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1. Introduction 25 

In a recent paper, Sudheesh Kumar et al. analysed, from different points of view, the 26 
phenomenon of cancellation in simply supported beams under constant moving loads [1]. 27 
This article presented some novel facts about this phenomenon that are of interest to 28 
scientists and engineers studying bridge dynamics as well as to researchers in disciplines 29 
related to the moving load problem. This paper provides corrected versions of certain 30 
results in reference [1]. For the sake of clarity, it is also organized in the same sections 31 
and subsections. 32 

2. Uniform beam with a single moving point load 33 

2.1. Forced vibration 34 

In the previously mentioned paper, Sudheesh Kumar et al. refer to an article by Museros 35 
et al. [2]. To facilitate understanding, some of the results presented in [2] are recalled. 36 
Regarding the mathematical expressions, response plots, etc., the notation in [1] is 37 



followed. Equations in reference [1] are mentioned as Eq. (N-1), whereas tables are 38 
referred to as Table N-1. Similarly, equations from [2] are labelled as Eq. (N-2), etc. 39 

 Eq. (5-1) provides the following solution to the problem of the forced motion of 40 
the mid-span section during the passage of the load, 0 ≤ 𝑡𝑡 ≤ 𝐿𝐿/𝑣𝑣: 41 

𝑤𝑤forced(𝑡𝑡)
𝑤𝑤static

= �
1

𝑛𝑛4�(1 − 𝐾𝐾𝑛𝑛2)2 + (2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2
{sin(𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡)

∞

𝑛𝑛=1

 42 

− 𝐾𝐾𝑛𝑛

�1−𝜁𝜁𝑛𝑛2
e−𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡sin�𝜔𝜔𝑛𝑛�(1 − 𝜁𝜁𝑛𝑛2)𝑡𝑡�},                         (1) 43 

where wstatic = 2P/(µLω12) is “the static deflection of the mid-span of the beam”. More 44 
specifically, wstatic represents the static deflection of the mid-span section due to the 45 
contribution of the fundamental mode. This magnitude is related to the static deflection 46 
of the nth mode (see Eq. (5-2)) as per 47 

𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠 = 2𝑃𝑃
𝜇𝜇𝜇𝜇𝜔𝜔𝑛𝑛

2 = 𝑤𝑤static
𝑛𝑛4

.                                                  (2) 48 

The relation given by Eq. (2) has some practical implications, as shown further on. 49 

 The time-dependent modal amplitudes in Eq. (1) should be weighted by the mode 50 
shapes sin(𝑛𝑛𝑛𝑛𝑛𝑛/𝐿𝐿) evaluated at mid-span (i.e. sin(𝑛𝑛𝑛𝑛/2)) in order to rule out the even 51 
modes as well as to give the correct sign to the odd modes. Otherwise, the summation in 52 
Eq. (1) will yield incorrect results. At this point, it is convenient to remember that the 53 
mode shapes sin(𝑛𝑛𝑛𝑛𝑛𝑛/𝐿𝐿) are considered to be nondimensional, whereas the modal 54 
amplitudes are measured in length units (meters). 55 

 The modal amplitudes are analysed in what follows. If extracted from the 56 
summation in Eq. (1), and in accordance with Eqs. (6-1) and (7-1), such modal amplitudes 57 
are 58 

𝑞𝑞𝑛𝑛(𝑡𝑡) =
𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠

�(1 − 𝐾𝐾𝑛𝑛2)2 + (2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2
{sin(𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡) 59 

− 𝐾𝐾𝑛𝑛

�1−𝜁𝜁𝑛𝑛2
e−𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡sin�𝜔𝜔𝑛𝑛�(1 − 𝜁𝜁𝑛𝑛2)𝑡𝑡�}.                         (3) 60 

 Differentiation of Eq. (3) yields the modal velocity, and subsequent differentiation 61 
yields the modal acceleration: 62 

𝑞̇𝑞𝑛𝑛(𝑡𝑡) =
𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠

�(1 − 𝐾𝐾𝑛𝑛2)2 + (2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2
𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛{cos(𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡) 63 

+e−𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡[ 𝜁𝜁𝑛𝑛

�1−𝜁𝜁𝑛𝑛2
sin�𝜔𝜔𝑛𝑛�(1 − 𝜁𝜁𝑛𝑛2)𝑡𝑡� − cos�𝜔𝜔𝑛𝑛�(1 − 𝜁𝜁𝑛𝑛2)𝑡𝑡�]},             (4) 64 

  65 



𝑞̈𝑞𝑛𝑛(𝑡𝑡) =
𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠

�(1 − 𝐾𝐾𝑛𝑛2)2 + (2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2
𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛2{−𝐾𝐾𝑛𝑛sin(𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡) 66 

+e−𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡[1−2𝜁𝜁𝑛𝑛
2

�1−𝜁𝜁𝑛𝑛2
sin�𝜔𝜔𝑛𝑛�(1 − 𝜁𝜁𝑛𝑛2)𝑡𝑡� + 2𝜁𝜁𝑛𝑛cos�𝜔𝜔𝑛𝑛�(1 − 𝜁𝜁𝑛𝑛2)𝑡𝑡�]}.          (5) 67 

 As can be observed, the evaluation of Eqs. (3) and (4) at 𝑡𝑡 = 0 gives zero initial 68 
response and velocity for each modal amplitude. Conversely, Eq. (5) is not zero at 𝑡𝑡 = 0 69 
unless 𝜁𝜁𝑛𝑛 = 0, i.e., when damping is present the modal acceleration does not satisfy the 70 
initial condition derived from the governing equation of motion (see Eq. (3-1)). Thus, Eq. 71 
(5-1) cannot be used for damped beams. 72 

 The correct solution to the modal equation of motion, which is valid both for 73 
damped and undamped beams, is [3, 4, 5] 74 

𝑞𝑞𝑛𝑛(𝑡𝑡) =
𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠

(1 − 𝐾𝐾𝑛𝑛2)2 + (2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2
{(1 − 𝐾𝐾𝑛𝑛2)sin(𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡) − 2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛cos(𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡) 75 

+𝐾𝐾𝑛𝑛e−𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡[2𝜁𝜁𝑛𝑛
2+𝐾𝐾𝑛𝑛2−1

�1−𝜁𝜁𝑛𝑛2
sin�𝜔𝜔𝑛𝑛�(1 − 𝜁𝜁𝑛𝑛2)𝑡𝑡� + 2𝜁𝜁𝑛𝑛cos�𝜔𝜔𝑛𝑛�(1 − 𝜁𝜁𝑛𝑛2)𝑡𝑡�]},      (6) 76 

where the critical undamped case (𝐾𝐾𝑛𝑛 = 1, 𝜁𝜁𝑛𝑛 = 0) must be excluded. The solution to the 77 
critical case can be found, for instance, in references [2] and [6]. Accordingly, the correct 78 
modal velocity is 79 

𝑞̇𝑞𝑛𝑛(𝑡𝑡) =
𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠

(1 − 𝐾𝐾𝑛𝑛2)2 + (2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2 𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛
{(1− 𝐾𝐾𝑛𝑛2)cos(𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡) + 2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛sin(𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡) 80 

−e−𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡[𝜁𝜁𝑛𝑛�1+𝐾𝐾𝑛𝑛
2�

�1−𝜁𝜁𝑛𝑛2
sin�𝜔𝜔𝑛𝑛�(1 − 𝜁𝜁𝑛𝑛2)𝑡𝑡� + (1 − 𝐾𝐾𝑛𝑛2)cos�𝜔𝜔𝑛𝑛�(1 − 𝜁𝜁𝑛𝑛2)𝑡𝑡�]}.   (7) 81 

 Differentiation of Eq. (7) readily shows that 𝑞̈𝑞𝑛𝑛(0) = 0.  82 

  Both Eqs. (3) and (6) reduce to the same correct result when 𝜁𝜁𝑛𝑛 = 0. Therefore, 83 
many conclusions regarding undamped beams in reference [1] are correct. Conversely, 84 
the formulas related to damped beams are not valid. The corrected versions of these 85 
formulas are given below. 86 

 87 
2.2. Free vibration 88 

The modal amplitude and modal velocity at 𝑡𝑡 = 𝐿𝐿/𝑣𝑣 are required to evaluate the free 89 
vibration. The exact values must be obtained from Eqs. (6) and (7) for a general damped 90 
beam: 91 

𝑞𝑞0𝑛𝑛 =
𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠

(1 − 𝐾𝐾𝑛𝑛2)2 + (2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2 𝐾𝐾𝑛𝑛
{−2𝜁𝜁𝑛𝑛cos(𝑛𝑛𝑛𝑛) 92 

+e−𝜁𝜁𝑛𝑛𝑛𝑛𝑛𝑛/𝐾𝐾𝑛𝑛[2𝜁𝜁𝑛𝑛
2+𝐾𝐾𝑛𝑛2−1

�1−𝜁𝜁𝑛𝑛2
sin �𝑛𝑛𝑛𝑛

𝐾𝐾𝑛𝑛
�1 − 𝜁𝜁𝑛𝑛2� + 2𝜁𝜁𝑛𝑛cos �𝑛𝑛𝑛𝑛

𝐾𝐾𝑛𝑛
�1 − 𝜁𝜁𝑛𝑛2�]},           (8a) 93 



𝑞̇𝑞0𝑛𝑛 =
𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠

(1 − 𝐾𝐾𝑛𝑛2)2 + (2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2 𝐾𝐾𝑛𝑛𝜔𝜔𝑛𝑛
{(1− 𝐾𝐾𝑛𝑛2)cos(𝑛𝑛𝑛𝑛) 94 

−e−𝜁𝜁𝑛𝑛𝑛𝑛𝑛𝑛/𝐾𝐾𝑛𝑛[𝜁𝜁𝑛𝑛�1+𝐾𝐾𝑛𝑛
2�

�1−𝜁𝜁𝑛𝑛2
sin �𝑛𝑛𝑛𝑛

𝐾𝐾𝑛𝑛
�1 − 𝜁𝜁𝑛𝑛2� + (1 − 𝐾𝐾𝑛𝑛2)cos �𝑛𝑛𝑛𝑛

𝐾𝐾𝑛𝑛
�1 − 𝜁𝜁𝑛𝑛2�]}.        (8b) 95 

Figs. (1) and (2) show the evolution of the (normalised) initial conditions of the 96 
free vibration. For the sake of conciseness, only the fundamental mode is shown. 97 

 98 

 99 

Figure 1. Normalised initial modal amplitude 𝑞𝑞0𝑛𝑛/𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠 of the free vibration 100 
 (𝑛𝑛 = 1, 𝜁𝜁𝑛𝑛 = 0.15).  Correct solution from Eq. (8a);  solution from  101 

Eq. (7a-1). 102 

 103 

 104 

Figure 2. Normalised initial modal velocity 𝑞̇𝑞0𝑛𝑛/�𝜔𝜔𝑛𝑛𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠� of the free vibration 105 
 (𝑛𝑛 = 1, 𝜁𝜁𝑛𝑛 = 0.15).  Correct solution from Eq. (8b);  solution from  106 

Eq. (7b-1). 107 

 108 

Eq. (6-1) is the generic expression of the free vibration during interval 109 
𝑡𝑡 > 𝐿𝐿/𝑣𝑣. This expression is valid, providing that the time is set to zero when the load 110 
departs from the beam: 111 



𝑞𝑞𝑛𝑛(𝑡𝑡) = 𝑒𝑒−𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡 �𝑞𝑞0𝑛𝑛cos(𝜔𝜔𝑑𝑑𝑑𝑑𝑡𝑡) + 𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑞𝑞0𝑛𝑛+𝑞̇𝑞0𝑛𝑛
𝜔𝜔𝑑𝑑𝑑𝑑

sin(𝜔𝜔𝑑𝑑𝑑𝑑𝑡𝑡)�,                  (9) 112 

where 𝜔𝜔𝑑𝑑𝑑𝑑 = 𝜔𝜔𝑛𝑛�1 − 𝜁𝜁𝑛𝑛2 is the damped frequency. For damped beams, Eq. (7c-1) yields 113 
an inexact free vibration time-history since it is derived from Eqs. (7a-1) and (7b-1). The 114 
correct expression is obtained by substitution of Eqs. (8) in Eq. (9) as follows: 115 

𝑞𝑞𝑛𝑛(𝑡𝑡) = 𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠

�1−𝐾𝐾𝑛𝑛2�
2
+(2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2

𝐾𝐾𝑛𝑛𝑒𝑒−𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡[𝐶𝐶𝑛𝑛cos(𝜔𝜔𝑑𝑑𝑑𝑑𝑡𝑡) + 𝐷𝐷𝑛𝑛sin(𝜔𝜔𝑑𝑑𝑑𝑑𝑡𝑡)],               (10a) 116 

𝐶𝐶𝑛𝑛 = �
𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠

(1 − 𝐾𝐾𝑛𝑛2)2 + (2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2 𝐾𝐾𝑛𝑛�
−1
𝑞𝑞0𝑛𝑛 = 117 

−2𝜁𝜁𝑛𝑛cos(𝑛𝑛𝑛𝑛) +  e−𝜁𝜁𝑛𝑛𝑛𝑛𝑛𝑛/𝐾𝐾𝑛𝑛[2𝜁𝜁𝑛𝑛
2+𝐾𝐾𝑛𝑛2−1

�1−𝜁𝜁𝑛𝑛2
sin �𝑛𝑛𝑛𝑛

𝐾𝐾𝑛𝑛
�1 − 𝜁𝜁𝑛𝑛2� + 2𝜁𝜁𝑛𝑛cos �𝑛𝑛𝑛𝑛

𝐾𝐾𝑛𝑛
�1 − 𝜁𝜁𝑛𝑛2�], (10b) 118 

𝐷𝐷𝑛𝑛 = �
𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠

(1 − 𝐾𝐾𝑛𝑛2)2 + (2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2 𝐾𝐾𝑛𝑛�
−1
�
𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑞𝑞0𝑛𝑛 + 𝑞̇𝑞0𝑛𝑛

𝜔𝜔𝑑𝑑𝑑𝑑
� = 119 

− 2𝜁𝜁𝑛𝑛
2+𝐾𝐾𝑛𝑛2−1

�1−𝜁𝜁𝑛𝑛2
cos(𝑛𝑛𝑛𝑛) + e−𝜁𝜁𝑛𝑛𝑛𝑛𝑛𝑛/𝐾𝐾𝑛𝑛[2𝜁𝜁𝑛𝑛

2+𝐾𝐾𝑛𝑛2−1

�1−𝜁𝜁𝑛𝑛2
cos �𝑛𝑛𝑛𝑛

𝐾𝐾𝑛𝑛
�1 − 𝜁𝜁𝑛𝑛2� − 2𝜁𝜁𝑛𝑛sin �𝑛𝑛𝑛𝑛

𝐾𝐾𝑛𝑛
�1 − 𝜁𝜁𝑛𝑛2�] .        120 

(10c) 121 

In reference [1], the free vibration is subsequently transformed into Eq. (8-1), i.e.: 122 

𝑞𝑞𝑛𝑛(𝑡𝑡) = 𝑋𝑋𝑛𝑛𝑒𝑒−𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑡𝑡sin(𝜔𝜔𝑑𝑑𝑑𝑑𝑡𝑡 − 𝜙𝜙𝑛𝑛),                                       (11)                                 123 

where the following relations hold: 124 

𝑞𝑞0𝑛𝑛 = −𝑋𝑋𝑛𝑛sin(𝜙𝜙𝑛𝑛),                                                    (12a) 125 

𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑞𝑞0𝑛𝑛+𝑞̇𝑞0𝑛𝑛
𝜔𝜔𝑑𝑑𝑑𝑑

= 𝑋𝑋𝑛𝑛cos(𝜙𝜙𝑛𝑛).                                              (12b) 126 

 The initial amplitude of the free vibration is represented by Xn. Following the 127 
transformation given by Eqs. (12), the initial conditions in Eqs. (8) can be combined to 128 
give the correct phase angle of the free vibration: 129 

tan(𝜙𝜙𝑛𝑛) = − 𝑞𝑞0𝑛𝑛
�𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑞𝑞0𝑛𝑛+𝑞̇𝑞0𝑛𝑛𝜔𝜔𝑑𝑑𝑑𝑑

�
= − 𝐶𝐶𝑛𝑛

𝐷𝐷𝑛𝑛
.                                          (13) 130 

 Since the amplitude 𝑋𝑋𝑛𝑛 is a positive number by definition, Eqs. (12) provide the 131 
signs of the sine and cosine of 𝜙𝜙𝑛𝑛. Therefore, the true solution between the two angles in 132 
the interval [0,2𝜋𝜋) that satisfy Eq. (13) can be unequivocally selected: the quadrant of the 133 
true solution is always conditioned by the signs of both 𝑞𝑞0𝑛𝑛 and (𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑞𝑞0𝑛𝑛 + 𝑞̇𝑞0𝑛𝑛) 𝜔𝜔𝑑𝑑𝑑𝑑⁄ . 134 
This selection of the “arctan” also defines the solution to be taken in [1], where Eq. (10-135 
1) should read as follows: 136 

tan(𝜙𝜙𝑛𝑛) =
e−𝜁𝜁𝑛𝑛𝑛𝑛𝑛𝑛/𝐾𝐾𝑛𝑛sin�𝑛𝑛𝑛𝑛𝐾𝐾𝑛𝑛

�1−𝜁𝜁𝑛𝑛2�

cos(𝑛𝑛𝑛𝑛)−e−𝜁𝜁𝑛𝑛𝑛𝑛𝑛𝑛/𝐾𝐾𝑛𝑛cos�𝑛𝑛𝑛𝑛𝐾𝐾𝑛𝑛
�1−𝜁𝜁𝑛𝑛2�

 .                                  (14) 137 



However, as previously mentioned, Eq. (14) is only valid for undamped beams. Although 138 
Eq. (14) is a version of (10-1) with a corrected sign, it still does not yield the true phase 139 
angle in a damped beam for the fundamental mode (see Fig. (3)). The phase angles are 140 
given here as the solution of the inverse tangent functions located in the interval [0,2𝜋𝜋). 141 

The amplitude of the free vibration is obtained from Eqs. (12) as follows: 142 

𝑋𝑋𝑛𝑛 = �(𝑞𝑞0𝑛𝑛)2 + �𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝑞𝑞0𝑛𝑛+𝑞̇𝑞0𝑛𝑛
𝜔𝜔𝑑𝑑𝑑𝑑

�
2

 .                                      (15) 143 

 Since the initial conditions given in [1] are not valid for damped beams, one could 144 
expect Eq. (9-1) to be incorrect except for 𝜁𝜁𝑛𝑛 = 0. However, after some mathematical 145 
simplifications, the amplitude given by Eq. (15) turns out to have the same closed-form 146 
expression, regardless of whether the initial conditions are Eqs. (7a-1, 7b-1) or Eqs. (8). 147 
Therefore Eq. (9-1) is correct, as well as its nondimensional version, Eq. (14-1). For the 148 
sake of completeness, the amplitude is repeated below: 149 

𝑋𝑋𝑛𝑛 = 𝑞𝑞𝑛𝑛,𝑠𝑠𝑠𝑠

��1−𝐾𝐾𝑛𝑛2�
2+(2𝜁𝜁𝑛𝑛𝐾𝐾𝑛𝑛)2

𝐾𝐾𝑛𝑛

�1−𝜁𝜁𝑛𝑛2
�1 + 𝑒𝑒−2𝜁𝜁𝑛𝑛𝑛𝑛𝑛𝑛/𝐾𝐾𝑛𝑛 − 2𝑒𝑒−𝜁𝜁𝑛𝑛𝑛𝑛𝑛𝑛/𝐾𝐾𝑛𝑛cos(𝑛𝑛𝑛𝑛)cos �𝑛𝑛𝑛𝑛

𝐾𝐾𝑛𝑛
�1 − 𝜁𝜁𝑛𝑛2� . (16) 150 

 151 

 152 

Figure 3. Phase angle 𝜙𝜙𝑛𝑛 of the free vibration (𝑛𝑛 = 1, 𝜁𝜁𝑛𝑛 = 0.15).  153 
Correct solution from Eq. (13);  solution from Eq. (14). 154 

 155 

In what follows, a set of numerical values is adopted for purposes of illustration: 𝑃𝑃=220 156 
kN, 𝐿𝐿=20 m, 𝑚𝑚=15000 kg/m, 𝑓𝑓1=𝜔𝜔1/2𝜋𝜋=7 Hz, 𝜁𝜁𝑛𝑛=0.15, 𝑣𝑣=120 m/s. Fig. (4) shows the 157 
end of the corresponding forced vibration time history and the beginning of the free 158 
vibration. For greater clarity, only the first modal amplitude 𝑞𝑞1(𝑡𝑡) is plotted. The correct 159 
solution obtained from Eq. (6) gives rise to initial conditions of the free vibration as per 160 
Eqs. (8), with values 𝑞𝑞01 = 6.82710 · 10−5 m and 𝑞̇𝑞01 = −0.0213545 m/s. Therefore, 161 
(𝜁𝜁1𝜔𝜔1𝑞𝑞01 + 𝑞̇𝑞01)/𝜔𝜔𝑑𝑑1 = −4.80723 · 10−4 m. The phase angle is then obtained from Eq. 162 
(13), where the signs of the sine/cosine are taken into account, according to Eqs. (12): 163 
𝜙𝜙1 = 3.28267 rad. Finally, the amplitude is computed, based on  Eq. (9-1) or Eq. (16):  164 
𝑋𝑋1 = 4.85547 · 10−4 m. 165 



 The solutions given in reference [1] are also depicted in Fig. (4). In this case the 166 
initial conditions are 𝑞𝑞01 = −1.08818 · 10−4 m and 𝑞̇𝑞01 = −0.0198588 m/s. These 167 
values lead to (𝜁𝜁1𝜔𝜔1𝑞𝑞01 + 𝑞̇𝑞01)/𝜔𝜔𝑑𝑑1 = −4.73194 · 10−4 m. Four free vibrations are 168 
shown in the figure, corresponding to four different phase angles derived from [1]. One 169 
of these vibrations features continuous displacement and velocity at 𝑡𝑡 = 𝐿𝐿/𝑣𝑣 = 1/6 s, 170 
This curve corresponds to one of the solutions of the inverse tangent obtained from Eq. 171 
(14), particularly the one that satisfies the signs of the sine/cosine in Eqs. (12):  172 
𝜙𝜙1 = 2.91556 rad. The remaining three free vibration curves correspond to  173 
𝜙𝜙1 = 2.91556 + 𝜋𝜋 rad and to the two solutions obtained from Eq. (10-1). 174 

Fig. (4) shows that these four free vibration curves have the same modulus of their 175 
initial value. The sign of the initial value is positive for one pair of curves and negative 176 
for the other pair. This fact is a direct consequence of the relations between the solutions 177 
to Eq. (14) and Eq. (10-1). 178 

 179 

 180 

Figure 4. Forced and free vibration  𝑞𝑞1(𝑡𝑡).  (𝐾𝐾1 = 0.4286, 𝜁𝜁𝑛𝑛 = 0.15). Correct solution 181 
from Eqs:  (6), (9-1), (13); Other solutions:   (3), (9-1), (14);   (3),  182 

(9-1), ((14)+π);   (3), (9-1), ((10-1) and (10-1)+π). End of forced vibration:  183 

 184 

 Regarding the amplitudes given by Eqs. (14-1) and (15-1), it should be highlighted 185 
that the normalisation is carried out in Eq. (13-1) with respect to the static response of the 186 
first mode 2𝑃𝑃/(𝜇𝜇𝜇𝜇𝜔𝜔1

2), whereas in reference [2], the amplitude is divided by 2𝑃𝑃/(𝜇𝜇𝜇𝜇𝜔𝜔𝑛𝑛2) 187 
(see the paragraph before Eq. (7-2)). The relation between them is given in Eq. (2), where 188 
the term 𝑛𝑛4 arises. This term was not taken into account by the authors of reference [1] 189 
in their criticism following Eq. (15-1). 190 

 Moreover, the last sentence in section 2.2 from reference [1] states: “This 191 
distinction, regarding the modes, has not been made in reference [15] and hence, the 192 
reported cancellation speed ratios for the second mode have no meaning as there are no 193 
responses at all to cancel”. In reference [1], the authors purposely focused on the response 194 
at mid-span. In contrast, the approach in reference [2] targets both the contribution of 195 
even and odd modes. Both types of mode must be dealt with when it is necessary to 196 
predict the cancellation speeds of the lowest modes in an experimental test. As is known, 197 



these speeds must be avoided in order to produce significant free vibrations and thus be 198 
able to more accurately measure the damping ratio of the first mode, second mode, etc. 199 
Thus, it is important to emphasise that the cancellation speeds of even modes definitely 200 
have a practical application when it comes to testing simply supported bridges (mainly 201 
for lowest frequency modes such as the second mode). 202 

3. Maxima and cancellations of free responses 203 

3.1. Conditions for maxima of free responses 204 

Reference [1] states that “The maximum dynamic response of a simply supported beam 205 
always occurs at its mid-span (i.e, at 𝑥𝑥 = 0.5 𝐿𝐿)”. In light of the results presented in 206 
section 4.4 of reference [6], that statement seems to be quite adequate from a practical 207 
viewpoint though it cannot be regarded as a general conclusion. The true maximum 208 
response could take place at sections different from 𝑥𝑥 = 0.5 𝐿𝐿. 209 

3.2. Conditions for cancellations of free responses 210 

In this section of reference [1], a formula is derived for the cancellation speeds of the nth 211 
(odd) mode that envisages the determination of values 𝐾𝐾𝑛𝑛 < 1. Eq. (21-1) and the 212 
sentence immediately below read: 213 

𝐾𝐾𝑛𝑛𝑖𝑖 = 𝑛𝑛
2𝑗𝑗−1

 ,                                                                 (17) 214 

“where 𝑗𝑗 = 𝑚𝑚 + 𝑖𝑖; 𝑚𝑚 = 2𝑛𝑛 − 1 and 𝑖𝑖, 𝑗𝑗 are positive integers”. The range of values of 215 
positive integers is 𝑖𝑖, 𝑗𝑗 ≥ 1. However, as specified in the previous definitions, j depends 216 
on both n and i. It is indeed a positive integer, but is not independent, and its lowest value 217 
is 2. By substituting the definitions of j and m in Eq. (21-1), the result obtained is 218 

𝐾𝐾𝑛𝑛𝑖𝑖 = 𝑛𝑛
2(𝑚𝑚+𝑖𝑖)−1

= 𝑛𝑛
2(2𝑛𝑛−1+𝑖𝑖)−1

= 𝑛𝑛
4𝑛𝑛+2𝑖𝑖−3

 ,                                       (18) 219 

where 𝑛𝑛 = 2𝑘𝑘 − 1 (odd modes only), and 𝑖𝑖, 𝑘𝑘 are positive integers. If the first four 220 
cancellations are computed for the first three odd modes from Eq. (18), the following 221 
values are obtained (see Table 1). 222 

 i = 1 i = 2 i = 3 i = 4 
n = 1 0.3333 0.2000 0.1429 0.1111 
n = 3 0.2727 0.2308 0.2000 0.1765 
n = 5 0.2632 0.2381 0.2174 0.2000 

Table 1. Nondimensional cancellation speeds derived from Eq. (21-1) 223 

 As can be observed, the values in Table 1 do not exactly correspond to the values 224 
in Table 1-1. Indeed, the former are a subset of the latter. The values in Table 1-1 are 225 
correct cancellation values for odd modes such that 𝐾𝐾𝑛𝑛 < 1, but they cannot be obtained 226 
from Eq. (21-1). Therefore, this equation cannot be used for computing the cancellation 227 
speed ratios. Instead, for odd and even modes, Eq. (11-2) in reference [2] gives the correct 228 
results and is repeated below for completeness: 229 

𝐾𝐾𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛
𝑛𝑛±2𝑖𝑖

> 0 ,     𝑖𝑖 ≥ 1.                                    (19) 230 



3.3. Conditions for cancellation of all modes (i.e., zero beam response) 231 

The new result presented in section 3.3 from reference [1] is of interest. Furthermore, it 232 
amends a statement in reference [2] that is not always true. More specifically, although 233 
there are cases when not all of the modes cancel simultaneously, it is indeed true that for 234 
certain velocities, the free response of all modes cancels, thus leading to a zero beam 235 
response (in undamped beams). 236 

 However, the mathematical proof given in Eqs. (28) should be completed. Eq. 237 
(28c-1) is equivalent to Eq. (20), which holds for any real speed, regardless of whether 238 
total cancellation takes place. Thus, Eq. (28c-1) is a necessary condition for cancellation 239 
of all modes, but it does not prove the occurrence of this type of phenomenon. This 240 
necessary condition appears in Eq. (4-2): 241 

𝐾𝐾𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛
𝜔𝜔𝑛𝑛𝐿𝐿

= 𝐾𝐾1
𝑛𝑛

 .                                                         (20) 242 

Since reference [1] states that the condition for cancellation of odd modes is given 243 
by Eq. (21-1), what needs to be demonstrated is that for every mode n, particular values 244 
of j exist such that Eq. (20) is satisfied, and that real cancellation speeds thus exist for all 245 
odd modes. 246 

This result can be easily proven both for odd and even modes as follows. If the 247 
free vibration of all modes in an undamped beam is cancelled, then the free vibration of 248 
the fundamental mode must also vanish. Therefore, if one proves that any cancellation 249 
speed of the fundamental mode is also a cancellation speed for the rest of modes, the total 250 
zero beam response is demonstrated. 251 

According to Eq. (19), the ith cancellation speed of the first mode is always less 252 
than unity and is given by 253 

𝐾𝐾1 = 1
1+2𝑖𝑖

 , 𝑖𝑖 ≥ 1.                                                   (21) 254 

For the nth mode (𝑛𝑛 > 1), if cancellation takes place at the same real speed then  255 
𝐾𝐾𝑛𝑛 < 𝐾𝐾1 < 1 by virtue of Eq. (20). Thus in Eq. (19), the minus sign must be excluded 256 
and the jth cancellation speed is 257 

𝐾𝐾𝑛𝑛 = 𝑛𝑛
𝑛𝑛+2𝑗𝑗

 , 𝑗𝑗 ≥ 1.                                                     (22) 258 

 According to Eq. (20), the values of i and j are related by the mode number n as 259 
per 260 

𝐾𝐾𝑛𝑛 = 𝐾𝐾1
𝑛𝑛

 ⟹  𝑛𝑛
𝑛𝑛+2𝑗𝑗

= 1
𝑛𝑛(1+2𝑖𝑖)

 .                                         (23) 261 

 Therefore the jth cancellation order of the nth mode, corresponding to the same 262 
real speed as the ith cancellation order of the first mode, is 263 

𝑗𝑗 = 𝑛𝑛2(1+2𝑖𝑖)−𝑛𝑛
2

 ,𝑛𝑛 > 1, 𝑖𝑖 ≥ 1.                                         (24) 264 

 It is fairly straightforward to prove that the numerator in Eq. (24) is always an 265 
even number greater than two. Thus, a positive integer value of j greater than one exists 266 



for each n and i value. This signifies that all free vibrations will vanish simultaneously 267 
when the first mode is cancelled. The corresponding nondimensional speeds for this 268 
phenomenon to occur are derived simply from the equations above: 269 

𝐾𝐾𝑛𝑛 = 1
𝑛𝑛(1+2𝑖𝑖)

 ,𝑛𝑛 ≥ 1, 𝑖𝑖 ≥ 1.                                           (25) 270 

Conclusions 271 

The free vibration response due to a point load moving along a simply supported 272 
Bernoulli−Euler beam was analysed in this paper. More specifically, this research 273 
presented the corrected versions of the initial conditions of the free vibration 274 
(displacement and velocity)  for damped beams, and also provided the corresponding 275 
phase angle. These results make it possible to reproduce the correct values of the response 276 
after the load has passed the beam. Furthermore, this paper also provided a complete proof 277 
of the existence of total cancellation speeds for undamped beams, and highlighted the 278 
mathematical formula for computing all the cancellations for any vibration mode. 279 

 280 

 281 
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