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Abstract 16 

In this work, a seasonal quantile regression growth model for the gilthead sea bream (Sparus aurata L) 
17 

based on an aggregation of the quantile TGC models with exponent 1/3 and 2/3, named the “Quantile 
18 

TGC-Mixed Model”, is presented. This model generalizes the proposal of Mayer et al. (2012) in the sense 
19 

that the new model is able to describe the evolution of weight distribution throughout an entire production 
20 

cycle, which could be a powerful tool for fish farm management. The information provided by the model 
21 

simulations enables us to estimate total fish production and final fish size distribution, and helps to design 
22 

and simulate production and sales plan strategies considering the market price of different fish sizes, in 
23 

order to increase economic profits. The most interesting alternative in the studied case results in sending 
24 

all production when 0.25 quantile fish reach 600 g, although on each fish farm it would be necessary to 
25 

evaluate optimum strategy depending on its own quantile regression model, the production cost and the 
26 

market price. 
27 
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1.- Introduction 30 

Optimization of fish farm management is necessary to maintain and increase production 31 

profitability and ensure the sustainability of aquaculture. Aspects related with feeding 32 

management are very important, but are usually studied in terms of nutrient levels, 33 

ingredients and feeding rates, among other factors. Nevertheless, fish stock aspects such 34 

as seasonal growth, density, optimum harvest size and weight dispersion, among others, 35 

are largely unknown in Mediterranean marine species, although some studies have been 36 

carried out (Gasca-Leyva, E. Hernández, J.M., Veliov, V.M., 2008; Araneda, M.E.; 37 

Hernández, J.M., Gasca-Leyva, E., 2011, 2011; Araneda, M.E., Hernández, J.M., 38 

Gasca-Leyva, E., Vela, M.A., 2013; Dominguez-May, R., Hernández J.M., Gasca-39 

Leyva, E., 2011; Sánchez-Zazueta, E.; Hernández, J.M.; Martínez-Cordero, F.J., 2013). 40 

In recent years, production of gilthead sea bream (Sparus aurata L) and sea bass 41 

(Dicentrarchus labrax L) has increased and consequently the sale price has declined, 42 

making it necessary to adjust production costs (feed, fingerling, labour, etc.) and 43 

increase income. An alternative to improve income could be the added value of new 44 

products (fillet, pre-cooking, etc.), but also through optimization of the production 45 

process and stock management, for example by optimizing feed ingredients (Martínez-46 

Llorens, S., Tomas-Vidal, A., Jover, M., 2012), food rations (León, C. J., Hernández, J. 47 

M., Gasca-Leyva, E., 2001), optimum stocking (Seginer & Halachmi, 2008) or 48 

harvesting size in RAS (Seginer & Ben-Asher, 2011). In current offshore marine 49 

systems, classification of fish by size is not actually possible, as at the end of the 50 
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production cycle a variability of sizes is obtained and the final income depends on the 51 

percentage of fish size at harvesting, as the sale price depends on fish weight. 52 

To estimate and optimize several management aspects, it is essential to have good 53 

growth models adapted to each species and area of production. A large number of 54 

papers in recent years (Baer, A., Schultz, C., Traulsen, I., Krieter, J., 2011; Dumas A., 55 

France, J., Bureau, D., 2007, 2010; Dumas & France, 2008; Libralato & Solidoro, 2008; 56 

Mayer, P., Estruch, V.D., Blasco, J., Jover M., 2008, Mayer, P., Estruch, V.D., Martí, 57 

P., Jover M., 2009; Moses, M. E., Hou, C., Woodruff, W. H., West, G. B., Nekola, J. C., 58 

Zuo, W., Brown, J. H., 2008; Seginer & Halachmi, 2008) aim to describe and predict 59 

the growth of fish with different objectives. Almost all of them have in common that 60 

only the dynamic of the average value of the time-dependent weight is described by 61 

means of simple or multiple regression models, but weight dispersion is considered by 62 

few authors; for example, Mayer et al. (2009) in gilthead sea bream with quantile 63 

regression growth models, Hurtado-Herrera, M., Dominguez-May, R., Gasca-Leyva, E., 64 

(2013), in tilapia and Araneda et al. (2013) in white shrimp using characteristic growth 65 

curves for different fish sizes. 66 

The Thermal-unit Growth Coefficient (TGC) model was reported by Mayer et al. (2008, 67 

2009) and Mayer, P., Estruch, V. D., Jover, M., (2012) in gilthead sea bream. When 68 

determining the production conditions, the TGC model becomes an interesting 69 

management tool for describing growth in marine farms in the western Mediterranean. 70 

Mayer et al. (2012) establish two periods of growth for gilthead sea bream, using a 71 

simple regression mixed model for the mean of the weight based on two TGC models 72 

corresponding to two different exponents. 73 
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Except in recirculating systems, water temperature varies throughout the year, and for 74 

this reason, following previous works (Ursin, 1963; Akamine, 1993 Moreau, 1987, 75 

Fontoura & Agostinho, 1996; Hernández et al., 2003; León, C.J., Hernández, J.M., 76 

León-Santana, M., 2006; Seginer & Halachmi; 2008; Dumas & France, 2008), Mayer et 77 

al. (2012), included a sinusoidal temperature curve in the growth models to simulate the 78 

seasonal TGC growth.  79 

As mentioned above, in most of the studies that explore weight dynamics using 80 

mathematical models a simple description of the evolution of the mean weight at a 81 

given time interval is considered, which is acceptable as a reasonable exercise of 82 

simplification. However, in aquaculture the starting point is an initial population of fish 83 

provided by the hatchery whose weight follows a statistical distribution, which can be 84 

estimated from representative initial samples. It is undisputable that in-depth knowledge 85 

of various sizes in a batch at the end of the cycle would facilitate management in the 86 

aquaculture farm and knowledge of sizes could be obtained from the statistical 87 

distribution of the weight. Therefore, it seems reasonable to describe the evolved body 88 

weight distribution. Thus, in the event of achieving a good description of the changes in 89 

weight distribution versus time, a complete statistical description of the weight would 90 

be available at any time, and not only a simple average value.  91 

Quantile regression (Koenker & Bassett, 1978) helps estimate the evolution of the 92 

growth data distribution and is very suitable for analysing data in contexts characterized 93 

by heteroscedasticity, such as reference charts in medicine, survival analysis, financial 94 

and economics research or environment modelling (Yu, K., Lu & Z., Stander, J., 2003; 95 

Vaz, S., Martin, C. S., Eastwood, P. D., Ernande, B., Carpentier, A., Meaden, G. J., & 96 

Coppin, F., 2008). Linear quantile regression estimates multiple rates of change, 97 

providing more complete information about the relationships between variables than 98 
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that obtained from linear least square regression (Cade & Noon, 2003). Quantile 99 

regression has proved to be a powerful tool for the detection of different growth patterns 100 

caused by environmental conditions and the characteristics of the fish population 101 

provided by the hatcheries (Mayer et al. 2009). 102 

The aim of the current paper consists of developing a quantile regression approach to 103 

the gilthead sea bream growth in commercial production conditions, based on previous 104 

work presented in Mayer et al. (2012). Quantile regression is a radically different and 105 

alternative approach compared with the least-squares regression approach. So, a new 106 

study of TGC models is required, with different powers and focused on suitability of the 107 

mixed model from the quantile regression. Using a simulation model based on the TGC-108 

Mixed model, which considers the different stages throughout the growth period and the 109 

local sea water temperature curve, a dynamic management tool for fish farms will be 110 

test to improve fish stock growth estimates, optimizing production and maximizing 111 

profits considering the market sale price of fish. 112 

2.- Material and Methods 113 

2.1. Mathematical models 114 

The continuous and linearized growth model used by Mayer et al. (2012) was 115 

considered: 116 

).,(·)( 00 ttSTTGCWtW b
bb +=   (1) 117 

where t),ST(t0  (sometimes written ST for simplicity) represents the accumulated 118 

effective temperature (ºC) in the time interval [ ]t,t0  (days), ST(t0, t0)=0, W0 (g) is the 119 
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initial weight (when t=t0) and b is a dimensionless parameter which takes the values b 120 

=1/3 and b=2/3. 121 

The function that provides the water temperature at each time, T(t) (°C), is equal to the 122 

derivative with respect to time t of t),ST(t0 , i.e. dST(t0,t)/dt=T(t). Considering for each 123 

day, i, i=1,2,…,n, the mean of the daily temperature, Ti , an immediate discrete-time 124 

version of (1), is obtained (2) 125 

,2,1     ,
1

0 =⋅+= ∑
=

nTTGCWW
n

i
ib

b
n

b

 (2) 126 

If b=1/3, then we have the designated TGC model (Cho, 1992). Note that the function 127 

T(t) can take different expressions depending on environmental conditions (Akamine, 128 

1993). 129 

The equation (1) could be expressed in an equivalent integral form 130 

∫ ⋅+=
t

t

bb dttTbkWtW
0

)(· ·)( 0    (3) 131 

i.e. 132 

bt
b dttTbkWtW

1

0
0  )(·· )( 








+= ∫   (4) 133 

In the case of marine farms in Mediterranean fixed locations, the time-dependent water 
134 

temperature develops according to regular annual periods of 365 days modelled by the 
135 

function T(t) (ºC) (Mayer et al., 2012)  
136 

( )





 −⋅⋅+= απ tTTtT Dm 365

2sin )(  (5) 137 
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, where t ≥ 0, and mT (ºC) is the average annual temperature, DT (ºC) is the amplitude 
138 

and α  is a tuning parameter. The fitted values for the parameters of the temperature 
139 

function T(t), described in (5), corresponding to the sea area where the studied marine 
140 

farm is located, are Tm=18.8525, TD=-6.6997 and α=312.4609 and, in the case of 
141 

gilthead sea bream, it is more appropriate to use the effective temperature, T(t)-12, 
142 

instead of T(t) (Mayer et al., 2012). So, the weight at the day t, W(t) (g), is obtained  
143 

( ) ( ) ( ) ( )
(6)   

365
2

cos
365

2cos
2
36512

)(
1

0
00

b

Dmb
b αtπαtπ

π
TttTTGC+W

=tW


































 −
−






 −

−−⋅−⋅=
 144 

From the basic model described by the equation (6), three quantile regression models 
145 

were developed to simulate the indeterminate seasonal growth of gilthead sea bream. 
146 

Two of them were obtained by fitting the data to equation (2), assuming the values 
147 

b=1/3 and b=2/3 (as in Mayer et al., 2012), and the quantiles 0.025, 0.05, 0.10, 0.20, 
148 

0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.75, 0.80, 0.90, 0.95 and, 0.975. The third model was 
149 

built by aggregation of the two models mentioned before, establishing two stages of 
150 

growth for each quantile. 
151 

2.2. Data description, statistical analysis and design of the models 152 

Models have been developed considering actual data on final weight and its 
153 

corresponding actual values of accumulated effective temperature, starting at the 
154 

beginning of the cycle from several samples corresponding to 20 batches of farmed 
155 

gilthead sea bream in real conditions of growth (Mayer et al. 2008, 2009, 2012). More 
156 

specifically, the actual weights of 22805 fish were used for the fitting. Sampling and 
157 

biometrics were performed at various times in the course of the production cycle in each 
158 

batch. 
159 
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With the actual paired data available (sum of effective temperatures and weight), the 
160 

quantile regression fitting was performed considering the discrete model (7)-(8) 
161 

( )bbbf STTGCAW
1

,,, ⋅+= τττ   (7) 162 

i.e. 163 

STTGCAW bb
b
f ⋅+= τττ ,,,   (8) 164 

with b=1/3 and b=2/3. Values for Ab,τ and TGCb,τ were estimated by means of quantile 
165 

regression, using the “quantreg” procedure available in package R (Koenker, 2008), for 
166 

the quantiles τ =0.025, 0.05, 0.10, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.75, 0.80, 
167 

0.90, 0.95 and, 0.975. According to the generic model (7)-(8) and (2), values Abτ, 
168 

correspond to estimations of initial weight raised to the power b, bW τ,0 , b=1/3, b=2/3, 
169 

which should be approximately equal to the corresponding percentiles obtained by 
170 

analysing the weight distribution corresponding to the start of cycle in the case of a 
171 

good fit. These two models, b=1/3, b=2/3, are integrated into one by computing the 
172 

critical points of change in the growth dynamic, in a similar way to that described in 
173 

Mayer et al. (2012). The non-zero solutions for W in (9) for the different τ quantiles are 
174 

theoretical critical values of the weight in which the instantaneous rate of change, in 
175 

terms of weight depending on accumulated temperature, is the same for both models.  
176 

3/13/23/23/1 ·
3/2

·
3/1

W ,TGCW ,TGC ττ =   (9)
 

177 

So, the hypothesis is assumed that in the critical values of the weight a smooth 
178 

transition from the dynamic described by the model given by (7) with b=1/3 to the 
179 

dynamic described by the model with b=2/3 occurs. 
180 
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Once the values τW0,  and TGCb,τ, have been computed to estimate the evolution of the 
181 

weight distribution of gilthead sea bream, two simulation models were considered for 
182 

each quantile from equation (6) with b=1/3 and b=2/3, and assuming the temperature 
183 

function, T(t), given in (5). These models were designated the seasonal quantile 1/3-
184 

TGC model and the seasonal quantile 2/3-TGC model, respectively.  
185 

From the seasonal quantile models 1/3-TGC and 2/3-TGC, taking into account the 
186 

critical values of the weight obtained previously, the definitive simulation model, 
187 

named quantile seasonal TGC-Mixed model was built by aggregation. 
188 

The values Ab,τ = bW τ,0  and TGC,τ
,, obtained by means of quantile regression, after 

189 

linearization (Eq. 8), for models with b=1/3 and b=2/3, are shown in Table 1. It is 
190 

necessary to remark that the value A2/3,0.025=-0.517<0 is unacceptable because 
191 

A2/3,0.025= 3/2
025.0,0W  and the result of squaring a number cannot be negative. 

192 

Table 2 shows the quantile critical weight values of the weight, Wc,τ, and the sum of 193 

effective temperatures, STτ, at which the critical weight values are reached.  194 

Fig. 1 shows the actual data (black points) and the graph of the fitted quantile models 195 

for τ=0.025, 0.05, 0.25, 0.50, 0.75, 0.95 and 0.975. The dashed line corresponds to the 196 

quantile τ=0.50. The TGC-1/3 model, the TGC-2/3 model and the TGC-Mixed model 197 

are represented in Fig. 1 a, b and c, respectively. Note that Fig. 1 a shows clearly that 198 

the TGC-1/3 model tends to overestimate weight as from a certain moment in the 199 

growth cycle.  200 

To obtain the quantile TGC-Mixed model, the quantile TGC-1/3 model and the quantile 201 

TGC-2/3 model are coupled for each quantile, τ, in the critical weight values which are 202 
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obtained considering that instantaneous growth rates based on the cumulative effective 203 

temperature must be the same for the quantile TGC-1/3 models and the quantile TGC-204 

2/3 models. The non-zero critical values of weight are obtained by solving Wc,τ in (9): 205 

Wc,τ = 1/8 (TGC2/3,τ / TGC1/3,τ) g. So, the TGC-1/3 model is considered until the weight 206 

reaches the critical weight. From that moment on, the TGC-2/3 model is considered for 207 

estimating the weight, assuming the critical weight as the initial weight. This coupling 208 

of the TGC-1/3 and TGC-2/3 gives rise to the TGC-Mixed model. Fig. 1 b justifies that 209 

the TGC-2/3 model explains the growth better than the TGC-1/3 model, starting from a 210 

certain point in the growth period, and this property is inherited by the TGC-Mixed 211 

model in Fig. 1 c. 212 

Valuation of the goodness of fit is not immediate in the case of quantile regression. So, 213 

the overall analysis of the quantile model’s goodness of fit was approached from 214 

various angles. On one hand, by computing the coefficient R1(τ), τ ∈ ]0,1[ (Koenker & 215 

Machado, 1999), which is a natural analogue of Coefficient of Determination, R2. While 216 

R2 is a global measure of goodness of fit in terms of residual variance, R1(τ) is a local 217 

measure of goodness of fit for a particular quantile τ, and measures the relative success 218 

of the model at a specific quantile, in terms of an appropriately weighted sum of 219 

absolute residuals. The of value of R1(τ), τ ∈ ]0,1[ also lies between 0 and 1, and 220 

considering R1(τ) as a function of τ, we can obtain a global measure of goodness of fit 221 

of the quantile regression in the range τ ∈ [ 0τ , 1τ ] ⊂ ]0, 1[, by means of the average 222 

value of the function R1(τ) in the interval [ 0τ , 1τ ], 1
]10[ τ,τR , which is computed as is 223 

shown in (10): 224 
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[ ]

( )

01

1

0

1

1

10 ττ
τ

dττR

=τ,τR
−

∫
τ

  (10) 225 

In practice, we only have discrete information from the functions R1(τ),τ ∈ [ 0τ , 1τ ] for 226 

the three models, which correspond to the specific τ values considered in the quantile 227 

regression fit. So, we compute approximations to the 1
75][0.025,0.9R  coefficients for the 228 

three models, approximating the integrals (10) numerically by means of the trapezoids 229 

method. 230 

The goodness of fit valuation is completed by comparing the distribution of the initial 231 

weights of fishes provided by the hatchery and those obtained in the last sampling, with 232 

the theoretical distributions deducted from the quantile model. By means of Pearson’s 233 

Chi-square test, the discrepancy between the observed and the theoretical distributions 234 

are evaluated, indicating whether the differences between the two distributions, if any, 235 

are due to chance. It is interesting to examine the value of chi-square statistic χ², which 236 

allows us to assess the degree of similarity between the theoretical distribution and the 237 

empirical distribution deducted from the actual data. The fit between the two 238 

distributions is greater if the value of the statistic χ² is smaller. In addition, the p-value 239 

lets us assess whether the hypothesis that the two distributions could really be the same 240 

is acceptable. 241 

The outcome is that the TGC-Mixed model is the one which best fits the actual 242 

evolution of the weight distribution depending on the cumulative effective temperature, 243 

taking into account the different goodness of fit results. To analyse the goodness of fit 244 

in all three models, the )(1 τR  values for the considered quantiles and the average value 245 
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for the function 1
τR , τ∈[0.025,0.975], denoted 

1
]975.0,025.0[R , were computed (Table 3). 246 

The global valuation of the goodness of fit given by 
1

]975.0,025.0[R  is similar for the 2/3 247 

and the TGC-Mixed models, and clearly worse for the 1/3 TGC-model. 248 

The assessment of the goodness of fit is completed by comparing the actual weights of 
249 

the initial samplings and the last actual sampling weights (represented by the quantiles 
250 

computed from the data) with the theoretical quantiles of the initial and final weights 
251 

provided by the models, respectively (Table 4 and Table 5). From Table 4, we can 
252 

accept that the estimated distribution of the initial weight, obtained from the 1/3 TGC 
253 

model quantile regression fitting (which coincides initially with the TGC Mixed model), 
254 

is the same as the initial distribution of weight deduced from the actual data (p-
255 

value=0.99). On the other hand, we can reject that the estimated distribution of the 
256 

initial weight, obtained from the 2/3 TGC model quantile regression, is the same as the 
257 

initial weight distribution deduced from the actual data (p-value<0.0001). 
258 

The analysis of the weight distribution of the last sample is summarized in Table 5, 
259 

which shows that we reject the hypothesis that the estimated distribution for the final 
260 

sample is the same as the weight distribution deduced from the actual data for the three 
261 

models. However, although that the p-values would be especially interesting as 
262 

indicators of the level of match between distributions, the Chi-Square value provides a 
263 

good measure to establish which model better fits the actual distribution. When 
264 

observing Chi-square values in table 5, we may deduce that the TGC-Mixed model is 
265 

the one that better fits the distribution corresponding to the last sample of weights. 
266 

Table 5 also shows that the TGC-Mixed model is the best fitting central quantiles and 
267 

that TGC 1/3 model overestimates the weight with respect to the last sample of actual 
268 

data for all quantiles, but mainly for the upper quantiles. From the above results, it can 
269 
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be deduced that the TGC-Mixed model is the one that best fits the evolution of the 
270 

weight distribution depending on the cumulative effective temperature. 
271 

To simulate the growth of gilthead sea bream, two seasonal quantile regression models 
272 

based on equation (6) are established: the seasonal quantile TGC-1/3 model (b=1/3) and 
273 

the seasonal quantile TGC-2/3 model (b=2/3). Next, from the former models, TGC-1/3 
274 

and TGC-2/3, we constructed the seasonal quantile TGC-Mixed model:  
275 

3

0,3/1
3
1

,0, ),( )( 









⋅+= ttSTTGCWtW f τττ ,     if Wf,τ (t) < Wc,τ  (11) 276 

2
3

0,3/2
3
2

,0, ),( )( 









⋅+= ttSTTGCWtW f τττ ,     if W0,τ, (t)≥ Wc,τ  (12) 277 

For each quantile, τ, to estimate final weights greater than the critical weight, Wc,τ,, we 278 

consider the model curve corresponding to the TGC-1/3 model until it reaches the 279 

critical weight (Table 2), and following that moment, considering the critical weight as 280 

the initial weight and resetting the initial time in the cumulative temperature function 281 

ST, the final weight will be estimated using the curve corresponding to the TGC-2/3 282 

model.  283 

Therefore, for each quantile τ, up to a final weight less than Wc,τ, the TGC-Mixed model 284 

coincides with the TGC-1/3 model. In the case of an initial weight greater than or equal 285 

to Wcτ g, the TGC-Mixed model coincides with the TGC-2/3 model. The TGC-Mixed 286 

model leads to a continuous curve representing the final weight for the considered 287 

quantiles of gilthead sea bream. Moreover, the curves are also differentiable at all times 288 

because the TGC- Mixed model is constructed so that when the weight is exactly Wcτ g, 289 

the derivatives of the functions that define the models TGC-1/3 and TGC-2/3 coincide. 290 
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Thus, the transition from the quantile TGC-1/3 model to the quantile TGC-2/3 model 291 

occurs smoothly, without sharp points.  292 

The quantile regression fit for the TGC-1/3 model and TGC-2/3 model provides two 
293 

values for each quantile: the initial weight and the value of the TGC. Therefore, when 
294 

considering the different quantiles, each model provides an empirical distribution of the 
295 

initial weight (Table 4). The fit of the data to the TGC-1/3 Model provides a theoretical 
296 

well fitted distribution of the initial weights of the fish supplied by the hatchery, i.e. the 
297 

theoretical distribution practically coincides with that deduced from the analysis of the 
298 

samples corresponding to the beginning of the cycle. Moreover, the initial weight 
299 

distribution deduced from the quantile 2/3-Model is not consistent with the actual initial 
300 

weights. From an inferential approach, it could be interesting to prove that the TGC 
301 

values corresponding to the different quantiles are significantly different, from the 
302 

statistical point of view. If the TGC corresponding to different quantiles is not different, 
303 

the growth only depends on the initial weight. But this is not the case. Using the 
304 

ANOVA test proposed in Koenker & Bassett (1982) we studied the behaviour of the 
305 

quartiles (τ=0.25, 0.50 and 0.75) and found that the differences for the TGC 
306 

corresponding to the quartiles are statistically significant for the TGC-1/3 model (p-
307 

value<0.000) and for the TGC-2/3 model (p-value<0.000). So, to describe the evolution 
308 

of the weight distribution over time, we need to know the distribution of the initial 
309 

weight and the TGC values associated with the different quantiles. A smaller Chi-square 
310 

value in tables 4 and 5 means that the distributions are more similar. The p-value 
311 

indicates to what extent it would be reasonable to accept the hypothesis that the 
312 

distributions compared are identical. By and large, it is desirable that the actual and the 
313 

estimated distributions should coincide at the beginning of the cycle, and moreover that 
314 

the actual and estimated distributions at the end of the cycle are compatible, i.e. do not 
315 
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differ too greatly. In this sense, the excellent goodness of fit of the initial weights 
316 

provided by the quantile TGC-1/3 Model is a fundamental aspect inherited by the mixed 
317 

model. On the other hand, the quantile TGC-2/3 model provides a better overall fit 
318 

compared to that obtained from the quantile TGC-1/3 model, as the TGC-2/3 model fits 
319 

the weights better at later stages of the cycle, which is not only evident observing the 
320 

Fig. 1, but also from the values R1(τ) and 
[ ]
1

50.025,0.97R  (Table 3). This positive feature of 
321 

the quantile 2/3-Model is also inherited by the mixed model. Therefore, we can say that 
322 

the quantile TGC-Mixed model captures the best features of the TGC- 1/3 and TGC-2/3 
323 

models. 
324 

Note the great importance of a good fit of the model to the sample distribution at the 
325 

outset, as the model should explain the generic distribution of the weight of the fishes 
326 

provided by the hatchery. On the other hand, requiring an excellent fit of the weight 
327 

distribution obtained from the model to the final sample has relative importance. 
328 

Obviously, the actual weights at the end of the cycle may be above or below 
329 

expectations. To validate the model from the point of view of the weight distribution at 
330 

the end of the cycle, it would be reasonable to see that the results are within what the 
331 

experience of the marine farm indicates as reasonable margins for the actual production, 
332 

which is sufficiently justified for the TGC-2/3 and the TGC-Mixed models (Table 5). In 
333 

summary, taking into account the results for establishing the goodness of fit for the 
334 

three models, the TGC-Mixed model is the best model for explaining the growth over 
335 

the entire production cycle. 
336 

3.- Results and discussion 337 

In a similar way as in Mayer et al. (2012), the development of the quantile TGC-Mixed 338 

model indicates a range of weights in which a change in the growth dynamic should be 339 
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considered. In 95% of the cases, in the time period when the sum of effective 340 

temperatures is in the interval that goes from 1144 ºC to 1642 ºC, i.e. when the weights 341 

are in the interval from 70.7 to 189.17 g, the growth dynamic changes. Moreover, the 342 

change occurs earlier for larger fish than for smaller ones (see Table 2). The results 343 

agree with those obtained in Mayer et al, 2012, where a weight around 117g is 344 

suggested for establishing a point in the change of the dynamics of the evolution of the 345 

mean of the weights from the TGC-1/3 model to the TGC-2/3 model. 346 

We developed a MATLAB© script, which allows us to make simulations introducing a 347 

start date of the cycle and an end date as the inputs. As an example of growth simulation 348 

using the quantile TGC-Mixed model, the evolution of growth distribution for several 349 

batches (starting in mid-March, mid-May, mid-July and mid-September, i.e. at days 75, 350 

136, 197 and 259, respectively, of a year considering that January 1 is the day 1) is 351 

shown (Fig. 2). In all cases, for a better view of the behaviour, the figures represent the 352 

period until the curve corresponding to the 0.20 quantile reaches a weight equal to 500 353 

g. 354 

The curves obtained from simulation of the quantile TGC-Mixed model are similar to 355 

those used in paediatrics to assess the growth of children, except that in our case we 356 

obtain the curves adapted to the starting date of the production cycle, i.e. the starting 357 

date of growth. 358 

Note that it would be necessary for each fish farm to dispose of its own and 359 

characteristic quantile growth curves, which would be obtained on the basis of local 360 

temperature and data from historical growth in many batches. A continuous feedback 361 

process could be considered for improving the curves by adding information on growth 362 

of new batches. For correct use of the quantile model by the fish farm manager, the 363 
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quantile curves could serve as a reference to evaluate the general evolution in time of 364 

the weight distribution of a batch on the farm. For example, growth can be assessed by 365 

comparing the relative position of the quantiles of a sample with those deduced from the 366 

curves.  367 

Knowledge of the weight distribution at any time allows us to obtain approximations of 368 

any statistical value, which is an important tool for fish farm managers. To this end, it 369 

should be necessary to consider mainly the curves corresponding to core values 370 

(quantiles 0.25-0.75), because the lowest and highest curves, corresponding to the 371 

lowest and highest quantile values, respectively, represent the extreme variability of 372 

production in the plant. In Fig. 3, a simulation of several gilthead sea bream batches was 373 

performed, starting in March, May, July and September, considering the different 374 

weight intervals when the three quantiles, 0.25, 0.50 and 0.75 reach the weights 400, 375 

500 and 600 g, which will allow the evaluation of several alternatives and sale values. It 376 

can be observed that there are practically no differences in the final distribution of the 377 

final weights for different simulated batches, in each interval of weight and quantile. 378 

Nevertheless, there are important differences for the number of days that the quantiles 379 

need to reach, for example, 400, 500 or 600 grams (Fig. 4). It can be seen that fish in 380 

quantile 0.75 take less time (407, 466 or 531 days respectively, as average of simulated 381 

four batches) than those belonging to quantile 0.50 (443, 524 or 602 days), or quartile 382 

0.25 (508, 587 or 662 days). If technology for size sieving in marine cages was 383 

available, big fish from the 0.75 quartile could be sold first and fish from the 0.25 384 

quartile last, optimizing fish management and achieving economic benefits, but this is 385 

currently not possible, so fish farm managers have to decide the time for harvesting. 386 

Obviously, the production cost is reduced when the growth cycle is shorter, but the total 387 
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fish biomass sold and sales income will also be lower, so an equilibrium point for 388 

optimizing profit must be evaluated. 389 

In Table 6, an estimation of final biomass and economic value is shown in each weight 390 

interval, which was developed for different alternatives, mean fish weight (400, 500 and 391 

600 g) and quantiles (0.25, 0.50 and 0.75), considering the average of four batches. For 392 

biomass estimation, we considered 300000 fish per cage and 85% survival, if we have 393 

an estimation of the total number of fish, for each day of the cycle, the quantiles curves 394 

allows us knowing the biomass corresponding to any quantile, the biomass 395 

corresponding to each interval of weights and obviously the total biomass. For 396 

economic value, we obtained the sales price of different sea bream sizes from a 397 

commercial fish farm in the Mediterranean Sea.  398 

Fish production increases with fish weight in each quantile, and also the total sales 399 

value, and both are highest for the 0.25 quantile in relation to the 0.50 and 0.75 400 

quantiles, as when 0.25 quantile fish reach the fish mean weight (i.e. 400, 500 and 600 401 

g), there are many bigger fish (Fig. 3). The higher production figures (174 tons) and 402 

value (897 thousand euros) are obtained by considering quantile 0.25 and 600 g, and 403 

lower production (87 tons) and value (372 thousand euros) by alternatively considering 404 

quantile 0.75 and 400 g. Obviously, the time for growth until the fish reach a higher 405 

weight, 662 and 407 days respectively, entails a higher production cost, so a new 406 

approach becomes necessary. 407 

Income value of sales in relation to days and production volume are presented in Fig. 5. 408 

Daily value (€day-1) increases in large fish for all quantiles, being maximum for 0.25 409 

quantile, and a similar trend is obtained for total value per unit of production (€ Kg-1 410 

fish). Nevertheless, daily value per production (€ Kg-1 fish day-1) is opposite, and high 411 
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values are obtained by considering quantile 0.75 and 400 g, and lower by alternatively 412 

considering quantile 0.25 and 600 g. 413 

Thus, sale strategies could be designed with the aim of sending fish in the interval 400-414 

500, 500-600 or 600-700 g, when these weights are reached, first by the 0.75 quantile, 415 

then by the 0.50 quantile and finally by the 0.25 quartile (Table 7). It seems that the 416 

most profitable alternative would be to send 158 tons of fish weighing 600-700 g, with a 417 

sale income of 752 thousand euro, but if the market accepts a great variability of fish, 418 

from 200 to 800 g, the maximum income would be when the 0.25 quantile reaches 600 419 

g (Table 6), because the sent biomass has reached a maximum, 174 tons, and the 420 

income would be around 897 thousand euro.  421 

Nevertheless, the selected strategy should be applied on each fish farm, taking 422 

production cost and the market price into account, because if the value of small or large 423 

fish was lower, the economic results could be very different. For example, Seginer & 424 

Ben-Asher (2011) reported an increase in sale price related with gilthead sea bream 425 

weight and although production cost in a RAS system also rose with fish size, the profit 426 

was higher as the harvest size increased. 427 

5.- Conclusions 428 

The quantile regression TGC-Mixed model specifically developed for the plant provides 429 

a good global representation of the variability of fish growth in the fish farm over the 430 

entire production cycle. Thus, the growth model allows simulations of growth, 431 

providing the variability of the weight throughout the production cycle and values 432 

closer to reality of the total biomass, and its size distribution which is the most 433 

important. The information obtained from the growth simulation provided by the model 434 

is very powerful because it allows us to design and simulate sales plans taking the sale 435 



20 
 

price into consideration, with a view to optimizing management and economic profits 436 

on each fish farm.  437 
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 533 

Figure 1. Growth curves of sea bream considering three quantile models:  
534 

TGC-1/3, TGC-2/3 and Mixed model (dashed curves corresponding to 0.50 quantile and, from bottom to 
535 

top, the curves corresponding to the quantiles 0.025, 0.05, 0.25, 0.50, 0.75, 0.95 and 0.975). 
536 

 537 
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 538 

a) March Batch b) May Batch 

 

c) July Batch 

 

d) September Batch 

Figure 2. Simulation of sea bream growth considering four batches: March, May, July and September 
(Dashed curves corresponding to 0.5 quantile and, from bottom to top, the curves corresponding to the 
quantiles 0.025, 0.05, 0.1, 0.2, 0.25, 0.30, 0.40,0.50, 0.60, 0.70, 0.75, 0.80, 0.9, 0.95 and 0.975, bold 

dashed lines correspond to quantiles 0.20 and 0.80). 
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539 

Figure 3. Simulation of percentage of gilthead sea bream in each weight interval when the quantiles (0.25, 0.50 and 0.75) reach the weights 400, 500 and 600 g 
540 
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541 

Figure 4. Duration of production cycle (days) of gilthead sea bream computed so that the quantiles 0.25, 
542 

0.50 and 0.75 reach the weights 400, 500 and 600 g 
543 
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544 

Figure 5. Economic values of sea bream sales in each weight interval for the quantiles 0.25, 0.50 and 
545 

0.75, and weights 400, 500 and 600 g 
546 
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547 

Table 1. Estimated values of Ab,τ and TGCb,τ   for the two quantile models TGC-1/3 and TGC-2/3 
548 

Quantile (τ) τ,3/1A  TGC1/3,τ τ,3/2A  TGC2/3,τ 
0.025 1.783 0.001432 -0.517 0.011841 
0.05 2.047 0.001407 0.291 0.012687 
0.10 2.289 0.001415 1.443 0.013387 
0.20 2.540 0.001433 3.309 0.013769 
0.25 2.627 0.001441 3.886 0.014014 
0.30 2.720 0.001443 4.569 0.014167 
0.40 2.856 0.001459 5.608 0.014553 
0.50 2.994 0.001471 6.488 0.014910 
0.60 3.110 0.001494 7.368 0.015288 
0.70 3.250 0.001510 8.277 0.015755 
0.75 3.302 0.001530 8.776 0.016067 
0.80 3.391 0.001540 9.420 0.016303 
0.90 3.598 0.001570 11.104 0.017163 
0.95 3.758 0.001600 12.341 0.017878 

0.975 3.893 0.001615 13.391 0.018542 
 549 

 550 

Table 2. Sum of effective temperature and sea bream weight at the critical point  551 

Quantile (τ ) STτ Wc,τ 
0.025 1642 70.7 
0.05 1749 91.6 
0.10 1725 105.9 
0.20 1580 110.9 
0.25 1551 115.0 
0.30 1517 118.3 
0.40 1461 124.1 
0.50 1410 130.2 
0.60 1343 133.9 
0.70 1303 142.0 
0.75 1274 144.8 
0.80 1235 148.3 
0.90 1190 163.3 
0.95 1143 174.4 

0.975 1144 189.2 
 552 

 
553 
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Table 3.-Values of goodness coefficient R1(τ) and of R1
 [0.025-0.975]  for the three quantile models:  

554 

TGC-1/3, TGC-2/3 and TGC-Mixed Model 
555 

 
556 

 R1(τ) 
Quantile (τ) 1/3-Model 2/3-Model Mixed-Model 

0.025 0.500 0.521 0.412 
0.05 0.552 0.539 0.462 
0.10 0.677 0.617 0.546 
0.20 0.689 0.651 0.611 
0.25 0.615 0.622 0.581 
0.30 0.667 0.631 0.645 
0.40 0.636 0.608 0.659 
0.50 0.575 0.728 0.600 
0.60 0.592 0.618 0.690 
0.70 0.578 0.622 0.686 
0.75 0.588 0.636 0.630 
0.80 0.559 0.615 0.674 
0.90 0.529 0.578 0.638 
0.95 0.614 0.643 0.651 

0.975 0.624 0.649 0.657 
1

975.0,025.0[R
 0.576 0.627 0.627 

 557 

 558 

 559 

Table 4.-Values of the actual quantiles and estimated quantiles for the initial weight 
560 

 Initial weight W0,τ 

Quantiles (τ) 
Actual data 
(n=1133)      1/3-Model  Mixed-Model 2/3-Model 

0.025 9.00 5.67 5.67 - 
0.05 11.00 8.58 8.58 0.16 
0.10 14.00 12.00 12.00 1.73 
0.20 17.00 16.38 16.38 6.02 
0.25 18.00 18.14 18.14 7.66 
0.30 20.00 20.12 20.12 9.76 
0.40 23.80 23.30 23.30 13.28 
0.50 26.00 26.85 26.85 16.53 
0.60 28.00 30.09 30.09 19.99 
0.70 35.00 34.33 34.33 23.81 
0.75 37.00 36.00 36.00 26.00 
0.80 40.00 39.00 39.00 28.91 
0.90 48.00 46.56 46.56 37.00 
0.95 52.00 53.07 53.07 43.36 

0.975 58.00 59.00 59.00 49.00 
Chi-Square  3.33 3.33 919 

d.f.  14 14 13 
p-value  0.99 0.99 <0.0001* 

 
561 
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562 

 
563 

 
564 

Table 5.-Values of the actual quantiles and estimated quantiles for the final weight considering three 
565 

models: TGC-1/3, TGC-2/3 and TGC-Mixed model 
566 

 
567 

 Final weight (last sample) 

Quantiles 
Actual 
(n=74) 1/3-Model 2/3-Model Mixed-Model 

0.025 384.1 487.2 351.4 332.3 
0.05 433.3 517.2 396.5 375.5 
0.10 463.0 572.1 445.4 420.9 
0.20 500.0 642.4 486.0 462.8 

25 511.3 669.5 505.2 481.8 
0.30 515.0 693.4 521.2 497.7 
0.40 526.0 742.6 553.9 529.6 
0.50 540.0 789.8 583.7 561.1 
0.60 560.0 846.1 615.1 593.5 
0.70 580.5 903.1 652.4 652.4 
0.75 607.5 942.2 676.3 654.5 
0.80 620.0 980.5 698.1 677.7 
0.90 678.5 1082.7 770.3 747.7 
0.95 701.8 1175.9 829.8 807.6 

0.975 716.8 1243.8 885.0 861.3 
Chi^2  1342 104 90 

d.f.  14 14 14 
P- value  <0.0001 <0.0001 <0.0001 

 
568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 
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 580 

Table 6.- Simulation of biomass and value of gilthead sea bream (considering a mean batch of 300000 
581 

fish and a survival of 85%, and selling price from a commercial fish farm in Mediterranean Sea) by 
582 

weight interval, average production duration (days) from the beginning of the cycle until the curves Wf 
583 

0.25, Wf 0.50  and Wf 0.75 corresponding to when 0.25, 0.50 and 0.75 quartiles reach 400, 500 and 600 g, 
584 

respectively. 
585 

Weight Interval Mean Weight Sale Price W 0.25 = 400 g 508 days W 0.25 = 500  g 587 days W 0.25 = 600 g 662 days
(g) (g) (€) % Production Value % Production Value % Production Value

< 200 150 1,9 1,9 717 1341 1,5 574 1073 1,2 459 858
200-300 250 3,7 2,7 1705 6327 0,7 446 1656 0,6 383 1419
300-400 350 4,4 20,6 18408 81363 4,0 3525 15582 0,6 536 2367
400-500 450 4,5 35,7 40937 185036 19,3 22089 99844 5,0 5766 26063
500-600 550 4,5 24,1 33800 152777 30,6 42952 194141 17,8 24894 112523
600-700 650 4,8 11,1 18315 87731 23,9 39656 189951 26,9 44504 213174
700-800 750 4,8 4,1 7793 37331 12,4 23667 113366 22,4 42840 205204

> 800 850 6,1 0,0 0 0 7,8 16798 101797 25,6 55434 335929
Total 121.676 551.904 149.707 717.409 174.815 897.536

Increment 28.031 165.505 25.108 180.127
Weight Interval Mean Weight Sale Price W 0.50 = 400 g 443 days W 0.50 = 500  g 526 days W 0.50 = 600 g 598 days

(g) (g) (€) % Production Value % Production Value % Production Value
< 200 150 1,9 2,2 842 1574 1,7 650 1216 1,4 536 1001

200-300 250 3,7 10,9 6933 25721 1,4 893 3311 0,7 446 1656
300-400 350 4,4 37,3 33268 147044 14,6 13053 57693 2,7 2365 10454
400-500 450 4,5 31,7 36376 164418 32,8 37581 169864 16,2 18590 84025
500-600 550 4,5 13,7 19214 86848 28,3 39621 179085 29,2 40988 185266
600-700 650 4,8 4,3 7086 33941 14,2 23454 112343 25,2 41810 200272
700-800 750 4,8 0,0 0 0 6,6 12623 60462 15,0 28592 136955

> 800 850 6,1 0,0 0 0 0,6 1246 7553 9,7 21079 127738
Total 103.718 459.546 129.119 591.528 154.406 747.367

Increment 25.401 131.981 25.286 155.839
Weight Interval Mean Weight Sale Price W 0.75 = 400 g 407 days W 0.75 = 500  g 466 days W 0.75 = 600 g 531 days

(g) (g) (€) % Production Value % Production Value % Production Value
< 200 150 1,9 4,1 1549 2897 2,1 803 1502 1,7 650 1216

200-300 250 3,7 29,1 18535 68766 6,6 4176 15492 0,8 526 1951
300-400 350 4,4 42,2 37641 166374 31,8 28382 125446 12,2 10866 48029
400-500 450 4,5 19,4 22290 100752 34,9 40019 180886 31,0 35544 160658
500-600 550 4,5 5,3 7433 33598 17,4 24439 110462 29,5 41304 186692
600-700 650 4,8 0,0 0 0 7,1 11727 56171 16,1 26644 127626
700-800 750 4,8 0,0 0 0 0,2 430 2061 7,7 14726 70539

> 800 850 6,1 0,0 0 0 0,0 0 0 1,1 2276 13792
Total 87.449 372.387 109.975 492.021 132.536 610.503

Increment 22.526 119.634 22.561 118.482  586 
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Table 7.- Estimation of biomass and sales income of gilthead sea bream, considering three strategies of 587 
interval weight sale (400-500, 500-600 and 600-700 g) by classifying fish and sequential sale of fish from 588 

0.75, 0.50 and 0.25 quartile. 589 

Sale 
weight Biomass Sales Income Mean time  Sales Income /Days 

(g) (tons) (€) (Days)  (€) 
400-500 114 511768 486 1053 
500-600 139 628890 560 1123 
600-700 158 752158 614 1225 

 590 


