Document downloaded from:

http://hdl.handle.net/10251/92333
This paper must be cited as:

Ortiz Serna, MP.; Carsi Rosique, M.; Redondo Foj, MB.; Sanchis Sanchez, MJ. (2014).
Electrical conductivity of natural rubber cellulose Il nanocomposites. Journal of Non-
Crystalline Solids. 405:180-187. doi:10.1016/j.jnoncrysol.2014.09.026

The final publication is available at

http://doi.org/10.1016/j.jnoncrysol.2014.09.026

Copyright E|sevier

Additional Information



Electrical conductivity of natural rubber—cellulose Il nanocomposites

P. Ortiz-Serna*, M. Carsi, B.Redondo-Foj,M.J. Sanchis

Departamento de Termodinamica Aplicada, E.T.S.1.1, Instituto de Tecnologia Eléctrica Universitat Politecnica
de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

* Corresponding author. E-mail address: portiz@ter.upv.es (P. Ortiz-Serna).

Abstract

Nanocomposite materials obtained from natural rubber (NR) reinforced with different
amounts of cellulose II (cell) nanoparticles (in the range of 0 to 30 phr) are studied by dielectric
spectroscopy (DS) in a broad temperature range (— 150 to 150 °C). For comparative purposes, the
pure materials, NR and cell, are also investigated. An analysis of the cell content effect on the
conductive properties of the nanocomposites was carried out. The dielectric spectra exhibit
conductivity phenomena at low frequencies and high temperatures: Maxwell-Wagner—Sillars
(MWS) and electrode polarization (EP) conductive processes were observed in the
nanocomposite samples.
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1. Introduction

The electrical conductivity of an insulating polymer can be altered by adding conducting
particles [1-3]. The conductivity of the composite material can thus be controlled by choosing the
suitable components, as shape, size, and relative concentrations [4].

Natural rubber (NR) has been successfully used as an engineering material for many years
owing, among other features, to the possibility of compounding it to meet nearly any mechanical
requirement and to be electrically insulating or fully conductive. The most common rubber filler in
engineering applications is carbon black (CB) [5,6].

All carbon blacks, under normal conditions, have some capability to conduct electricity.
However, medium thermal carbon black (ASTM designation of N990) was found to have lower
conductivity (higher resistivity) when comparing to general carbon blacks [7]. For that reason medium
thermal CB is used, for example, as a functional filler in low voltage wire, cable [8] and automotive
radiator hose applications, where the lowest possible level of conductivity is desired. While most
carbon blacks are semi-conductive, medium thermal CB has the highest volume resistivity of all carbon
blacks, i.e., is the least suited to conduct electricity in a polymer system. This is due to the fact that in
medium thermal CB, individual spheres allow the polymer chains to surround and electrically insulate
the carbon. The large particle size and low structure of medium thermal CB are not conducive to the
mechanism of semi-conductivity, namely electron tunnelling.

Today, more and more demands are being placed on rubber goods, especially in automotive and
aerospace applications. Nevertheless, be- cause of the origin of CB from petroleum this filler causes
pollution and gives black colour to rubber. As a result, in the last two decades re- search was focused on



the development of other reinforcing agents de- rived from inorganic [9,10] and natural organic [11,12]
materials to replace carbon black in rubber compounds. It is well known that one of these promising
materials is cellulose (cell) [13], which is a renewable raw material, is more environmentally friendly
than CB and comes from a sustainable resource. It is for this reason that we have studied a series of NR—
cell nanocomposite samples in the present work, which is a continuation of previous studies [14-16]
concerning the morphological, thermal, mechanical and electrical behaviour of these samples. The
morphological characterization showed a good dispersion of cell nanoparticles (with size of 50 nm or
less in diameter) in the composite. Studies on the mechanical and curing properties of these systems
showed that cellulose improves the physicochemical as well as technological properties of pure NR. The
highest value of the stress at break was achieved for the composite containing 15 phr of cellulose, while
the strain at break decreases as the filler content increases above 15 phr. The results for the stress and
strain at break indicate that the limit of filler content to achieve good mechanical properties is 15 phr.
Thus, an improvement of the mechanical properties of NR was achieved by the addition of 15 phr of
cell while, generally, medium thermal CB is used in the range of 20 to 50 phr and, moreover, at low
loadings of CB, the mechanical properties of the compound will essentially be the same as those without
thermal carbon black.

The dielectric spectroscopy technique was used, in the previous work [16], in order to
characterize the molecular dynamics of the samples in the low temperature range. However, conduction
effects often dominate the dielectric response of a material at high temperatures and low frequencies.
The processes that contribute to the dielectric response under these conditions include the migration of
mobile charge carriers across the medium and the trapping of charges at interfaces and boundaries. The
motion of charge in disordered systems is accompanied by an electrical relaxation, which is
characterized by a relaxation time 7o. If the external electric field has a frequency, which is much higher
than 1/1s, its effect on the charge transport is negligible. On the contrary, if ® [ 1/ts it supports the
charge transport and causes a contribution to the electrical relaxation that increases with decreasing
frequency. While the motion of charge carriers can increase the dielectric loss by several orders of
magnitude, charge trapping influences both, the dielectric permittivity and the loss factor. This
additional polarization is the result of (i) the accumulation of charges at the electrode— sample interface,
called “electrode polarization” (EP) [4] and/or (ii) the separation of charges at internal phase boundaries
referred to as Maxwell-Wagner—Sillars (MWS) polarization [17,18]. MWS polarization is generally
evident in non-homogenous materials like multi- phase polymers, blends and colloids, crystalline or
liquid crystalline polymers, and composites and occurs across smaller size scales when comparing to the
electrode polarization. The MWS effects are more pronounced for conductive materials and, in certain
cases, this large-scale polarization can mask the dielectric orientation response of the material.

The aim of the present paper is the phenomenological description and the molecular
interpretation of these high temperature relaxation processes found in the solid state, as well as the
explanation of the cell nanoparticles and water effect on the nanocomposite conductivity behaviour. In
order to characterize the conductive behaviour it is advisable to represent the obtained dielectric data in

terms of the complex conductivity 6*(). It is remarkable that 6*() is similar in its temperature and
frequency dependence for a wide variety of different materials [15-22].

According to Maxwell's equations [23] the current density j = 6*E and the time derivative of
the dielectric displacement dD/dt=iwe*eoE are equivalent, where o* is the complex conductivity, E is



the electric field, £* is the complex permittivity, €0 = 8.85 1072 F-m™! is the vacuum permittivity and
o = 2nf is the angular frequency. Hence, for sinusoidal electrical fields E(w)= Eoe', £*(®) and c*(w)
are related to each other by o*(®)= ¢'(0)+ 16" (®)= iweoe®(®). So, the real and imaginary parts of
o*(w) are given, respectively, by ¢'(®) = 6'ac(®) = weoe”(®) and 6" ()= weoe'(®).

We report our experimental results by means of the conductivity dependence on the
frequency, temperature, and filler content. Once considered that the cell nanoparticles could be used
as a suitable reinforcement in NR composites, these conductivity studies will help to elucidate if NR
preserves its inherent insulator behaviour after the cell addition (conductive filler). The results of the
morphological characterization pointed out a lack of aggregation of the cell nanoparticles in the NR
matrix, and consequently a similar behaviour to that of the medium thermal CB composites and
therefore a feasible use of our samples in the same kind of applications would be expected.

2. Experimental
2.1. Samples

The nanocomposite materials, labelled as NR10, NR15, NR20, and NR30, consist in four
samples in which the cell content varies from 10 to 30 phr (parts per hundred). The syntheses of the
samples were carried out in the Instituto de Macromoleculas Professora Eloisa Mano (Universidade
Federal do Rio de Janeiro) [24]. These materials were processed to obtain sheets with thickness of
around 0.25 mm.

2.2. Dielectric spectroscopy (DS)

DS [4,25-27] experiments were performed in a Novocontrol Broad- band Dielectric
Spectrometer, based on an Alpha analyser and a Quatro temperature controller. Isothermal
measurements were carried out at 44 frequencies between 5-107% and 3-10° Hz from — 150 to 150
°C, in 5 °C steps, using gold electrodes of 20 mm in diameter. The accuracy of Alpha impedance
measurement is 0.01%. The dielectric measurements were carried out in not only as received but also
dried samples labelled respectively as wet and dry from now on. The latter were obtained via drying
in an air-circulating oven at 70 °C until constant weight. The nanocomposites dc conductivity, Gdc,
was determined from the frequency dependency of the ac conductivity, cac(®), as the extrapolated
value of the conductivity plateau in the low-frequency region.

3. Results and discussion
3.1. Dielectric spectroscopy (DS)

In order to elucidate the influence of the water presence in the molecular dynamic properties of
the NR—cell nanocomposites, dielectric measurements were carried out in both wet and dry samples.

Fig. 1 shows the temperature dependence of the dielectric permittivity € and loss factor &”
at 1 Hz for NR, cell I and NR—cell nanocomposites.

As we can observe, several processes are present in the experimental temperature range. In order
of increasing temperature, the loss isochrones for all samples present a B-relaxation, located near —
110 °C and related to the local chain dynamics of the cell II polysaccharide chains [28,29]. The high



temperature side of the B-process overlaps with the low temperature side of a complex peak,
centred near —60 °C, which can be decomposed into a and o'-relaxations associated, respectively, with
the 7,s of NR and the lipid component (SA), present in NR not only as a natural impurity but also as an
additive [15]. In turn, the high temperature side of the a-relaxation overlaps with a process related to the
moisture, only detectable in the wet samples. Finally, the increase of the loss factor at high temperatures
arises from the conductivity phenomena. Both, ionic conductivity and polarization effects, caused
respectively by MWS polarization and EP, are responsible for the dielectric permittivity increase at
high temperatures. From the loss factor spectra reported in Fig. 1 it is clear that the intensity of the (1)
B-relaxation, (ii) peak related to the moisture and (iii) conductivity phenomena increases as the cell
contentrises in the samples. However, the intensity of the complex peak associated with the o’ and a-
relaxations is not too much affected by the increase of the cell content. We can also observe an
increase of the dielectric permittivity with the cell content. In the case of wet samples, an important
increase between 0 and 50 °C is observed, which can be associated with the water increase in the
nanocomposites as the cell content rises. For temperatures above 100 °C, the dielectric permittivity is
higher for the dry samples.
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Fig. 1. Temperature dependence of the dielectric permittivity (top) and loss factor (bottom) for wet
(left) and dry (right) samples at 1 Hz.

Fig. 2 shows the frequency dependence of the dielectric permittivity at room temperature for the
dry NR and NR—cell nanocomposites. The inset displays the variation of the dielectric permittivity with
the mass fraction of cell at different frequencies (10°, 102, 10" and 10° Hz). As we can observe in
both plots, there is a moderate enhancement of the dielectric permittivity with the cell content. This
behaviour is probably related to the increase of the charge carriers blocked at the interfaces between
NR and cell, two materials with different electrical behaviours. Clearly, the number of interfaces and
hence the charge carriers blocked increases with the cell content in the samples.



In order to study the dipolar processes, the complex dielectric permittivity was expressed in
terms of the Havriliak—Negami (HN) phenomenological equation [30-32]. Assuming an additive rule
for the dielectric permittivity [33], the analysis of the loss spectra was carried out for both, wet and
dry samples. The parameters that describe the HN equation were computed from the dielectric loss and
the pertinent results are collected in our previous work [16].

According to our results, the temperature dependence of the relaxation times of the dry and wet
nanocomposites [16] follows the Vogel— Fulcher—Tammann equation [34-36]. Whereas the rate of the
a-process was unaffected by the water elimination, the slower process (o) becomes even slower in the
dry samples. This fact is related, presumably, to the solvation of the hydrophilic acid groups (—CO,H)
present in the lipid component (SA). Thus the water's role is to act as a plasticizer for the lipid process
(o), decreasing the respective glass transition temperature.

el 25°C B'GJ ¢

Fig. 2. Frequency dependence of the dielectric permittivity for dry NR and NR-—cell
nanocomposites at room temperature. Inset shows the variation of permittivity with the mass
fraction of cell at several frequencies (10* Hz withx = 0, 1, 2, 3 and 4).

For systems in which charge contributions to the dielectric permittivity are important at low
frequencies, it is also convenient to analyse the results in terms of the complex dielectric modulus (M*),
a very sensitive parameter to charge transport. Fig. 3 shows the corresponding loss modulus (M") as a
function of temperature for the wet and dry samples.

For both sample series the loss modulus exhibits, in increasing order of temperatures, the
relaxation associated with the -cell process and the double absorption associated with the NR and SA
Tgs. The differences between the wet and dry samples are more significant at high temperatures. That
is, the wet samples show a peak associated with moisture above the 7, which is not present in the dry
samples. This peak makes the definition of the MWS and EP processes difficult and for this reason
both conductive processes are more clearly defined in the dry samples.

In order to study the effect of the cell content in the conductivity, the frequency dependence of "
for pure polymers and NR—cell nanocomposites, measured at room temperature (20 °C) and at 150 °C is
plotted inFig.4.
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Fig. 3. Temperature dependence of M" for (a) wet and (b) dry samples at 0.05 Hz. NRO (X),
NR10 (square), NR15 (circle), NR20 (up triangle) and NR30 (down triangle)

According to Fig. 4, it is evident that the ac conductivity, ¢'(®), is both, frequency and
temperature dependent, and increases with in- creasing frequency and temperature. However, the
influence of the temperature is more pronounced in the low frequency range. At high frequencies all
the isotherms collapse. Besides, 6'(w) shows a plateau at high temperature and low frequency range.
This plateau represents the dc conductivity of the sample, which increases with growing temperature
and cell content, and is clearly marked only for the highest temperatures. As we can observe, in the
high frequency range, the frequency dependence of 6'(®) is nearly linear.
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Fig. 4. Frequency dependence of c* for pure polymers and NR—cell nanocomposites at (a) 20 °C
and (b) 150 °C. NRO (X), cell (+), NR10 (square), NR15 (circle), NR20 (up triangle) and NR30
(down triangle).

In general the ac conductivity, o'(w), at a constant temperature can be represented by the
following equation

o (0)=cut Ao’ (1

where o is the angular frequency, cdc is the independent frequency conductivity or dc conductivity
(at ® — 0) and the 4 and s parameters are constants dependent on temperature. The frequency
dependence of the conductivity was called by Jonscher as Universal Dynamic Response (UDR) [37—
41] because a wide variety of materials displayed such behaviour [39,41]. The double logarithmic
plot of ¢’ vs. ® in the high frequency region follows the power law ¢'(w)= Aw*, with s = 1 [42,43].
This zone is called the nearly constant loss (NLC) regime, because it corresponds to the frequency
region in which the dielectric permittivity is nearly independent of frequency. Fig. 5 shows the
obtained temperature dependence of the 4 and s parameters for NR and NR—cell nanocomposites. A
multiple linear regression analysis was carried out to calculate the values of both parameters.
According to our results, on one hand, when the temperature increases, the exponent s decreases and
the A parameter increases. On the other hand, the exponent s increases with the cell content, while
non-defined tendency is observed for the 4 parameter. However, the exponent s is larger than the
universal one (s = 0.8-1). This discordance has also been found in some composite systems,
comprising of conducting and insulating phases' network, and could probably derive from the fact that
the electrical conductivity is achieved by tunnelling, as there are no physical contacts between the
fillers. If the cell particles in the NR matrix are not in contact, an activation energy in order to produce
the migration of the charge between sites in the whole sample is required.
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frequency region (c’'(®)= Aw’) for NR and NR—cell nanocomposites.

As we can observe in Fig. 4, the bulk conductivity of the pure NR increases with increasing
frequency, as expected for an insulator material, with a value at 20 °C and 10™"-s! of about 10> S-cm
! for both, wet and dry samples. On the other hand, at 150 °C and 107'-s' the value of the
conductivity was 107*S-cm™ for the wet samples and 10> S-cm™ for the dry ones. In addition, as
explained above, differences in conductivity of the phases of an inhomogeneous medium give rise
to interfacial polarization (MWS-relaxation). The charges can migrate under the influence of the applied
field contributing to the electrical response of the systems [1,44]. Such a polarization usually occurs at
frequencies lower than the time scales typical of dipolar polarizations. In the middle part of the isotherm
the MWS-relaxation creates a ‘knee’- like increase in the o-curve, which is uniformly shifted with
temperature. At lower temperatures this ‘wriggle’ is in the range of the o4~ plateau, which makes it
impossible to determine the dc conductivity directly.

The major effect of even low contents of water is the increase of the electrical conductivity of
the sample, which superposes the dielectric processes in the loss spectra [16]. Consequently, it is
observed that the MWS process is better defined and more intense in the dry samples than in the wet
ones (Fig. 4(b)). This difference can be explained by the changes in the internal interfaces that take
place with the water elimination. In accordance with our results, the water elimination would
favour the polarization process in the interfaces that exist be- tween the different components of the
heterogeneous nanocomposites. As we can observe in Fig. 4, the imaginary part of the complex
conductivity decreases with decreasing frequency. The slight increase observed at low frequencies is



related to the presence of the electrode polarization phenomenon.

For each isotherm, there is a critical frequency wc beyond which a power law is followed. The
o. values were estimated as the frequency at which the dc line intersects with the straight line
present in the high frequency zone for each isotherm. Moreover, the value of 6,4 at each temperature
can be estimated from the plateau values of the conductivity in the o'(w)-® plot. The temperature
dependence of o, and o, for NR and NR-—cell nanocomposites is plotted in Fig. 6(a) and (b)
respectively. Both, the plateau value o, and the critical frequency ., decrease with decreasing
temperature. Besides, as we can observe in these figures, o, and 6,4, parameters also depend on the cell
content. According to our results, the @, parameter increases with the cell content until 15 phr and then
undergoes a decrease for higher contents of the filler. On the other hand, the 6,4 parameter increases
with the cell content until 15 phr and then remains constant. At low cell concentration (10 phr), the
particles are present as individual elements, since the average distance between them exceeds their size,
and the conductivity of the composite is very close to that of the pure NR matrix.

In order to analyse both, the effect of the temperature and the composition in the dc conductivity
values, Fig. 7 shows the conductivity of the nanocomposites vs. the cell content in the temperature
range from 50 to 150 °C (10 °C step).

Conductivity increases with the cell content until 15 phr, then its value remains approximately
constant for higher contents of the filler. The absence of an abrupt increase in the conductivity values
with the cell content signifies that all the examined nanocomposite systems exhibit insulator
behaviour. However, in Fig. 7 a considerable increase of conductivity with temperature for constant
cell content is also observed. As we can see, the dc conductivity values are altered by almost two
orders of magnitude with increasing temperature (be- tween 50 and 150 °C), which indicates that this
is a thermally activated process.
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Fig. 6. (a) Temperature dependence of . (Hz) obtained from the experimental isotherm and
(b) temperature dependence of the dc conductivity for the dry samples: NR and NR-—cell
nanocomposites. All data were satisfactorily linearly fitted.
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The temperature dependence of conductivity can be expressed as follows:
Eq
04.(T) = 0 - exp [k;TT ()

where oy is the conductivity at infinite temperature, £, is the activation energy and kg is the Boltzmann
constant. The 6y parameter can be considered as a constant for each of the examined samples, since
the influence of temperature on o, appears to be negligible with respect to the temperature dependence
of the exponential factor in Eq. (2). Fig. 6 provides plots of dc conductivity as a function of the
reciprocal of temperature for the dry nanocomposites. For the wet samples, the presence of the water
process hinders the conductivity evaluation; as a result, the analysis performed for the dried samples
was impossible to carry out in this case. As we can observe in Fig. 6, the experimental data were
satisfactorily linearly fitted, revealing the Arrhenius type or the single thermally activated process.
From the linear fits the activation energy and the co parameter were evaluated and the obtained
values are summarized in Table 1 for the dry samples.

Table 1. Values of the fit parameters of Eq. (2) for the dry NR and NR—cell nanocomposites

Cell From ou obtained with the From ou- obtained with fit to
(Phr) plateau of ¢’ (0—0) eq. (5)
In oo[S:em]  Ea(kJ'mol’)  Inoo[S-cm'] Ea(kJ-mol™)
NRO 0 -5.8+=0.2 71.2+0.7 -6.5+0.3 68.5+0.9
NR10 10 -7.5+04 67.1+1.2 -7.1+0.3 67.5+0.9
NR15 15 -6.9+0.3 63.9+0.8 -6.1 04 65.6+1.2
NR20 20 -7.5+£0.3 62.8+1.0 -6.8 0.1 64.30.3

NR30 30 -7.8+0.3 62.2+0.8 -7.0+0.2 63.60.7




A slight decrease in the values of activation energy and oy parameter with the cell content is
observed although non-relevant changes are produced. So, the values of the activation energy for the
o-process are similar for all the samples and lie between 62 and 71 kJ-mol™. The activation energy
reflects the microstructure of the composites, thus, the reduction of inter-particle separation by increasing
the volume fraction of the cell phase could be responsible for the slight decrease in the values of the
activation energy.

A general approach for the study of the time/frequency temperature correspondence for the ac
conductivity is to use the scaling ansatz [45,46]
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where flo/w,) is the so-called scaling function and w¢ the previously de- fined angular frequency
marking the onset of the ac conductivity. Scaling properties are shown in Fig. 8 where the same data
have been redrawn in reduced units, and the reduced conductivity ¢'(®, 7)/c.(7) is plotted against
the reduced frequency w/w.(7). The results of Fig. 8 show that this scaling law holds not only for
disordered ion conducting inorganic systems but also for polar viscoelastic liquids.
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Fig. 8. Frequency dependence scaling spectra for the ac conductivity using the scaling ansatz
o'(w, 7= caf[ow/w(T)] (from 50 to 120 °C, 5 °C step).



As we can see, the superposition is better in the high frequency range, whereas the
overlapping fails in the MWS zone. The data were fitted to Eq. (3) by multiple regression analysis
with a single value of ¢ for different 7% t = 1.2500 == 0.0001 for NRO, # = 1.2529 = 0.0005 for NR
10, t = 1.2527 == 0.0004 for NR15, r = 1.2229 =+ 0.0005 for NR20 and ¢ = 1.1744 % 0.0004 for
NR30.

Various theoretical models [47] for ac conductivity have been predicted in order to explain the
experimental observations of complex systems. So, to examine the electrical transport properties of
the matrix—filler systems, different hopping models have been proposed, as for example, the variable
range hopping model [48,49] and the random free-energy barrier model [40,41,50-52]. The term
hopping refers to sudden displacement of the charge carrier from one position to another neighbouring,
and in general includes both, jumps over a potential barrier and quantum mechanical tunnelling [37].

Among several models proposed for the interpretation of the charge carrier transport
mechanism, the simplest is the random free-energy barrier model (also referred to as the symmetric
hopping model) proposed by Dyre [41,50]. This model is based on the ascertainment that the dc
conductivity is thermally activated (Eq. (2)), and the ac conductivity is less temperature dependent. The

latter suggests that processes with activation energies smaller than E™* dominate the ac conductivity. In
our case the experimental data are satisfactorily linearly fitted to Eq. (2), revealing that it is a single
thermally activated process. According to this model the non-interacting charge carriers remain at sites
with minimum energy. The charge carrier transport mechanism is produced when the carriers
acquire enough energy to overcome the energy barrier needed to jump to the nearest neighbour site.
From the above assumptions and employing a continuous time random walk approximation [53], Dyre
has derived the following equation for the ac conductivity in disorder solids [41]
JorT,
In(1 + jor,)| @)

O (@) = Oy,

where 1. is the time involved in overcoming the highest barrier that determines the conductivity and
64 the dc conductivity. This model has been found to be in agreement with experimental data for a
large number of disordered solids [40,41]. Taking into account that (1+ jwt,) = (1+

w?T2)1/2gjarctan(we) fherea] and imaginary components of ¢* are given by
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Fig. 9(a) and (b) shows the temperature dependence of the 6, and T, parameters obtained from
the fits to Eq. (5a). This dependence is Arrhenius like and the obtained activation energies are between
64 and 68 kJ-mol! (see values in Table 1). These values are in agreement with the one evaluated
from the o, obtained from the plateau in Fig. 4(b).



Moreover, the plot cdc vs. Te “'proves howwell the BNN relationship [54-56] is fulfilled by
the data independently of the cell content (see Fig. 9(c)). This behaviour suggests that both, dc
conductivity and ac conductivity are based on the same mechanism of charge transport.

4, Conclusions

This work is mainly focused on the electrical properties of a series of NR matrix loaded with
different amounts of cell nanoparticles. The DS technique was employed to study the cell nanoparticles
and water con- tent effect on the nanocomposite conductivity behaviour.

It was found that interactions between the cell particles and the NR matrix slightly influence
the electrical conductivity of the NR—cell nanocomposites.

Wet nanocomposites present higher conductivity than NRO, and be- come more conductive as
the cell content rises, due to the increase of water and polar groups in the samples. In addition, the
charge carriers blocked at interfaces due to the MWS effects increases with the cell content due to the
rise of internal interfaces. Accordingly, we observe a slight increase of the dielectric permittivity at
room temperature, while larger increases are observed at higher temperatures, as expected.

As well as for the wet samples, MWS and EP processes are observed in the dry nanocomposites
and the samples also present higher conductivity than NRO. In the dry samples, the conductivity
increases until 15 phr is reached and then becomes more or less constant. According to our results,
the conductivity of the nanocomposites is limited by the conductivity of the NR matrix in both, wet
and dry samples and the contribution of cell conductivity is not enough to modify the insulating
behaviour of these materials. For dry nanocomposites, the dc conductivity values, 6dc, were used to
obtain the activation energy for the o-process. The reduction of inter-particle separation by increasing
the volume fraction of the cell phase results in a decrease of the corresponding values of the activation
energy. This is also supported by the obtained s and ¢ values for the Jonscher and scaling ansatz
equations, which are an indication that there is no physical contact between the cell particles inside the
NR matrix, thus hindering the electron tunnelling mechanism.

Cell nanoparticles maintain the inherent good dynamic properties of NR. Consequently, there
is potential for this filler to provide loaded NR compounds having good processing and physical
properties, without sacrificing the insulating properties in applications where the lowest possible
level of conductivity is desired. These findings may be useful as a guideline for the development of
rubber compounds for engineering purposes with required performance.
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