
Balancing parallel assembly lines with disabled workers

Felipe F. B. Araújo*
Instituto de Ciências Matemáticas e da Computação,
Universidade de São Paulo,
São Carlos, SP, Brazil
E-mail: felipefba@hotmail.com
*Corresponding author

Alysson M. Costa

Department of Mathematics and Statistics,
University of Melbourne,
Melbourne, VIC, Australia
E-mail: alysson.costa@unimelb.edu.au

Cristóbal Miralles

ROGLE - Dpto. Organización de Empresas,
Universitat Politècnica de València,
Valencia, Spain
E-mail: cmiralles@omp.upv.es

Abstract: In this paper we study an assembly line balancing problem that
occurs in sheltered worker centers for the disabled, where workers with very
different characteristics are present. We are interested in the situation in which
complete parallel assembly lines are allowed and name the resulting problem as
parallel assembly line worker assignment and balancing problem (PALWABP).
This approach enables many new possible worker-tasks assignments, what is
beneficial in terms of both labour integration and productivity. We present a linear
mixed-integer formulation and two heuristic solution methods: one is based on
tabu search and the other is a biased random-key genetic algorithm (BRKGA).
Computational results with a large set of instances recently proposed in the
literature show the advantages of allowing such alternative line layouts.

Keywords: parallel assembly line balancing; heterogeneous workers; heuristics

Reference to this paper should be made as follows: Araújo, F.F.B. et al. (xxxx)
‘Balancing parallel assembly lines with disabled workers’, European Journal of
Industrial Engineering, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Felipe F. B. Araújo received a MSc in computer science
and computational mathematics from Universidade de São Paulo in 2011. He
is currently a PhD student whose main interests are applications of operations
research.

Copyright © 2009 Inderscience Enterprises Ltd.

ar
X

iv
:1

30
4.

14
23

v3
 [

cs
.D

M
]

 2
6

N
ov

 2
01

4

2 F.F.B. Araújo, A.M. Costa, C. Miralles

Alysson M. Costa received a PhD in Business Administration from HEC Montreal
- University of Montreal in 2006. Currently, he is a Lecturer at the Department of
Mathematics and Statistics - University of Melbourne. His research interests are
mainly in applications of operations research.

Cristóbal Miralles received his PhD in Industrial Engineering from Universitat
Politècnica de València, where he is lecturer at the Industrial Engineering faculty.
He is member of ROGLE Research Group and his main interests are related
with social/environmental applications of OR/MS, widening the classical profit-
oriented approaches.

1 Introduction

According to the International Labour Organization (ILO), people with disabilities represent
an estimated 10 per cent of the world’s population, where more than 500 million are of
working age. Labour market inclusion is easier to address in periods of increasing labour
demand than in times of recession. Nevertheless, even in face of recent crisis period there is
evidence of national actions to create more flexible work solutions. In this sense, one of the
actions most commonly adopted to facilitate the integration of people with disabilities into
the labor market has been the creation of Sheltered Work centers for Disabled (henceforth
SWDs).

This model of socio-labor integration tries to move away from the traditional stereotype
that considers people with disabilities unable to develop continuous professional work
(?). In countries such as Spain, for example, this labor integration formula keeps being
successful in offering jobs to disabled people, and a common strategy of SWDs to facilitate
this integration is the use of assembly lines as the most accessible configuration. In this
sense ? were the first to evidence how the division of work in single tasks enables many
possible job assignments that can make the disabilities invisible, even becoming a good
method for therapeutic rehabilitation if appropriate job rotation mechanisms are applied
(?).

1.1 Literature review and motivation of this work

Traditional assembly line balancing research has focused on the simple assembly line
balancing problem (SALBP), that uses several well-known simplifying hypotheses, which
reduce the complex problem of assembly line configuration to the “core” problem of
assigning tasks to stations so that certain precedence constraints are fulfilled. Thus, in the
last decade a big effort has been made towards modeling real world assembly line systems
through different extensions of SALBP, aiming to narrow the former gap between research
and practice (see reviews of ?, ?, ?? or more recently ?).

In this sense, the so-called assembly line worker assignment and balancing problem
(ALWABP) represents one of these recent efforts made by the Academia. This approach
focus on the heterogeneity of task times and the presence of incompatibilities, defining a
new set of realistic hypotheses inspired by the SWD assembly lines where disabled workers
execute tasks at different rates (?). Thus, the ALWABP defines worker-dependent processing
times, which allow taking into account the diversity of workers and can, therefore, be useful
in environments other than SWDs where workers also have diverse speeds to perform certain
tasks (?).

Balancing parallel assembly lines with disabled workers 3

Since the original paper of ?, many other references have contributed to give this problem
visibility in the scientific literature, and several solution methods have been developed. Exact
methods have focused on branch-and-bound strategies (???) although most of the efforts
have concentrated on heuristic and metaheuristic methods due to the NP-hard condition of
the problem, using strategies such as clustering search (?), tabu search (?), Iterated Beam
Search (?), constructive heuristics (?) or genetic algorithms (??).

However, this intense research on the ALWABP is traditionally limited to the hypothesis
of a single serial assembly line, whereas more variants would help SWD managers to handle
the workforce specific requirements while optimizing productive efficiency. It has to be
noted that SWDs compete in real markets and then: a) must be as efficient as possible
to adapt to market fluctuations or simply to survive; b) receive some governmental help
to compensate the lower yields of its workforce (with minimum of 70% being disabled)
and where certain limitations and therapy requirements must be considered. Hence, this
double aim makes it important for the SWD manager to count on as many alternative job
assignments as possible.

In this context, this paper explores the possibility of assigning workers to teams, which
can then operate at parallel assembly lines. In fact, by exploring this new configuration
several advantages are obtained:

• Higher global productivity levels shall be obtained, which is crucial for the survival of
a SWD (or its growing, thus promoting new jobs for more people with disabilities):
indeed, the possibility of designing lines in parallel increases the number of different
available feasible solutions, introducing potentially many new assignment possibilities
due to the combinatorial characteristic of the problem and circumventing limitations
related to the combination of precedence constraints, worker x tasks incompatibilities
and cycle time limits. Our hypothesis is that at least one of these solutions has a better
assignment of tasks to workers that can reduce the total task execution time and/or
reduce workstation idle times, increasing total productivity.

• With parallel lines most workers will probably be assigned to a larger number of tasks,
resulting in longer work schedules. It is also possible to assign more than one worker to
the same task (in a different parallel line) in the same period: as it is stated in (Miralles
et al. 2007) the primary SWD aim is to promote a work environment that helps disabled
workers to have a positive and constant evolution in their own capabilities, in order to
integrate them as soon as possible in ordinary Work Centers". Therefore, these more
complex work schedules will certainly contribute to this evolution, empowering the
workers and also avoiding too specialized work routines (that often provoke mental
stress, especially in certain physical rehabilitation cases).

• Moreover, in the case of workers with very slow operation times, now they can be
easily integrated with low productivity loses: as it happens with SALBP, when we
allow parallelization the cycle time can be lower than the largest operation time, or in
the case of ALWABP lower than the slowest task to execute (obtained with a max-min
operation over all execution times).

• Finally, parallel lines provide an extra solution space for the manager, that now has
more game to play when applying job rotation. Although the analysis of this tradeoff is
out of the scope of this paper, some preliminary further research suggest that the effect
of longer work routines at each station (which can eventually avoid certain rotations

4 F.F.B. Araújo, A.M. Costa, C. Miralles

due to incompatibilities) is compensated by the very high number of new possible
worker-tasks assignments arising. Thus, developing a decision support system that
enlarge the classical job rotation approaches (see ? or ? becomes a promising future
research line.

In front of these advantages, it must be noted that parallelization suppose the duplication
of facilities and tools that may be necessary for different workers. This practical implication
should be taken into account in those cases with physical constraints or very high installation
costs; what is not usual for most SWDs lines, that typically get contracts to assemble low-
added value products.

The social dimension of SWDs further justify an analysis such as the one proposed
here, where the cost of the line is relegated to a lower position. As certain social impacts are
not easy to quantify, incurring in a precise estimation of the human resources cost would
add little value to this study. Somehow it can be said that duplication costs, even when
considerable, shall be compensated in the long term by the higher productivity reached and
by the other qualitative advantages exposed above.

1.2 Contribution and outline

This last comment is also valid for ? that are, to the best of our knowledge, the sole
authors to analyze parallelization in ALWABP. They study the assignment of workers in
parallel or collaborating, but just at the same station of a single line. Although some positive
results have been obtained, this approach has the drawback of increasing the complexity
of coordination and control along (and within, in the case of collaboration) the stations.
Parallelizing only certain stations and/or tasks can be cluttering because the production
flow is divided/duplicated (what can be hard to coordinate, especially in the case of mental
disabilities).

In this new approach, we propose parallelizing complete lines instead of single stations
and/or tasks, making the assembly line management and self-control easier: every operator
is assigned to a work team in charge of certain station within a complete parallel serial line
with independent feeders, work in progress, buffers and tools. Thus, the (parallel) assembly
lines allowed will make use of all available workers grouped by teams, where the additional
decision on the teams to conform and the number of parallel lines will affect heavily the
problem and, as will be later explained, the formal means to solve it properly.

This new extension of ALWABP is named as the parallel assembly line worker
assignment and balancing problem (PALWABP) and is presented in the next two sections:
first by means of an example, and then with the formal definition and a mathematical model.
Then in section 4 we present two heuristics for the problem: one based in Tabu Search
(Section 4.1) and the other an implementation of a Biased Random-Key Genetic Algorithm
(Section 4.2). Computational results over a large set of instances are presented and analyzed
in Section 5. General conclusions and hints for future works end this paper in Section 6.

2 Parallel Assembly line Worker Assignment and Balancing Problem

Most previous proposals in the literature face the ALWABP of type 2 (minimization of
cycle time given a fixed number of workers), the most typical situation in reality, and have
been mostly evaluated with the set of 320 benchmark instances first proposed by ?. We
have extracted the problem HESKIA 64 of this benchmark and expressed its input data in

Balancing parallel assembly lines with disabled workers 5

Table 1, where for every task (rows) several operation times are possible depending on the
worker (columns). If a task is considered unfeasible for certain worker, the incompatibility
is represented by a dash in the corresponding cell of the input data matrix.

In order to show the benefits of the extension proposed here, its optimal solution is
represented in Figure 1. Each arrow represents a precedence constraint. For example, the
arrow pointing from task 1 to task 8 means that task 1 must be executed before task 8. We
can notice how all the precedence constraints are respected while ensuring an optimal cycle
time of 126 s (given by the bottleneck station, which is the second station with worker W6
performing task 20):

2

1

4

3

5

6 7

8 9

12

11

14

13

15

16

17

18

19

22

21

24

23

25

26

27

28

20

10

ALWABP: CT = 126

W5

W4

W7

W6

W3

W1

W2

Figure 1 Optimal solution for HESKIA_64 with the traditional ALWABP approach

This is the minimum cycle time we can get with the traditional serial approach. But if we
allow the possibility of designing complete parallel lines with the available workers, then
solution space is enlarged, and lower combined cycle times can be reached. To illustrate this
fact, let’s focus now on table 1 (but now taking into account the light shaded/dark shaded
cells, and the bottom of the table):

In the table we have represented an alternative solution by using a light shade on cells
with task-assignments within line 1, and a darker shade on those cells with task-assignments
within line 2; and where it can be easily checked how precedence constraints have been
respected in both parallel lines. At the bottom of the table we summarized the workstations
of each line with the following independent work teams:

• Line 1 is composed of four consecutive stations with workers W5, W4, W1 and W7.
Workers W1 and W4 are bottlenecks with a cycle time of 135.

6 F.F.B. Araújo, A.M. Costa, C. Miralles

Tasks: W1 W2 W3 W4 W5 W6 W7
1 70 88 20 57 5 42 118
2 59 14 17 - 17 2 20
3 33 45 26 13 28 17 -
4 6 1 9 2 9 1 3
5 1 2 1 2 1 1 1
6 27 25 14 38 48 45 49
7 17 20 9 9 27 17 32
8 62 43 97 9 10 100 26
9 31 56 60 - 11 9 -
10 53 91 36 37 12 101 93
11 21 - 13 17 7 35 5
12 19 31 9 1 15 1 36
13 108 136 - 194 133 179 171
14 52 76 32 68 - - 33
15 5 10 6 6 9 8 4
16 8 4 - 7 2 8 2
17 97 - 165 99 5 150 103
18 8 8 12 1 - 12 4
19 47 50 22 2 49 - 25
20 67 126 129 132 - 126 133
21 17 5 26 12 10 15 4
22 8 16 - 6 15 - 12
23 3 - 3 3 4 - -
24 21 29 37 18 32 12 32
25 107 163 - 177 179 94 14
26 3 3 2 3 - - 3
27 2 2 4 - 2 2 2
28 72 83 139 - 128 72 15

W1 W4 W5 W7
Line-Station: Line1-s3 Line1-s2 Line1-s1 Line1-s4
Cycle time: 135 135 124 104

W2 W3 W6
Line-Station: Line2-s2 Line2-s1 Line2-s3
Cycle time: 354 347 354

Table 1 Matrix of process times for HESKIA_64 and solution with two parallel lines

• Line 2 is composed of three consecutive stations with workers W3, W2, and W6.
Workers W2 and W6 are bottlenecks with a cycle time of 354.

To compute the combined cycle time (CT) of this configuration we can define the
corresponding Throughput Rates (TR) of both lines. In this case, we have:

• Line 1 has CT1 = 135 s/product, which is equivalent to a throughput TR1 = 26.67
products/h

• Line 2 has CT2 = 354 s/product, which is equivalent to a throughput TR2 = 10.17
products/h

Thus, the combined Throughput Rate using this parallelized configuration is: TR =
TR1 + TR2 = 36.84 products/h, which corresponds to a combined cycle time CT = 97.7
s/product.

Balancing parallel assembly lines with disabled workers 7

Therefore, the optimal cycle time of 126 obtained for HESKIA_64 with the traditional
serial ALWABP approach is improved by more than 22% just by dividing the available
workers in two lines. As will be later demonstrated, this is not an isolated successful example,
since many others benchmark cases get better cycle times through this strategy.

2.1 Review on parallelization within assembly lines

Despite the fact that most assembly lines addressed in the literature are quite different
from ALWABP, it is important to review those references that face parallelization and
are somehow close to our approach. Thus, we can start chronologically by citing the
pioneer work of ?, that was the first to present models that incorporate not only parallel
stations but asynchronous workflow and small inventories; also analyzing the problems in
synchronizing parts delivery and the impact of job resequencing requirements. ? develop an
analytical model to evaluate serial and parallel configurations, establishing some principles
for assembly system design based on a trade-off between labour and equipment costs.
However, as it has been introduced, the cost of human resources in SWDs scenario includes
social dimensions not easy to quantify, what makes this analytical model unsuitable. Also ?
study the equipment selection problem on parallel workstations, investigating the influence
of assembly sequence flexibility and cycle time on the balancing improvement due to the
station paralleling. ? present a versatile graphic algorithm that can be adapted for parallel
stations, and ? consider parallel workstations and propose a branch and bound algorithm
again based on the minimization of total equipment and workstation opening costs. ? analyse
the human-task-related performances in converting conveyor assembly lines to parallel
lines. ? presents a survey on the multiple or parallel assembly lines balancing problem. As
the author points out, the literature for these problems is quite poor, due to their difficulty.

Even excluding from this review the stochastic concerns and most mixed model focused
approaches (as we have homogeneous product to be performed in parallel assembly lines)
the Parallel Assembly Line Balancing Problem (PALBP), where different models can be
assigned to parallel lines while considering a joint cycle time, should be mentioned as the
main topic of research on parallelization in the last years (e.g. ?; ?; ?; and ?).

To the best of our knowledge, the only reference that studies the ALWABP with
parallelization is (?), where two extensions are explored: in the first extension the authors
allow multiple stations to execute the same set of tasks at a given point in the line; and
in the second extension different workers can complement their capabilities collaborating
in the same product within one workstation. The main difference of their first extension
with respect to our proposal is that we force to configure complete parallel assembly lines,
building up independent work teams that do not increase complexity of control. Note that
solving this new problem requires very different techniques, since one of the most important
decisions now is the division of the workers among the lines, which was not necessary in
the problem tackled by ?.

In the following section, we present a formal definition of this problem by means of a
classical literature taxonomy and also via a mathematical model.

3 Formal definition and mathematical model

We formally classify the PALWABP using the nomenclature of ?, that structures the vast field
of assembly line balancing problems by means of a notation consisting of three elements
[α|β|γ], where:

8 F.F.B. Araújo, A.M. Costa, C. Miralles

• α concerns the precedence graph characteristics;

• β concerns the station and line characteristics;

• and γ concerns the optimization objectives.

? classified the ALWABP-2 as [pa,link,cum|equip|c]. In the PALWABP, we allow
multiple assembly lines (β=pline). Therefore, the PALWABP-2 can be classified as
[pa,link,cum|pline,equip|c]; whereas the previous proposal of ? has formal and practical
differences that have been properly detailed, being coded as [pa,link,cum| pstat,equip|c].

3.1 Mathematical model for PALWABP

Let (N,≤) be a partially ordered set of tasks in which i < (>)j indicates that a task i must
precede (succeed) a task j. Also let W be a set of workers and pwi an integer associated
with each pair (w, i) ∈ (W,N) indicating the time workerw spends to execute task i. Also,
Iw is the set of tasks that worker w is not able to perform. Consider an assignment at :
N → S of the tasks to a linear sequence of stations S = {1, 2, . . . ,m} respecting the tasks
partial order and an assignment aw : W → S of the workers to the same linear sequence
of stations S = {1, 2, . . . ,m}. The load of a station is the time the worker assigned to that
station needs to execute those tasks assigned to the same station. Finally, the cycle time of
such assignments is the largest load among all stations. The ALWABP-2 aims at finding
assignments at and aw minimizing the line cycle time. Let ALWABP-2(N,W, pwi) be such
optimal cycle time.

The PALWABP-2 considers the same input data and an extra integer, Kmax,
which limits the maximum number of parallel assembly lines. It then aims at finding
a partition of W in W1,W2...WKmax sets, such that the overall throughput rate∑Kmax

k=1
1

ALWABP-2(N,Wk,pwi)
is maximal. We assume that a set Wk can be empty and, in

this case, ALWABP-2(N,Wk, pwi) =∞. In practice, Kmax is associated to the practical
aspects of implementing multiple assembly lines such as the cost of tools or the available
physical space.

In the following, we present a mathematical model for the PALWABP-2. We define the
following set of variables:

xswik Binary variable. Equals one if worker w executes task i in station s of
line k and zero otherwise

yswk Binary variable. Equals one if worker w is designated to station s in line
k and zero otherwise

zk Binary variable. Equals one if line k is active (that is, if at least one
worker is assigned to that line) and zero otherwise

Ck The cycle time of line k

We can write the following model for the ALWABP with parallel lines:

Min
1∑Kmax

k=1|zk>0
1
Ck

(1)

Subject to:

Balancing parallel assembly lines with disabled workers 9

∑
w∈W

∑
s∈S

xswik = zk, ∀i ∈ N, ∀k ∈ K, (2)

∑
s∈S

Kmax∑
k=1

yswk = 1, ∀w ∈W, (3)∑
w∈W

yswk ≤ zk, ∀s ∈ S,∀k ∈ K, (4)∑
w∈W

∑
s∈S|s≥t

xswik ≤
∑
w∈W

∑
s∈S|s≥t

xswjk, ∀i, j ∈ N |i < j, (5)

∀t ∈ S,∀k ∈ K,∑
i∈N

xswik ≤ |N |yswk, ∀w ∈W, ∀s ∈ S,∀k ∈ K, (6)∑
i∈N

pwixswik ≤ Ck, ∀s ∈ S,∀w ∈W, ∀k ∈ K, (7)

xswik = 0, ∀w ∈W, ∀s ∈ S, (8)
∀i ∈ Iw,∀k ∈ K,

xswik ∈ {0, 1}, ∀s ∈ S, ∀w ∈W, (9)
∀i ∈ N, ∀k ∈ K,

yswk ∈ {0, 1}, ∀s ∈ S,∀w ∈W, ∀k ∈ K, (10)
zk ∈ {0, 1}, ∀k ∈ K. (11)

The objective function (1) minimizes the combined cycle time. Constraints (2) guarantee
that in every active line, each task is executed by a single worker in a single station.
Constraints (3) guarantee that every worker will be assigned to only one station from one
of the parallel lines. Constraints (4) allow a single worker in each station of active lines and
zero in each station of non-active lines. Constraints (5) establish the precedence relations
between the tasks in each assembly line. These constrains were proposed by ? and found out
to be the most efficient among various linear precedence constraints alternatives. Constraints
(6) state that a worker can execute tasks in one stage only if that worker is assigned to
that stage. Constraints (7) define the cycle time for each assembly line as the maximum
execution time among all workers from that line while constraints (8) handle the task-worker
incompatibilities.

The objective function (1) makes this model non-linear. In order to linearize it, we
adapted the linearization proposed by ? for the ALWABP with parallel workstations. In that
work, the authors changed the objective function to maximize the throughput rate of the
assembly line, which is equivalent to minimizing the cycle time. This can be adapted for
the PALWABP by changing the objective function to maximize the sum of the throughput
rates of each assembly line. Using the new variables:

Fk The production rate of line k.
fswk The production rate of worker w in stage s of line k. Equals zero if the

worker is not assigned to that stage of that line.
vswik Auxiliary variable used for linearization. Corresponds to fswk ∗ xxwik.

Let M be an upper bound for the production rate. A simple upper bound corresponds
to:

10 F.F.B. Araújo, A.M. Costa, C. Miralles

M =
∑

i∈N min(w)pwi/|W |
We can write a linear model for the PALWABP as:

Max

Kmax∑
p=1

Fk (12)

Subject to:

(2)− (11) (13)
Fk ≤Mzk ∀k ∈ K (14)∑
w∈W

fswk ≥ Fk −M(1−
∑
w∈W

yswk), ∀s ∈ S,∀k ∈ K, (15)∑
i∈N

pwivswik = yswk, ∀w ∈W, ∀s ∈ S,∀k ∈ K, (16)

fswk ≤Myswk, ∀w ∈W, ∀s ∈ S,∀k ∈ K, (17)
vswik ≥ fswk −M(1− xswik), ∀s ∈ S, ∀w ∈W, (18)

∀i ∈ N, ∀k ∈ K,
vswik ≤Mxswik, ∀s ∈ S, ∀w ∈W, (19)

∀i ∈ N, ∀k ∈ K,
Fk ≥ 0, ∀k ∈ K, (20)
fswk ≥ 0, ∀s ∈ S,∀w ∈W, ∀k ∈ K, (21)
vswik ≥ 0, ∀s ∈ S, ∀w ∈W, (22)

∀i ∈ N, ∀k ∈ K.

The new objective function (12) maximizes the overall production rate. Constraints
14 ensure that the production rate of an empty line is zero. Constraints (15) define the
production rate of active line as the production rate of the slowest stage. Constraints (16)
define vswik weighted by the task times. Constraints (17) state that fswk = 0 if worker
w is not assigned to stage s of line k. Constraints (18) and (19) set the bounds of vswik.
Constraints (17) and (18) make vswik = fswk if xswik = 1, while constraints (19) make
vswik = 0 if xswik = 0.

This model is used to solve small instances (see Section 5). Nevertheless, due to its
complexity, heuristic methods were developed in order to solve instances of practical size.
These methods are described in the following two sections.

4 Heuristic methodologies

In this section, we describe a tabu search method and a biased random-key genetic algorithm
for the PALWABP.

4.1 The tabu search algorithm

In this section we present a tabu search method to solve the PALWABP-2. The core idea
of the method is the generation of sets of workers that can be assigned together in an

Balancing parallel assembly lines with disabled workers 11

independent line. Each of such team of workers must be able to execute all tasks while
respecting the precedence constraints.

In this method there are two preprocessing steps. In the first step we generate sets of
tasks that each worker can execute. In the second step, we use these sets of tasks to generate
feasible sets of workers (i.e., workers that can be assigned together to a complete line) with
minimum cardinality. The following sections detail the preprocessing steps and the main
method.

4.1.1 Feasible worker-tasks sets generation

In this first step, the sets of all tasks that can be executed in a single station by each worker
are obtained. If cycle time constraints are ignored, a worker w can execute any set of tasks
as long as he is not obliged to execute a task in Iw. Let i ∈ N be a task and I ⊂ N be a set
of tasks. We use the notation i 6> (6<)I to indicate that task i does not succeed (precede) any
of the tasks in I and the notation i >> s to indicate that task i is an immediate successor of
a task in s. The method presented in Algorithm 1 is able to determine Tw, the sets of tasks
that can be executed by a worker w.

Algorithm 1 Task sets generation
Require: N,w ∈W
1: Tw = ∅
2: I = ∅
3: repeat
4: s = {i ∈ N\Iw|i 6< I, i 6> Iw\I}
5: Tw = Tw ∪ s
6: I = {i ∈ Iw|i >> s}
7: until I = ∅
8: Return Tw

The algorithm receives as input the worker being analyzed and the ordered set of tasks.
It considers subsets of Iw in order to generate sets of tasks that worker w can execute. For
each subset I considered, the algorithm assumes that the tasks in I have been executed
in stations preceding the station to which w has been assigned and calculates s, the set of
tasks that w can execute which contains the tasks that do not succeed any other task that
w can not execute (line 4). This set is then added to the list of sets (line 5). The next step
of the algorithm is to generate the next subset I based on the set of tasks generated in this
iteration. The new subset I contains all infeasible tasks that are immediate successors of at
least one task belonging to the current set s (line 6). This process is repeated until I = ∅,
which means no infeasible tasks succeed the tasks in the current set s.

While this algorithm may not generate all possible sets of tasks we found that the ones it
generates are enough to feed the next steps of the method. It also helps the next preprocessing
step to quickly identify instances in which there is no feasible solutions with more than one
parallel assembly line. The following example illustrates this method.

Example:

Consider the precedence graph shown in Figure 2. Worker w1 can not execute task 2 while
worker w2 can not execute task 3.

12 F.F.B. Araújo, A.M. Costa, C. Miralles

Figure 2 Example of precedence graph

The subsets of Iw1 and Iw2 (see line 2 of Algorithm 1) are {∅, {2}} and {∅, {3}},
respectively. Task ∅ indicating an artificial task, is added to these sets to represent the
case in which the worker is assigned to the first station in the assembly line. They yield
Tw1

= {{∅, 1, 3, 5}, {3, 4, 5}} and Tw2
= {{∅, 1, 2, 4}, {2, 4, 5}}. Worker w3 can execute

all tasks and, therefore, Tw3 = {{∅, 1, 2, 3, 4, 5}}

4.1.2 Feasible worker sets generation

The goal of this step is to select one set of tasks from each worker so that each task is covered
by at least one set. By doing this, we want to ensure the existence of a viable solution for
the ALWABP with these workers. The information obtained in the previous stage is now
used to determine all combinations of workers that can be assigned together to a team. We
propose Algorithm 2 to generate such sets.

This algorithm enumerates all possible combinations of workers that may be assigned
to a team. We start with the artificial task (line 2) as the next task to be considered. In
each iteration we select a set from the available workers that contains the current task (line
4). The set and the worker are added to their respective lists (lines 5 and 6). If the sets in
set_list cover all tasks, the current list of workers can generate a feasible solution and it
is added to the list of subproblems to be solved in the next step (line 8). Otherwise, the
method continues with a new uncovered task (line 12). If no available set covers the current
task, the algorithm removes the last worker and set in their respective lists (line 18). Then,
the algorithm return to line 4 and selects another set. Observe that, when the algorithm
returns to line 4, it selects another set. This process continues until the algorithm generates
all combinations of workers (line 21).

Balancing parallel assembly lines with disabled workers 13

Algorithm 2 Subproblems generation
Require: Tw
1: Wr = ∅, set_list = ∅, worker_list = ∅
2: i = 0
3: for all w ∈W − worker_list do
4: for all s ∈ Tw|i ∈ s do
5: set_list = set_list ∪ {s}
6: worker_list = worker_list ∪ {w}
7: if ((N − set_list) = ∅) then
8: Wr = Wr ∪ {worker_list}
9: Make w = the last element fromworker_list and s = the last element from set_list

10: Remove last element from worker_list and set_list
11: else
12: Select i ∈ (N − set_list)
13: end if
14: end for
15: end for
16: if set_list 6= ∅ then
17: Make w = the last element from worker_list and s = the last element from set_list
18: Remove last element from worker_list and set_list
19: goto 4
20: else
21: Return Wr

22: end if

Example (continued):

For the example of Figure 2, all possible obtained combinations of sets are:

Line worker w1 worker w2 worker w3

1 Tw1
(1) = {∅, 1, 3, 5} Tw2

(1) = {∅, 1, 2, 4}
2 Tw1

(1) = {∅, 1, 3, 5} Tw2
(2) = {2, 4, 5}

3 Tw1
(2) = {3, 4, 5} Tw2

(1) = {∅, 1, 2, 4}
4 Tw1(1) = {∅, 1, 3, 5} Tw3(1) = {∅, 1, 2, 3, 4, 5}
5 Tw1(2) = {3, 4, 5} Tw3(1) = {∅, 1, 2, 3, 4, 5}
6 Tw2

(1) = {∅, 1, 2, 4} Tw3
(1) = {∅, 1, 2, 3, 4, 5}

7 Tw2
(2) = {2, 4, 5} Tw3

(1) = {∅, 1, 2, 3, 4, 5}
8 Tw1

(1) = {∅, 1, 3, 5} Tw2
(1) = {∅, 1, 2, 4} Tw3

(1) = {∅, 1, 2, 3, 4, 5}
9 Tw1

(1) = {∅, 1, 3, 5} Tw2
(2) = {2, 4, 5} Tw3

(1) = {∅, 1, 2, 3, 4, 5}
10 Tw1(2) = {3, 4, 5} Tw2(1) = {∅, 1, 2, 4} Tw3(1) = {∅, 1, 2, 3, 4, 5}
11 Tw1(2) = {3, 4, 5} Tw2(1) = {2, 4, 5} Tw3(1) = {∅, 1, 2, 3, 4, 5}
12 Tw3

(1) = {∅, 1, 2, 3, 4, 5}

Each of these combinations result in at least one feasible ALWABP solution.

14 F.F.B. Araújo, A.M. Costa, C. Miralles

4.1.3 Solution evaluation and neighborhood structure

The tabu search method developed explores the space defined by the workers partition.
Each solution defines the line to which each worker is assigned and is evaluated with a
simple constructive heuristic developed by ? for the serial ALWABP. This method generates
feasible solutions by sequentially assigning workers and tasks to the stations in a order
defined by some heuristic criteria. At each iteration a tentative cycle time is used (starting
from a know lower bound) and the method increases this tentative value by one unity if
a feasible solution is not found. In our method, this heuristic is modified so that at each
unsuccessful iteration the tentative cycle time is increased by the minimum available task
time, i.e., c̄ = c̄+ minw,i twi, which greatly improves the method speed with little effect
on solution quality.

To generate a feasible initial solution for the PALWABP we must selectKmax solutions
for the ALWABP, which are partial solutions for the PALWABP. Algorithm 3 selects which
sets of workers generated in the previous step will form the base of a feasible solution.

Algorithm 3 Initial solution for the tabu search
Require: Wr, Kmax

1: list = ∅
2: Select Wi the first element in Wr

3: while |list| < Kmax do
4: if Wi ∩Wj = ∅ ∀Wj ∈ list then
5: list = list ∪Wi

6: end if
7: if |list|+ 1 = Kmax then
8: Return list
9: else

10: if Wi is not the last element of Wr then
11: Select Wi the next element of Wr

12: else
13: if list 6= ∅ then
14: Make Wi the element in Wr after the last element in list
15: Remove the last element in list
16: else
17: ERROR: No solution exists
18: end if
19: end if
20: end if
21: end while

This algorithm starts with a empty list of new sets. It then adds the first element in Wr

that does not overlap with any sets currently in the list (step 4). This process continues until
we have a list ofKmax sets (line 8). If the algorithm reaches the end ofWr without finding
a list of Kmax sets it removes the last element in the list and tries to continue with the next
element (lines 14 and 15) or finds that no solution exists (line 17). Any workers that are not
assigned to a set in the list are assigned randomly. We then use the modified constructive
heuristic to generate feasible partial solutions, which form a feasible initial solution for the
PALWABP.

Balancing parallel assembly lines with disabled workers 15

A neighborhood solution is obtained with two movements: 1) moving a worker from
one assembly line to another and 2) swapping two workers between lines. Algorithm 4
calculates the neighborhood of a given solution.

Algorithm 4 Neighborhood
Require: Wr

1: for all Wi1 ∈ solution do
2: for all Wj ∈Wr|Wi1 ∩Wj 6= ∅ do
3: excess = Wi1 −Wj , lack = Wj −Wi1

4: if excess 6= ∅ then
5: if lack = ∅ then
6: Add all workers in excess to neighborhood
7: else
8: for all Wi2 ∈ solution|Wi2 6= Wi1 do
9: if lack ⊂Wi2 and ((Wi2 − lack)

⋃
excess) is feasible then

10: Add to neighborhood the movement: move the workers in lack to i1 and
move the workers in excess to i2

11: end if
12: end for
13: end if
14: end if
15: end for
16: end for
17: Return neighborhood

Each set of workers generated in the preprocessing step contains the minimum amount
of workers to execute all tasks in a independent assembly line. Therefore, by comparing the
sets of workers generated in the preprocessing step with the sets of workers in the current
solution (step 4), we can verify which workers can be moved between the assembly lines.
While some of the generated sets may result in unfeasible solutions, this algorithm boosts
the performance of the tabu search by excluding most unfeasible movements.

The method then selects the non-tabu movement that lead to the best solution in the
neighborhood. However, we may select a tabu movement if it leads to a better solution than
the incumbent solution. The movement is then added to tabu list for a given number of
iterations. In the next section, we present another heuristic developed for the PALWABP.

4.2 The biased random-key genetic algorithm (BRKGA)

In this section, we present a BRKGA for the PALWABP. This metaheuristic is a variation of
the genetic algorithm in which we use a string of randomly generated numbers between 0 and
1 to represent each individual. The population is divided in elite and non-elite individuals
and the crossover always happen between individuals of different categories. One advantage
of this method is that we only need to provide the fitness function and the method parameters
(size of the population, number of elite individuals, chance of mutation and chance of
inheriting an allele from elite parent).

For the fitness function we must first determine how to translate the string of numbers
in each chromosome into a feasible solution. The main decisions in PALWABP consist on

16 F.F.B. Araújo, A.M. Costa, C. Miralles

selecting the workers to be assigned to each parallel line and determining the configuration
of such lines. In order to do that, we split the chromosome in three parts. The first part
has |W | genes and defines which workers are assigned to each parallel line. The gene c[w]
determines that we must assign worker w to line bc[w] ∗Kmaxc.

The second and third part of the chromosome are used to solve the subproblem in each
line. They replace the heuristic criteria used in the constructive heuristic by ?. The second
part of the chromosome has |W | genes and defines the priorities of the workers in each
assembly line. Observe that since each worker must be assigned to exactly one line we do
not need to duplicate these data. The third part of chromosome has |N | ∗Kmax genes and
defines the task priorities for each line.

5 Computational results

In this section we present the results obtained using the mathematical model and the
heuristics presented in sections 3 and 4, respectively. To test these strategies, we generated
a set of instances for the ALWABP based on the instances provided by ? for the SALBP.
These instances vary in graph structure (bottleneck, chain or mixed), ‘trickiness’, order
of strength and times distribution; representing a much more robust SALBP benchmark
than the classical benchmark of ?, as demonstrated by the authors. For each instance,
we generated four instances for the ALWABP, with different time factors (2 or 5) and
infeasibility rates (10% or 20%). A time factor of n means that, for every task with execution
time of t in the original instance, the execution time of each worker is a random integer
between t and n * t. The number of workers in each instance is equal to the number of
stations in the best known solution for the original instance for the SALBP-1 with a cycle
time of 1000s. We used the sets of instances with 20 tasks and 0.2 order strength as our base
for generating a total of 900 instances.

The model was run using IBM ILOG Cplex 12.5. Both heuristic strategies were
implemented in C++ and tested in a computer with a Intel Core 2 Duo T5450 processor,
1,66 GHz and 3 GB of RAM. The following sections detail the obtained results. These are
compared with the best know solutions for the serial problem.

5.1 Results for the mathematical model

The model presented in section 3 was implemented and used to solve the 225 easier instances
generated with 10% infeasibility rate and a time factor of 2. The method was given a time
limit of 1800 seconds for each instance.

The model proved to be very difficult to solve. After 30 minutes of execution, it could
prove optimality for only 20 instances. It also managed to prove that there was no feasible
solution using more than one assembly line for 73 instances. For the remaining instances we
compared the cycle time of the best solution found with the lower bound (that is, the cycle
time of the best relaxed solution). We found that the gap between these values was very
high, usually above 1000%. This means that Cplex could not tell how close these solutions
were from the optimal solution. The model was unable to find solutions whose cycle time
was lower than the best known cycle time for the respective serial ALWABP.

Balancing parallel assembly lines with disabled workers 17

5.2 Results for the heuristics

For the tabu search we randomly select a set of workers in Algorithm 3. This set is added
to the list of sets and cannot be removed. We then run the method for as many iterations as
necessary, until 1000 iterations have passed without changing the incumbent solution. The
method then restarts with a new random solution, which happens up to 10 times. We used a
tabu list of 10 movements. For the BRKGA, we used a population of 100 individuals and an
elite population of 20 individuals. Ten individuals are replaced by mutants at each iteration.
Each gene of a new individual was copied from the elite parent with a 70% probability.

Tables 2 and 3 present the results obtained by the tabu search method and the BRKGA
described in Sections 4.1 and 4.2, respectively, for the whole set of instances, using two
parallel lines. As a comparison benchmark, table 4 also presents the results obtained through
brute force enumeration of all combinations of subproblems generated by the preprocessing
steps of the tabu search method. As for the other methods, the subproblems were solved
using the constructive heuristic developed by ?. The results are grouped by task times
variation, percentage of incompatible tasks and type of precedence graph. For the tabu search
method, each instance was solved 5 times and the average results are presented. Columns
C% represent the average difference between the best solution found by our method in
each execution and the best known solution for the serial ALWABP. Columns T indicate
the average execution time of the five executions in seconds. Columns P% indicate the
percentage of solutions using parallel lines found, that is, the percentage of instances solved
by the method. Column Best C% represent the average difference between the best solution
found by our method among the five executions and the best known solution for the serial
ALWABP and column SD represents the average standard deviation.

Table 2 Results for the tabu search method

C% T P% Best SD
t-2t 10% Bottleneck 1.53% 88 59.46% -13.76% 0.81%

Chain 3.53% 67 68.92% -14.90% 0.94%
Mixed 2.20% 81 64.86% -13.86% 0.90%

20% Bottleneck -1.35% 106 40.54% -15.09% 0.84%
Chain 1.94% 80 45.95% -15.64% 0.86%
Mixed 0.08% 97 45.95% -11.35% 0.95%

t-5t 10% Bottleneck 9.53% 67 59.46% -20.95% 0.70%
Chain 11.34% 44 68.92% -15.40% 0.98%
Mixed 11.64% 55 64.86% -10.33% 0.81%

20% Bottleneck 6.69% 87 40.54% -11.29% 1.54%
Chain 9.13% 64 45.95% -13.10% 0.70%
Mixed 8.60% 81 45.95% -10.11% 0.88%

By comparing columns P% from the three tables, we can see that the tabu search method
and the BRKGA managed to solve more bottleneck instances than the enumerative method,
since some of them caused this method to run out of memory. This means that, while the
enumeration of all combinations of subproblems is feasible for small instances, it may
become infeasible for larger instances.

The tabu search method was superior to the BRKGA in both execution time and solution
quality. As expected, the more worker tasks incompatibilities, the harder it is to find solutions

18 F.F.B. Araújo, A.M. Costa, C. Miralles

Table 3 Results for the BRKGA

C% T P% Best
t-2t 10% Bottleneck 7.18% 231 59.46% -9.48%

Chain 10.41% 277 68.92% -11.98%
Mixed 8.03% 263 64.86% -7.60%

20% Bottleneck 5.04% 146 40.54% -7.89%
Chain 7.13% 196 45.95% -13.57%
Mixed 6.36% 191 45.95% -9.60%

t-5t 10% Bottleneck 20.22% 378 59.46% -7.62%
Chain 23.70% 498 68.92% -5.33%
Mixed 24.51% 463 64.86% -0.81%

20% Bottleneck 16.86% 238 40.54% -7.18%
Chain 20.02% 301 45.95% 0.31%
Mixed 19.89% 303 45.95% -0.17%

Table 4 Results for the enumerative method

C% T P% Best
t-2t 10% Bottleneck -0.25% 35 58.11% -15.37%

Chain 1.93% 24 68.92% -17.56%
Mixed 0.36% 35 64.86% -15.10%

20% Bottleneck -2.02% 16 39.19% -14.94%
Chain 0.23% 15 45.95% -15.73%
Mixed -1.08% 21 45.95% -16.15%

t-5t 10% Bottleneck 8.67% 45 58.11% -21.13%
Chain 10.09% 31 68.92% -15.85%
Mixed 11.19% 48 64.86% -10.67%

20% Bottleneck 5.95% 21 39.19% -10.74%
Chain 8.64% 19 45.95% -13.10%
Mixed 8.27% 29 45.95% -9.96%

Balancing parallel assembly lines with disabled workers 19

with parallel lines. However, in many instances with low infeasibility rates, the method
found solutions with lower cycle times than the respective solution for the serial ALWABP.
The tabu search found solutions with cycle time up to 20,95% lower than the cycle time for
the best known solution for the serial ALWABP against 13,57% for the BRKGA. Instances
with bottleneck precedence graphs resulted in the lowest average difference between the
solution found by the heuristic and the respective ALWABP best known solution. However,
the method found a lower percentage of feasible solutions for this subset of instances when
compared to chain and mixed instances. Instances with chain precedence graphs resulted
in the highest percentage of parallel feasible solutions.

These results show that, on average, instances with bottleneck precedence graph resulted
in the highest percentage of improved solutions. In contrast, instances with chain type
precedence graphs resulted in the lowest percentage of improved solutions. This means
that, on average, the heuristics found solutions with better quality for the former and a
high number of parallel solutions for the latter. In general, one can see that the strategy of
having multiple parallel lines can have a positive effect in such cases. Averages gain vary
from 2,67% to 6,13% with respect to the best serial solutions. These results indicate that
such configurations should be considered when planning such assembly lines. It should be
noted that with this approach, apart from the productivity increase, production managers
gain many more potential assignments for job rotation purposes; what implicitly improves
the workers’ wellbeing.

6 Conclusions

We have defined, modeled and solved a new assembly line balancing problem named Parallel
Assembly Line Worker Assignment and Balancing Problem. This problem is motivated
by the context found in sheltered work centers for the disabled where workers with very
different characteristics are assigned to assembly lines. The proposed model and algorithms
indicate that the use of parallel assembly lines in such situation might improve productivity
levels. These results encourage the study of other alternative layouts or the proposal of even
more efficient algorithms, getting a more balanced workload of human resources involved.

From a practical point of view, we provide an additional powerful approach for coping
with workers heterogeneity while ensuring the highest productivity; what becomes crucial
for many SWDs survival in the current economical context. These first results are also
exportable to ordinary environments with heterogeneous workers, what is also foreseen as
another interesting research line. Finally, the use of this approach to gain additional job
rotation scenarios draws a promising further research line.

Initially, it would be interesting to improve the job rotation proposal of ?, since the
additional possible assignments obtained by these new approaches may help in finding
better job rotation schedules.

Acknowledgments

This research was supported by CAPES-Brazil and MEC-Spain (coordinated project
CAPES DGU 258-12 / PHB2011-0012-PC) and by FAPESP-Brazil. The authors thank
Dr. Marcus Ritt, from Universidade Federal do Rio Grande do Sul (UFRGS - Brazil),
for providing the optimal solutions for the serial ALWABP. The authors also thank three
anonymous reviewers for their comments which have helped improve this paper.

	1 Introduction
	1.1 Literature review and motivation of this work
	1.2 Contribution and outline

	2 Parallel Assembly line Worker Assignment and Balancing Problem
	2.1 Review on parallelization within assembly lines

	3 Formal definition and mathematical model
	3.1 Mathematical model for PALWABP

	4 Heuristic methodologies
	4.1 The tabu search algorithm
	4.1.1 Feasible worker-tasks sets generation
	4.1.2 Feasible worker sets generation
	4.1.3 Solution evaluation and neighborhood structure

	4.2 The biased random-key genetic algorithm (BRKGA)

	5 Computational results
	5.1 Results for the mathematical model
	5.2 Results for the heuristics

	6 Conclusions

