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Abstract

In this paper we deal with the polyhedral description and the resolution of the Directed
General Routing Problem (DGRP) and the Stacker Crane Problem (SCP). The DGRP,
in which the service activity occurs both at some of the nodes and at some of the arcs
of a directed graph, contains a large number of important arc and node routing problems
as special cases, including the SCP. Here, large families of facet defining inequalities are
described. Furthermore, a branch-and-cut algorithm for these problems is presented.
Extensive computational experiments over different sets of DGRP and SCP instances are
included. These results prove that our algorithm is among the best solution procedures
proposed for both problems.

Key Words: Directed Rural Postman Problem, Directed General Routing Problem, Stacker
Crane Problem, branch-and-cut algorithm.

1 Introduction

The Stacker Crane Problem (SCP) basically consists of finding a tour that starts and ends at a
given vertex and traverses a set of arcs of a mixed graph with minimum cost. Its name refers
to the practical problem of operating a crane. The crane must start from an initial position,
perform a set of movements, and return to the initial position. The objective is to schedule the
movements of the crane so as to minimize the total tour cost. This problem can be considered
an arc routing problem, particularly a special case of the Directed Rural Postman Problem, a
Pickup and Delivery Problem, or a special case of the Asymmetric Traveling Salesman Problem
(ATSP).

The SCP was proposed by Frederickson, Hecht, and Kim [11], who distinguished three ver-
sions of the stacker crane problem by specifying where the crane terminates. For the first version,
the crane must return to the depot. For the second one, the crane stops at a particular vertex,
not necessarily the depot, while for the third one the crane is allowed to finish at any vertex.

In this paper we will refer to the first version of the SCP, which can be defined as an arc
routing problem on a mixed graph G = (V,E,A), where V is the set of vertices, E the set
of edges, and A the set of arcs. Each link (arc or edge) of the graph has an associated non-
negative cost. The goal is to find a minimum cost tour, starting and finishing at the depot,
which traverses all the arcs in A.
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Frederickson, Hecht, and Kim ([11], [12]) showed that the SCP is NP -hard, by proving that
any instance of the Traveling Salesman Problem (TSP) can be transformed into an SCP one.
They also developed a heuristic algorithm with a worst-case performance ratio of 9/5 and O(n3)
complexity. This procedure needs the graph G to satisfy that each vertex is either the head or
the tail of exactly one arc in A, that the cost of an arc between two vertices is not less than the
cost of an edge between them, and that edge costs satisfy the triangle inequality.

Berbeglia et al. [1] presented the SCP as a pickup and delivery problem with a unit capacity
vehicle. This is an important class of vehicle routing problems in which commodities or people
have to be transported from origins to destinations. They have been the object of study in recent
years because of their many applications in logistics, ambulatory services, and robotics. Eiselt,
Gendreau, and Laporte [10] presented a survey on the RPP and devoted a section to the SCP.
Zhang [20] proposed a simplification of the algorithm in [12] with a worst-case ratio of 2 and
O(n2) complexity. Zhang and Zheng [21] and Laporte [15] solved the SCP as an Asymmetric
Traveling Salesman Problem (ATSP). Hassin and Khuller [13] proposed a 1

2 z-approximation
algorithm for the ATSP and used it to solve the SCP. Recently, Srour and Velde [19] studied the
difficulty of the SCP presenting an statistical study comparing the difficulty of the resolution of
SCP instances with that of general ATSP instances.

As it will be seen later, the SCP is a special case of the Directed General Routing Problem
(DGRP), a problem in which the service activity occurs both at some of the vertices and some
of the arcs of a directed graph. More formally, let G = (V,A) be a directed graph and consider
a subset of vertices VR ⊆ V and a subset of arcs AR ⊆ A. The DGRP consists of finding
a minimum cost tour visiting all the vertices in VR and traversing all the arcs in AR. Blais
and Laporte [2] transformed the DGRP into an equivalent ATSP and solved it by using the
exact algorithm proposed by Carpaneto, Dell’Amico, and Toth [4]. With this procedure, Blais
and Laporte were able to solve very large DGRP instances to optimality. Although there is no
previous work addressing the DGRP directly as an arc routing problem, several papers have
been devoted to the study and resolution of the General Routing Problem defined on a mixed
graph (MGRP). Particularly, in Corberán, Romero, and Sanchis [9] and Corberán, Mej́ıa, and
Sanchis [7], a formulation of the problem and a partial description of its associated polyhedron
was presented. Furthermore, the authors proposed a cutting-plane algorithm producing good
computational results. Most of the results presented there can be directly applied to the DGRP
by considering E = ∅. Two early works on the Directed Rural Postman Problem (DRPP),
which can be considered as a special case of the DGRP when VR = ∅ are those by Savall [17]
and Campos and Savall [3]. In the first work, a preliminary polyhedral study of the DRPP
is proposed, as well as several heuristic algorithms for its resolution that were improved and
published later in [3].

In all the papers above, it is assumed, without loss of generality, that the original graph
G has been transformed to satisfy that V = VR. This is not a serious restriction as there is a
simple way to transform arc routing instances which do not satisfy the assumption into instances
which do (see, for instance, Christofides et al. [5] or Eiselt, Gendreau, and Laporte [10]. Such a
transformation, which eliminates the non-required vertices, makes easier both the formulation
of the problem and the implementation of the algorithms, but sometimes the transformed graph
could have many more arcs than the original one, making the problem harder to solve. In this
paper, we study the SCP and the DGRP defined on the original graph, in which condition
V = VR does not need to be satisfied. We present a formulation for the DGRP, study its
associated polyhedron, and implement a branch-and-cut algorithm that is able to solve large-
sized DGRP and SCP instances to optimality.

More precisely, in Section 2 both problems are defined and modeled, and some notation is
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introduced. Section 3 is devoted to the polyhedral study of the DGRP, where different families
of valid and facet-inducing inequalities are described. The branch-and-cut algorithm and the
computational results obtained on different sets of SCP and DGRP instances are presented in
Section 4.

2 Problems definition and notation

Consider a mixed graph G = (V,E,A) with set of vertices V , set of edges E, and set of arcs A.
Let 1 ∈ V be the depot. Associated with each arc and edge (i, j) there is a nonnegative cost
cij . The Stacker Crane Problem consists of finding a closed walk starting and finishing at the
depot, traversing each arc in A, and such that the cost of the tour is minimum.

In general, the graph induced by A and the depot is a disconnected graph. We will call p to
the number of its connected components, V1, . . . , Vp will denote the corresponding vertex sets
(called R-sets), and VR = V1 ∪ ... ∪ Vp the set of required vertices, that is, the set of vertices
that are incident with arcs plus the depot. Note that, if the depot is not incident with any arc,
one of these R-sets will consists of just the depot. Hence, we have a strongly connected mixed
graph G = (V,A,E) := (VR ∪ VNR, A,E), where VNR = V \ VR. For any vertex i ∈ V , d+(i)
and d−(i) represent the number of arcs leaving and entering i, respectively. Given a subset of
vertices S ⊂ V , we define δ(S) = {(i, j) ∈ E : i ∈ S, j ∈ V \ S}. For simplicity, we will use
δ(i) instead of δ({i}).

A closed walk starting and ending at the depot v1 that traverses exactly once each arc in A
is called a tour for the SCP. Similarly, a semitour for the SCP is the subset of edges obtained
after removing the arcs from a given tour for the SCP. Given that the traversal of the arcs is
common to all the solutions, we can formulate the SCP in terms of the semitours. For each edge
e = (i, j), let xij and xji be the number of times edge e is traversed from i to j and from j to i,
respectively. The SCP can be formulated as

Minimize
∑

(i,j)∈E

cij(xij + xji) (1)

∑
(i,j)∈δ(i)

(xij − xji) = d−(i)− d+(i), ∀i ∈ V (2)

∑
i∈S, j /∈S

xij ≥ 1, ∀S =
(∪
k∈Q

Vk

)
∪W, Q ( {1, . . . , p}, W ⊆ VNR (3)

xij , xji ≥ 0 and integer, ∀(i, j) ∈ E (4)

Constraints (2) are the symmetry conditions on the vertices. Given that the R-sets are
connected subgraphs, constraints (3) force the solution to be connected. Vectors x ∈ R2|E|

satisfying (2) to (4) correspond to the semitours for the SCP, guaranteeing that, after adding
the arcs in A, the graph obtained will be symmetric and strongly connected and, hence, an
Eulerian graph.

Using two variables for each edge, representing the number of times it is traversed in each
direction, is equivalent to transforming each edge into two opposite arcs with the same cost.
Hence, the SCP is a special case of the Directed General Routing Problem, DGRP. In what
follows, we will study the more general problem.

As mentioned before, given a directed graph G = (V,A), a set of required vertices VR ⊆ V
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and a set of required arcs AR ⊆ A, the DGRP consists of finding a minimum cost tour visiting all
the required vertices and traversing all the required arcs. In the DGRP, it is helpful to assume,
without loss of generality, that the vertices incident to any required arc are also in VR. Hence,
we have a strongly connected graph G = (V,A) := (VR ∪VNR, AR ∪ANR), where VNR = V \VR

and ANR = A \AR.

The graph induced by VR and AR is in general a disconnected graph. As with the SCP, we will
call p to the number of its connected components and V1, . . . , Vp will denote the corresponding
vertex sets, where V1 ∪ ... ∪ Vp = VR. Note that, some of these R-sets can consist of just
one single vertex. For any vertex i ∈ V , d+R(i) and d−R(i) represent the number of required
arcs leaving and entering i, respectively. Given two subsets of vertices S1, S2 ⊂ V , we define
A(S1 : S2) = {(i, j) ∈ A : i ∈ S1, j ∈ S2} and (S1 : S2) = A(S1 : S2) ∪ A(S2 : S1). Given
S ⊂ V , δ+(S) = A(S : V \ S), δ−(S) = A(V \ S : S), and A(S) = {(i, j) ∈ A : i ∈ S, j ∈ S}.
Subsets AR(S1 : S2), (S1 : S2)R, etc, and ANR(S1 : S2), (S1 : S2)NR, etc, refer to the required
and non-required arcs, respectively, of the above defined subsets.

If we define variables xij as the number of times that arc (i, j) is traversed in deadheading
by the solution, the DGRP can be formulated, in terms of semitours, as

Minimize
∑

(i,j)∈A

cijxij (5)

x(δ+(i))− x(δ−(i)) = d−R(i)− d+R(i), ∀i ∈ V (6)

x(δ+(S)) ≥ 1, ∀S =
(∪
k∈Q

Vk

)
∪W, Q ( {1, . . . , p}, W ⊆ VNR (7)

xij ≥ 0, ∀(i, j) ∈ A (8)

xij integer, ∀(i, j) ∈ A (9)

where given a subset F ⊆ A, x(F ) =
∑

(i,j)∈A xij . Conditions (6) are the symmetry equations
and conditions (7) are the connectivity inequalities. Note that any |V |−1 of the equations in
(6) are linearly independent.

3 DGRP Polyhedron

Let DGRP(G) be the convex hull of all the semitours x ∈ Z|A| satisfying (6) to (9). With a
similar proof to that in Corberán, Romero, and Sanchis [9] for the MGRP, it can be seen that
DGRP(G) is an unbounded polyhedron of dimension |A| − |V |+ 1 if G is a strongly connected
graph, and that the trivial inequalities xij ≥ 0 are facet-inducing ∀(i, j) ∈ A such that G\{(i, j)}
is strongly connected.

All other facet-inducing inequalities for the DGRP(G) are configuration inequalities (Naddef
and Rinaldi [16]). A configuration C on G is a pair (B, c), where B = {B1, B2, . . . , Br} is a
partition of V and c is a real function defined on B ×B satisfying that every subgraph G(Bi) is
strongly connected and there is no closed cycle Bp, Bq, . . . , Bm, Bp with total c-cost negative.

Associated with a configuration, there is a configuration graph, GC . This graph has node set
B, of which those with Bp ∩ VR ̸= ∅ are considered required nodes, a required arc (Bi, Bj) for
each required arc (u, v) of G with u ∈ Bi, v ∈ Bj , and a non-required arc (Bi, Bj) for each pair
Bi, Bj such that ANR(Bi : Bj) ̸= ∅. In other words, GC is the graph resulting after shrinking
node sets Bi, i = 1, . . . , r, into a single vertex each, and shrinking each set of non-required
parallel arcs into one single arc, but keeping all the required arcs.
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A configuration C defines a configuration inequality,
∑

(i,j)∈A cijxij ≥ c0, where:

• cij = 0 for every (i, j) ∈ A(Bq), q = 1, . . . , r

• cij = c(Bp, Bq) for every arc (i, j) ∈ A(Bp : Bq)

• c0 is the c-length of the shortest semitour for the DGRP on GC (and on G).

Like in Corberán, Romero, and Sanchis [9], it can be proved that all facet-inducing in-
equalities for DGRP(G), except those equivalent to trivial ones, are configuration inequalities.
Note that a configuration C on G can also be considered a configuration on the shrunk graph
GC = (B,AC) and therefore defines also an inequality on this graph:∑

(i,j)∈AC

c(Bi, Bj)xij ≥ c0,

where xij denotes the number of times arc (Bi, Bj) is traversed.

Note 1 Any semitour x for the DGRP in G can be shrunk into a semitour xC for the DGRP in
GC with the same c-cost. Moreover, since subgraphs G(Bi) are strongly connected, any semitour
xC for the DGRP in GC can be extended to a semitour x for the DGRP in G, also with the same
c-cost. Therefore, if the configuration inequality is valid for DGRP(GC), it will also be valid
for DGRP(G). Furthermore, the following ‘lifting’ theorem states that a given configuration
inequality which is facet-inducing for DGRP(GC) is also facet-inducing for DGRP(G).

Theorem 1 Let G be a directed graph and let C be a configuration on G. The associated
configuration inequality is facet-inducing for DGRP(G) if the configuration inequality associated
with C on graph GC is facet-inducing for DGRP(GC).

Proof: The proof is similar to the one in [9] and is omitted here for the sake of brevity. �

In what follows, we will prove that the connectivity inequalities and other families are facet-
inducing for DGRP(G).

Theorem 2 : Inequalities (7), x(δ+(S)) ≥ 1, ∀S =
( ∪
k∈Q

Vk

)
∪W, Q ( {1, . . . , p}, W ⊆ VNR,

are facet-inducing for DGRP(G) if graphs G(S) and G(V \ S) are strongly connected.

Proof: The configuration graph GC has only two nodes, say B1 and B2, corresponding to S
and to V \ S, respectively (both of them required) and a pair of opposite non-required arcs.
Therefore, dim(DGRP(GC))= 2− 2+ 1 = 1 and, since the semitour xB1B2 = xB2B1 = 1 satisfies
x(δ+(S)) = xB1B2 = 1, the inequality is facet-inducing for DGRP(GC) and, therefore, is also
facet-inducing for DGRP(G). �

K-C inequalities

A K-C configuration (see Figure 1) is defined by an integer K ≥ 3, a partition of V into K+1
subsets {M0,M1, . . . ,MK} such that each R-set Vi, 1 ≤ i ≤ p , is contained in exactly one of the
node sets M0∪MK ,M1, . . . ,MK−1, each node set M0∪MK ,M1, . . . ,MK−1 contains at least one
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Figure 1: K-C configuration.

R-set, the induced subgraphs G(Mi), i = 0, 1, . . . ,K, are strongly connected, and (M0 : MK)
contains a positive number of required arcs, such that |AR(M0 : MK)| = |AR(MK : M0)| and
by the cost functions defined as c(M0,MK) = c(MK ,M0) = K − 2 and c(Mi,Mj) = |i − j|,
∀i, j : {i, j} ̸= {0,K}. The partition B = {M0,M1, . . . ,MK} and the above costs define the
configuration graph GC whose skeleton is shown in Figure 1. Arcs (Mi,Mj) not represented in
Figure 1 have a cost equal to the length of the shortest path from Mi to Mj using arcs in the
skeleton. The associated K-C inequality is

(K−2) x
(
(M0 : MK)

)
+

∑
0 ≤ i < j ≤ K
(i, j) ̸= (0,K)

| i−j | x
(
(Mi : Mj)

)
≥ 2(K−1). (10)

Theorem 3 K-C inequalities (10) are valid and facet-inducing for DGRP(G).

Proof: Since all the nodes in the K-C configuration graph GC are required, it is a special
case of the K-C configuration graph for the MGRP presented in [9]. Hence, the corresponding
K-C inequality is valid and facet-inducing for DGRP(GC) and, from Note 1 and Theorem 1, it
follows that it is also valid and facet-inducing for DGRP(G). �

Honeycomb inequalities

Honeycomb inequalities are a generalization of K-C inequalities. In a K-C configuration (see
figure 1), a R-connected component (or a cluster of R-connected components) is divided into
two parts (M0 and MK). In this section we generalize this configuration simultaneously both in
the number of parts a R-connected component is divided into and in the number of R-connected
components we divide.

Consider a partition of the set of vertices V intoK vertex sets {M1, . . . ,ML, ML+1, . . . ,MK},
3 ≤ K ≤ p, 1 ≤ L ≤ K, in such a way that each R-set Vj is contained in exactly one Mi,
each node set Mi contains at least one R-set, and the induced subgraphs G(Mi) are strongly
connected. Suppose we can now partition each set Mi, i = 1, . . . , L, into γi ≥ 2 subsets,
Mi = B1

i ∪ . . . ∪Bγi
i , satisfying the following conditions:

H1) Each Bj
i contains an even number of R-odd nodes, j = 1, 2, . . . , γi.

H2) The induced subgraphs G(Bj
i ), j = 1, 2, . . . , γi, are strongly connected.
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H3) The graph with node set B1
i , . . . , B

γi
i and having an arc (Bj

i , B
k
i ) for each required arc

a ∈ AR(B
j
i : Bk

i ), is symmetric and connected.

For notational convenience, we denote B0
i = Mi, i = L + 1, . . . ,K. We have therefore the

following partition of V :

B = {B1
1 , . . . , B

γ1
1 , . . . , B1

L, . . . , B
γL
L , B0

L+1, . . . , B
0
K}

This partition B defines a configuration graph GC = (B,A) with a set of nodes B and a set of arcs
A formed by a required arc (Bi

r, B
j
q) for each required arc a ∈ AR(B

i
r : B

j
q) and a non-required

arc (Bi
r, B

j
q) between each couple of nodes Bi

r, Bj
q such that ANR(B

i
r : B

j
q) ̸= ∅.

Let us suppose that there is a set T of pairs of opposite non-required arcs in GC joining
nodes corresponding to different Mj , j = 1, . . .K, such that the undirected graph with node

set B and having an edge (Bj
i , B

q
p) for each pair of opposite arcs (Bj

i , B
q
p), (B

q
p, B

j
i ) in T , is a

spanning tree. Then, for each pair of nodes Bj
i , B

q
p in B, d(Bj

i , B
q
p) will denote the number of

arcs in the unique path in (B, T ) from Bj
i to Bq

p. We will assume that the following condition is
also satisfied:

H4) d(Bj
i , B

q
i ) ≥ 3 ∀ i = 1, . . . , L and ∀ j ̸= q.

The graph (B, T ) defines the skeleton of the configuration (see Figure 2, where the arcs in
T are represented in thin lines and the required arcs in bold lines). We assume that

H5) the undirected graph (M̄, TM̄), with node set M̄ = {M1, . . . ,ML, ML+1, . . . ,MK} and
having an edge (Mi,Mj) for each pair of opposite arcs (Bp

i , B
q
j ), (B

q
j , B

p
i ) in T is 2-connected,

and

H6) the indegree and outdegree of every node Bi
q, i ̸= 0, in (B, T ) is equal to 1.
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Figure 2: Honeycomb Configuration

We define the configuration costs on the arcs of (B,A) as follows.

• For the arcs (Bi
q, B

j
q): c(Bi

q, B
j
q) = d(Bi

q, B
j
q)− 2.

• For the arcs (Bi
r, B

j
q), r ̸= q: c(Bi

q, B
j
q) = d(Bi

q, B
j
q).

The Honeycomb inequality corresponding to this configuration is defined by∑
(i,j)∈A

cijxij ≥ 2(K−1). (11)
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Theorem 4 Honeycomb inequalities (11) are valid and facet-inducing for DGRP(G).

Proof: Since all the nodes in the Honeycomb configuration graph GC are required, it is a
special case of the Honeycomb configuration graph for the MGRP presented in [7]. Hence, the
corresponding Honeycomb inequality is valid and facet-inducing for DGRP(GC) and, from Note
1 and Theorem 1, it follows that it is also valid and facet-inducing for DGRP(G). �

Path-Bridge inequalities

Like Honeycomb inequalities, Path-Bridge inequalities are also a generalization of K-C in-
equalities. However, the generalization is in a different direction and neither class contains the
other.

A Path-Bridge configuration (Figure 3a) is defined by two integers P (the number of paths)
and B (the arcs in the bridge) with P ≥ 1, B ≥ 0, P + B ≥ 3 and odd, by ni ≥ 2 integers,
i = 1, . . . , P , and a partition of V into subsets {M0,MZ ,M

i
j : i = 1, . . . P, j = 1, . . . ni}. The

partition must satisfy that

• each R-set Vi is contained in exactly one of the node sets M0∪MZ , M i
j , i = 1, . . . P, j =

1, . . . ni (i.e., each required arc either lies in some A(M i
j) or crosses from M0 to MZ),

• each node set M0∪MZ , M i
j , i = 1, . . . P, j = 1, . . . ni contains at least one R-set,

• the induced subgraphs G(M i
j), i = 0, 1, . . . , P, j = 1, . . . ni + 1, are strongly connected

(where, for convenience, for all i we identify M i
0 with M0 and M i

ni+1 with MZ),

• (M0 : MZ) contains a number B of required arcs and |AR(M0 : MZ)| = |AR(MZ : M0)|.
Note that this implies that B is even and P is odd (this condition is not necessary for the
MGRP), and

• sets A(M i
j : M

i
j+1) and A(M i

j+1 : M
i
j), i = 1, . . . , P , j = 0, 1, . . . , ni, are nonempty.

The associated costs are defined as

c(M0,MZ) = c(MZ ,M0) = 1

c(M i
j ,M

i
q) =

|j − q|
ni − 1

, ∀j, q ∈ {0, 1, . . . , ni + 1}, 0 < |j − q| < ni + 1

c(M i
j ,M

r
q ) =

1

ni − 1
+

1

nr − 1
+

∣∣∣∣ j − 1

ni − 1
− q − 1

nr − 1

∣∣∣∣,
∀i, r ∈ {1, . . . , P}, i ̸= r, j ∈ {1, . . . , ni}, q ∈ {1, . . . , nr}

The partition {M0,MZ ,M
i
j : i = 1, . . . P, j = 1, . . . ni} and the costs c define the configuration

graph GC whose skeleton is showed in Figure 3a. It has P paths from M0 to MZ , each of them
with ni+2 nodes and ni+1 pairs of opposite arcs. Arcs (M i

j ,M
i
q), not represented in Figure 3a,

have a cost equal to the length of the shortest path from M i
j to M i

q using arcs in the skeleton.

The Path-Bridge inequality corresponding to this configuration is defined by∑
(i,j)∈A

cijxij ≥ 1 +

P∑
i=1

ni + 1

ni − 1
. (12)

Note that when P = 1, the PB configuration becomes a K-C configuration.
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Figure 3: Path-Bridge and Asymmetric 2-Path-Bridge configurations.

Theorem 5 Path-Bridge inequalities (12) are valid and facet-inducing for DGRP(G).

Proof: The proof is similar to the one in Theorem 3 and is omitted here for the sake of brevity. �

There are other families of inequalities for the MGRP, the K-C02, PB02 and Honeycomb02
inequalities, which are also facet-inducing. It can be seen that these families of inequalities are
not facet-inducing for DGRP(G) because they are dominated by the above described (standard)
K-C, PB, and Honeycomb inequalities.

New Asymmetric 2-Path-Bridge inequalities

As said above, Path-Bridge inequalities for the DGRP need that condition |AR(M0 : MZ)| =
|AR(MZ : M0)| holds and, therefore, P (the number of paths between MA and MZ) has to be
odd. In this section we present a related family of valid inequalities for the DGRP in which
P = 2.

An Asymmetric 2-Path-Bridge configuration (see Figure 3b) is defined by an odd integer B,
n1, n2 ≥ 2 integers, and a partition of V into subsets {M0,MZ ,M

1
1 , . . . ,M

1
n1
,M2

1 , . . . ,M
2
n2
}. As

for the (standard) Path-Bridge inequalities, the partition must satisfy that

• each R-set Vi is contained in exactly one of the node sets M0∪MZ , M i
j ,

• each node set M0∪MZ , M i
j contains at least one R-set,

• the induced subgraphs G(M i
j) are strongly connected (again, we identify M1

0 and M2
0 with

M0 and M1
n1+1 and M2

n2+1 with MZ),
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• sets A(M i
j : M

i
j+1) and A(M i

j+1 : M
i
j) are nonempty, and

• (M0 : MZ) contains B required arcs satisfying |AR(M0 : MZ)| = |AR(MZ : M0)|+ 1.

The associated costs are defined as follows (see Figure 3b). For the arcs in the bridge,
c(M0,MZ) = 0 and c(MZ ,M0) = n1(n2 − 1). For the arcs in path 1, c(M0,M

1
1 ) = n2 − 1 and

c(M1
1 ,M0) = 0, while c(M1

j ,M
1
j+1) = 0 and c(M1

j+1,M
1
j ) = n2 − 1 for all j ≥ 1. For the arcs

in path 2, c(M0,M
2
1 ) = n1 and c(M2

1 ,M0) = 0, while c(M2
j ,M

2
j+1) = 0 and c(M2

j+1,M
2
j ) = n1

for all j ≥ 1. The costs for the arcs joining nodes of the same path is that of the shortest
path between them using arcs in the skeleton. Finally, the costs for the arcs joining nodes on
different paths are obtained by sequential lifting, i.e., these arcs are ordered in an arbitrary way
a1, . . . , ah and, for i = 1 to h, cai is the maximum value such that ai belongs to a semitour of
cost n1(n2 − 1) + n1n2 using only arcs from the skeleton and {a1, . . . , ai}.

The Asymmetric 2-Path-Bridge (A2PB) inequality corresponding to this configuration is
defined by ∑

(i,j)∈A

cijxij ≥ n1(n2 − 1) + n1n2. (13)

Note that in the special case in which n2 = 1, the above inequality is n1x
(
δ+(M2

1 )
)
≥ n1,

which is a connectivity inequality (7).

Theorem 6 Asymmetric 2-Path-Bridge inequalities (13) are valid for DGRP(G).

Proof: It suffices to prove validity in the configuration graph GC . Let F (x) ≥ n1(n2−1)+n1n2

be an A2PB inequality. From the definition of the coefficients of the arcs not in the skeleton
(obtained either as shortest-path lengths or by sequential lifting), it suffices to prove validity for
each semitour x for the DGRP on GC using only arcs in the skeleton.

Let y be a tour for the DGRP of minimum length in the configuration graph GC . Note that,
since all the nodes in the configuration graph are required, y must visit all of them. If y uses
exactly once each required arc in (M0 : MZ) it is easy to see that it has to be similar to one of the
tours depicted in Figure 4, whose corresponding semitours x satisfy F (x) = n1(n2 − 1) + n1n2.
If y traverses in deadheading an arc a ∈ A(MZ : M0) then by replacing a by the arcs in path
1 from MZ to M0 we obtain a tour with the same cost. If y traverses in deadheading an arc
a ∈ A(M0 : MZ) then, given that |AR(M0 : MZ)| = |AR(MZ : M0)| + 1, the traversal of
(M0 : MZ) is unbalanced by two units and both paths 1 and 2 have to be traversed from MZ to
M0, with a cost of n1(n2 − 1) + n1n2. �

Theorem 7 Asymmetric 2-Path-Bridge inequalities (13) are facet-inducing of DGRP(G).

Proof: Again, it suffices to prove the result for the configuration graph GC (see Theorem 1).
Let A′ denote the set of arcs that are not in paths 1 or 2. The dimension of DGRP(GC) is
|A′|+ 2(n1 + 1) + 2(n2 + 1)− (n1 + n2 + 2) + 1 = |A′|+ n1 + n2 + 3 and this is the number of
affinely (or, in this case, linearly) independent semitours satisfying inequality (13) as an equality
we have to find.

It can be seen that, for any arc a in A′, there is a semitour satisfying (13) as an equality and
using arc a once and arcs in the paths 1 and 2. The arcs in path 1, respectively 2, are denoted
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Figure 4: Tours satisfying the A2PB inequality as an equality.

by P1 and P2. In addition, there are n2 + 1 semitours similar to the one depicted in Figure
4(a), n1 + 1 semitours similar to the one depicted in Figure 4(b) and the semitour in Figure
4(c). By expressing these semitours as rows and the arcs as columns, we obtain the matrix in
Figure 5(a), where block E and matrix Dm×m are also shown in Figure 5. Note that matrix E
contains n1 + 1 + n2 + 1 + 1 = n1 + n2 + 3 rows. It can be proved that matrix E is full rank,
which proves the result. �

A′ P1 P2

I *

0 E

E =

P1 P2

Dn1+1 Dn1+1 0 1

0 1 Dn2+1 Dn2+1

0 . . . 0 2 . . . 2 1 . . . 1 0 . . . 0

Dm =


0 1 1 1
1 0 1 1

. . .

1 1 0 1
1 1 1 0


m×m

Figure 5: Matrices appearing in the proof of Theorem 7

Although the A2PB inequality using the coefficients obtained by means of sequential lifting
is facet-inducing for DGRP(G), these coefficients, except for the first arc, are difficult to find in
practice. Therefore, in the separation algorithm we compute the first coefficient and replace the
subsequent ones with the costs of the shortest paths using the arcs in the skeleton and this first
arc. For the first arc (i, j), if i ∈ M1

r and j ∈ M2
k , its coefficient is given by cij = max{n1, (k −

1)(n2−1)+n1(2−r)}. If i ∈ M2
r and j ∈ M1

k , then cij = max{n2−1, (n2−1)(1−k)+n1(r−1)}.

While the inequality obtained with these new coefficients is weaker and may not be facet-
inducing, it is a valid inequality and easier to obtain.
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4 Computational Experience

We present here the computational results obtained on several sets of DGRP and SCP instances
with a branch-and-cut procedure we have implemented based on the polyhedral study presented
before. The algorithm has been coded in C/C++ using the Cplex 12.4 MIP Solver with Concert
Technology 2.9 on a single thread of an Intel Core i7 at 3.4GHz with 16GB RAM. Cplex heuris-
tic algorithms were turned off, while Cplex own cuts are activated in automatic mode. The
optimality gap tolerance was set to zero, and strong branching and the best bound strategies
were selected. Finally, Cplex presolve phase is reapplied at the end of the root node, allowing
for new iterations of the cutting-plane procedure before branching. All the tests were run with
a time limit of one hour.

4.1 The Overall Algorithm

In this section we present a branch-and-cut algorithm that incorporates separation algorithms
for the inequalities described in this paper.

4.1.1 Separation algorithms

In this section we present the separation algorithms that have been used to identify the following
types of inequalities that are violated by the current LP solution at any iteration of the cutting
plane algorithm: connectivity inequalities, K-C inequalities, PB inequalities with 2 paths (2PB),
and A2PB inequalities.

Heuristic and exact separation procedures for connectivity inequalities (7) have been adapted
from those described in [8] in order to work with graphs containing non-required vertices.

In order to separate K-C, 2PB, and A2PB inequalities, we first apply a shrinking procedure to
reduce the size of the support graph, which basically consists of shrinking all the non-required
arcs (i, j) for which xij = 1 or xij ≥ 2. Then, the heuristic procedures for separating K-C
and 2PB inequalities presented in [7] for the Mixed GRP, adapted for the DGRP defined on
graphs containing non required vertices, are applied. While applying the separation procedure
for 2PB inequalities, we also check for possible A2PB violated inequalities whenever we find an
appropriate structure. As previously mentioned, the coefficients of all the arcs joining nodes in
different paths, except for the first one, are given by the length of the shortest path using that
first arc and those in the skeleton. We choose as the first arc the one with the largest value of
x in the solution.

4.1.2 Initial relaxation and cutting-plane algorithm

The initial LP relaxation contains symmetry equations (6), trivial inequalities (8), and a con-
nectivity inequality (7) associated with each R-set.

At each iteration of the cutting plane algorithm the separation procedures are used in the
following specific order and the violated inequalities found are added to the LP relaxation:

1. Heuristic separation algorithms for connectivity inequalities.

2. Exact connectivity separation if the corresponding heuristics have failed to find at least
20 violated inequalities.

12



3. Only at the root node, if no violated connectivity inequalities have been found, heuristic
algorithms for separating K-C, 2PB, and A2PB inequalities.

The cutting-plane procedure is applied at each node of the tree until no new violated inequal-
ities are found or a stopping criterium, called tailing-off, is satisfied. In our implementation, at
the root node the cutting plane stops when the increase in the objective function during the last
20 iterations is less than 0.0001%. At any other node, the cutting plane stops if the increase is
less than 0.005% in the last three iterations or if the gap between the lower bound at that node
and the global lower bound is greater than 3%.

4.2 Instances and computational results

In this section we present the DGRP and SCP instances that we have used to test the perfor-
mance of the proposed branch-and-cut algorithm, as well as the computational results obtained.

4.2.1 DGRP instances

We have generated a set of 36 large DGRP instances trying to imitate real street networks. To
do that, a number |V | of vertices are randomly generated as points in the 1000×1000 square. For
each vertex v, the d shortest edges incident with v are selected and a random direction is assigned
to each edge. Rounded Euclidean distances are taken as the arc costs. Then, an arc is declared
as required with probability p. All the vertices non incident with required arcs are considered
isolated required vertices. Therefore, all these instances satisfy V = VR. An instance is generated
for each set of parameters |V | ∈ {500, 750, 1000}, d ∈ {3, 4, 5, 6} and p ∈ {0.25, 0.5, 0.75}. The
name DG742, for example, means that it is a Directed GRP instance with 750 vertices, d = 4
and p = 0.25. The characteristics and the computational results obtained for the instances with
|V | = 500, 750, and 1000 are shown in tables 1, 2 and 3, respectively.

Name |V | |AR| |ANR| R−sets opt? Gap0 (%) Nodes Time

DG532 500 218 953 286 yes 0.11 3 0.58
DG535 500 443 723 117 yes 0.00 1 0.20
DG537 500 639 529 31 yes 0.00 1 0.14

DG542 500 282 1011 228 yes 0.83 137 22.95
DG545 500 567 712 53 yes 0.00 0 0.11
DG547 500 872 412 6 yes 0.00 0 0.05

DG552 500 317 1072 208 yes 0.00 1 0.23
DG555 500 687 720 21 yes 0.00 0 0.09
DG557 500 959 409 4 yes 0.00 0 0.09

DG562 500 384 1160 146 yes 0.00 0 0.11
DG565 500 804 764 9 yes 0.00 0 0.08
DG567 500 1132 403 1 yes 0.00 0 0.11

Table 1: DGRP instances with |V |=500 and 1166 ≤ |A| ≤ 1535.

In these tables, the column labeled ‘Gap0(%)’ shows the gap obtained at the root node of
the branch-and-cut tree, computed as UB−LB0

UB × 100, where LB0 represents the lower bound
at the end of the root node and UB is the cost of the best solution found. The last two columns
give the number of nodes of the branch-and-cut tree and the computing time in seconds. As
it can be seen, the results obtained in this set of 36 large instances are very good. The gaps

13



obtained at the end of the root node are very tight and all the instances have been solved to
optimality in short computing times.

Name |V | |AR| |ANR| R−sets opt? Gap0 (%) Nodes Time

DG732 750 339 1451 422 yes 0.70 322 36.69
DG735 750 654 1150 179 yes 0.00 2 1.02
DG737 750 1003 785 35 yes 0.00 0 0.27

DG742 750 407 1497 366 yes 0.15 7 1.73
DG745 750 852 1090 82 yes 0.00 1 0.38
DG747 750 1244 642 5 yes 0.00 0 0.11

DG752 750 516 1570 292 yes 0.01 2 0.69
DG755 750 973 1114 51 yes 0.00 0 0.2
DG757 750 1537 557 2 yes 0.00 0 0.16

DG762 750 584 1784 218 yes 0.00 0 0.27
DG765 750 1204 1172 11 yes 0.00 0 0.17
DG767 750 1673 603 4 yes 0.00 0 0.19

Table 2: DGRP instances with |V |=750 and 1788 ≤ |A| ≤ 2376.

As said in the Introduction, Blais and Laporte [2] solve the DGRP by transforming it into
an equivalent ATSP and then solving it by means of the Carpaneto, Dell’Amico, and Toth [4]
exact algorithm. In that way, Blais and Laporte solve very large DGRP instances to optimality
(see Table 4).

In order to test the performance of our algorithm on instances of similar sizes to those solved
by Blais and Laporte, we have generated a set of instances with the same characteristics. As
in [2], we have randomly generated graphs with 5000 vertices and 50000 arcs. To ensure the
feasibility of each instance, we have generated an undirected Hamiltonian cycle over all vertices
and have included the corresponding arcs (in both directions) in the graph. Then, for each
graph, a given number of required vertices and arcs have been randomly selected. The arc costs
have been randomly generated according to a discrete uniform distribution on [10, 110]. The
characteristics of these instances can be seen in Table 4, where |V | and |A| are the number of
vertices and arcs of the graph, |VR| and |AR| give the number of required vertices and arcs,

Name |V | |AR| |ANR| R−sets opt? Gap0 (%) Nodes Time

DG132 1000 464 1930 553 yes 0.89 1890 444.23
DG135 1000 870 1472 246 yes 0.05 3 1.88
DG137 1000 1315 1068 43 yes 0.00 0 0.34

DG142 1000 562 2023 466 yes 0.38 25 6.98
DG145 1000 1133 1469 116 yes 0.00 1 1.13
DG147 1000 1643 908 8 yes 0.00 0 0.22

DG152 1000 657 2197 386 yes 0.02 2 0.72
DG155 1000 1283 1501 52 yes 0.00 0 0.36
DG157 1000 2004 820 4 yes 0.00 0 0.25

DG162 1000 753 2373 306 yes 0.00 0 0.45
DG165 1000 1550 1603 26 yes 0.00 0 0.27
DG167 1000 2349 828 4 yes 0.00 0 0.30

Table 3: DGRP instances with |V |=1000 and 2342 ≤ |A| ≤ 3177.
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Blais & Laporte1 Branch and Cut
|V | |A| |VR| |AR| |VATSP | # opt. Time # opt. Time

5000 50000 1000 1000 2000 5/5 125.6 5/5 31.3
5000 50000 1000 1500 2500 5/5 193.6 5/5 51.8
5000 50000 1000 2000 3000 5/5 280.3 5/5 28.3
5000 50000 1000 2500 3500 4/5 374.9 5/5 21.9
5000 50000 1000 3000 4000 0/5 - 5/5 25.5

5000 50000 1500 1000 2500 5/5 183.1 5/5 37.3
5000 50000 2000 1000 3000 5/5 244.7 5/5 36.7
5000 50000 2500 1000 3500 5/5 314.5 5/5 57.4
5000 50000 3000 1000 4000 4/5 396.8 5/5 50.7

5000 50000 0 3000 3000 5/5 303.0 5/5 12.5
5000 50000 500 2500 3000 5/5 300.0 5/5 19.3
5000 50000 1500 1500 3000 5/5 269.2 5/5 32.5
5000 50000 2500 500 3000 5/5 226.1 5/5 57.8
5000 50000 3000 0 3000 4/5 273.9 5/5 347.2

Table 4: Characteristics of the Blais and Laporte instances and results obtained (1 Sun Ultra
Sparc Station 10 machine).

respectively, and |VATSP | represents the number of vertices of the transformed graph used by
Blais and Laporte. Five instances of each type have been generated.

Originally, we started studying the DGRP and its resolution transforming the graph so that
all the vertices in it were required, as it is common practice in most other arc routing problems.
This implied computing all the shortest paths between the required vertices and adding arcs
representing them. Although, some of these new arcs were redundant and could be removed, the
size of the resulting graphs was so huge, that the procedure was unable to solve even the initial
LP of most of them. Note that the number of variables associated with non-required arcs would
be around nine millions for an instance with |VR|+ |AR| = 3000. This is what motivated us to
study and solve the DGRP working on the original graph, containing required and non-required
vertices.

The results obtained with our modified algorithm on these instances are shown in Table 4,
where they are compared with the results obtained by the transformation procedure by Blais
and Laporte. Although the instances used here are not exactly the same ones as those used in
[2], the characteristics are the same, and we think the results are comparable. Column #opt.
shows the number of instances solved to optimality out of five, and column Time reports the
average computing time. The time reported for the Blais and Laporte procedure includes the
time used to transform the original instance into an ATSP one and the resolution time, which
was limited to five minutes. Note that the results by Blais and Laporte were obtained on a
Sun Ultra Sparc Station 10, which is a considerably slow machine by today’s standards. It can
be seen that our algorithm has been able to solve all the 70 instances to optimality in short
computing times.

4.2.2 SCP instances

Although there have been previous works on the SCP, most of them deal with the problem as a
node routing problem and solve it by transforming the SCP into an ATSP. Therefore, the data
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Figure 6: Drayage instance.

of most of the instances available are in ATSP format, i.e. as a matrix giving the distances
between the vertices representing the jobs (in this context, required arcs are often referred to
as jobs). For this reason we have not been able to test our algorithm on these instances and we
have generated two new sets of SCP instances in arc routing format. These new data instances
are available at http://www.uv.es/corberan/instancias.

The first set of instances have been generated following the procedure described by Srour and
van de Velde [19]. These instances are called “drayage” instances because they try to mimic real-
life problems arising in the context of drayage transport. According to Srour and van de Velde,
these problems are characterized by the fact that “nearly all jobs originate from or are destined
to one of only a few fixed freight terminals” and “have an interesting geometric structure” (see
Figure 6). The drayage instances generator uses the random number/location generators from
the crane generator of Cirasella et al. [6] and Johnson et al. [14]. It selects a set of n points
from a x× x square that will serve as the origins and destinations of n jobs. The first k points
are the origins and the last m points the destinations, where k and m are specified by the user.
Origins and destinations are then matched in a round-robin fashion until all n jobs have been
created. The costs of the arcs are given by Euclidean distances. The code for this generator is
available in [18].

Following the above procedure, we have generated 14 drayage instances with the same char-
acteristics as those described in Table C1 in the paper by Srour and van de Velde [19]. These
characteristics can be seen in Table 5, which also shows the results obtained with our branch-
and-cut algorithm. As it can be seen, all the instances have been solved to optimality in very
short computing times. Note also that the gap obtained at the root node of the branch-and-cut
tree is very small, even zero for many instances, meaning that the problem has been solved by
the cutting-plane procedure.

We have generated a second set of harder SCP instances. Consider a grid graph with x× x
vertices. The vertices of the graph correspond to the points in the plane with integer coordinates,
and two vertices i and j are connected by two arcs, (i, j) and (j, i), whenever the corresponding
points are at distance 1. Note that, unlike the first set of SCP instances, where the graph only

16



Grid size x Jobs n Origins k Dest. m Gap0 (%) # opt. Time

Drayage100 a 100× 100 100 50 75 0.00 5/5 0,1
Drayage100 b 106 × 106 100 100 65 0.07 2/2 1,2
Drayage300 a 500× 500 300 150 200 0.00 5/5 4,4
Drayage300 b 106 × 106 300 300 200 0.002 2/2 45,3

Table 5: Results on drayage instances.

contained vertices incident with required arcs (jobs), here all the vertices of the grid are included
in the graph. A set of n jobs is created by randomly choosing n origins and n destinations. If
the distance between the origin and the destination is greater than a given threshold d, the job is
discarded and a new one is generated. The distance metric used here is the Manhattan distance.

We have generated 50 instances on a grid of size 50 × 50 and 40 on a 100 × 100 grid. The
number of jobs varies from 100 to 3000. Two possible values for the distance threshold d have
been used, namely 5 and 8. Five instances have been generated with each different combination
of parameters x, n, and d. We first tried to solve these instances directly on the original grid
graphs, but the large number of non-required vertices and the fact that all the non-required
arcs have cost 1, made them too difficult, because a huge number of connectivity inequalities is
needed to guarantee the connectivity of the solution. Then we tried transforming the graph by
removing all the non-required vertices and adding non-required arcs representing the shortest
path between jobs. Although the number of such shortest paths is huge, due to the special
structure of these grid graphs and the metric used to obtain the costs of the arcs, many of
these shortest paths are redundant, and thus can be removed from the transformed graph. For
example, in the instances with x = 100 and n = 500, the number of shortest paths is around
250000, while the transformed graph contains around 25000 non-required arcs.

Tables 6 and 7 show the results obtained on these sets of SCP instances. Note that all the
instances with x = 50 have been solved to optimality in very short computing times. Also, 27
out of 40 instances with x = 100 have been solved to optimality within the time limit of one
hour. For those instances that could not be solved optimally, column Gap(%) gives the average
gap between the final lower bound and the best solution found.

Set Jobs d # opt. Gap0 (%) Nodes Time

Grid50 100 5 100 5 5/5 0,45 61 5,0
Grid50 100 8 100 8 5/5 0,10 6 1,4
Grid50 300 5 300 5 5/5 0,05 15,6 12,1
Grid50 300 8 300 8 5/5 0,00 1,8 3,7
Grid50 500 5 500 5 5/5 0,00 1 5,6
Grid50 500 8 500 8 5/5 0,00 0 2,8
Grid50 1000 5 1000 5 5/5 0,00 0 2,2
Grid50 1000 8 1000 8 5/5 0,00 0 2,1
Grid50 2000 5 2000 5 5/5 0,00 0 1,4
Grid50 2000 8 2000 8 5/5 0,00 0 1,6

Table 6: Results on SCP instances on a 50×50 grid graph.

Note that, in general, for a fixed number of jobs, the instances get easier when d takes a
greater value. This can be explained by the different effort needed to guarantee the connectivity
of the solution. Although the number of R-sets of two instances with the same characteristics
but with d = 5 and d = 8 is similar, after solving the initial LP, the number of connected
components induced by the LP solution is much smaller for the instance with d = 8 than for
the one with d = 5. A graphical explanation of this behavior can be seen in Figure 7, where two
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Set Jobs d # opt. Gap0 (%) Gap (%) Nodes Time

Grid100 500 5 500 5 0/5 0,70 0,55 998,2 3600
Grid100 500 8 500 8 3/5 0,11 0,03 438,2 2033,0
Grid100 1000 5 1000 5 0/5 0,32 0,28 325,8 3600
Grid100 1000 8 1000 8 5/5 0,00 0,00 14,2 333,1
Grid100 2000 5 2000 5 4/5 0,01 0,00 76,6 1674,0
Grid100 2000 8 2000 8 5/5 0,00 0,00 0,6 110,2
Grid100 3000 5 3000 5 5/5 0,00 0,00 0 97,7
Grid100 3000 8 3000 8 5/5 0,00 0,00 0 78,1

Table 7: Results on SCP instances on a 100×100 grid graph.

Figure 7: Two SCP instances with 100 jobs in a grid 25×25, d = 3 and d = 8.

SCP instances with 100 jobs in a grid 25 × 25 and different values of d, 3 and 8, are depicted.
The number of R-sets is 74 and 71, respectively, while after solving the initial LP, the number
of connected components of the solution reduces to 17 and 5, respectively. The first instance is
solved to optimality after adding 22 connectivity cuts, while only five are needed for the second
one. The same behavior can be observed when the number of jobs increases. For the SCP
instance in Figure 8, with 500 jobs, the initial number of R-sets is smaller, 41, and the number
of connected components of the first LP solution is one, which makes the instance trivial.

5 Conclusions

In this paper we have addressed the polyhedral description and the resolution of the Directed
General Routing Problem (DGRP) and the Stacker Crane Problem (SCP). Unlike previous
works on related arc routing problems, we have studied the DGRP and SCP on the original
graph, instead of transforming it in order to remove all the non-required vertices. We have
described some large families of facet-defining inequalities and implemented a branch-and-cut
algorithm for these problems. We have carried out extensive computational experiments over
different sets of DGRP and SCP instances. The results show that, while simplifying the graph
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Figure 8: SCP instance with 500 jobs in a grid 25×25, d = 8.

can be useful in some types of instances, there are other situations in which working with the
original graph seems to be the only successful way of solving the problem. Overall, we think
that these results also prove that our algorithm is among the best solution procedures proposed
for both problems.
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