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BLOCK APPROXIMATE INVERSE PRECONDITIONERS FOR SPARSE
NONSYMMETRIC LINEAR SYSTEMS ∗

J. CERD́AN†, T. FARAJ‡, N. MALLA †, J. MARı́N†, AND J. MAS†

Abstract. In this paper block approximate inverse preconditioners tosolve sparse nonsymmetric linear systems
with iterative Krylov subspace methods are studied. The computation of the preconditioners involves consecutive
updates of variable rank of an initial and nonsingular matrix A0 and the application of the Sherman-Morrison-
Woodbury formula to compute an approximate inverse decomposition of the updated matrices. Therefore, they are
generalizations of the preconditioner presented in Bru et al. [SIAM J. Sci. Comput., 25 (2003), pp. 701–715]. The
stability of the preconditioners is studied and it is shown that their computation is breakdown-free for H-matrices. To
test the performance the results of numerical experiments obtained for a representative set of matrices are presented.

Key words. approximate inverse preconditioners, variable rank updates, block algorithms, Krylov iterative
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1. Introduction. In this paper we consider the solution of nonsingular linearsystems

(1.1) Ax = b ,

by preconditioned iterations. We assume the matrixA ∈ R
n×n to be sparse and nonsymmet-

ric. For large values ofn an approximate solution for (1.1) is frequently obtained by means of
iterative Krylov subspace methods. In practice, to accelerate the convergence of these meth-
ods either left, right or two-sided preconditioning is applied [23]. For left preconditioning the
linear system to solve is

MAx = Mb,

where the matrixM is the preconditioner.
Usually the matrixM is chosen in such a way that the preconditioned matrixMA is

close to the identityIn in some sense. For instance, the condition number is small and/or the
eigenvalues are clustered away from the origin. In general,the more clustered the eigenvalues,
the faster the convergence rate. Another desired situationis that the preconditioner should be
easy to compute and the cost of the preconditioning step should be of the same order of a
matrix-vector product with the coefficient matrixA.

In the last years several preconditioning techniques have been proposed. Roughly speak-
ing they can be grouped in two classes:implicit preconditionersandexplicit preconditioners.
Preconditioners of the first class typically compute incomplete factorizations ofA, such as
incomplete LU, and therefore the preconditioning step is done by solving two triangular lin-
ear systems; see for example [18, 19, 22, 23]. By contrast the second class of preconditioners
compute and store a sparse approximation of the inverse ofA and the preconditioning step is
done by a matrix-vector product; see [8, 13, 16, 17]. Since this operation is easy to implement
on parallel and vector computers, approximate inverse preconditioners are attractive for par-
allel computations. In addition, some authors argue that approximate inverse preconditioners
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are more robust than implicit ones [2]. For a comparative study of some of these techniques
we refer to [7]. We focus in this paper on sparse approximate inverse preconditioners.

In [11] the authors present a new algorithm based on the Sherman-Morrison formula
to compute an inverse decomposition of a nonsymmetric matrix. Given two sets of vectors
{xk}

n
k=1 and{yk}

n
k=1 in R

n, and a nonsingular matrixA0 such thatA = A0 +
∑n

k=1 xkyT
k ,

the algorithm computes a factorization of the matrixA−1
0 −A−1 of the formUT−1V T from

now on called ISM decomposition. The particular caseA0 = sIn, whereIn is the identity
matrix ands is a positive scalar factor, was studied and it was shown thatthe approximate
computation of this decomposition is breakdown-free whenA is an M-matrix. We will show
that this is also true for the wider class of H-matrices. The ISM decomposition is closely
related to the LU factorization as can be seen in the proof of Lemmas3.2 and3.5. This
fact has been used in [10] to obtain direct and inverse factors of the Cholesky factorization
of a symmetric positive definite matrix. This approach differs from AINV, which uses a
biconjugation process or SPAI, based on the minimization ofthe Frobenius norm ofI −AM .

Once an approximate ISM decomposition has been computed it can be used as an ap-
proximate inverse preconditioner as has been done in [11]. It was observed that compared
to AINV [ 8] both performed similarly. In this paper we present resultsfor the block case
showing that this approach is able to solve more problems than its pointwise counterpart.

On the other hand, exploiting faster speeds of level3 BLAS block algorithms is becom-
ing increasingly popular in matrix computations. Since they operate on blocks or submatrices
of the original matrix, they are well suited for modern high performance computers. Further-
more, certain problems have a natural block structure that should be exploited to gain robust-
ness. There are a number of papers on block preconditioners;see for instance [3, 6, 9, 12]
and the references therein. In all cases an improved efficiency with respect to non-blocking
algorithms was observed.

These considerations motivate the present study. We generalize the ISM decomposi-
tion by applying successive updates of variable rank which leads to a block-form algorithm.
Therefore, the new algorithm is based on the Sherman-Morrison-Woodbury formula [27],
which states that the inverse of the matrixA + XY T is given by

(1.2) A−1 − A−1X(I + Y T A−1X)−1Y T A−1,

provided that the matricesA ∈ R
n×n andI +Y T A−1X are nonsingular andX, Y ∈ R

n×m.
The rank of the updates, and hence the size of the blocks, can be chosen in different ways:
looking for the particular structure for structured matrices, applying an algorithm to find the
block structure [24] and finally by imposing an artificial block structure. The approximate
computation of the block ISM decomposition is then used as aninverse block preconditioner.

This paper is organized as follows. Section2 presents an expression for the block ISM
decomposition of a general matrixA using the Sherman-Morrison-Woodbury formula (1.2)
which generalizes the one obtained in [11]. Then, in Section3 this expression is used to ob-
tain block approximate inverse preconditioners based on different choices of the initial matrix
A0 and to show how they relate to each other. Our findings indicate that these precondition-
ers can be computed without breakdowns for H-matrices. Therefore, since the preconditioner
proposed in [11] is a particular case of one of the preconditioners proposedhere, we also
prove that its computation is breakdown-free for H-matrices. In order to evaluate the perfor-
mance of the preconditioners, the results of the numerical experiments for a representative
set of matrices are presented in Section4. Finally, the main conclusions are presented in
Section5.

Throughout the paper the following notation will be used. Given two matricesA = [aij ]
andB = [bij ], we denoteA ≥ B whenaij ≥ bij . A similar convention is used for≤.
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Likewise,|A| = [|aij |]. A matrix A is a nonsingular M-matrix ifaij ≤ 0 for all i 6= j and it
is monotone, i.e.,A−1 ≥ O. For a given matrixA one can associate its comparison matrix
M(A) = [αij ], where

αii = |aii|, andαij = −|aij | for i 6= j.

The matrixA is an H-matrix if its comparison matrixM(A) is an M-matrix.
We conclude this section with some well-known properties ofM- and H-matrices that

will be used later. IfB ≥ A with bij ≤ 0 for i 6= j andA is an M-matrix, thenB is also an
M-matrix. Moreover,A−1 ≥ B−1 [26]. If A is an H-matrix, then|A−1| ≤ M(A)−1 [20].

2. Block ISM decomposition. Let A0 ∈ R
n×n be a nonsingular matrix, and let

Xk, Yk ∈ R
n×mk , k = 1, . . . , p, be two sets of rectangular matrices such that,

(2.1) A = A0 +

p
∑

k=1

XkY T
k .

Assume that the matricesTk = Imk
+ Y T

k A−1
k−1Xk, k = 1, . . . , p, are nonsingular, where

Ak−1 = A0 +
∑k−1

i=1 XiY
T
i , i.e., a partial sum of (2.1), andImk

denotes the identity matrix
of sizemk × mk. ¿From (1.2) the inverse ofAk is given by

(2.2) A−1
k = A−1

k−1 − A−1
k−1XkT−1

k Y T
k A−1

k−1, k = 1, . . . , p.

SinceA−1
p = A−1, applying (2.2) recursively one has

A−1 = A−1
0 −

p
∑

k=1

A−1
k−1XkT−1

k Y T
k A−1

k−1,

which can be written in matrix notation as

(2.3) A−1 = A−1
0 − ΦT−1ΨT ,

where

Φ =
[

A−1
0 X1 A−1

1 X2 · · · A−1
p−1Xp

]

,

T−1 =











T−1
1

T−1
2

. . .
T−1

p











and ΨT =











Y T
1 A−1

0

Y T
2 A−1

1
...

Y T
p A−1

p−1











.

To avoid having to compute the matricesAk, we can define fromXk andYk, for k = 1, . . . , p,
two new sets of matricesUk andVk as in (2.4) and (2.5). The following result is a general-
ization of [11, Theorem 2.1].

THEOREM 2.1. Let A and A0 be two nonsingular matrices, and let{Xk}
p
k=1 and

{Yk}
p
k=1 be two sets of matrices such that condition (2.1) is satisfied. In addition suppose

that the matricesTk = Imk
+ Y T

k A−1
k−1Xk, for k = 1, . . . , p, are nonsingular. Then

(2.4) Uk = Xk −

k−1
∑

i=1

UiT
−1
i V T

i A−1
0 Xk,
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(2.5) Vk = Yk −

k−1
∑

i=1

ViT
−T
i UT

i A−T
0 Yk

are well defined fork = 1, . . . , p. Moreover,

A−1
k−1Xk = A−1

0 Uk,

Y T
k A−1

k−1 = V T
k A−1

0 ,

and

(2.6) Tk = Imk
+ Y T

k A−1
0 Uk = Imk

+ V T
k A−1

0 Xk.

Proof. Similar to the proof of Theorem 2.1 in [11].
Denoting byU = [U1 U2 · · · Up] andV = [V1 V2 · · · Vp] the matrices whose block

columns are the matricesUk andVk, respectively, equation (2.3) can be rewritten as

(2.7) A−1 = A−1
0 − A−1

0 UT−1V T A−1
0 ,

which is the block ISM decomposition of the matrixA.
Different choices of the matricesXk, Yk andA0 allow different ways of computing (2.7).

Nevertheless, it is convenient thatA0 be a matrix whose inverse is either known or easy to
obtain. In the next section we will study two possibilities.The first one is the choice already
considered in [11], i.e.,A0 = sIn, wheres is a positive scalar andIn is the identity matrix of
sizen. The second one isA0 = diag(A11, . . . , App), whereAii are the main diagonal square
blocks of the matrixA partitioned in block form,

(2.8) A =











A11 A12 . . . A1p

A21 A22 . . . A2p

...
...

. . .
...

Ap1 Ap2 . . . App











,

whereAij ∈ R
mi×mj ,

∑p

k=1 mk = n. In addition we will show the relationship between
the two cases when a block Jacobi scaling is applied.

3. Approximate block ISM decompositions. Even if the matrixA is sparse its block
ISM decomposition (2.7) is structurally dense. To obtain a sparse block ISM decomposi-
tion which can be used as a preconditioner, incomplete factors Ūk and V̄k are obtained by
dropping off-diagonal block elements during the computation ofUk andVk. In addition, the
inverse ofA0 can be computed approximately and either its exact or its approximate inverse
will be denoted byĀ−1

0 . Once the factors̄Uk and V̄k have been computed, two different
preconditioning strategies can be used,

(3.1) Ā−1
0 − Ā−1

0 Ū T̄−1V̄ T Ā−1
0

and

(3.2) Ā−1
0 Ū T̄−1V̄ T Ā−1

0 .

In [11] both preconditioners are studied. Although (3.2) requires less computation per
iteration than (3.1), the latter tends to converge in fewer iterations, especially for difficult
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problems. Therefore, the results presented in the numerical experiments correspond to the
block approximate ISM decomposition (3.1). The following algorithm computes the approx-
imate factors.

ALGORITHM 3.1. Computing the incomplete factors in (3.1) and (3.2).
(1) let Uk = Xk, Vk = Yk, (k = 1, . . . , p) and Ā−1

0 ≈ A−1
0

(2) for k = 1, . . . , p

(3) for i = 1, . . . , k − 1
Ci = ŪiT̄

−1
i V̄ T

i

Uk = Uk − CiĀ
−1
0 Xk

Vk = Vk − CT
i Ā−T

0 Yk

end for
compute V̄k, Ūk dropping block elements in Vk, Uk

T̄k = Imk
+ V̄ T

k Ā−1
0 Xk

end for
(4) return Ū = [Ū1 Ū2 · · · Ūp], V̄ = [V̄1 V̄2 · · · V̄p] andT̄ = diag(T̄1, T̄2, . . . , T̄p)

Algorithm 3.1 runs to completion if the pivot matrices̄Tk are nonsingular. It will be
shown that this condition holds for H-matrices. To prove these results we first show that the
matricesTk are closely related to the pivots of the block LU factorization applied toA. We
will discuss the choice ofA0 separately.

3.1. Case 1:A0 = sIn. Let X = In andY = (A − sIn)T be matrices partitioned
consistently with (2.8). Thekth block column of the matricesY andX are given explicitly
by

(3.3) Yk =
[

Ak1 · · · Akk−1 Akk − sImk
· · · Akp

]T

and

(3.4) Xk =
[

0 · · · Imk
· · · 0

]T
.

With this choice, the expressions (2.4), (2.5), and (2.6) simplify to

(3.5) Uk = Xk −

k−1
∑

i=1

s−1UiT
−1
i V T

i Xk,

(3.6) Vk = Yk −
k−1
∑

i=1

s−1ViT
−T
i UT

i Yk,

and

(3.7) Tk = Imk
+ s−1V T

k Xk = Imk
+ s−1V T

kk.

LEMMA 3.2. LetA be a matrix partitioned as in (2.8) and letA0 = sI. If the block LU
factorization ofA can be computed without pivoting, then

Tk = s−1A
(k−1)
kk ,

whereA
(k−1)
kk is thekth pivot in the block LU factorization ofA.
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Proof. Observe that the block(i, j) of the matrixA(k) obtained from thekth step of the
LU factorization is given by

A
(k)
ij = A

(k−1)
ij − A

(k−1)
ik

(

A
(k−1)
kk

)

−1

A
(k−1)
kj

= Aij −
[

Ai1 Ai2 . . . Aik

]











A11 A12 . . . A1k

A21 A22 . . . A2k

...
...

. . .
...

Ak1 Ak2 . . . Akk











−1 









A1j

A2j

...
Akj











with i, j > k. Consider the matrixTk given by (see section2):

(3.8) Tk = Imk
+ Y T

k A−1
k−1Xk.

We have

Ak−1 =





















A11 . . . A1,k−1 A1k . . . A1p

...
. . .

...
...

...
...

Ak−1,1 . . . Ak−1,k−1 Ak−1,k . . . Ak−1,p

0 . . . 0 sImk
. . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . sImp





















=











C11 C12 . . . C1,p−k

0 sImk
. . . 0

...
...

. . .
...

0 0 . . . sImp











,

whose inverse is

(3.9) A−1
k−1 =











C−1
11 −s−1C−1

11 C12 . . . −s−1C−1
11 C1,p−k

0 s−1Imk
. . . 0

...
...

. . .
...

0 0 . . . s−1Imp











.

Then, by substituting (3.9) into (3.8), and bearing in mind (3.3), (3.4), and (2.8), we have

Tk = Imk
− s−1

[

Ak1 . . . Ak,k−1

]











A11 . . . A1,k−1

A21 . . . A2,k−1

...
. . .

...
Ak−1,1 . . . Ak−1,k−1











−1 









A1k

A2k

...
Ak−1,k











+ s−1(Akk − sImk
)

= s−1











Akk −
[

Ak1 . . . Ak,k−1

]











A11 . . . A1,k−1

A21 . . . A2,k−1

...
. . .

...
Ak−1,1 . . . Ak−1,k−1











−1 









A1k

A2k

...
Ak−1,k





















= s−1A
(k−1)
kk .
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This result generalizes [11, Lemma 3.2] to the case of a block matrixA. If A is either an
M-matrix or an H-matrix, the block LU factorization can be done without pivoting [1]. Thus,
Algorithm 3.1runs to completion for these matrices when no dropping strategy is used. The
following results show that this situation is also true in the incomplete case.

THEOREM3.3. LetA be an M-matrix partitioned as in (2.8). The matrices̄Tk computed
by Algorithm3.1with A0 = sIn are nonsingular M-matrices.

Proof. The proof proceeds by induction overk, k = 1, . . . , p. We will show that theT̄k

are M-matrices, observing that

(3.10) Uik ≥ Ūik ≥ 0, i ≤ k,

(3.11) Vik ≤ V̄ik ≤ 0, i > k,

(3.12) T−1
k ≥ T̄−1

k ≥ 0.

1. Fork = 1, we haveU11 = Im1
≥ 0. Moreover,Vi1 = AT

1i ≤ 0 for i > 1 sinceA

is an M-matrix. Therefore, after dropping elements, it follows thatVi1 ≤ V̄i1 ≤ 0.
Observe that̄T1 = T1 = s−1A11 is an M-matrix and equation (3.12) holds.

2. Now, assume that (3.10), (3.11), and (3.12) hold for k − 1. For k, we have
Ukk = Imk

≥ 0. For i < k, it follows that

Uik = −

k−1
∑

j=i

UijT
−1
j V T

kj ≥ −

k−1
∑

j=i

Ūij T̄
−1
j V̄ T

kj = Ūik ≥ 0.

For i 6= k,

Vik = AT
ki − s−1

k−1
∑

j=1

VijT
−T
j

j
∑

l=1

UT
lj AT

kl = AT
ki − s−1

k−1
∑

j=1

j
∑

l=1

VijT
−T
j UT

lj AT
kl.

SinceA is an M-matrix,AT
kl ≤ 0 for l 6= k. Then, fori > k,

(3.13) −VijT
−T
j UT

lj AT
kl ≤ −V̄ij T̄

−T
j ŪT

lj AT
kl ≤ 0

and

Vik ≤ AT
ki − s−1

k−1
∑

j=1

j
∑

l=1

V̄ij T̄
−T
j ŪT

lj AT
kl = V̄ik ≤ 0.

Now dropping elements in̄Uik and V̄ik, and mantaining the same notation for the
incomplete factors, the inequalities (3.10) and (3.11) hold fork.
Similarly, from (3.7),

Tk = s−1



Akk − s−1
k−1
∑

j=1

j
∑

l=1

(VkjT
−T
j UT

lj AT
kl)

T





≤ s−1



Akk − s−1
k−1
∑

j=1

j
∑

l=1

(V̄kj T̄
−T
j ŪT

lj AT
kl)

T



 = T̄k.
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By equation (3.13) the matrixT̄k has non-positive off-diagonal entries. SinceTk is
an M-matrix, it follows that T̄k is also an M-matrix and hence
T−1

k ≥ T̄−1
k ≥ 0.

THEOREM 3.4. LetA be an H-matrix partitioned as in (2.8). The matrices̄Tk computed
by Algorithm3.1with A0 = sIn are nonsingular H-matrices.

Proof. To simplify the notation, let us denote byB the comparison matrix ofA, M(A),
and by(UB

j , V B
j , T B

j ) the matrices obtained by applying Algorithm3.1to the matrixB.
As before, the proof proceeds by induction overk, k = 1, . . . , p. We will show thatT̄k

are H-matrices observing that

(3.14) UB
ik ≥

∣

∣Ūik

∣

∣ ≥ 0, i ≤ k,

(3.15) V B
ik ≤ −

∣

∣V̄ik

∣

∣ ≤ 0, i > k,

(3.16) (T B
k )−1 ≥

∣

∣T̄−1
k

∣

∣ ≥ 0.

1. Fork = 1, we haveŪ11 = U11 = Im1
≥ 0. Thus,

∣

∣Ū11

∣

∣ = UB
11. On the other

hand,Vi1 = AT
1i for i > 1 and therefore− |Vi1| = V B

i1 . After dropping elements,
it follows that−

∣

∣V̄i1

∣

∣ ≥ − |Vi1| = V B
i1 . Observe now that̄T1 = T1 = s−1A11 and

M(T1) = T B
1 is an M-matrix. Therefore, equation (3.16) holds.

2. Now, assume that (3.14), (3.15), and (3.16) hold untilk − 1. Fork, we haveŪkk =
Imk

= UB
kk ≥ 0. For i < k, it follows that

∣

∣Ūik

∣

∣ =

∣

∣

∣

∣

∣

∣

1

s

k−1
∑

j=1

Ūij T̄
−1
j V̄ T

kj

∣

∣

∣

∣

∣

∣

≤
1

s

k−1
∑

j=1

∣

∣Ūij

∣

∣

∣

∣T̄−1
j

∣

∣

∣

∣V̄ T
kj

∣

∣

≤ −
1

s

k−1
∑

j=1

UB
ij

(

T B
j

)−1 (
V B

kj

)T
= UB

ik .

In addition, fori > k one has

−
∣

∣V̄ik

∣

∣ = −

∣

∣

∣

∣

∣

∣

AT
ki −

1

s

k−1
∑

j=1

V̄ij T̄
−T
j

(

j
∑

l=1

ŪT
lj AT

kl

)

∣

∣

∣

∣

∣

∣

≥ −
∣

∣AT
ki

∣

∣−
1

s

k−1
∑

j=1

j
∑

l=1

∣

∣V̄ij T̄
−T
j ŪT

lj AT
kl

∣

∣

≥ −
∣

∣AT
ki

∣

∣−
1

s

k−1
∑

j=1

j
∑

l=1

∣

∣V̄ij

∣

∣

∣

∣T̄−T
j

∣

∣

∣

∣ŪT
lj

∣

∣

∣

∣AT
kl

∣

∣ .

Applying (3.14), (3.15), and (3.16) it follows that

−
∣

∣V̄ik

∣

∣ ≥ −
∣

∣AT
ki

∣

∣+
1

s

k−1
∑

j=1

j
∑

l=1

V B
ij

(

T B
j

)−T (

UB
lj

)T ∣
∣AT

kl

∣

∣ = V B
ij .
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Now dropping elements in̄Uik and V̄ik, and mantaining the same notation for the
incomplete factors, the inequalities (3.14) and (3.15) hold fork. In addition,

T̄k = I +
1

s
V̄ T

kk =
1

s



Akk −
1

s

k−1
∑

j=1

j
∑

l=1

(

V̄kj T̄
−T
j ŪT

lj AT
kl

)T



 .

We now compare the matricesM(T̄k) andT B
k element by element. We denote by

Rm(·) andCm(·) themth row and column of a matrix, respectively. Considering
the diagonal elements, we have

T̄k(m, m) =
1

s
Akk(m, m) −

1

s2

k−1
∑

j=1

j
∑

l=1

Rm

(

ĀT
kl

)

Ūlj T̄
−1
j Cm

(

V̄ T
kj

)

.

Then,

∣

∣T̄k(m, m)
∣

∣ ≥
1

s
|Akk(m, m)| −

1

s2

k−1
∑

j=1

j
∑

l=1

∣

∣Rm

(

AT
kl

)

Ūlj T̄
−1
j Cm

(

V̄ T
kj

)∣

∣

≥
1

s
|Akk(m, m)| −

1

s2

k−1
∑

j=1

j
∑

l=1

Rm

(∣

∣AT
kl

∣

∣

) ∣

∣Ūlj

∣

∣

∣

∣T̄−1
j

∣

∣Cm

(∣

∣V̄ T
kj

∣

∣

)

.

By applying (3.14), (3.15), and (3.16) it follows that

∣

∣T̄k(m, m)
∣

∣ ≥
1

s
|Akk(m, m)| +

1

s2

k−1
∑

j=1

j
∑

l=1

Rm

(∣

∣AT
kl

∣

∣

)

UB
lj

(

T B
j

)−1
Cm

(

(

V B
kj

)T
)

= T B
k (m, m).

Similarly, one has−
∣

∣T̄k(m, n)
∣

∣ ≥ T B
k (m, n) for all m 6= n. Then,

M
(

T̄k

)

≥ T B
k .

By Theorem3.3 it follows that T B
k is an M-matrix and hencēTk is an H-matrix,

which implies that
∣

∣T̄−1
k

∣

∣ ≤ M
(

T̄k

)

−1
≤
(

T B
k

)

−1
.

3.2. Case 2:A0 = diag(A11, . . . , App). Let X = In andY = (A − A0)
T be matrices

partitioned consistently with (2.8). Thekth block column of the matricesY andX are given
explicitly by

(3.17) Yk =
[

Ak1 · · · Akk−1 0mk
Akk+1 · · · Akp

]T

and

Xk =
[

0 · · · Imk
· · · 0

]T
.

LEMMA 3.5. Let A be a matrix partitioned as in (2.8). If the block LU factorization of
A can be carried out without pivoting, then

Tk = A
(k−1)
kk A−1

kk ,
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whereA
(k−1)
kk is thekth pivot in the block LU factorization ofA.

Proof. Observe that the block(i, j) of the matrixA(k) obtained from thekth step of LU
factorization is given by

A
(k)
ij = A

(k−1)
ij − A

(k−1)
ik

(

A
(k−1)
kk

)

−1

A
(k−1)
kj

= Aij −
[

Ai1 Ai2 . . . Aik

]











A11 A12 . . . A1k

A21 A22 . . . A2k

...
...

. . .
...

Ak1 Ak2 . . . Akk











−1 









A1j

A2j

...
Akj











with i, j > k. Consider the matrixTk given by

Tk = Imk
+ Y T

k A−1
k−1Xk.

With A0 = diag(A11, . . . , App), we have

Ak−1 =





















A11 . . . A1,k−1 A1k . . . A1p

...
. . .

...
...

...
...

Ak−1,1 . . . Ak−1,k−1 Ak−1,k . . . Ak−1,p

0 . . . 0 Akk . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . App





















=











C11 C12 . . . C1,p−k

0 Akk . . . 0
...

...
. . .

...
0 0 . . . App











,

whose inverse is

A−1
k−1 =











C−1
11 −C−1

11 C12A
−1
kk . . . −C−1

11 C1,p−kA−1
pp

0 A−1
kk . . . 0

...
...

. . .
...

0 0 . . . A−1
pp











.

Then

Tk = Imk
−
[

Ak1 . . . Ak,k−1

]











A11 . . . A1,k−1

A21 . . . A2,k−1

...
. . .

...
Ak−1,1 . . . Ak−1,k−1











−1 









A1k

A2k

...
Ak−1,k











A−1
kk .

Post-multiplying byAkk, we have

TkAkk = Akk −
[

Ak1 . . . Ak,k−1

]











A11 . . . A1,k−1

A21 . . . A2,k−1

...
. . .

...
Ak−1,1 . . . Ak−1,k−1











−1 









A1k

A2k

...
Ak−1,k











= A
(k−1)
kk .
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Thus,Tk = A
(k−1)
kk A−1

kk .
THEOREM3.6. LetA be an M-matrix partitioned as in (2.8). The matrices̄Tk computed

by Algorithm3.1with A0 = diag(A11, . . . , App) are nonsingular M-matrices.
Proof. The proof proceeds by induction overk, k = 1, . . . , p. We will show thatT̄k are

M-matrices, observing that

(3.18) Uk ≥ Ūk ≥ 0,

(3.19) Vk ≤ V̄k ≤ 0,

(3.20) T−1
k ≥ T̄−1

k ≥ 0.

1. Fork = 1, we haveU1 = X1 ≥ 0. Moreover,V1 = Y1 ≤ 0 sinceA is an M-
matrix. Therefore, after applying a dropping strategy, it follows thatV1 ≤ V̄1 ≤ 0.
Observing that̄T1 = T1 = Im1

, (3.20) is trivially satisfied.
2. Now, assume that (3.18), (3.19), and (3.20) hold untilk− 1. Then fori ≤ k− 1, we

have that
(a) −UiT

−1
i V T

i A−1
0 Xk ≥ −ŪiT̄

−1
i V̄ T

i A−1
0 Xk ≥ 0,

(b) −ViT
−T
i UT

i A−T
0 Yk ≤ −V̄iT̄

−T
i ŪT

i A−T
0 Yk ≤ 0.

Then, fork, we have

Uk = Xk −

k−1
∑

i=1

UiT
−1
i V T

i A−1
0 Xk ≥ Xk −

k−1
∑

i=1

ŪiT̄
−1
i V̄ T

i A−1
0 Xk = Ūk ≥ 0,

Vk = Yk −
k−1
∑

i=1

ViT
−T
i UT

i A−T
0 Yk ≤ Yk −

k−1
∑

i=1

V̄iT̄
−T
i ŪT

i A−T
0 Yk = V̄k ≤ 0.

Moreover,Tk = Imk
+ V T

kkA−1
kk ≤ Imk

+ V̄ T
kkA−1

kk = T̄k. Then,T̄k is an M-matrix
andT−1

k ≥ T̄−1
k ≥ 0.

THEOREM 3.7. LetA be an H-matrix partitioned as in (2.8). The matrices̄Tk computed
by Algorithm3.1with A0 = diag(A11, . . . , App) are nonsingular H-matrices.

Proof. To simplify the notation, let us denote byB the comparison matrix ofA, M(A),
and by(UB

j , V B
j , T B

j ) the matrices obtained by applying Algorithm3.1to the matrixB. Note
thatB0 = M(A0) and then|A−1

0 | ≤ B−1
0 , that is|A−1

kk | ≤ B−1
kk for k = 1, . . . , p. Moreover,

Y B
k = −|Yk| ≤ 0.

As before, the proof proceeds by induction overk, k = 1, . . . , p. We will show that the
T̄k are H-matrices by observing that

(3.21) UB
k ≥

∣

∣Ūk

∣

∣ ≥ 0,

(3.22) V B
k ≤ −

∣

∣V̄k

∣

∣ ≤ 0,

(3.23) (T B
k )−1 ≥

∣

∣T̄−1
k

∣

∣ ≥ 0.
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1. Fork = 1, we haveŪ1 = U1 = Im1
≥ 0. Thus,

∣

∣Ū1

∣

∣ = UB
1 . On the other hand,

V1 = Y1 and therefore− |V1| = −|Y1| = V B
1 . After applying a dropping strategy,

it follows that−
∣

∣V̄1

∣

∣ ≥ − |V1| = V B
1 . Observing that̄T1 = T1 = Im1

(3.23) is
trivially satisfied.

2. Now, assume that (3.21), (3.22), and (3.23) hold untilk − 1. Fork, we haveŪk =
Xk −

∑k−1
i=1 ŪiT̄

−1
i V̄ T

i A−1
0 Xk. Then, it follows that

|Ūk| = |Xk −
∑k−1

i=1 ŪiT̄
−1
i V̄ T

i A−1
0 Xk|

≤ |Xk| +
∑k−1

i=1 |Ūi||T̄
−1
i ||V̄ T

i ||A−1
0 Xk|

≤ |Xk| −
∑k−1

i=1 UB
i (T B

i )−1(V B
i )T B−1

0 Xk = UB
k .

In addition, we havēVk = Yk −
∑k−1

i=1 V̄iT̄
−T
i ŪT

i A−T
0 Yk. Then one has

−|V̄k| = −|Yk −
∑k−1

i=1 V̄iT̄
−T
i ŪT

i A−T
0 Yk|

≥ −|Yk| −
∑k−1

i=1 |V̄iT̄
−T
i ŪT

i A−T
0 Yk|

≥ −|Yk| −
∑k−1

i=1 |V̄i||T̄
−T
i ||ŪT

i ||A−T
0 ||Yk|

= Y B
k +

∑k−1
i=1 |V̄i||T̄

−T
i ||ŪT

i ||A−T
0 |Y B

k

≥ Y B
k −

∑k−1
i=1 V B

i (T B
i )−T (UB

i )T B−T
0 Y B

k = V B
k .

After applying a dropping strategy in the computation ofŪk and V̄k and keeping
the same notation for the incomplete factors, the inequalities (3.21) and (3.22) hold
for k. In addition,T̄k = I + V̄ T

kkA−1
kk . We now compare the matricesM(T̄k) and

T B
k element by element. We denote byRm(·) andCm(·) themth row and column

of a matrix, respectively. Considering the diagonal elements, we have

|Tk(m, m)| = |1 + Rm(V̄ T
kk)Cm(A−1

kk )|

≥ 1 − |Rm(V̄ T
kk)Cm(A−1

kk )|

≥ 1 + Rm(−|V T
kk|)Cm(B−1

kk )

≥ 1 + Rm((V B
kk)T )Cm(B−1

kk ) = T B
k (m, m).

Similarly, one has−
∣

∣T̄k(m, n)
∣

∣ ≥ T B
k (m, n) for all m 6= n. Then,

M
(

T̄k

)

≥ T B
k .

By Theorem3.6 it follows that T B
k is an M-matrix and hencēTk is an H-matrix,

which implies that
∣

∣T̄−1
k

∣

∣ ≤ M
(

T̄k

)

−1
≤
(

T B
k

)

−1
.

3.3. Relation to block Jacobi scaling.In this section we analyze the relation between
the two previously studied cases to block Jacobi scaling. Inparticular, we study the relation-
ship between the factors obtained after applying the exact process to the right block Jacobi
scaled matrixAD−1, whereD = diag(A11, . . . , App), takingA0 = I (observe that this is
case 1 withs = 1), and the factors obtained in the case 2, whereA0 = D.

THEOREM 3.8. LetU , V andT be the factors of the exact block ISM decomposition of
the matrixA with A0 = diag(A11, . . . , App), and letÛ , V̂ andT̂ be the factors correspond-
ing to the block ISM decomposition withA0 = I of the right scaled matrixAD−1, where
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D = diag(A11, . . . , App). Then

Û = U, V̂ = D−T V, T̂ = T.

Proof. Observe that for the scaled matrixAD−1 equations (3.3) and (3.4) become

(3.24) Ŷk =
[

Ak1A
−1
11 · · · Akk−1A

−1
k−1,k−1 0 · · · AkpA

−1
pp

]T

and

(3.25) X̂k =
[

0 · · · Imk
· · · 0

]T
,

respectively. Then̂Yk = D−T Yk andX̂k = Xk for all k.
We proceed now by induction. Fork = 1 it is clear thatÛ1 = X̂1 = X1 = U1. On

the other hand,̂V1 = Ŷ1 =
[

0 · · · A1tA
−1
tt · · · A1pA

−1
pp

]T
= D−T Y1; see (3.17).

Finally, from (3.7), T̂1 = Im1
+ V̂ T

11 = Im1
= T1.

Assume now that̂Ui = Ui, thatV̂i = D−T Vi andT̂i = Ti for i = 1, 2, . . ., k− 1. In this
case equation (3.5) becomes

Ûk = X̂k −

k−1
∑

i=1

ÛiT̂
−1
i V̂ T

i X̂k

= Xk −

k−1
∑

i=1

UiT
−1
i V T

i D−1Xk

= Uk,

since the second expression coincides with (2.4) keeping in mind that in this equationA0

must be replaced byD.
On the other hand equation (3.6) becomes

V̂k = Ŷk −
k−1
∑

i=1

V̂iT̂
−T
i ÛT

i Ŷk

= D−T Yk −
k−1
∑

i=1

D−T ViT
−T
i UT

i D−T Yk

= D−T
(

Yk −

k−1
∑

i=1

ViD
−1T−T

i UT
i Yk

)

= D−T Yk,

since the third expression coincides with (2.5) keeping in mind that in this equationA0 must
be replaced byD.

Finally equation (3.7) becomes

T̂k = Imk
+ V̂ T

kk = Imk
+ D−T V T

kk,

which is equation (2.6) considering thatA0 must be replaced byD, and the structure
of Xk.

Thus, case 2 is equivalent to a left block Jacobi scaling of the block ISM decomposition
of the matrixAD−1 obtained withA0 = I, i.e., case 1 withs = 1.
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4. Numerical experiments. In this section the results of numerical experiments per-
formed with the block approximate inverse decomposition (3.1) are presented. We will refer
to it as block AISM preconditioner. The test matrices can be downloaded from the University
of Florida Sparse Matrix Collection [14]. Table4.1provides data on the size, the number of
nonzeros and the application area. The block AISM algorithm(Algorithm 3.1) was imple-

TABLE 4.1
Size (n) and number of nonzero entries (nnz) of tested matrices.

Matrix n nnz Application
SHERMAN2 1,080 23,094 Oil reservoir simulation
UTM1700B 1,700 21,509 Plasma physics
UTM3060 3,060 42,211 Plasma physics

S3RMT3M3 5,357 106,526 Cylindrical shell
S3RMQ4M1 5,489 143,300 Cylindrical shell
UTM5940 5,940 83,842 Plasma physics

CHEM MASTER1 40,401 201,201 Chemical engineering 2D/3D
XENON1 48,600 1,181,120 Materials

POISSON3DB 85,623 2,374,949 Computational fluid dynamics
S3DKQ4M2 90,499 2,455,670 Cylindrical shell
S3DKT3M2 90,499 1,921,955 Cylindrical shell
XENON2 157,464 3,866,688 Materials
LDOOR 952,203 42,493,817 Large door

mented in Fortran 90 and compiled with the Intel Fortran Compiler 9.1. We compute in each
step one block column of the matricesŪ andV̄ . In order to have a fully sparse implementa-
tion, we need to have access to both block columns and rows of these factors. Each matrix is
stored in variable block row (VBR) format [21], which is a generalization of the compressed
sparse row format. All entries of nonzero blocks are stored by columns, therefore each block
can be passed as a small dense matrix to a BLAS routine. In addition, we store at most
lsize largest block entries for each row. This additional space isintroduced for fast sparse
computation of dot products. We note that the row and column structure ofŪ andV̄ do not
necessarily need to correspond each other. In all our experiments we choselsize = 5.

Since most of the matrices tested are unstructured, an artificial block partitioning of the
matrix is imposed by applying the cosine compressed graph algorithm described in [24]. We
will give now a brief overview of this method. The algorithm is based on the computation of
the angle between rows of the adjacency matrixC related toA. Rowsi andj belong to the
same group if their angle is small enough. The cosine of this angle is estimated by computing
the matrixCCT , whose entries(i, j) correspond to the inner product of rowi with row j. In
order to make the process effective, only the entries(i, j) with j > i are computed, that is,
the upper triangular part ofCCT . Moreover, the inner products with the columnj that have
been already asigned to a group are skipped. Finally, rowsi andj are grouped if the cosine
of the angle is larger than a parameterτ .

The efficiency of Algorithm3.1strongly depends on the method used for finding dense
blocks. We found that for unstructured nonsymmetric matrices a value forτ close to1 leads
to very small blocks. In order to evaluate the effect of larger rank updates for some matrices,
we choose a small value for this parameter at the price of introducing a large amount of zeros
in the nonzero blocks. In the tables the average block size obtained with the cosine algorithm
is shown except for the matrix SHERMAN2, for which a natural block size multiple of 6 was
the best choice.
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TABLE 4.2
Effect of the block Jacobi scaling.

Matrix Avg. block size Its. (scaled/non-scaled)
S3RMT3M3 11.16 23/76
S3RMQ4M1 15.86 33/56
S3DKQ4M2 17.56 31/60
S3DKT3M2 11.75 23/47
XENON1 2.57 2423/†
XENON2 2.57 3533/†

We recall from Theorem3.8 that applying the block AISM algorithm withA0 = I to
the block Jacobi scaled matrix is almost equivalent to the case 2. In the experiments we did
not find significative differences between the two cases. Therefore, we report only results for
the block scaled Jacobi matrix. Table4.2shows a comparison between scaled and non-scaled
block Jacobi for some matrices, that also illustrates the performance differences between case
2 and case 1. We observe that scaling is in general better. Indeed, in some cases (XENON1
and XENON2) it is necessary to scale the matrix to achieve convergence.

Once the block partition has been obtained, the matrix is scaled using block Jacobi and
reordered using the minimum degree algorithm applied to thecompressed graph of the matrix
in order to reduce fill-in.

Exact LU factorization was used to invert the pivot blocksTk. To preserve sparsity, we
follow the strategy recommended in [11], but applied to the matrices partitioned in block form
as in (2.8). Fill-in in U is reduced by removing the block entries, whose infinity normis less
than a given drop toleranceΥ . For the factorV , a threshold relative to the infinity norm of the
matrix A is used instead, i.e., a block is annihilated if its infinity norm is less thanΥ‖A‖∞.
Usually the choiceΥ = 1 gives good results.

An artificial right-hand side vector was generated such thatthe solution is the vector of
all ones. No significative differences were observed for other choices of the right-hand side
vector. The iterative method employed was the BiCGSTAB method [25] with left precon-
ditioning as described in [4]. The initial guess was alwaysx0 = 0, and the iterative solver
was stopped when the initial residual was reduced by at leasta factor of10−8, or after5000
iterations. The tests where performed on a dual Opteron Sun X2200 M2 server.

Table4.3 shows the results of the block AISM algorithm compared to point AISM for
the matrices tested. The block partitioning was obtained with a parameterτ of the cosine al-
gorithm ranging from0.1 to 0.5 except for the matrix Sherman2. The density of the precondi-
tioner is computed as the ratio between the number of nonzeroelements of the preconditioner
factors and the number of nonzero elements of the matrix. Thenumber of iterations and the
CPU times for computing the preconditioner and to solve the system are also reported.

For the matrices XENON1, XENON2, UTM5940, and SHERMAN2, only the block
AISM preconditioner was able to obtain a solution. For the other matrices, we observe that in
general block AISM converges in fewer iterations. Concerning the CPU times, both the pre-
conditioner computation and solution times are also smaller. In particular, the preconditioner
computation time is reduced significantly.

We show a detailed study for the matrix SHERMAN2 in Figure4.1. This matrix has been
reported as difficult for approximate inverse preconditioning by several authors [2, 7, 15, 16].
In [5] it is solved by applying permutation and scalings in order to place large entries in the
diagonal of the matrix. We found that using a block size multiple of 6, the natural structure
of the matrix is better exploited and the problem was solved quite easily as can be seen in
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TABLE 4.3
Block AISM versus point AISM.

Matrix Block size density Prec. time/Sol. time Its.
SHERMAN2 1 / †

6 0.34 0.0008/0.02 69
S3RMT3M3 1 1.30 0.03/0.055 33

11.16 0.54 0.01/0.04 23
S3RMQ4M1 1 0.95 0.032/0.046 25

15.86 0.44 0.010/0.06 33
UTM5940 1 1.45 / †

1.45 1.67 0.05/2.40 653
CHEM MASTER1 1 0.54 0.03/11.8 2523

3 0.4 0.03/6.63 1138
XENON1 1 / †

2.57 0.18 0.03/35.59 2423
POISSON3DB 1 0.19 0.9/18.1 447

1.17 0.1 0.18/22.16 509
S3DKQ4M2 1 0.91 0.56/1.30 39

17.56 0.41 0.13/1.05 31
S3DKT3M2 1 1.14 0.51/1.17 37

11.75 0.51 0.11/0.82 23
XENON2 1 / †

2.57 0.18 0.16/154.23 3533
LDOOR 1 0.22 2.10/15.85 63

10.70 0.40 2.09/10.40 31

Figure4.1even without reorderings. We observe that increasing the block size, i.e., the rank
of the update, the number of iterations remains more or less constant with some exceptions.
Observe that for block size 72, convergence is obtained within very few iterations. However,
the best time corresponds to block size6 and the time tends to increase with the blocksize
due to the growth of the density of the preconditioner.

In contrast with the behaviour of the number of iterations exhibited by the SHERMAN2
matrix, usually this number decreases with the rank of the update as we show for the matrices
UTM3060, UTM5940, and UTM1700b in Figure4.2, where a clear decreasing trend can be
observed. Since on modern computers the efficient use of the memory cache is fundamental to
achieve good performance, one may guess a block size based oncache memory properties of
the computer to obtain a good balance between the number of iterations and the performance
of the algorithm.

5. Conclusions. In this paper we have presented the block ISM decomposition,which is
based on the application of the Sherman-Morrison-Woodburyformula. It is a generalization
of the work presented in [11]. Based on the approximate computation of the block ISM
decomposition, two different preconditioners have been considered and the relation between
them have been established. We have proved the existence of the block ISM decomposition
for H-matrices extending results presented in [11].

The performance of the block AISM preconditioners has been studied for a set of ma-
trices arising in different applications. The main conclusion is that block AISM outperforms
the point version for the tested problems. In some cases, as for example for the matrices



ETNA
Kent State University 

http://etna.math.kent.edu

A BLOCK APPROXIMATE INVERSE PRECONDITIONER 39

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90

30

40

50

60

70

80

SHERMAN2

Block size

Its
.

 

 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90
0

5

10

15

T
ot

al
 T

im
e 

(C
en

ts
 o

f s
ec

on
d)

Its.
Time

FIG. 4.1.Number of iterations and total time for the matrixSHERMAN2.
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FIG. 4.2.Number of iterations for theUTM* matrices.

SHERMAN2 and XENON*, convergence was only attained with block AISM.
Except for the matrix SHERMAN2, the size of the block was obtained using a graph

compression algorithm. Nevertheless, we found in our experiments that, in general, the larger
rank of the update, i.e., the larger the block size, the smaller the number of iterations needed
to achieve convergence. However, the overall computational time tends to increase due to the
density of the preconditioner. Finally, we note that the block ISM decomposition is the basis
for the extension of the preconditioner presented in [10] to block form. This work is currently
under study.
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