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ABSTRACT 

 

Organic extracts from mycelium and culture broth of 21 Penicillium isolates have 

been tested for insecticidal, insect anti-juvenile hormone (anti-JH) and antifungal activities. 

Culture broth extracts were the most active, mainly against insects; nearly 25% of them 30 

have shown high entomotoxicity (100% mortality at 100 µg/cm2). A strong in vivo anti-JH 

activity against Oncopeltus fasciatus Dallas was detected in the culture broth extracts from 

P. brevicompactum P79 and P88 isolates. The two new natural products isolated from P79, 

N-(2-methyl-3-oxodec-8-enoyl)-2-pyrroline (1) and 2-hept-5-enyl-3-methyl-4-oxo-

6,7,8,8a-tetrahydro-4H-pyrrolo[2,1-b]-1,3-oxazine (2), possessed anti-JH and insecticidal 35 

activity, respectively, against Oncopeltus fasciatus. Synthesized natural compound 1 has 

shown an ED50 of 0.7 µg/nymph when assayed on newly molted fourth-instar nymphs of 

O. fasciatus. Promising biological activities have also been detected in the synthetic 

precursors.  

 40 
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INTRODUCTION 

 

New plant protection chemicals are needed for modern pest control management 

due to insect resistance and ecological disorders associated with numerous currently used 

pesticides. 55 

An approach in the search of new and ecologically acceptable programs of pest 

control is the random screening of microorganisms to isolate and identify new bioactive 

compounds, followed by the synthesis and optimization of analogues. Research for new 

pesticides of microbial origin has led to the development of currently used insecticides 

such as the avermectines, tetranactine, and 150 other compounds which have found 60 

agricultural, veterinary or clinical uses, as revised by Yamaguchi (1992) and Omura 

(1992). 

An additional biorational approach to insect control is based on the anti-juvenile 

hormonal action; this activity usually leads to irregularities in JH production or action on 

metabolism of JH, affecting insect-specific developmental and reproductive processes (for 65 

review, see Staal, 1986). This kind of activity, in vivo, has never been detected for any 

fungal metabolite. 

In this study, a screening of Penicillium organic extracts, assayed against insects 

and phytopathogenic fungi, is a starting point for research programs focused to the 

isolation, identification and synthesis of useful bioactive compounds. We have chosen the 70 

genus Penicillium because they have been described as one of the main sources of these 

potentially active metabolites (Wright et al., 1982). 

Additional experimental work has been carried out with the culture broth 

dichloromethane extract of P79 Penicillium brevicompactum isolate, in order to identify an 

active in vivo anti-JH compound. Recently, we have reported on the isolation, 75 



identification and alternative synthesis of two new natural products, N-(2-methyl-3-

oxodec-8-enoyl)-2-pyrroline (1) and 2-hept-5-enyl-3-methyl-4-oxo-6,7,8,8a-tetrahydro-

4H-pyrrolo[2,1-b]-1,3-oxazine (2), possessing anti-JH and insecticidal activity, 

respectively (Cantín et al., 1999). Now, we wish to report on the biological activities of the 

synthesized natural products as well as their synthetic precursors. 80 

 

MATERIALS AND METHODS 

 

Isolation and identification of Penicillium species. Twenty one Penicillium 

isolates were obtained from different cereal samples. Fifty grains from each cereal sample 85 

were superficially disinfected with 1 % sodium hypochlorite (1 min) and washed with 

sterile distilled water. Five grains per Petri dish were placed onto potato dextrose agar 

(PDA) (Difco) containing chloramphenicol (30 mg/L) and incubated for 5 days at 28°C. 

Selected Penicillia were subsequently cultured onto PDA, incubated for 7 days at 28°C, 

and subcultured on Czapek yeast extract agar, Malt extract agar and Czapek agar, in order 90 

to identify the fungal species, according to Ramírez (1982). 

All isolates are filed at Microbiology Laboratory Culture Collection of 

Biotechnology Department, Polytechnic University of Valencia, as referred in Table 1. 

Culture conditions. Seven day-old PDA cultures of each Penicillium strain were 

used to obtain a suspension containing ca. 106 conidia/mL, which was subsequently added 95 

to 2500 mL of antibiotic test broth (1:9 volume ratio) and further incubated for 14 days at 

28 °C. 

Extraction. After incubation, moist mycelium was separated by filtration and 

extracted in a soxhlet apparatus with acetone; the resulting extract was evaporated and the 

aqueous residue was successively reextracted (1:1 v/v, 3 x) with dichloromethane (m-DCM 100 



extract) and ethyl acetate (m-EA extract). Culture broth was extracted with 

dichloromethane, which led to the b-DCM extract. 

Chromatographic resolution of the extracts was achieved on silica-gel 60 F254 plates 

(20 x 20 cm) (Merck, Germany); m-DCM and b-DCM extracts were resolved with 

hexane:ethyl acetate (50:50) as mobile phase and m-EA extracts with hexane:ethyl acetate 105 

(30:70). All selected extracts showed different chromatographic profiles. 

Insects. Oncopeltus fasciatus Dallas were mantained at 28 ± 1 °C, 50-60 % relative 

humidity, 16h/8h (day/night) photoperiod and a diet of sunflowers seeds and water. 

Target phytopathogens. Fungicidal activity of the extracts and synthetic products 

was measured against eight agronomically important phytopathogens: Aspergillus 110 

parasiticus (CECT 2681), Geotrichum candidum (CCM 245), Alternaria tenuis (CECT 

2662), Colletotrichum gloesporoides (CECT 2859), Fusarium culmorum (CECT 2148), 

Penicillium italicum (CECT 2294), Trichoderma viride (CECT 2423) and Trichothecium 

roseum (CECT 2410). Pure compounds were also assayed against Colletotrichum coccodes 

(CCM 327), Fusarium oxysporium ssp gladioli (CCM 233), Fusarium oxysporum ssp 115 

niveum (CCM 259), Rosellinia necatrix (CCM 297), Verticillium dahliae (CCM 269), 

Phytophthora citrophthora (CECT 2353) and Pyricularia oryzae (CCM 391). 

All strains were provided by the Spanish Type Culture Collection (CECT) and the 

Microbiology Laboratory Culture Collection (CCM) of Biotechnology Department, 

Polytechnic University of Valencia.  120 

 

Biological assays 

Entomotoxicity and Anti-JH activity. The test was carried out basically according 

to Bowers et al. (1976). Fifteen third-instar O. fasciatus nymphs were confined to a 9 cm 

Petri dish coated, across the bottom of the plate, with 500 g/cm2 of the extract, being 125 



tested lower doses (100, 10 g/cm2) for higher activities. Products were assayed at 10 

g/cm2 but those available in small quantities were assayed by topical application on 

newly molted 4th-instar nymphs of O. fasciatus, at 10 µg/nymph. Toxicity effects were 

considered according to the number of dead insects after 72 h of exposure to the chemicals,  

and probit analysis (Finney, 1971) was used to determine the LD50 of the products. All 130 

assays were made three times. The surviving nymphs were transferred to a clean 500 cm3 

glass jar and held at standard conditions. The tests were considered positive for JH 

antagonistic activity when precocious adults were obtained; the precocious adults are 

characterized by possessing small size with atrophied wings but they have the adult 

pigmentation pattern and three-segmented tarsi as occurs in normal adults. On the other 135 

hand, the tests were considered negative for anti-JH activity when metamorphosis occurred 

and reproduction was successful with the production of viable offsprings. Controls were 

carried out in parallel and received the same amount of solvent as treated insects. Doses 

required for induction of precocious metamorphosis in 50% of the treated insects (ED50) 

were determined by regression analysis of the doses (log scale) used and probits of 140 

percentage of surviving insects which molted to premature adults. 

Antifungal activity. Organic extracts dissolved in acetone, or appropriate mixtures 

of acetone and water, were added to 20 mL of PDA, in a concentration of 500 g/mL. 

Products, dissolved in acetone, were added to 5 mL of PDA, in a concentration of 100 

µg/mL. PDA plates containing only the solvents were used as controls. Seven day-old 145 

cultures of each fungus grown on PDA plates were used as an inoculum onto the control 

and test plates. The radial mycelial growth was measured and the percentage of inhibition 

was calculated on the basis of growth in the control plates after 4 days of incubation (6 

days for R. necatrix, V. dahliae, P. oryzae and P. citrophthora), at 28 °C. The antifungal 

activity of each sample was determined three times. Analysis of variance (ANOVA) was 150 



performed for fungicidal data of the products (Table 5) and the least significant difference 

(LSD) test was used to compare means (Statgraphic Plus 2.1). 

 

RESULTS AND DISCUSSION 

 155 

Biological activities of the organic extracts. 

Organic extracts obtained from 21 isolates, belonging to 11 Penicillium species 

(Table 1), were evaluated for insecticidal and antifungal activities. 

Insecticidal Activity. Table 2 shows the toxicity against O. fasciatus. The most 

active b-DCM extracts belong to P. brevicompactum, P. chrysogenum, P. verrucosum and 160 

P. funiculosum species. Five isolates (P88, P79, P87, P31 and P93) produced 100 % 

mortality at 100 µg/cm2; another seven isolates (P80, P98, P84, P5, P39, P4 and P20) 

showed 100 % mortality at 500 µg/cm2.  

For m-DCM extracts, the main activities were found in P. chrysogenum, P. 

verrucosum, P. funiculosum and P roqueforti species. P87 (P. chrysogenum) was 100 % 165 

active at 10 µg/cm2. Three isolates (P98, P5 and P93) generated 100 % mortality at 100 

µg/cm2 and, finally, five isolates (P79, P80, P39, P4 and P20) exhibited 100 % mortality at 

500 µg/cm2. 

The m-EA extracts disclosed only minor toxicity; five isolates (P87, P5, P31, P39 

and P20) were 100 % active at 500 µg/cm2. The extracts showing these activities belong to 170 

P. chrysogenum, P. verrucosum and P. purpurogenum species. 

Potent anti-JH activity was detected in two b-DCM extracts. P88 and P79  

(Penicillium brevicompactum) extracts assayed at 10 µg/cm2, showed 70 and 75% 

precocious adults respectively. The morphogenetic effects on extract-treated nymphs were 

the same as those described for the precocenes (Bowers, 1976; Bowers et al., 1976). 175 



Extract-treated 3rd-instar nymphs molted to morphologically normal 4th-instar, which 

subsequently molted to precocious adults or to 5th-instar nymphs. Insects reaching the 5th-

instar developed into normal adults. The anti-JH effects of the extracts were reversed by 

coadministration of the JH analogue, methoprene. This rescue of activity would support 

that precocious metamorphosis was caused by an induced deficiency of JH, according to 180 

Staal (1986); thus, the product (or products) in the extracts causing this deficiency of JH 

seemed to be a true anti-JH agent. 

Fungitoxicity. The results of the fungicidal tests using b-DCM extracts are shown 

in Table 3. The main activity was found for P84 extract (P. citrinum) exhibiting 100% 

growth inhibition to A. tenuis. Moreover, P98, P67 and P87 extracts (P. roqueforti and P. 185 

chrysogenum) showed important activities (>90%) against C. gloesporoides and T. viride. 

Table 4 lists antifungal activities of m-DCM extracts. Only two extracts exhibited a 

growth inhibition over 90 % (P4 P. commune and P87 P. chrysogenum isolates). 

In view of the obtained results, we selected P79 isolate to be studied in order to 

localize the in vivo juvenile hormone antagonistic activity. 190 

The fungus was sent to the International Mycological Institute (Surrey, UK), which 

corroborated our identification as Penicillium brevicompactum Dierckx. Concurrent with 

identification, the fungus was large-scale cultured, extracted and the active products were 

isolated, identified and synthesized in our laboratory. 

Biological activity of the synthesized products 195 

Figure 1 shows our developed synthetic pathway (Cantín et al., 1999) for the 

synthesis of the natural products (1 and 2); all the compounds (precursors and final 

products) have been now assayed for anti-JH, insecticidal and fungicidal activities. Briefly, 

this synthesis initially involves elaboration of the -ketoamide system. Thus, 1,4-

hexadiene was taken as starting material; it was transformed into the corresponding 200 



organoborane by treatment with 9-borabicyclo[3.3.1]nonane (9-BBN). Subsequent reaction 

with the dianion of phenoxyacetic acid, heating at 66 ºC, basification with NaOH and final 

oxidation with H2O2 gives the 6-octenoic acid (Hara et al., 1990). Construction of the 

dicarbonylic system was achieved by conversion of the acid into 6-octenoyl chloride 

followed by reaction with Meldrum’s acid  (Oikawa et al., 1978). The acylated Meldrum’s 205 

acid intermediate, without further purification, was then submitted to aminolysis by 

reaction with pyrrolidine in refluxing benzene (Pak et al., 1992). The resulting product was 

methylated by treatment with NaH and subsequent addition of iodomethane (Benetti and 

Romagnoli, 1995; Abad et al., 1997). The monomethylated ketoamide 4 was obtained as a 

major product and the dimethylated analogue 3 as a by-product. 210 

In order to obtain the 2-pyrroline ring, anodic oxidation of the heterocyclic 

compound  was carried out, using methanol as solvent. In this manner, a methoxy group 

was introduced at C2 (Shono, 1984). The two diasteromers of 5 (a and b) were resolved by 

column chromatography. Finally, elimination of methanol was achieved by adsorption of 5 

on SiO2 and subsequent heating at 150-160 ºC (Slomczynska et al., 1996) obtaining in this 215 

manner a mixture of the two isomeric natural products, 1 and 2. 

 

Synthesized natural products showed toxicity and hormonal properties against O. 

fasciatus, while the ketoamide intermediates did not have apparent effects either on 

lethality or precocious metamorphosis, under our assay conditions. 220 

Compound 1 exhibited in vivo anti–JH activity. Effective topically applied doses 

required for induction of precocious metamorphosis in 50% (ED50) and 90% (ED90) of 

newly molted fourth-instar nymphs, were 0.7 and 2.0 µg/nymph respectively. This activity 

was fully reversed by co-treatment with the juvenile hormone analogue methoprene. It is 



unknown at the present time whether these characteristics are due to an anti-JH effect on 225 

the corpora allata, prothoracic glands or other target tissues. 

Although further studies on the mechanism of action of the compound are 

necessary, two modes of action seem possible. Compound 1 may terminate juvenile 

hormone biosynthesis/secretion rather than interfere or compete at a receptor site, because 

metamorphosis is prevented by exogenous treatment with a juvenoid. Another possibility 230 

could be direct action of compound 1 as a cytotoxin on the corpora allata. Studies are in 

progress to clarify the mode of action and to find out whether the insect growth regulating 

action can be extended to other commercially important pest species. 

For compound 2, the acute topically applied LD50 for fourth-instar milkweed bug 

was 20 µg/nymph. However, significant delays in molting and retarded growth was 235 

observed. Delayed molting in O. fasciatus after administration of precocene II was 

reported to be due to direct effect on the prothoracic glands (Masner et al., 1979). 

Fungicidal activities of the synthetic active products are summarized in Table 5; 

natural products were not assayed against fungi because of the small quantities isolated. 

Synthesized natural products, and mainly the bicyclic product 2, showed the highest 240 

activities. This compound (2) appears to be a broad-spectrum toxicant showing a mycelial 

growth inhibition over 40%, at 100 µg/mL. It was effective against twelve of the fifteen 

fungi assayed, which belong to fourteen different genera, and represent a wide taxonomic 

diversity. The enamide 1 exhibited higher selectivity because it affected fewer fungal 

species. 245 

Ketoamides 3 and 4 showed significantly less activity. Introduction of methyl 

groups between the two carbonyls, as in (3), improved fungicidal activity. 

Although, in general, the fungitoxic activity of the products is only slight to 

moderate (none of the compounds exhibited a MIC value, i.e., the lowest concentration 



that produces a complete growth inhibition, lower than 100 µg/mL), structures such as 2, 250 

could be considered as a model for further modification to optimize fungicidal activities. 

In summary, current research offers broad possibilities in the search for new 

bioactive metabolites, mainly those affecting insects. The reported success of this 

approach, combined with the growing need to develop new products, make this 

exploitation of natural products an attractive option for the biorational pesticide design. 255 

Discovery of novel lead structures for the synthesis of analogues possessing new modes of 

action to combat resistance are needed for ecologically acceptable programs of pest 

control. 
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Table 1: Penicillium  Isolates for Testing Biological Activities 

species isolate codea source 

P. thomii P57 barley 

P. brevicompactum P55, P65, P79, P88 wheat, corn 

P. chrysogenum P80, P87 barley 

P. roqueforti P67, P98 wheat, corn 

P. citrinum P72, P84 wheat, corn 

P. verrucosum P5, P31, P39, P95 barley, wheat, corn 

P. expansum P23 wheat 

P. commune P4 corn 

P. purpurogenum P20 barley 

P. funiculosum P37, P93 corn 

P. rugulosum P68 barley 

 

a All isolates are maintained at Microbiology Lab. of Biotechnology 

Dept., Polytechnic University of Valencia 330 
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Table 2: Insecticidal Activity of Penicillium Extracts Against O. fasciatus 340 

toxicity (%)a 

isolate code dose (g/cm2) b-DCMb m-DCMc m-EAd 

P57 500 53.8±7.4 0 - 

 100 -e - 41.1±8.4 

P55 500 73.3±6.7 86.5±6.4 25.5±3.7 

P65 500 82.0±9.9 45.5±5.0 27.1±5.9 

P79 500 100 100 86.5±6.4 

 100 100 47.9±8.6 13.9±7.1 

 10 6.8±0.2 - - 

P88 500 100 82.0±9.9 88.7±3.6 

 100 100 41.1±8.4 13.9±7.1 

 10 20.0±6.7 6.7±0.2 - 

P80 500 100 100 - 

 100 62.8±7.5 14.3±1.0 0 

P87 500 100 100 100 

 100 100 100 0 

 10 0 100 - 

P67 500 86.1±7.3 100 - 

 100 - 59.2±5.5 6.7±0.0 

P98 500 100 100 0 

 100 29.4±8.0 100 - 

 10 - 20.0±6.7 - 

P72 500 0 0 0 

P84 500 100 6.7±0.0 6.7±0.0 

 100 66.0±5.7 - - 

P5 500 100 100 100 

 100 33.3±13.3 100 73.3±6.7 

 10 - 59.9±6.6 - 

P31 500 100 27.4±7.8 100 

 100 100 - 79.9±6.6 

 10 25.8±5.4 - - 

P39 500 100 100 100 

 100 34.9±7.2 81.4±3.7 73.3±6.7 

P95 500 64.6±10.6 100 21.3±6.7 

 100 - 100 - 

P23 500 20.4±0.8 0 - 

 100 - - 52.3±5.2 

P4 500 100 79.9±6.6  - 

 100 39.9±6.6 - 6.6±0.0 

P20 500 100 100 100 

 100 19.9±6.6 76.8±7.7 62.8±7.5 

P37 500 95.5±3.8 0 68.0±4.6 

 100 0 - - 

P93 500 100 83.8±7.8 20.3±6.2 

 100 100 - - 

 10 0 - - 

P68 500 86.6±6.6 0 - 

 100 - - 9.0±3.7 

The assays were performed with 15 third-instar nymphs by the contact method, according to Bowers et 

al. (1976). a % mortality at 72 h; each value is expressed as the mean and deviation standard of three 

replicates; b culture broth dichloromethane extract; c mycelium dichloromethane extract; d mycelium 

ethyl acetate extract; e non determined. 



Table 3: Antifungal Activity of  Culture Broth Dichloromethane Extracts 345 

 growth inhibition  (%)a 

isolate 

code 
1 2 3 4 5 6 7 8 

P57 47.7±2.1 33.7±2.4 33.7±2.5 60.4±3.7 32.1±3.4 16.5±1.7 24.4±2.9 46.1±3.7 

P55 30.4±2.5 92.1±4.6 58.5±2.6 54.3±2.7 56.2±2.8 64.4±2.2 77.7±5.4 51.4±2.3 

P65 44.9±3.5 37.9±2.5 34.4±3.5 0 47.6±2.4 0 47.2±3.8 34.1±2.8 

P79 75.6±2.7 38.0±3.3 89.4±2.5 4.3±1.2 62.6±2.5 0 61.2±2.9 48.3±1.6 

P88 74.6±2.6 38.0±3.1 88.4±2.6 4.0±1.0 61.9±2.6 0 60.2±3.0 47.4±1.9 

P80 5.3±1.2 27.4±1.9 19.6±2.4 10.3±1.7 12.7±2.0 0 33.2±2.1 20.2±1.9 

P87 71.2±3.8 30.7±2.6 58.0±2.2 20.2±2.0 38.7±3.4 20.6±1.7 94.7±2.4 26.3±1.4 

P67 65.3±2.3 41.3±2.9 84.8±3.8 50.2±3.8 72.6±3.7 28.3±3.0 91.5±4.4 42.3±3.9 

P98 86.6±3.5 38.2±4.2 93.1±2.4 64.9±3.8 81.1±3.5 37.3±2.5 27.9±2.6 46.5±3.2 

P72 75.1±3.9 30.6±1.5 56.0±3.4 30.3±2.6 58.8±3.3 0 41.2±3.2 48.4±2.7 

P84 100.0±0.0 46.0±2.1 78.5±4.6 30.2±3.2 70.9±3.4 51.4±4.2 69.1±4.5 71.5±3.8 

P5 0 25.9±3.4 20.0±2.7 0 6.4±0.8 7.1±0.2 16.1±1.2 14.3±0.7 

P31 25.0±2.5 43.2±2.7 28.2±1.8 14.0±2.2 18.3±1.4 0 33.3±2.2 42.5±3.1 

P39 16.4±1.2 23.2±1.9 21.7±2.3 0 6.2±0.8 13.2±2.1 16.1±1.3 15.3±0.9 

P95 28.6±2.8 15.5±1.5 58.5±2.5 13.3±2.2 6.2±0.8 4.1±0.7 81.3±3.3 0 

P23 50.5±3.5 53.0±3.3 60.9±3.1 16.5±2.2 65.6±3.9 35.1±3.5 61.7±3.3 51.7±3.2 

P4 24.9±2.6 51.1±2.6 23.5±2.4 0 0 0 0 20.0±1.6 

P20 0 15.2±1.9 13.3±0.7 0 18.5±1.4 0 16.2±1.3 42.5±3.3 

P37 0 45.9±2.7 34.3±3.0 16.5±2.1 6.2±1.1 0 63.5±1.8 28.3±2.9 

P93 40.3±2.6 58.0±2.3 52.0±4.4 33.9±2.6 21.4±1.7 56.9±3.0 52.4±4.0 21.6±2.6 

P68 60.4±2.9 23.1±1.8 55.2±2.9 70.4±2.7 14.2±1.5 29.5±2.0 13.6±1.4 64.1±3.9 

Assays were done including the extract in the culture medium at 500 g/mL. a % radial mycelial 

growth inhibition compared with control; the values are expressed as mean and standard deviation of 

three replicates. 1: A.tenui; 2:A. parasiticus; 3 C.gloesporoides;4: G. candidum; 5: F. culmorum; 6: 

P. italicum; 7: T. viride; 8: T. roseum 



Table 4: Antifungal Activity of Mycelium Dichloromethane Extracts 350 

 growth inhibition  (%)a 

isolate 

code 
1 2 3 4 5 6 7 8 

P57 44.2±2.4 7.6±1.0 28.6±2.9 50.5±3.6 12.3±1.1 21.3±2.8 27.5±2.4 20.2±1.9 

P55 31.6±2.5 7.4±1.2 28.5±2.4 16.5±1.9 35.8±2.4 29.2±1.9 45.4±3.8 26.6±2.2 

P65 60.8±4.4 46.1±5.0 36.6±3.3 11.5±2.0 29.5±2.9 17.0±2.7 80.8±3.1 26.5±2.1 

P79 52.1±3.0 30.6±2.7 44.9±2.8 16.1±1.3 18.5±2.3 0 22.5±2.8 34.5±1.9 

P88 51.9±3.0 30.4±2.6 45.0±2.7 16.2±1.4 17.5±2.3 0 22.5±2.6 34.5±2.0 

P80 75.3±4.3 38.0±3.2 19.9±2.6 0 0 28.6±2.3 24.3±2.2 0 

P87 55.0±2.7 0 25.2±2.1 46.6±3.3 38.5±2.6 16.5±2.1 94.8±2.8 43.5±2.4 

P67 18.3±2.8 7.5±0.6 41.7±2.6 23.2±3.0 29.4±2.8 16.6±2.1 80.9±2.7 43.1±2.8 

P98 34.2±1.6 12.4±0.6 41.4±2.0 13.2±1.0 41.3±1.8 16.5±1.3 27.5±1.0 43.4±1.3 

P72 41.9±3.6 23.2±1.6 41.3±2.5 38.5±2.8 29.3±2.9 50.1±3.4 39.0±3.6 40.1±3.1 

P84 75.1±3.9 50.6±3.8 69.3±3.6 12.1±1.4 70.3±2.3 28.6±2.9 63.5±2.8 62.3±2.3 

P5 47.2±4.5 53.4±3.1 36.5±3.2 50.1±3.1 17.5±2.6 29.3±2.7 52.3±2.7 36.4±3.8 

P31 5.3±2.1 23.4±3.2 39.1±3.4 20.1±3.9 25.1±2.3 0 11.4±1.8 42.5±3.1 

P39 42.0±4.1 46.1±2.8 39.3±3.7 51.0±3.3 21.3±2.8 33.5±3.6 55.7±2.8 36.4±2.5 

P95 32.2±2.0 0 16.4±1.3 28.0±2.1 23.2±1.1 20.5±1.5 38.6±1.9 13.5±1.1 

P23 75.3±4.1 46.3±3.1 65.4±3.4 16.2±1.8 74.9±4.8 35.4±3.1 71.9±4.0 62.5±3.2 

P4 39.5±1.9 46.2±2.8 93.1±2.6 13.2±2.1 41.1±3.3 16.7±2.4 0 13.4±1.9 

P20 31.7±3.6 0 20.5±3.5 41.5±4.3 0 33.6±3.7 22.2±3.3 0 

P37 25.3±3.4 30.8±3.5 38.9±3.4 40.2±3.2 21.3±3.2 0 33.2±4.0 28.6±2.4 

P93 41.9±2.5 33.5±1.7 24.8±2.6 11.8±1.2 21.3±1.8 16.3±1.4 55.0±2.4 26.3±1.4 

P68 86.7±3.4 7.5±0.4 51.8±3.2 66.7±4.3 25.5±3.2 58.5±3.8 53.3±3.6 33.4±3.1 

Assays were done including the extract in the culture medium at 500 g/mL. a % radial mycelial 

growth inhibition compared with control; the values are expressed as mean and standard deviation of 

three replicates. 1: A.tenuis; 2:A. parasiticus; 3 C. gloesporoides; 4: G. candidum; 5: F. culmorum; 6: 

P. italicum; 7: T. viride; 8: T. roseum 



Table 5. Synthetic Products Showing Fungicidal Activity. 355 

 percentage of radial mycelial growth inhibition [a] 

% (mean ± SD)[b] 

target phytopathogens 1 2 3 4 

Fusarium culmorum 51.0±1.9A 66.1±1.6B 0C 0C 

Fusarium oxysporium 

     ssp. gladioli 
15.4±0.7 A 52.8±3.9 B 24.0±4.7 C 14.2±1.1 A 

Fusarium oxysporium 

     ssp. niveum 
29.7±2.1 A 48.6±0.1 B 27.0±1.0 A 15.6 ±0.3 C 

Geotrichum candidum 20.0±3.4 A 43.8±1.8 B 18.2±1.3 A 0 C 

Colletotrichum gloesporoides 61.5±3.2 A 29.4±2.0 B 22.0±2.8 C 19.7±1.2 C 

Colletotrichum coccodes 32.2±4.1 A 66.2±2.4 B 48.4±2.3 C 29.4±2.7 A 

Trichothecium roseum 34.4±2.6 A 42.3±2.4 B 51.0±4.4 C 33.0±2.2 A 

Alternaria tenuis 39.4±1.3 A 68.5±4.9 B 21.0±3.1 C 12.6±0.6D 

Rosellinia necatrix  11.4±1.1 A 12.8±0.7 A 26.3±2.8 B 34.5±2.5 C 

Verticillium dahliae 17.2 ±0.9 A 62.5±7.7 B 28.6±0.0 C 28.6±1.4 C 

Trichoderma viride  0 A 47.0±1.8 B 25.0±2.5 C 0 A 

Penicillium italicum 0 A 77.3±3.4 B 0 A 0 A 

Pyricularia oryzae 9,8±0.4 A 27.8±0.9 B 0 C 0 C 

Phytophthora citrophthora 45.0±2.9 A 41.1±3.6 A 31.1±0.1 B 17.8±2.0 C 

Aspergillus parasiticus 11.9±1.0A 45.3±2.7 B 12.1±0.4 A 13.1±1.5 A 

a Assays concentration: 100 µg/mL. b Each value is the mean and standard deviation of three independent 

experiments. Within each line, values labelled with the same superscript (A, B, C or D) are not 

significantly different (P>0.05). Products: 1, N-(2-methyl-3-oxodec-8-enoyl)-2-pyrroline; 2, 2-hept-5-

enyl-3-methyl-4-oxo-6,7,8,8a-tetrahydro-4H-pyrrolo[2,1-b]-1,3-oxazine; 3, N-(2,2-dimethyl-3-oxodec-8-

enoyl) pyrrolidine; 4, N-(2-Methyl-3-oxodec-8-enoyl)pyrrolidine. 360 


