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Abstract

A subset Z of an algebra .7 of subsets of Q is said to have the property N if
a AB-pointwise bounded subset M of ba(/) is uniformly bounded on &, where
ba(2/) is the Banach space of the real (or complex) finitely additive measures of
bounded variation defined on ./ with the norm variation. Moreover % is said
to have the property sN if for each increasing countable covering (%) of B
there exists %, which has the property N and 9 is said to have property wN if
given the increasing countable coverings (B, )m, of 2 and (B my..m e Im et
of 33,,,,,”2,,,,,1,7, for each p,m; € N, 1 <i < p+ 1, there exists a sequence (n;); such
that each %y n,..n,, r € N, has property N. For a c-algebra . of subsets of Q
it has been proved that . has property N (Nikodym-Grothendieck), property sN
(Valdivia) and property w(sN) (Kakol-Lépez-Pellicer). We give a proof of property
wN for a o-algebra . which is independent of properties N and sN. This result
and the equivalence of properties wN and w2N enable us to give some applications
to localization of bounded additive vector measures.
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1 Introduction

Let Q be a set and 7 a set-algebra of subsets of Q. If % is a subset of &/ then
L(2) is the normed space of the real or complex linear hull of the set of characteristics
functions {ec : C € #} endowed with the supremum norm || - ||. The dual of L(.¢) with
the dual norm is named L(</)" and it is isometric to the Banach space ba() of finitely
additive measures on .# with bounded variation provided with the variation norm, i.e.,
[-] :=]-](Q), being the isometry the map ®: ba(«/) — L(«/)" such that, for each
U € ba(«), O(u) is the linear form named also by p and defined by p(ec) := u(C),
for each C € 7, [2, Chpater 1]. A norm in L(</) equivalent to the supremum norm
is defined by the Minkowski functional of absco({ec : C € &7}) ([12, Propositions 1
and 2]), which dual norm is the .27 -supremum norm, i.e., ||it|| := sup{|n(C)|: C € &7},
U € ba().

In this paper duality is referred to the dual pair (L(.<7),ba(</)) and we follow no-
tations of [7]. Then the weak * dual of a locally convex space E is (E’, 7;(E)), whence
the topology 7,(L(.«7)) is the topology 7,(.27) of pointwise convergence in the elements
of &7, the cardinal of a set C is denoted by |C|, N is the set {1,2,...} of positive inte-
gers, the closure of a set is marked by an overline, the convex (absolutely convex) hull
of a subset M of a topological vector space is represented by co(M) (absco(M)) and
absco(M) = co(U{rM : |r| = 1}).

A subset B of a set-algebra o has the Nikodym property, property N in brief, if
each B-pointwise bounded subset M of ba(</) is bounded in ba(<?) (see [10, Def-
inition 2.4] or [13, Definition 1]). If % has property N the polar set {ec : C € H}°
is bounded in ba(%), hence the bipolar set {ec : C € #}°° = absco{ec:C € B} is a
neighborhood of zero in L(<) and then L(Z) is dense in L(/). Notice also that a
subset # of an algebra o7 has property N if each Z-pointwise bounded, 7,(A)-closed
and absolutely convex subset M of ba(A) is uniformly bounded in 27. The algebra of
finite and co-finite subsets of N fails to have property N and Schachermayer proved
that the algebra ¢ (I) of Jordan measurable subsets of / := [0, 1] has property N [10,
Corollary 3.5] (see a generalization of this property in [4, Corollary]).

A subset B of a set-algebra </ has the strong Nikodym property, property sN in
brief, if for each increasing covering U,, B, of B there exists B, which has property
N. Valdivia proved that the algebra ¢ (K) of Jordan measurable subsets of a compact
k-dimensional interval K := IT{[a;,b;] : 1 <i < k} in R has property sN [13, Theorem
2.

An increasing web in a set A is a family % := {Amlmz---mp s (my,my, ... my) €
UsN*} of subsets of A such that (A, ), and (Amlmz...mpm,, +1)mp ., are, respectively,
increasing coverings of A and Amlmz...mp’ for each p,m; € N, 1 <i< p+1 [7, Chapter
7, 35.1], and each sequence (Amlmz...mp) pisastrand in W . A subset 2 of a set-algebra
o/ has the web Nikodym property, property wN in brief, if for each increasing web
{PB, :t € UsN*} in B there exists a strand composed of sets which have property N. In
general, if B is a set and 3 is a property verified in the elements of a family of subsets
of B then B has property w3 if each increasing web {B; :t € U;N*} in 9B has a strand
composed of sets which have property 3.

Property w(w*B) is named as property w?p. The next straightforward proposition
states that properties w3 and w3 are equivalent.




Proposition 1. Let (B,,) be an increasing covering of a set B which verifies property
wB. There exists B, which has property w3, whence B has property w*g.

Proof. Let us suppose that (B, ), is an increasing covering of a set B such that each B,
does not have property w'3. Then, for each natural number m there exists an increasing
web ¥, = {Bﬁlmz‘_.mp : p,my,my,...,m, € N} in B,, such that every strand in %/,

contains a set B;Z]mz...mp without property B. If B, My = Bﬁ;m%mp we get that
W o= {Bmlmg...mp : p,mi,my,...,m, € N} is an increasing web in B without strands

consisting of sets with property 13, whence B does not have property w'3. This proves
the first affirmation which readily implies that if B verifies property w'l3 then every
increasing web in B contains a strand consisting of sets with property w3, whence
properties w3 and w”)3 are equivalent in B. O

Let . be a o-algebra of subsets of a set Q. It has been sequentially shown that (i)
7 has property N (Nikodym-Dieudonné-Grothendieck theorem [9], [3] and [1, page
80, named as Nikodym-Grothendieck boundedness theorem]), (ii) . has property sN
([12, Theorem 2]) and (iii) .¥ has property w(sN) (very recently in [6, Theorem 2]).
The aim of this paper is to present in the next section a proof of the property that
each o-algebra . has property wN independent of any property related to Nikodym
boundedness property, as properties N or sN, and using very elementary locally convex
space theory.

Last section deals with some applications to bounded vector measures deduced
from the property wN of each o-algebra . and from the equivalence stated in Propo-
sition 1.

Following the characterization of sN-property of a set-algebra A by the locally con-
vex property of L(A) given in [13, Theorem 3] it is possible to get a characterization of
wN property of a set-algebra A by the locally convex properties considered in [5] and
[8]. In fact Theorem 1 is equivalent to Theorem 2.7 of [8], totally stated in the locally
convex theory frame.

2 NV-trees and property wN

Given two elements, t = (f,12,...,1,) and s = (s1,52,...,5,), and two subsets, 7 and
U, of U;N® then p is the length of t, for each 1 < i < p the section of length i of t
ist(i) := (t1,12,...,1;); if i > p, t(i) :=0; T(m):={t(m):t €T}, foreach m e N;
EX 8= (11,02, Ipolpi1,tpt2, oy lpiq), With t, ji=sj, for 1 < j< g, and T x U :=
{txu:teT,ucU}.

Each ¢ X s € U is an extension of t in U and a sequence (1), of elements " =
(17,85, ...,tF,...) € T is an infinite chain in T if for each n € N the element "+ is an
extension of the section " (n) in T, i.e., @ # t"(n) = "*!(n), and length of " is at least
n, for each n € N. If t = (#) then ¢ and the products T x r and ¢ x T are represented by
t1, Txtpandty xT.

Let 0 4 U C U,N". U is increasing at t = (t1,12,...,t,) € U;N* if U contains
elements ¢! = (¢],2},...) and # = (tl,tz,...,ti,l,tf,t;+l,...), 1 <i< p,suchthat; <t!,
for each 1 < i < p. U is increasing (increasing respect to a subset V of U;N®) if U is



increasing at each t € U (at each t € V). Clearly U is increasing if |U(1)| = oo and
HneN:t(i) xneU(i+1)}| = oo, foreach r = (t1,12,...,1,) €U and 1 <i < p.
Next definition deals with a particular type of increasing trees (see [6, Definition

20).

Definition 1. An NV-tree T is an increasing subset of U;nyN* without infinite chains
such that for each r = (t1,5,...,t,) € T the length of each extension of #(p — 1) in T is
pand {t(i) : 1 <i< p}NT ={t}.

An NV-tree T is trivial if T = T(1) and then T is an infinite subset of N.

The sets N', i € N\ {1}, and the set U{(i) x N’ : i € N} are non trivial NV-trees. The
finite product of NV -trees is an NV -tree.

If T is an increasing subset of U;enyN® and {B,, : u € U;N*} is an increasing web in B
then (Bu(l))ug is an increasing covering of B, because for each u = (u1,uz,...,up) €T
and each i < p the sequence (By(j)xn)u(i)xneT(i+1) 1S an increasing covering of By,
hence if T does not contain infinite chains and b € B there exists t € T such that b € B;.
Therefore B=U{B; :t € T}.

Each increasing subset S of an NV-tree T is an NV-tree, whence if (S,), is a se-
quence of subsets of an NV-tree T such that each S, is increasing respect to S,
then U, S, is an NV-tree. This hereditary property and Proposition 7 in [6] imply next
Proposition 2 and we give a proof as a help for the reader.

Proposition 2. Let U be a subset of an NV -tree T. If U does not contain an NV -tree
then T\U contains an NV -tree.

Proof. This proposition is obvious if 7 is a trivial NV -tree. Whence we suppose that
T is a non-trivial NV-tree and then there exists m) € T'(1) such that for each n > m/
the set {v € U;N* : n x v € U} does not contain an NV-tree. We define Q) := 0 and
Q) :={neT()\T:m| <n}.

Let us suppose that we have obtained for each j, with 2 < j < i, two disjoint subsets
Qj and Q' of T(jj), with Q; C T\U and Q;N T = 0, such that for each t € Q;UQ'; the
section 7(j— 1) € @}y and Ay(j_y):=={n € N:#(j—1) xn € Q;UQ);} is an infinite
set such that 7 € Q; implies that #(j — 1) x A;(;_1) C Q; and from # € Q) it follows that
t(j—1) xAyj-1) C Q) and that the set {v € U;N": # x v € U} does not contain an NV-
tree. Then we define S;(; 1) :=A4;(;_1) and S;(jil) := 0 in the first case and S;(;_1) =0,
S;(j_l) :=A,(j—1) in the second case.

As for each t € Q}(C T(i)\T) the set {v € U;N*: ¢ x v € U} does not contain an
NV-tree and it is a subset of the NV-tree T, := {v € U;N* : t x v € T'}, the following
two cases may happen:

i. Either the NV -tree T; is trivial and then there exists m;1; € N such that the infinite
set S;:={neN:myy; <n,txneT(i+1)} verifies thatz x S; C T\U. In this
case we define S := 0.

ii. Or the NV-tree T; is non-trivial and then there exists m; +1 € N such that the
infinite set S ;= {n € N:m/ | <n,txneT(i+1)} verifies thatr x §; C T(i +
1)\7T and for each 7 x n € 1 x S; the set {v € U;N* : 7 x n x v € U } does not contain
an NV -tree. Now we define S; := 0.



The induction finish by setting Q;1 :=U{r x §; : 1 € Qj} and Q;, | := U{r x §; :
t€Qi}. Then Qi CT(i+1)N(T\U), Ql,; CT(i+1)\T,and eachr € Q;; 1 UQ;,
verifies the above indicated properties when ¢ € Q; U Q", changing j by i+ 1.

As T does not contain infinite chains for each (t1,1,...,t;) € Q) there exists g € N
and ([i+17 e »tH»q) € N4 such that (ll,lz, oty tivn, .. ,[H,q) S Qi+q, whence (Uj>in)(i) =
Q). This implies that the subset W := U{Q; : j € N} of T\U has the increasing property,
because from W (k) = QU Q,, for each k € N, we get that [W (1)| = |Q}| = and if r =
(t1,12,...,tp) € Wthen (t1,1p,...,1;) € 0}, if | <i < p,and (11,2,...,t,) € Q,, Whence
the infinite subsets S;(i_w and S;(,_1) of N verify that #(i — 1) x S;<l._1) C QO CcW(i)
and t(p—1) X Sy(,—1) C Qp C W. Therefore W is an NV-tree contained in T\U. [

Definition 2. A property 33 is hereditary increasing in a set A if for each pair of subsets
B and C of A such that B verifies property 3 and B C C C A then C also has property

.

Example 1. The properties wN, sN and N are hereditary increasing properties in a
set-algebra <7 .

Proof. Let 8 C € C «f. Itis obvious that if 24 has property N then € has also prop-
erty N. Whence if % has property sN and if U,,6,, is an increasing covering of % then
there exists %, such that 6, N % has property N, therefore 6, has property N and we
get that % has also property sN.

If % has property wN and { G m,..m, : p,m1,m2,...,m, € N} is an increasing
web in €, then there exists a sequence (n;); such that each €, ,,..,, 1% has property
N, i€ N, whence ((gnlnz---ni) ; s a strand in € consisting of sets which have property N.

O

Proposition 3. Let P be an hereditary increasing property in A and let 5 .= {Bmlmz...mp :
p.mi,my,...,m, € N} be an increasing web in A without strands consisting of sets with
property B. Then there exists an NV-tree T such that for each t = (t1,t2,...,t;) € T
the set B, does not have property B and if p > 1 then By has property *B, for each
i=12,....,p— 1L

Proof. 1f each B, m; € N, does not have property 3 the proposition is obvious with
T :=N. Hence we may suppose that there exists m} € N such that B, has property
for each 7; > m/| and then we write Q; :=0and Q] :={t; e N:1; > m }.

Let us assume that for each j, with 2 < j < i, we have obtained by induction two
disjoint subsets Q; and Q'; of N/ such that for each t = (#1,1,,...,t;) € Q; U Q'; the sec-
tiont(j—1) = (t1,t2,...,tj—1) € Q’jfl, if € Q; then the set B; does not have property
P and#(j— 1) x N C Q; and then we define S;(;_;) := N and S;(jq)
if # € O then the set B; has property P and S;(j_l) ={neN:t(j—1)xneQ;UQ}}
is a co-finite subset of N such that 7(j — 1) x S;(j—l) C Q). In this case we define
St(j—l) = 0.

If 1 := (t1,12,...,t;) € Q) then, by induction, By, ., has property P and as (B,s,...;n)n
is an increasing covering of By ;,. , it may happen that either By, . 1, does not have
property B for each n € N and then we define Sy,4,..,, := N and S;lt2~~~ti := 0, or there

= (; otherwise,



exists m; | € N such that By, _;,, has property 3 for each n > m]_ | and in this second
case we define Sy, , :=0and S;,, ,:={n€N:m  <n}.

We finish this induction procedure by setting Q; 1 :=U{r xS, :t € Qj} and Q;, | :=
U{r x S} : 1t € Q;}. By construction Q; | and Q).  verify the above indicated properties
of Q; and Q) replacing j by i+ 1.

The hypothesis that for each sequence (m;); € NN there exists j € N such that
Bmlmz_._mj does not have property 3 implies that 7 := U{Q; : i € N} does not contain

infinite chains, because if (m1,my,...,m,) € Q) then (my,my,...,m, 1) € Q),, hence
Bm1mz~»~mp4 has property B. Therefore for each (¢1,1,...,5) € Q§< there exists an
extension (11,12,...,lk,tkq1;- - - lkrq) € Ok+q» Whence T'(k) = Qr U Qy, for each k €

N. Then the set T has the increasing property, because |7(1)| = |Q}| =0 and if t =
(t1,12,...,1p) € T the sets S;(l._l), 1 <i < p, are co-finite subsets of N, S;(,_j) := N,
t(i—1)x S;(l.il) CQ.CT()andt(p—1)x S;(pq) C Q, C T. By construction, if
t=(t1,t2,...,1,) €T thent(i) € O, if | <i< p,andt € Q,, whence B,(;) has property
B, foreachi=1,2,...,p—1, B, does not have property P, {t(i) : 1 <i< p}NT = {r}
and the extensions of #(p — 1) in T are the elements of #(p — 1) X N, whose lengths are
p.

O

Definition 3 ([6, Definition 1]). Let B be an element of the algebra <7 of subsets of
Q. A subset M of ba(.«7) is deep B-unbounded if each finite subset 2 of {e4 : A € o7}
verifies that

sup{|u(C)|: neMN2°, Ce o/, CC B} =oo.

The proof of the next proposition is straightforward.

Proposition 4 ([6, Proposition 5]). If a subset M of ba(</) is deep B-unbounded and
{Bi € o : 1 <i< q} is a partition of B then there exists j, 1 < j < g, such that M is
deep B j-unbounded.

Proposition 5 ([6, Proposition 4]). Ler o be an algebra of subsets of Q and let (Byy)m
be an increasing sequence of subsets of </ such that each %,, does not have N-property
and span{ec : C € Uy By} = L(). There exists ng € N such that for each m > ng
there exists a deep Q-unbounded t4( </ )-closed absolutely convex subsets My, of ba(<?)
which is pointwise bounded in By, i.e., sup{|UL(C)|: L € M,,} < oo for each C € By,
In particular this proposition holds if U,, B, = < or if U, B, has N-property.

Proposition 6. Ler 8 .= {C@mlmz._,mp i p,mi,my,...,m, € N} be an increasing web in
a set- algebra <7 . If BB does not contain strands consisting of sets with property N then
there exists an NV-tree T such that for each t € T there exists a deep Q-unbounded
Ts( )-closed absolutely convex subset M; of ba(.7) which is B;-pointwise bounded.

Proof. By Proposition 3 with 3 = N there exists an NV-tree T; such that for each
t = (t1,t2,...,tp) € T1 the set %, does not have property N and if p > 1 then %,
has property N, for each i = 1,2,...,p—1. If p =1 the conclusion follows from
Proposition 5 in the case Uy, By, = &7, being T := T1\{1,2,...,no — 1}, where ny is
the natural number in Proposition 5. If p > 1 then %, (,_1) = U %, (p—1) xm has property



N and the conclusion follows again from Proposition 5 in the case that U,,%,, has N-
property, being T the NV-tree obtained after deleting in 7} the elements #(p — 1) x
{1,2,...,n9(t) — 1}, for each = (t1,15,...,t,) € Ty where no(t) is the natural number
of Proposition 5 for the increasing sequence (@,< p—1)x ) 0

Next Proposition 7 is given in [6, Proposition 8] as a currently version of Proposi-
tions 2 and 3 in [13]. Also Proposition 8 is contained in [6, Propositions 9 and 10]. In
both propositions we present a sketch of the proofs for the sake of completeness and as
a new help to the reader.

Proposition 7 ([6, Proposition 8]). Let {B,Qyi,...,0,} be a subset of the algebra o
of subsets of Q and let M be a deep B-unbounded absolutely convex subset of ba(</).
Then given a positive real number o and a natural number q > 1 there exists a finite
partition {C1,Cs,...,Cy} of B by elements of o/ and a subset {j1,l2,..., g} of M
such that |l;(G;)| > o and Ei<j<,pti(Qj) < 1, fori=1,2,...,q.

Proof. Ttis enough to proof the case g = 2, because then there exists C;, i € {1,2}, such
that M is deep C;-unbounded by Proposition 4. Let 2 = {x5,X0,:X0,,---: X0, }- As
rM is deep B-unbounded, i.e., sup{|u(D)|: L € rMN2°, D C B, D € &/ } = o, there
exists C; C B, with C) € &7, and u € rM N 2° such that |u(Cy)| > r(1 + a). Then
o =r'weM, |mB)| <r ' <1and Ligjcr | (Q)| < r 'r=1. Clearly G, :=
B\C) and , := py verify that |u;(C2)| = i1 (C)| — | (B)| > 1+a—1=«. O

Proposition 8 ([6, Propositions 9 and 10]). Let {B,Q1,...,Q,} be a subset of an alge-
bra of of subsets of Q and let {M, : t € T} be a family of deep B-unbounded absolutely
convex subsets of ba(«), indexed by an NV -tree T. Then for each positive real num-
ber o and each finite subset {t/ : 1 < j <k} of T there exist a set B| € </, a measure
W € M1 and an increasing tree Ty, such that

1. BiCB, {t/:1<j<k}yCT CT and M, is deep (B\B))-unbounded for each
teT.

2. |,LL1(B])| > Ocand):{|/.tl(Q,-)| 1 <i< r} <1

Proof. Lett/ = (t{,tf, e ,t,/,'j), for 1 < j < k. By Proposition 7 applied to B, «, g :=
2+ Xi<j<kpj and M, there exist a partition {Cy,Cs,...,C;} of B by elements of .o/
and {A1,2,...,A4,} C M, such that:

(G| > and  Eicic, |M(Q)] < 1fork=1,2,....q. (1)

From Proposition 4 it follows that if M is deep B-unbounded there exists an iy, €
{1,2,...,q} such that M is deep C;,,-unbounded, hence if M, is deep B-unbounded for
eachuc U andV;:={uc U : M, is deep C;-unbounded}, 1 <i< g, thenU =Uj¢ic4Vi.
Whence if U is an NV -tree there exists ig, with 1 < ip < g, such that V;; contains an
NV -tree Uj, by Proposition 2.

Therefore there exists C;; and C; , with {i/,ip} € {1,2,...,q}, and an NV-tree
T;, C T such that M,; is deep C;;-unbounded, for each j € {1,2,...,k}, and M, is deep
C,-0 -unbounded for each t € T,.



For each 1/ = (tlj,t;...,t};J.) ¢ T,,, 1< j<k, and each section t/(m—1) of #/,
with 2 < m < pj, the set Wy :={v € U;N* : t/(m — 1) x v € T} is an NV-tree such

that M ,, 18 deep B-unbounded for each w € Wi, whence there exists i, €

JJ J
(1] 1y5estiy_ 1) X

{1,2,...,q} and an NV -tree Vi contained in W3, such that M ,isdeepC, -

(t{lﬁzg,...,tf;lf])x
unbounded for each w € V.
Let D be the union D := C;, U(U{Cy UC,; : j€S,2<m< p;})andlet Tj be the

union of 7;, and the sets {t/} U{(t{.15,...,t] ) x Vi, :2<m < p;}, such that#/ ¢ Tj,
and 1 < j < k. By construction 7} has the increasing property and if r € T the set M,
is deep D-unbounded.

The number of sets defining D is less or equal than g — 1, hence there exists Cj, such
that D C B\C;, and we get that T} is an NV-tree such that M; is deep B\Cj,-unbounded

for each ¢ € T} and, by (1), this proof is done with B} := C}, and Uy := Ay, ]

Corollary 1 ([6, Proposition 10]). Let {B,Q1,...,0,} be a subset of an algebra <f of
subsets of Q and {M; :t € T} a family of deep B-unbounded absolutely convex subsets
of ba(«?), indexed by an increasing tree T. Then for each positive real number o and
each finite subset {t/ : 1 < j <k} of T there exist k pairwise disjoint sets Bijcd, k
measures [L; € M,;, 1 < j <k, and an increasing tree T* such that:

1. U{Bj: 1< j<k}CB {t/:1<j<k}CT*CTandM, isdeep (B\Ui<;<kB;)-
unbounded for each t € T*.

2. |uj(Bj)| > aand 2{|u;(Qi)| : 1 <i<r} <1, for j=1,2,... k.
Proof. Apply k times Proposition 8. O

In Theorem 1 we need the sequence (i), := (1,1,2,1,2,3,...) obtained with the
first components of the sequence {(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),...} gener-
ated writing the elements of N? following the diagonal order.

Theorem 1. A c-algebra . of subsets of a set Q has property wN.

Proof. Let us suppose that . is a c-algebra of subsets of a set Q which does not
have property wN. Then there would exists in .# an increasing web {%,, my..mp
p,mi,my,...,m, € N} without strands consisting of sets with Property N. By Propo-
sition 6 there exists an NV-tree T such that for each ¢ € T there exists a deep Q-
unbounded 7, (<7 )-closed absolutely convex subset M; of ba(.#) which is B;-pointwise
bounded.

By induction it is easy to determine an NV-tree {t' : i € N} contained in 7 and a
strictly increasing sequence of natural numbers (k;); such that for each (i, j) € N? with
i < kj there exists a set B;; € &7 and L;; € M,; that verify

Zs,v{|ﬂij(st)’:S<kw 1<V<j})<17 (2)

|uij(Bij)| > Jj, 3)
and B;jN By = 0if (i, j) # (7, /).



In fact, select t! € T. Corollary 1 with B:= Q and a = 1 provides B;; € .¥,
{1 € M, and an NV-tree T; such that |py(By)| > 1,¢! € Ty C T and M, is deep
Q\Bj-unbounded for each 7 € Tj. Define k; := 1, §' := {tl} and B! := By;.

Let us suppose that we have obtained the natural numbers k; < kp < kz < --- <k,
the NV-trees T} D Tp D T3 D --- D Ty, the elements {r',¢2,...,*} such that §/ :=
{t':i<k;j} CTjand S;:= {f%171 ... %} has the increasing property respect to
§/=1, for each 1 < j < n, together with the measures y; i € M,; and the pairwise disjoint
elements B;; € .7, i < kj and j < n, such that ’,u.,-j(B,-j)| > jand Zs_,v{|,u,~j(st)’ is < ky,
I<v<j<Lifig k; and j < n, in such a way that the union B/ := U{Byy : s < ky,
1 < v < j} verifies that M, is deep Q\B’-unbounded for each ¢ belonging to the NV -tree
T;, for each j < n.

To finish the induction procedure select a subset S, 1 := {1 ... k1) of T,\{r'
i < k,} which has the increasing property respect to S” and apply again Corollary
1 to Q\B", {Byy : 5 < ky, 1 < v < n}, T, the finite subset srl={r i< knt+1} of
T, and n+ 1. Then, for each i < k,1|, we obtain Bj,+1 € &7, Bj,+1 C Q\B", and
Win+1 € M,i such that |tiny1(Bint1)| > n+ 1 Zg o {[Wint1(Bsy)| 1 s <k, 1<v<n} <1,
Bint1N By =0, if i # ', and the union B! := U{By, : s <k;, 1 <v<n+1} has
the property that 7, contains an increasing tree 7, such that §"*! C T, and M; is
deep Q\B""!-unbounded for each t € T, .

With a new easy induction we obtain a subset J := {1, j2,..., ju,...} of N such
that j, < ju41, for n € N, and for each (i, j) € N x J with i < k; we have

ool |lij(Bw)| 1 s <ky, j<veT} <1
because if the variation ’,LLU‘ (Q)<seN,{N,,1<u<s}isapartitionof N\{1,2,...,j}
in s infinite subsets and B, := U{By, : s < ky, v € N, }, 1 < u < 51, then the inequality

{|pij| (Bu) : 1 <u<si} < sy implies that there exists u’, with 1 < u’ < sy, such that
|uij| (Bw) < 1, whence

Es,v{’.u-ij(st)‘ ss < ky,v eNu’} <1,

and then the sequence (Bi,j,, Ui, j,)n verifies for each n € N that:

Zo{ |1 (Biyjo)| s <n}) <1, )
’Hinjiz(Binjn) >j"l7 (5)

and
|I'Linjn(U5{Bist n< S})| < L. (6)

As §""! has the increasing property respect to S” we have that {t' : i € N} is an
NV-tree contained in 7', hence U{%,; : i € N} = .. The relation H := U{B;j, : s =
1,2,...} € . implies that there exists r € N such that H € %,r. Then for each strictly
increasing sequence (1), such that iy, = r we have that {y;, j,, : p C N} is a subset
of M;r. As Myr is By -pointwise bounded we get that

Sup{|uinpjnp (H)‘ :p S N} < oo, (7)



The sets ), := Uy{Bj j, : s <np}, Biyjny
of the set H. By (4), (5) and (6), i iy (C)‘ <1, Miy, ju, (Binpjnp) > Jjn, > np and

Hi oy (D)‘ < 1, for each p € N\{1}. Therefore the inequality

and D), :=U{B; j, : n, < s} are a partition

Wiy, ju, (H )‘ > = | Hi, jun (C)‘ + Wi juy Biny jny ) = | My jny | (D) > Jin, —2
implies that
]1;1] Nin,,jn,} (HO)‘ = 007
contradicting (7). U

The following corollary extends Corollary 13 in [6]. A family {By m,..m, : i,m i €
N, 1< j<i< p} of subsets of A is an increasing p-web in A if (B, )m, is an increasing
covering of A and (B, my..m, » Jm; .1 1s an increasing covering of By m,...m;» for each
mj €N, 1 < j<i< p (this definition comes from [7, Chapter 7, 35.1]).

Corollary 2. Let .7’ be a -algebra of subsets of Q and let {Bn,my..m; © 1,mj €N,
1 < j <i< p} beanincreasing p-web in .. Then there exists '%nl"&mnp such that if
{%#

nlnz...npmpﬂmpﬂ...mp+k

tkympp € N1 <1<k <q)

is an increasing q-web 0f<@n,n2...np there exists (np+1,np+2, .. ,np+q) € N7 such that
each t,(% -Cauchy sequence ([, € ba(.?)), is T,(.7)-convergent.

nny...nphpt | -~-”p+q)

Proof. By Proposition 1 with 8 = N and Theorem 1 there exists L@nlnz._.np which has
property wN. Hence there exists ﬁnlnz...npn,, g which has property N. Then
if (Uy)n C ba(Y) is a Ts(%’nlnzmnp,,pﬂ‘,‘,,I,W)—Cauchy sequence we have that (i),
has no more than one 7,(.¥’)-adherent point, whence (U, ), is 7;(-#)-convergent. As
L(Pnny..npny.y) = L() the sequence (L), has no more that one 7,(.%")-adherent

point, whence (), is 7;(.#)-convergent. O

3 Applications

In this section we obtain some applications of Theorem 1 to bounded finitely additive
vector measures.

A bounded finitely additive vector measure, or simple bounded vector measure, [
defined in an algebra o7 of subsets of Q with values in a topological vector space E is a
map (L : &/ — E such that i (/) is a bounded subset of E and 4 (BUC) = u(B) + u(C),
for each pairwise disjoint subsets B, C € 7. Then the E-valued linear map pt: L(</) —
E defined by u(ep) := pu(B), for each B € 7, is continuous.

A locally convex space E(7) is the p-inductive limit of the family of locally convex
spaces & 1= {Emmy...m; (Tmymy..m;) 1 i,mj € N, 1 < j<i< p}if E(7) is the inductive
limit of (E,y, (T, ))m, and moreover, each Ey my...m; (Tmym,...m;) is the inductive limit of
the sequence (Epn my..mm;. 1 (Tmymy..mis1))miy,» for each m; € N, 1 < j <i < p. Then
& is a defining p-increasing web for E(T) with steps Ep my..m;(Tmymy..m;)- E(T) is a
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p-(LF) (or p-(LB)) space if E(t) admits a defining p-increasing web & such that each
Emlmz...m,,(Tmlmg...mp> is a Fréchet (or Banach) space and we say that & is a defining
p-(LF) (or p-(LB)) increasing web for E(T).

Next proposition extends [12, Theorem 4] and [6, Proposition 10].

Proposition 9. Let u be a bounded vector measure defined in a c-algebra & of sub-
sets of Q with values in a topological vector space E(T). Suppose that {Epy my...m; :
mi e N, 1 <j<i< p} is an increasing p-web in E. Then there exists En1n2-~-np
such that if Ep ny-.n,(Tany--n,) is an q-(LF )-space, the topology Tu,p,..n, is finer than
the relative topology T‘Enlnzmnp and {Enlnz...npmpH...mpH(Tmlmz...m,-mpH...mp+i) : iamp+j €
N, 1< j <i< g} adefining q-(LF) increasing web for Epn,...n,(Tu;ny--n,) there exists
(Mpt1,7p42, ... pyq) € N such that (%) is a bounded subset of

E,

112 Nphpy...lptq (T”l”Z'~'"p”p+l < Nptq )

Proof. Let Buymy..m; := U (Emymy...m;) for each m; € N, 1 < j <i < p. By Propo-
sition 1 and Theorem 1 there exists (n1,n2,...,n,) € N” such that PBryny...n, has wN-
property. Let {Ep n,..nym, 1 ..onysi (Tmymy.omimy ymyyi) 2 6mj €Ny < j< i< q)bea
defining p-(LF) increasing web for Enl”Q---”p(Tnan---np) and let %nlnz...npmp+1...mp+i =
ﬂil(Enlnz...npmp_,_]...mp+,-)a foreachi,m,; €N,1 < j<i<q. As

{#

NNy ApMy . i7mp+j eN,1<j<i< Q}
is an increasing g-web of %nlnz»-vnp and this set has wN-property then there exists a
subset Byiny..npn, ...y, Which has property N, whence L(%nm;..npnpﬂ...npm) is a

dense subspace of L(.#) and then the map with closed graph

l"l' ‘L(ﬂnlnz...n,}n L(@”I”I--”p”wl ...n]H,q) - Enlnz...npnp+1 ...anrq(Tnlnz...n],anr] ...np+q)

p+1"'"P+‘I> '

has a continuous extension v to L(.) with values in Epiny.npny 1 npig (Tnan-unpanrl ,_,,,pﬂ)
(by [10, 2.4 Definition and (N;)] and [11, Theorems 1 and 14]). Since u: L(.**) —
E(7) is continuous, V(A) = u(A), foreach A € ..

Whence p(.#) is a bounded subset of E, O

1"2...11];np+1 ...np+q (Tnlnzunl,n[,+1 ...n]H,q)‘

Corollary 3. Let u be a bounded vector measure defined in a c-algebra . of sub-
sets of Q with values in an inductive limit E(t) = L,En(Tn) of an increasing se-
quence (Ep(Tm))m of q-(LF) spaces. There exists ny € N such that for each defin-
ing q-(LF) increasing web for Ey, (Ta, ), {Enymy,y.omy i (Taymyoyomyys) D1miyj € NJ1T <
J < i < g} there exists (n14i)i<i<q in N? such that u(.%) is a bounded subset of
E,

l”l+1~-nl+q’(T"’l”l+l~-'"1+q .

A sequence (x;); in a locally convex space E is subseries convergent if for every
subset J of N the series X{x; : k € J} converges. The following corollary is a gener-
alization of the localization property given in [12, Corollary 1.4] and it follows from
Corollary 3.

Corollary 4. Let (x;); be a subseries convergent sequence in an inductive limit E(T) =
EmEm(Tm) of an increasing sequence (Ey(Tn))m of q-(LF) spaces. There exists ny €
N such that for each defining q-(LF) increasing web {Ep m,.\ .my.:(Toymyy..mis;) ©
i,miyj € N,1< j<i<q} for Ey (Ty,) there exists (ni41,n142,...,n14¢) € N? such
that {x; : k € N} is a bounded subset of Enypy ,..ny .o (Tayny y.nyg)-

11



Proof. As (x;); is subseries convergent, then the additive vector measure u: 2N —
E(7) defined by u(J) := Xiesxi, for each J € 2V, is bounded, because (f(x;))x is
subseries convergent for each f € E’, whence X7 |f(x,)| < co. Therefore we may
apply Corollary 3. 0

Proposition 10. Let 1 be a bounded vector measure defined in a ¢-algebra . of
subsets of Q with values in a topological vector space E(t). Suppose that {Ey m,..m; :
mieN,1<j<i< p} is an increasing p-web in E. There exists Enln2~-~"p such that
lf{Enlnz...npmpﬂ...mp+,~ : ivmp+j € N, 1< ] <i< Q} is a Q'increa”ng web in Enlnz...np
with the property that each relative topology T|En]n2...npmp+]...mp+q’(mp+1""7mp+q) €
N4 is sequentially complete, then there exists (npy1,...,nptq) € N? such that u(.) C

Enlnz...npnpﬂ...nq-

Proof. Let Binmy..m; = ,u_l(Emlmz...m,-) foreach m; € N, 1 < j <i < p. By Propo-
sition 1 and Theorem 1 there exists (n1,n2,...,n,) € NP such that PBnyn,...n, has wN-
property. Let {E,,l,,z,“npmpﬂ,,,n,p“ impeN, 1 <j<i< q} be a increasing g-web
in Enlnz...np and let %nlnz...n[,mp+l...n1p+i = u_l(Enlnz...npmpH...mp+,~)s for eaCh i7mp+j €
N, 1<j<i<q. As

{f@nlnz...npmpﬂ...meri : ivmerj eN,1<j<i< Q}

\ny...n, there exists a%’nlnz,_,npnpﬂ ..np+, Which has property

) is a dense subspace of L(.¥) and then the continuous

is an increasing g-web of %,
N, whence L(%

nNY..ApNp L] ...Nptq
map

L(%#

nny...nphpy...Np+q

) > E,

H |L(<%n1n2~~-npn 1n2...nphptq..Nptq (T‘E”I”I“"]J”]Hl “Nptg )

p+1 ) :
has a continuous extension v to L(.¥”) with values in Ey;, »,...» plp1-tpig (T‘Em"z-»»”P”erl “Mptg )-

The continuity of i : L(.¥) — E(7) implies that v(A) = u(A), foreach A € .. Whence
U(7) is a subset of E O

nny...Nphp41...-Np4q*

Corollary 5. Let i be a bounded additive vector measure defined in a c-algebra .
of subsets of Q with values in an inductive limit E(T) = X, Em, (T, ) of an increasing
sequence (Ep(Tm))m of countable dimensional topological vector spaces. Then there
exists ny such that for each g-increasing web {En1m1+1~.~m1+i dm €N KIK q}
in Ey, such that the dimension of each E, is finite there exists E,
which contains the set.

1M1 Mg 1141+ M 4g

Proof. As the relative topology 7| Enymy o is complete we may apply Proposi-
g

tion 10. O
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