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Abstract In this work, we prove a third and fourth convergence order result for a fam-

ily of iterative methods for solving nonlinear systems in Banach spaces. We analyze the

semilocal convergence by using recurrence relations, given the existence and unique-

ness theorem that established the R-order of the method and the priori error bounds.

Finally, we apply the methods to two examples in order to illustrate the presented

theory.
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1 Introduction

Let us consider the problem of finding a zero of a nonlinear function F : Ω ⊆ X −→ Y ,

on an open convex set Ω of a Banach space X with values in a Banach space Y. Iterative

methods are the most usual procedure to approximate a solution of the problem. The

best known iterative method is the classical Newton’s method, [1], whose semilocal

convergence using recurrence relations was obtained by Kantorovich in [2].

The study of semilocal convergence for an iterative method in Banach spaces is

very interesting because just imposing conditions on the starting point x0, instead of
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Instituto de Matemática Multidisciplinar,
E-mail: jlhueso@mat.upv.es

Eulalia Mart́ınez
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on the solution, important results can be obtained, such as, existence and uniqueness

of the solution, convergence order, a priori error bounds and convergence domains.

These results can be applied to the solution of some practical problems described by

differential equations, partial differential equations and integral equations.

In [3,4], Marquina et al., using recurrence relations, obtain semilocal convergence

results for third order methods such as Chebyshev and Halley’s methods.

This technique has been widely studied by Hernandez et al., [5,6] for establish-

ing the semilocal convergence results simplifying the construction of the recurrence

relations needed. Some variants in this procedure are proposed in [7]-[8]. Recently,

semilocal convergence has been used to establish the R-order of higher order methods,

[9]-[15]. Moreover, this technique is used for finding the domain of convergence under

weaker assumptions [16]-[19].

In [20], the authors introduced a family of third and four order methods for non-

linear systems giving local convergence results. This family becomes very interesting

in terms of efficiency, as it can be seen in the work, because it only uses the first

Frechet-derivative. This is the reason why we want to deepen in its study.

Our aim in this paper is to establish the semilocal convergence for this family of

iterative methods in Banach spaces and to derive the error estimations by constructing

a system of recurrence relations.

In Section 2, we give some preliminary results and define the auxiliary functions.

In Section 3, we construct the recurrence relations in order to establish the semilocal

convergence, what is done in Section 4. Section 5 shows the application of the theoretical

results to a pair of nonlinear systems of different size and Section 6 depicts results of

global convergence in an example system.

2 Preliminary results

Let X, Y be Banach spaces and F : Ω ⊆ X → Y be a nonlinear twice Fréchet

differentiable operator in an open convex domain Ω0 ⊆ Ω. From now on we will

consider the iterative method given in [20], for solving the system F (x) = 0 defined by

yn = xn − aΓnF (xn) (1)

zn = xn − Γn(F (yn) + aF (xn)) (2)

xn+1 = xn − Γn(F (zn) + F (yn) + aF (xn)), (3)

where a ∈ R and Γn = F ′(xn)
−1.

Let x0 ∈ Ω0 such as Γ0 = F ′(x0)
−1 exists and that

∥Γ0∥ ≤ β (4)

∥Γ0F (x0)∥ ≤ η (5)

∥F ′′(x)∥ ≤ M, x ∈ Ω0 (6)

∥F ′′(x)− F ′′(y)∥ ≤ K∥x− y∥, x, y ∈ Ω0. (7)

Let us define β0 = ∥Γ0∥, η0 = ∥Γ0F (x0)∥, a0 = Mβ0η0 and b0 = Kβ0η
2
0 . Observe

that, using (1) one has

∥y0 − x0∥ = ∥ − aΓ0F (x0)∥ = |a|η0. (8)
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In the following lemma we give an expression and a bound of the remainder of the

Taylor expansion of the operator F which will be used in subsequent proofs.

Lemma 1 If F has continuous derivatives up to order k + 1 in a convex open set Ω

and ∥F k+1(x)∥ ≤ P, for all x ∈ Ω, then, if x0 ∈ Ω,

F (x) =

k∑
j=0

1

k!
F (k)(x0)(x− x0)

k +Rx0,k(x− x0),

where the remainder can be expressed as

Rx0,k(x− x0) =
1

k!

∫ 1

0

(1− t)kF k+1(x0 + t(x− x0))(x− x0)
k+1dt

and

∥Rx0,k(x− x0)∥ ≤ P

(k + 1)!
∥x− x0∥k+1.

The well known Banach’s Lemma, [21], will be used to guarantee the existence and

boundedness of the inverse of a matrix.

Lemma 2 (Banach’s Lemma): Let A ∈ L(X,X) and ∥A∥ < 1 then I − A is an

invertible matrix and ∥(I −A)−1∥ < 1
1−∥A∥ .

We want to apply this result to I−Γ0F
′(x1), in order to prove the existence of the

inverse matrix of Γ0F
′(x1) and then the inverse of F ′(x1). Then the following condition

must be satisfied:

∥I − Γ0F
′(x1)∥ ≤ ∥Γ0∥∥F ′(x0)− F ′(x1)∥

≤ ∥Γ0∥∥
∫ x1

x0

F ′′(x)dx∥ ≤ β0M∥x1 − x0∥ < 1. (9)

We need a bound for ∥x1 − x0∥. Using the triangular inequality, (3) and (2), we can

write

∥x1 − x0∥ ≤ ∥x1 − z0∥+ ∥z0 − x0∥
= ∥Γ0F (z0)∥+ ∥Γ0(F (y0) + aF (x0)).∥ (10)

Consider the Taylor expansion

F (z0) = F (y0) + F ′(y0)(z0 − y0) +Ry0,1(z0 − y0)

= F (y0) + (F ′(y0)− F ′(x0))(z0 − y0)

+ F ′(x0)(z0 − y0) +Ry0,1(z0 − y0),

where Ry0,1(z0 − y0) is the remainder of the first degree expansion. Using (2), we

substitute F ′(x0)(z0 − y0) by −F (y0), obtaining

F (z0) = (F ′(y0)− F ′(x0))(z0 − y0) +Ry0,1(z0 − y0)

=

∫ y0

x0

F ′′(τ)(z0 − y0)dτ +Ry0,1(z0 − y0).
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Then, using (6) and Lemma 1 we get

∥F (z0)∥ ≤ M∥y0 − x0∥∥z0 − y0∥+
1

2
M∥z0 − y0∥2. (11)

Using (1), we have

F ′(x0)(y0 − x0) = −aF (x0),

so that, the Taylor expansion

F (y0) = F (x0) + F ′(x0)(y0 − x0) +Rx0,1(y0 − x0).

can be written as

F (y0) = (1− a)F (x0) +Rx0,1(y0 − x0), (12)

and thus

Γ0(F (y0) + aF (x0)) = Γ0F (x0) + Γ0Rx0,1(y0 − x0).

Taking norms and using Lemma 1 and (8), we get

∥z0 − x0∥ = ∥Γ0(F (y0) + aF (x0))∥ ≤ η0 +
Mβ0
2

∥y0 − x0∥2 =
(
1 +

a0
2
a2
)
η0. (13)

From (1) and (12)

∥z0 − y0∥ = ∥ − Γ0F (y0)∥ = ∥(1− a)Γ0F (x0) + Γ0Rx0,1(y0 − x0)∥,

and using (4), Lemma 1 and (8) one has

∥z0 − y0∥ ≤ |1− a|η0 +
1

2
Mβ0a

2η20 =

(
|1− a|+ a0a

2

2

)
η0 = qa(a0)η0, (14)

where

qa(t) = |1− a|+ ta2

2
.

From (8), (11) and (14), we get

∥Γ0F (z0)∥ ≤ ∥Γ0∥∥F (z0)∥

≤ β0

(
M |a|η0qa(a0)η0 +

1

2
Mqa(a0)

2η20

)
= η0pa(a0), (15)

where we use the notation

pa(t) = t|a|qa(t) +
t

2
qa(t)

2. (16)

Substituting (15) and (13) in (10), one has

∥x1 − x0∥ ≤ η0pa(a0) + η0

(
1 +

a0
2
a2
)
= η0ga(a0).

where, by definition,

ga(t) = pa(t) + 1 +
t

2
a2. (17)

Turning to equation (9), in order to apply Banach’s lemma we need

∥I − Γ0F
′(x1)∥ ≤ Mβ0∥x1 − x0∥ ≤ a0ga(a0) < 1.
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As we will see in Lemma 3, ga(t) is increasing, so the polynomial p(t) = tga(t) − 1 is

unbounded and verifies p(0) < 0, so that it has a positive root. Let t0 be the smallest

positive root of p(t). If a0 ∈]0, t0[, we have a0ga(a0) < 1 and so, we can apply Banach’s

Lemma 2:

∥(Γ0F
′(x1))

−1∥ ≤ 1

1− a0ga(a0)
.

Then, there exists Γ1 = F ′(x1)
−1 and

∥Γ1∥ ≤ ∥Γ1F
′(x0)∥∥Γ0∥ = ∥(Γ0F

′(x1))
−1∥∥Γ0∥

≤ ∥Γ0∥
1− a0ga(a0)

= ∥Γ0∥fa(a0), (18)

where, by definition,

fa(t) =
1

1− tga(t)
. (19)

Details on the choice of a0 are presented below.

Resuming the process, the Taylor expansion of F (x1) around z0 can be written as

F (x1) = F (z0) + F ′(z0)(x1 − z0) +
1

2
F ′′(z0)(x1 − z0)

2

+

∫ 1

0

(F ′′(z0 + t(x1 − z0))− F ′′(z0))(x1 − z0)
2(1− t)dt.

Using (2) and (3), we have

F (z0) = −F ′(x0)(x1 − z0),

and then,

F (x1) = (F ′(z0)− F ′(x0))(x1 − z0) +
1

2
F ′′(z0)(x1 − z0))

2

+

∫ 1

0

(F ′′(z0 + t(x1 − z0))− F ′′(z0))(x1 − z0)
2(1− t)dt

=

∫ z0

x0

F ′′(τ)dτ(x1 − z0) +
1

2
F ′′(z0)(x1 − z0))

2+

+

∫ 1

0

(F ′′(z0 + t(x1 − z0))− F ′′(z0))(x1 − z0)
2(1− t)dt.

Taking norms and using (6) and (7), we can write

∥F (x1)∥ ≤ M∥x0 − z0∥∥x1 − z0∥+
M

2
∥x1 − z0∥2 +

K

6
∥x1 − z0∥3. (20)

From (2) and (13) we have

∥x0 − z0∥ = ∥Γ0(F (y0) + aF (x0))∥ ≤ η0

(
1 +

a0
2
a2
)
, (21)

and from (3), (4) and (15),

∥x1 − z0∥ = ∥Γ0F (z0)∥ ≤ pa(a0)η0. (22)
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Substituting (21) and (22) in (20) and using (18), we get

∥Γ1F (x1)∥ ≤ ∥Γ1∥∥F (x1)∥ ≤ ∥Γ0∥fa(a0)∥F (x1)∥

≤ β0fa(a0)

(
Mη0

(
1 +

a0
2
a2
)
pa(a0)η0 +

M

2
pa(a0)

2η20 +
K

6
pa(a0)

3η30

)
= fa(a0)

((
a0 +

a20
2
a2
)
pa(a0) +

a0
2
pa(a0)

2 +
b0
6
pa(a0)

3

)
η0

= fa(a0)φa(a0, b0)η0,

where, by definition,

φa(t, u) =

(
t+

t2

2
a2
)
pa(t) +

t

2
pa(t)

2 +
u

6
pa(t)

3. (23)

3 Recurrence relations

In this section we define the recurrence relations and give some technical lemmas that

allow to establish the convergence properties of the iterative method.

Let us consider the following sequences:

an+1 = anfa(an)
2φa(an, bn) (24)

bn+1 = bnfa(an)
3φa(an, bn)

2 (25)

ηn+1 = ηnfa(an)φa(an, bn), (26)

for n = 0, 1, . . .

Lemma 3 Let ga, fa and φa be the functions defined by (17), (19) and (23), re-

spectively. Suppose a0 ∈]0, t0[, where t0 is the smallest positive root of the polynomial

tga(t)− 1 and that fa(a0)
2φa(a0, b0) < 1. Then we have,

(i) ga and fa are increasing, and ga(t) > 1, fa(t) > 1 ∀t ∈]0, t0[.
(ii) φa(t, u) is increasing as a function of t, so is it as a function of u, ∀t ∈]0, t0[, and

u > 0.

(iii) The sequences an, bn and ηn are decreasing and ga(an)an < 1 as well as fa(an)
2φa(an, bn) <

1, ∀n ≥ 0.

Proof:

(i,ii) are trivially deduced from the definition of the functions.

(iii) By hypothesis

a1 = a0fa(a0)
2φa(a0, b0) < a0

and

b1 = b0fa(a0)
3φa(a0, b0)

2 < b0fa(a0)φa(a0, b0) < b0,

since fa(a0)
2φa(a0, b0) < 1 and fa(a0) > 1 imply that fa(a0)φa(a0, b0) < 1.

For the sequence ηn we have

η1 = η0fa(a0)φa(a0, b0) ≤ η0 (27)

and by an induction procedure and using that fa and φa are increasing the Lemma

holds.
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Lemma 4 Let pa and φa be the functions defined by (16) and (23), respectively. Sup-

pose θ ∈]0, 1[, then pa(θt) < θpa(t), and φa(θt, θ
2u) < θ2φa(t, u) ∀a ∈ R.

For a = 1 we have p1(θt) < θ2p1(t), and φ1(θt, θ
2u) < θ3φ1(t, u).

Proof: The result is easy to obtain by taking into account the definition of these

functions. For a = 1, p1(t) =
t2

2 + t3

8 .

�

Lemma 5 Under the hypothesis of Lemma 3, defining γ = fa(a0)
2φa(a0, b0) and

∆ = 1
fa(a0)

, we have:

(i) γ ∈]0, 1[
For a ̸= 1 we have:

(ii) an ≤ γ3
n−1

an−1 ≤ γ
3n−1

2 a0

bn ≤ (γ3
n−1

)2bn−1 ≤ γ
(3n−1)2

2 b0
(iii) fa(an)φa(an, bn) ≤ γ3

n

∆, ∀n ∈ N

(iv) ηn ≤ γ
3n−1

2 ∆nη0 and

n+m−1∑
k=n

ηk ≤ ∆nγ
3n−1

2
1− (∆γ3

n

)m

1−∆γ3
n η0.

For a = 1 the results are:

(ii’) an ≤ γ4
n−1

an−1 ≤ γ
4n−1

3 a0

bn ≤ (γ4
n−1

)2bn−1 ≤ γ
(4n−1)2

3 b0
(iii’) f1(an)φ1(an, bn) ≤ γ4

n

∆, ∀n ∈ N

(iv’) ηn ≤ γ
4n−1

3 ∆nη0 and

n+m−1∑
k=n

ηk ≤ ∆nγ
4n−1

3
1− (∆γ4

n

)m

1−∆γ4
n η0.

Proof:

(i) By definition, γ ∈]0, 1[
(ii) a1 ≤ γ4

0

a0
b1 = b0fa(a0)

3φa(a0, b0)
2 = b0γfa(a0)φa(a0, b0) ≤ b0γ

2

Let us suppose that the relations hold for k < n, then by using Lemma 3 and taking

into account that fa is increasing, we have the result for n.

If a ̸= 1, we have

an = an−1fa(an−1)
2φa(an−1, bn−1)

≤ γ3
n−2

an−2fa(γ
3n−2

an−2)
2φa(γ

3n−2

an−2, (γ
3n−2

)2bn−2)

≤ γ3
n−2

an−2fa(an−2)
2(γ3

n−2

)2φa(an−2, bn−2) = γ3
n−1

an−1.

So, it can be established that: an ≤ γ3
n−1

an−1 ≤ . . . ≤ γ3
n−1

γ3
n−2

. . . γa0 =

γ
3n−1

2 a0.

But, for a = 1, the result is

an = an−1f1(an−1)
2φ1(an−1, bn−1)

≤ γ4
n−2

an−2f1(γ
4n−2

an−2)
2φa(γ

4n−2

an−2, (γ
4n−2

)2bn−2)

≤ γ4
n−2

an−2f1(an−2)
2(γ4

n−2

)3φ1(an−2, bn−2) = γ4
n−1

an−1.
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and then, an ≤ γ4
n−1

an−1 ≤ . . . ≤ γ4
n−1

γ4
n−2

. . . γa0 = γ
4n−1

3 a0.

A similar reasoning gives the result for bn.

We will prove the next items for a = 1. For a ̸= 1 the analysis is analogous.

(iii)

f1(an)φ1(an, bn) ≤ f1(γ
4n−1

3 a0)φ1(γ
4n−1

3 a0, γ
(4n−1)2

3 b0)

≤ f1(a0)γ
4n−1φ1(a0, b0) = γ4

n

/f1(a0)

(iv) As a direct consequence of iii) we have

n−1∏
k=0

f1(ak)φ1(ak, bk) ≤
n−1∏
k=0

γ4
k

f1(ak)
≤ γ

4n−1
3 ∆n, ∀n ∈ N

and by definition of ηn we get:

ηn = f1(an−1)φ1(an−1, bn−1)ηn−1 ≤
n−1∏
k=0

f1(ak)φ1(ak, bk)η0 ≤ γ
4n−1

3 ∆nη0,

and then

n+m−1∑
k=n

ηk ≤
n+m−1∑
k=n

∆kγ
4k−1

3 η0 ≤ γ
4n−1

3

m−1∑
k=0

∆n+k(γ4
n

)
4k−1

3 η0

≤ ∆nγ
4n−1

3

m−1∑
k=0

∆k(γ4
n

)kη0 ≤ ∆nγ
4n−1

3
1− (∆γ4

n

)m

1−∆γ4
n η0.

�
As a consequence of the last item of previous lemma, considering that ∆ and γ are

less than 1, we get a convergent series verifying:

∞∑
k=0

ηk ≤ 1

1−∆γ
η0.

Let R = ga(a0)
1

1−∆γ
. In what follows we will consider the ball B(x0, Rη0) in

order to establish the semilocal convergence of the family of iterative methods (3).

Lemma 6 Under the hypothesis of Lemma 3 and the conditions (4-7), the following

statements are true for all n ≥ 0

(I) There exists Γn and ∥Γn∥ ≤ fa(an−1)∥Γn−1∥
(II) ∥ΓnF (xn)∥ ≤ ηn
(III) M∥Γn∥∥ΓnF (xn)∥ ≤ an
(IV) N∥Γn∥∥ΓnF (xn)∥2 ≤ bn
(V) ∥xn+1 − xn∥ ≤ ga(an)ηn, yn ∈ B(x0, (|a|+R)η0), zn and xn+1, belong to

B(x0, Rη0)

(VI) R < 1/a0, ∀a ∈ R.
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Proof: Items (I)-(IV) can be easily obtained by the previously described development

and an inductive procedure. We now prove item (V) in the following way:

∥xn+1 − x0∥ ≤
n∑

i=0

∥xi+1 − xi∥ ≤
n∑

i=0

ga(ai)ηi ≤ ga(a0)

n∑
i=0

ηi ≤ Rη0.

In a similar way, if |a| ≤ 1, by construction of ga we have ga(a0) > 1 ≥ |a|, and so

∥yn − x0∥ ≤ ∥yn − xn∥+ ∥xn − x0∥ ≤ |a|ηn +

n−1∑
i=0

ga(ai)ηi ≤ ga(a0)

n∑
i=0

ηi ≤ Rη0,

If |a| > 1,

∥yn − x0∥ ≤ |a|ηn +

n−1∑
i=0

ga(ai)ηi ≤ |a|η0 + ga(a0)

n−1∑
i=0

ηi

≤
(
|a|+ ga(a0)

1

1−∆γ

)
η0 ≤ (|a|+R)η0,

so yn ∈ B(x0, (|a|+R)η0).

For the sequence zn, using the reasoning given in (13), we have:

∥zn − x0∥ ≤ ∥zn − xn∥+ ∥xn − x0∥

≤ (1 +
a2

2
an)ηn +

n−1∑
i=0

ga(ai)ηi ≤ ga(a0)

n∑
i=0

ηi ≤ Rη0.

In the last inequality we have used that (1 + a2

2 an) ≤ (1 + a2

2 a0) ≤ ga(a0), what is

obvious by the definition of ga.

Finally, from the definition of R, ∆ and γ can be obtained that:

R = ga(a0)
1

1−∆γ
=

ga(a0)

1− fa(a0)φa(a0, b0)
<

ga(a0)

1− fa(a0)
= 1/a0

where we have used that φa(a0, b0) < 1 from the hypothesis of Lemma 2 and the

definition of fa and ga.

�

4 Semilocal convergence

At this point, we are going to establish the domain of the existence and uniqueness of

the solution, by using the previously obtained results.

Theorem 1 Let X and Y be Banach spaces and F : Ω ⊆ X → Y a nonlinear oper-

ator continuously third-order Fréchet differentiable in an open convex subset Ω0 ⊆ Ω.

Assume that x0 ∈ Ω0 and that conditions (4-7) hold.

Considering a0 = Mβη and b0 = Nβη2 with a0 ∈]0, t0[, where t0 is the smallest

positive root of the scalar function tga(t)− 1 and the functions ga, fa and φa defined

by (17), (19) and (23), respectively.
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If B(x0, (|a|+R)η0) ⊆ Ω where R = ga(a0)
1

1−∆γ
with ∆ = 1

fa(a0)
, and γ =

fa(a0)
2φa(a0, b0) < 1 then, the sequence {xn} defined by (3) converges to a solution

x∗ of F (x) = 0. The R-order of convergence is at least three for any a ∈ R and for

a = 1 is at least four. The iterates yn ∈ B(x0, (|a|+R)η0), zn, xn+1, and x∗ belong

to B(x0, Rη0) and x∗ is the unique solution of F (x) in B(x0, 2/(Mβ)−Rη0) ∩Ω.

Moreover, an a priori error estimation can be given, for a ̸= 1:

∥xn − x∗∥ ≤ ga(a0)∆
nγ

3n−1
2

1

1−∆γ3
n η0

and, for a = 1:

∥xn − x∗∥ ≤ g1(a0)∆
nγ

4n−1
3

1

1−∆γ4
n η0.

Proof: The iterative process is well defined as we have proved in the previous Lemmas.

Now we prove that xn is a Cauchy sequence by using that ga is increasing and

ak ≤ an ∀k ≤ n, so that ga(ak) ≤ ga(an) and, by Lemma 3 (iv),

∥xn+m − xn∥ ≤
n+m−1∑

i=n

∥xi+1 − xi∥ ≤
n+m−1∑

i=n

ga(ai)ηi (28)

≤ ga(a0)

n+m−1∑
i=n

ηi ≤ ga(a0)∆
nγ

3n−1
2

1− (∆γ3
n

)m

1−∆γ3
n η0

so that, {xn} is a Cauchy sequence, and then it has a limit x∗. By taking m → ∞ we

obtain an a priori error estimation:

∥xn − x∗∥ ≤ ga(a0)∆
nγ

3n−1
2

1

1−∆γ3
n η0

and taking n = 0 in (28) and m → ∞, we have

∥x∗ − x0∥ ≤ Rη0.

Then x∗ ∈ B(x0, Rη0). Moreover x∗ is a solution of F (x) = 0 since

∥F ′(xn)∥ ≤ ∥F ′(x0)∥+ ∥F ′(xn)− F ′(x0)∥

≤ ∥F ′(x0)∥+M∥xn − x0∥ ≤ ∥F ′(x0)∥+MRη0.

F ′(xn) is bounded and, using Lemma 5 (iv), one has ∥ΓnF (xn)∥ → 0, so we can

establish that

∥F (xn)∥ ≤ ∥F ′(xn)∥∥ΓnF (xn)∥ → 0

and, by the continuity of F , we get F (x∗) = 0.

Now, to prove the uniqueness. Let us suppose that y∗ ∈ B(x0, 2/Mβ −Rη0) ∩Ω0

is another solution of F (x) = 0. Then,

0 = F (y∗)− F (x∗) =

∫ 1

0

F ′(x∗ + t(y∗ − x∗))dt(y∗ − x∗).
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Using the following estimation

∥Γ0∥
∫ 1

0

∥F ′(x∗ + t(y∗ − x∗))− F ′(x0)∥dt

≤ Mβ

∫ 1

0

∥x∗ + t(y∗ − x∗)− x0∥dt

≤ Mβ

∫ 1

0

((1− t)∥x∗ − x0∥+ t∥y∗ − x0∥)dt

< (Mβ/2)(Rη0 + 2/Mβ −Rη0) = 1,

we can apply Banach’s Lemma, (2) and then, the operator

∫ 1

0

F ′(x∗ + t(y∗ − x∗))dt

has an inverse and, consequently, y∗ = x∗.
�

Note

Here we study the conditions of applicability of the methods, needed for applying

Banach’s lemma in (9): a0ga(a0) < 1 and the ones imposed in lemma 2, that is,

∆, γ < 1.

Function ga(t) defined in (17) can be expressed as

ga(t) = 1 +
1

2
(|a|+ |1− a|)2t+ 1

2
(|a|+ |1− a|)a2t2 +

1

8
a4t3.

Notating d = |a|+ |1− a|, it is obvious that 1 ≤ d and |a| ≤ d. Taking 0 < t < 1
2d one

has

0 < tga(t) = t+
1

2
d2t2 +

1

2
da2t3 +

1

8
a4t4 <

1

2
+

1

2

1

4
+

1

2

1

2

1

4
+

1

8

1

16
< 1.

Particularly, for 0 ≤ a ≤ 1, d = 1 and then, tga(t) < 1 for t ∈ [0, 12 ].

In general, if a0 ≤ 1
2d , Banach’s lemma can be applied and ∆ < 1.

On the other hand, γ < 1 if b0 satisfies the following condition derived from (23):

b0 <
6

pa(a0)3

(
1

fa(a0)2
−
(
a0 +

a20
2
a2
)
pa(a0)−

a0
2
pa(a0)

2

)
.

Using this relation, we can determine bounds for a0 and b0 depending on the parameter

a, so that γ < 1. For example, taking a0 < A0 = 0.95min( 1
2d ,

1
2d2 ) and b0 < B0 =

1
2d − A0, one has γ < 1. Figure 1 shows the values of γ obtained from the bounds A0

and B0 corresponding to values −3 ≤ a ≤ 4.

5 Application example

In this section we present some numerical data to illustrate the theoretical results, by

obtaining the terms of the recurrence relations of our methods, denoted by NM, for

different values of the parameter a.



12

−3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a

 

 
A

0

B
0

γ

Fig. 1 Bounds for a0 and b0 that guarantee that γ < 1 for different values of a.

We also obtain the value of the convergence and uniqueness radii and compare

them with the corresponding to the following recently published methods.

The first one, presented in [11], with R-order at least 4, will be denoted by M4;

KF (xn) = ΓnF
′′(xn − 1

3
ΓnF (xn))ΓnF (xn) (29)

∆n = I −KF (xn)

xn+1 = xn − (I +
1

2
KF (xn)∆

−1
n )ΓnF (xn)

The second one, studied in [13], with R-order at least 5, will be denoted by M5:

yn = xn − ΓnF (xn) (30)

zn = xn − [1 +
1

2
LF (xn)(I − LF (xn)

−1]ΓnF (xn)

xn+1 = zn − [I + F ′′(xn)Γn(zn − xn)]
−1ΓnF (zn),

where LF (xn) = ΓnF
′′(xn)ΓnF (xn).

The above mentioned methods are compared by applying them to the following

examples:

Example 1: (See [13])

Consider the equation F (x) = 0 given by:

F (x) =

{
x3 − 2x− 5, x ≥ 0

−x3 − 2x− 13, x < 0

where x ∈ [−1, 3]. It easy to obtain for x0 = 2 the following bounds: β0 = 0.1, η0 = 0.1,

M = 18 and K = 6. Consequently, we obtain the convergence and uniqueness radii

given in Table 6. The behavior of the different methods is similar, but our family does

not use the second derivative in its iterative expression.

Example 2: (See [11])

Let X = C[0, 1] be the space of continuous functions on [0, 1] with the ∞-norm,

∥x∥ = max
s∈[0,1]

|x(s)|.
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M4 M5 NM3 a = 0 NM3 a = 0.5 NM4 a = 1
Convergence radius 0.111153 0.138566 0.111345 0.111300 0.111158
Uniqueness radius 0.999958 0.972545 0.999766 0.999811 0.999954

Table 1 Numerical results for Example 1 with starting condition x0 = 2.

Considering the nonlinear integral equation F(x) = 0 where

F (x)(s) = x(s)− 1 +
1

2

∫ 1

0

s cos(x(t))dt,

where s ∈ [0, 1] and x ∈ Ω = B(0, 2) ⊂ X.

The derivatives of F are

F ′(x)y(s) = y(s)− 1

2

∫ 1

0

s sin(x(t))y(t)dt,

and

F ′′(x)yz(s) = −1

2

∫ 1

0

s cos(x(t))y(t)z(t)dt,

for y, z ∈ Ω.

The second derivative F ′′ satisfies

∥F ′′(x)∥ ≤ 1

2
= M, x ∈ Ω,

and the Lipschitz condition

∥F ′′(x)− F ′′(y)∥ ≤ 1

2
∥x− y∥, x, y ∈ Ω,

so that K = 1
2 .

Starting from an initial estimation x0(t) = 1 of the solution, we have

∥F (x0)∥ = ∥1
2

∫ 1

0

s cos(x0(t))dt∥ ≤ 1

2
cos 1.

Since

∥I − F ′(x0)∥ = ∥1
2

∫ 1

0

s sin(x0(t))dt∥ ≤ 1

2
sin 1,

it follows by the Banach lemma that Γ0 exists and

∥Γ0∥ ≤ 2

2− sin 1
= β0.

Then,

∥Γ0F (x0)∥ ≤ cos 1

2− sin 1
= η0.

The terms of the recurrence relations of the method for different values of the parameter

a are shown in Table 2. The convergence speed is almost the same for a = 0, 0.5, but

is notably faster in the case a = 1. Although the values of the radii are quite similar,

the best results are obtained by the fourth order method introduced in our work for

a = 1.
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a n an bn ηn
0 0.402553 0.187738 0.466369
1 0.134994 0.0109028 0.0807655
2 0.00173585 1.54296e-006 0.000888882

0 3 2.62545e-009 3.52357e-018 1.34209e-009
4 9.04855e-027 4.18539e-053 4.62548e-027
5 3.70431e-079 7.01443e-158 1.89359e-079
6 2.54152e-236 0 1.29918e-236
0 0.402553 0.187738 0.466369
1 0.122733 0.00886641 0.0722414
2 0.000992368 5.04012e-007 0.000507888

0.5 3 3.67444e-010 6.90312e-020 1.87869e-010
4 1.86039e-029 1.76958e-058 9.51191e-030
5 2.41458e-087 2.98091e-174 1.23454e-087
6 5.27907e-261 0 2.69912e-261
0 0.402553 0.187738 0.466369
1 0.0780124 0.00338805 0.0434296
2 2.32772e-005 2.77113e-010 1.19049e-005

1 3 1.46798e-019 1.10211e-038 7.50768e-020
4 2.32192e-076 2.75728e-152 1.1875e-076
5 1.45332e-303 0 7.43269e-304

Table 2 Recurrence relations for NM with a = 0, 0.5, 1 in Example 2.

M4 M5 NM3 a = 0 NM3 a = 0.5 NM4 a = 1
Convergence radius 0.712479 1.305052 0.677582 0.674387 0.663627
Uniqueness radius 1.604579 1.012006 1.639477 1.642671 1.653431

Table 3 Numerical results for Example 2 with starting condition x0(t) = 1.

5.1 Computational efficiency

In order to compare different methods, we use the efficiency and operational indexes, I

and C respectively ([1]). That is, I = p1/d, where p is the order of convergence and d is

the total number of new functional evaluations (per iteration) required by the method.

Also, C = p1/op, where op is the number of operations per iteration. We recall that

the number of products and quotients that we need for solving m linear systems with

the same matrix of coefficient, by using LU factorization, is

1

3
n3 +mn2 − 1

3
n,

where n is the size of each system.

We do not compute the efficiency of the fifth order method described in (30) because

the use of second derivatives in the last two steps makes it inefficient. However we

compare our methods with Newton’s method, N, and a classical method of fourth

order for nonlinear systems, Jarratt’s method, [22], that we denote by JM and whose

iterative expression is:

yn = xn − 2

3
ΓnF (xn)

xn+1 = xn − 1

2
ΓnF (xn)

[
(3F ′(yn) + F ′(xn))

−1(3F ′(yn)− F ′(xn))
]
,
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Notice that both efficiency and operational indexes of Jarrat’s method coincide

with the ones of Newton’s method, since Jarrat’s method doubles both the order and

the number of functional evaluations and linear systems of Newton’s method.

Tables 4 and 5 show the efficiency and operational indices for different sizes of

the nonlinear system. Notice that, in terms of I, NM4 is the most efficient , and for

n ≥ 2, the method NM3 is also more efficient than Newton’s and Jarrat’s method.

Similar behavior can be observed in terms of C for bigger values of n, so this family of

methods is very competitive.

JM NM3 NM4 M4

I 4
1

2n+2n2 3
1

3n+n2 4
1

3n+n2 4
1

n+n2+n3

n = 2 1.12246 1.11612 1.14870 1.10409
n = 3 1.05946 1.06294 1.08006 1.03619
n = 4 1.03526 1.04002 1.05076 1.01664
n = 5 1.02337 1.02785 1.03526 1.00898
n = 10 1.00632 1.00849 1.01072 1.00125
n = 20 1.00165 1.00239 1.00302 1.00016
n = 30 1.00075 1.00111 1.00140 1.00005

Table 4 Efficiency indices for different values of n.

JM NM3 NM4 M4

n = 2 1.12246 1.08163 1.10409 1.04427
n = 3 1.04162 1.03189 1.04040 1.01439
n = 4 1.01944 1.01629 1.02060 1.00644
n = 5 1.01072 1.00960 1.01213 1.00343
n = 10 1.00161 1.00175 1.00220 1.00047
n = 20 1.00023 1.00028 1.00036 1.00006
n = 30 1.00007 1.00009 1.00012 1.00002

Table 5 Operational indices for different values of n.

Finally we discretize the integral equation given in Example 2 in order to have a

finite dimensional problem of big size. For this purpose we use the Simpson quadrature

formula, with n subintervals so h = 1/n, nodes ti = ih with i = 0, . . . , n; and weights

p = h/3(1, 4, 2, . . . , 2, 4, 1) ∈ Rn+1. By denoting x(ti) = xi, we have the nonlinear

system of equations:

xi − 1 +
ti
2

n∑
j=0

pjcos(xj) = 0; i = 0, . . . , n.

Table 6 shows the results for different methods, with n = 100, using variable precision

arithmetics that uses floating point representation of 100 decimal digits of mantissa

in MATLAB 2010. We calculate the number of iterations and the estimated order

of convergence p, ([23]), for the stopping criterion ∥xk+1 − xk∥ ≤ 10−10, the value
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∥F (x(k))∥ at this iteration and the average time in seconds, T , for 20 runs of the

methods. As it can be observed, the new methods reach always similar o better results

than classical ones.

iter ∥xn+1 − xn∥ ∥F (xn+1)∥ p T

N 6 5.4333e-51 3.143e-103 2.0000 672.9568
J 4 1.9847e-90 6.3978e-108 4.0000 876.9897

HMT (a = 1) 4 1.0581e-90 6.7394e-108 4.0000 545.4744
HMT (a = −1) 4 6.1919e-79 6.1963e-108 4.0000 551.5068
HMT (a = 0.5) 4 1.3892e-40 6.9903e-108 3.0000 549.9432
HMT (a = 0) 4 5.8121e-39 8.0058e-108 3.0000 549.6305

Table 6 Starting guess x0 = (1, 1, . . . , 1).

6 Global convergence

In this section we study the dynamics of the proposed iterative method NM3 with

a = 0.5 when applied to the solution of a system of quadratic equations, representing

the intersection of two conics in R2 and compare it with the dynamics of Newton’s

method. The behavior of the method for other values of parameter a is quite similar.

Let us first recall some dynamical concepts. Consider a Frechet differentiable func-

tion G : Rn −→ Rn.

For x ∈ Rn, we define the orbit of x as the set x,G(x), G2(x), . . . , Gp(x), . . .. A

point xf is a fixed point of G if G(xf ) = xf . A fixed point xf is called attracting if

∥JG(xf )∥ < 1, repelling if ∥JG(xf )∥ > 1, and neutral if ∥JG(xf )∥ = 1. If JG(xf ) = 0,

the point xf is superattracting. Let xaf be an attracting fixed point of the function G.

The basin of attraction of xaf is the set of points whose orbits tend to this fixed point

A(xaf ) = {x ∈ Rn : Gp(x) −→ xaf for p −→ ∞}

The chosen example presents three simple real roots that are superattractive fixd

points for the method NM3. We show that the method is generally convergent and

depict the attraction basins.

x2 + 2y = 3

2xy = 1

}
For the comparisons, we have run the methods iterating with tolerance 10−12

performing a maximum of 50 iterations. The starting points form a uniform grid of

600×600 in a rectangle of the real plane. The attraction basins have been colored

according to the corresponding fixed point.

Figures 2 and 3 show the attraction basins of Newton’s method and our method,

respectively. The basins of our method are slightly more complex than that of Newton’s

method, but the convergence regions cover almost all the plane.

Figures 4 and 5 show the difference in convergence speed between Newton’s method

and NM3, with a = 0.5. The colored zones correspond to the initial points that attain
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Fig. 2 Attraction basins for Newton’s method

Fig. 3 Attraction basins for method NM3, a=0.5
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Fig. 4 Points that converge (tol=10−12) in 5 steps with Newton’s method

Fig. 5 Points that converge (tol=10−12) in 5 steps with method NM3, a=0.5.
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a solution with the required tolerance in 5 iterations. For method NM3, these regions

are wider corresponding to the higher convergence order of this method with respect

to Newton’s method.

7 Conclusions

In this paper we establish the semilocal convergence for a family of iterative methods

in Banach spaces by constructing the system of recurrence relations and obtaining a

priori error estimations. The efficiency indices of these new methods and the numerical

results show that these methods are competitive.

The dynamical behavior of the proposed methods has been compared with that of

Newton’s method. The attraction basins of the new methods are slightly more complex

than that of Newton’s method, but the convergence is faster as expected due to the

difference in convergence orders.
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