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Abstract We consider the numerical integration of linear-quadratic optimal
control problems. This problem requires the solution of a boundary value prob-
lem: a non-autonomous matrix Riccati differential equation (RDE) with final
conditions coupled with the state vector equation with initial conditions. The
RDE has positive definite matrix solution and to numerically preserve this
qualitative property we propose first to integrate this equation backward in
time with a sufficiently accurate scheme. Then, this problem turns into an
initial value problem, and we analyse splitting and Magnus integrators for the
forward time integration which preserve the positive definite matrix solutions
for the RDE. Duplicating the time as two new coordinates and using appropri-
ate splitting methods, high order methods preserving the desired property can
be obtained. The schemes make sequential computations and do not require
the storrage of intermediate results, so the storage requirements are minimal.
The proposed methods are also adapted for solving linear-quadratic N -player
differential games. The performance of the splitting methods can be consider-
ably improved if the system is a perturbation of an exactly solvable problem
and the system is properly split. Some numerical examples illustrate the per-
formance of the proposed methods.
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1 Introduction

Linear-quadratic (LQ) optimal control problems appear in many different
fields in engineering [1,3,33,36] as well as in quantum mechanics [31,32,38]
(see also [14] and references therein). In general, LQ optimal control prob-
lems are described by coupled systems of nonlinear differential equations with
boundary conditions. Matrix Riccati differential equations (RDEs) with pos-
itive definite solutions, coupled with the state vector equation, have to be
solved in some mechanical systems. In quantum mechanics, coupled nonlinear
systems of Schrödinger equations for the wave function and a Lagrange multi-
plier have to be solved [38]. The particular algebraic structure of the equations
in each problem makes that, in general, the solutions have some qualitative
properties which are relevant for the theoretical study (positive definiteness in
the solution of the RDE or the evolution through a unitary transformation in
quantum mechanics). It seems natural to look for numerical schemes that pre-
serve these relevant qualitative properties in order to get reliable and accurate
results.

Numerical methods for solving nonlinear BVPs are usually more compli-
cated (and computationally more costly) than initial value problems IVPs [4,
26,30]. We consider the numerical integration of LQ optimal control problems
with high order explicit and structure preserving methods and we analyse the
preservation of the positive definiteness in the numerical solution of the RDE.

It is important to remark that one step and multistep schemes of order
greater than one used as direct algorithms cannot guarantee that the solution
stays positive definite [16]. On the other hand, the RDE has an associated
Hamiltonian system which can be solved using appropriate symplectic inte-
grators [18,34]. These methods can be seen as indirect algorithms, allowing for
positive definite higher order approximations. We analyse splitting methods
and Magnus integrators as symplectic integrators to solve the RDE coupled
with the state vector equation both for the autonomous ans non-autonomous
case. We show that some constraints on the coefficients of the methods are
required to guarantee the preservation of the qualitative properties. The pro-
posed methods are explicit and the algorithms can be used with variable step
as well as variable order. We use different methods for the forward and back-
ward integration of the RDE and this provides an estimation of the accuracy
of the solution.

The problem can be reformulated as an IVP where the vector field can
be split into solvable parts and high order splitting methods can be used. If
the problem is explicitly time dependent or it can be considered as a small
perturbation of an exactly solvable problem, the correct split and the split-
ting methods to be used require a more careful analysis. These methods can
also be considered as exponential methods which have shown a high perfor-
mance for linear problems [9,10,21,22]. Implicit Runge–Kutta methods for
linear problems can be considered as rational approximations to exponential
integrators. Exponential methods are explicit methods suitable for the nu-
merical integration of stiff and oscillatory problems (see [19] and references
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therein). Obviously, this requires the computation of exponential of matrices
or their action on vectors [2,29,35].

The proposed methods are also adjusted for solving linear-quadratic N -
player differential games (extensively studied from the theoretical point of
view [3,6,15,17,37]) since they can be considered as optimal linear control
problems.

The paper is organized as follows. In Section 2 we introduce the equations
to be solved in a LQ optimal control problem and present the nonlinear ma-
trix RDE as an equivalent linear system of equations so, indirect methods can
be ued. In Section 3 we formulate the problem as an IVP with a previous
backward time integration of the Riccati equation, we present a brief intro-
duction to splitting methods and we show how these methods can be used on
autonomous and non-autonomous problems. The case of perturbed systems
and the preservation of the positive definiteness of the solution of the RDE by
splitting methods is also analysed. Section 4 considers the generalization to
the numerical integration of differential games, and Section 5 is devoted to nu-
merical experiments for illustrating the performance of the methods. Finally,
Section 6 gives the conclusions of the work.

2 LQ optimal control problems

Let us consider the LQ optimal control problem

x′ = A(t)x+B(t)u(t), x(0) = x0 , 0 = t0 ≤ t ≤ tf = T , (1)

where the unknown x(t) ∈ Rn is the dynamic state. Here A(t) ∈ Rn×n ,
B(t) ∈ Rn×r , and u(t) ∈ Rr is the control.

We consider a quadratic cost function given by

J = xT (T )QT x(T ) +

∫ T

0

{
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

}
dt ,

where Q(t), QT ∈ Rn×n, are symmetric non-negative matrices, R(t) ∈ Rr×r

is symmetric and positive definite (i.e. Q(t), QT ≥ 0, R > 0) and zT denotes
the transpose of z. It is well known that the optimal control is reached when
u is written as [1,3,36]

u(t) = −R−1(t)BT (t)P(t)x(t) , (2)

with P(t) ∈ Rn×n satisfying the matrix RDE with final conditions

P ′ = −Q(t)−AT (t)P − PA(t) + PS(t)P, P(T ) = QT , (3)

wherein S(t) = B(t)R−1(t)BT (t) is a symmetric n×nmatrix and S(t) ≥ 0. It
is known that P (t) is also a symmetric and non-negative matrix. Substituting
(2) into (1) we have that

x′ =
(
A(t)− S(t)P (t)

)
x, x(0) = x0 . (4)
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Since P (t) is symmetric and non-negative, we can decompose it as P (t) =
G(t)G(t) where G(t) is also symmetric and non-negative. Then, G(t)S(t)G(t)
is symmetric and non-negative with real and non-negative eigenvalues. Since
S(t)P (t) and G(t)S(t)G(t) share the same eigenvalues, we have that the prod-
uct S(t)P (t) has real and non-negative eigenvalues [20]. This result is of rele-
vance for the stability of (4). It is then natural to look for numerical schemes
preserving the positive definiteness of the solution of the RDE.

The goal is to numerically solve the coupled system of nonlinear differen-
tial equations with boundary conditions (3) and (4). The numerical solution
of nonlinear BVPs is usually computationally costly with significant storage
requirements (one has to numerically integrate backward in time some of the
equations, to store intermediate results and to make a forward integration
using the stored results, or to use shooting methods [4,30]).

If we first integrate backward in time the RDE, the coupled system turns
into an IVP to be integrated forward in time. We show that the qualitative
properties can be preserved using appropriate splitting and Magnus integra-
tors.

2.1 The matrix Riccati differential equation

It is well known that given the autonomous matrix RDE (3), if the time-
dependent matrices Q(t), A(t), S(t) are continuous, Q(t), S(t) are symmetric
and non negative for t ∈ [0, T ] and QT is a symmetric non negative matrix,
the solution P (t) is also a symmetric matrix and P (t) ≥ 0, t ∈ [0, T ]. This is a
very important property because the matrix P (t) is coupled with the equation
for the state vector and plays an important role. However, from [16] we have
the following result:

Theorem 1 Any one-step method or strictly stable multistep method that pre-
serves positive definiteness in the numerical solution of the RDE (3) has order
at most one.

Alternatively, we can use indirect methods for solving the RDE (3). If we
consider the following decomposition PU = V , with U(t), V(t) ∈ Rn×n and
denote

y(t) =

[
U
V

]
; K(t) =

[
A(t) −S(t)
−Q(t) −AT (t)

]
,

where y(t) ∈ R2n×n, K(t) ∈ R2n×2n, then, it is easy to check that y(t) is the
solution of the ODE

y′(t) = K(t) y(t); y(T ) =

[
U(T )
V(T )

]
=

[
I
QT

]
, (5)

with conditions at the end of the interval, to be integrated backward in time.
By [17,24], if (5) has an appropriate solution with U(t) non singular, the
solution of (3) can be calculated by solving the linear system of equations:
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P(t)U(t) = V (t). Conditions under which U−1 exists are known (see [1,23]
and references therein). In this work we assume U(t) is non-singular, otherwise
P (t) would be unbounded and the equation for the state vector would not be
well defined.

Since eq. (3) has an associated linear Hamiltonian system, the fundamental
solution is a symplectic transformation. From [16] we have also the following
result:

Theorem 2 Application of a symplectic Runge-Kutta method given by the
coefficients, ai,j , bi, i, j = 1, . . . , k, with non-negative bi’s to eq. (5) produces
(when defined) symmetric non-negative matrices Pn.

(This Theorem needs also that 0 ≤ ci =
∑i

j=1 ai,j ≤ 1 otherwise the matrix
K(t) is evaluated outside the interval [0, T ] where its existence or conditions
Q,S ≥ 0 are not guaranteed). In this work we consider high order splitting
methods and Magnus integrators. These methods have negative coefficients
and we analyse the conditions under which the schemes produce positive defi-
nite solutions. To this purpose, it is useful to consider backward error analysis.
Suppose that a numerical scheme for a time step h is equivalent to the 1-flow
solution of the autonomous equation

d

dt

[
U
V

]
=

[
Ah −Sh

−Qh −AT
h

] [
U
V

]
. (6)

If Sh, Qh are symmetric and non-negative then the numerical solution Pn is
symmetric and non-negative.

3 Geometric integrators for solving LQ optimal control problems

The coupled system of equations to be solved is given by

d

dt

[
U
V

]
=

[
A(t) −S(t)
−Q(t) −AT (t)

] [
U
V

]
,

[
U(T )
V(T )

]
=

[
I
QT

]
(7)

dx

dt
=
(
A(t)− S(t)V (t)U(t)−1

)
x, x(0) = x0 . (8)

The numerical integratio of the eq. (8) in the interval [tn, tn + h] typically
requires the evaluation of the matrices A(t), S(t), V (t), U(t) at a number of
interior points, say tn + cih, i = 1, . . . , k. However, U and V are not know
at these points and have to be numerically computed with sufficient accuracy.
This usually requires to solve eq. (7) for the time intervals [tn + ci−1h, tn +
cih], i = 1, . . . , k, making this procedure poorly efficient.

Since the equation (7) is independent of (8), in order to preserve positivity
we propose to integrate backward the RDE to get U(t0), V (t0) with sufficiently
high accuracy. Intermediate solutions are not needed in this preliminary inte-
gration so, we have much freedom on the choice of the numerical method for
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the backward integration. This allows a fast way to get the initial conditions,
U(t0), V (t0), for the RDE.

Next, we have to integrate forward in time the system (7)-(8) with the final

conditions replaced by
[
U(t0)

T V(t0)
T
]T

=
[
UT
0 V T

0

]T
.

The linearized RDE and the equation for the state vector can be written
in short as follows

v′ = M(t)v
x′ = N(t, v̂)x

(9)

with v = [UT V T ]T , v̂ = V U−1 = P and M,N are matrices of appropriate
dimensions. This system of equations is separable into solvable parts and then
splitting methods can be used in a simple way. Splitting methods allow to
solve sequentially autonomous RDEs and linear autonomous equations for the
state vector. These equations can be solved separately using methods which
preserve the desired qualitative property. Let us briefly introduce the idea of
splitting methods as well as the choice of the methods to be used.

3.1 Splitting Methods

Let us consider the initial value problem

x′ = f(x) = f [a](x) + f [b](x), x0 = x(0) ∈ RD (10)

with f : RD −→ RD and solution x(t) = φt(x0), and such that

x′ = f [a](x), x(0) = xa0 , (11)

x′ = f [b](x), x(0) = xb0, (12)

can be integrated exactly, with solutions x(h) = φ
[a]
h (xa0) and x(h) = φ

[b]
h (xb0),

respectively, at t = h, the time step. It is well known that the composition,

χh = φ
[b]
h ◦ φ[a]

h , is a first order method and

ψh = φ
[a]
h/2 ◦ φ

[b]
h ◦ φ[a]

h/2,

is a symmetric second order method. Higher order methods can be obtained
by a composition like

ψh = φ
[b]
bmh ◦ φ[a]

amh ◦ · · · ◦ φ[a]
a2h

◦ φ[b]
b1h

◦ φ[a]
a1h

,

for appropriate choices of coefficients ai, bi. For simplicity, we denote the com-
position as : bm am . . . b1 a1. For example, an efficient fourth-order method is
given by the following symmetric sequence [12] for m = 7 with a1 = 0 and
a8−i = ai+1, b8−i = bi, i = 1, 2, . . . so, it can be written as follows

b1 a2 b2 a3 b3 a4 b4 a4 b3 a3 b2 a2 b1 (13)

which is a 6-stage method. It has 7 coefficients bi and 6 coefficients ai. If φ
[b]
h is

the exact solution of the autonomous problem (12) then, we can concatenate
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Table 1 Coefficients for different splitting methods

Coefficients of the 6-stage 4th-order method (13)
b1 = 0.0792036964311957 a2 = 0.209515106613362
b2 = 0.353172906049774 a3 = −0.143851773179818
b3 = −0.0420650803577195 a4 = 1/2− (a2 + a3)
b4 = 1− 2(b1 + b2 + b3)
Coefficients of the 10-stage 6th-order method (14)
a1 = 0.0502627644003922 b1 = 0.148816447901042
a2 = 0.413514300428344 b2 = −0.132385865767784
a3 = 0.0450798897943977 b3 = 0.067307604692185
a4 = −0.188054853819569 b4 = 0.432666402578175
a5 = 0.541960678450780 b5 = 1/2− (b1 + . . .+ b4)
a6 = 1− 2(a1 + . . .+ a5)

Coefficients of the 2-stage (4,2) method (21)

a1 =
3−

√
3

6
b1 = 1/2

a2 = 1− 2a1
Coefficients of the 5-stage (8,4) method (22)

a1 = 0.07534696026989288842 b1 = 0.19022593937367661925
a2 = 0.5179168546882567823 b2 = 0.84652407044352625706
a3 = 1/2− (a1 + a2) b3 = 1− 2(b1 + b2)

the last map in one step with the first one in the following one, i.e. φ
[b]
b1h

◦φ[b]
bmh =

φ
[b]
(b1+bm)h (it is called the First Same As Last (FSAL) property) and we can

save one evaluation. However, if we use a numerical approximation to solve
eq. (12) this property is, in general, not satisfied.

A sixth-order method is given by the following 10-stage symmetric sequence

a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 a6 b5 a4 b4 a4 b3 a3 b2 a2 b1 a1. (14)

The coefficients of methods (13)–(14) (taken from [12]) are collected in Table 1
for convenience of the reader.

The splitting methods we have presented are valid for autonomous equa-
tions because the exact solution of the equation (10) can be written formally
as the exponential a Lie operator, φt = exp

(
t Lf

)
, with Lf ≡ f · ∇. The map

φt can be approximated by a composition of exponentials of Lie operators
associated to the vector fields f [a] and f [b]. If the problem is non-autonomous,
one can take the time as a new coordinate and transform the original non-
autonomous equation into an autonomous one in an extended phase space.
However, in this case it is advantageous to consider the time not as one but as
two independent coordinates, and this has to be combined with an appropri-
ate splitting method. For this reason, we consider separately the autonomous
from the non-autonomous LQ optimal control problem.

3.2 The autonomous case

If the system is autonomous, we can compute the solution of the RDE (7) at
t0 as follows.
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[
U0

V0

]
= exp

(
(t0 − T )

[
A −S
−Q −AT

])[
UT

VT

]
.

This map can be accurately computed, for example, by a scaling and squaring
method [2,29] i.e. if we take Ki as an accurate approximation to the scaled
exponential

Ki ≃ exp

(
(t0 − T )

2i

[
A −S
−Q −AT

])
(15)

(here Ki can be, for example, a diagonal Padé approximation or a Taylor
approximation) then [

U0

V0

]
≃
(
· · · (Ki)

2 · · ·
)2

︸ ︷︷ ︸
i−times

[
UT

VT

]
.

This method provides an accurate approximation to U0, V0 from UT , VT in just
one step. For stiff problems, the approximation in (15) must be sufficiently
accurate. Next, one has to integrate forward in time the system (9) which
takes the form:

d

dt

[
v
x

]
=

[
Mv
N(v̂)x

]
(16)

that can be split into solvable parts

d

dt

[
v
x

]
=

[
Mv
0

]
,

d

dt

[
v
x

]
=

[
0

N(v̂)x

]
.

This is equivalent to the exact solution for the state equation where the con-
tinuous symmetric positive definite matrix, P (t), is replaced by a piecewise
constant symmetric positive definite matrix. The following algorithm can be
used to advance one time step, h, from tn to tn+1 = tn+h, by using a splitting
method with coefficients {ai, bi}mi=1

(v0, x0) = (vn, xn)
do i = 1, . . . ,m
xi = exp

(
aihN(v̂i−1)

)
xi−1

vi = Eiv
i−1

enddo
(vn+1, xn+1) = (vm, xm)
un+1 = −R−1BT Vn+1 U

−1
n+1 xn+1 .

where Ei = exp (bihM) , i = 1, 2, . . . ,m. To take advantage of the FSAL
property to save the computation of a map, one has to slightly adjust the
previous algorithm. Obviously, at t = T we must reach the exact solution
P (T ) = QT with up to round off accuracy.

We can choose the flows associated to the coefficients ai or bi to advance the
RDE. In general, it is convenient to advance the RDE with maps associated
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to the coefficients having the smaller negative value. For example, we have
interchanged the coefficients ai and bi in the 6-stage fourth-order method (13)
as given in [12] so min{bi} > min{ai} because the RDE is advanced with the
coefficients bi in the algorithm.

3.3 The non-autonomous case

If the system is non-autonomous, the solution of the RDE has no analytic
solution in a closed form. In this case we have to solve numerically the RDE
backward in time using, for example, high order Magnus integrators (e.g. a
method of order six or eight [10]) preserving the symplectic structure and
positivity is guaranteed for sufficiently small time steps [13]. Other methods
like high order extrapolation methods can also be used. Once U0, V0 are com-
puted, we need to integrate forward in time the system of non-autonomous
equations. If we split the system as in the autonomous case, we end up with
two non-autonomous problems, both with no solution in a closed form. We are
then looking for an alternative split which provides a more efficient scheme.
This can be achieved by frozen the time following a proper sequence. To this
purpose, we take the time as two new coordinates as follows

v′ = M(t1)v
x′ = N(t2, v̂)x
t′1 = 1
t′2 = 1

where ′ ≡ d
dt , and we split the system as follows

v′ = M(t1)v
x′ = 0
t′1 = 0
t′2 = 1


v′ = 0
x′ = N(t2, v̂)x
t′1 = 1
t′2 = 0

(17)

This corresponds to two linear autonomous equations in the extended phase
space, and each part is now exactly solvable. Then, the same splitting methods
as in the autonomous case can be used. The algorithm for one time step, h, is
given by:

(v0, x0, t01, t
0
2) = (vn, xn, tn, tn)

do i = 1,m

xi = exp
(
aihN(ti−1

1 , v̂i−1)
)
xi−1

ti2 = ti−1
2 + aih

vi = exp
(
bihM(ti2)

)
vi−1

ti1 = ti−1
1 + bih

enddo
(vn+1, xn+1, tn+1, tn+1) = (vm, xm, tm1 , t

m
2 )

un+1 = −R−1(tn+1)B
T (tn+1)Vn+1 U

−1
n+1 xn+1 .

(18)
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Since the matrix M(t) changes at each step, the exponentials,

exp
(
bihM(ti2)

)
, ti2 = tn + cih

with ci =
∑i

j=1 aj , need to be computed at each step. Splitting methods of
order greater than two necessarily have negative coefficients ai, bi (see [7] and
references therein) and the preservation of positivity could not be guaranteed.
We present, however, the following result:

Theorem 3 Splitting methods with coefficients ai, bi, such that 0 ≤ ci =∑i
j=1 aj ≤ 1 applied to the system (17) in the sequence given by the algo-

rithm (18) have positive definite solutions for the RDE for sufficiently small
time steps.

Proof Negative coefficients bi correspond to backward integration of an au-
tonomous RDE so the property is not changed. However, since the numerical
solution associated to a splitting method can be considered as the exact solu-
tion of a piecewise constant RDE, positivity is only guaranteed for sufficiently
small time steps. If the coefficients ai are such that 0 ≤ ci ≤ 1 then the vari-
able ti2 only takes values inside the interval [t0, T ] where the matrix M(ti2) is
well defined.

If the computation of the exponential is the most time consuming part of
the algorithm, it is possible to look for another algorithm where the exponen-
tials can be replaced by a more economical approximation, as for example a
second order diagonal Padé approximation

Φ
[b]
bih

(ti2) =
I + 1

2bihM(ti2)

I − 1
2bihM(ti2)

= exp(bihM(ti2)) +O(h3)

where Theorem 2 guarantees the solution stays positive definite. In general,M
belongs to the Lie algebra of symplectic matrices and the exponential belongs
to the associated symplectic Lie group. Diagonal Padé approximations preserve
this group property for the symplectic algebra [21].

Now it is important to keep in mind that the coefficients from Table 1 are
obtained taking into account the equations are exactly solved (or are numeri-
cally solved to high accuracy) and this is not the case if one uses a low order
approximation to solve one of the equations. Alternatively, we can look for
composition methods.

We can proceed as follows. Let S
[2]
h be the following symmetric second

order method

S
[2]
h = φ

[a]
h/2 ◦ Φ

[b]
h ◦ φ[a]

h/2 :



x1/2 = exp
(
h
2N(t01, v̂

0)
)
x0

t
1/2
2 = t02 +

h
2

v1 = Φ
[b]
h (t

1/2
2 )vi−1

t11 = t01 + h
x1 = exp

(
h
2N(t11, v̂

1)
)
x1/2

t12 = t
1/2
2 + h

2

(19)
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Taking S
[2]
h as the basic method, we can build methods of order, p, with p > 2,

as a composition of this basic method

S
[p]
h =

m∏
i=1

S
[2]
αih

. (20)

The simplest fourth-order composition, S
[2]
α1h

◦ S[2]
α2h

◦ S[2]
α1h

, with α1 = 1/(2−
21/3) ≃ 1.35, α2 = 1− 2α1 ≃ −1.7 (usually referred as Yoshida’s composition)
satisfies α1 > 1 and α1 + α2 < 0 so, by the same reasons as in Theorem 3,
positive definite solutions for the RDE is not guaranteed. However, the follow-
ing fourth-order method satisfies this property on the coefficients and shows
a good performance

S
[4]
h = S

[2]
α1h

◦ S[2]
α1h

◦ S[2]
α2h

◦ S[2]
α1h

◦ S[2]
α1h

with α1 = 1/(4 − 41/3), α2 = −41/3/(4 − 41/3) (where 0 ≤ α1, 2α1, 2α1 +
α2, 3α1+α2, 4α1+α2 ≤ 1). Several sets of coefficients for methods of different
orders and number of stages are collected in [18,28].

Notice that at t = T we must reach a numerical approximation close to
the exact solution P (T ) = QT . The methods presented in this work will
approximate this value with accuracy up to the order of the method, i.e.
Pap(T ) = QT + O(hp), and this can be used as a measure of the accuracy
of the algorithm.

3.4 Methods for near-integrable problems

In some cases, LQ optimal control problems can be formulated as a small
perturbation of an exactly solvable problem. In this case it can be convenient
to split into the dominant part and the perturbation. If we have

x′ = f [a](x) + εf [b](x)

where |ε| ≪ 1 and both equations are exactly solvable (or can be efficiently
solved by a numerical method) then splitting methods tailored for this problem
usually show a high performance. For example, two highly efficient methods,
whose coefficients from [27] are collected in Table 1, are given by the following
compositions:

a1 b1 a2 b1 a1 (21)

referred as a (4,2) method (a second order methods which, in the limit ε→ 0,
behaves as a fourth order method) and

a1 b1 a2 b2 a3 b3 a3 b2 a2 b1 a1 (22)

referred as a (8,4) method. More elaborated methods with more stages are
given in [8].
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If the problem is non-autonomous

x′ = f [a](x, t) + εf [b](x, t)

it is still possible to take the time as a new coordinate (only one new coordinate
instead of two, contrarily to the previous and more general case). This split
allows to preserve the structure of a near integrable problem, in the extended
phase space1 [11]

d

dt

[
x
t1

]
=

[
f [a](x, t1)

1

]
+ ε

[
f [b](x, t1)

0

]
.

This requires to integrate exactly (or up to high accuracy) the non-autonomous
equation associated to the dominant part

x′ = f [a](x, t),

and to solve the perturbed part with the time frozen.
For example, LQ optimal control problems when the matrix A is constant

and such that ∥A∥ ≫ ∥S∥ and ∥A∥ ≫ ∥Q∥ have this structure. We can split
the problem as follows

x′ = f [a](x, t) :


[
U
V

]′
=

[
A 0
0 −AT

] [
U
V

]
,

x′ =
(
A− S(t)V (t)U(t)−1

)
x

(23)

with solution for the matrix RDE: U = e(t−t∗)AU∗, V = e−(t−t∗)AT

V ∗, where
U∗, V ∗ are the initial conditions at t = t∗. The equation for the state vector
is then

x′ =
(
A− S(t) e−(t−t∗)AT

V ∗ U∗−1e−(t−t∗)A
)
x.

This is a linear equation with no analytical solution in a closed form, but
can be numerically solved to high accuracy by using, for example, a Magnus
integrator [9].

Standard Magnus integrators involve commutators of the matrixM(t) eval-
uated a different time points. Backward error analysis for Magnus integrators
applied to the RDE shows that the associated equation (6) only guarantees
Qh, Sh ≥ 0 for second order methods or, if high order methods are used, for a
sufficiently small time step h.

Next, the coordinate t1 is advanced and for the perturbation we have to
solve the autonomous problem (x′ = εf [b](x, t1))

d

dt

[
U
V

]
=

[
0 −S(t1)

−Q(t1) 0

] [
U
V

]
, (24)

where the value of t1 is frozen. Since ∥Q∥ and ∥S∥ are small, it suffices, for
most practical purposes, to approximate the exact solution by a low order
Taylor method.

1 If the time is considered as two different coordinates as in the general separable case,
this structure of a perturbed integrable problem is lost.
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4 Differential games with N players

Let us now consider the problem of differential games with N players given by
the equations

x′(t) = A(t)x(t) +
N∑
i=1

Bi(t)ui(t), x(0) = x0 ,

and the quadratic cost function

Ji = xT (T )QiT x(T )

+

∫ T

0

xT (t)Qi(t)x(t) + uTi (t)Rii(t)ui(t) +

N∑
j=1,j ̸=i

uTj (t)Rij(t)uj(t)

 dt

i = 1, . . . , N . From [37], for a zero sum game it is necessary that Rij ̸= 0, i ̸= j,
but in a non-zero sum game it is natural to choose Rij = 0, i ̸= j, because
in the most frequent applications the cost function of each player does not
contain the other player control. In this way, the quadratic cost function Ji
depends only on the control ui.

Let us first consider a non-cooperative non-zero sum game where each
player, in order to minimize its cost function, determines his action in an
independent way knowing only the initial state of the game and the model
structure. Under these conditions the optimal controls are given by

ui(t) = −R−1
ii (t)BT

i (t)Pi(t)x(t) , i = 1, . . . , N,

where the matrices Pi, satisfy the coupled matrix RDEs

P ′
i = −Qi(t)−AT (t)Pi − PiA(t) +

∑N
j=1 PiSj(t)Pj (25)

with Si(t) = Bi(t)R
−1
ii (t)BT

i (t), i = 1, . . . , N . If we denote by

W (t) =

 P1(t)
...

PN (t)

 , C(t) =
 −Q1(t)

...
−QN (t)

 , D(t) =


AT (t) 0 · · · 0

0 AT (t) · · · 0
...

...
. . .

...
0 0 · · · AT (t)

 ,
B(t) = [−S1(t) · · · − SN (t) ] ,

then, the coupled system (25) can be written as

W ′(t) = C(t)−D(t)W (t)−W (t)A(t)−W (t)B(t)W (t) .

From [23,33], if we consider y(t) ∈ R(N+1)n×n the solution of the linear equa-
tion

y′(t) =

[
A(t) B(t)
C(t) −D(t)

]
y(t) ; y(T ) =


U(T )
V1(T )

...
VN (T )

 =


I
Q1T

...
QNT

 , (26)
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an indirect method to compute Pi(t) = Vi(t)U(t)−1 is obtained.
As in the previous case, we can integrate backward in time the coupled

RDEs (26) with a highly accurate method. Once the initial conditions are
obtained, we can integrate forward in time the whole system.

This problem has formally the same structure as the LQ optimal control
problem (but it has not an associated Hamiltonian), and the numerical inte-
gration can be carried out using the same methods as previously. The main
difference is on the qualitative properties, the size of the matrices, and then
the computational cost.

4.1 Integrators for the zero sum game

From [37], for a zero sum game it is necessary that Rij ̸= 0, i ̸= j. In this
way, the quadratic cost functions Ji depend on all controls ui, i = 1, . . . , N .
To simplify the presentation, we consider the case of two players. The coupled
Riccati differential equations to be solved are

P ′
1 = −Q1(t)−AT (t)P1 − P1A(t) + P1S1(t)P1 + P1S2(t)P2 + P2S22(t)P2 ,
P ′
2 = −Q2(t)−AT (t)P2 − P2A(t) + P2S2(t)P2 + P2S1(t)P1 + P1S11(t)P1 ,

with the final conditions, P1(T ) = Q1T , P2(T ) = Q2T , wherein

Sij(t) = Bi(t)R
−1
ij (t)BT

i (t) ; i = 1, 2 .

This problem can not be reformulated as a linear problem. This means we can
not use exponential methods as previously. To integrate backward the coupled
RDEs we can use a highly accurate method to reduce the error propagation.
A high order extrapolation method based on a symmetric second order inte-

grator, say Φ
[b]
h , would be a good choice. Then, this symmetric second order

method can also be used as the basic map in the composition (19) for the
forward time integration, and we can use the composition methods given in
(20).

5 Numerical examples

In order to test the performance of the numerical methods presented in this
work we consider the problem of air pollutant emissions studied in [25] and
we have generalized this problem to the case of N regions (N players) and the
constant parameters are replaced by time dependent functions

x′ = −a(t)x+ b(t)
N∑
i=1

ui(t); x(0) = x0.

Here x(t) ∈ R is the excess of the pollutant in the atmosphere, ui(t) ∈ R,
i = 1, . . . , N , denote the emissions of each region and a(t), b(t) are positive
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functions related with the intervention of the nature on environment. The cost
functions to minimize are given by

Ji =

∫ T

0

e−ρt
{
ci(t)u

2
i (t) + di(t)x

2(t)
}
dt , i = 1, . . . , N ,

where ci(t), di(t), are positive functions related to the costs of emission and
pollution withstand respectively, and ρ is a refresh rate.

In our notation, Rij = 0, i ̸= j, QiT = 0, Qi(t) = di(t)e
−ρt, Rii = ci(t)e

−ρt,
and Si = b(t)2eρt/ci(t), i = 1, . . . , N . Equation (26) becomes

y′(t) = K(t)y(t) , y(T ) = [1, 0, . . . , 0]
T
;

y(t) =


u(t)
v1(t)
...

vN (t)

 ; K(t) =


−a(t) −b(t)

2

c1(t)
eρt · · · − b(t)2

cN (t)
eρt

−d1(t)e−ρt a(t) · · · 0
...

...
. . .

...
−dN (t)e−ρt 0 · · · a(t)

 (27)

and need be solved from t = T to t = 0 to obtain an accurate approximation
to y(0). Then, the IVP

y′(t) = K(t)y(t) , y(0) = y0 ,

x′ =

(
−a(t)− b(t)2eρt

N∑
i=1

1

ci(t)

vi(t)

u(t)

)
x , x(0) = x0 ,

ui(t) = − 1

ci(t)
eρt b(t)

vi(t)

u(t)
x(t) , i = 1, . . . , N.

need be solved from t = 0 to t = T .

The new methods, denoted by SPn, where n is the order of the method
for the schemes with coefficients given in Table 1, will be tested versus the
following standard numerical methods:

– RK4: The well known 4-stage fourth-order Runge-Kutta method.
– ODE45: The variable step and variable order algorithm ode45 implemented

in Matlab.
– ODE113: The variable step and variable order algorithm ode113 imple-

mented in Matlab.

We consider the autonomous and non-autonomous cases separately. In all
cases we take T = 1, initial condition, x0 = 10, and consider the case of N = 10
players.
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The autonomous problem. This corresponds to the case ρ = 0 and the func-
tions a, b, ci, di take constant values, so K in (27) is a constant matrix and the
initial condition y(0) is given by

y(0) = e−TKy(T ).

The initial conditions for the matrix RDE are computed up to round off
accuracy and the performance of the methods is measured by taking into
account the forward time integration. The solution at t = T satisfies that
vi(T ) = 0, i = 1, . . . , N , and this is exactly satisfied, up to round off error, by
the splitting methods so we measure the error as |x(T ) − xap(T )|, where xap
is the approximated solution obtained by the numerical integrators and the
exact solution x(T ) is obtained numerically to a sufficiently high accuracy.

1. We first take the following values for the parameters:

a = b = 1, ci =
1

di
=

10 + i

2
.

We measure the accuracy versus the number of evaluations of the function
y(t), or equivalently of u(t) or vi(t), for each method when the numerical
integration is carried out using different values of the time step (or differ-
ent values for the absolute and relative tolerances for the methods ODE45
and ODE113). In the numerical experiments we consider AbsTol=10−i,
RelTol=101−i, i = 0, 1, 2, . . . For the splitting methods the cost corre-
sponds to the number of stages. Obviously, the splitting methods require
the evaluation of several exponentials of matrices and the computational
cost will depend on the problem. However, for the autonomous case most
exponentials can be computed and be stored at the beginning, and used
repeatedly along the integration.
Figure 1 shows the obtained results. We observe that the splitting meth-
ods show more accurate results at the same number of evaluations. The
performance of the new splitting methods could be further improved if the
algorithms were implemented with variable order and variable step, as it is
the case of ODE45 and ODE113, but this is very much problem dependent.

2. We repeat the same experiment taking

a = 2, b = 1, ci =
1

di
=

100 + i

2
.

This problem can be considered as a perturbed problem and we study the
performance of the splitting methods (4,2) and (8,4) for the splitting given
by (23) and (24), which are tailored for this class of problems.
We solve separately the dominant part of the system, given by the equations

u
v1
...
vN


′

=


−2 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · 2



u
v1
...
vN

 ,

u(tn)
v1(tn)

...
vN (tn)

 =


un
v1,n
...

vN,n





Title Suppressed Due to Excessive Length 17

0.5 1 1.5 2
−9

−8

−7

−6

−5

−4

−3

−2

SP2

SP4

SP6

RK4

ODE113

ODE45

LOG
10

(N. EVAL.)

LO
G

10
( 

|x
(T

)−
x ap

(T
)|

 )

Fig. 1 Error |x(T ) − xap(T )| versus the number of evaluations for the autonomous case
with 10 players and a = b = 1, ci = 1/di = (10 + i)/2.

x′ =

(
−2− eρt

N∑
i=1

1

ci

vi(t)

u(t)

)
x , x(0) = x0 , (28)

where the RDE has trivial solution, u(t) = e−2(t−tn)un, vi(t) = e2(t−tn)vi,n, i =
1, . . . , n, which we plug into the equation of the state vector

x′ =

(
−2− eρte4(t−tn)

N∑
i=1

1

ci

vi,n
un

)
x . (29)

The equation for the state vector has exact solution since it is a scalar
equation. Figure 2 shows the results obtained. The schemes SP4 and SP6
lead to slightly worst results and are not showed.

The non autonomous problem. We consider the one player case, N = 1, with
the following choice for the functions and parameters

a(t) = 2 + tanh

(
5(t− 1

2
)

)
, ρ =

1

10
, b = 1, c1 =

1

d1
=

11

2
.

where a(t) ∈ [1, 3], and we repeat the same experiments replacing the values
of c1, d1 by c1 = 1/d1 = 101/2, which makes the system closer to a near
integrable systems, in order to study the performance of the splitting methods
in this case. We consider the splitting (17) and the algorithm (18). The case
of one player corresponds to a LQ optimal control problem and, as already
mentioned, the solution of the RDE has to be a positive function. To show
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Fig. 2 Error |x(T ) − xap(T )| versus the number of evaluations for the autonomous case
with 10 players and a = 2, b = 1, ci = 1/di = (100 + i)/2.

the superiority of the splitting methods when this property is important to be

preserved, we measure the value of P (T ) = v(T )
u(T ) for each method and choice

of the time step. If this value is negative and smaller than a tolerance value,
which we take −10−8 (i.e. if Pap < −10−8) we marked this result with a circle.

Figure 3 illustrates the results obtained. The second order splitting meth-
ods preserves positivity for all time steps and the fourth- and sixth-order
splitting methods fail to preserve this property only for the largest time step,
contrarily to the standard RK method or the methods implemented in Matlab.
We observe that when the off diagonal coefficients of the RDE are small, the
superiority of the splitting methods is even higher. We have repeated the nu-
merical experiments with a higher number of players, and similar results are
obtained.

6 Conclusions

We have considered the numerical integration of linear-quadratic optimal con-
trol problems and N -player differential games. These problems require the
solution of non-autonomous matrix Riccati differential equations coupled with
linear differential equations for the dynamic state. This is a boundary value
problem where the RDE has positive definite solution matrices.

Direct algorithms for the numerical integration of the RDE of order greater
than one (one step schemes or strictly stable multistep schemes, explicit or
implicit) cannot guarantee that the solution stays positive definite. However,
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Fig. 3 Error |x(T )−xap(T )| versus the number of evaluations for the non-autonomous case
with 1 player and a(t) = 2 + tanh(5(t − 1/2)), b = 1, ρ = 1/10 and the following values
for c1, d1: Left panel c1 = 1/d1 = 11/2; right panel c1 = 1/d1 = 101/2. Solutions where
Pap(T ) < −10−8 are marked with a circle.

high order symplectic methods used as indirect methods to solve the associated
Hamiltonian system can guarantee the solution stays positive definite.

We present high order splitting and Magnus integrators that for this prob-
lem can be considered as exponential explicit methods (once the RDE has
previously integrated backward in time). In particular, we analyze the posi-
tivity of the solution for the associated matrix RDE.

The methods proposed are high-order explicit geometric integrators which
consider the time as two new coordinates. This allows us to integrate the whole
system forward in time while the solution of the RDE stays positive definite. If
the equations correspond to a near-integrable system, tailored splitting meth-
ods for perturbed systems provide a further improvement. The numerical ex-
amples considered showed the performance of the proposed methods as well
as the good preservation of some of the qualitative properties. Similar ideas
could be used for solving non-linear optimal control problems (e.g. some lin-
earization methods numerically solve iterative sequences of linear systems [5])
being this problem under consideration at this moment.
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