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On the local moduli of squareness
by

ANTONIO J. GUIRAO (Murcia)

Abstract. We introduce the notions of pointwise modulus of squareness and local
modulus of squareness of a normed space X. This answers a question of C. Benitez,
K. Przestawski and D. Yost about the definition of a sensible localization of the modulus
of squareness. Geometrical properties of the norm of X (Fréchet smoothness, Gateaux
smoothness, local uniform convexity or strict convexity) are characterized in terms of the
behaviour of these moduli.

1. Introduction. Let us recall the notion of modulus of squareness,
originally defined in |7], where it arose naturally from studying Lipschitz
continuous set-valued functions. Given a normed space X, one observes that
for any =,y € X with |Jy|| < 1 < ||z||, there is a unique z = z(x,y) in the
line segment [z,y] with ||z]] = 1. We put

_ llz= 2@yl
B A

and define £ = {x : [0,1) — [1,00] by
() = sup{w(z,y) : lyl <8 <1 <[z}

It is shown in [7] that for an inner product space, £(5) = &(8) = 1//1 — 32,
and for any normed space containing 11(2), £(58) = &(8) = (1 + B8)/(1 = 5).
The following theorem [1, Theorem O] puts together all the known properties
of this modulus.

THEOREM 1.1. Let X be any normed space, and & its modulus of square-
ness. Then

(a) £(B) =sup{én(B) : M C X, dim M = 2},

(b) & is strictly increasing and convez,
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2 A. J. Guirao

(c) &€ < & everywhere on (0,1), unless X contains arbitrarily close copies
Of l1(2)7

d) & <& almost everywhere on (0,1),

e) &> & everywhere on (0,1), unless X is an inner product space,

£) X is uniformly convez if and only if limg_;(1 — B)£(5) =0,

g) X is uniformly smooth if and only if '(0) =0,

h) £x-(8) = 1/€(1/8) for § € [0,1),

1) if &(B) < 1/(1 = B) for some B, then X has uniformly normal struc-
ture.

P

The proof of these properties can be found in [1, 7| and also some of them
as well as a more geometrical characterization of £ in [9-11].

Observe in particular that the behaviour of £ near 1 is related to convex-
ity, and its behaviour near zero is related to smoothness.

The question of the existence of a sensible localization of the modulus of
squareness was posed in [1]. In order to answer this question we define two
new moduli.

From now on and for the sake of clarity, for any norm one vector x, A > 0
and y with |ly|| < 1, we put

we(Ay) =w((1+N)z,y) and 2z (A y) = 2((1+ A)z,y).
Therefore w; (A, y) = [|[(1 +N)a — zz(\, y)||/A. Moreover, we can deduce that
for y € span{z} and for any A > 0, w;(A\,y) = 1, since z;(A,y) would be z.

DEFINITION 1.2. For any norm one vectors x, y the pointwise modulus
of squareness at x in direction y is the function £x ;= &z, : [0,1) — [1,00)
defined by
fx,y(ﬂ) = Sup{wx()H’)/y) : |7‘ < /87 A > 0}
DEeFINITION 1.3. For any norm one vector x the local modulus of square-
ness at z is the function {x, = &, : [0,1) — [1,00) defined by
£x(0) = sup{wz (A p) : [yl < B, A >0} = Sup {€eu(0)}-
yl|=1
Observe that for any subspace M C X of dimension 2 containing norm

one vectors x, y we have §; , = {0y For § we establish an analogue to
(a) of Theorem 1.1. Indeed,

&:(B) =sup{éno(0) :x € M C X, dim M = 2}.
One can see that for any 3 € [0,1),
§(B) = sup{&(0) : v € Sx} = sup{& () : x,y € Sx}.

We shall show how these moduli are related to various geometrical prop-
erties of the norm of X. In particular, in Section 3 we recall the notions
of Gateaux smoothness and Fréchet smoothness and show that whether or
not a normed space X is Fréchet (resp. Gateaux) smooth depends on the
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behaviour of the local (resp. pointwise) modulus of squareness near zero. In
Section 4 we recall the notions of local uniform convexity and strict con-
vexity and show that whether or not X is locally uniformly (resp. strictly)
convex depends on the behaviour of the local (resp. pointwise) modulus of
squareness near 1. More precisely, we shall establish:

THEOREM 1.4. Let X be a normed space and x a norm one vector. Then

(a) X is Gateauz smooth at x iff & ,(0) =0 for all y with |ly|| = 1.

(b) X is Fréchet smooth at x iff £,(0) = 0.

c 15 strictly convez at x iff limg_,1(1 — z =0 for all y wit
X l ff limg_1(1 — B)&e,y(B) =0 for all h

lyl = 1.
(d) X is locally uniformly convez at x iff limg_1(1 — 3)&(8) =0.

In the following section we focus on the properties of the ratio wy(-,-).

2. Properties of w,()\,y). By a normed space we mean a pair (X, ||-]),
where X is a linear space and || - || is a norm, although we will often write
X instead of (X,||-||). Weset By ={x € X : |jz]| <1} and Sy = {z € X :
Jall = 1}.

The following lemma can be found in [1] as part of the proof that ¢ is
locally Lipschitz continuous.

LEMMA 2.1. Let X be a normed space and x,y € Sx. Then, for any
A>0and 0 < B <y <1,

wa (X, 7y) — we(A, By) < &1(7) — &u(B).

For fixed norm one vectors z, y, the modulus &, , can be expressed in a
simpler way:

PROPOSITION 2.2. Let X be a normed space and x, y two norm one
vectors. Then, for all B € [0,1),

gw,y(ﬁ) = Sup {wr(Aa iﬁy) PA> 0} :

Proof. 1t is enough to show that for any fixed A > 0 and any v < 3 we
have wz (A, BYy) > wz (A, vy). We use the following result which can be found
in [3, 4, 8.

LEMMA 2.3. Let X be a two-dimensional normed space and let K1, Ks
be closed conver subsets of X with nonempty interior. If K1 C Ko then
r(K1) < r(Ks), where r(K;) denotes the length of the circumference of K;,
i=1,2.

This lemma can be applied to the triangles: K; with vertices the origin,
zz(A\,vy) and (1+X)z, and K» with vertices the origin, z; (X, fy) and (1+\)z.



4 A. J. Guirao

Therefore

r(K1) =11+ Nzl + 22 () + 11+ Az — z(A, vy)]

<A+ )zl + llza A Byl + 11+ Az = 22 (A, By)[| = 7(K2).

Simplifying and dividing by A, we obtain the desired inequality. =

PROPOSITION 2.4. Let X be a normed space. If x, y are norm one vectors
and 0 < B <y <1, then
(2.1) Eoy(V) = &ay(B) < &(v) — &(B),
(2'2) gw(’y) - Em(ﬁ) < 51(7) - gl(ﬁ)

In particular, & and & are locally Lipschitz continuous functions.

Proof. From Lemma 2.1 we deduce that w;(\,vy) — &4(8) < &i(v) —
&1(B) and, by Proposition 2.2, we obtain inequality (2.1), taking suprema
over A > 0. Inequality (2.2) follows similarly from (2.1), on taking suprema
over y € Sx. m

Trying to simplify the expression for &, , obtained in Proposition 2.2,
one can study the behaviour of the function wz(+,y) for fixed x € Sx and
y € Bx. The next useful result is evident.

PROPOSITION 2.5. Let X be a normed space and x € Sx. Then
1 <wy(A) :=sup{wz(\,y) 1y € Bx} <1+ 2/A.

We now prove that the limit of the function w; (A, y) when A goes to zero
always exists and we compute it.

Recall that for a normed space X and z,y € X \ {0}, one can define the
right derivative of the norm at x in direction y as the limit

e+ Ayl ==
Mooy = i L 20 el

PROPOSITION 2.6. Let X be any normed space, © € Sx, and y € X with
llyl| < 1. Then

= —yll
1- N—‘r (:Ev y) .

In order to prove this result we need to introduce some notation.

Fix a normed space X, z € Sx and y € Bx with y ¢ span{z}. We denote
by 2’(\) the unique vector which lies in span{z,()\, y)} and on the ray which
starts at = and has direction y, that is,

Z'(A) ={z 4+ py : p > 0} Nspan{z (A, y)}.
We can write 2'(\) = z+u(\)y for some p(A\) > 0. Denote by f a continuous

functional on X satisfying fi(x) = fa(zz(A,y)) = 1. We can also write
zz(Ay) = (L + Nax +v(N)(y — (1 + A)z) for some v(A) € [0, 1].

lim w, (N, y) =
A{%w( Y)
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LEMMA 2.7. Let X be a normed space, x € Sx and y € By such that
y ¢ span{z}. Then

(a) limy\ 0 2z(\,y) = .

(b) limx\ o p(A) = 0.

(¢) limx\o fa(y) = Ny (z,y).

Proof of Lemma 2.7. For (a) it is enough to show that v()\) tends to
zero as A — 0. First, observe that ¢(t) = [|[(1 + Nz + t(y — (1 + N)z)||
is a convex function satisfying ¢(1) = |ly|| and ¢(0) = 1 + A. Therefore
o(t) < (L4+X)+t(]Jly]l = (L + X)) for t € [0, 1]. Secondly, since z, (A, y) € Sx,
we have o(v(X)) =1, that is, 1 < (1+X) +v(A)(||ly|| = (1+X)). Finally, since
v(X) € [0,1], we obtain limy\ o ¥(X) = 0 and (a) is proved.

For (b), observe that z;(\,y) = (1 + A)(1 — v(X))x + v(A)y. Since 2'(N)
lies in span{z;(A,y)}, there exists a(\) € R such that

z+ Ny =2 (A) = a(Nz(\y),
from which a(\) = (1 +A)7}(1 — v()\))~! and then
p(A) = v(A)/[(1+ )1 =v(A)].

Since v(\) converges to 0 as A — 0, (b) is proved.
In order to show (c), observe that, by (b), we have

N pWyll =l )= ]
o) = oy B = oy B
Since z'(A) € span{z}, [|2'(A)[| = fa(2'(A)). Hence, as fi(z) = [z,
_ o HhE) = M@)o s(AY)
Ni(z,y) = lim, 2 ey, A= ;H\%T;) = ;n\a})fx(y)- .

Proof of Proposition 2.6. First of all, if y € span{z} then 1 — Ny (z,y) =
|lz—yl|, and since wy (A, y) = 1, this case is clear. So, assume that y ¢ span{xz}
and consider the unique vector w(\) satisfying the conditions fy(w(\)) =1
and w(A) € {u((1+ XN)z —y) : u > 0}. One can easily see, by comparing
similar triangles, that w, (X, y) = [[w(A)||. Since fy(w(A)) = 1, it is clear that

wA) = (L+ A= @) A+ Nz —y],
that is,

11+ Mz —y]l
we(Ay) = ——————.

R AT

Using the continuity of the norm and item (c) of the previous lemma we
obtain the desired equality. m

REMARK 2.8. However, this last fact does not help to compute &, ,(3),
since the function w,(-,y) is neither convex nor monotonic as the following
example shows.
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EXAMPLE 2.9. For any 0 < ¢ < 1/2, consider in R? the norm defined by
]| = max{(1 — &) 7! [|z]loc, 2|1},

and the vectors © = (1 —¢,0) and y = (¢,1 — ¢). Fix # > 1 — e. Here is the
graph of the function w,(-, By) for ¢ = 0.2 and § = 0.88.

NN
N A O o N NN

ol

3. On differentiability and localized squareness moduli. Through-
out this section X will be a normed space endowed with the norm || - ||. The
collection of support functionals for a norm one vector x is defined as

D(x) ={f e X" :[If =1, f(x) = |l=[| = 1}.

We recall that the modulus of smoothness of a normed space is the func-
tion g : [0,00) — R defined by

o(B) = sup{(llz + Byl + ll= — Byl)/2 = 1 : [|lz]| = llyll = 1}.

Localizations of this modulus are the local modulus of smoothness, defined
for any € Sx and all 8 € [0,00) by

0:(8) = sup{(llz + Byl + lz — Byll)/2 = 1 : [|ly|| = 1},

and the pointwise modulus of smoothness, defined for any norm one vectors
x,y and all § € [0,00) by

0zy(B) = ([l + Byl + [z — Byl)) /2 — 1.

Recall that a normed space is: Gédteaur smooth at x € Sx in direction
y € Sx iff 0,4(B)/B — 0 as B — 0; Gdteaur smooth at x € Sx iff it is
Gateaux smooth at x in every direction y € Sx; Gdteaur smooth iff it is
Gateaux smooth at any x € Sx; Fréchet smooth at x € Sx iff 0,.(8)/6 — 0
as 0 — 0; and Fréchet smooth iff it is Fréchet smooth at any = € Sx.
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For any norm one vectors z, y, we define the function &, : [0,00) —
[0,00) by the formula
[z + pw|| —|lz|

%A@me{ : fwwwexfepw@}

where Y = span{z,y} and Dy (z) = {f|y : f € D(z)}. One can observe
that this function is increasing and that the space is Gateaux smooth at x
in direction y if and only if €, ,(8) — 0 as B — 0. Let us show a relation
between €, , and the pointwise modulus of squareness &, .

PROPOSITION 3.1. For any norm one vectors x, y and all § € [0, 1),

23 23
) < 1+ e 1)

Proof. Fixz,y € Sx, A >0, 3 € [0,1) and a linear functional f € Dy (z).
Then there exists z9 € [By, (1 + A)z] such that f(z9) = 1. Pick a vector
u such that f(u) = 0 and zp € [u, (1 + \)z]. It follows that there exists
@ > 0 such that u = (1 — pu)(1 + Nz + pfBy and, since f(u) = 0, that
w=(1+N)/(1+ A~ Bf(y)). Thus,

(1+XN)g
u| < —————~ ([fy)|+1) < —.
Jull < s () + 1 < 2
As zp € [u, (14 A)z], there exists € (0, 1) such that zp = (1—a)(1+ )z
+ au. Using the fact that f(z9) = 1, it is easily seen that a = \/(1 + ).
Therefore

26

lzo =l _ [lull 28
20
(32) 0 — o = 5l <l < 725

Observe now that, from the definition of €, 4, it follows that
11+ Mz = 2ol — [[Az]| < |z = z0llewy (2 = 20ll/A)-
Dividing by A and using (3.1) one obtains the inequality

[0+ N =zl ), 28 sx7y<£>'
A 1-p3 1-p3
Now, put z = z,(\,By) and denote by £x the modulus of squareness
of X. One can easily see that ||z — 2ol < (||20]] — 1){x(08) and ||zo]] — 1 <
|z — zollesy(||z — 20]|). Putting both together, and using (3.1), (3.2) and
¢x < &1, one has

(3.3)

Iz = 2ol

(3.4) 2 <ao(2)en(25)
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Finally, since

1+ Nz — z Z— 2
IIS ) 0||+|| ol

<
wz (A, By) < 3 T

using (3.3) and (3.4) one obtains

) ara).

which, on taking suprema over A > 0, finishes the proof. u

Ww()‘yﬁy) <1+ % Ex,y <

Now we establish a relation between the pointwise modulus of squareness
&2,y and the pointwise modulus of smoothness o, .

PROPOSITION 3.2. For any morm one vectors x, y and for every 8 €
[07 1)7
(35) Qﬂﬁ,y(ﬂ) < £x7y(ﬂ) -1,

Proof. Observe that the second inequality follows from the first on taking

suprema over y € Sx. Therefore we just have to show (3.5). Fix norm one
vectors x, y. For a fixed § € [0,1) and A > 0, we set

y1=y1(\By) = -1+ NBy,  y2=y2(A By) = (L+ )8y,
=0+ Nz, 2z =(1-a)r + oy,
where a; € [0,1] for i =1,2.
On one hand, 1 = ||z]| > f(z) for any f € D(x). Therefore a; >
A (14 A= f(y:)). On the other hand, |2’ — ;|| = (1+ A)||lz = By|. Since,
for A < (1 B)/8,
a;(N)lz" — yi
GOl — 0+ 08w) < 60+ 0)8),

we have

A A
o =l + e = ] < a1+ 09) (22 + 2,
a1 (%)
Since a; > A/(1 4+ A — f(yi)) we deduce that

2" = il + 12" — g2l < &y (1 +N)B)2+ 23 = (F(y1) + f(y2)))
= &oy((L+A)B)(2+2X) = 26, (1 + A)B)(1 + A),
and therefore
2" =yl + |2 — g2l
1+ A

[z + Byl + [l — Byl < < 26y (1+2)B),

which means that

0:4(B) < Ey(1+N)B) — 1.
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Since this is true for A < (1 — 3)/8, we can let A tend to O and, by the
continuity of &, ,, we obtain the desired inequality. m

THEOREM 3.3. Let & and &, be the localized squareness moduli of X.
Then

(a) X is Gateauxr smooth at x € Sx in direction y € Sx if and only if

§ry(0) = 0.
(b) X sz Gdteaur smooth at x € Sx if and only if &, ,(0) = 0 for all
Yy EOX.

(¢) X is Gateaux smooth if and only if fé,y(O) =0 forall z,y € Sx.
(d) X is Fréchet smooth at x € Sx if and only if £,(0) = 0.
(e) X is Fréchet smooth if and only if ,.(0) =0 for all x € Sx.

Proof. (a) First, by inequality (3.5) of Proposition 3.2, it is straightfor-
ward that if &, ,(0) = 0 then o, ,(8)/8 tends to 0 as 3 — 0, i.e. the norm is
differentiable at = in direction y.

Secondly, assume that X is Gateaux smooth at = in direction y. If z and
y are linearly dependent the result is trivial. Suppose then that x and y are
linearly independent; then applying Proposition 3.1 one has

)=t 2 (2
< Ex .
8 1-8)2 ""\1-p

Since the norm of X is Gateaux smooth at z in direction y, we have e, ()
— 0 as ¢t — 0. This implies that &, ,(0) = 0.

(b) This follows from (a) since for convex functions the existence of all
directional derivatives at z implies Gateaux smoothness at x.

(c) Evident from (b).

(d) On one hand, by inequality (3.6) of Proposition 3.2, it is clear that if
€,(0) = 0 then p,(8)/5 tends to 0 as 8 — 0, i.e. the space is Fréchet smooth
at x.

On the other hand, if we assume that X is Fréchet smooth at x, then
applying Proposition 3.1, for any y € Sx we have

gw, (ﬁ)_l 2 25
5 g(l—m?g‘”’”’y(l—ﬂ)‘

Taking suprema over y € Sx we obtain

gw(ﬁ) -1 2 Qﬁ
< e e e ()

Since the space is Fréchet smooth at z, the right-hand side tends to 0 as
B — 0. Therefore & (0) = 0.
(e) This follows from (d). m
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4. On convexity and localized squareness moduli. This section is
devoted to showing a relation between the behaviour of the localized moduli
of squareness near 1 and the convexity properties of a normed space X. In
the first subsection the local modulus of squareness &, is related to local
uniform convexity, and in the second subsection the pointwise modulus of
squareness & , is related to strict convexity.

4.1. Local uniform converity. Fix a normed space X and x € Sx. The
space X is said to be locally uniformly conver at x if its local modulus of
convexity

. x 4+
so(e) =t {1 = | 2l =1, o - ol >

is strictly positive for each € > 0. The number go(z) = sup{e : d»(¢) = 0}
will be called the characteristic of convexity at x. Obviously, X is locally
uniformly convex at x if and only if o(z) = 0.

One calls D(z,3) = co({xz} UBBx) the drop of Bx with respect to the
point x, and R(zx, 3) = D(z,3) \ BBx the residue. In [1] the authors observe
that X is locally uniformly convex at z iff diam R(z,3) — 0 as § — 0.

Recall that the radius of a set A relative to a point x is defined by
rad(z, A) = sup,ca ||z — a|. It is clear that diam(A)/2 < rad(z,A) <
diam(A) whenever z € A. For [jz|| = 1 and 0 < # < 1, Kadets [6] de-
fined the set G(z,3) = {y : [y, 2] C Bx \ﬁéx}, and noted that X is locally
uniformly convex at z iff rad(z,G(x,3)) — 0 as § — 1. Moreover, it is
known that the function e(z, ) = rad(z, G(z,)) is uniformly continuous
on the set Sx x [0,r] for all » < 1 and that € is continuous at (z,1) if the
norm is locally uniformly convex at x € Sx (see [2, 5]).

It is also well known that the norm is locally uniformly convex at x if
and only if whenever a sequence {z,}, satisfies

Jim (22 + ) = llz + 2a*) =0,

then lim,, ||z, —z|| = 0. This can be shown easily by using the local modulus
of convexity defined above. Finally, we say that the norm of X is locally
uniformly convex if it is locally uniformly convex at all x € Sx.

LEMMA 4.1. If a normed space is locally uniformly conver at © € Sx,
then
lim sup ||z — z:(A\,y)|| =0.
_)OyEéX
Proof. Observe that for any A > 0 and y with |ly]| < 1 all points of
the segment [(1 4+ A)z, 25 (A, y)] different from z, (A, y) are outside the closed
unit ball. Indeed, the function f(a) = ||a(1 + X))z + (1 — a)z(A, y)|| satisfies
f(0) = 1 and there exists ap < 0 such that f(ag) = |ly|| < 1. Since f is
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convex we obtain f(«) > 1 whenever o > 0. In particular,

1+ 2z(A,y)
11/2) = — R
Therefore,
(A y) || () || 1 1
<2z + 2| 22| — e 2 —
0= 2021 +2) 575 TR ST  arae
_9__ 2
(14 X)?

where the right hand side tends to 0 uniformly over all y € By and, since
the space is locally uniformly convex at z, zz(\, y) converges to x uniformly
iny€ Bx. n

THEOREM 4.2. For any normed space X and for any x € Sx, the fol-
lowing are equivalent:

(a) X is locally uniformly convez at x.

(b) diam G(z,3) — 0 as § — 1.

(¢) diam R(x,3) — 0 as § — 1.

(d) thUPﬁ—q(l — B)¢(B) = 0.

(e) liminfg_,1(1 — B)&:(B) = 0.
Moreover, liminfg_.; (1 — 8)&.(8) > eo(z).

Proof. The equivalence between (a), (b) and (c) is known. We claim that
forall 0 < g8 <1,

(4.1) eo(z) =1+ < (1 - 0)&(0).
Letting 3 — 1 proves the last assertion and (e)=(a).

Inequality (4.1) is trivial if eg(z) = 0, so suppose that X is not locally
uniformly convex at x. This means that, given any A > 0, we can find a
norm one vector y, at distance at least o(z) from x, and such that for all
Y120,

(14 M)y + pyll = v + p.
Set 2/ = (14 A)x and y' = By, so that ||2' — /|| > eg(x) — A — (1 = ). Then
z=12z,(NY) = (1 —a)z’ + ay must satisfy
I+A—a(l+X-0) A— A2

and so « >

1= |2 > ATA
=1l = 1+ 22 1+r—3

But then
2" — 2| _ afla’ =yl o (1= N(eo(z) A~ (1—F))

) X © 1+r—3
Letting A — 0, we see that £,(8) > (eo(z) — 1+ 3)/(1 — ), which is (4.1).
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It is obvious that (d) implies (e), so it only remains to show (a)=-(d).
Pick sequences {f,}, tending to 1, {d,}, tending to 0, A\, > 0 and vectors
Yn € BpBx such that

§e(Bn) < wz(An,yn) + 0.

We have to distinguish two cases:
(a) If liminf, A\, > 0, Lemma 2.5 shows that M = sup,{wz(\n)} <
and so
Er(ﬁn) < Wﬂc(Amyn) + 6o, < Wﬂc()‘n) + 0 < M + 6.

Therefore,
lim sup (1 - 571)6:0(571) < nh—>néo(1 - Bn)(M + 511) =0.

n—oo

(b) If liminf,, A, = 0, then we can assume, passing to a subsequence,
that A, — 0. If necessary we can choose y,, in such a way that ||y, || = Bn
and ¥, € [Yn, (1 + A\p)x] N G(22( Ay Yn), Bn))- Set

2n = 2e(Ans yn) = an(1 4+ Ap)x + (1 — )yl
Then 1 = ||zn|] < an(l + Ay) + (1 — ay,)Br, from which it follows that
(1 —an)(1 =75, < apAy, and
(1= an)(1 = Bu)we Ay yp) < an (L4 Ap)x — 2| = (1 — an)lyp, — 2al
< (1 - an) rad(zm G(zm ﬁ))
That is, (1 — Bn)wz(Ansyn) = (1 — Bn)we(An,yl) < €(2zn,3n). Lemma 4.1

tells us that z, tends to xz and therefore, since €(-,-) is continuous at (z,1),
we have

lim sup (1 - ﬁn)&r(ﬁn) < limsup (1 - ﬁn)wr(km yn)

n— o0 n—aoo
< lim €(zy, Bn) = €(x,1) =0,
n—oo
which is what we wanted to show. m
This proposition yields a new characterization of local uniform convexity.
COROLLARY 4.3. For any normed space X the following are equivalent :

a) X s locally uniformly convez.

b) diam G(z,3) — 0 as § — 1 for all x € Sx.
¢) diam R(z,3) — 0 as B — 1 for all x € Sx.
d) limsupg_ (1 — B)§(3) =0 for all x € Sx.
(e) liminfg_,1(1 — B)&x(B) = 0 for all x € Sx.

4.2. Strict convezity. Let X be anormed space and x,w € Sx. The norm
of X is said to be strictly conver at x in direction w if there is no proper
segment included in the unit sphere starting at « with direction w. Similarly,
it is said to be strictly convex at x if there is no proper segment included in

(
(
(
(
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the unit sphere starting at « in any direction. X is said to be strictly convez
if it is strictly convex at all its norm one vectors. We define eq(z,w) to be
the supremum of £ > 0 such that the segment [z,z + cw] or [z,x — cw] lies
on the unit sphere. We also define C% = {y € Sx : IAN € R, y = = + \w}.

PROPOSITION 4.4. Let X be a normed space and x, w two norm one
vectors. If liminfg_,1(1 — B)&,4(8) = 0 for all y € CY, then X is strictly
convex at x in direction w. Moreover,

sup liminf (1 — )&, 4(8) > €o(z, w).
yeCy F—1

Proof. Assume that X is not strictly convex at z in direction w. This
means that eo(z,w) > 0, and that for any eo(x,w) > § > 0 there exists
y € C¥ such that ||y — z|| > eo(z,w) — §. Write 2 = z,.(), By). There exists
a € [0,1] such that z = (1 — a)(1 + A\)z + afBy. Let us compute a. Fix
f € D(z) such that f([z,y]) =1. We have 1 = f(2) = (1 — a)(1 + ) + af.
Therefore « = \/(1 + X\ — f3).

On the other hand,

11+ ANz =Byl = [l = yll = Az + (1 = B)yll = eo(e,w) =6 = A= (1= F).
Therefore,
_ S —A—(1—
Ea(9) 2 wa( py) = o ILENT =0 o) 20 220 20)
Letting A — 0, we obtain (1 — 3)&; ,(8) > eo(z,w) —d — (1 — B). Therefore
liminf (1 = 5)€xy(6) = eo(@, w) — 0.

This implies that liminfg_,o(1 — 8)&;4(8) > 0, which shows the first and,
whenever go(x,w) > 0, the second assertion of the theorem. The proof is
finished, since the second assertion is clear when eo(z,w) = 0. =

THEOREM 4.5. For any normed space X and for any x € Sx the follow-
ing are equivalent:

(a) X is strictly conver at x.

(b) limsupg_, (1 — B)&,y(B) =0 for all y € Sx.

(c) liminfg_1(1 — B)&y(B) =0 for all y € Sx.

Proof. The implication (b)=-(c) is evident. The implication (c)=-(a) fol-
lows from Proposition 4.4. In order to see (a)=-(b), fix y € Sx, and pick

{Bn}n tending to 1, {0y}, tending to 0, A,, > 0 and vectors y, = v,y € B, Bx
such that

gr,y(ﬁn) < Wy (An, Yn) + On.

We have to distinguish two cases:
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(a) If liminf, A, > 0, then Lemma 2.5 shows that M = sup,{wz(A\,)}
< 00 and so

€x,y(ﬂn) < wx()\nayn) + 571 < w:c()\n) + 511 <M+ 511

Therefore,
limsup (1 — £,)&.4(Bn) < nh_)ngo(l — Bn)(M +6,) = 0.

n—oo
(b) If liminf, A\, = 0, we can assume, passing to a subsequence, that
An — 0. If necessary we can choose y!, such that ||y,|| = 3, and y, € [yn,
(14+X)z]NGy (22 (Ans Yn), Bn)), where Y = span{x, y}. Write 2z, = z(An, yn)
=an(14+ M)z + (1—ay)y),. Then 1 = ||z, ]| < an(1+N\) + (1 —ay) By, from
which it follows that (1 — a,)(1 — B,) < apA, and

(1 =) = Bu)we (A, yp) < anll(T4+ M)z — 2|l = (1 — o)y, — 2a
< (1 - an) rad(zm GY(Zm 5))
That is, (1 - ﬁn)wr()‘myn) = (1 - ﬁn)ww()‘myil) < GY(Zmﬁn)' Since Y is
locally uniformly convex at x, Lemma 4.1 tells us that z, tends to x and
therefore, since €y (+,-) is continuous at (z,1), we have
lim sup (1 - ﬁn)gw,y(ﬁn) < limsup (1 - ﬁn)wr(km yn)

n—00 n—0oo
< lim GY(zn)ﬁn) = GY($> 1) = 0)
n—oo
which is what we wanted to show. m
From this theorem one can easily deduce the following one.
THEOREM 4.6. For any normed space X the following are equivalent:

(a) X is strictly convez.

(b) limsupg_1 (1 — 8)&,(B) =0 for all z,y € Sx.

(c) liminfg_,1(1 — B)&xy(B) =0 for all x,y € Sx.
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