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València,, E-46022 València, Spain , jmasm@imm.upv.es
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Abstract

A subset B of an algebra A of subsets of Ω is said to have the property N if
a B-pointwise bounded subset M of ba(A ) is uniformly bounded on A , where
ba(A ) is the Banach space of the real (or complex) finitely additive measures of
bounded variation defined on A with the norm variation. Moreover B is said
to have the property sN if for each increasing countable covering (Bm)m of B
there exists Bn which has the property N and B is said to have property wN if
given the increasing countable coverings (Bm1)m1 of B and (Bm1m2...mpmp+1)mp+1

of Bm1m2...mp , for each p,mi ∈ N, 1 6 i 6 p+1, there exists a sequence (ni)i such
that each Bn1n2...nr , r ∈ N, has property N. For a σ -algebra S of subsets of Ω

it has been proved that S has property N (Nikodym-Grothendieck), property sN
(Valdivia) and property w(sN) (Kakol-López-Pellicer). We give a proof of property
wN for a σ -algebra S which is independent of properties N and sN. This result
and the equivalence of properties wN and w2N enable us to give some applications
to localization of bounded additive vector measures.
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1 Introduction
Let Ω be a set and A a set-algebra of subsets of Ω. If B is a subset of A then
L(B) is the normed space of the real or complex linear hull of the set of characteristics
functions {eC : C ∈B} endowed with the supremum norm ‖·‖. The dual of L(A ) with
the dual norm is named L(A )′ and it is isometric to the Banach space ba(A ) of finitely
additive measures on A with bounded variation provided with the variation norm, i.e.,
| · | := | · |(Ω), being the isometry the map Θ : ba(A )→ L(A )′ such that, for each
µ ∈ ba(A ), Θ(µ) is the linear form named also by µ and defined by µ(eC) := µ(C),
for each C ∈ A , [2, Chpater 1]. A norm in L(A ) equivalent to the supremum norm
is defined by the Minkowski functional of absco({eC : C ∈ A }) ([12, Propositions 1
and 2]), which dual norm is the A -supremum norm, i.e., ‖µ‖ := sup{|µ(C)| : C ∈A },
µ ∈ ba(A ).

In this paper duality is referred to the dual pair 〈L(A ),ba(A )〉 and we follow no-
tations of [7]. Then the weak ∗ dual of a locally convex space E is (E ′,τs(E)), whence
the topology τs(L(A )) is the topology τs(A ) of pointwise convergence in the elements
of A , the cardinal of a set C is denoted by |C|, N is the set {1,2, . . .} of positive inte-
gers, the closure of a set is marked by an overline, the convex (absolutely convex) hull
of a subset M of a topological vector space is represented by co(M) (absco(M)) and
absco(M) = co(∪{rM : |r|= 1}).

A subset B of a set-algebra A has the Nikodym property, property N in brief, if
each B-pointwise bounded subset M of ba(A ) is bounded in ba(A ) (see [10, Def-
inition 2.4] or [13, Definition 1]). If B has property N the polar set {eC : C ∈B}◦
is bounded in ba(A ), hence the bipolar set {eC : C ∈B}◦◦ = absco{eC : C ∈B} is a
neighborhood of zero in L(A ) and then L(B) is dense in L(A ). Notice also that a
subset B of an algebra A has property N if each B-pointwise bounded, τs(A)-closed
and absolutely convex subset M of ba(A) is uniformly bounded in A . The algebra of
finite and co-finite subsets of N fails to have property N and Schachermayer proved
that the algebra J (I) of Jordan measurable subsets of I := [0,1] has property N [10,
Corollary 3.5] (see a generalization of this property in [4, Corollary]).

A subset B of a set-algebra A has the strong Nikodym property, property sN in
brief, if for each increasing covering ∪mBm of B there exists Bn which has property
N. Valdivia proved that the algebra J (K) of Jordan measurable subsets of a compact
k-dimensional interval K := Π{[ai,bi] : 1 6 i 6 k} in Rk has property sN [13, Theorem
2].

An increasing web in a set A is a family W := {Am1m2...mp : (m1,m2, . . . ,mp) ∈
∪sNs} of subsets of A such that (Am1)m1 and (Am1m2...mpmp+1)mp+1 are, respectively,
increasing coverings of A and Am1m2...mp , for each p,mi ∈ N, 1 6 i 6 p+1 [7, Chapter
7, 35.1], and each sequence (Am1m2...mp)p is a strand in W . A subset B of a set-algebra
A has the web Nikodym property, property wN in brief, if for each increasing web
{Bt : t ∈ ∪sNs} in B there exists a strand composed of sets which have property N. In
general, if B is a set and P is a property verified in the elements of a family of subsets
of B then B has property wP if each increasing web {Bt : t ∈ ∪sNs} in B has a strand
composed of sets which have property P.

Property w(wP) is named as property w2P. The next straightforward proposition
states that properties wP and w2P are equivalent.
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Proposition 1. Let (Bm)m be an increasing covering of a set B which verifies property
wP. There exists Bn which has property wP, whence B has property w2P.

Proof. Let us suppose that (Bm)m is an increasing covering of a set B such that each Bm
does not have property wP. Then, for each natural number m there exists an increasing
web Wm := {Bm

m1m2...mp : p,m1,m2, . . . ,mp ∈ N} in Bm such that every strand in Wm

contains a set Bm
m1m2...mp without property P. If Bm1m2...mp := Bm1

m2m3...mp we get that
W := {Bm1m2...mp : p,m1,m2, . . . ,mp ∈ N} is an increasing web in B without strands
consisting of sets with property P, whence B does not have property wP. This proves
the first affirmation which readily implies that if B verifies property wP then every
increasing web in B contains a strand consisting of sets with property wP, whence
properties wP and w2P are equivalent in B.

Let S be a σ -algebra of subsets of a set Ω. It has been sequentially shown that (i)
S has property N (Nikodym-Dieudonné-Grothendieck theorem [9], [3] and [1, page
80, named as Nikodym-Grothendieck boundedness theorem]), (ii) S has property sN
([12, Theorem 2]) and (iii) S has property w(sN) (very recently in [6, Theorem 2]).
The aim of this paper is to present in the next section a proof of the property that
each σ -algebra S has property wN independent of any property related to Nikodym
boundedness property, as properties N or sN, and using very elementary locally convex
space theory.

Last section deals with some applications to bounded vector measures deduced
from the property wN of each σ -algebra S and from the equivalence stated in Propo-
sition 1.

Following the characterization of sN-property of a set-algebra A by the locally con-
vex property of L(A) given in [13, Theorem 3] it is possible to get a characterization of
wN property of a set-algebra A by the locally convex properties considered in [5] and
[8]. In fact Theorem 1 is equivalent to Theorem 2.7 of [8], totally stated in the locally
convex theory frame.

2 NV-trees and property wN

Given two elements, t = (t1, t2, . . . , tp) and s = (s1,s2, . . . ,sq), and two subsets, T and
U , of ∪sNs then p is the length of t, for each 1 6 i 6 p the section of length i of t
is t(i) := (t1, t2, . . . , ti); if i > p, t(i) := /0; T (m) := {t(m) : t ∈ T}, for each m ∈ N;
t× s := (t1, t2, . . . , tp, tp+1, tp+2, . . . , tp+q), with tp+ j := s j, for 1 6 j 6 q, and T ×U :=
{t×u : t ∈ T, u ∈U}.

Each t × s ∈ U is an extension of t in U and a sequence (tn)n of elements tn =
(tn

1 , t
n
2 , . . . , t

n
n , . . .) ∈ T is an infinite chain in T if for each n ∈ N the element tn+1 is an

extension of the section tn(n) in T , i.e., /0 6= tn(n) = tn+1(n), and length of tn is at least
n, for each n ∈ N. If t = (t1) then t and the products T × t and t×T are represented by
t1, T × t1 and t1×T .

Let /0 6= U ⊂ ∪nNn. U is increasing at t = (t1, t2, . . . , tp) ∈ ∪sNs if U contains
elements t1 = (t1

1 , t
1
2 , . . .) and t i = (t1, t2, . . . , ti−1, t i

i , t
i
i+1, . . .), 1 < i 6 p, such that ti < t i

i ,
for each 1 6 i 6 p. U is increasing (increasing respect to a subset V of ∪sNs) if U is
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increasing at each t ∈U (at each t ∈ V ). Clearly U is increasing if |U(1)| = ∞ and
|{n ∈ N : t(i)×n ∈U(i+1)}|= ∞, for each t = (t1, t2, . . . , tp) ∈U and 1 6 i < p.

Next definition deals with a particular type of increasing trees (see [6, Definition
2]).

Definition 1. An NV -tree T is an increasing subset of ∪s∈NNs without infinite chains
such that for each t = (t1, t2, . . . , tp) ∈ T the length of each extension of t(p−1) in T is
p and {t(i) : 1 6 i 6 p}∩T = {t}.

An NV -tree T is trivial if T = T (1) and then T is an infinite subset of N.
The sets Ni, i∈N\{1}, and the set ∪{(i)×Ni : i∈N} are non trivial NV -trees. The

finite product of NV -trees is an NV -tree.
If T is an increasing subset of ∪s∈NNs and {Bu : u∈∪sNs} is an increasing web in B

then (Bu(1))u∈T is an increasing covering of B, because for each u= (u1,u2, . . . ,up)∈ T
and each i < p the sequence (Bu(i)×n)u(i)×n∈T (i+1) is an increasing covering of Bu(i),
hence if T does not contain infinite chains and b ∈ B there exists t ∈ T such that b ∈ Bt .
Therefore B = ∪{Bt : t ∈ T}.

Each increasing subset S of an NV -tree T is an NV -tree, whence if (Sn)n is a se-
quence of subsets of an NV -tree T such that each Sn+1 is increasing respect to Sn
then ∪nSn is an NV -tree. This hereditary property and Proposition 7 in [6] imply next
Proposition 2 and we give a proof as a help for the reader.

Proposition 2. Let U be a subset of an NV -tree T . If U does not contain an NV -tree
then T\U contains an NV -tree.

Proof. This proposition is obvious if T is a trivial NV -tree. Whence we suppose that
T is a non-trivial NV -tree and then there exists m′1 ∈ T (1) such that for each n > m′1
the set {v ∈ ∪sNs : n× v ∈U} does not contain an NV -tree. We define Q1 := /0 and
Q′1 := {n ∈ T (1)\T : m′1 6 n}.

Let us suppose that we have obtained for each j, with 26 j 6 i, two disjoint subsets
Q j and Q′j of T ( j), with Q j ⊂ T\U and Q′j ∩T = /0, such that for each t ∈ Q j ∪Q′j the
section t( j− 1) ∈ Q′j−1 and At( j−1) := {n ∈ N : t( j− 1)× n ∈ Q j ∪Q′j} is an infinite
set such that t ∈ Q j implies that t( j−1)×At( j−1) ⊂Q j and from t ∈Q′j it follows that
t( j−1)×At( j−1) ⊂Q′j and that the set {v ∈ ∪sNs : t×v ∈U} does not contain an NV -
tree. Then we define St( j−1) := At( j−1) and S′t( j−1) := /0 in the first case and St( j−1) := /0,
S′t( j−1) := At( j−1) in the second case.

As for each t ∈ Q′i(⊂ T (i)\T ) the set {v ∈ ∪sNs : t× v ∈U} does not contain an
NV -tree and it is a subset of the NV -tree Tt := {v ∈ ∪sNs : t× v ∈ T}, the following
two cases may happen:

i. Either the NV -tree Tt is trivial and then there exists mi+1 ∈N such that the infinite
set St := {n ∈ N : mi+1 6 n, t×n ∈ T (i+1)} verifies that t×St ⊂ T\U . In this
case we define S′t := /0.

ii. Or the NV -tree Tt is non-trivial and then there exists m′i+1 ∈ N such that the
infinite set S′t := {n ∈N : m′i+1 < n, t×n ∈ T (i+1)} verifies that t×S′t ⊂ T (i+
1)\T and for each t×n∈ t×S′t the set {v∈∪sNs : t×n×v∈U} does not contain
an NV -tree. Now we define St := /0.
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The induction finish by setting Qi+1 := ∪{t× St : t ∈ Q′i} and Q′i+1 := ∪{t× S′t :
t ∈ Q′i}. Then Qi+1 ⊂ T (i+1)∩ (T\U), Q′i+1 ⊂ T (i+1)\T , and each t ∈ Qi+1∪Q′i+1
verifies the above indicated properties when t ∈ Q j ∪Q′j, changing j by i+1.

As T does not contain infinite chains for each (t1, t2, . . . , ti) ∈ Q′i there exists q ∈ N
and (ti+1, . . . , ti+q)∈Nq such that (t1, t2, . . . , ti, ti+1, . . . , ti+q)∈Qi+q, whence (∪ j>iQ j)(i)=
Q′i. This implies that the subset W :=∪{Q j : j∈N} of T\U has the increasing property,
because from W (k) = Qk∪Q′k, for each k ∈N, we get that |W (1)|= |Q′1|= ∞ and if t =
(t1, t2, . . . , tp) ∈W then (t1, t2, . . . , ti) ∈Q′i, if 1 < i < p, and (t1, t2, . . . , tp) ∈Qp, whence
the infinite subsets S′t(i−1) and St(p−1) of N verify that t(i− 1)× S′t(i−1) ⊂ Q′i ⊂W (i)
and t(p−1)×St(p−1) ⊂ Qp ⊂W . Therefore W is an NV -tree contained in T\U .

Definition 2. A property P is hereditary increasing in a set A if for each pair of subsets
B and C of A such that B verifies property P and B ⊂C ⊂ A then C also has property
P.

Example 1. The properties wN, sN and N are hereditary increasing properties in a
set-algebra A .

Proof. Let B ⊂ C ⊂A . It is obvious that if B has property N then C has also prop-
erty N. Whence if B has property sN and if ∪mCm is an increasing covering of C then
there exists Cn such that Cn ∩B has property N, therefore Cn has property N and we
get that C has also property sN.

If B has property wN and {Cm1m2...mp : p,m1,m2, . . . ,mp ∈ N} is an increasing
web in C , then there exists a sequence (ni)i such that each Cn1n2...ni ∩B has property
N, i ∈N, whence (Cn1n2...ni)i is a strand in C consisting of sets which have property N.

Proposition 3. Let P be an hereditary increasing property in A and let B := {Bm1m2...mp :
p,m1,m2, . . . ,mp ∈N} be an increasing web in A without strands consisting of sets with
property P. Then there exists an NV -tree T such that for each t = (t1, t2, . . . , tq) ∈ T
the set Bt does not have property P and if p > 1 then Bt(i) has property P, for each
i = 1,2, . . . , p−1.

Proof. If each Bm1 , m1 ∈ N, does not have property P the proposition is obvious with
T := N. Hence we may suppose that there exists m′1 ∈ N such that Bt1 has property P
for each t1 > m′1 and then we write Q1 := /0 and Q′1 := {t1 ∈ N : t1 > m′1}.

Let us assume that for each j, with 2 6 j 6 i, we have obtained by induction two
disjoint subsets Q j and Q′j of N j such that for each t = (t1, t2, . . . , t j) ∈Q j∪Q′j the sec-
tion t( j−1) = (t1, t2, . . . , t j−1) ∈ Q′j−1, if t ∈ Q j then the set Bt does not have property
P and t( j− 1)×N ⊂ Q j and then we define St( j−1) := N and S′t( j−1) = /0; otherwise,
if t ∈Q′j then the set Bt has property P and S′t( j−1) := {n ∈N : t( j−1)×n ∈Q j∪Q′j}
is a co-finite subset of N such that t( j− 1)× S′t( j−1) ⊂ Q′j. In this case we define
St( j−1) := /0.

If t :=(t1, t2, . . . , ti)∈Q′i then, by induction, Bt1t2...ti has property P and as (Bt1t2...tin)n
is an increasing covering of Bt1t2...ti it may happen that either Bt1t2...tin does not have
property P for each n ∈ N and then we define St1t2...ti := N and S′t1t2...ti := /0, or there
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exists m′i+1 ∈N such that Bt1t2...tin has property P for each n > m′i+1 and in this second
case we define St1t2...ti := /0 and S′t1t2...ti := {n ∈ N : m′i+1 6 n}.

We finish this induction procedure by setting Qi+1 :=∪{t×St : t ∈Q′i} and Q′i+1 :=
∪{t×S′t : t ∈Q′i}. By construction Qi+1 and Q′i+1 verify the above indicated properties
of Q j and Q′j replacing j by i+1.

The hypothesis that for each sequence (mi)i ∈ NN there exists j ∈ N such that
Bm1m2...m j does not have property P implies that T := ∪{Qi : i ∈ N} does not contain
infinite chains, because if (m1,m2, . . . ,mp) ∈ Qp then (m1,m2, . . . ,mp−1) ∈ Q′p, hence
Bm1m2...mp−1 has property P. Therefore for each (t1, t2, . . . , tk) ∈ Q′k there exists an
extension (t1, t2, . . . , tk, tk+1, . . . , tk+q) ∈ Qk+q, whence T (k) = Qk ∪Q′k, for each k ∈
N. Then the set T has the increasing property, because |T (1)| = |Q′1| = ∞ and if t =
(t1, t2, . . . , tp) ∈ T the sets S′t(i−1), 1 < i < p, are co-finite subsets of N, St(p−1) := N,
t(i− 1)× S′t(i−1) ⊂ Q′i ⊂ T (i) and t(p− 1)× S′t(p−1) ⊂ Qp ⊂ T . By construction, if
t = (t1, t2, . . . , tp) ∈ T then t(i) ∈Q′i, if 1 6 i < p, and t ∈Qp, whence Bt(i) has property
P, for each i = 1,2, . . . , p−1, Bt does not have property P, {t(i) : 1 6 i 6 p}∩T = {t}
and the extensions of t(p−1) in T are the elements of t(p−1)×N, whose lengths are
p.

Definition 3 ([6, Definition 1]). Let B be an element of the algebra A of subsets of
Ω. A subset M of ba(A ) is deep B-unbounded if each finite subset Q of {eA : A ∈A }
verifies that

sup{|µ(C)| : µ ∈M∩Q◦, C ∈A , C ⊂ B}= ∞.

The proof of the next proposition is straightforward.

Proposition 4 ([6, Proposition 5]). If a subset M of ba(A ) is deep B-unbounded and
{Bi ∈ A : 1 6 i 6 q} is a partition of B then there exists j, 1 6 j 6 q, such that M is
deep B j-unbounded.

Proposition 5 ([6, Proposition 4]). Let A be an algebra of subsets of Ω and let (Bm)m
be an increasing sequence of subsets of A such that each Bm does not have N-property
and span{eC : C ∈ ∪mBm} = L(A ). There exists n0 ∈ N such that for each m > n0
there exists a deep Ω-unbounded τs(A )-closed absolutely convex subsets Mm of ba(A )
which is pointwise bounded in Bm, i.e., sup{|µ(C)| : µ ∈Mm}< ∞ for each C ∈Bm.
In particular this proposition holds if ∪mBm = A or if ∪mBm has N-property.

Proposition 6. Let B := {Bm1m2...mp : p,m1,m2, . . . ,mp ∈N} be an increasing web in
a set- algebra A . If B does not contain strands consisting of sets with property N then
there exists an NV -tree T such that for each t ∈ T there exists a deep Ω-unbounded
τs(A )-closed absolutely convex subset Mt of ba(S ) which is Bt -pointwise bounded.

Proof. By Proposition 3 with P = N there exists an NV -tree T1 such that for each
t = (t1, t2, . . . , tp) ∈ T1 the set Bt does not have property N and if p > 1 then Bt(i)
has property N, for each i = 1,2, . . . , p− 1. If p = 1 the conclusion follows from
Proposition 5 in the case ∪m1Bm1 = A , being T := T1\{1,2, . . . ,n0−1}, where n0 is
the natural number in Proposition 5. If p> 1 then Bt(p−1) =∪mBt(p−1)×m has property
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N and the conclusion follows again from Proposition 5 in the case that ∪mBm has N-
property, being T the NV -tree obtained after deleting in T1 the elements t(p− 1)×
{1,2, . . . ,n0(t)−1}, for each t = (t1, t2, . . . , tp) ∈ T1 where n0(t) is the natural number
of Proposition 5 for the increasing sequence (Bt(p−1)×m)m.

Next Proposition 7 is given in [6, Proposition 8] as a currently version of Proposi-
tions 2 and 3 in [13]. Also Proposition 8 is contained in [6, Propositions 9 and 10]. In
both propositions we present a sketch of the proofs for the sake of completeness and as
a new help to the reader.

Proposition 7 ([6, Proposition 8]). Let {B,Q1, . . . ,Qr} be a subset of the algebra A
of subsets of Ω and let M be a deep B-unbounded absolutely convex subset of ba(A ).
Then given a positive real number α and a natural number q > 1 there exists a finite
partition {C1,C2, . . . ,Cq} of B by elements of A and a subset {µ1,µ2, . . . ,µq} of M
such that |µi(Ci)|> α and Σ16 j6rµi(Q j)6 1, for i = 1,2, . . . ,q.

Proof. It is enough to proof the case q= 2, because then there exists Ci, i∈ {1,2}, such
that M is deep Ci-unbounded by Proposition 4. Let Q = {χB,χQ1 ,χQ2 , . . . ,χQr}. As
rM is deep B-unbounded, i.e., sup{|µ(D)| : µ ∈ rM∩Q◦, D⊂ B, D ∈A }= ∞, there
exists C1 ⊂ B, with C1 ∈ A , and µ ∈ rM ∩Q◦ such that |µ(C1)| > r(1+α). Then
µ1 = r−1µ ∈ M, |µ1(B)| 6 r−1 6 1 and Σ16 j6r

∣∣µ1(Q j)
∣∣ 6 r−1r = 1. Clearly C2 :=

B\C1 and µ2 := µ1 verify that |µ1(C2)|> |µ1(C1)|− |µ1(B)|> 1+α−1 = α .

Proposition 8 ([6, Propositions 9 and 10]). Let {B,Q1, . . . ,Qr} be a subset of an alge-
bra A of subsets of Ω and let {Mt : t ∈ T} be a family of deep B-unbounded absolutely
convex subsets of ba(A ), indexed by an NV -tree T . Then for each positive real num-
ber α and each finite subset {t j : 1 6 j 6 k} of T there exist a set B1 ∈A , a measure
µ1 ∈Mt1 and an increasing tree T1, such that

1. B1 ⊂ B, {t j : 1 6 j 6 k} ⊂ T1 ⊂ T and Mt is deep (B\B1)-unbounded for each
t ∈ T1.

2. |µ1(B1)|> α and Σ{|µ1(Qi)| : 1 6 i 6 r}6 1.

Proof. Let t j := (t j
1, t

j
2, . . . , t

j
p j), for 1 6 j 6 k. By Proposition 7 applied to B, α , q :=

2+Σ16 j6k p j and Mt1 there exist a partition {C1,C2, . . . ,Cq} of B by elements of A
and {λ1,λ2, . . . ,λq} ⊂Mt1 such that:∣∣λk(C1

k )
∣∣> α and Σ16i6r |λk(Qi)|6 1 for k = 1,2, . . . ,q. (1)

From Proposition 4 it follows that if M is deep B-unbounded there exists an iM ∈
{1,2, . . . ,q} such that M is deep CiM -unbounded, hence if Mu is deep B-unbounded for
each u∈U and Vi := {u∈U : Mu is deep Ci-unbounded}, 16 i6 q, then U =∪16i6qVi.
Whence if U is an NV -tree there exists i0, with 1 6 i0 6 q, such that Vi0 contains an
NV -tree Ui0 by Proposition 2.

Therefore there exists Ci j and Ci0
, with {i j, i0} ⊂ {1,2, . . . ,q}, and an NV -tree

Ti0 ⊂ T such that Mt j is deep Ci j -unbounded, for each j ∈ {1,2, . . . ,k}, and Mt is deep
Ci0

-unbounded for each t ∈ Ti0 .
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For each t j = (t j
1, t

j
2, . . . , t

j
p j) /∈ Ti0 , 1 6 j 6 k, and each section t j(m− 1) of t j,

with 2 6 m 6 p j, the set W j
m := {v ∈ ∪sNs : t j(m− 1)× v ∈ T} is an NV -tree such

that M
(t j

1 ,t
j
2 ,...,t

j
m−1)×w is deep B-unbounded for each w ∈W j

m, whence there exists i j
m ∈

{1,2, . . . ,q} and an NV -tree V j
m contained in W j

m such that M
(t j

1 ,t
j
2 ,...,t

j
m−1)×w is deep Ci j

m
-

unbounded for each w ∈V j
m.

Let D be the union D :=Ci0 ∪ (∪{Ci j ∪Ci j
m

: j ∈ S, 2 6 m 6 p j}) and let T1 be the

union of Ti0 and the sets {t j}∪{(t j
1, t

j
2, . . . , t

j
m−1)×V j

m : 2 6 m 6 p j}, such that t j /∈ Ti0
and 1 6 j 6 k. By construction T1 has the increasing property and if t ∈ T1 the set Mt
is deep D-unbounded.

The number of sets defining D is less or equal than q−1, hence there exists Ch such
that D⊂ B\Ch and we get that T1 is an NV -tree such that Mt is deep B\Ch-unbounded
for each t ∈ T1 and, by (1), this proof is done with B1 :=C1

h and µ1 := λh.

Corollary 1 ([6, Proposition 10]). Let {B,Q1, . . . ,Qr} be a subset of an algebra A of
subsets of Ω and {Mt : t ∈ T} a family of deep B-unbounded absolutely convex subsets
of ba(A ), indexed by an increasing tree T . Then for each positive real number α and
each finite subset {t j : 1 6 j 6 k} of T there exist k pairwise disjoint sets B j ∈ A , k
measures µ j ∈Mt j , 1 6 j 6 k, and an increasing tree T ∗ such that:

1. ∪{B j : 1 6 j 6 k}⊂ B, {t j : 1 6 j 6 k}⊂ T ∗ ⊂ T and Mt is deep (B\∪16 j6k B j)-
unbounded for each t ∈ T ∗.

2.
∣∣µ j(B j)

∣∣> α and Σ{
∣∣µ j(Qi)

∣∣ : 1 6 i 6 r}6 1, for j = 1,2, . . . ,k.

Proof. Apply k times Proposition 8.

In Theorem 1 we need the sequence (in)n := (1,1,2,1,2,3, . . .) obtained with the
first components of the sequence {(1,1),(1,2),(2,1),(1,3),(2,2),(3,1), . . .} gener-
ated writing the elements of N2 following the diagonal order.

Theorem 1. A σ -algebra S of subsets of a set Ω has property wN.

Proof. Let us suppose that S is a σ -algebra of subsets of a set Ω which does not
have property wN. Then there would exists in S an increasing web {Bm1m2...mp :
p,m1,m2, . . . ,mp ∈ N} without strands consisting of sets with Property N. By Propo-
sition 6 there exists an NV -tree T such that for each t ∈ T there exists a deep Ω-
unbounded τs(A )-closed absolutely convex subset Mt of ba(S ) which is Bt -pointwise
bounded.

By induction it is easy to determine an NV -tree {t i : i ∈ N} contained in T and a
strictly increasing sequence of natural numbers (k j) j such that for each (i, j)∈N2 with
i 6 k j there exists a set Bi j ∈A and µi j ∈Mt i that verify

Σs,v{
∣∣µi j(Bsv)

∣∣ : s 6 kv, 1 6 v < j})< 1, (2)∣∣µi j(Bi j)
∣∣> j, (3)

and Bi j ∩Bi′ j′ = /0 if (i, j) 6= (i′, j′).
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In fact, select t1 ∈ T . Corollary 1 with B := Ω and α = 1 provides B11 ∈ S ,
µ11 ∈ Mt1 and an NV -tree T1 such that |µ11(B11)| > 1, t1 ∈ T1 ⊂ T and Mt is deep
Ω\B11-unbounded for each t ∈ T1. Define k1 := 1, S1 := {t1} and B1 := B11.

Let us suppose that we have obtained the natural numbers k1 < k2 < k3 < · · ·< kn,
the NV -trees T1 ⊃ T2 ⊃ T3 ⊃ ·· · ⊃ Tn, the elements {t1, t2, . . . , tkn} such that S j :=
{t i : i 6 k j} ⊂ Tj and S j := {tk j−1+1, . . . , tk j} has the increasing property respect to
S j−1, for each 1 < j 6 n, together with the measures µi j ∈Mt i and the pairwise disjoint
elements Bi j ∈S , i 6 k j and j 6 n, such that

∣∣µi j(Bi j)
∣∣> j and Σs,v{

∣∣µi j(Bsv)
∣∣ : s 6 kv,

1 6 v < j}< 1, if i 6 k j and j 6 n, in such a way that the union B j := ∪{Bsv : s 6 kv,
16 v6 j} verifies that Mt is deep Ω\B j-unbounded for each t belonging to the NV -tree
Tj, for each j < n.

To finish the induction procedure select a subset Sn+1 := {tkn+1, . . . , tkn+1} of Tn\{t i :
i 6 kn} which has the increasing property respect to Sn and apply again Corollary
1 to Ω\Bn, {Bsv : s 6 kv,1 6 v 6 n}, Tn, the finite subset Sn+1 := {t i : i 6 kn+1} of
Tn and n + 1. Then, for each i 6 kn+1, we obtain Bin+1 ∈ A , Bin+1 ⊂ Ω\Bn, and
µin+1 ∈Mt i such that |µin+1(Bin+1)|> n+1, Σs,v{|µin+1(Bsv)| : s 6 kv, 1 6 v 6 n}< 1,
Bin+1 ∩Bi′n+1 = /0, if i 6= i′, and the union Bn+1 := ∪{Bsv : s 6 ks, 1 6 v 6 n+ 1} has
the property that Tn contains an increasing tree Tn+1 such that Sn+1 ⊂ Tn+1 and Mt is
deep Ω\Bn+1-unbounded for each t ∈ Tn+1.

With a new easy induction we obtain a subset J := { j1, j2, . . . , jn, . . .} of N such
that jn < jn+1, for n ∈ N, and for each (i, j) ∈ N× J with i 6 k j we have

Σs,v{
∣∣µi j(Bsv)

∣∣ : s 6 kv, j < v ∈ J}< 1

because if the variation
∣∣µi j
∣∣(Ω)< s∈N, {Nu,16 u6 s} is a partition of N\{1,2, . . . , j}

in s infinite subsets and Bu := ∪{Bsv : s 6 kv, v ∈ Nu}, 1 6 u 6 s1, then the inequality
Σ{
∣∣µi j
∣∣(Bu) : 1 6 u 6 s1}< s1 implies that there exists u′, with 1 6 u′ 6 s1, such that∣∣µi j

∣∣(Bu′)< 1, whence

Σs,v{
∣∣µi j(Bsv)

∣∣ : s 6 kv,v ∈ Nu′}< 1,

and then the sequence (Bin jn , µin jn)n verifies for each n ∈ N that:

Σs{
∣∣µin jn(Bis js)

∣∣ : s < n})< 1, (4)∣∣µin jn(Bin jn)
∣∣> jn, (5)

and ∣∣µin jn(∪s{Bis js : n < s})
∣∣< 1. (6)

As Sn+1 has the increasing property respect to Sn we have that {t i : i ∈ N} is an
NV -tree contained in T , hence ∪{Bt i : i ∈ N} = S . The relation H := ∪{Bis js : s =
1,2, . . .} ∈S implies that there exists r ∈ N such that H ∈Btr . Then for each strictly
increasing sequence (np)p such that inp = r we have that {µinp jnp : p ⊂ N} is a subset
of Mtr . As Mtr is Btr -pointwise bounded we get that

sup
{∣∣µinp jnp (H)

∣∣ : p ∈ N
}
< ∞. (7)
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The sets Cp :=∪s{Bis js : s< np}, Binp jnp and Dp :=∪s{Bis js : np < s} are a partition
of the set H. By (4), (5) and (6),

∣∣µinp jnp (C)
∣∣ < 1, µinp jnp (Binp jnp ) > jnp > np and∣∣∣µinp jnp (D)

∣∣∣< 1, for each p ∈ N\{1}. Therefore the inequality∣∣∣µinp jnp (H)
∣∣∣>− ∣∣∣µinp jnp (C)

∣∣∣+µinp jnp (Binp jnp )−
∣∣∣µinp jnp

∣∣∣(D)> jnp −2

implies that
lim

p

∣∣∣µinp jnp (H0)
∣∣∣= ∞,

contradicting (7).

The following corollary extends Corollary 13 in [6]. A family {Bm1m2...mi : i,m j ∈
N,16 j 6 i6 p} of subsets of A is an increasing p-web in A if (Bm1)m1 is an increasing
covering of A and (Bm1m2...mi+1)mi+1 is an increasing covering of Bm1m2...mi , for each
m j ∈ N, 1 6 j 6 i < p (this definition comes from [7, Chapter 7, 35.1]).

Corollary 2. Let S be a σ -algebra of subsets of Ω and let {Bm1m2...mi : i,m j ∈ N,
1 6 j 6 i 6 p} be an increasing p-web in S . Then there exists Bn1n2...np such that if

{Bn1n2...npmp+1mp+1...mp+k : k,mp+l ∈ N,1 6 l 6 k 6 q)

is an increasing q-web of Bn1n2...np there exists (np+1,np+2, . . . ,np+q) ∈ Nq such that
each τs(Bn1n2...npnp+1...np+q)-Cauchy sequence (µn ∈ ba(S ))n is τs(S )-convergent.

Proof. By Proposition 1 with P = N and Theorem 1 there exists Bn1n2...np which has
property wN. Hence there exists Bn1n2...npnp+1...np+q which has property N. Then
if (µn)n ⊂ ba(S ) is a τs(Bn1n2...npnp+1...np+q)-Cauchy sequence we have that (µn)n
has no more than one τs(S )-adherent point, whence (µn)n is τs(S )-convergent. As
L(Bn1n2...npnp+1) = L(S ) the sequence (µn)n has no more that one τs(S )-adherent
point, whence (µn)n is τs(S )-convergent.

3 Applications
In this section we obtain some applications of Theorem 1 to bounded finitely additive
vector measures.

A bounded finitely additive vector measure, or simple bounded vector measure, µ

defined in an algebra A of subsets of Ω with values in a topological vector space E is a
map µ : A →E such that µ(A ) is a bounded subset of E and µ(B∪C)= µ(B)+µ(C),
for each pairwise disjoint subsets B, C ∈A . Then the E-valued linear map µ : L(A )→
E defined by µ(eB) := µ(B), for each B ∈A , is continuous.

A locally convex space E(τ) is the p-inductive limit of the family of locally convex
spaces E := {Em1m2...mi(τm1m2...mi) : i,m j ∈ N, 1 6 j 6 i 6 p} if E(τ) is the inductive
limit of (Em1(τm1))m1 and moreover, each Em1m2...mi(τm1m2...mi) is the inductive limit of
the sequence (Em1m2...mimi+1(τm1m2...mi+1))mi+1 , for each m j ∈ N, 1 6 j 6 i < p. Then
E is a defining p-increasing web for E(τ) with steps Em1m2...mi(τm1m2...mi). E(τ) is a
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p-(LF) (or p-(LB)) space if E(τ) admits a defining p-increasing web E such that each
Em1m2...mp(τm1m2...mp) is a Fréchet (or Banach) space and we say that E is a defining
p-(LF) (or p-(LB)) increasing web for E(τ).

Next proposition extends [12, Theorem 4] and [6, Proposition 10].

Proposition 9. Let µ be a bounded vector measure defined in a σ -algebra S of sub-
sets of Ω with values in a topological vector space E(τ). Suppose that {Em1m2···mi :
m j ∈ N, 1 6 j 6 i 6 p} is an increasing p-web in E. Then there exists En1n2···np

such that if En1n2···np(τn1n2···np) is an q-(LF)-space, the topology τn1n2···np is finer than
the relative topology τ|En1n2 ···np and {En1n2...npmp+1...mp+i(τm1m2...mimp+1...mp+i) : i,mp+ j ∈
N,1 6 j 6 i 6 q} a defining q-(LF) increasing web for En1n2···np(τn1n2···np) there exists
(np+1,np+2, . . . ,np+q) ∈ Nq such that µ(S ) is a bounded subset of
En1n2...npnp+1...np+q(τn1n2...npnp+1...np+q).

Proof. Let Bm1m2...mi := µ−1(Em1m2...mi) for each m j ∈ N, 1 6 j 6 i 6 p. By Propo-
sition 1 and Theorem 1 there exists (n1,n2, . . . ,np) ∈ Np such that Bn1n2...np has wN-
property. Let {En1n2...npmp+1...mp+i(τm1m2...mimp+1...mp+i) : i,m j ∈ N,1 6 j 6 i 6 q} be a
defining p-(LF) increasing web for En1n2...np(τn1n2...np) and let Bn1n2...npmp+1...mp+i :=
µ−1(En1n2...npmp+1...mp+i), for each i,mp+ j ∈ N,1 6 j 6 i 6 q. As

{Bn1n2...npmp+1...mp+i : i,mp+ j ∈ N,1 6 j 6 i 6 q}

is an increasing q-web of Bn1n2...np and this set has wN-property then there exists a
subset Bn1n2...npnp+1...np+q which has property N, whence L(Bn1n2...npnp+1...np+q) is a
dense subspace of L(S ) and then the map with closed graph

µ|L(Bn1n2...npnp+1 ...np+q )
: L(Bn1n2...npnp+1...np+q)→ En1n2...npnp+1...np+q(τn1n2...npnp+1...np+q)

has a continuous extension υ to L(S ) with values in En1n2...npnp+1...np+q(τn1n2...npnp+1...np+q)
(by [10, 2.4 Definition and (N2)] and [11, Theorems 1 and 14]). Since µ : L(S )→
E(τ) is continuous, υ(A) = µ(A), for each A ∈S .
Whence µ(S ) is a bounded subset of En1n2...npnp+1...np+q(τn1n2...npnp+1...np+q).

Corollary 3. Let µ be a bounded vector measure defined in a σ -algebra S of sub-
sets of Ω with values in an inductive limit E(τ) = ΣmEm(τm) of an increasing se-
quence (Em(τm))m of q-(LF) spaces. There exists n1 ∈ N such that for each defin-
ing q-(LF) increasing web for En1(τn1), {En1m1+1...m1+i(τn1m1+1...m1+i) : i,m1+ j ∈N,1 6
j 6 i 6 q} there exists (n1+i)1≤i≤q in Nq such that µ(S ) is a bounded subset of
En1n1+1...n1+q ,(τn1n1+1...n1+q).

A sequence (xk)k in a locally convex space E is subseries convergent if for every
subset J of N the series Σ{xk : k ∈ J} converges. The following corollary is a gener-
alization of the localization property given in [12, Corollary 1.4] and it follows from
Corollary 3.

Corollary 4. Let (xk)k be a subseries convergent sequence in an inductive limit E(τ) =
ΣmEm(τm) of an increasing sequence (Em(τm))m of q-(LF) spaces. There exists n1 ∈
N such that for each defining q-(LF) increasing web {En1m1+1...m1+i(τn1m1+1...m1+i) :
i,m1+ j ∈ N,1 6 j 6 i 6 q} for En1(τn1) there exists (n1+1,n1+2, . . . ,n1+q) ∈ Nq such
that {xk : k ∈ N} is a bounded subset of En1n1+1...n1+q(τn1n1+1...n1+q).
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Proof. As (xk)k is subseries convergent, then the additive vector measure µ : 2N →
E(τ) defined by µ(J) := Σk∈Jxk, for each J ∈ 2N, is bounded, because ( f (xk))k is
subseries convergent for each f ∈ E ′, whence Σ∞

n=1 | f (xn)| < ∞. Therefore we may
apply Corollary 3.

Proposition 10. Let µ be a bounded vector measure defined in a σ -algebra S of
subsets of Ω with values in a topological vector space E(τ). Suppose that {Em1m2...mi :
m j ∈ N,1 6 j 6 i 6 p} is an increasing p-web in E. There exists En1n2...np such that
if {En1n2...npmp+1...mp+i : i,mp+ j ∈ N, 1 6 j 6 i 6 q} is a q-increasing web in En1n2...np

with the property that each relative topology τ|En1n2 ...npmp+1 ...mp+q
,(mp+1, . . . ,mp+q) ∈

Nq is sequentially complete, then there exists (np+1, . . . ,np+q) ∈Nq such that µ(S )⊂
En1n2...npnp+1...nq.

Proof. Let Bm1m2...mi := µ−1(Em1m2...mi) for each m j ∈ N, 1 6 j 6 i 6 p. By Propo-
sition 1 and Theorem 1 there exists (n1,n2, . . . ,np) ∈ Np such that Bn1n2...np has wN-
property. Let {En1n2...npmp+1...mp+i : i,m j ∈ N, 1 6 j 6 i 6 q} be a increasing q-web
in En1n2...np and let Bn1n2...npmp+1...mp+i := µ−1(En1n2...npmp+1...mp+i), for each i,mp+ j ∈
N,1 6 j 6 i 6 q. As

{Bn1n2...npmp+1...mp+i : i,mp+ j ∈ N, 1 6 j 6 i 6 q}

is an increasing q-web of Bn1n2...np there exists Bn1n2...npnp+1...np+q which has property
N, whence L(Bn1n2...npnp+1...np+q) is a dense subspace of L(S ) and then the continuous
map

µ|L(Bn1n2 ···npnp+1 )
: L(Bn1n2...npnp+1...np+q)→ En1n2...npnp+1...np+q(τ|En1n2 ...npnp+1 ...np+q

)

has a continuous extension υ to L(S ) with values in En1n2...npnp+1...np+q(τ|En1n2 ...npnp+1 ...np+q
).

The continuity of µ : L(S )→E(τ) implies that υ(A)= µ(A), for each A∈S . Whence
µ(S ) is a subset of En1n2...npnp+1...np+q .

Corollary 5. Let µ be a bounded additive vector measure defined in a σ -algebra S
of subsets of Ω with values in an inductive limit E(τ) = Σm1Em1(τm1) of an increasing
sequence (Em(τm))m of countable dimensional topological vector spaces. Then there
exists n1 such that for each q-increasing web {En1m1+1...m1+i : i,m1+ j ∈N,16 j 6 i6 q}
in En1 such that the dimension of each En1m1+1...m1+q is finite there exists En1n1+1...n1+q

which contains the set.

Proof. As the relative topology τ|En1m1+1 ...m1+q
is complete we may apply Proposi-

tion 10.
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