

seems very low, but it can be explained if we see our GPU bandwidth, which is

approximately 25 GB/s. As a conclusion, difference between the execution times of

these methods is small because the power of the hardware of the GPUs nowadays.

Finally, as happened in the matrix multiplication evaluation too, the Caravela-

OpenCL version is slower than the OpenCL without Caravela version. When we

increase the number of swaps, due to the fact that the Calavera needs to access the

driver level via several dynamic linked libraries so for each execution we have to access

the low-level functions to get the input buffers and fire the kernel, the execution time is

affected when compared to the OpenCL without Calavera versions.

Therefore, the swap mechanism implemented maintains the performance

improvement over methods that make transferences host��device each iteration. Also

we have demonstrated that the mechanism implemented does not perform any data

transference between buffers, even in the device side.

50

Chapter 5 Conclusions and future work

In this project we have presented the migration process of a stream-based computing

platform, Caravela, to the OpenCL language. As presented in chapter 1, the main

objective of this project was to allow the Caravela to take advantage of the new GPU

architecture and the new runtimes for GPGPU, without losing performance speed and

the compatibility with the legacy runtimes (OpenGL, DirectX). Also another goal of

this project was to maintain the structure and the execution style of the flow-model in

the new version of the Caravela, as well as all the good features of the Caravela like the

swap mechanism.

According to the implementation presented in chapter 3, we have succeeded in

preserving the flow-model structure and the features of the old version of the Caravela.

In terms of performance evaluation, according to the results presented in chapter 4, the

comparison using a straightforward application between the pure OpenCL version and

the Caravela over OpenCL shows that the performance is only affected by fix

degradation due to the process of reading and loading of the flow-model file. Also the

swap mechanism, which prevents transferences between host memory and device

memory when we execute iteratively a kernel, has been successfully implemented.

Therefore we can conclude that the goals proposed in chapter 1 have been achieved.

The Caravela has been proven to be a true stream-based computing platform for

GPGPU that is able to take advantage of the most recent GPGPU APIs. Therefore it is a

good idea to continue with the improvement of this software, such as the followings

features:

1. Increase the compatibility of the Caravela porting it to the language

DirectCompute. This new environment is part of the Microsoft DirectX

collection of APIs and runs in both DirectX 10 and DirectX 11. With the

migration of the Calavera to this language, will increase its compatibility with

systems with the Windows OS.

2. Meta-pipeline. This mechanism allows a flow-model to be virtually

connected to any other flow-model(s). It implements a virtual structure with

multiple flow-models, which can be used, for instance, to solve large problems

through a set of flow-models executed in different processing units.

51

3. Development of a hardware compiler for the flow-model execution

method. This project will aim to develop an environment that generates

hardware description from stream-based program. Because the hardware

description can be implemented by pipelined components, the hardware design

productivity can become better than the naturally implemented application by

hand.

52

Bibliography (references)

 [1] At least nine contributions have emerged in recent years that explore the

implications HPC presents for the future of humanities research. See “Links about

Digital Humanities and HPC.” Available on-line at https://www.sharcnet.ca/dh-

hpc/index.php/Links_about_Digital_Humanities_and_HPC [June 29, 2008].

[2] Gustafson, J.; "The program of grand challenge problems: expectations and

results," Parallel Algorithms/Architecture Synthesis, 1997. Proceedings. Second Aizu

International Symposium , vol., no., pp.2-7, 17-21 Mar 1997

doi: 10.1109/AISPAS.1997.581619

[3] The Jaguar Supercomputer.

http://www.nccs.gov/jaguar/.

[4] J. Gummaraju and M. Rosenblum. Stream programming on general-purpose

processors. In 38th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pages 343–354, 2005.

[5] GPGPU research projects of ICHEC

http://www.ichec.ie/research/gpgpu_projects

[6]Kapre, N.; DeHon, A.; "Performance comparison of single-precision SPICE Model-

Evaluation on FPGA, GPU, Cell, and multi-core processors," Field Programmable

Logic and Applications, 2009. FPL 2009. International Conference on, vol., no., pp.65-

72, Aug. 31 2009-Sept. 2 2009 doi: 10.1109/FPL.2009.5272548

[7] DirectX homepage. http://www.microsoft.com/directx.

[8] OpenGL Architecture Review Board, D. Shreiner, M. Woo, J. Neider, and T. Davis.

OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 2.

Addison Wesley, 2005.

53

[9] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P.

Hanrahan. Brook for GPUs: stream computing on graphics hardware. ACM Trans.

Graph., 23(3):777–786, 2004.

[10] Sh: A high-level metaprogramming language for modern GPUs. http://libsh.org/.

[11] NVIDIA CUDA Zone. Http://www.nvidia.com/cuda.

[12] OpenCL. Http://www.khronos.org/opencl/.

[13] S.Yamagiwa, L.Sousa. Design and Implementation of a Stream-Based Distributed

Computing Platform using Graphics Processing Units. In ACM International

Conference on Computing Frontiers, May 2007.

[14] Yamagiwa, S.; Sousa, L.; "Caravela: A Novel Stream-Based Distributed

Computing Environment," Computer, vol.40, no.5, pp.70-77, May 2007

doi: 10.1109/MC.2007.161

 [15] Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A. (2007) High-throughput

sequence alignment using Graphics Processing Units. BMC Bioinformatics 8:474.

[16] S. Yamagiwa, L. Sousa, K. Ferreira, K. Aoki, M. Ono, and K. Wada. Maestro2:

Experimental evaluation of communication performance improvement techniques in the

link layer. Journal of Interconnection Networks, 7(2):295-318, 2006.

[17] GPGPU Homepage. Http://www.gpgpu.org/

[18] P. S. McCormick, J. Inman, J. P. Ahrens, C. Hansen, and G. Roth. Scout: A

hardware-Accelerated System for Quantitatively Driven Visualization and Analysis. In

VIS ’04: Proceedings of the conference on Visualization ’04, pages 171-178,

Washington, DC, Usa, 2004. IEEE Computer Society

54

[19] Shinichi Yamagiwa, Leonel Sousa, Diogo Antao, "Data Buffering optimization

methods toward a uniform programming interface for GPU-based applications",

Proceeding of ACM Intl' Conference on Computing Frontiers, pp. 205 - 212, May 2007.

[20] The Khronos Group. Http://www.khronos.org/.

[21] Farrell, C.A.; Kieronska, D.H.; "Formal specification of SIMD

execution," Algorithms and Architectures for Parallel Processing, 1996. ICAPP '96.

1996 IEEE Second International Conference on, vol., no., pp.319-325, 11-13 Jun 1996

doi: 10.1109/ICAPP.1996.562891

[22] DeBenedictis, E.P.; "Will Moore's Law Be Sufficient," Supercomputing, 2004.

Proceedings of the ACM/IEEE SC2004 Conference, vol., no., pp. 45- 45, 06-12 Nov.

2004 doi: 10.1109/SC.2004.68

[23] http://en.wikipedia.org/wiki/DirectCompute

[24] Thinking Machines Corporation. C* User’s Guide, June 1991.

55

Appendix I User guide of Flow Model Creator GUI.

1 Introduction

1.1 FlowModelCreator

The FlowModelCreator is an interface designed for the Caravela platform to help the

user to design a flow-model structure. These flow-models can be saved and loaded

to/from a XML file. In this guide we will explain the functionality of this application

1.2 Authors

The author of the first version of this interface is Professor Shinichi Yamagiwa (SIPS

group, INESC-ID Portugal). The changes performed in order to support the OpenCL

version of the Caravela, were developed by Pablo Lamilla Álvarez.

56

 2 Functionality

2.1 Basics concepts

As its name says, the FlowModelCreator creates a structure needed by the Caravela

platform called flow-model. The flow-model is just a set of data that includes the

information for a number of inputs, a number of outputs, a number of constants,

constant values and a shader program. The FlowModelCreator will manage the way of

packing all this information into a flow-model XML file. An example of a flow-model

is shown in the next figure:

In this example, the flow-model has two input data streams, one constant stream and

two output streams, and it processes the input streams by the shader program. This

program can be written in HLSL (High Level Shader Language) of DirectX, in GLSL

(OpenGL Shading Language), or in OpenCL.

57

The flow-model is stored in a XML file that follows the Caravela specification.

Because it is very hard for the user to manage manually the file contents and format,

this FlowModelCreator provides a very easy interface to the user.

2.2 Top Window

The following image illustrates the main window of the FlowModelCreator:

1) Home Tool Bar.

From left to right, the buttons of this tool bar contains the followings

functionalities:

i) Create New Flow Model

This button allows the creation of a flow-model from scratch. After

clicking this button, you must choose the type of the input and output

streams selecting one item from the “Data type” combo box in the

Parameters section. After this action, the whole interface is unblocked and

ready to use.

ii) Open Local Flow Model File

Parameters
section

Home Tool Bar

Shader Program Section

58

This button allows loading a previously saved flow-model from a local

XML file. After clicking this button, the following window for the

selection of the XML file appears:

The flow-model will be loaded to the interface after selecting the file and

clicking the button “Open”. To return to the previous screen without

loading anything press “Cancel”. After pressing the “Open” button, if the

file is not correct the following warning window will appear:

iii) Open Flow-Model From Web

This button allows loading a flow-model XML file from an URL. After

clicking this button the following window for introducing the web address

appears:

59

After pressing the button “Open”, if the address is not correct the

following error window appears:

iv) Save flow-model

With this button, the current flow-model will be saved into a XML file.

The following errors may appear while saving a flow-model, not allowing

you to save it:

1) Number of Constant is strange. This happens when the number of

constants in the combo box does not match with the number of

constants introduced in the “Set Constant Values” interface.

2) Specify a shader program. This error happens when a shader

program, either via file or via code, is not introduced in the interface.

3) Specify a target function name. When using OpenGL or OpenCL, a

function name must be written inside the textbox “Target function”.

4) Invalid data size. A value larger than 0 must be set in the “No. of

Data” textbox.

v) Help

This button displays a briefly tutorial for using the FlowModelCreator

interface.

60

2) Parameters section

Located on the left side of the top window, in the parameters section the user can

set the values of various parameters of the flow-model, such as the number of

input and output streams, number of total data, number of constants and the type

of the data streams. The last 3 parameters (Dimension, LocalWorkSize and

GlobalWorkSize) are specific for the OpenCL version

3) Shader program section

On the right side of the top window inside a green square is located the shader

program section. Here we can perform the following actions:

i) Change the runtime (OpenCL, OpenGL, DirectX) we want to use to

execute the flow-model.

ii) Select the language we want to use to write the shader program.

iii) Write the name of the target function (if we are using OpenGL or

OpenCL).

iv) Introduce a program shader. This can be done through two methods:

 -Load the program from an extern file.

 -Write the code directly using the “Edit source code” button. This

action will open the following window where the user can write the code

and compile it to check if is correct.

61

2.3 Set constant values window

The “Set constant values” window is used to introduce the values of the constant values

of the flow-model. This interface has two different versions, one for OpenCL and

another one for the rest of runtimes. Let’s see first the window for the OpenGL/DirectX

runtimes:

In this interface the user can modify the names, the values and the data type of each

constant. To change the number of constants (rows) that appear in this window, the user

must use the combo box “No. of constants” located on the top window.

62

Next, the “Set constant values” screen for the OpenCL version is shown here:

For each constant value that the user has introduced using the combo box “No. of

constants” located on the top window, this window creates one tab like the one shown

before. Here each constant value is an array of constant values of the same data type.

The name of each array (constant value) is generated automatically.

Inside each tab, the user can select the length of the array using the combo box

“Number of Items” which increases or decreases the number of rows of the table. The

array is structured from up to down and from left to right, so for instance the position of

the number “453” (second row, first column) is the fifth position in the array. Then the

user must select the data type of all the values inside the current array using the combo

box “Data Type”. Finally, after introducing the values in the grid, when the user closes

the window these values are saved in the interface, so if the user opens again this

window the values remain.

