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BLOCK APPROXIMATE INVERSE PRECONDITIONERS FOR SPARSE
NONSYMMETRIC LINEAR SYSTEMS *

J. CERDANT, T. FARAF, N. MALLA f, J. MARIN', AND J. MAS'

Abstract. In this paper block approximate inverse preconditionersoloe sparse nonsymmetric linear systems
with iterative Krylov subspace methods are studied. Thepgation of the preconditioners involves consecutive
updates of variable rank of an initial and nonsingular mattiy and the application of the Sherman-Morrison-
Woodbury formula to compute an approximate inverse decaitipn of the updated matrices. Therefore, they are
generalizations of the preconditioner presented in Brd.d68AM J. Sci. Comput., 25 (2003), pp. 701-715]. The
stability of the preconditioners is studied and it is shohat their computation is breakdown-free for H-matrices. To
test the performance the results of numerical experimdtisireed for a representative set of matrices are presented.
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1. Introduction. In this paper we consider the solution of nonsingular lir@etems
(1.2) Az =b,

by preconditioned iterations. We assume the matrigk R”*" to be sparse and nonsymmet-
ric. For large values of. an approximate solution fof.(1) is frequently obtained by means of
iterative Krylov subspace methods. In practice, to aceddethe convergence of these meth-
ods either left, right or two-sided preconditioning is dpgl[23]. For left preconditioning the
linear system to solve is

MAx = Mb,

where the matrix\/ is the preconditioner.

Usually the matrixM is chosen in such a way that the preconditioned mauid is
close to the identity,, in some sense. For instance, the condition number is sm@lbathe
eigenvalues are clustered away from the origin. In genirainore clustered the eigenvalues,
the faster the convergence rate. Another desired situiithvat the preconditioner should be
easy to compute and the cost of the preconditioning stepldhmmuof the same order of a
matrix-vector product with the coefficient matrik

In the last years several preconditioning techniques haee proposed. Roughly speak-
ing they can be grouped in two classesplicit preconditionersandexplicit preconditioners
Preconditioners of the first class typically compute inctetgpfactorizations ofd, such as
incomplete LU, and therefore the preconditioning step isedby solving two triangular lin-
ear systems; see for example8[ 19, 22, 23]. By contrast the second class of preconditioners
compute and store a sparse approximation of the invergeasfd the preconditioning step is
done by a matrix-vector product; se® 13, 16, 17]. Since this operation is easy to implement
on parallel and vector computers, approximate inversegmeitioners are attractive for par-
allel computations. In addition, some authors argue thpt@pmate inverse preconditioners
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are more robust than implicit one®][ For a comparative study of some of these techniques
we refer to [/]. We focus in this paper on sparse approximate inverse pitoners.

In [11] the authors present a new algorithm based on the Shermarisigho formula
to compute an inverse decomposition of a nonsymmetric Ria@iven two sets of vectors
{zx}7_, and{yx}7_, in R", and a nonsingular matri®, such thatd = Ay +>",_, zxyl
the algorithm computes a factorization of the matﬁi§<1 — A~ ! of the formUT VT from
now on called ISM decomposition. The particular cake= sI,,, wherel, is the identity
matrix ands is a positive scalar factor, was studied and it was shownttteapproximate
computation of this decomposition is breakdown-free wHers an M-matrix. We will show
that this is also true for the wider class of H-matrices. T&8MIdecomposition is closely
related to the LU factorization as can be seen in the proofeshinas3.2 and3.5. This
fact has been used ii(] to obtain direct and inverse factors of the Cholesky fazairon
of a symmetric positive definite matrix. This approach dasférom AINV, which uses a
biconjugation process or SPAI, based on the minimizatich@frobenius norm aof — AM.

Once an approximate ISM decomposition has been computexdh ibe used as an ap-
proximate inverse preconditioner as has been doné1h [It was observed that compared
to AINV [8] both performed similarly. In this paper we present residisthe block case
showing that this approach is able to solve more problemsitegointwise counterpart.

On the other hand, exploiting faster speeds of I8VBLAS block algorithms is becom-
ing increasingly popular in matrix computations. Sinceytbperate on blocks or submatrices
of the original matrix, they are well suited for modern higérfprmance computers. Further-
more, certain problems have a natural block structure thatlsl be exploited to gain robust-
ness. There are a number of papers on block preconditioseesfor instance3 6, 9, 12]
and the references therein. In all cases an improved eféigiaith respect to non-blocking
algorithms was observed.

These considerations motivate the present study. We dereethe ISM decomposi-
tion by applying successive updates of variable rank wreeld$ to a block-form algorithm.
Therefore, the new algorithm is based on the Sherman-Mori&oodbury formula27],
which states that the inverse of the matdx+ XY 7 is given by

(1.2) AT ATIX(T+YTAT I X))y T AT

provided that the matrice4 € R"*" andl + Y7 A~ X are nonsingularand, Y € R"*™,
The rank of the updates, and hence the size of the blocks,eahdsen in different ways:
looking for the particular structure for structured madis¢ applying an algorithm to find the
block structure 24] and finally by imposing an artificial block structure. Thepapximate
computation of the block ISM decomposition is then used daarse block preconditioner.

This paper is organized as follows. Sectidpresents an expression for the block ISM
decomposition of a general matrix using the Sherman-Morrison-Woodbury formulad)
which generalizes the one obtained Ii]. Then, in Sectior8 this expression is used to ob-
tain block approximate inverse preconditioners based fi@rdnt choices of the initial matrix
Ap and to show how they relate to each other. Our findings inditi#t these precondition-
ers can be computed without breakdowns for H-matrices. &fbeg, since the preconditioner
proposed in 11] is a particular case of one of the preconditioners propdsse, we also
prove that its computation is breakdown-free for H-masice order to evaluate the perfor-
mance of the preconditioners, the results of the numerigaéements for a representative
set of matrices are presented in SectibnFinally, the main conclusions are presented in
Sectionb.

Throughout the paper the following notation will be usedve®i two matricesA = [a;;]
andB = [b;;], we denoted > B whena;; > b;;. A similar convention is used fox.
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Likewise,|A| = [|a;;|]. A matrix A is a nonsingular M-matrix if,;; < 0 forall i # j and it
is monotone, i.e.A~! > O. For a given matrixA one can associate its comparison matrix
M(A) = [wij], where

QG = |ai1-|, andOéij = —|aij| for 4 7§ 7.

The matrixA is an H-matrix if its comparison matri¢1(A) is an M-matrix.

We conclude this section with some well-known propertiedlefand H-matrices that
will be used later. IfB > A with b;; < 0 for ¢ # j and A is an M-matrix, thenB is also an
M-matrix. Moreover,A—! > B~ [26]. If Ais an H-matrix, thenA—!| < M(A4)~![20].

2. Block ISM decomposition. Let A, € R™ ™ be a nonsingular matrix, and let
Xi, Y e R"*™e k=1,...,p, betwo sets of rectangular matrices such that,

P
(2.1) A=Ag+ > XY
k=1

Assume that the matricél, = 1,,,, + YkTA,;lle, k = 1,...,p, are nonsingular, where
Ap_1=Ag+ Zf’f X; YT i.e., apartial sum ofd.1), and/,,, denotes the identity matrix

of sizemy, x my. ¢From (.2) the inverse of4, is given by
(2.2) A=A - AL X YA, k=1,
SinceA, ' = A~!, applying @.2) recursively one has

P
AT =AY AL XTI AL,
k=1

which can be written in matrix notation as

(2.3) A=At o et
where
= Ay'X: AT'Xy - ATLX, ],
T vl
T = L' _ and U7 = HAC
e YT AL
To avoid having to compute the matricdg, we can define fronX;, andYy, fork = 1,...,p,

two new sets of matricelS;, andV;, as in @.4) and @.5). The following result is a general-
ization of [L1, Theorem 2.1].

THEOREM 2.1. Let A and A, be two nonsingular matrices, and I¢fX;}7_, and
{Yi.}%_, be two sets of matrices such that conditi@nl) is satisfied. In addition suppose
that the matriced}, = I,,,, + YkTA,:_lle, fork =1,...,p, are nonsingular. Then

k-1
(2.4) Uy =Xy — Z U T VA Xy,

i=1
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k—1
(2.5) Ve =Y =Y VT TUT AT

i=1

are well defined fok = 1,...,p. Moreover,

A];,lle = Ao_lUka
vIAl, = VIASY,
and
(2.6) Ty = Iy, + YL Ay Uy = Iy, + ViEAS X

Proof. Similar to the proof of Theorem 2.1 id.]]. d
Denoting byU = [U; Uz --- Uyl andV = [V; V, --- V] the matrices whose block
columns are the matricég, andV},, respectively, equatior2(3) can be rewritten as

(2.7) A=At - AJtUTTVT ALY

which is the block ISM decomposition of the matrix

Different choices of the matrices;, Y, andAg allow different ways of computing(7).
Nevertheless, it is convenient thay be a matrix whose inverse is either known or easy to
obtain. In the next section we will study two possibilitide first one is the choice already
considered in11], i.e., Ag = sI,,, wheres is a positive scalar anfj, is the identity matrix of
sizen. The second one idy = diag(Au1, ..., Ayp), WhereA;; are the main diagonal square
blocks of the matrixA partitioned in block form,

A11 A12 Alp

A21 Agg Agp
(2.8) e T

Ap Ay .. Ay,

whereA;; € R™>™M3, Zi:l my = n. In addition we will show the relationship between
the two cases when a block Jacobi scaling is applied.

3. Approximate block ISM decompositions. Even if the matrixA is sparse its block
ISM decompositionZ.7) is structurally dense. To obtain a sparse block ISM decainpo
tion which can be used as a preconditioner, incomplete faéfp andV;, are obtained by
dropping off-diagonal block elements during the compuotatf U, andVj. In addition, the
inverse ofA, can be computed approximately and either its exact or itscqpate inverse
will be denoted byA;'. Once the factorg/; andV; have been computed, two different
preconditioning strategies can be used,

(3.1) Ayt = AJ'UT VT A
and
(3.2) AT VT A

In [11] both preconditioners are studied. Althoudghd) requires less computation per
iteration than 8.1), the latter tends to converge in fewer iterations, esplgciar difficult
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problems. Therefore, the results presented in the nunienigeeriments correspond to the
block approximate ISM decompositio8.(). The following algorithm computes the approx-
imate factors.

ALGORITHM 3.1. Computing the incomplete factors id.{) and 3.2).
D)letUy = Xp, Vi = Ya, (k=1,...,p)and Ayt =~ A;!
2)fork=1,....p
(3) fori=1,...,k—1

C, = U7 VT
U, =Ug — ClAale
Vi=Vy, — ClTAO_TYk
end for
compute V;,, Uy, dropping block elementsin V., Uy,
Tk = Imk + VkTAale
end for
(4) return U = [Ul UQ ce Up], V= [Vl ‘72 ce ‘ZD] andT = diag(Tl,Tg, Ce ,Tp)
Algorithm 3.1 runs to completion if the pivot matrices, are nonsingular. It will be
shown that this condition holds for H-matrices. To provestheesults we first show that the
matricesT}, are closely related to the pivots of the block LU factoriaatapplied toA. We
will discuss the choice ofly separately.

3.1. Case 1:4¢ = sl,. Let X = I, andY = (A — sI,,)T be matrices partitioned
consistently with 2.8). The kth block column of the matriceg and X are given explicitly

by

(3.3) Vi=[Am - Aw1r Ak —8hn, - Agp }T
and
(3.4) Xp=[0 - Iy, 0]".

With this choice, the expressionz.{), (2.5), and @.6) simplify to

k—1
(3.5) Uy = X, — Y s ' UT, VI Xy,
=1
k—1
(3.6) Vi =Yi— > s Wil UMY,
=1
and
(37) Tk = Imk + 5_1VkTXk - Imk + S_lvkql;'

LEMMA 3.2.Let A be a matrix partitioned as inX.8) and letAy = s/. If the block LU
factorization ofA can be computed without pivoting, then
Ty = sflAgZ_l)

)

whereA,(ﬁ;l) is thekth pivot in the block LU factorization od.
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Proof. Observe that the blodk, ;) of the matrixA*) obtained from the:th step of the
LU factorization is given by

k k-1 k-1 =D\ (k-1
Az('j):Az('j )_A(k )(Agck )) Agcj )

i

Ay A .. A Ay
A21 A22 P AQk A27
=Aij— [ An Ap ... Ay | : C : :
Apt Apa .. A Apj

with i, j > k. Consider the matrif}, given by (see sectiop):

(3.8) Ty = I, + YiF A X
We have
[ A11 . A17k71 Alk . Alp 1
o Ar—ia o A= | Ak | o | Ak—ip
Arr= 0o ... 0 $hy, | ---] O
0. 0 0 I, |
Cu | Ciz | Lp—Fk
0 | slp, 0
| O 0 §lm,

whose inverse is

Cnl —sT'C G L. —sTIOR Ok
. 0 s 0
(39) Ak71: : ., :
0 0 s‘llmp

Then, by substitutingd.9) into (3.8), and bearing in mind3.3), (3.4), and @.8), we have

-1

A o A Ak
. Ay .. A Aoy,
To=TIpm, —s ' [ Ar . Apg—1 ] ) . ]
A1 o0 A1k A1k
+ S_I(Akk — Sfmk)
A A 1] Aw
. Ay o Aoy Aoy
=s A — [ Aer .. Arg—1 ] : . : )
Ap-1a oo A1k A1k

= s_lAl(ﬁ;l). a
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This result generalized [, Lemma 3.2] to the case of a block matrx If A is either an
M-matrix or an H-matrix, the block LU factorization can bergowithout pivoting L]. Thus,
Algorithm 3.1 runs to completion for these matrices when no droppingegsais used. The
following results show that this situation is also true ie thcomplete case.

THEOREM3.3. Let A be an M-matrix partitioned as ir2(8). The matriced’, computed
by Algorithm3.1with Aq = sI,, are nonsingular M-matrices.

Proof. The proof proceeds by induction ovierk = 1, ..., p. We will show that theT’,
are M-matrices, observing that

(3.10) Ui 2 Ui 20, i<k,
(3.11) Vik < Vi, <0, i>k,
(3.12) T,'>T,'>0

1. Fork = 1, we havelU;; = I,,,, > 0. Moreover,V;; = AlTi < 0fori > 1sinced
is an M-matrix. Therefore, after dropping elements, itdals thatV;; < V;; < 0.
Observe thaf’, = T, = s~ 'A;; is an M-matrix and equatior8(12 holds.

2. Now, assume that3(10, (3.11), and @.12 hold for k — 1. For k, we have
Uk = Ipn,, > 0. Fori < k, it follows that

k—1 k—1
U ==Y UgT; Vil > =" U,T7 'V = Ui > 0.

i=i j=i

Fori # k,

E

-1

k-1 j
Vie = Al _S_IZWJTJ'_TZU;JF‘A;QF! = A —s! ZV Al
Jj=1 =1

11=1

<.
Il

SinceA is an M-matrix,A], < 0 forl # k. Then, fori > k,
(3.13) VT TUL A < =V T TUS AR <
and

k=1 j
T -1 ¥ —TrT
‘/;;kSAki_S V Ulekl Zk<0
=1 1=1

<
Il

Now dropping elements it;, and V;;,, and mantaining the same notation for the
incomplete factors, the inequaliti€3. {0 and @.11) hold for k.
Similarly, from (3.7),

k-1 j
Ty = 571 App — s -1 Z Z ijTjiTUl,’gAgl)T

j=11=1

k-1 j
§571 App — s~ 122 ij TUlj;A )

j=11=1

I
Ea
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By equation 8.13 the matrix7}, has non-positive off-diagonal entries. SiriEgis
an M-matrix, it follows that 7, is also an M-matrix and hence
T,'>7;'>0. 0O
THEOREM3.4. Let A be an H-matrix partitioned as ir2(8). The matrice§;, computed
by Algorithm3.1with Aq = sI,, are nonsingular H-matrices.
Proof. To simplify the notation, let us denote B/the comparison matrix afl, M (A),
and by(UP, V;?, TF) the matrices obtained by applying Algorittul to the matrix53.
As before, the proof proceeds by induction okek = 1, ..., p. We will show thatT},
are H-matrices observing that

(3.14) Uy > |0ik‘ >0, i<k,
(3.15) Vig < —|Vi| €0, i>k,

(3.16) (T2)"' =T > o0.

1. Fork = 1, we havell;; = Uy = I,,, > 0. Thusi{Uﬂ = UJ. On the other
hand,V;; = AlTl for i > 1 and therefore- |V;;| = After dropping elements,
it follows that— | V1| > —|V;1| = V;P. Observe now thaf, = T, = s~ 1A, and
M(Ty) = TP is an M-matrix. Therefore, equatioB.(L§) holds.

2. Now, assume thaB8(14), (3.19, and @.16 hold untilk — 1. Fork, we havel;,;, =
Ln, = UB > 0. Fori < k, it follows that

0] =

S_

_ 1A i
-l = - - St (o)

1k71 J B
> = [AG] = < 0D VT TG AY
j=11=1
(et )
> —|Af] - - Vg | 7577 | |U5 | | A

Applying (3.14), (3.15, and @.16 it follows that

k=1 J
— 1
= Vil = = [AG|+ S 3D Vi (TF) L)AL = v
7j=11=1
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Now dropping elements itV;;, and V;;, and mantaining the same notation for the
incomplete factors, the inequaliti€3.{4 and @.15 hold for k. In addition,

k-1 j
. | 1 - T
To=T+-Vigo=— | A — > > (Vi T; UL A

j=11=1

We now compare the matrice’st(7;) andT};? element by element. We denote by
R,,(-) andC,,(-) themth row and column of a matrix, respectively. Considering
the diagonal elements, we have

k—1 j
_ 1 1 e _
Tk(m, m) = EAkk(m,m) - 8_2 Z Rm (Agl) Ulej 1Cm (ij;) .
j=11=1
Then,
1 1Y _
|Ti(m,m)| > = [Agr(m,m)| — = Z | (AL) Uy T;  Cry (V)]
j=11=1
k—1

Y

1 1 J o _
A (mam)| = = >0 B (|AG]) (O] [T O ([VS]) -

5 R (145]) U8 (1) o ()

= 1
‘Tk(m,m)‘ > B |Agr (m, m)| +

= TP (m,m).
Similarly, one has- [T (m, n)| > TP (m,n) for all m # n. Then,
M (Ty) = T)F.

By Theorem3.3 it follows that7}” is an M-matrix and henc@), is an H-matrix,
which implies tha{ 7' | < M (T})~ ! (TkB)fl. 0
3.2. Case 2:Ag = diag(A11,...,Ayp). Let X =1, andY = (A — Ap)T be matrices
partitioned consistently with2(8). The kth block column of the matriceg and X are given
explicitly by
(3.17) Vi=[Au - Awk-1 Omy Awep1r - Agp }T
and
Xp=[0 - Ip - 0 ]T_

LEMMA 3.5. Let A be a matrix partitioned as in2(8). If the block LU factorization of
A can be carried out without pivoting, then

Ty = ASD AL
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Proof. Observe that the blook, j) of the matrixA(*) obtained from the:th step of LU

factorization is given by

1

k k—1 k—1 =1\ "1 (k=1
Az('j) :Az('j )_Az(‘k )(Agck )) Agcj )
A Ap A 17T Ay
Agr Ago Ay, Asj
=A;—[ An Awn A, | : : : :
A1 Ape Api; Ay
with i, j > k. Consider the matrif}, given by
Ty = L, +YiF A X
With Ay = diag(All, e ,App), we have
[ An Al k-1 Avg Ay ]
A — Ap_1n o0 Ap—ip—1 | Ak—1k Ap_1p
k-l 0 0 Ak 0
0 0 0 Ay |
[ Ci [ Cia | .. | Crpi
0 | Agx 0
| O 0 App
whose inverse is
Cn' —Ch'CiaAL —C1 C1p—i A,
0 Al 0
A];,ll = . .
0 0 At
Then
An A 1] Aw
A Az k-1 Ao .
T =Im, — [ A Ap -1 | : ) ) A,
A1 Ap—15-1 | Ak—1.k
Post-multiplying byAg, we have
A A o1 ] o Arg
Ao A2,k—1 Asg
TiArk = Agk — | Ara Ap 1 | : .
A1 Ap_1k-1 | A1k

k—1
= Aék g
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Thus, T, = A" VAl O

THEOREM3.6. Let A be an M-matrix partitioned as ir2(8). The matrice§} computed
by Algorithm3.1with Ay = diag(A11, ..., App) are nonsingular M-matrices.

Proof. The proof proceeds by induction ovierk = 1, ..., p. We will show thatT}, are
M-matrices, observing that

(3.18) Uy > Uy, >0,
(3.19) Vi < Vi <0,
(3.20) T, ' >T. ' >0.

1. Fork = 1, we haveU; = X; > 0. Moreover,V; = Y; < 0 sinceA is an M-
matrix. Therefore, after applying a dropping strategypitdws thatV; < 1; < 0.
Observing thall} = T = I,,,,, (3.20 is trivially satisfied.

2. Now, assume tha8(198), (3.19, and @.20 hold untilk — 1. Thenfori < k — 1, we
have that

(@ —UT 'VIAS' Xy, > —UT7 'V A Xy > 0,
(b) —ViT, TUTr A Y, < VT TUT A TY < 0.
Then, fork, we have

k—1 k—1
Up=Xp— > UT7WIAT X > X =Y UTT VA Xy = Uy >0,
i=1 =1

k—1 k—1
Vi =Yi— > VITTUNAGTY <Y = > VIO AGTY = Vi <0
i=1 i=1

Moreover,Ty, = I, + VL ALl < L, + VE AL = Ty Then, Ty, is an M-matrix
and7, ' >7;'>0. O

THEOREM3.7.Let A be an H-matrix partitioned as ir2(8). The matriced} computed
by Algorithm3.1with Ay = diag(A11, ..., App) are nonsingular H-matrices.

Proof. To simplify the notation, let us denote ythe comparison matrix oft, M (A),
and by(U, V;”,T}) the matrices obtained by applying Algoritt8i to the matrixB. Note
that By = M (Ao) and thenA,'| < By', thatis|A,,'| < B, fork = 1,...,p. Moreover,
VP = —|vi| <0.

As before, the proof proceeds by induction o¥ek = 1,. .., p. We will show that the
T;, are H-matrices by observing that

(3.21) U > |Uy] > 0,
(3.22) vE < - <o,

(3.23) (T2~ =T, > 0.
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1. Fork = 1, we havel; = Uy = I,,, > 0. Thus,|U;| = UP. On the other hand,
V; = Y; and therefore- |V;| = —|Y;1| = V;B. After applying a dropping strategy,
it follows that— [V1| > — V1| = V/®. Observing thafly = Ty = I,,,, (3.23 is
trivially satisfied.

2. Now, assume thaB(21), (3.29, and 8.23 hold untilk — 1. Fork, we havel/;, =
X5 — Zf;ll U.T; VT Ay X, Then, it follows that

U = |Xp—0 UV AT X,

IN

kel 17 1151 11 _
Xkl + iy 1TV (1A Xl

< Xk = S UP (@) (VAT By Xy = UP.
In addition, we havé/,, = Y}, — Zf;ll VT, "UI A;"Yy. Then one has

A —|Vi = S VT AT

Y

— Vil = S GTTTUT ATV

Y

k=1 v (17— 7 —
=il = X250 AT T OT 1A T 1Yl
k=1 771 17n— - —
= Y+ X0 VT N0 1A T YR

- _ -
VP - S VETE) (U TBy Y, = VP,

Y

After applying a dropping strategy in the computationlgf and V,, and keeping
the same notation for the incomplete factors, the ineqeal@.21) and 8.22) hold
for k. In addition, T, = I + VkaA,;kl. We now compare the matrices! (7)) and
TP element by element. We denote By, (-) andC,,(-) themth row and column
of a matrix, respectively. Considering the diagonal eletsene have

ral
el
Cin(Bi,)

C’m(Bkkl) = T,f(m, m).

Ti(m,m)] = |1+ R (Vi})Cm(A
1 [Ro (Vi) O (A
1+ R (= |V
L+ R (VR

%

%

)
)

%

Similarly, one has- |T;(m,n)| > T}?(m,n) for all m # n. Then,
M (Ty,) = T2

By Theorem3.6 it follows thatTkB is an M-matrix and henc@}, is an H-matrix,
which implies tha{T; '| < M (i)' < (1), O

3.3. Relation to block Jacobi scaling.In this section we analyze the relation between
the two previously studied cases to block Jacobi scalingahticular, we study the relation-
ship between the factors obtained after applying the exaxtgss to the right block Jacobi
scaled matrixAD~!, whereD = diag(Au1, ..., A,p), taking Ay = I (observe that this is
case 1 withs = 1), and the factors obtained in the case 2, whége= D.

THEOREM3.8. LetU, V andT be the factors of the exact block ISM decomposition of
the matrixA with Ay = diag(A1, ..., A,,), and letU, V andT be the factors correspond-
ing to the block ISM decomposition withy, = I of the right scaled matrixdD~!, where
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D = diag(Au, ceey App)- Then

Proof. Observe that for the scaled matrixD ! equations$.3) and (3.4) become

~ _ _ T
(3.24) Ve=[ AmAn - AmaAl o 0 - AR At
and
(3.25) Xe=[0 -+ In, - O]Ta

respectively. Thed;, = D-TY;, and X, = X, for all k.

We proceed now by induction. Far= 1 it is clear thatl; = X; = X; = U;. On
the otherhandy; = Y1 = [ 0 -+ ApAg' - ApA) ]T = D TY;; see 8.19).
Finally, from 3.7), Tt = I,n, + Vii = I,, = T1.

Assume now thal/; = U;, thatV; = DTV, andT; = T} fori = 1,2, ..., k — 1. In this
case equatior3(5) becomes

k—1
Uk = X;g — Z UiTl-_IV;TXk

=1
k—1

=X, — Y UT; VDX,
=1

- Uk7

since the second expression coincides wihi)(keeping in mind that in this equatiafg

must be replaced bp.
On the other hand equatioB.6) becomes

E

-1

Vi =Y — > VT, TU'Y
=1
k—1
=D, =Y DTV U DY,
1=1
k—1
=D (Y= > ViD'I;7TUTY;)
=1
=D Ty,

since the third expression coincides withg) keeping in mind that in this equatiofyy must
be replaced by.
Finally equation 8.7) becomes

Ty = I, + Vi =1, + D"TVE,

which is equation Z.6) considering thatd, must be replaced by, and the structure
of X. O

Thus, case 2 is equivalent to a left block Jacobi scaling®bllbck ISM decomposition
of the matrixAD~! obtained withA, = I, i.e., case 1 withs = 1.
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4. Numerical experiments. In this section the results of numerical experiments per-
formed with the block approximate inverse decompositidi)(are presented. We will refer
to it as block AISM preconditioner. The test matrices can demoaded from the University
of Florida Sparse Matrix Collectiorilfl]. Table4.1 provides data on the size, the number of
nonzeros and the application area. The block AISM algorifAigorithm 3.1) was imple-

TABLE 4.1
Size ) and number of nonzero entries(z) of tested matrices.

Matrix n nnz Application
SHERMANZ2 1,080 23,094 Qil reservoir simulation
UTM1700B 1,700 21,509 Plasma physics
UTM3060 3,060 42,211 Plasma physics
S3RMT3M3 5,357 106,526 Cylindrical shell
S3RMQ4M1 5,489 143,300 Cylindrical shell
UTM5940 5,940 83,842 Plasma physics
CHEM_MASTER1 | 40,401 201,201 | Chemical engineering 2D/3D
XENON1 48,600 | 1,181,120 Materials
POISSON3DB 85,623 | 2,374,949 | Computational fluid dynamics
S3DKQ4M2 90,499 | 2,455,670 Cylindrical shell
S3DKT3M2 90,499 | 1,921,955 Cylindrical shell
XENON2 157,464 | 3,866,688 Materials
LDOOR 952,203 | 42,493,817 Large door

mented in Fortran 90 and compiled with the Intel Fortran Cibean®.1. We compute in each
step one block column of the matricEsandV'. In order to have a fully sparse implementa-
tion, we need to have access to both block columns and rovesétfactors. Each matrix is
stored in variable block row (VBR) formag[l], which is a generalization of the compressed
sparse row format. All entries of nonzero blocks are stoneddumns, therefore each block
can be passed as a small dense matrix to a BLAS routine. Ini@udive store at most
lsize largest block entries for each row. This additional spadeti®duced for fast sparse
computation of dot products. We note that the row and colutmicsire ofU andV do not
necessarily need to correspond each other. In all our exgeeits we chosksize = 5.

Since most of the matrices tested are unstructured, arcatifilock partitioning of the
matrix is imposed by applying the cosine compressed gragdrihm described in44]. We
will give now a brief overview of this method. The algoritheibhased on the computation of
the angle between rows of the adjacency matfirelated toA. Rowsi andj belong to the
same group if their angle is small enough. The cosine of tijgesis estimated by computing
the matrixCC”', whose entrie$i, j) correspond to the inner product of rawvith row j. In
order to make the process effective, only the entfieg) with ;7 > ¢ are computed, that is,
the upper triangular part afC”. Moreover, the inner products with the columithat have
been already asigned to a group are skipped. Finally, icavel j are grouped if the cosine
of the angle is larger than a parameter

The efficiency of Algorithm3.1 strongly depends on the method used for finding dense
blocks. We found that for unstructured nonsymmetric magia value for close tol leads
to very small blocks. In order to evaluate the effect of lamgak updates for some matrices,
we choose a small value for this parameter at the price afdhicing a large amount of zeros
in the nonzero blocks. In the tables the average block siEmdx with the cosine algorithm
is shown except for the matrix SHERMANZ2, for which a naturaldk size multiple of 6 was
the best choice.
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TABLE 4.2
Effect of the block Jacobi scaling.

Matrix Avg. block size| Its. (scaled/non-scaled)
S3RMT3M3 11.16 23/76
S3RMQ4M1 15.86 33/56
S3DKQ4M2 17.56 31/60
S3DKT3M2 11.75 23/47

XENON1 2.57 2423/
XENON2 2.57 3533/

We recall from Theoren3.8 that applying the block AISM algorithm withly = I to
the block Jacobi scaled matrix is almost equivalent to tlse @ In the experiments we did
not find significative differences between the two casesréfbee, we report only results for
the block scaled Jacobi matrix. Talle2 shows a comparison between scaled and non-scaled
block Jacobi for some matrices, that also illustrates thitopmance differences between case
2 and case 1. We observe that scaling is in general bettezethdn some cases (XENON1
and XENONZ2) it is necessary to scale the matrix to achieveemence.

Once the block partition has been obtained, the matrix ikedaasing block Jacobi and
reordered using the minimum degree algorithm applied teatimepressed graph of the matrix
in order to reduce fill-in.

Exact LU factorization was used to invert the pivot blo@ks To preserve sparsity, we
follow the strategy recommended ih]], but applied to the matrices partitioned in block form
asin @.8). Fill-inin U is reduced by removing the block entries, whose infinity nishess
than a given drop toleran@ For the factoV, a threshold relative to the infinity norm of the
matrix A is used instead, i.e., a block is annihilated if its infinigrm is less tha’"|| A|| .
Usually the choic@™ = 1 gives good results.

An artificial right-hand side vector was generated such tinatsolution is the vector of
all ones. No significative differences were observed foeotthoices of the right-hand side
vector. The iterative method employed was the BICGSTAB metf25] with left precon-
ditioning as described in4]. The initial guess was always, = 0, and the iterative solver
was stopped when the initial residual was reduced by at &etettor of10~8, or after5000
iterations. The tests where performed on a dual Opteron 2K M2 server.

Table4.3 shows the results of the block AISM algorithm compared tap&ilSM for
the matrices tested. The block partitioning was obtaingt wiparameter of the cosine al-
gorithm ranging fron®.1 to 0.5 except for the matrix Sherman2. The density of the precondi-
tioner is computed as the ratio between the number of noretenoents of the preconditioner
factors and the number of nonzero elements of the matrix.ntimeber of iterations and the
CPU times for computing the preconditioner and to solve ftstesn are also reported.

For the matrices XENON1, XENON2, UTM5940, and SHERMANZ2,yottie block
AISM preconditioner was able to obtain a solution. For tHeeotnatrices, we observe that in
general block AISM converges in fewer iterations. Conaggrthe CPU times, both the pre-
conditioner computation and solution times are also smaheparticular, the preconditioner
computation time is reduced significantly.

We show a detailed study for the matrix SHERMANZ2 in Figdré This matrix has been
reported as difficult for approximate inverse preconditigby several author2[ 7, 15, 16].

In [5] it is solved by applying permutation and scalings in oradeplace large entries in the
diagonal of the matrix. We found that using a block size migtiof 6, the natural structure
of the matrix is better exploited and the problem was solveiteceasily as can be seen in
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TABLE 4.3
Block AISM versus point AISM.

Matrix Block size | density | Prec. time/Sol. timg Its.
SHERMAN2 1 / T
6 0.34 0.0008/0.02 69
S3RMT3M3 1 1.30 0.03/0.055 33
11.16 0.54 0.01/0.04 23
S3RMQ4M1 1 0.95 0.032/0.046 25
15.86 0.44 0.010/0.06 33
UTM5940 1 1.45 / T
1.45 1.67 0.05/2.40 653
CHEM_MASTER1 1 0.54 0.03/11.8 2523
3 0.4 0.03/6.63 1138
XENON1 1 / T
2.57 0.18 0.03/35.59 2423
POISSON3DB 1 0.19 0.9/18.1 447
1.17 0.1 0.18/22.16 509
S3DKQ4M2 1 0.91 0.56/1.30 39
17.56 0.41 0.13/1.05 31
S3DKT3M2 1 1.14 0.51/1.17 37
11.75 0.51 0.11/0.82 23
XENON2 1 / T
2.57 0.18 0.16/154.23 3533
LDOOR 1 0.22 2.10/15.85 63
10.70 0.40 2.09/10.40 31

Figure4.1 even without reorderings. We observe that increasing thelkdize, i.e., the rank
of the update, the number of iterations remains more or leastant with some exceptions.
Observe that for block size 72, convergence is obtainednvitbry few iterations. However,
the best time corresponds to block sizand the time tends to increase with the blocksize
due to the growth of the density of the preconditioner.

In contrast with the behaviour of the number of iterationkibited by the SHERMAN2
matrix, usually this number decreases with the rank of thdatmas we show for the matrices
UTM3060, UTM5940, and UTM1700b in Figure2, where a clear decreasing trend can be
observed. Since on modern computers the efficient use oféneary cache is fundamental to
achieve good performance, one may guess a block size basedloe memory properties of
the computer to obtain a good balance between the numberafidns and the performance
of the algorithm.

5. Conclusions.In this paper we have presented the block ISM decompositibith is
based on the application of the Sherman-Morrison-Woodfarmula. It is a generalization
of the work presented inlfl]. Based on the approximate computation of the block ISM
decomposition, two different preconditioners have beersiered and the relation between
them have been established. We have proved the existenle bfdck ISM decomposition
for H-matrices extending results presentedlify [

The performance of the block AISM preconditioners has beedied for a set of ma-
trices arising in different applications. The main conauss that block AISM outperforms
the point version for the tested problems. In some casegrasxhmple for the matrices
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SHERMANZ2 and XENON*, convergence was only attained withckl&ISM.
Except for the matrix SHERMANZ2, the size of the block was oi#d using a graph

compression algorithm. Nevertheless, we found in our @rpants that, in general, the larger
rank of the update, i.e., the larger the block size, the sm#ie number of iterations needed
to achieve convergence. However, the overall computaittona tends to increase due to the
density of the preconditioner. Finally, we note that theckltSM decomposition is the basis

for the extension of the preconditioner presented.if) fo block form. This work is currently

under study.
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