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Internal inductance of a conductor of rectangular cross section using 

the Proper Generalized Decomposition 
 

 
Abstract  

 

Purpose 

-Rectangular conductors play an important role in planar transmission line structures, multiconductor 
transmission lines, in power transmission and distribution systems, LCL filters, transformers, industrial 
busbars, MEMs devices, among many others. The precise determination of the inductance of such 
conductors is necessary for its design and optimization, but no explicit solution for the ac resistance and 
internal inductances per-unit length of a linear conductor with a rectangular cross section has been found, 
so numerical methods must be used. This paper introduces the use of a novel numerical technique, the 
Proper Generalized Decomposition (PGD), for the calculation of dc and ac internal inductances of 
rectangular conductors. 
 

Design/methodology/approach 
– The PGD approach is used to obtain numerically the internal inductance of a conductor with circular cross 
section and with rectangular cross section, both under dc and ac conditions, using a separated 
representation of the magnetic vector potential in a 2D domain. The results are compared with the analytical 
and approximate expressions available in the technical literature, with an excellent concordance. 

  

Findings 

– The PGD uses simple one-dimensional meshes, one per dimension, so the use of computational resources 
is very low, and the simulation speed is very high. Besides, the application of the PGD to conductors with 
rectangular cross section is particularly advantageous, because rectangular shapes can be represented with 
a very few number of independent terms, which makes the code very simple and compact. Finally, a key 
advantage of the PGD is that some parameters of the numerical model can be considered as additional 
dimensions. In this paper, the frequency has been considered as an additional dimension, and the internal 
inductance of a rectangular conductor has been computed for the whole range of frequencies desired using 
a single numerical simulation.  

 

Originality/value 
– The PGD is a promising new numerical procedure that has been applied successfully in different fields. In 
this paper, this novel technique is applied to find the dc and ac internal inductance of a conductor with 
rectangular cross section, using very dense and large one-dimensional meshes. The proposed method 
requires very limited memory resources, is very fast, can be programmed using a very simple code, and 
gives the value of the ac inductance for a complete range of frequencies in a single simulation. The proposed 
approach can be extended to arbitrary conductor shapes and complex multiconductor lines to further exploit 
the advantages of the PGD. 

 
  1. Introduction  

  
Rectangular conductors play an important role in planar transmission line structures, such as 

microstrip lines, coplanar strips, signal traces of printed circuit board (Holloway and Kuester, 2009), 

(Matsuki and Matsushima, 2012), in multiconductor transmission lines (Antonini et al., 1999), in 

power transmission and distribution systems (Morgan, 2013), (Brito et al., 2016), LCL filters used 

in high power variable speed drives (VSDs) and grid interconnections (Gohil et al., 2016), in 

transformers (Moghaddami et al., 2016), in industrial busbars used in  switchboards, distribution 

boards, or substation installations (Faiz et al., 2016), in electromagnetic devices equipped with flat 

coils (Rainey et al., 2007), in MEMs devices (Peters and Manoli, 2008), among many others. The 

precise  determination of the inductance of such conductors is necessary for its design and 

optimization (Martinez et al., 2014). 

Analytical solutions of the magnetic field and inductance of conductors are only available for the 

simplest shapes of cross sections, circular conductors (Morgan, 2013; Smith, 2014) and infinitely 

wide flat sheets (Berleze and Robert, 2003). For other shapes, such as the rectangular, triangular, or 

elliptical, only approximate expressions are available (Antonini et al., 1999; De Smedt, 2014; Freitas 

http://en.wikipedia.org/wiki/Electric_switchboard
http://en.wikipedia.org/wiki/Distribution_board
http://en.wikipedia.org/wiki/Distribution_board
http://en.wikipedia.org/wiki/Electrical_substation


et al., 2015; Holloway and Kuester, 2009; Holloway et al., 2013; Matsuki and Matsushima, 2012; 

Morgan, 2013; Tsiboukis and Kriezis, 1983). In this case, different techniques have been proposed 

in the technical literature for computing the inductance of the conductor, such as direct methods of 

the functional analysis in (Tsiboukis and Kriezis, 1983), analytic solutions (Martinez et al., 2014), 

(Högas et al., 2015), (Brandao Faria and Raven, 2013), or semi analytical approximations (De Smedt, 

2014), (Chassart et al., 2013). Nevertheless, one of the most used approaches has been the application 

of numerical techniques based in computational electromagnetics, which can be applied to 

conductors or arbitrary shapes. Integral equation methods have been proposed, for example in 

(Matsuki and Matsushima, 2012), and FEM models have been used in (Brito et al., 2016; Freitas et 

al., 2015; Faiz et al., 2016; Moghaddami et al., 2016). Nevertheless, the implementation of numerical 

methods has several drawbacks. Dirichlet conditions are usually set at infinity outer boundaries. This 

is achieved in FEM methods using a circular air boundary far enough from the conductors 

(Moghaddami et al., 2016), (Riba, 2015), which results in large domains to be meshed, or using 

special semi-infinite elements (Cardenas and Ezekoye, 2015), which introduces an additional 

complexity in the FEM code. Another drawback in the case of complex shapes is that the mesh must 

be very dense around corners and other geometric shapes where a high gradient of the field is 

expected, which increases greatly the number of degrees of freedom of the model, and hence, the 

requirement of computational resources (storage and processing time). 

To alleviate the aforementioned problems, a novel numerical technique, the proper generalized 

decomposition (PGD), has been proposed recently (Chinesta et al., 2013; Giner et al., 2013; Pineda-

Sanchez et al., 2010), and is applied in this paper to the computation of the internal inductance of a 

conductor with a rectangular cross section. The PGD allows the simultaneous use of very large 

domains, to properly establish the Dirichlet conditions at the infinite outer boundaries, with very 

dense meshes, to reduce the numerical errors of the simulation, without the penalties associated to 

traditional FEM approaches, because the number of unknowns scales linearly with the number of 

dimensions, instead of exponentially. Instead of using a single, dense multidimensional mesh for 

representing the geometrical domain, the PGD uses simple one-dimensional meshes, one per 

dimension, so that the use of computational resources is very low, and the simulation speed is very 

high. Besides, the application of the PGD to conductors with rectangular cross section is particularly 

advantageous, because rectangular shapes can be represented with a very few number of terms, which 

makes the code very simple and compact. Finally, a key advantage of the PGD is that some 

parameters of the numerical model can be considered as additional dimensions (Ammar et al., 2013), 

together with the geometrical ones. In the case of the computation of the inductance of a conductor 

at different frequencies, a traditional FEM approach would imply to solve the same geometrical 

model for each desired frequency, as in (Chiesa and Gustavsen, 2014). Instead, in this paper, the 

frequency has been considered as an additional dimension, and the internal inductance of a 

rectangular conductor has been computed for the whole range of frequencies desired using a single 

numerical simulation. 

The structure of this paper is as follows. In Section 2, the dc inductance of a conductor is defined, 

and the approximate expressions that have been proposed in the technical literature for the case of a 

rectangular conductor are presented. In Section 3, the PGD is applied to obtain the internal inductance 

of the conductor. First, the PGD is applied to a circular conductor, for which an analytical closed 

expression exits, and second, it is applied to a rectangular conductor. In both cases the concordance 

of the PGD results and the existing ones is excellent. In Section 4, the use of the PGD is extended to 

compute the internal inductance and resistance under ac conditions. In this section, the frequency is 

treated as an additional dimension, so that a single simulation gives the ac resistance and internal 

inductance of the conductor for a whole frequency range. The PGD results are again validated using 

a circular conductor, for which a closed solution exits. Finally, Section 5 presents the conclusion of 

the paper. 

 

 

 

 



2. DC internal inductance of a conductor 
 

The internal inductance Li per unit length of an infinitely long conductor of arbitrary shape is given 

by (Tsiboukis and Kriezis, 1983) 
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where I is the current, the integral is carried out over the cross section of the conductor, and it has 

been assumed that the permeability μ0 is constant throughout the conductor. Using a 2D model, and 

making use of the magnetic vector potential (MVP), which under this conditions has only one 

component, Az, directed along the direction of the current, the components of the magnetic induction 

𝐵̅ in (1) can be obtained as   

 

𝐵⃗ = ∇xA⃗⃗         ⇒       𝐵𝑥 =
𝜕

𝜕𝑦
𝐴𝑧   and   𝐵𝑦 = −

𝜕

𝜕𝑥
𝐴𝑧 (2) 

 
 

 
Fig. 1. Conductor with rectangular cross section parallel to the z-axis 

 

In the case of an infinitely long conductor with a rectangular cross section, fed with a constant, dc 

current I, as represented in Fig. 1, the MVP can be obtained by superposition of the MVP generated 

by the elementary, infinitesimally thin subconductors in which the rectangular conductor can be 

partitioned, all with the same current density, as in (Berleze and Robert, 2003). In this case, the 

following integral must be solved 
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Performing the derivatives of (2) directly inside the integral in (3), the components of the magnetic 

induction 𝐵̅ are given by 
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(4) 

 

and, from (1) and (4), the final expression of (1) is given by (Holloway et al., 2009) 
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As (Holloway et al., 2009) and (Morgan, 2013) point out, the integral (5) cannot be evaluated in 

closed form, because it results in polylogarithms, which cannot be expressed in terms of elementary 

functions. So, numerical integration of (5) is needed to compute the dc inductance of the rectangular 

conductor. To avoid this drawback, approximate formula have been proposed in (Holloway et al., 

2009) for the case of a small t/w ratio, and similar formulae have been derived in (Morgan, 2013), 

among many others.  One additional problem is that the integral that give the internal inductance of 

a conductor must be recomputed for each new shape of the conductor, as done in (Morgan, 2013) for 

elliptical and triangular cross sections. 

 
3. Proposed approach to obtain the dc internal inductance of a conductor using the 

PGD 
 

In this paper, the proposed method for obtaining the dc inductance of a rectangular conductor is based 

on solving the diffusion equation of the MVP of the conductor, fed with a constant dc current,  

  

𝜕2𝐴𝑧(𝑥, 𝑦)

𝜕𝑥2 +
𝜕2𝐴𝑧(𝑥, 𝑦)

𝜕𝑦2 = −𝜇0 · 𝐽0 (𝑥, 𝑦)      with  𝐴𝑧|𝑥=∞ = 𝐴𝑧|𝑦=∞ = 0 (6) 

 

where J0 is the density current through the conductor cross section. Using the PGD approach 

(Chinesta et al., 2013, 2011), the 2D MVP  𝐴𝑧(𝑥, 𝑦) is expressed as a sum of products of elementary 

one dimensional functions: 

 

𝐴𝑧(𝑥, 𝑦) = ∑𝑋𝑖(𝑥) · 𝑌𝑖(𝑦)

𝑛

𝑖=1

 (7) 

 

where n is the number of products, or modes, that approximate 𝐴𝑧(𝑥, 𝑦) with the desired precision. 

These modes are computed by the PGD algorithm using an iterative procedure which requires, at 

each step, the solution of simple 1D partial differential equations (PDEs), which makes the algorithm 

very fast. A brief explanation of the PGD applied to the solution of (6) is given in this section, 

although a detailed explanation of the PGD algorithm can be found in (Chinesta et al., 2013, 2011).  

 

The basis of the PGD approach is to work with separated representations of the MVP (7), unknown, 

and also of the imposed current density 𝐽0(𝑥, 𝑦), whose shape is the same as the conductor shape, 



𝐽0(𝑥, 𝑦) = ∑𝐽𝑥𝑗(𝑥) · 𝐽𝑦𝑗(𝑦)

𝑚

𝑗=1

 (8) 

 

To be able to solve (6) numerically, the boundary condition at infinity in (6) is replaced by a boundary 

condition on a finite domain, Ω = Ωx × Ωy = (−𝐿, 𝐿) × (−𝐿, 𝐿), so that 𝐿 is much greater than the 

dimensions of the conductor (in this work 𝐿 is 100 times the width of the conductor). Using (7) and 

(8), (6) can be expressed as 

 

∑
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𝑚

𝑗=1

  with  𝐴𝑧|𝑥=±𝐿 = 𝐴𝑧|𝑦=±𝐿 = 0 (9) 

 

       

The independent variables are no longer shown for simplicity. The functions 𝑋𝑖 and 𝑌𝑖 can be 

computed numerically, using an iterative non-linear procedure. Supposing that the first (n-1) modes 

have been computed, the nth mode, unknown, is obtained via a Galerkin procedure by replacing (7) 

in (6) 

 

𝐴𝑧 = ∑𝑋𝑖 · 𝑌𝑖 

𝑛
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∗    (10) 

 

∫ ∫ 𝐴𝑧
∗ [∑(

𝜕2𝑋𝑖

𝜕𝑥2
𝑌𝑖 + 𝑋𝑖

𝜕2𝑌𝑖

𝜕𝑦2
)

𝑛

𝑖=1

+ 𝜇𝑜 ∑𝐽𝑥𝑗 · 𝐽𝑦𝑗

𝑚

𝑗=1

]

𝑦=𝐿

𝑦=−𝐿
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(11) 

 

 

To find the mode n an iterative procedure is followed. Suppose that the function 𝑌𝑛 is known at a 

given iteration, that is, 𝐴𝑧
∗ = 𝑋𝑛

∗ · 𝑌𝑛 . The substitution of (10) in (11) gives 
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This corresponds to the PDE 
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And, passing all the known terms to the right hand side (RHS), gives 
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This equation is solved in the x domain with a simple 1D finite differences or a 1D FE method, giving 

the value of Xn in the present iteration. With this value, the computation of a new value of Yn is 

performed as 
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This corresponds to the PDE 
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and, passing all the known terms to the RHS, gives 
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This equation is solved in the y domain with a simple 1D finite differences or a 1D FE method, giving 

the value of Yn , finishing the present iteration. At every iteration the new values of Xn and Yn are 

compared with the previous ones, and if the absolute value of their difference falls below a predefined 

threshold, the iterations are finished, and the solution is updated with the new values, corresponding 

to the n mode. This iterative process begins again for computing the next n+1 mode. When the 

absolute value of the new mode falls below a predefined threshold, the solution is considered valid 

and the process finishes. The whole process starts assuming that no mode is known, that is, n=0. 

 

Among the advantages of using the PGD for obtaining the internal inductance of the conductor with 

rectangular cross section, the following ones can be highlighted: 

 

1. The 1D meshes used to obtain the 1D elementary functions 𝑋𝑖(𝑥) and 𝑌𝑖(𝑦) in the PGD 

algortihm can be very large and dense. If a mesh of 𝑁𝑥  nodes is used for the 𝑥 variable, and 𝑁𝑦 

nodes for the 𝑦 variable, the number of nodes of the mesh is not  𝑁𝑥 · 𝑁𝑦 , as expected when 

solving the 2D problem (6), because only 1D PDEs must be solved using (14) and (17). This 

feature allows for the use of uniform meshes that are, at the same time, very large, to properly 

establish the boundary conditions 𝐴𝑧|𝑥=∞ = 𝐴𝑧|𝑦=∞ = 0, and very dense, to reach a high 

precission in the computation of the internal inductance. The use of uniform meshes simplifies 

the solution of the problem, and in this paper the 1D PDEs have been solved using a simple 

finite difference method. 

2. In (9) not only the MVP 𝐴𝑧(𝑥, 𝑦) is expressed as a separated representation, but also the imposed 

density current 𝐽𝑜(𝑥, 𝑦) = ∑ 𝐽𝑥𝑗(𝑥) · 𝐽𝑦𝑗(𝑦)𝑚
𝑗=1  must be expressed as a sum of modes. Arbitrary 

cross sections shapes can be represented in separated form using the most significant 

components obtained with the singular value decomposition (SVD). This is a great strength of 

the proposed method, because, alongside with the use of uniform meshes indicated in the 

previous point, it implies that a unique implementation of PGD algorithm can deal with any 

shape of conductors, just changing the separated representation of the imposed current density, 

generated by the SVD of the conductor shape. The case of the rectangular shape is specially 

well suited to be expressed as a separated representation, because it can be represented using 

just one mode, and only a few modes are needed for complex shapes composed of rectangular 

shapes, as shown in Fig. 2. In fact, any arbitrary shape can be represented as a combination of 

rectangular strips. 

3. To obtain the components of the magnetic induction (2) from the solution of the MVP in (6) it 

is not necessary to compute the full 2D representation of (7). Instead, the derivatives in (2) can 

be made directly using the separated 1D representation of (7), which allows to perform the 

integral (1) using simple 1D domains. 



𝐵𝑥 =
𝜕𝐴𝑧(𝑥, 𝑦)

𝜕𝑦
= ∑𝑋𝑖(𝑥) ·

𝜕𝑌𝑖(𝑦)

𝜕𝑦

𝑛

𝑖=1

       and   𝐵𝑦(𝑥, 𝑦) = −
𝜕𝐴𝑧(𝑥, 𝑦)

𝜕𝑥
= −∑

𝜕𝑋𝑖(𝑥)

𝜕𝑥
· 𝑌𝑖(𝑦)

𝑛

𝑖=1

 

 

(18) 

 

 
 

Figure 2. Separated representation of a conductor with rectangular cross section (one mode, left), and with a 

more complex shape made of rectangular components (two modes, right). 

 

The proposed approach has been applied first to a circular conductor for which there exists an 

analytical solution, and after to a rectangular conductor with variable t/w ratio. 

 

3.1. DC inductance of a conductor with circular cross section 

 
In the case of a copper wire with circular cross section, the internal inductance is equal to 𝐿𝑖𝑑𝑐 𝑙⁄ =

𝜇
𝑜

8𝜋 = 50 nH /m⁄ . The conductor simulated has a diameter of 20 mm, and is placed at the centre of 

a 2 m x 2 m domain. The domain height and width have been chosen to be 100 times the diameter of 

the conductor, to establish the boundary conditions at infinity.  A uniform mesh of 100000 nodes has 

been used for discretizing each spatial dimension. 118 modes have been used to obtain the circular 

cross section in separated form. Fig. 3 shows the separated representation of the conductor and the 

MVP generated when it is fed with a constant dc current of 1000 A/m2. The inductance of this 

conductor obtained with the proposed method is 49.999 nH.  

 

                                             
 

Figure 3. Left: separated representation of the circular cross section shape, with a diameter of 20 mm,  using 

rectangular strips. Right: MVP generated by the conductor, fed with a constant current (1000 A/m2), obtained 

using the PGD with a rectangular domain (2m x 2m), which has been discretized using a uniform mesh for 

each spatial dimension (105 nodes each mesh). 



Fig. 4 shows a zoomed view of the MVP generated in the vicinity of the conductor, and also the 

modulus of the magnetic induction in the same area. The magnetic induction shown in Fig. 4, left, 

has been obtained using (18). 
 

 
Figure 4. Left: zoomed view of the MVP displayed in Fig. 3 in the vicinity of conductor. Right: modulus of 

the magnetic induction, obtained from (18). The limits or the conductor are displayed using a thick, black line. 

 

 

The MVP generated by the PGD algorithm as the solution to (6) is obtained in separate representation 

form, as given by (7). Fig. 5 shows the 𝑋𝑖(𝑥) functions used to build up the modes of the MVP in 

(7). Due to the symmetry of the model, the 𝑌𝑖(𝑦) functions are equal to the 𝑋𝑖(𝑥) functions, so they 

are not shown in Fig. 5. Each one of these functions has 105 values, so the total solution presented in 

Fig. 3, right, has been generated using a total of 2·10·105 values. An equivalent solution using a full 

2D mesh of the domain, with a mesh for each axis equal to the ones used in this work, requires a total 

number of values of to 1010, instead of the 2·106 values used by the PGD. Nevertheless, it is also 

important to remark that, separately, none of the functions 𝑋𝑖(𝑥) and 𝑌𝑖(𝑦) that form the modes (7) 

have any physical meaning. Only their added products, (7), has a physical meaning, the MVP which 

is generated by the conductor. 

 

  
 

Figure 5. Modes of the MVP (7) generated by the conductor of circular cross section obtained using the PGD. 

Left: 𝑋𝑖(𝑥) functions for the whole domain. Right: 𝑋𝑖(𝑥)  functions in the vicinity of the conductor. Due to the 

symmetry of the conductor, the 𝑌𝑖(𝑦) functions have the same shape as the 𝑋𝑖(𝑥)  functions, so they are not 

represented in the figure. 

  

 

 

 
 



3.2. DC inductance of a conductor with rectangular cross section 

 
The inductance of a conductor with a rectangular cross section has been obtained using the proposed 

method for different t/w ratios, and the results have been compared with the theoretical values given  

by (5), which has been integrated numerically. Fig 6 shows the results obtained with the PGD after 

solving (6) for the rectangular conductor, the MVP generated by the conductor (Fig. 6, left) and the 

modulus of the magnetic induction (Fig. 6, right). 

 

 
  
Figure 6. Left: MVP generated by a conductor with square cross section, (side length 0.02 m), fed with a 

constant current (1000 A/m2), obtained using the PGD  with a rectangular domain (2m x2 m), which has been 

discretized using a uniform mesh for each spatial dimension (105 nodes each mesh). Right: modulus of the 

magnetic induction generated by the conductor, obtained from (18). The limits or the conductor are displayed 

using a thick, black line. 

 

 

The internal dc inductance of the conductor with rectangular cross section has ben obtained for 

different t/w ratios, and a plot of the results is presented in Fig. 7, along with the results obtained by 

numerical integration of (5). 

 

 
 

Figure 7. DC internal inductance Lidc of a conductor with a rectangular cross section, for different aspect ratio. 

ratio t/w, computed using the analytical expression (5), and with the proposed approach. 



4. Proposed approach to obtain the ac internal inductance of a conductor using the 

PGD 

 
One of the advantages of the proposed method, besides the fact that it can be applied to complex 

shapes of conductors for whom no analytical formula such as (5) is available, is that it can be easily 

extended to obtain the internal inductance and resistance for any frequency, that is, taking into 

account the skin effect, which increases the resistance of the conductor and decreases its internal 

inductance (Chiesa and Gustavsen, 2014). As (Morgan, 2013) points out, no explicit solution for the 

ac resistance and internal inductances per-unit length of a linear conductor with a rectangular cross 

section has been found, so numerical methods must be used. 

 

 To take into account the skin effect, at any frequency f, (6) is replaced by 

 

𝜕2𝐴𝑧(𝑥, 𝑦, 𝑓)

𝜕𝑥2 +
𝜕2𝐴𝑧(𝑥, 𝑦, 𝑓)

𝜕𝑦2 = −𝜇0 · 𝐽 = −𝜇0 · (𝐽0 (𝑥, 𝑦) − 𝑗 · 𝜔 · 𝜎(𝑥, 𝑦) · 𝐴(𝑥, 𝑦, 𝑓))    (19) 

 

where 𝜔 (= 2 · 𝜋 · 𝑓) is the frequency in radians per second, 𝐽0 is the imposed current, and J is the 

total current density. Besides, as an additional advantage of using the PGD to obtain the 

internal ac inductance, the problem domain has been extended to include the frequency as 

an additional dimension,  

 

𝐴(𝑥, 𝑦, 𝑓) = ∑𝑋𝑖(𝑥) · 𝑌𝑖(𝑦)

𝑛

𝑖=1

· 𝐹𝑖(𝑓) (20) 

 

where 𝐹𝑖(𝑓) is a function of the frequency of the current source. In this way, instead of solving 

repeatedly the diffusion equation for each desired frequency, a single solution is found for (19), using 

a 3D MVP (20): two spatial dimensions and one frequency dimension. And adding the frequency as 

a parametric dimension can be done with a negligible computational cost (Chinesta et al., 2013). The 

proposed method has been applied to compute the resistance and the internal inductance of the 

circular and rectangular conductors of the previous section. 

 

 

4.1. AC inductance of a conductor with circular cross section 
 

The relation between the values of the dc resistance and dc internal inductance of a circular 

conductor, of radius rs and resistivity 𝜌, (𝑅𝑑𝑐  ,  𝐿𝑖𝑑𝑐) and their ac values for a given frequency f, 

(𝑅𝑖𝑎𝑐  , 𝐿𝑖𝑎𝑐) are available in closed form, as 

 

𝐿𝑖𝑎𝑐

𝐿𝑖𝑑𝑐
=

4

𝑚 · 𝑟𝑠
[
𝑏𝑒𝑟(𝑚 · 𝑟𝑠) · 𝑏𝑒𝑟′(𝑚 · 𝑟𝑠) − 𝑏𝑒𝑖(𝑚 · 𝑟𝑠) · 𝑏𝑒𝑖′(𝑚 · 𝑟𝑠)

(𝑏𝑒𝑟′(𝑚 · 𝑟𝑠))
2
+ (𝑏𝑒𝑖′(𝑚 · 𝑟𝑠))

2 ] 

𝑅𝑎𝑐

𝑅𝑑𝑐
=

𝑚 · 𝑟𝑠
2

[
𝑏𝑒𝑟(𝑚 · 𝑟𝑠) · 𝑏𝑒𝑖′(𝑚 · 𝑟𝑠) − 𝑏𝑒𝑟′(𝑚 · 𝑟𝑠) · 𝑏𝑒𝑖(𝑚 · 𝑟𝑠)

(𝑏𝑒𝑟′(𝑚 · 𝑟𝑠))
2
+ (𝑏𝑒𝑖′(𝑚 · 𝑟𝑠))

2 ] 
(21) 

 

where the parameter 𝑚 = √2𝜋𝑓𝜇𝑜 𝜌⁄  depends on the frequency, and 𝑏𝑒𝑟(𝑥), 𝑏𝑒𝑖(𝑥), 𝑏𝑒𝑟′(𝑥) y 

𝑏𝑒𝑖′(𝑥) are the Kelvin function of zero order. The ac resistance of the conductor is computed as 

𝑅𝑎𝑐 = ∫ |𝐽|2𝑑𝑆
𝑆

𝜎|𝐼|2⁄ , where S is the conductor cross section surface, 𝐽  is the current density and 

𝐼 is the total current. Fig. 8 shows the comparison between (21) and the results obtained with the 

proposed approach for a copper, circular conductor with a diameter equal to 20 mm. 

 



 

Figure 8. Left, ratio between the ac and the dc resistance (𝑅𝑎𝑐 𝑅𝑑𝑐)⁄ , and, right, ratio between the dc and the 

ac internal inductance (𝐿𝑖𝑎𝑐 𝐿𝑖𝑑𝑐)⁄ , for a circular conductor with a diameter of 20 mm. Both the analytical 

values obtained from (21), solid line, and the values obtained using the proposed PGD approach, dotted line, 

have been represented. 

 

 

4.2. AC inductance of a conductor with rectangular cross section 

 
The proposed procedure has been applied to the computation of the ac resistance and the ac internal 

inductance of a conductor with a squared cross section of 1 cm2, and the results are shown in Fig. 9. 

 

Figure 9. Left, ratio between the ac and the dc resistance (𝑅𝑎𝑐 𝑅𝑑𝑐)⁄ , and, right, ratio between the ac and the dc 

internal inductance (𝐿𝑖𝑎𝑐 𝐿𝑖𝑑𝑐)⁄ , for a square conductor with side length equal to 10 mm, obtained 

using the proposed PGD approach.  

 

 

   

5. Conclusions 

 
In this paper, the PGD has been applied to compute the dc inductance of a conductor of rectangular 

cross section, as a function of the height/width ratio. The results have been found coincident with the 

numerical integration of the analytical formula available for this case, which validates the proposed 

approach. The dc inductance of a conductor with an arbitrary shape can be easily computed with the 

proposed approach, just introducing the separated representation of its shape in (9). And this 

representation can be obtained easily using the SVD. Besides, the proposed approach has been 

extended to obtain the ac values of the resistance and internal inductance of a circular and a square 

conductor, and the results obtained coincide with those available analytically. As an added benefit of 

the use of the PGD, the frequency has been introduced in the formulation as an additional dimension, 



so that the results obtained are available as a “virtual chart”, which contains the solution for every 

frequency value within the range of frequencies selected. Following this approach, in a future work, 

the dimensions of the rectangular conductor will be introduced also as additional parametric 

dimensions, which will generate a single 3D solution (width, height and frequency) which contains 

the internal inductance and the resistance of a rectangular conductor for any frequency and for any 

dimensions of the conductor.  
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