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Abstract: Parkinson’s disease is a degenerative disease of the central nervous system. One of the most effective treatments is deep 
brain stimulation. This technique requires the localization of an objective structure: the subthalamic nucleus. Unfortunately this
structure is difficult to locate. In this work the creation of a deformable brain atlas that enables the identification of the subthalamic
nucleus in T1-weighted Magnetic Resonance Imaging (MRI) in an automatic, precise and fast way is presented. The system has been
validated using data from 10 patients (20 nucleus) operated on for Parkinson’s. Our system offers better results using a Wendland 
function with an error of 1.8853±0.9959 mm.

Keywords: Brain atlas, Talairach-Tournoux, Elastic registration, Radial Basis Functions, Active Appearance
Models, Subthalamic Nucleus, Parkinson’s disease

1. Introduction

Parkinson’s disease is a degenerative disease of the cen-
tral nervous system characterized by a decrease in sponta-
neous movement, gait difficulty, postural instability, 
rigid-ity, and tremor. Frequently there are also other 
symptoms that develop as the disease advances (loss of 
intellectual capacity, psychological problems such as 
anxiety, depres-sion or isolation, small cramped 
handwriting, etc.) and moreover there is an increased 
risk of dementia and de-pression. This disease 
progresses inexorably towards dis-ability and death, and 
the rate of this progression is un-predictable. It is an 
important health issue that a
ects al-most 2 out of every 100 people over the age of 
64 years [1, 2]. Although the initial treatment for 
Parkinson’s dis-ease is pharmacologic, in some cases this 
does not bring about adequate symptom control despite 
the diverse com-binations of medicines currently 
available. In other cases medication provokes disabling 
secondary e
ects, like the appearance of abnormal movements or 
intolerance. These two situations occur more frequently as 
the period of treat-ment increases. A surgical intervention 
is recommended for these patients in order to control the 
Parkinson’s symp-toms. There are other movement 
disorders  (familiar   essential   trembling,   post-traumatic 
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trembling, etc.) that can also benefit from this surgical 
intervention. The disease is caused by degeneration of 
dopamine cells that in turn cause the nerve cells of the 
striatum to act without control, leav-ing the patient 
unable to direct or control their movements in a normal 
way. This degeneration takes place especially in the nigra 
substance and in the cells that project their axons 
towards the striatum (complex formed by the cauda-tum 
and putamen), associated with an hyperactivity of the 
inhibitory projections of the subthalamic nucleus (STN) 
that overstimulates the internal portion of globus pallidus 
(GPi) and the nigra substance (pars reticulata), that also 
inhibits the motor nucleus of the thalamus. This nucleus fi-
nally projects its axons towards the motor areas of the cere-
bral cortex, which are abnormally hyperexcited as a result 
of these alterations. For that reason, although there are ex-
perimental operations that attempt to repair lost neurons, 
the most used techniques attempt to remove the activity in 
the hyperactive nucleus (Vim, GPi or STN). During some 
time suppression was achieved by coagulating the nucleus, 
but it has been demonstrated that chronic stimulation with 
an alternating high frequency current is equivalent (deep 
brain stimulation). Deep brain stimulation is considered 
to have less complications and secondary effects, it is re-
versible, and its effect is more easily modulated [3, 4].



1.1. Problem of localizing the target

The STN is a small lens-shaped nucleus in the brain, ap-
proximately 5.9 x 3.7 x 5 mm in size, where it is a part of 
the basal ganglia system. The STN is located ventral to the 
thalamus. It is also dorsal to the nigra substance and me-
dial to the internal capsule. STN stimulation can exacer-
bate Parkinson’s symptoms or can produce significant sec-
ondary effects. For this reason it is necessary to insert the 
electrode into the interior of the nucleus in a precise way. 
The STN is difficult to locate due to its small dimensions 
and anatomical characteristics. One of the ways to locate 
the STN is to use a stereotactical procedure, using an in-
strument that, fixed to the patient’s skull, is able to locate 
three-dimensionally a reference brain, using a brain atlas. 
Brain atlases graphically represent different cerebral nuclei 
(among them the STN). In this way, it is possible to de-
termine the distance of a certain nucleus (non-visible using 
radiological techniques) with respect to a visible reference 
(normally the line that joins the anterior commissure (AC) 
and posterior commissure (PC)). It is also possible to use 
statistical data from other patient interventions. Neverthe-
less the exact position of the STN in a certain patient does 
not necessarily have to agree with these data. This is due 
to individual anatomical variations between brains; this is 
the reason why it is necessary to confirm surgically that 
the STN has been reached or, on the contrary, to identify 
the structure that has been reached in order to relocate the 
electrode.

1.2. Limitations of the surgical procedure

The surgical procedure consists basically in:
– Locating the target using standard brain atlases.
– Registering a trajectory of about 15 to 20 mm with mi-

croelectrodes.
– Confirming the structures by means of this procedure

with sensitive stimulation (driving) or macrostimulation.
– Choosing a new target using the data obtained.
Using this method, between 3 to 5 trajectories in each side
are normally explored. Moreover the exploration for each
stimulation has a duration of between 8 and 14 hours for
each intervention. During this period of time, a displace-
ment of the brain structures can occur, that will be greater
depending on the time required for the intervention. This
is due to the air intake through the burr hole, which can be
minimized but is inavoidable [5]. Moreover, the risk of pre-
senting complications (such as fundamental cerebral haem-
orrhage) is directly related to the duration of the interven-
tion and the number of trajectories. On the other hand the
patients are normally elderly with limitations to their func-
tional capacity due to their disease and from whom medi-
cation has been withdrawn in order to better observe the
effect during the intervention. For this reason they do not
tolerate being immobilized for a long time well. Sometimes
the procedure must be abandoned without obtaining the

objective of the implant. The enormous complexity of this
procedure, that requires the participation of a team of ex-
perts who use complex technology in long and expensive
interventions, limits the possibility of offering this alterna-
tive treatment to all those who could potentially benefit
from it. The procedure previously described can be highly
optimized if the brain atlas is adjusted to the patients’
anatomy.

1.3. Related work

In the last decade the number of publications related to 
deep brain stimulation has increased considerably [6]. In 
this paper, we only refer to techniques that are used to lo-
cate the STN. Slavin et al. [7] classify the methods used as 
direct or indirect. The indirect methods are based on the 
identification of the AC, PC and the use of brain atlases. 
The direct methods are based on the use of MRI images 
that allow us to visualize the STN. The type of MRI im-
age commonly used to visualise the STN is the T2 type 
[7, 8, 9]. The STN is located in the lateral part of the red 
nucleus and dorsolateral of the nigra substance. These two 
anatomical structures are visible in T2-weighted MRI im-
ages (see Figure 1). T2 type MRI images are then merged 
with T1 type MRI images. Guo et al. [10] also presented 
a comparison between the different techniques that allows 
the location of the STN. They analyzed the following tech-
niques:

(i) T2-weighted MRI-based targeting [7].
(ii) Anatomical brain atlas based targeting [11]. In this

type of method brain atlases are used to identify the
STN. Three of the most popular brain atlases are:
Talairach-Tournoux [12], Schaltenbran-Wahren [13]
and the probabilistic brain atlas of the Neurologic In-
stitute of Montreal [14]. Most of these methods per-
form a non-rigid registration of the atlas in the MRI
images [11, 15]. In the work of Guo et al. [10], an error
of 3.2±1.1 mm was presented.

(iii) T1 and T2 map-based targeting [16, 17]. In this type
of method, T2-type MRI images are used as an atlas.
In these images the STN is identified and later the
elastic adjustment with T1-type MRI images is made.
Castro et al. [17] perform the non-rigid adjustment
using different techniques: Affine registration, trans-
formation of Schaltenbrand-Warhen, Demons algo-
rithm and B-splines. They obtained best results us-
ing the B-splines with a mean error of 1.98±0.62 mm.
They used 8 patients in the tests, and the patient in
which the STN was better perceived was selected to
be used as the atlas.

(iv) Electrophysiological database-based targeting [18].
This type of method stores and analyses data from
surgical interventions. It is possible to obtain a stan-
dard template of the brain by normalising these data.
In the end a probabilistic map of the population is



Fig. 1. Visualization of the red nucleus in T2-weighted MRI.

obtained that is based on data collected during the
interventions in addition to its electrophysiological
activity.

In Table 1, the results obtained with the different methods 
used by Guo et al. [10] are shown. They used the algorithm 
of Atamai-Warp [19] in order to obtain the non-rigid 
adjustment. Guo et al. [10] concluded that the best results 
are obtained when combining different techniques. In order 
to test the system they selected 10 patients from a database 
of 26 patients who had Parkinson’s surgery.

2. Materials and methods

In order to locate the STN in MRI images of a patient, 
we have developed a deformable brain atlas based on the 
Talairach-Tournoux brain atlas. The tasks performed were 
as follows (see Figure 2):
– Transformation of MRI images of the patient in the co-

ordinate system of Talairach.
– Segmentation of the homologous structures both in the

atlas and in the MRI images of the patient’s brain. In
particular the cortex and ventricles in the MRI images
are segmented using Active Appearance Models (AAMs)
taking the axial slices of the Talairach’s atlas as a refer-
ence.

– Non-rigid registration of the Talairach-Tournoux atlas
in the MRI images using several Radial Basis Functions
(RBF).

– Warp of the digital brain atlas over the MRI images.

2.1. Talairach transform

Using this transformation, the patient’s brain has the 
same coordinate system as the Talairach-Tournoux brain 
atlas. This transformation is an affine transformation that 
works in parts. It uses different transformation matrices for 
each one of the 12 cubes that define the Talairach volume.

Several works have been based on this transformation, for
example: Kruggel et al. [20] or Nowinski et al. [21]. This
transformation presents several problems:

– The transformation is based on slices of a post mortem
brain of a 60 year old woman who is not necessarily rep-
resentative of the majority of the population.

– This transformation was developed for use in estereotac-
tical procedures on the internal structures of the brain,
not for the cortex.

– The spatial normalization based on AC and PC is not
adequate for brain structures that represent greater vari-
ability. This variability increases with the respective dis-
tance from AC and PC.

– The transformation only allows linear transformations,
that is: scale, rotations, translations.

– The transformation does not produce good results in
brains that are affected by pathologies that produce de-
formations (e.g. tumours).

2.2. Segmentation of structures in the Brain Atlas and in
a patient’s brain

Once the brain is aligned in the coordinate system of Ta-
lairach, segmentation of the structures that will be used as 
homologues in our algorithm is performed. As has already 
been said, the cortex and ventricles in particular have been 
segmented both in the digital Talairach atlas and in MRI 
images of the patient. In order to achieve this, the method 
based on AAMs has been used.

The AAMs are statistical models that can represent vari-
ability both in form and in texture [22, 23] based on a train-
ing set. The training set consists of labelled images, where a 
set of key points are labelled in each object. The form of an 
object can be represented as vector η and the texture (level 
of greys) represented as vector g. The appearance model 
has c parameters that control the form and the texture:

η = η +Qsc (1)

g = g +Qgc (2)

Where η  represents the mean form, g the mean texture y 
Qs, Qg, are matrices that describe the manner of variation 
of the training set.

Using the Talairach-Tournoux atlas as a reference and 
571  MRI  images  of  different  patients,  18 models  were obtai-

ned. These models were initially trained by a neuro-
surgeon, using free tools available on Internet [23]. Several 
examples are  shown in  Figure 3.  Table 2  presents all 
the information related to each model.
AAMs have been used to locate different structures, for 
example: the mouth, face, eyes, etc. They have also 
been used for the segmentation of brain structures. 
Cootes et al.[23] performed segmentation of the 
ventricles, caudatum



Table 1
Locating Subthalamic Nucleus with the different methods used by Guo et al.

Mean error (mm) Max error (mm) Min error (mm) Standard Deviation (mm)

T2-weighted MRI 3.0 5.5 2.0 1.3

Brain atlas 3.2 6.2 2.1 1.1

T1 and T2 maps 2.9 5.7 2.2 1.1

EP database 2.7 5.8 1.8 1.2

MRI images

⇓

Talairach’s transformation

⇓

Segmentation of cortex and ventricles Segmentation of cortex and ventricles using AAMS

↘ ↙

Non-rigid registration of Talairach-Tournoux atlas in MRI using RBF

⇓
Warp digital brain atlas of Talairach-Tournoux

Fig. 2. Adjustment process.

nucleus and lentiform nucleus in 2D MRI images. However,
as far as we know no previous research exists in which
brain structures are segmented using AAMs based on the
Talairach-Tournoux atlas.

The search performed by AAMs is an optimization prob-
lem where the difference between the synthesized object by 
the AAMs and the images has to be minimized. The diffe-
ence vector is defined as:

δI = Iimage − Imodel (3)

where Iimage is the vector of grey levels in the image Imodel

is the vector of grey levels for the model parameters. More-
over, the optimization is sensitive to a good initialization.
Cootes et al. [22] use a technique based on learning where
AAMs are totally integrated and it is possible to adjust
new images quickly using it. In order to evaluate the perfor-
mance of the models two different approaches can be used
[24]. The first of them consists in comparing the model with
a ground truth, which is an image where key points have
been identified by experts, or the same points used for the
construction of the model can be used. The mean most used
is the error point to curve or error of point associated to a
curve (pt.crv). Defined as the Euclidean distance between
a control point of the adjusted form in the new image, to
the nearest point on the edge of the control points of the
ground truth. The second approach consists in validating
the result using the distribution of the training set, a prop-
erty of the AAMs called self-contained validation that uses
the error of texture between the image and the model. The

mean |δg|2. In our case we have used the first approach and
the results are presented in Table 2. In Table 2 it is possible
to observe the error pt.curve for each model. Figure 3 (d)
presents the results of the search using different models in
different MRI images.

2.3. Non rigid registration using RBF with compact support

One of the best-known non-rigid methods is the use of 
RBF. The use of RBF in the medical image adjustment 
problem was originally introduced by Bookstein [25]. Book-
stein studied deformation in images of patients a
ected by Apert Syndrome. Apert Syndrome is 
characterized by the premature closing of the skull 
sutures, which causes the head to take a pointed form and 
the deformation of the face. The RBF method is based on 
the use of control points, so that if we identify a series of 
control points in both images (volumes), ensuring that 
these points are homologous, the problem is to determine 
the transformation function that allows the identification 
of any point between both images (volumes). In our case 
the initial volume is the digitized atlas of Talairach-
Tournoux and the destination volume is the MRI of the 
patient. This problem is equivalent to solve a problem of 
interpolation:
X = {(xi, yi, zi)}N

i=1 ∈ Ω ⊆ R3 (atlas landmarks) (4)

Y = {(ui, vi, wi)}N
i=1 ∈ ∆ ⊆ R3 (MRI landmarks) (5)

T (x, y, z) ∈ Ck≥0 is wanted to determine with components
Tx(x, y, z), Ty(x, y, z) and Tz(x, y, z) that fulfills::



Table 2
Information about the AAMs based on the Talairach’s atlas slices

Model Distance (mm) ±2 mm Training images Used points Pt. crv (Mean) Pt. crv (S.D) Pt. crv (Median)

Ventricles Cortex

A +60 41 — 99 1.99 0.46 0.98

B-C +50 35 — 100 1.86 0.55 0.75

D-E-F +40 49 — 104 1.51 0.31 0.89

G-H-I +35 36 — 100 0.81 0.07 0.67

J +24 27 24 89 2.28 0.54 0.86

K +20 36 45 89 0.92 0.22 0.51

L +16 34 59 121 1.48 0.41 1.37

M-N +10 26 80 121 0.80 0.19 0.42

O +4 24 109 141 1.68 0.35 0.65

P +1 28 86 137 1.36 0.35 1.03

Q -1 26 70 143 0.99 0.37 0.46

R -4 25 48 142 1.08 0.31 0.62

S -8 24 35 122 0.92 0.13 0.55

T -12 43 24 74 1.70 0.34 0.74

U -16 12 12 46 1.26 0.21 1.00

V -20 22 — 32 4.46 1.12 1.16

W-X -26 36 — 28 6.45 1.08 3.00

ui = Tx(xi, yi, zi), i = 1 . . . , N (6)

vi = Ty(xi, yi, zi), i = 1 . . . , N (7)

wi = Tz(xi, yi, zi), i = 1 . . . , N (8)

The interpolation problem will be solved separately 
for each coordinate. In this case Tx(x, y, z) indicates the 
displacement of variable x, Ty(x, y, z) indicates the dis-
placement of variable y, and Tz(x, y, z) indicates the dis-
placement of variable z.

Therefore, if we use RBF to solve the problem we will 
have an interpolation function with the following form:

ζx(x, y, z) = β1,z + β2,zx+ β3,zy + β4,zz (9)

ζy(x, y, z) = β1,y + β2,yx+ β3,yy + β4,yz (10)

ζz(x, y, z) = β1,z + β2,zx+ β3,zy + β4,zz (11)

Tx(x, y, z) = ζx(x, y, z) +
N∑

j=1

αj,xψ(‖(x, y, z)− (xj , yj , zj)‖)

Ty(x, y, z) = ζy(x, y, z) +
N∑

j=1

αj,yψ(‖(x, y, z)− (xj , yj , zj)‖)

Tz(x, y, z) = ζz(x, y, z) +
N∑

j=1

αj,zψ(‖(x, y, z)− (xj , yj , zj)‖)

If we impose the interpolation conditions:

Tx(xi, yi, zi) = ui i = 1, . . . , N (12)

Ty(xi, yi, zi) = vi i = 1, . . . , N (13)

Tz(xi, yi, zi) = wi i = 1, . . . , N (14)

we have to add the conditions of orthogonality in order
to guarantee that the interpolation problem is condition
number [26, 27], therefore, these orthogonality conditions
will be:

N∑
i=1

αi,x = 0
N∑

i=1

αi,y = 0
N∑

i=1

αi,z = 0 (15)

N∑
i=1

αi,xxi = 0
N∑

i=1

αi,yxi = 0
N∑

i=1

αi,zxi = 0 (16)

N∑
i=1

αi,xyi = 0
N∑

i=1

αi,yyi = 0
N∑

i=1

αi,zyi = 0 (17)

N∑
i=1

αi,xzi = 0
N∑

i=1

αi,yzi = 0
N∑

i=1

αi,zzi = 0 (18)

From here it is possible to deduce the following equation 
system:

Aw = B (19)

that is a linear equation system with 3 independent terms,
where A is a real and symmetric matrix. Once the equation
system is solved, the 3(N + 4) coefficients of the function
will have been determined: 12 for the polynomial part, and
3N for the radial part.



(a) (b) (c) (d)

Fig. 3. Examples of AAMs and their application to MRI images: (a) Original slices of the Talairach-Tournoux atlas; (b) Mean model of

texture; (c) Mean model of form; (d) Segmentation of cortex and ventricles using (b) model.

If we call

A =

 K P

PT O

 ∈Mat((N + 4)× (N + 4)) (20)

and we developed it in more detail, we have

A =



r1,1 r1,2 . . . r1,N 1 x1 y1 z1

r2,1 r2,2 . . . r2,N 1 x2 y2 z2
...

...
. . .

...
...

...
...

...

rN,1 rN,2 . . . rN,N 1 xN yN zN

1 1 . . . 1 0 0 0 0

x1 x2 . . . xN 0 0 0 0

y1 y2 . . . yN 0 0 0 0

z1 z2 . . . zN 0 0 0 0



(21)

where ri,j = ψ(||(xi − xj , yi − yj , zi − zj)||).

From the matrices it is possible to deduce that A matrix is 
symmetric. The matrix of independent terms and the

matrix of unknown factors are the following:

B =



u1 v1 w1

u2 v2 w2

...
...

...

un vn wn

0 0 0

0 0 0

0 0 0

0 0 0



ω =



αx,1 αy,1 αz,1

αx,2 αy,2 αz,2

...
...

...

αx,n αy,n αz,n

βx,1 βy,1 βz,1

βx,2 βy,2 βz,2

βx,3 βy,3 βz,3

βx,4 βy,4 βz,4



(22)

In order to solve the interpolation problem the following
RBF are usually used:

– Thin plate spline: ψ(r) = r.
– Multiquadratic: ψ(r) =

√
c2 + r2, where c 6= 0 is a free

selection parameter.
– ψ(r) = e−cr2

where c > 0 is a parameter.

We have guaranteed the solution of the equation sys-



tem (19) for the RBF previously described [27, 28]. In the
present research we will use the Thin Plate Spline and the
family of functions of Wendland and Wu.

2.4. Wendland and Wu functions

Two important classes of RBF with compact support 
are the families of functions of Wu [29] and Wendland [26]. 
These functions are polynomials and positive-defined. For 
a certain dimension d > 0 and a smoothness parameter 
k ≥ 0 a unique Wendland function exists:

ψd,k := Ik(1− r)bd/2c+k+1
+ (r) ∈ C2k(R) (23)

where

fd(r) = (1− r2)l
+ =

{
(1− r2)l, if 0 ≤ r ≤ 1;
0, otherwise.

(24)

and Iψ(r) :=
∫∞

r
tψ(t)dt r ≥ 0 is the integral opera-

tor. This function is positive-defined in R and polynomial
whose minimum degree is floor(d/2)+3k+1. Let’s look at
some of these functions:

– ψ3,0 = (1− r)2+ ∈ C0(R) WEN0.
– ψ3,1 = (1− r)4+(4r + 1) ∈ C2(R) WEN1.
– ψ3,2 = (1− r)6+(35r2 + 18r + 3) ∈ C4(R) WEN2.

Respect to Wu uses the function (24) and by means of 
the convolution operator ∗ constructs φd,0(r) = (fd ∗fd)(r)
then φd,k = Dkφd,0(r) is defined, where D = −1

r
d
dr is

the differential operator. φd,k is positive-defined in Rd for
d ≤ 2k + 1 and polynomial of degree 4l − 2k + 1 in the
interior of the support.

Some examples of Wu functions for d = 3 are:

– φ3,1 = (1 − r)6+(5r5 + 30r4 + 72r3 + 82r2 + 40r + 8) ∈
C4(R) WU1.

– φ3,2 = (1 − r)5+(5r4 + 25r3 + 48r2 + 40r + 8) ∈ C2(R)
WU2.

– φ3,3 = (1− r)4+(5r3 + 20r2 + 29r+ 16) ∈ C0(R) WU3.

As Wu and Wendland functions are positive-defined [26], 
the resolution of the equation system (19) is guaranteed. 
These functions can be scaled by a parameter µ > 0 so 
that,ψd,k,µ(r) ≡ψd,k,µ(r/µ) (same argument is valid for 
the Wu functions) and so their mathematic properties are 
not affected, with this the size of the support is changed 
from [0,1] to [0, µ]. Changing the size of the support means 
that the elastic transformation will be limited to the points 
of the volume that are within the support.

2.5. RBF properties

In this section some properties of the RBF are cited:
– Nature of the transformation. In the case of the RBF

the polynomial part is in charge of performing an affine

transformation, whereas the radial part is in charge of
performing the elastic transformation.

– Locality of the transformation. The locality determines
the spatial range where the transformation has influence,
that is, if the transformation affects the whole image or
only a certain area of the image. The election of the RBF
is determinant because it affects locality, since, depend-
ing on the RBF used the transformation will be global
and/or local.

– Computational cost. As in previous sections the selec-
tion of the RBF will be the determinant for the computa-
tional cost. RBF with compact support will offer compu-
tational advantages, since the matrix is dispersed. When
increasing the size of the support, the matrices will be-
come more and more dense. This will allow us to use it-
erative methods of resolution. On the other hand if we
used another type of RBF like the Thin Plate Spline the
matrix will be completely dense.

– Stability. In general, the matrices resulting from the
problem (19) are usually very badly conditioned. This
is not the case of the RBF with compact support since,
in general, they are usually well conditioned, increasing
the number of the matrix condition as the support size
increases.

– Differentiability. The analysis of the differentiability will
be determinant in RBF with compact support, because
this factor will change the results of the adjustment enor-
mously.

3. Results

In order to validate our method, we have used data from 
10 patients (20 nucleus) operated on for Parkinson’s, in 
which the location of the STN was identified as the final 
position of the microelectrodes. This position was com-
pared with the one obtained by our method. In order to 
achieve this, the mean quadratic error between the posi-
tion obtained by our method and the final position of the 
microelectrode was calculated. The MRI images have a dis-
tance between pixels in x and y of 0.859375 mm and the 
distance between the slices is 1 mm. The equipment used 
to take these images is: Philips Gyrosxcan ACS-NT (Best, 
Holland) equipped with a superconducting magnet of 1.5 
Teslas and field gradients of 15 field of mT/m.

3.1. 2D Test

In this section 2D visual results are presented. Figure 4 
shows the result of the Wu function of class 0 (WU3) 
with support size λ  = 41. The axial slice of the atlas is 
the number 10, at +20 mm. This figure shows visually how 
accurate the adjustment of the brain atlas to a patient’s 
brain is.



Fig. 4. Example of Talairach’s atlas adjustment.

3.2. Accuracy

In order to validate the quality of the adjustment, sev-
eral RBF were used, specifically the RBF of Wendland, 
Wu and the Thin Plate Spline. We have checked how 
the size of the support and the smoothness a
ect the results of the adjustment when using RBF with 
compact support. Figures 5 and 6 present the results 
(mean error and stan-dard deviation) using our method 
for locating the STN (left + right) in 10 patients.

Among the RBF used, the one that gave the best results 
was the Wendland function of:ψ 3,0(r) = (1 − r)2+ with a 
support size of λ = 34 with an error of 1.8853±0.9959 mm,
followed by the Wu function: φ3,3(r) = (1 − r)4+(5r3 +
20r2 + 29r + 16) with a support size of λ = 24 with an
error of 2.0129±1.0356 mm. The other RBF have given
worse results. Moreover, it can be seen that increasing the
smoothness of the RBF with support gave worse results.

We can compare our results with previous results from 
two points of view:
– Methods that are based on digital brain atlases. Ganser

et al. [11] used a brain atlas (Talairach) and RBF. The
best results were reported using the Wendland function,
as in our case. They obtained the distance to the frontal
end of the putamen (left-right) using Wendland func-
tion and Thin Plate Spline. The errors are: Thin Plate
Spline, left: 5.61±1.93, right: 5.89±2.90; Wendland func-
tion, left: 4.76±2.03, right: 3.99±1.76. Guo et al. [10] re-
ported an error of 3.2±1.1 mm. Our method gives better
result than these two works.

– Methods that use RBF. Castro et al. [17] uses a T2-
weighted MRI as an atlas and performs the non-rigid
adjustment using different techniques, among them B-

Table 3
Number of non-null elements of matrix A and condition number

Non-null Memory Condition

elements (megas) number

ψ3,0,1 24649 0.1462 1.0935·104

ψ3,0,15 99707 0.7575 1.4634·104

ψ3,0,30 330643 1.8972 2.9279·105

ψ3,0,45 705933 4.0446 4.3965·105

ψ3,0,50 866435 4.9630 4.8873·105

ψ3,0,70 1725737 9.8800 6.8579·105

TPS 7510328 28.6496 1.3232·107

splines which offered better results, with a mean error of
1.98±0.62 mm. Our error is a bit lower that this error.

3.3. Computational cost

In this section we will concentrate on the following as-
pects:

(i) Construction of the equation system.
(ii) Resolution of the equation system.
(iii) Evaluation of the transformation function.

Storage cost
If RBF with compact support are used, the matrix of 
system A is dispersed. This is because these functions are 
the product of the function (24) by a polynom, and this 
function is null in the points that are inside the support. 
The degree of dispersion of the matrix will depend, to a 
great extent, on two factors:
– Support size.
– Distribution of the control points.

The number of elements affected by the transformation
increases when the support size is increased, therefore, the
number of non-null elements of matrix A will be increased.
On the contrary if the Thin Plate Spline is used, the ma-
trix of the system is dense since the transformation affects
all the control points of the image. Both in the Thin Plate
Spline and RBF with compact support the matrix of the
system is symmetric, therefore it will only be necessary to
store half of the matrix elements. Moreover in the case of
the RBF with compact support, this cost can be reduced
in O(N) using the technique described by Morse et al. [28].

Table 3 shows different examples where the number of 
non-null elements of the system A matrix using several 
RBF appear. More specifically, 2837 points in the cortex 
and ventricles were identified in order to perform non-rigid 
registration between the Talairach’s atlas and the MRI im-
ages of the patient. Figure 7 shows the matrix dispersion 
using different RBF.



Fig. 5. Mean error (STN left+right) in mm. changing support size.

Fig. 6. Standard deviation (STN left+right) in mm. changing support size.



Table 4
Computational cost TPS vs RBF with compact support

TPS CSRBFs

Computation to build O(N2) O(N logN)

Computation to solve O(N2) O(N1.5)

Storage to build/solve O(N2) O(N)

Computation to evaluate O(N) O(logN)

Solving the equation system
The resolution of the equation system (19) using LU de-
composition is an operation of O(N3). The computational 
cost can be reduced to an operation of O(N2) using itera-
tive methods (method of the biconjugated gradients). On 
the other hand if we used RBF with compact support, and 
the mean number of control points inside the support size 
for each (xi, yi, zi) is less than a constant ε, this implies that 
the number of non-null entries of the matrix A is O(N). 
In this case a LU decomposition for dispersed matrices 
would be used in order to find the solution of the equation 
system [30]. The order of this method varies from O(N1.2) 
to O(N1.5) depending on the “fill in” produced during the 
decomposition. Table 4 presents the computational cost of 
the Thin Plate Spline and RBF with compact support.

With respect to the stability of the equation system (19), in 
the case of the RBF with compact support the system 
matrix is usually well conditioned. The number of condition 
will be depend on 3 factors:
– The number of points.
– Distribution of points.
– Support size.
One way to know if points are well distributed is to calculate
the separation distance:

η =
1
2

min
1≤j 6=i≤N

||(xj , yj , zj)− (xi, yi, zi)|| (25)

Table 3 shows different examples where the number of 
condition of the matrix A using several RBF appears.

Evaluating the transformation function
To evaluate the interpolation function of the Thin Plate 
Spline is an operation of O(N). This time can be reduced 
in RBF with compact support using “k-tree” method to an 
operation of O(log N).

Implementation
The resolution of the equation system was performed 
using CLAPACK library [31]. Table 5 shows the time in 
seconds needed to solve the system. The computer used was 
a Pentium IV 1.4 Ghz. The function evaluated was WEN0 
with a support size of 35.

4. Discussion

In this research a deformable brain atlas that allows 
the location of different anatomical structures in pa-

Fig. 7. Matrix dispersion using different RBF.

Table 5
Time required for solving the equation system (19)

Number of points Time (in seconds)

2D 241 0.3

3D 2837 30

tients’ brains has been developed. We have applied it to
the location of the STN. It has been demonstrated that
RBF, especially those with compact support, are effective
methods for elastic adjustment, both in terms of compu-
tational cost and the accuracy of the adjustment. Among
all RBF used the one that has given the best results is
the Wendland function: ψ3,0(r) = (1− r)2+ with a support
size of λ = 35, followed by the Wu function: φ3,3(r) =
(1− r)4+(5r3 + 20r2 + 29r + 16) with a support size of 24.
The rest of the functions have given worse results. Our
results have been compared with results given in other
works and ours are more accurate.

As to future research, we want to establish formal cri-



teria to select the support size, to incorporate elasticity
properties of the materials into our model, to increase the
number of images of the AAMs and to apply the model in
the identification of new anatomical structures.

5. Summary
Parkinson’s disease is a degenerative disease of the central 
nervous system characterized by a decrease in spontaneous 
movement, gait difficulty, postural instability, rigidity, and 
tremor. Nowadays, one of the most effective treatments is 
deep brain stimulation. This technique requires the 
localization of an objective structure: the subthalamic 
nucleus. Unfortunately this structure is difficult to locate 
using traditional techniques due to its small dimensions and 
anatomical characteristics. In this work the creation of a 
deformable brain atlas that enables the iden-tification of the 
subthalamic nucleus in T1-weighted magnetic resonance 
imaging (MRI) in an automatic, precise and fast way is 
presented. The Talairach-Tournoux brain atlas has been 
used. The method consisted of: (i) the location of the MRI 
images in Talairach’s coordinate system; ii) the identification 
of homologous structures (cortex and ventricles) between the 
brain atlas and the MRI images using Active Appearance 
Models (AAMs) based on the 27 axial slices of the 
Talairach’s atlas; (iii) Non-rigid registra-tion between the 
atlas of Talairach-Tournoux and the MRI images using 
several Radial Basis Functions (RBF), among them 
different Radial Basis Functions with compact support. The 
system has been validated using data from 10 patients (20 
nucleus) operated on for Parkinson’s, in which the final 
placement of the microelectrode was considered the correct 
placement for the subthalamic nucleus. This placement was 
compared with the one obtained using our method. In order 
to achieve this, the mean squared error between the position 
of the subthalamic nucleus obtained by our method and the 
final position of the microelectrodes was calculated. Our 
system offers better results using a Wendland function with 
an error of 1.8853±0.9959 mm.
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