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Splitting methods in the numerical integration of
non-autonomous dynamical systems

Sergio Blanes, Fernando Casas, and Ander Murua

Abstract.
We analyze several strategies to adapt previously existing splitting methods to explicitly time depen-

dent differential equations without deteriorating their efficiency. In the relevant case of linear differential
equations originating in the space discretization of partial differential equations of evolution, a new, espe-
cially tailored procedure is devised which allows us to design splitting methods much more efficient than
other previously available.

Métodos de escisión en la integración numérica de sistemas dinámicos no
autónomos

Resumen.
En este trabajo se analizan diferentes estrategias para adaptar algunos de los métodos de escisión ya

existentes a ecuaciones diferenciales con dependencia explı́cita del tiempo sin deteriorar su eficiencia.
En el importante caso de ecuaciones diferenciales lineales provenientes de la discretización espacial de
ecuaciones diferenciales en derivadas parciales de evolución, presentamos un nuevo procedimiento espe-
cialmente adaptado que permite diseñar métodos de escisión mucho más eficientes que otros previamente
existentes.

1. Introduction

The evolution of many physical systems is usually described by an ordinary differential equation (ODE)

x′ = f(x), x(t0) = x0 ∈ Rd, (1)

whose formal solution can be written as

x(t) = ϕt(x0) = exp((t− t0)Df )x0.

Here Df stands for the Lie derivative associated with f(x), i.e. Df ≡ f(x) · ∇. Describing the physical
problem at hand requires then to formulate an appropriate mathematical model in this setting. In other
words, a suitable function f(x) such that (1) can reproduce the most salient features of the real system.
In this respect, since the real system often involves one or more symmetries and these symmetries can
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be mathematically formulated in terms of Lie groups, a necessary condition is that the Lie derivative Df

possess the appropriate Lie algebraic structure.
Of course, one is also interested in solving (1), but with the exception of a very few simple cases,

only numerical approximations are usually obtained. Generally speaking, standard numerical integrators
(Runge–Kutta formulae, linear multistep methods) produce approximate solutions that do not take into
account the special algebraic structure of f and therefore do not preserve the corresponding symmetries.
In consequence, much effort has been devoted during the last two decades to the design of numerical
integrators preserving those qualitative (geometric) properties of the exact solution. Examples of such
algorithms include symplectic integrators, volume preserving methods, Lie group integrators, variational
methods in mechanics, etc. [11, 12, 18]. All of them are now put into the more general category of geometric
numerical integrators. In geometric integration, in fact, it is crucial to identify significant (geometric)
properties of the dynamical system (1) and construct numerical integration algorithms that preserve those
features. In addition, of course, one is interested in building efficient methods with the usual properties of
accuracy and stability.

Although research in geometric numerical integrators for differential equations has experienced a tremen-
dous boost during the last decades, it is fair to say that this has been mainly restricted to autonomous
problems, whereas nonlinear systems of the form

x′ = f(x, t), x(t0) = x0 ∈ Rd, (2)

i.e., when time appears explicitly in the formulation of the problem, have been up to some point disregarded.
In the linear case X ′ = A(t)X , with A and X n × n matrices, several options have been widely explored
and indeed the Magnus expansion has shown to be an extremely useful device to get analytical as well as
numerical approximations [6].

A usual procedure in the numerical analysis of explicitly time-dependent problems consists in trans-
forming (2) into an autonomous differential equation by the introduction of a new variable,

{
x′ = f(x, xt)
x′t = 1 (3)

or, equivalently,
y′ = F (y), y(t0) = (x0, t0) ∈ Rd+1, (4)

and F (y) = (f(x, xt), 1). Notice that formulation (3) introduces the auxiliary variable xt aimed at elimi-
nating the explicit time dependence, so that numerical integrators designed for (1) can, in principle, be used
in this setting. This process exhibits, nevertheless, several drawbacks. First, the algebraic structure of Df

and DF may differ, so that methods specifically designed for (1) cannot simply be used for the integration
of the new enlarged system (4). Second, even when they can be applied, very often their efficiency reduces
considerably.

In this work we explore other alternatives to cope with non autonomous differential equations from a
computational point of view. They can be applied when dealing with splitting methods, and the goal is to
adapt to this setting highly efficient methods previously designed for autonomous systems. We will analyze
in detail the case of linear differential equations for simplicity and illustrate how in this particular situation
our goal can be achieved.

2. Splitting methods and their generalization to non autono-
mous systems

2.1. General treatment
Although splitting methods have been used for a long time in the numerical treatment of differential equa-
tions, they have experienced a revival with the advent of geometric integration. In fact, a good deal of
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geometric integrators are based on the idea of splitting. The idea is fairly simple: suppose f in equation (1)
can be decomposed as f(x) = f [A](x) + f [B](x) in such a way that systems

x′ = f [A](x), x′ = f [B](x) (5)

can either be solved in closed form or accurately integrated. Then one combines these partial solutions into
an approximate solution for (1), often of high accuracy. To make this sentence precise, let us denote by

ϕ
[A]
t = exp((t− t0)DA), ϕ

[B]
t = exp((t− t0) DB)

the flows corresponding to equations (5), where DA and DB represent the Lie derivatives associated with
f [A](x) and f [B](x), respectively. Then one considers the composition

ψh ≡ ϕ
[A]
am+1h ◦ ϕ

[B]
bm+1h ◦ ϕ

[A]
amh ◦ ϕ

[B]
bmh ◦ ϕ

[A]
am−1h ◦ · · · ◦ ϕ

[B]
b2h ◦ ϕ

[A]
a1h ◦ ϕ

[B]
b1h (6)

with appropriately chosen real coefficients ai, bi to ensure that ψh is an approximation to the exact solution
ϕ up to order O(hp) with respect to the time step h, i.e. ψh = ϕh + O(hp+1). A great deal of methods
of this class exist in the literature, of different orders and tailored for different structures of the vector field:
general separable problems, systems arising from second order differential equations x′′ = g(x), near-
integrable systems, etc. (see [4, 11, 13, 15] and references therein). One could said that the performance
of the different splitting methods strongly depends on the particular problem at hand, so that a previous
analysis is highly recommended to select the most appropriate scheme for its numerical treatment [4]. The
non-autonomous separable problem

x′ = f [A](x, t) + f [B](x, t). (7)

is indeed a case in point.
One might think of two procedures to adapt the scheme (6) in this setting. The first one consists in

replacing the maps ϕ
[A]
aih

, ϕ
[B]
bih

by the maps associated to the exact flow defined by the equations

x′ = f [A](x, t), t ∈ [t0 + cih, t0 + (ci + ai)h] (8)
x′ = f [B](x, t), t ∈ [t0 + dih, t0 + (di + bi)h]. (9)

Here ci =
∑i−1

j=0 aj , di =
∑i−1

j=0 bj , a0 = 0, b0 = 0, and the initial conditions are given by the solution
obtained from the previous flow. This approach can be considered as a time-average on each stage of the
composition. Obviously, obtaining the exact solution of the non-autonomous equations (8) and (9) is by no
means trivial due to the explicit time-dependence. In any case, the formal solution can be obtained by using
the Magnus expansion, as shown in [6].

The second procedure is perhaps simpler. It consists in taking the maps ϕ
[A]
aih

, ϕ
[B]
bih

in (6) as the (aih)-
flow and (bih)-flow associated respectively to the autonomous equations

x′ = f [A](x, t0 + dih), t ∈ [t0 + cih, t0 + (ci + ai)h] (10)
x′ = f [B](x, t0 + cih), t ∈ [t0 + dih, t0 + (di + bi)h]. (11)

Notice that the coefficients ci, di appear interchanged in the vector fields with respect to (8) and (9).
These two strategies, which could be dubbed ‘averaging’ and ‘frozen’ techniques, respectively, may

differ considerably both in the accuracy reached by the methods and also in their computational cost. Let
us illustrate them on a simple but important example arising in applications.

2.2. Linear non autonomous separable systems
When discretizing in space the time dependent Schrödinger equation involving a time dependent potential
V (t) (for instance, with a pseudospectral method), the following system of ODEs arises:

iu′ = H(t)u, (12)
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where u ∈ CN and H is a real symmetric matrix. If the real and imaginary parts in u are considered,
u = q + ip, the N -dimensional linear complex system (12) can be written as the 2N -dimensional real
system

q′ = H(t)p, p′ = −H(t)q. (13)

These, in fact, can be interpreted as the classical Hamilton equations corresponding to the Hamiltonian

H(q, p, t) =
1
2
pT H(t)p +

1
2
qT H(t)q. (14)

Although we limit ourselves to this problem, most of the discussion is also valid with minor modifications
for the more general system

q′ = M(t)p, p′ = N(t)q, (15)

for q ∈ Rd1 , p ∈ Rd2 . Equation (15) arises, in particular, when the Maxwell equations are discretized in
space [17].

Equations (13) can be written in the compact form

z′ = (A(t) + B(t))z, (16)

where z = (q, p)T and

A(t) =
(

0 H(t)
0 0

)
, B(t) =

(
0 0

−H(t) 0

)
. (17)

Let us consider first the autonomous problem, i.e., when H does not depend explicitly on t, in which case
the corresponding equations

q′ = Hp, p′ = −Hq (18)

possess the formal solution
z(t) = et(A+B)z(0). (19)

Typically, as a result of the discretization in space, the value of N is large, and thus the exact computa-
tion of the exponential is exceedingly costly. In consequence, it makes sense to construct approximations
requiring a much reduced computational effort. This can be achieved when the scheme only involves the
computation of Hq and Hp in a particular sequence and only a few times per step. But this is precisely
what splitting methods effectively do, as it is evident if one writes the composition (6) for this particular
problem:

K(h) ≡ eham+1AehbmBehamA · · · ehb1Beha1A (20)

=
(

I ham+1H
0 I

)(
I 0

−hbmH I

)
· · ·

(
I 0

−hb1H I

) (
I ha1H
0 I

)
.

The scheme requires m matrix-vector products Hq and Hp (the last product at each step can be reused in the
first stage at the following step) and is referred as an m-stage method. Although any of the splitting methods
for separable systems collected in [11, 13, 15, 16] can be used for carrying out numerical integrations here,
equation (16) in the autonomous case possesses the following crucial simplifying property:

[A, [A, [A,B]]] = [B, [B, [B, A]]] = 0, (21)

where [·, ·] stands for the usual commutator: [A, B] = AB − BA. This feature allows one to build very
efficient methods indeed [9, 1, 2]. Moreover, it has been shown that any non-symmetric method for this
problem is conjugate to a symmetric method [3], so that one may restrict the analysis to symmetric com-
positions, i.e., when am+2−i = ai, bm+1−i = bi. The resulting scheme is sometimes referred to as an
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ABA composition. Since the role of A and B can be naturally interchanged, BAB compositions are not
separately studied.

Let us turn our attention now to the time dependent case. As is well known, the Magnus expansion
allows one to formally write the solution of (16) as

z(t) = eΩ(t)z(0), (22)

where Ω(t) is given by an infinite series involving A(t), B(t), multivariate integrals and nested commutators
with a finite radius of convergence [14, 6]. Although it is indeed possible to derive numerical integration
algorithms from the Magnus expansion, they still require the computation of the exponential of a full matrix
of high dimension involving iterate integrals and commutators. We apply instead the two procedures pointed
out in section 2.1.

The first one uses composition (6) with maps corresponding to the exact solutions of (8)-(9), which for
this particular problem read (taking t0 = 0)

ϕ
[A1]
aih

(q, p) =

(
q +

∫ ci+1h

cih

H(τ)dτ p, p

)
, ϕ

[B1]
bih

(q, p) =

(
q, p−

∫ di+1h

dih

H(τ)dτ q

)
. (23)

Notice that the resulting scheme can be seen as the composition method (6) applied to the autonomous
Hamiltonian

H(q, q1, q2, p, p1, p2) =
(

1
2
pT H(q1)p + p1

)
+

(
1
2
qT H(q2)q + p2

)
≡ A1 + B1, (24)

where we have considered time as two different additional coordinates.
On the other hand, with the ‘frozen’ technique (10)-(11) one has

ϕ
[A2]
aih

(q, p) = (q + H(dih), p), ϕ
[B2]
bih

(q, p) = (q, p−H(cih)), (25)

and the corresponding scheme, as before, is nothing but composition (6) applied to the Hamiltonian

H(q, q1, q2, p, p1, p2) =
(

1
2
pT H(q2)p + p1

)
+

(
1
2
qT H(q1)q + p2

)
≡ A2 + B2. (26)

Now the Hamilton equations are no longer linear and, moreover,

{Ai, {Ai, {Ai, Bi}}} 6= 0, {Bi, {Bi, {Bi, Ai}}} 6= 0, i = 1, 2

in terms of the Poisson bracket. In consequence, the highly efficient schemes of type (20) designed for
systems verifying (21) lose their appealing accomplishments when applied in the non autonomous case.

Another possibility is suggested in [8]. One might consider a combination of (24) and (26) in the form

H(q, q1, q2, p, p1, p2) =
(

1
2
pT H(q1)p + p1

)
+

(
1
2
qT H(q1)q + p2

)
(27)

or equivalently

H(q, q1, p, p1) =
(

1
2
pT H(q1)p + p1

)
+

(
1
2
qT H(q1)q

)
≡ A3 + B3, (28)

with associated maps

ϕ
[A3]
aih

(q, p) =

(
q +

∫ ci+1h

cih

H(τ)dτ p, p

)
, ϕ

[B3]
bih

(q, p) = (q, p−H(cih)). (29)
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Now {B3, {B3, {B3, A3}}} = 0 so that Runge–Kutta–Nyström methods can be used (even with modified
potentials) [4], and thus significant improvements in the efficiency with respect to the previous choices can
be achieved.

At this point a natural question arises: is it possible to directly adapt the extremely efficient schemes
of type (20) constructed for the autonomous case to the more general problem (16), so that the resulting
splitting methods do not suffer from a degradation in their performance? The answer is provided in the next
section.

3. A new class of splitting methods for non autonomous lin-
ear systems

Our purpose here is to generalize the ‘averaging’ technique (23) by using the Magnus expansion and for-
mulate directly the splitting method (20) in terms of the new maps. More specifically, the new methods
have the form (for a time step of size h)

z(t + h) ≈ eÃm+1eB̃meÃm · · · eB̃1eÃ1z(t), (30)

where the matrices Ãi ≡ Ai(t, h) and B̃i ≡ Bi(t, h) are taken as

Ãi = h

∫ 1/2

−1/2

pa
i (τ)A(t1/2 + hτ) dτ, B̃i = h

∫ 1/2

−1/2

pb
i (τ)B(t1/2 + hτ) dτ. (31)

Here t1/2 = t + h
2 and pa

i (τ), pb
i (τ) are filters (scalar functions). As we will see in the sequel, to get

integrators of even order n = 2s, it is enough to consider pa
i , pb

i as polynomials of degree s− 1, i.e.,

pa
i (τ) = a[0]

i + a[1]
i τ + · · ·+ a[s−1]

i τs−1, pb
i (τ) = b[0]

i + b[1]
i τ + · · ·+ b[s−1]

i τs−1.

Since in our case

eÃi =
(

I H̃A
i

0 I

)
, eB̃i =

(
I 0

−H̃B
i I

)
,

then (30) can be written as z(t + h) ≈ K(t, h)z(t), where

K(t, h) = eÃm+1eB̃meÃm · · · eB̃1eÃ1 (32)

=
(

I H̃A
m+1

0 I

)(
I 0

−H̃B
m I

)(
I H̃A

m

0 I

)
· · ·

(
I 0

−H̃B
1 I

)(
I H̃A

1

0 I

)
,

and

H̃A
i = h

∫ 1/2

−1/2

pa
i (τ)H(t1/2 + hτ) dτ, H̃B

i =
∫ 1/2

−1/2

pb
i (τ)H(t1/2 + hτ) dτ. (33)

These integrals can either be computed analytically or numerically approximated by using some appro-
priate quadrature rule. If the method (32) is of order 2s, then a quadrature rule of order 2s or higher must
be used to retain the original order.

The numerical scheme is then determined by the values of the coefficients a[k]
i , b[k]

i (k = 0, 1, . . . , s−1,
i = 1, . . . , m). The problem of designing efficient methods of a prescribed order 2s is then equivalent to
determining coefficients such that the composition (30) achieve the desired order of accuracy and, at a given
cost, provide the most accurate results among a number of possible choices. The method is of order 2s if
the coefficients a[k]

i , b[k]
i satisfy a system of algebraic equations (the order conditions), which have to be

first formulated and then solved (usually by numerical tools). A subset of such order conditions correspond
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precisely to the particular case where H(t) actually does not depend on t, so that the matrix (32) reduces
to the matrix K(h) in (20) with ai, bi related to a[k]

i , b[k]
i . When constructing a method of order 2s, we

proceed as follows: (i) we first determine the values of the coefficients ai, bi in such a way that (20) gives
a good method of order 2s for the autonomous case, (ii) and then choose the coefficients a[k]

i , b[k]
i , so that

the remaining order conditions hold (once the relation between the coefficients ai, bi and a[k]
i , b[k]

i is taken
into account).

3.1. Order conditions for the autonomous case

When considering the matrix (20) used to propagate the numerical solution in the autonomous case (18),
one observes that diagonalizing the matrix H with an appropriate linear change of variables transforms
the system into N uncoupled harmonic oscillators with frequencies ω1, . . . , ωN . Although in practice one
wants to avoid diagonalizing the matrix H , numerically solving the system (18) by a splitting method
is mathematically equivalent to applying the splitting method to each of such harmonic oscillators (and
then rewritting the result in the original variables). Clearly, the exact solution of each individual harmonic
oscillator with frequency ω is propagated by 2× 2 matrix O(ωh), where

O(x) =
(

cos x sinx
− sin x cos x

)
. (34)

As for the numerical solution, it is propagated by a matrix K(ωh) defined as

K(x) =
(

1 am+1x
0 1

) (
1 0

−bmx 1

)(
1 amx
0 1

)
· · ·

(
1 0

−b1x 1

)(
1 a1x
0 1

)
.

It is straightforward to check that

K(x) =
(

K1(x) K2(x)
K3(x) K4(x)

)
=

(
1 +

∑m
i=1 k1,i x2i

∑m+1
i=1 k2,i x2i−1∑m

i=1 k3,i x2i−1 1 +
∑m

i=1 k4,i x2i

)
, (35)

where ki,j are homogeneous polynomials in the parameters ai, bi.
The integrator (35) typically will be stable for |hω| < x∗ for some value x∗ (that we call stability

threshold) depending on the coefficients ai, bi. It has been shown [3] that if for a given splitting method
x∗ > 0, then the method applied to (18), for H a constant matrix, is conjugate, for hρ(H) < x∗, to the
solution of a modified system

q′ = H̃(h)p, p′ = −H̃(h)q, (36)

where
hH̃(h) = hH + φ2s+1(hH)2s+1 + φ2s+3(hH)2s+3 + · · · (37)

for some constants φ2i+1, i = 1, 2, . . ., provided that the method is of order 2s for the harmonic oscillator
(see [3] for more details).

We thus intend to construct accurate symmetric schemes with large stability intervals (−x∗, x∗). Notice
that for a fair comparison of the stability interval for splitting methods with different number of stages, one
must consider the relative stability threshold x∗/m. For this class of schemes, the elements of the stability
matrix have to satisfy

K1(x) = K4(x) ≈ cos x, (38)
K2(x) ≈ sin x, K3(x) ≈ − sin x, (39)
K1(x)2 −K2(x)K3(x) = 1. (40)
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Since we are dealing with symmetric compositions, we found more appropriate (due to the ill conditioned
equations to be numerically solved) to consider the decomposition

K(x) = U(−x)−1U(x), where U(x) =
(

U1(x) U2(x)
U3(x) U4(x)

)
(41)

with U1, U4 even polynomial functions and U2, U3 odd polynomial functions. Since we are interested in
matrices K,U to be decomposed as products (35), then it is clear that they must satisfy det(K) = det(U) =
1. Clearly, conditions (38)-(40) are equivalent to O(x) ≈ U(−x)−1U(x) together with

U1(x)U4(x)− U2(x)U3(x) ≡ 1. (42)

Whence, one has an approximation of order 2s if

U3(x) cos(x/2) + U4(x) sin(x/2) = O(x2s+1)
U1(x) sin(x/2)− U2(x) cos(x/2) = O(x2s+1). (43)

Observe that to obtain a method of order 2s one needs a composition with m ≥ 2s−1 stages, as already
noticed in [9]. The matrix U has 4s− 2 parameters that can be used to solve the required system of 4s− 2
equations: indeed, equations (43) originate 2s linear equations and condition (42) gives 2s − 2 quadratic
equations. However, the methods with minimal number of stages obtained by solving these 4s−2 equations
have stability thresholds x∗ ≈ π, and thus the relative stability threshold x∗/m ≈ π/(4s−2) becomes very
small for high order methods.

A simple trick to get methods with larger relative stability threshold is to add the condition

O(jπ) = K(jπ), j = 1, . . . , l (44)

for some positive integer l. For moderate values of l relative to s, this typically gives a method with
stability threshold x∗ > lπ. In addition to improving stability, due to its interpolatory nature, condition (44)
contributes to improve the precision of the method when applied to (18).

In terms of the matrix U(x), condition (44) reads

U1((2j − 1)π) = U4((2j − 1)π) = 0, U1(jπ) = U3(2jπ) = 0, j ≤ l/2. (45)

Given positive integers s, l, we impose conditions (42), (43), and (45) to the matrix U(x), which gives a
system of 4(n + l)− 2 linear and quadratic equations in terms of the coefficients of the polynomials Uj(x),
j = 1, 2, 3, 4. The required number of free parameters can be obtained by considering

d(U1) = 2(n + l − 1), d(U4) = 2(n + l),
d(U2) = 2(n + l)− 1, d(U3) = 2(n + l)− 1,

where d(P (x)) denotes de degree of the polynomial P (x). For a given matrix U(x) satisfying the required
conditions, if there exists a splitting method associated to the matrix (41) (if it exists, is unique [3]), then in
general will have m = 2(n + l)− 1 stages.

We have obtained (with the help of the software Mathematica) all the solutions of the equations cor-
responding to moderate values of n and l (n + l ≤ 6). For each s and l, we choose among all the real
solutions of the corresponding system of polynomial equations the best methods with respect to suitable
criteria based on the rigorous error estimates (for the application of (18)) derived in [5]. Once an appropri-
ate matrix U(x) is chosen for given s and l, we compute the coefficients {a1, b1, a2, b2, . . .} of the splitting
scheme corresponding to K(x) = U(−x)−1U(x) by following the algorithm presented in [3]. We collect
in Table 1 the coefficients of one of the best methods obtained in this way (s = l = 3, m = 11, and relative
stability threshold x∗ = 1.07).
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3.2. Order conditions for the non autonomous case
In the following, we analyze the order conditions to be satisfied by the coefficients a[k]

i , b[k]
i , i, k =

0, 1, . . . , s − 1 for the polynomials in the scheme (33) to give a method of order p = 2s. To this pur-
pose, we first consider the formal solution of equations (16) as furnished by the Magnus expansion.

As is well known, for a time step h we can write

z(t + h) = eΩ(t,h)z(t), (46)

where Ω(t, h) =
∑∞

k=1 Ωk(t, h) and each Ωk(t, h) is a multiple integral of combinations of nested com-
mutators containing k matrices A(t) and B(t) [6, 14].

The explicit expression of Ωk(t, h) can be obtained by inserting into the recurrence defining the Magnus
expansion a Taylor series of the matrices A(t) and B(t) around the midpoint t + h/2 (to take advantage of
the time-symmetry property of the solution), i.e.,

A(t + h
2 + τ) = α1 + α2τ + α3τ

2 + · · · , B(t + h
2 + τ) = β1 + β2τ + β3τ

2 + · · ·
Then Ω(t, h) in (46) can be expanded as

Ω(t, h) =
∑

n≥1

hn
n∑

k=1

Ωk,n(t, h), (47)

where each Ωk,n(t, h) is a linear combination of terms of the form [µi1 , µi2 . . . , µik
] with µj = αij

or
µj = βij for each j = 1, . . . , k, and i1 + · · ·+ ik = n. Furthermore, Ωk,n(t, h) = 0 for even values of n,
Ωk,k(t, h) = 0 for k > 1 and Ω1,1(t, h) = α1 + β1.

In particular, up to order h6 one has [7]

Ω = hΩ1,1 + h3(Ω1,3 + Ω2,3) + h5(Ω1,5 + Ω2,5 + Ω3,5 + Ω4,5) +O(h7), (48)

where (for simplicity, we omit the arguments (t, h))

Ω1,1 = α1 + β1, Ω1,3 =
1
12

(α3 + β3), Ω2,3 =
1
12

(
[α2, β1] + [β2, α1]

)
,

Ω1,5 =
1
80

(α5 + β5), Ω2,5 =
1

240
([α2, β3] + [β2, α3]) +

1
80

([α4, β1] + [β4, α1]) ,

Ω3,5 =
1

360
(− [α1, β3, α1] + [α1, β1, α3]− [β1, α3, β1] + [β1, α1, β3]

)

+
1

240
(
[α1, β2, α2]− [α2, β1, α2] + [β1, α2, β2]− [β2, α1, β2]

)
,

Ω4,5 =
1

720
(
[α1, β1, α1, β2]− [β1, α1, β2, α1] + [β1, α1, β1, α2]− [α1, β1, α2, β1]

)
.

Notice that, due to the structure of the matrices A(t), B(t), we have that [αi, αj , αk, βl] = [βi, βj , βk, αl] =
0 for any value of i, j, k, l.

Once the exact solution is constructed up to the desired order, we analyze the order conditions to be
satisfied by the composition (30) to approximate the formal solution at different orders. This can be done
by applying the Baker–Campbell–Hausdorff (BCH) formula repeatedly to (30), so that K(t, h) is expressed
as the exponential of only one operator,

K(t, h) = exp(Ω̃(t, h)),

depending on Ãi(t, h), B̃i(t, h) (i = 1, . . . ,m) and nested commutators of these matrices. The numerical
scheme will be of order p if Ω̃(t, h) − Ω(t, h) = O(hp+1) as h → 0. One can then obtain explicitly the
order conditions as follows. First, we expand Ãi(t, h), B̃i(t, h) in (31) in terms of αj , βj ,

Ãi(t, h) =
∑

n≥1

hna
(n)
i αn, B̃i(t, h) =

∑

n≥1

hnb
(n)
i βn, (49)

9
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where a
(n)
i , b

(n)
i have to be determined and subsequently the coefficients a[j]

i , b[j]
i .

We substitute the expressions (49) in the corresponding Ω̃(t, h), thus obtaining an expansion of the form

Ω̃(t, h) =
∑

n≥1

hn
n∑

k=1

Ω̃k,n(t, h), (50)

where each Ω̃k,n(t, h) is also a linear combination of terms [µi1 , µi2 . . . , µik
] with µj = αij or µj = βij

for j = 1, . . . , k. Finally, we compare the truncated (up to n = p) expansion (50) with the corresponding
expression (47) for Ω(t, h), so that the numerical scheme is of order p if

n∑

k=1

Ω̃k,n =
n∑

k=1

Ωk,n for n = 1, . . . , p. (51)

The analysis is simplified by imposing time symmetry to the composition (32): K(t + h,−h) =
K(t, h)−1, or equivalently, Ω̃(t + h − h) = −Ω̃(t, h), which implies that Ω̃k,n(t, h) = 0 for even val-
ues of n. This procedure, in addition, leads to integrators with better preservation of qualitative properties.

The time symmetry is automatically satisfied (and thus all order conditions at even orders) if

Ãm+2−i(t + h,−h) = −Ãi(t, h), B̃m+1−i(t + h,−h) = −B̃i(t, h), Bm+1(t, h) = 0, (52)

for i = 1, 2, . . . , m, which in turn is satisfied as soon as

a
(n)
m+1−i = (−1)n+1 a

(n)
i , b

(n)
m−i = (−1)n+1 b

(n)
i , b(n)

m = 0, (53)

for n ≥ 1, i = 1, 2, . . . ,m. As a result we have

Ω̃ = hΩ̃1,1 + h3(Ω̃1,3 + Ω̃2,3 + Ω̃3,3) + h5(Ω̃2,5 + Ω̃3,5 + Ω̃4,5 + Ω̃5,5) +O(h7), (54)

where

Ω̃1,1 = α1 + β1, Ω̃1,3 = λ3α3 + µ3β3, (55)

Ω̃2,3 = λ21[α2, β1] + µ21[β2, α1], Ω̃3,3 = ε31[α1, β1, α1] + ε32[β1, α1, β1]

Ω̃1,5 = λ5α5 + µ5β5,

Ω̃2,5 = λ23[α2, β3] + µ23[β2, α3] + λ41[α4, β1] + µ41[β4, α1],

Ω̃3,5 = λ131[α1, β3, α1] + λ113[α1, β1, α3] + µ131[β1, α3, β1] + µ113[β1, α1, β3]
+λ122[α1, β2, α2] + λ212[α2, β1, α2] + µ122[β1, α2, β2] + µ212[β2, α1, β2],

Ω̃4,5 = λ1112[α1, β1, α1, β2] + λ1121[β1, α1, β2, α1] + µ1112[β1, α1, β1, α2]
+µ1121[α1, β1, α2, β1],

Ω̃5,5 = ε51[α1, β1, α1, β1, α1] + ε52[β1, α1, β1, α1, β1],

and the coefficients λi1···il
, µi1···il

, εij , are polynomial functions depending on a
(n)
i , b

(n)
i , i = 1, . . . , m,

n = 1, . . . , 5. The explicit expressions for λi1···il
, µi1···il

up to order six can be found in [2].
Notice that while for the exact solution Ωn,n = 0, n > 1, now Ω̃n,n 6= 0, n > 1 unless the coefficients

a[j]
i , b[j]

i are chosen so that εij = 0. Therefore, to build a method of order p it is necessary that εni = 0,
n ≤ p. In this respect, notice that the polynomials εni multiply elements generated only by {α1, β1} and
their nested commutators. These are precisely the terms appearing in the autonomous case.

In most cases of practical interest, the dominant terms at each step correspond to the constant part, i.e.
in general ‖α1‖ À ‖αi‖ and ‖β1‖ À ‖βi‖, i > 1. For this reason, it makes sense to analyze separately the
error contributions coming from Ωn,n.

10
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3.3. Determining the coefficients for the non autonomous case
As we said before, in the autonomous case one has α1 = hA, β1 = hB and αj = βj = 0, j > 1 so that the
scheme reduces to

K(h) = ea
(1)
m+1α1eb(1)m β1ea(1)

m α1 · · · eb(1)m β1ea
(1)
1 α1 , (56)

which corresponds to eq. (20) with a
(1)
i = ai, b

(1)
i = bi. From (56) it is clear that a

(1)
i , b

(1)
i can be taken

separately from the remaining coefficients. For instance, from (31) we have

a
(1)
i = h

∫ 1/2

−1/2

pa
i (τ) dτ, b

(1)
i = h

∫ 1/2

−1/2

pb
i (τ) dτ. (57)

In any case, the actual choice of a
(1)
i , b

(1)
i plays an essential role to get the coefficients a[j]

i , b[j]
i leading to

efficient methods, since the constant parts α1 = hA(t1/2), β1 = hB(t1/2) usually represent the dominant
contributions to the evolution of the system.

Once a set of values for a
(1)
i , b

(1)
i , i = 1, . . . ,m, satisfying the symmetry condition (53) is chosen,

we have to determine the coefficients, a
(n)
i , b

(n)
i , n ≥ 2, i = 1, . . . ,m, which satisfy the remaining order

conditions. This can produce different methods with the same values for the coefficients a
(1)
i , b

(1)
i . If we

compare (55) with the formal solution, one can easily identify the order conditions at different orders of
accuracy.

Let us now write Ãi, B̃i as follows:

Ãi =
s−1∑

j=0

a[j]
i A(j), B̃i =

s−1∑

j=0

b[j]
i B(j), (58)

where

A(j) ≡ h

∫ 1/2

−1/2

τ jA(t1/2 + hτ) dτ, B(j) ≡ h

∫ 1/2

−1/2

τ jB(t1/2 + hτ) dτ (59)

for j = 0, . . . , s− 1.
At this point the following remark is worth to be stated. Suppose that b̄i, ci, (i = 1, . . . , k), are the

weights and nodes of a particular quadrature rule for integrals. Then it is possible to approximate all the
integrals A(i) (up to the required order) just by using only the evaluations Ai at the nodes ci of the quadrature
rule required to compute A(0):

A(i) = h

k∑

i=1

b̄j

(
cj − 1

2

)i

Aj . i = 0, . . . , s− 1, (60)

with Ai ≡ A(tn + cih).
In particular, if fourth and sixth order Gauss-Legendre quadrature rules are considered, we have s =

k = 2 and b̄1 = b̄2 = 1/2, c1 = 1/2 − √3/6, c2 = 1/2 +
√

3/6. To order six we have s = k = 3 and
b̄1 = b̄3 = 5/18, b̄2 = 4/9, c1 = 1/2−√15/10, c2 = 1/2, c3 = 1/2 +

√
15/10.

Now, a simple relationship can be established between the coefficients a[j]
i , b[j]

i for a given method
and the coefficients a

(n)
i , b

(n)
i by taking into account how the matrices A(i), B(i) and αi, βi are related.

Specifically, by substituting (47) into (59) one has (neglecting higher order terms)

A(i) =
∫ 1/2

−1/2

s∑

j=1

hjαjτ
i+j−1dτ =

s∑

j=1

(
T (s)

)
ij

hjαj ≡
s∑

j=1

1− (−1)i+j

(i + j)2i+j
hjαj , (61)

0 ≤ i ≤ s−1, and and analogous expression relating B(i) with βi. If this relation is inverted (to order four,
s = 2, and six, s = 3) we get

(r(2)
ij ) ≡ (T (2))−1 =

(
1 0
0 12

)
, (r(3)

ij ) =




9
4 0 −15
0 12 0
−15 0 180


 (62)
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respectively. If we consider (49)

Ãi =
s∑

n=1

a
(n)
i hnαn =

s∑
n=1

a
(n)
i

s∑

j=1

r
(s)
nj A(j−1)

B̃i =
s∑

n=1

b
(n)
i hnαn =

s∑
n=1

b
(n)
i

s∑

j=1

r
(s)
nj B(j−1), (63)

and compare with (58) then

a[j]
i =

s∑
n=1

a
(n)
i r

(s)
n,j+1, b[j]

i =
s∑

n=1

b
(n)
i r

(s)
n,j+1. (64)

From this analysis, we proceed as follows. We first compute the coefficients ai, bi by applying the
procedure shown before for the autonomous case. Then, we take a

(1)
i = ai, b

(1)
i = bi and then we get the

coefficients a
(k)
i , b

(k)
i , k > 1.

In this work we have considered symmetric methods of order six. For the autonomous case the schemes
have necessarily m ≥ 5 stages. In consequence, we have analyzed compositions with m = 5, 7, 9, 11 which
corresponds to take n = 3 and l = 0, 1, 2, 3 in section 3.1.. In each case we have taken the optimal choices
according to the criterion considered before.

Table 1. Coefficients a
(j)
i , b

(j)
i for the 11-stage sixth-order method with n = 3, l = 3. The scheme

is written as an ABA time-reversible composition. The corresponding coefficients a[j]
i , b[j]

i can be
obtained from (64) for s = 3, and then using the coefficients from r

(3)
i,j given in (62).

S116

a
(1)
1 = 0.0464874547908631308653061869817 b

(1)
1 = 0.184330483502665563472197717881

a
(1)
2 = −0.0606916711656429353091325494096 b

(1)
2 = −0.0410569032977114623747767490040

a
(1)
3 = 0.218466526463406810473052519699 b

(1)
3 = 0.133755679666750330706128392342

a
(1)
4 = 0.168053579483092703041517425135 b

(1)
4 = 0.203764547132354738209957028584

a
(1)
5 = 0.314392364170353486741817155744 b

(1)
5 = −0.0117601669149600437224452179216

a
(1)
6 = 1

2
− (a

(1)
1 + · · ·+ a

(1)
5 ) b

(1)
6 = 1− 2(b

(1)
1 + · · ·+ b

(1)
5 )

a
(1)
13−i = a

(1)
i , i = 1, . . . , 6 b

(1)
12−i = b

(1)
i , i = 1, . . . , 5

a
(2)
1 = 0.021932662014222435543552799908 a

(3)
1 = 0.010774353196216145701968912508

b
(2)
1 = 0.076265342985813349737917161509 b

(3)
1 = 0.030142125018327940937414989541

a
(2)
2 = −0.020398565920802831959213582992 a

(3)
2 = −0.005427130288899774421764282115

b
(2)
2 = −0.012596890479914684316312760274 b

(3)
2 = −0.004372117757445952771769239956

a
(2)
3 = 0.082852466619572947024295608947 a

(3)
3 = 0.029554036305343044582330966298

b
(2)
3 = 0.027320232738183409571021354736 b

(3)
3 = 0.013314214993014633059427728923

a
(2)
4 = 0.033874531967335174405681619187 a

(3)
4 = 0.006765407454007250804131069975

b
(2)
4 = 0.057518598444719069538561641736 b

(3)
4 = 0.002582444412770045441593188157

a
(2)
5 = −0.002750880801534023845247809420 a

(3)
5 = 0

b
(2)
5 = 1/100 b

(3)
5 = 0

a
(2)
6 = 0.002702345260889928730160405903 a

(3)
6 = 0

b
(2)
6 = 0 b

(3)
6 = 0

a
(2)
6+i = −a

(2)
7−i a

(3)
6+i = a

(3)
7−i

b
(2)
6+i = −b

(2)
6−i b

(3)
6+i = b

(3)
6−i, i = 1, . . . , 6

On the other hand, getting sixth-order methods for the non-autonomous case requires to solve a system
of 10 nonlinear equations in the variables a

(2)
i , b

(2)
i and an additional linear system of 8 equations to be

12
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solved in a
(3)
i , b

(3)
i , with the symmetry (53). To obtain real solutions for these equations it was necessary to

consider methods with at least 11 stages. Among all solutions obtained, we selected the set of coefficients
which minimized the sum of the absolute values of the coefficients.

In Table 1 we collect the coefficients for the method which shows in practice the best performance. The
corresponding coefficients a[j]

i , b[j]
i can be obtained from (64) for s = 3, and then using the coefficients

from (r(3)
i,j ) given in (62).

4. Numerical examples
Our purpose in this section is to illustrate the performance of the new specially adapted 11-stage sixth-
order (SM116) splitting methods for partitioned non-autonomous linear systems. To do so, we carry out
some comparison with some other well established general purpose geometric schemes. Given a basic
symmetric second order method, these schemes are built by a symmetric composition of this basic method
with fractional steps. The algorithms considered are the following: the 9-stage sixth-order (S96), the 17-
stage eighth-order (S178), and the 35-stage tenth-order (S3510) methods whose coefficients are collected,
for instance, in [11, chapter V]. As basic second order scheme we take the well known leapfrog composition:
ψ[2]h ≡ ϕ

[B]
h/2 ◦ ϕ

[A]
h ◦ ϕ

[B]
h/2. The explicit time dependence is treated by taking the time as two new

coordinates as shown in (25).
Since the main interest of this family of methods lies in the numerical integration of differential equa-

tions originated from space discretizations of PDEs, the computational cost of the methods is measured by
the number of stages required. The integrals (31) appearing in the new scheme are approximated by the
sixth-order Gauss-Legendre quadrature rule, as indicated in (58) and (60). Notice that using this quadrature
rule only three evaluations for the time dependent functions are required per step, whereas 11 is the number
used to count the cost of the algorithm.

Perturbed Harmonic Oscillators. We first consider as a simple test bench problem the Mathieu equa-
tion,

q′′ + (ω2 + ε cos(t))q = 0,

with q ∈ R, which corresponds to a time dependent linear harmonic oscillator with Hamiltonian

H =
1
2
p2 +

1
2
(ω2 + ε cos(t))q2.

We take as initial condition q(0) = 1, p(0) = 1, integrate up to t = 200 π/ω and measure the average error
in phase space (at t = 2π/ω, 4π/ω, . . . , 200π/ω) in terms of the number of force evaluations for different
time steps (in logarithmic scale). We compare the relative error for ω = 3/2 and ω = 5, and in each case
for ε = 1/40 and ε = 1/4. The superiority of the new scheme is manifest for all accuracies of practical
interest. We can also observe that this superiority is more relevant when the dominant contribution from the
Hamiltonian originates from the constant part, since the new scheme is built to be highly efficient for small
perturbations of the autonomous harmonic oscillator.

The Schrödinger equation. Let us now consider the one-dimensional Schrödinger equation (in units
where ~ = 1)

i
∂

∂t
ψ(x, t) =

(
− 1

2µ

∂2

∂x2
+ V (x) + f(t)x

)
ψ(x, t), (65)

with ψ(x, 0) = ψ0(x). We take the Morse potential V (x) = D (1− e−αx)2 in a laser field described by
f(t)x = A cos(ωt)x. It corresponds to the Walker–Preston model of a diatomic molecule in a strong laser
field [20]. This problem is used as a test bench for the numerical methods presented in [10] and [19] and
the same values for the parameters are taken (in atomic units): µ = 1745 a.u., D = 0.2251 a.u. and α =

13
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Figure 1. Average error in phase space (at t = 2π/ω, 4π/ω, . . . , 100π/ω) vs. the number of force
evaluations for different time steps (in logarithmic scale) for the Mathieu equation for different
values of ω and ε.

1.1741 a.u. (corresponding to the HF molecule), A = 0.011025 a.u. and laser frequency w = 0.01787.
We assume that the system is defined in the interval x ∈ [−0.8, 4.32], which is split into N = 64 parts of
length ∆x = 0.08, and impose periodic boundary conditions.

After space discretization, eq. (65) leads to the complex linear equation (12) with u ∈ CN and uk(t) =
ψ(xk, t)(∆x)1/2, k = 0, 1, . . . , N−1. Here xk = x0 +k∆x and H(t) = T + V̂ (t) is an Hermitian matrix
(real and symmetric). As initial conditions we take the ground state of the Morse potential,

φ(x) = σ exp
(− (γ − 1/2)α x

)
exp

(− γe−αx
)
,

with γ = 2D/w0, w0 = α
√

2D/µ and σ is a normalizing constant.

Notice that V̂ (t) is a diagonal matrix with elements V̂jj = V (xj)+f(t)xj , and Tq, Tp can be efficiently
computed using FFTs [1, 9]. Notice also that in (33) we now have

HA
i = h

∫ 1/2

−1/2

pa
i (τ)H(t1/2 + hτ) dτ = ha

(1)
i T + ha

(1)
i V + hXFa(t, h) (66)

14



Splitting methods for non-autonomous systems

and

HB
i = h

∫ 1/2

−1/2

pb
i (τ)H(t1/2 + hτ) dτ = hb

(1)
i T + hb

(1)
i V + hXFb(t, h), (67)

where Fa/b(t, h) = h
∫ 1/2

−1/2
p

a/b
i (τ) f(t1/2 + hτ) dτ . Here X is a diagonal matrix with diagonal elements

Xjj = xj . The products Hiq and Hip only require one FFT and its inverse and thus an m-stage method
requires 4m FFTs per step. The split (25) used for the general purpose methods Smp was already proposed
in [19], showing a clear improvement with respect to the second order Magnus integrator (combined with a
third order splitting scheme) given in [10].

First, we integrate the system in the time interval t ∈ [0, 2τ ] with τ = 2π/ω. The exact solution,
uex(2τ), at the final time is obtained numerically using a sufficiently small time step. We measure the error
in the wave function, ‖uex(2τ) − u(2τ)‖ versus the number of FFTs required for each method, and this
is repeated for different values of the time step, starting with a very small time step and increasing it until
reaching a time step close to the stability limit of the method (an overflow appears if the time step is slightly
increased). We repeated the same experiment taking a larger time integration, t ∈ [0, 200τ ].

Figure 2 shows the efficiency plots for the methods. The superiority of the new splitting method is
manifest both with respect to efficiency and the stability limit. In addition, we observe that this superiority
increases when taking a longer time integration. This constitutes indeed an interesting property of the new
methods which is currently under investigation [5].
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Figure 2. Error in the wave function versus the number of FFTs for the one-dimensional
Schrödinger equation (65) written in the form (13) after space discretization: (a) for the time
integration t ∈ [0, 2τ ], and (b) for t ∈ [0, 200τ ] with τ = 2π/ω.
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