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Abstract 

A series of poly(hydroxyethyl acrylate)-silica nanocomposites has been polymerized by 

the simultaneous sol-gel reaction of the organic monomer and the silica precursor 

tetraethyl orthosilicate (TEOS). Samples with different silica contents were prepared 

and their mechanical properties have been investigated by dynamic mechanical 

spectroscopy (DMS). The application of the time-temperature superposition principle to 

the isothermal DMS results in the main relaxation region permits to successfully 

construct master curves. The calorimetric properties of these hybrid materials have also 

been measured in order to compare the results of DMS and DSC. The presence of a 

polymer phase formed by polymer chains with reduced mobility has been proved by the 

DMS results. The main relaxation due to the segmental dynamics of these chains takes 

place at frequencies around seven decades smaller than in the bulk PHEA 

homopolymer. 

keywords: nanocomposites, dynamic mechanical spectroscopy, poly(2-hydroxyethyl 

acrylate), tetraethyl orthosilicate, sol-gel reaction 
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1. Introduction

Polymeric hydrogels are finding many applications in science and industry. However, it 

is known that the mechanical properties in their swollen state generally are poor. 

Poly(2-hydroxyethyl acrylate) (PHEA) is a well-known hydrogel (1) with the generally 

good biocompatibility characteristics of the acrylates (2,3). The purpose of this paper is 

to describe the mechanical behaviour of a type of hybrid materials based on PHEA.  

The sol-gel reaction is an easy method, widely used to introduce an inorganic phase 

inside a matrix (4-8). By means of acid catalyzed hydrolysis and condensation 

reactions, the silica precursor tetraethyl orthosilicate (TEOS) is able to produce, in the 

presence of the organic monomer of hydroxyethyl acrylate (HEA), a silica network. The 

continuity of this network depends mainly on the initial amount of TEOS when other 

factors are kept constant, like the ratio between water and TEOS and the amount and 

nature of catalyst used. Such hybrid materials exhibit a nano-scale dispersion of the 

silica phase, and for this reason they are usually called nanocomposites. The resulting 

PHEA-silica nanocomposites are transparent, thus indicating that the size of the silica 

phase aggregates is smaller than 400 nm (9).  

2. Experimental Section

2.1. Materials 

The samples were obtained in a sol-gel process (9) varying properly the quantities of 

reactants to get the desired final silica weight percentage assuming completion of the 

sol-gel reactions. All chemicals were used as provided by suppliers. The amounts of 

reagents used are shown in Table 1.  
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Table 1. Masses used for obtaining the desired silica content. 

Reagent 
Reference Nanocomposite samples 

Pure PHEA PHEA+10% SiO2 PHEA+15% SiO2 PHEA+30% SiO2 

HEA [g] 10 10 7 5 

BPO [g] 0.2 0.2 0.14 0.1 

TEOS [g] ------- 3.8519 4.2824 7.4286 

H2O+HCl a [g] ------- 0.7037 0.7824 1.3571 

a HCl water solution prepared adding 10g of distilled water and 0.51g of hydrochloric acid. 

2-Hydroxyethyl acrylate (HEA, 96%, Aldrich) was mixed with benzoyl peroxide (BPO, 

97%, Fluka) and mechanically stirred for 30 minutes. Tetraethyl orthosilicate (98%, 

Aldrich) was added to a hydrochloric acid solution (HCl, 37%, Aldrich) and distilled 

water, and stirred also for 30 minutes. Afterwards both solutions were mixed together 

and stirred for another 30 minutes. The resulting solution was poured into a mould to 

obtain samples in the form of sheets approximately 1 mm thick. 

Polymerisation was carried out in two steps, first at 60ºC for 21 hours, and then at 90ºC 

for 18 hours. Finally, samples were rinsed in boiling distilled water for 24 hours in order 

to remove any unreacted chemicals, and dried in vacuo at 60ºC. 

2.2. Atomic Force Microscopy 

Atomic force Microscopy (AFM) was performed in a NanoScope III from Digital 

Instruments operating in the tapping mode in air. Silicon probes from Nanoworld were 

used with A force constant of 42 N/m and resonance frequency of 320 kHz. The tapping 

frequency was slightly lower than the resonance one (around 10%), in which the phase 

signal was set to zero. The ratio between setpoint and drive amplitudes was kept equal 
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to 0.8, performing a soft tapping of the nanocomposites’ surface. Dried samples were 

fractured in liquid nitrogen and the surface of fracture was scanned with the AFM.    

2.3. DSC experiments 

Differential scanning calorimetry was performed with a Pyris 1 analyser (Perkin Elmer). 

A dry nitrogen flow of 20 ml/min was used in order to enhance heat transfer. The 

temperature of the equipment was calibrated using indium and zinc as references, while 

indium’s enthalpy of fusion was used to calibrate heat flow. The weight of the measured 

samples ranged between 5 and 10 mg. 

Before measurements, samples were kept in vacuo at 70ºC for 24 hours in order to be 

sure samples were completely dry. A first scan was done from -40 to 250ºC at a heating 

rate of 10ºC /min in order to erase the thermal history of the samples. Immediately after, 

a cooling scan from 250 to -40ºC was done at a controlled cooling rate of 40ºC/min. 

Finally, the ensuing heating scan at 10ºC/min was recorded. The glass transition 

temperature Tg was calculated as the temperature of the midpoint of the rise of heat 

capacity in the transition. The breadth of the glass transition (∆Tg) was characterised by 

the temperature interval determined by the intersection of the tangent to the thermogram 

in the inflection point with the glass and liquid lines. The heat capacity jump at the glass 

transition (∆cp) was normalized per polymer gram, and determined as the difference 

between the intersections of the extrapolated glass and liquid lines at the inflection 

point. 

2.4. DMS experiments 

The dynamic mechanical experiments were performed in a Seiko DMS210 analyser at 

isothermal conditions in the stretching mode. Samples with prismatic geometry and 

dimensions 15×4.5×0.8 mm were used. The experiments were carried out at different 
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temperatures: from –6ºC to 110ºC for PHEA+30% SiO2, from –30ºC to 80ºC for 

PHEA+15% SiO2, from –12ºC to 70ºC for PHEA+10% SiO2, every 2ºC, and from –

20ºC to 80ºC every 4ºC for pure PHEA. At each temperature, the frequency was 

scanned from 0.01 to 20 Hz.  

Results 

3.1. AFM images 

Figure 1 shows the topography of the hybrid materials as seen by AFM. Different areas 

of 2x2 µm were scanned so that reproducible images were obtained. Nanometric 

features can be observed in both images with different silica contents, such as the 

occurrence of aggregates of smaller particles of around 40 nm.  
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Figure 1. AFM surface topography of hybrid materials: (a) PHEA+15% SiO2 and (b) 

PHEA+30% SiO2. The colour scale used in both images indicates height range from 0 

(dark) to 100 nm (bright). 

3.2. DSC results 

Figure 2 shows the DSC curves for the second scans (after erasing the previous thermal 

history) from -30 to 150ºC. There were no substantial differences between the first and 

the second scan measured. Recorded data above 150ºC are not shown because no other 

b)
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remarkable phenomenon took place. It has been found out by TGA measurements that 

degradation starts at temperatures immediately above 250ºC for nanocomposites and 

pure PHEA (10,11).  

Figure 2. Second DSC scans at a heating rate of 10 K/min: (a) pure PHEA; (b) 

PHEA+10% SiO2; (c) PHEA+15% SiO2; (d) PHEA+30% SiO2.  

Table 2. Glass transition temperature (Tg) calculated from DSC data, breadth of the 

glass transition (ΔTg), specific heat capacity jump at the glass transition (Δcp), WLF 

parameters (C1, C2), VFTH parameters (T0, B), coefficient of the volume expansion of 

the free volume, αf, and fragility, m, for PHEA with different silica contents. The WLF 

fit has been done for the shift factors aT shown in Figure 4, calculated for a reference 

temperature Tref  = Tg. 
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Sample Tg (K) ∆Tg(K) ∆cp 
(J/gK) 

C1 C2 
(K) 

T0 
(K) 

B 
(K) 

αf 
(×103 K-1) 

m 

Pure 
PHEA 

288.3 8.3 0.40 11.8 55.9 232.5 1514 0.660 60.8 

PHEA 
+10% 
SiO2 

295.4 12.7 0.32 12.4 89.0 206.5 2539 0.394 41.2 

PHEA 
+15% 
SiO2 

293.5 13.5 0.31 23.1 145.8 147.6 7745 0.129 46.4 

PHEA 
+30% 
SiO2 

293.8 20.5 0.10 44.1 253.7 40.1 25774 0.039 51.1 

The glass transition temperatures are shown in Table 2. For the hybrid nanocomposite 

materials Tg is almost independent of the silica content but higher than that of bulk 

PHEA. Besides, there is a broadening of the glass transition that can be characterised by 

its breadth ∆Tg, which is also listed in Table 2. Furthermore it can be observed that the 

heat capacity jump at the glass transition per polymer gram (∆cp) decreases as the silica 

content increases. 

The thermograms shown in Figure 2 were recorded after cooling at 40ºC/min from 

temperatures above the glass transition without any isothermal annealing. The overshoot 

shown by the thermogram of pure PHEA is due to residual physical aging during the 

cooling stage; it is characteristic of this kind of thermal history: the height of the peak 

decreases with increasing cooling rate, and it is smaller in polymers with wide glass 

transition temperature interval. In the nanocomposites, in which the glass transition 

broadens, the thermograms do not show this peak although the thermal history of the 

experiments was the same.    
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3.3. DMS results 

From the isothermal scans the master curves for storage modulus (E’) and loss factor 

(tan δ) were obtained as functions of the reduced frequency f⋅aT for a reference 

temperature Tref = 250C (Figure 3). They were constructed by simple shift of the 

isothermal results along the log f axis, according to the time-temperature superposition 

principle (12). For each sample the shift factors, log aT, associated with E’ and tan δ 

were found to be the same. In principle a small vertical shift due to the temperature 

dependence of the product ρT/ρT* should also be applied (12), but in this case the 

correction seemed to be negligible. 

a)
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Figure 3. (a) Storage modulus (E’) and (b) loss factor (tan δ) master curves at a 

reference temperature of 25 0C for ( ) pure PHEA, ( ) PHEA+10% SiO2, ( ) 

PHEA+15% SiO2, ( ) PHEA+30% SiO2. 

From Figure 3a, it can be seen that the storage modulus increases significantly with 

silica content, both in the glass and in the rubber-like states. The loss factor master 

curves of pure PHEA and PHEA+10% SiO2 nearly overlap (Figure 3b). For PHEA-

based nanocomposites with 15 and 30 wt% silica, a new relaxation process at lower 

frequencies (longer times) than the main relaxation peak of the pure PHEA can be 

detected. For PHEA+15% SiO2 it appears as a shoulder in the low-frequency side of the 

main relaxation and it occurs at lower frequencies for the nanocomposite containing 30 

wt% silica. The height of the peak appearing at the same frequency as in pure PHEA 

b)
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decreases with increasing content of silica in the nanocomposite, wheras that of the low-

frequency peak increases.  

Figure 4. Angell plot of DMS shift factors for ( ) pure PHEA, ( ) PHEA+10% SiO2, 

( ) PHEA+15% SiO2, ( ) PHEA+30% SiO2 and  the corresponding WLF fit (solid 

line). The shift factors aT shown in this figure have been calculated for a reference 

temperature Tref = Tg, where Tg is the glass transition temperature shown in Table 2 

calculated from DSC data. 

The shift factors above Tg, obtained from the construction process of the DMS master 

curves, were successfully described by the WLF equation (13) – Figure 4:  
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where τ(T) is the relaxation time at temperature T, and C1 and C2 depend on the material 

and on the reference temperature Tref. This expression usually holds for polymers over 

the temperature range Tg<T<Tg+100 K (where Tg is the glass transition temperature); 

when Tref is identified with Tg, C1 and C2 assume values close to 17.44 and 51.6 K, 

respectively (13). Equation (1) is in some way equivalent to the Vogel-Fulcher-

Tamman-Hesse equation (VFTH) (14-17): 

0
0exp

TT
Bτ=τ(T)
−

, T0<Tg        (2) 

where τ0 is a pre-exponential factor and B and T0 are adjustable parameters. The WLF 

and VFTH equations are the most frequently applied models for describing the non-

Arrhenius behaviour of the main relaxation process in glass-forming materials. The 

WLF and VFTH parameters are related by ( )01 2.303/ TTB=C ref −  and 02 TT=C ref −

(12); for the studied PHEA nanocomposites they are presented in Table 2. 

From the temperature dependence of the shift factor it was possible to calculate the 

fractional free volume fg at Tg and the coefficient of volume expansion of the free 

volume αf using the relationships (12): 

21

2

2.303 CC

TT+C
=f efrg

g

−
(3) 

212.303
1

CC
=α f (4) 
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The values of fg and αf obtained from DMS results are presented in Figure 5 and Table 

2, respectively. A decrease in both parameters (fg and αf) is observed as the silica 

content increases. 

Figure 5. Silica content dependence of the fractional free volume fg ( ) and the 

increment of the specific (polymer mass basis) cohesive energy at Tg, ∆Hg (■). 

3.4. Fragility 

Cooperativity plots, or Angell plots, have been used extensively for the analysis of 

segmental relaxation data (18-20). They represent the rate at which the structural 

relaxation characteristic time, τ (or related properties, such as the shear viscosity η) 

decreases with increasing temperature above Tg in a normalised Tg/T plot. From the shift 

factors of the isothermal results, it was possible to construct the Angell plot for the 
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samples studied (Figure 4). In this plot, the value of Tg obtained from the DSC data was 

used. 

Fragility is a measure of the magnitude of the decrease of log τ (or log aT) with 

decreasing Tg/T and may be characterised by the fragility “index” m: 

gTTg

T

gT=Tg T)d(T
ad=

T)d(T
τd=m

=
/

log
/

log        (5) 

An m value equal to 16 corresponds to an Arrhenius behaviour (“strong” limit) and for 

m larger than 200 the systems reaches the “fragile” limit (21). Using Eqs. (1), (2) and 

(5), m may be directly obtained from the VFTH or WLF parameters: 

2
2

21
2

0

2.303/
)TT+(C

CCT
=

)T(T
BT

=m
refg

g

g

g

−−
       (6) 

where C1 and C2 are the coefficients of the WLF equation referred to Tref. The values of 

the fragility index m calculated from Eq. 6 are presented in Table 2, where it is seen that 

m sharply decreases from pure PHEA to PHEA + 10% SiO2, and then slowly increases 

with the silica content. 

3. Discussion

The silica phase obtained under the polymerization conditions of this work exhibits a 

porous network structure with nanometer-sized pores (22-24) that facilitates its physical 

interpenetration with the organic polymer chains. The initial H2O/TEOS ratio was kept 

constant and equal to 2. Since the amount of acid catalyst was small and the initial 

H2O/TEOS ratio is less than 4 (which corresponds to the formation of the stoichiometric 

fully condensed silica phase (24)), it is expected that an extremely fine network of silica 
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is formed within the nanocomposite due to polymerising conditions corresponding to 

slow hydrolysis rate (22). The silica phase presents a bimodal porous distribution, with 

nanometer-sized pores inside the elementary silica particles on one hand, and the space 

left between the aggregates of those elementary particles on the other hand (9,20-22); 

both of them ought to be occupied by PHEA. This structure is seen on the AFM images, 

where the larger aggregates of the silica phase, in the range of several tens of 

nanometers, can be identified (Figure 1).  

The experimental results suggest that the pure PHEA network and the PHEA domains 

of the nanocomposites behave differently. On the one hand there is a shift to higher 

temperatures of the Tg of the PHEA domains in the nanocomposites with respect to the 

PHEA homopolymer. Although there is not a similar shift in the frequency of the 

maximum of the loss tangent at 25ºC (Figure 3), the  temperature dependence of the 

shift factors needed to build the master curve shows a behaviour quite different in the 

bulk PHEA network and in the series of nanocomposites. The fragility is much lower in 

the nanocomposites than in bulk PHEA. This change of mobility could be due to 

topological differences in the PHEA network imposed by its polymerization in presence 

of the silica network.  

On the other hand the decrease of ∆cp with increasing silica content implies that there is 

a fraction of the polymer chains that does not contribute to the glass transition. These 

immobilized polymer segments could be those within the nanometric pores in the 

nanoparticles of the silica phase or in the interstices between them, polymer chains that 

are confined in regions of nanometric dimensions and probably have direct interaction 

with the silica chains (9).  

DMS and DSC results show furthermore that the glass transition temperature and the 

frequency range in which the main dynamic-mechanical relaxation takes place remain 
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almost constant with varying silica content in the nanocomposite, indicating that even in 

these composites there are enough chains with unrestricted mobility to produce the 

cooperative motion leading to the main relaxation. However, the decrease of the 

frequency of the relaxation process of the less mobile chain segments as the silica 

content increases indicates a change in the number of polymer chains in the above 

situation and an increasing interaction with the silica network.  

It is interesting to remark the change of behaviour shown by the fragility plot with 

increasing silica content. The shape of the diagram tends to approach an Arrhenius 

(linear) dependence for the highest silica content and, as a consequence, the difference 

Tg - T0 and the value of the parameter B rapidly increase and the fractional free volume 

and the expansion coefficient of the free volume rapidly decrease with increasing silica 

content. This means that the segmental dynamics of the PHEA chain segments tends to 

be less and less cooperative due to the confinement induced by the inorganic phase. 

This is also reflected in the abnormally high C1 and C2 values of the WLF fit of the 

nanocomposite samples in Table 2, which have the overall effect of decreasing the WLF 

plot curvature, thus being an additional indication that the behaviour of these samples 

tends to be more Arrhenius-like. The pattern of the dependence of fg with the silica 

content shows a pronounced fall at about 10% silica, probably related to the percolation 

threshold of the silica network in the nanocomposite. Related to the fragility is the 

density of cohesive energy of the polymer. This quantity is also an indication of the 

segmental mobility of the chains (25). An approximate estimate of the change of the 

cohesive energy density of the polymer at the glass transition, ΔHcoh,g, can be obtained 

from the relationship 

ΔHcoh,g = C2ΔcpTg , (7) 
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with C2 = 2.80 ± 10% (25). With the experimental values of  Δcp and Tg given in Table 2 

the results represented in Figure 5 are obtained. They show a steady decrease of ΔHcoh,g 

as the silica content increases. That is: the states of the polymer above and below the 

glass transition as regards the mobility of its chains are more similar with increasing 

silica content, consistent with the tendency of the fragility plots to approximate the 

linear Arrhenius behaviour with increasing silica content of the nanocomposites. 

4. Conclusions

Segmental mobility in the PHEA phase of hybrid nanocomposites was studied by 

dynamic-mechanical analysis and DSC.  The mechanical relaxation shows a bimodal 

relaxation process in the nanocomposites. Physical interactions between the silica and 

the PHEA chains and the confinement of latter within the silica phase produce a phase 

of polymer chains with restricted mobility that gives rise to a low-frequency relaxation 

mechanism whose frequency depends on the silica content. Calorimetric scans are not 

conclusive as regards the occurrence of a corresponding double glass transition. A 

broadening of the glass transition and a decrease of the heat capacity increment as silica 

content increases are manifest, indicating more heterogeneous samples and the 

constraint of the PHEA matrix leading to a number of immobilized polymer chains that 

do not contribute to the glass transition.  
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