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A B S T R A C T

Compressed reinforcements on reinforced concrete (RC) and steel fibre reinforced concrete (SFRC) columns
are generally submitted to cyclic and monotonic loading, which can buckle. This phenomenon can cause the
reduction of both ductility and peak loads, which is why design standards propose constructive details to avoid
this. Although the bibliography mentions that steel fibres in concrete can delay buckling of reinforcements,
design codes do not distinguish between concrete types (with and without fibres) in these constructive details.
Analytical models that determine the length and critical buckling stress of reinforcements may consider this
effect. Nowadays, analytical models can be classified as discrete and distributed depending on whether they
consider transverse reinforcement stiffness and the stiffness of the concrete cover that concentrates on trans-
verse reinforcements, or if they are distributed along the element, respectively. Both discrete and distributed
models are valid for small transverse reinforcement separations, while distributed models that only consider
the concrete cover effect are valid for large transverse reinforcement separations.

This paper proposes a mixed model to determine critical buckling loads of compressed reinforcements
subjected to monotonic loading to use the stress-strain relationships of reinforcing bars, including buckling,
that are found in the scientific-technical literature. This model considers transverse reinforcements discretely
and concrete cover distributedly. The model can be applied to any transverse reinforcement configuration,
and to any concrete type (with or without fibres). An analytical equation is also proposed to determine critical
compressed reinforcement loads, whose result is presented as abaci. Finally, to calibrate the model in nor-
mal-strength concrete columns under eccentric loading, with or without fibres, a programme is presented in
which the critical load of longitudinal reinforcements is experimentally determined. The proposed analytical
model is calibrated and a procedure to determine critical buckling loads of compressed reinforcements under
monotonic loading is proposed.

© 2017.

1. Introduction

Longitudinal reinforcements can buckle in columns subject to mo-
notonic and cyclic loading on reinforced concrete (RC) and steel fi-
bre reinforced concrete (SFRC) elements. This effect drastically re-
duces the expected ductility. This may be due to an insufficient quan-
tity of or incorrectly arranged transverse reinforcement, or to the con-
crete cover degrading. In order to avoid reinforcements from buckling,
structure codes (EHE-08 [1], EN 1998-1:2004 [2], EN 1998-2:2005
[3], ACI 318-14 [4]) propose relations between the diameters of trans-
verse and longitudinal reinforcements, and the maximum separations
of transverse reinforcements. However, these codes do not bear in
mind the favourable effect of steel fibres (Caballero et al. [5], Ca-
ballero et al. [6], Paultre et al. [7]). This effect can be considered

⁎ Corresponding author.
Email addresses: japebar@upv.es (J. Pereiro-Barceló); jlbonet@cst.upv.es (J.L.
Bonet)

in analytical models to determine the load and critical length of buck-
ling.

Nowadays, analytical models are classified as discrete and dis-
tributed (Table 1) depending on how they consider the transverse re-
inforcement and/or concrete cover. The models that only consider
transverse reinforcements discretely (Papia et al. [8] and Dhakal and
Maekawa [9]) generally obtain a lower critical load rate. Discrete and
distributed models are valid for small transverse reinforcement sepa-
rations, and only distributed models that consider concrete cover are
valid for large separations. Consequently, no analytical model is valid
for intermediate separations.

It is worth indicating that only the models of Dhakal [10] and Cam-
pione [11] have contemplated the contribution of steel fibres to con-
crete covers. Concrete with fibres confers greater ductility to elements
as the strain at peak stress increases considerably, and the softening
branch delays cover spalling. Therefore, their use improves how the
element behaves under cyclic loading. Nonetheless, Dhakal [10] does
not consider the progressive loss of concrete cover stiffness, which re-
sults in overestimating buckling stress.

http://dx.doi.org/10.1016/j.engstruct.2017.07.026
0141-0296/© 2017.
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Table 1
Authors who have studied local compressed passive reinforcement buckling.

Authors What the model considers
Concrete with
fibres

Transverse
reinforcement Concrete cover

Discrete Distributed Discrete Distributed

Bresler and Gilbert
[18]

x No

Scribner [19] x No
Pantazopoulou [32] x No
Dhakal and
Maekawa [9]

x No

Dhakal [10] x x Yes
Campione [11] x x Yes
Taalat [21] x No
Papia et al. [8] x No

Several researchers have carried out experimental tests on com-
pressed passive reinforcement buckling. Of all these tests, the only
ones that provide data about buckling bar stresses and strains are tests
on isolated bars (Mander [12], Mander [13], Monti and Nuti [14], Ro-
driguez et al. [15], Bayrak and Sheikh [16], Bae et al. [17]). Other au-
thors have analysed local reinforcement buckling on reinforced con-
crete elements (Bresler and Gilbert [18], Scribner [19]) did not directly
measure buckling strain on bars. During these tests, the critical buck-
ling stress or strain was obtained by indirect methods, and/or observa-
tions were made about how many transverse reinforcements were in-
volved when the tests ended.

The scientific literature shows there are no analytical models avail-
able that assess compressed reinforcement buckling that consider:
transverse reinforcements discretely, concrete cover (with/without fi-
bres) distributedly and for any transverse reinforcement separation.
Since no experimental tests have been done that offer critical buckling
stresses or strains of passive longitudinal reinforcements inserted into
a concrete section, it is necessary to undertake an experimental cam-
paign for this purpose using concretes with and without fibres in order
to calibrate the analytical model proposed herein.

2. Research significance

The objective of this paper is to propose a mixed analytical model
to determine the critical buckling load of compressed reinforcements
in RC and SFRC elements, subject to monotonic loading for any trans-
verse reinforcement distribution and separation, and for reinforced
concrete elements either with or without fibres. This model consid-
ers transverse reinforcements discretely and concrete covers distribut-
edly. As a result of applying the model, an analytical equation is pro-
posed to calculate critical buckling loads. The results of the model are
also shown as abaci. As there is a gap of experimental results to deter-
mine critical buckling loads on compressed bars, an experimental pro-
gramme with NSC columns (with/without fibres) is proposed to cali-
brate the proposed analytical model. A procedure is proposed to deter-
mine critical buckling loads by taking the proposed mixed analytical
model as a reference.

3. Proposed analytical model

To determine the critical load, the bifurcation approach is used
(Chen and Lui [20]). An equilibrium equation at the deflected shape
is formulated by the classical column theory. The assumptions made

are:

1. The column is perfectly straight
2. The axial load is applied along the centroidal axis of the column
3. Plane sections before applying strain remained plane after applying

strain
4. Member deflection is due only to bending
5. The material obeys Hooke’s Law (stress and strain are linearly re-

lated)
6. Member deflection is small. As a result, the curvature can be ap-

proached by the second derivative of lateral displacement
The proposed model is based on Papia et al. [8]. It considers trans-

verse reinforcements discretely and is extended so that it contemplates
the concrete cover distributedly.

3.1. General model description

Fig. 1 shows the forces that act on a bar at its deflected shape along
the length of the region that involves instability L. These forces are:
discrete forces caused by transverse reinforcement (Fi); distributed
force due to concrete reinforcement (Fc); axial bar force (P); bending
moment on ends (M0).

If the number of transverse reinforcements along length L is even,
segments j will fall between 0 and 2n (Fig. 1(a)). If the number of
transverse reinforcements is odd, segments j will fall between 0 and
2n − 1 (Fig. 1(b)). The separation between transverse reinforcements
is s. The y-z axes are the global bar axes, while x is the local axis of
each segment j. The forces generated by both transverse reinforcement
(Fi) and concrete cover (Fc), depend on the deflected shape of buck-
led compressed bar. Transverse reinforcement can be represented as
intermediate unilateral elastic supports, whose stiffness is αs. Conse-
quently, force Fi is obtained as a product of stiffness αs by the dis-
placement on elastic support . The number of supports n0 in
the instability zone is 2n if the number of transverse reinforcements is
even, and 2n − 1 if it is odd. The cover is modelled as an element with
distributed stiffness (αc) along length L. It was hypothesised that the
stiffness of the transverse reinforcements was equal for them all, and
that the distributed stiffness of the cover was constant along length L.

3.2. Analytical consideration

For each segment j the equilibrium equation at the deflected shape
is:

where:

Er: the reduced elasticity module of the longitudinal reinforcement
(Fig. 2) on the circular section proposed by Papia et al. [8]

where:

Es: the compressed elasticity module

(1)

(2)



UN
CO

RR
EC

TE
D

PR
OOF

Engineering Structures xxx (2017) xxx-xxx 3

Fig. 1. Analysis model: (a) Even number of transverse reinforcements: j between 0 and 2n, (b) Odd number of transverse reinforcements: j between 0 and 2n − 1.

Fig. 2. The instability situation of reinforcing bars: (a) The stress- strain diagram, (b) The diagram illustrating the stresses and strains of the cross section of the compressed bar.

Eh: the tangent module of the plastic branch in the compressed
stress-strain diagram
θ0: the neutral fibre position on the polar coordinates obtained from
the following implicit equation:

: the shape function to determine Er on the circular sections to
position the neutral fibre θ0.

: coordinates of displacement “y” of segment j according to x
P: axial force applied to bar ends
I: inertia moment of the longitudinal bar

(3)

(4)
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M0: bending moment of the built-in bar ends in the region that in-
volves instability

: bending moment due to the lateral loads generated by the
transverse reinforcement at any point x of a segment j

: bending moment due to the lateral loads generated by the con-
crete cover at any point x of a segment j

Eq. (1) is a second-order differential equation with constant coef-
ficients. As the problem presents symmetry (Fig. 3), deflected shape

of each segment j is obtained from solving a system with n + 1
differential equations if number n0 is even and with n differential
equations if n0 is odd.The equation of according to Fig. 3 is as
follows:

where:

: Kronecker delta whose value is 1 if a = b and 0 if a ≠ b
q: it is 0 if n0 is even and 0.5 if n0 is odd
μ: factor between 0 and 1.

: global coordinates of position x on local axes in a segment j:

To obtain the equation of , it is assumed that the lateral
force caused by the concrete cover distributed along length L is cu-
bic-shaped . This implies that the deflected shape can also be cu-
bic-shaped. This hypothesis is justified by:

– The deflected shape caused by discrete loads (transverse reinforce-
ment) on a fixed-fixed column is a third-degree polynomial

– According to Taalat [21] and Campione [11], the deflected shape
of the bar comes as where δ is the
maximum bar displacement by only assuming a distributed lateral
force due to the concrete cover and/or transverse reinforcement. In
the buckling case, r equalled 1 and this equation can be quite accu-
rately approached to a third-degree polynomial.

– Bearing in mind the two previous sections, that material behaviour
is linear, transverse reinforcement is modelled as discrete loads and
the concrete cover is modelled as a distributed load, the deflected
shape that causes both load distributions will be cubic.

The contour conditions of function are:

where:

zn: coordinate z of force Fn equals if n0 is even and
equals L/2 if n0 is odd.

Consequently, the equation of at point x of a segment j is
obtained from the following equation:

where:

Fig. 3. Simplification by symmetry of the problem: (a) Even number n0 of transverse reinforcements, (b) Odd number n0 of transverse reinforcements.

(5)

(6)

(7)

(8)
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: the equivalent discrete force caused by the distributed force
due to the concrete cover in segment j, between position
and z = L/2.

: the equivalent discrete force caused by the distributed force
due to the concrete cover in segment j, between position z = 0 and

.

: the centre of gravity of equivalent discrete force
compared to position z = 0.

By applying the hypothesis that can approach a third-degree
polynomial, it entails the direct solution of the differential equations
system, and it is possible to approach with sufficient accu-
racy. If greater accuracy is required, a solution must be considered by
successive iterations and by updating displacement from the dis-
placements obtained from the previous iteration.The solution of
differential Eq. (1) for each segment j is:

where:

Aj,Bj: the constants for each segment j.
β:

The values of constants Aj and Bj are obtained from the compati-
bility equations (13), if n0 is even and (14) if n0 is odd, among the dis-
placements in each segment j.

After determining constants Aj and Bj for each segment j, it is known
that displacement expressed in relation to the n unknown reac-
tions Fj and to unknown bending moment M0 acts at the built-in end.
To obtain forces Fj and moment M0, for each intermediate support j of
the model (Fig. 3), condition (15) is applied for all the elastic supports
(from j = 1 to n), and the symmetry condition is also applied (16).

The n + 1 conditions ((15) and (16)) can be expressed according to
transverse reinforcement separations s, and parameters β (17), γ (18)
and kcs (19). These n + 1 conditions make up a homogeneous system
(20).

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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3.3. Solving the problem

According to the followed method to solve the differential equa-
tions system (20) proposed by Papia et al. [8] to analyse the instability
of compressed bars on RC columns, reactions Fj and bending moment
M0 are calculated. Eq. (20) makes up a homogeneous equations sys-
tem. To find a different solution to the trivial one, the determinant of
matrixM ( ) must be null.

As Papia et al. indicated [8], presence of a concrete core renders
taking into consideration only the deflection shape of a symmetric
type necessary. Consequently:

Values β,γ and kcs must fulfil condition (21). Once β and kcs are known
(kcs = 0 from the case indicated in Papia et al. [8]), the maximum γ
value is obtained for the limit condition of inverting the sign of the
curvature at the built-in end. For this particular situation, the value of
unknown quantity M0 is null. This condition (M0 = 0) is fulfilled by
eliminating the row and column n + 1 from the equations system (20).
The resulting equations system has unknown D quantities Fj and is
homogeneous. Once again, in order to find a different solution to the
trivial one, minor D1 of order n of matrixM has to be null.

Consequently, knowing the length L where the instability of longi-
tudinal bars takes place and parameter kcs, which related cover stiff-
ness αc and transverse reinforcement stiffness αs, the limit values of
γ and β are obtained by imposing the condition of both determinant
D = 0 and minor D1 = 0. In both determinants (and D1), separation s is
the common factor. Consequently, they depend exclusively on β,γ and
kcs.Finally, a change in the variable regarding parameter β is made to
obtain the adimensional critical load.

where:

P0: critical load of the bar hinged between two consecutive supports
Pc: critical load on the bar

Fig. 4 shows the scheme of the followed procedure to obtain the
limit values of γ and β when relation η and parameter kcs are known.
Relation η is linked to length L and transverse reinforcement separa-
tion s (L = η·s). Fig. 5 shows abaci that provide adimensional critical
load cc according to parameters γ (18) and kcs (19). The range of η in
abaci is: η = 0.3 to η = 5. When η?1, the longitudinal reinforcement
buckles between the transverse reinforcement and is considered a sin-
gle segment (j = 0). In the opposite case (η > 1), some transverse rein-
forcement is involved in instability zone L.

With the results obtained after applying the procedure illustrated in
Fig. 4, a least-squares fit is done which allows Eqs. ((23)–(25)) to be
proposed to calculate adimensional critical load cc. The kcs values em-
ployed for this purpose fell between 0 and 30.

Fig. 4. Flow chart to solve the differential equations systems at the deflected shape.

(19)

(20)

(21)

(22)
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Fig. 5. Abaci to determine the adimensional critical load: (a) γ?100; (b) γ?100.

In the usual case of not contemplating the concrete cover (kcs = 0
), Eq. (23) is considered with determination coefficient R′2 = 0.99.
For 0 < kcs < 30, two equations are proposed to improve accuracy:
one for the curves below the line of η = 1.4 and another for those
positioned above the line. The equation of this line is:

. The average of the co-
efficient R2 values, for each curve where kcs is constant, is 0.99. For
any kcs values over 30, it is possible to rule out the influence of trans-
verse reinforcements. In this case, a method is followed based on min-
imising energy to calculate the critical load (Talaat and Mosalam [21],
Campione [11]). The adimensional critical load obtained from this
method is offered in Eq. (26).

where:

(23)

(24)
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where:

3.4. Transverse reinforcement stiffness

To calculate adimensional critical axial load cc, it is necessary to
know transverse reinforcement stiffness αs and concrete cover stiff-
ness αc. Concrete cover stiffness αc depends on the concrete type. This
stiffness must be calibrated using experimental data.

According to Papia et al. [8], transverse reinforcement stiffness αs
is calculated by the following equation:

where:

Esw: the tangent elasticity module of the transverse reinforcement
Asw: the transverse reinforcement area
Lef: the effective transverse reinforcement length, a function of the re-
inforced configuration and load type (concentric or eccentric)

Elasticity module Esw,which is considered in the stiffness αs cal-
culation, depends on whether the transverse reinforcement is yielded
or not. So, it is necessary to know the transverse reinforcement strain
that occurs as a result of the transverse concrete expansion. This strain
is related with the longitudinal strain through the dilatancy parameter
(Khajeh and Attard [22], Lokuge et al. [23], Montoya et al. [24], Oso-
rio et al. [25]).

Parameter Lef of Eq. (27) varies according to the arrangement of
transverse reinforcements and the type loading (concentric or eccen-
tric). Fig. 6 shows various transverse reinforcement configurations and
the equation Lef, where transverse reinforcement bending stiffness is
ruled out.

4. Comparing the proposed model with other models

This section compares the results obtained by applying the model
proposed herein with the results of applying the analytical models,
both discrete and continuous, proposed by Papia et al. [8], Talaat and
Mosalam [21] and Campione [11].

Fig. 7(a) represents an example of critical buckling stress of com-
pressed passive reinforcements according to separation s among the
transverse reinforcements for a 20 × 20 cm cross section with four
12 mm-diameter longitudinal reinforcements and 6 mm-diameter

Fig. 6. Effective lengths of stirrups with the usual configurations: (a.1) Corner bars for concentric loading (Papia et al. [8]), (a.2) Corner bars for eccentric loading (b.1) Middle bars
for concentric loading (Papia et al. [8]), (b.2) Middle bars for eccentric loading.

(25)

(26)

(27)
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Fig. 7. Critical stress–transverse reinforcements separation according to several meth-
ods: (a) Stirrups in post-yield branch, (b) Stirrups in elastic branch.

transverse reinforcements. The employed mechanical parameters are:
αs = 0.236 N/mm, αc = 0.211 MPa, Er = 6263.9 MPa.

For separations of more than 30 cm, the proposed model coin-
cides with the distributed model when only concrete cover stiffness
is considered (zone C in Fig. 7(a)). This is because the longitudi-
nal reinforcement buckles between transverse reinforcements and the
transverse reinforcement has no effect. Conversely, when the separa-
tion among transverse reinforcements comes close to zero, the pro-
posed model coincides with those that consider the transverse rein-
forcement as both discrete and distributed forms (zone A in Fig. 7(a)).
There are two reasons for this: the cover no longer had a main effect
and the small transverse reinforcement separation (s ≈ 5 cm) allows
the distributed transverse reinforcements hypothesis to be considered.
However, when the separations among transverse reinforcements do
not coincide with former cases, the models that consider distributed
transverse reinforcements overestimate the critical buckling stress,
while those that contemplate only the concrete cover underestimate

this (zone B in Fig. 7(a)). The model of Papia et al. [8] offers a lower
critical stress rate by assuming that kcs = 0.

The employed value of αs supposes that the stirrups are yielded. In
the case that the stirrups are not yielded ( ) Fig. 7(b)
is obtained. In this figure the same methods used in the Fig. 7(a) are
represented. On the one hand, the energetic approaches (Talaat and
Mosalam [21] and Campione [11]), which consider the stirrups dis-
tributedly along the buckling length, proportionate very high values of
buckling stress. This is due to the fact that the elastic stiffness αs is
very high. On the contrary, the buckling stress with the Papia and the
proposed method (both of them coincide because of kcs≈0 if concrete
cover is degraded and stirrups are in elastic range) is quite lower than
in the previous cases. This is why stirrups are considered discretely
in these models and, consequently, the reinforcement can buckle be-
tween the stirrups or barely deforming them if buckling length is little
higher than stirrups separation.

5. Comparing the proposed model with the experimental results

An experimental programme was run to study the local instability
of the compressed bars in the RC columns under eccentric loading,
manufactured in conventional concrete (with and without fibres) and
to calibrate the proposed analytical model, specifically for cover stiff-
ness αc.

5.1. Specimens

Nine eccentrically loaded RC columns (known as
dog-bone-shaped) are tested under eccentric loading. The geometry
and details of the reinforcement arrangement are provided in Fig. 8.
Two plaques are screwed into the ends of the column. Each plaque
has a groove. The load is applied through the knife edges seated in
these grooves. The boundary conditions at the ends are both hinges
and the eccentricity of 0.10 m are equal and of the same sign. The free
length among hinges is 1.39 m. The test is designed so that the col-
umn achieves failure by the concrete with no high plastic strain de-
veloping in the tensioned reinforcement. This is why the longitudinal
reinforcement is not symmetrical to the bending axis. The longitudinal
reinforcements are 12 mm and 16 mm in diameter on the compressed
and the tensioned face, respectively. With this asymmetrical longitu-
dinal reinforcement configuration, the compressed longitudinal rein-
forcement is able to reach high compression strains without the ten-
sioned reinforcement undergoes remarkable plastic deformations. In
this way, it is assured that the buckling is produced. The cross section
is square (0.20 × 0.20 m) at the centre of the column.

The main purpose of these tests is to investigate the effects of the
transverse reinforcement separation (0.05, 0.10, 0.30 m) and the steel
fibre content in the concrete mass (0, 40 and 80 kg/m3) on the NSC
column, whose average strength is 25 MPa.

Therefore, the following three s/db ratios were considered: 4.16,
8.33 and 25, where db is the diameter of compressed longitudinal re-
inforcement (12 mm) and s is the transverse reinforcement separation
(0.05, 0.10, 0.30 m). The ratio s/db = 4.16 is lower than the maximum
ratio given by EN 1998-1:2004 [2] for high ductility columns (DCH)
or by ACI 318R-14 [4] for special frames, which is in both codes
s/db = 6. The ratio s/db = 8.33 is approximately equal to the ratio pro-
posed by EN 1998-1:2004 [2] for medium ductility columns or by
ACI 318R-14 [4] for columns of ordinary frames, which is in both
codes s/db = 8. Finally, the ratio s/db = 25 is higher than the ratio of
EN 1992-1:2004 [26], EN 1998-1:2004 [2] and ACI-318 [4] codes,
whose maximum value is s/db = 20. The objective of this last case is
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Fig. 8. Details and arrangement of specimens: (a) The outer configuration in tests, (b) Scheme of the reinforcement arrangement (rates in mm).

to analyze how fibre reinforced concrete is able to delay the com-
pressed reinforcement buckling when buckling happens between two
stirrups, with a high transverse reinforcement separation.

Table 3 offers details of the nine columns included in the experi-
mental programme. Specimens are denoted as: C25FxSy, where “x”
indicates fibre content (0, 40 and 80 kg/m3) and “y” denotes transverse
reinforcement separation (5, 10 and 30 cm).

Specimens are made horizontally on a vibrator table, are un-
moulded 24 h after concreting, are placed in a humid atmosphere to
minimise retraction effects, and are placed horizontally. All the spec-
imens are tested 28 days after being produced. Strength to the con-
crete compression of each column is obtained as the average of three
cylindrical control specimens that measure 150 × 300 mm (UNE-EN
12390-3 [27]).

5.2. Material characterisation

To manufacture concrete, a commercial product is used:
Sikacrete®-08 SCC. This material is a self-compacting concrete
whose measured strength is 25 MPa and its slump flow is 670 mm.
The steel fibres used are DRAMIX 80/30 BP, 30 mm long with a slen-
derness of 80, a tensile strength of 3070 MPa and an elasticity module
of 200 GPa.

A prismatic control specimen is manufactured for each element,
which measure 550 × 150 × 500 mm, to determine the residual flex-
ural tensile strength according to standard UNE EN 14651:2007 [28].
Table 2 presents the results obtained with the control standard of the
materials, where fcm is the average compressive strength of concrete
(UNE-EN 12390-3 [27]), Ec is the elasticity module of concrete, εc85
is the strain that corresponds to a stress of 0.85 fcm denoted after a
peak load (measured on the softening branch), fLOP is the proportion-
ality limit, fR,1, fR,2, fR,3 and fR,4 are the residual tensile strengths corre-
sponding to Crack Mouth Opening Displacement (CMOD) of 0.5, 1.5,
2.5 and 3.5 mm, respectively, in the flexural tensile strength test (UNE
EN 14651:2007 [28]).

Table 2
Mechanical characteristics of concrete.

Specimen
fcm
(MPa)

Ec
(MPa)

εc85
(‰)

fLOP
(MPa)

fR,1
(MPa)

fR,2
(MPa)

fR,3
(MPa)

fR,4
(MPa)

C25F00S30 28.25 26,584 4.4 – – – – –
C25F00S10 24.17 25,200 4.8 – – – – –
C25F00S05 23.16 25,131 3.8 – – – – –
C25F40S30 21.56 23,435 – 1.78 2.1 2.18 1.87 1.43
C25F40S10 24.56 23,897 – 1.87 2.19 2.08 1.77 1.43
C25F40S05 25.25 24,249 – 1.91 2.39 1.97 1.66 1.54
C25F80S30 25.52 24,225 – 3.60 4.91 5.45 5.17 3.57
C25F80S10 29.16 26,300 – 3.72 4.95 5.6 5.21 3.66
C25F80S05 20.89 22,690 – 3.47 4.71 5.7 5.29 3.43

Steel of quality B500SD (EHE-08 (2008)) and class C
(EN1992-1-1:2004 is employed [26]). The characterisation test results
in the longitudinal and transverse reinforcement tensile tests (UNE
EN-10002-1 [29]) are shown in Fig. 9(a), where fy, εy, fsh, εsh, fsmax,
εsmax, Es, are the yield stress, the strain that corresponds to the yield
stress, the stress at which the hardening branch begins, the stress
associated with εsh, the maximum stress, the strain associated with
the maximum stress and the elasticity modulus, respectively. In the
12-mm reinforcements, the compression characteristics are obtained
by following the procedure used by Dodd and Restrepo-Posada [30]
(Fig. 9(b)).

5.3. Instrumentation

On each column, strain gauges are arranged on both the longitu-
dinal and transverse reinforcements, and on the compressed face of
the concrete (Fig. 10). The gauges placed on compressed and ten-
sioned reinforcements are arranged equidistantly among stirrups in
three sections (the central ones). The gauges of the concrete com-
pressed area are arranged only in the midspan section. To avoid the
local effect of bar curvature, gauges have to be arranged perpen-
dicularly to the bending axis (on the lateral bar faces). Nonetheless,
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Fig. 9. Mechanical properties of reinforcements: (a) Stress-strain behaviour of steel re-
inforcements, (b) Tensioned and compressed constitutive curve of the 12 mm diameter
longitudinal reinforcements.

Fig. 10. Strain gauge layout.

to be able to detect the change in the compressed bar curvature un-
der local buckling, the gauge is placed in parallel to the bending axis
and on the side of the cover. As it is well-known, strains grow with
the applied load in an eccentric load test through growing displace-
ments (Fig. 11, point a). When the peak load is reached, a plastic hinge

forms. On the softening branch in the load-strain diagram, despite the
load diminishing, the strains in the critical section keep increasing be-
cause displacement grows. As a result, the strain of the compressed re-
inforcement located in the yielding zone increases throughout the test
(Fig. 11, point b), provided that the neutral fibre of the section is be-
low it. If the compressed reinforcement undergoes local buckling, the
compression gauge detects any increased tensile strain (Fig. 11, point
c), and can lead to tensile strain due to an excess change in the curva-
ture, although the reinforcement is placed in the compression area of
the section (Fig. 11, point d).

Five linear voltage displacement transductors (LVDTs) are placed
at 0, 325, 675, 1025 and 1350 mm from the lower specimen end. A
synchronised recording system is used to assign the corresponding ap-
plied load to each photogram. As strain gauges are arranged on the
compressed bars, in order to capture buckling and not the average
strain, the bar strain in the buckling area is obtained from both the ten-
sioned bar and the position of the neutral fibre obtained by analysing
photographs.

5.4. Test set up

A 2500 kN hydraulic actuator is employed. A test is performed
with displacement control in the midspan section at a speed of
0.2 ± 0.05 mm/min.

6. Results and discussion

Fig. 12 shows the diagram that relates the normalised vertical load
(ν = N/(Acfc), where N is the load applied by the hydraulic actuator, Ac
is the gross area of section and fcm is the average strength to compres-
sion) with longitudinal reinforcement strain (εl) in the zone where in-
stability of compressed bars occurred. Fig. 13 shows the normalised
vertical load (ν) – normalised displacement diagrams (Δ/Ltot, where Δ
is the displacement in the midspan and Ltot is the distance among the
hinges of the load). The point where compressed reinforcement buck-
led is marked in Fig. 13. The results are grouped according to the fibre
content in the concrete mass. Table 3 provides the experimental results
of the peak load and of the instability situation of compressed bars.

As expected, the peak load capacity of the columns increased
slightly when fibre content increased and when the stirrups separa-
tion reduced due to increased confinement. Regarding the post-peak
branch slope, the smaller the separation among stirrups, the lower the
absolute value of this slope became. The absolute value of the soften-
ing branch slope also lowered with fibre content.

Fig. 14 depicts the cracking patterns of the specimens. In all cases,
the cracking on the visible tension area began to take place at the stir-
rups level. With the plain concrete, two large cracks formed in the ten-
sion area when the compression zone was damaged and a plastic hinge
formed. For concretes with fibres, the crack width was smaller with
fibre content and the number of cracks increased, which formed more
distributed cracking. The cracking in the compressed zone was longi-
tudinal and more distributed when fibre content increased. When these
cracks were noticeable, the plastic hinge began to form and cracks
opened more widely as rotation increased.

From the strain (εcrit) results and the critical buckling stress (σcrit)
results (Table 3), which stemmed from the stress-strain ratio under
compression (Fig. 9(b)), differences in behaviour between the con-
cretes with and without steel fibres were found. For the plain con-
crete, compressed reinforcement buckling took place after concrete
cover spalling. This situation occurred approximately when the com-
pressed reinforcement strain was εc85 (the strain that corresponded to
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Fig. 11. Methodology proposed to detect buckling on the compressed bar.

a stress 0.85·fc after the peak load) (Table 2). Campione also reached
this conclusion [31]. Given this situation, the transverse reinforcement
itself would be able to avoid the compressed reinforcement strain.
If transverse reinforcement stiffness was insufficient, buckling would
occur along with cover spalling (C25F00S30 and C25F00S10). If it
was sufficient, however, reinforcement buckling would not occur si-
multaneously with cover spalling. Thus with specimen C25F00S05,
whose stirrups separation was 5 cm, critical strain was much greater
than εc85 because the transverse reinforcement prevented buckling
from happening simultaneously with cover spalling.

For the concrete with steel fibres, the fact that the concrete mass
had fibres increased the strain at which the reinforcement buckled
(Table 3). Similar behaviour occurred between the pairs of speci-
mens whose transverse reinforcement separation was 10 cm and 30
cm (C25F40S10-C25F40S30 and C25F80S10-C25F80S30) because
the reinforcement among stirrups buckled in both cases. The buckling
strain increased between these pairs when the fibre content in con-
crete was higher. The specimens with a transverse reinforcement sep-
aration of 5 cm (C25F40S05-C25F80S05) underwent greater strains
(εcrit) than those with αc separations of 10 cm and 30 cm because the
stiffness of stirrups was greater.

All the specimens with transverse reinforcement separations of 5
cm underwent similar εcrit strains, regardless of them having fibres or
not. In such cases, this was justified by the transverse reinforcement
being capable of restraining buckling, even when the concrete cover
spalled (plain concrete) or proved ineffective for high degradation sit-
uations (concrete with fibres).

6.1. Concrete cover stiffness αc calibration

According to the experimental results, with the plain concrete ele-
ments, stiffness of calibration was not necessary because compressed
reinforcement buckling took place after concrete cover spalling had
occurred. Consequently, αc = 0 (kcs = 0) was used to assess critical
buckling stress (23) in the plain concrete elements.

However, with the elements made in concrete with steel fibres,
the stiffness of concrete cover αc had to be considered. As the tests
showed, stiffness αc depended on the level of strain and, consequently,
on the degradation of the cover. The αc value was obtained from the
results of both the experiments and the proposed analytical model
((24)–(26)). Fig. 15 illustrates the stiffness of cover αc that corre-
sponded to the instability of bars. A value of was deter-
mined, irrespectively of fR,1.

Fig. 15 also shows the relation between the compressed bar strain
in the instability situation (εcrit,η≤1) and strength fR,1 for only the cases
of 10 cm and 30 cm stirrups separations, where η?1 (the reinforcement
bucked among stirrups). Therefore, εcrit,η?1 is the buckling strain of the
compressed steel reinforcements that buckle between the stirrups. It is
the strain of the longitudinal reinforcement buckling of the specimens
where only the concrete cover stiffness αc contains the buckling until it
is finally produced due to the concrete cover degradation. The follow-
ing Eq. (28) is proposed based on experimental results, where εcrit,η≤1
is expressed as ‰ and fR,1 in MPa.

Longitudinal reinforcement strain εcrit,η≤1 was a limit strain for which
the αc value was known ( ) since η?1 (only the cover con-
tained buckling). Having exceeded strain εcrit,η≤1, was
obtained because the cover presented greater degradation. So αc = 0
was taken for security reasons.

Finally, when stirrup separations were 5 cm, and where η > 1 (re-
inforcement buckling involved a longer length than the separation
among stirrups), the critical strain that reached εcrit did not only de-
pend on concrete with a fibre content, but also on the stiffness of stir-
rups αs. In these cases, the critical reinforcement strain was greater
than in the cases with bigger separations (εcrit > εcrit,η≤1 (28)), provided
αs sufficed to delay the buckling of strains that exceeded εcrit,η≤1. In
these cases, once again a stiffness of αc = 0 was taken.

6.2. Verification of the model based on the experimental results

By applying the proposed analytical model ((23)–(26)), it was
possible to obtain critical compressed bar stress σcrit, where
σcrit = cc·P0/As and where As was the area of this bar. As Talaat and
Mosalam indicated [21], buckling onset ( is de-
termined when the critical stress–strain line intersect the stress–strain
constitutive behaviour line. This critical line was generated by evalu-
ating σcrit at each axial strain increment (εl). According to the results
in Tables 2 and 3, and also to proposed analytical model, a procedure
was proposed to find both stress and strain on the longitudinal buckled
bar based on successively increasing longitudinal bar strains (εl) until
critical stress (σcrit) equalled the current compressive stress (Fig. 9(b)).
Two methodologies were proposed, one for concrete with fibres and
another for plain concrete, as a result of the different behaviour

(28)
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Fig. 12. Normalised load–axial strain (ν–ε) for columns under eccentric loads, (a) Plain
concrete, (b) With 40 kg/m3, (c) With 80 kg/m3.

observed in the experimental results (Tables 2 and 3).For the plain
concrete, the procedure was as follows:

1. Assume longitudinal reinforcement strain (εl) equalled or was
above εc85.

2. Calculate critical buckling stress (σcrit) with the proposed analyt-
ical model, where αc = 0. As αs depends on the tangent elastic-
ity model of the transverse reinforcement, knowing whether the
yielded state had been reached was necessary. To this end, adopt-
ing a dilatancy criterion was proposed (Khajeh and Attard [22],
Lokuge et al. [23], Montoya et al. [24], Osorio et al. [25]) to
know transverse reinforcement strain (εt) according to longitudi-
nal strain (εl), and to compare it with the yield strain of trans

Fig. 13. Normalised load–normalised displacement (ν–Δ/L) for columns under eccentric
loads, (a) Plain concrete, (b) With 40 kg/m3, (c) With 80 kg/m3.

verse reinforcement (εty). Fig. 16(a) shows that αs had to be used
in each situation.

3a. If , where was the reinforcement stress asso-
ciated with strain εl, then the reinforcement did not buckle. In this
case, the procedure had to be repeated by assuming a greater strain
εl.

3b. When , then the reinforcement buckled. The buck-
ling stress and strain were and εl of the present iteration,
respectively.

The procedure explained above was based on the compressed rein
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Table 3
Results of the experimental campaign and comparison with the proposed model.

Experimental results
Proposed model
results

Peak load
Instability situation of compressed
bars

Instability
situation of
compressed bars

Specimen
Nmax
(kN)

δ
(mm) Nc (kN)

δ
(mm)

εcrit
(‰)

σcrit
(MPa)

εcrit,model
(‰)

σcrit,model
(MPa)

C25F00S30 381.03 7.00 366.52 7.99 4.44 550.34 4.4 550.30
C25F00S10 333.18 7.66 297.63 8.68 4.50 550.41 4.8 550.76
C25F00S05 325.64 4.03 261.78 13.55 10.33 557.18 2.5 516.67
C25F40S30 285.63 5.34 268.18 6.26 9.15 555.81 8.536 555.10
C25F40S10 333.18 5.98 313.18 7.22 8.05 554.53 8.596 555.17
C25F40S05 350.89 8.32 283.46 16.4 14.65 562.19 8.728 555.32
C25F80S30 386.23 6.44 353.77 8.13 9.97 556.76 10.391 557.25
C25F80S10 425.54 6.96 417.00 8.34 10.84 557.77 10.418 557.28
C25F80S05 312.78 7.16 308.01 14.73 12.83 560.08 10.259 557.10

forcement strain and was, therefore, independent of the cover thick-
ness.With the concrete with fibre content, the procedure was as fol-
lows:

1. Assume longitudinal reinforcement strain (εl).
2. Calculate critical buckling stress (σcrit) with the proposed analyt-

ical model. For conventional concrete with steel fibres, the pro-
posed stiffness of αc = 70 MPa was used if εl was below or equals
critical strain εcrit,η≤1. If strain ?l exceeded εcrit,η≤1, then αc = 0.
Fig. 16(b) schematically shows values αc and αs that had to be
used in each situation.

3a. If , then no reinforcement buckling took place. In this
case, the methodology had to be repeated by assuming a greater
strain εl.

3b. When , then reinforcement buckling took place. The
buckling stress and strain were and εl of the current itera-
tion, respectively.

In order to consider the procedure with concretes with fibre con-
tent, the following requirements were: concrete cover thickness had
to be sufficient so that fibres sewed the reinforcement to the concrete
core; concrete residual tensile strengths fR,1 and fR,3 could not be be-
low 40% and 20% of the proportionality limit (fLOP), respectively, for
fibres to have a structural function (EHE-08 [1]).

As with the procedure described for plain concrete, the criterion
based on compressed reinforcement strains was also adopted for con-
cretes with fibres. This procedure did not depend on section width
because in the instability of bars situation, the concrete of the cover
degraded and longitudinal cracking appeared on the compressed face

(Fig. 17).Table 3 compares the results obtained from the proposed pro-
cedure to the experimental results.

It was noteworthy that when both the above-described procedures
were applied on concretes with and without fibres, high sensitivity of
critical buckling stress was observed for minor variations in stirrup
separations in the specimens that had 5 cm stirrup separations.

With all the tested specimens, the buckling strain was always be-
low the strain where steel reached the hardening branch (εsh) (Table
3). Therefore to obtain the results shown in Table 3, reduced module
Er (2) was calculated by bearing in mind Es and Eh, where Es was the
initial elasticity module and Eh was the elasticity module of the plastic
branch prior to hardening (Fig. 9). The reduced elasticity module re-
sult was Er = 4793.5 MPa. The adopted dilatancy criterion was that of
Lokuge et al. [23].

7. Summary and conclusions

This work proposes a mixed analytical model to determine criti-
cal buckling loads in compressed reinforcements in concrete elements.
This model is valid for monotonic loading, any transverse reinforce-
ment distribution and separation, and for elements manufactured in
concrete with or without fibres.Simplified equations are proposed to
determine critical buckling load and the results are provided as abaci.

– The proposed model was calibrated to be applied to NSC columns
with and without fibres under eccentric loading according to the ex-
perimental test results.

– The following conclusions were drawn from the obtained experi-
mental results:

– For columns manufactured without steel fibres, if the reinforcement
strain did not exceed εc085, the reinforcement did not buckle. If it ex-
ceeded ?c085, the concrete cover spalled (αc = 0) and critical buck-
ling stress depended on transverse reinforcement stiffness.
For concretes with fibre content, if the compressed reinforcement

strain was below a limit value (εcrit,η≤1), both concrete cover stiffness
and transverse reinforcement stiffness were taken into account. Oth-
erwise, only transverse reinforcement stiffness was considered (αc = 0
).In all cases, the transverse reinforcement stiffness (αs) varied accord-
ing to whether it was yielded or not.An experimental methodology is
proposed to determine the longitudinal reinforcement buckling stress
and buckling strain.

Finally, a procedure to apply the mixed analytical model is pro-
posed to determine the critical buckling load of conventional con-
crete (with or without fibres) columns under monotonic loading which
considers any possible contribution of the concrete cover. This pro

Fig. 14. Examples of specimen states after the test (a) Plain concrete, (b) With 40 kg/m3, (c) With 80 kg/m3.
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Fig. 15. Compressed bar strain in the instability situation (εcrit,η≤1) – residual tensile
strength fR,1 (left); concrete cover stiffness αc – residual tensile strength fR,1 (right).

cedure was used to verify the proposed model based on the experimen-
tal results.

8. Uncited references
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Fig. 16. Scheme from obtaining αs and αc.
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Fig. 17. The concrete cover division in many zones.
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