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A note on extreme points of C∞-smooth balls
in polyhedral spaces

A. J. Guirao∗, V. Montesinos†, and V. Zizler‡

Abstract

Morris [Mo83] proved that every separable Banach space X that contains an isomorphic
copy of c0 has an equivalent strictly convex norm such that all points of its unit sphere SX

are unpreserved extreme, i.e., they are no longer extreme points of BX∗∗ . We use a result of
Hájek [Ha95] to prove that any separable infinite-dimensional polyhedral Banach space has an
equivalent C∞-smooth and strictly convex norm with the same property as in Morris’ result. We
additionally show that no point on the sphere of a C2-smooth equivalent norm on a polyhedral
infinite-dimensional space can be strongly extreme, i.e., there is no point x on the sphere for
which a sequence (hn) in X with ∥hn∥ ̸→ 0 exists such that ∥x± hn∥ → 1.

1 Introduction
It is known that in non-superreflexive spaces, there exist no equivalent C2-smooth norms that would
be at the same time locally uniformly rotund (cf e.g. [FHHMZ, Exercise 9.16]). We show in this note
that yet, in separable polyhedral spaces —all of which non-superreflexive—, there existC∞-smooth
norms with various degrees of rotundity weaker than local uniform rotundity.

If (X, ∥ · ∥) is a normed space, its closed unit ball (its unit sphere) will be denoted alternatively by
BX , B∥·∥, or even B(X,∥·∥) (respectively SX , S∥·∥, or S(X,∥·∥)), according to the circumstances. If
x ∈ X and δ > 0, we put BX(x; δ), B∥·∥(x; δ), or even B(X,∥·∥)(x; δ), for x+ δBX . The norm on
X , its dual norm onX∗, and its bidual norm onX∗∗, are denoted by the same notation. For standard
notation, results, and undefined terms we refer, e.g., to [FHHMZ].

Extreme points of BX that are not extreme of BX∗∗ are called unpreserved. On the other side,
points in SX that are extreme points of BX∗∗ are called preserved extreme points (see Figure 1).
Obviously, every preserved extreme point of BX is itself an extreme point of BX .
The preserved extreme points coincide with the w-strongly extreme points of BX (see [GLT92] and
references therein). A point x ∈ SX is called (w-) strongly extreme of BX if given two sequences
{yn} and {zn} in BX such that (yn + zn) → 2x, then yn → x (respectively, yn

w−→ x). A norm
∥ · ∥ such that all points in S∥·∥ are strongly extreme is said to be midpoint locally uniformly rotund
(for this notion, see, e.g., [LPT09] and references therein).
Solving a question by Phelps, Katznelson (see the reference in [Mo83]) proved that the closed unit
ball of the disk algebra contains unpreserved extreme points.
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Figure 1: In (i), all points in SX are preserved extreme, none in (ii)

Let x ∈ SX . The point x is said to be strongly exposed (by a functional f ∈ SX∗) if f(x) = 1
and diamS(f, δ) → 0 as δ ↓ 0, where S(f, δ) := {x ∈ BX : f(x) > 1 − δ} is a section of BX

determined by f . The point x is said to be denting if for every ε > 0 it is contained in a section ofBX

having diameter less than ε. It is easy to show that strongly exposed ⇒ denting ⇒ strongly extreme
⇒ w-strongly extreme (= preserved extreme) ⇒ extreme, and that if X is locally uniformly rotund,
then every point in SX is strongly exposed. For an example showing how big the gap between
being strongly or w-strongly extreme is, see Theorem 4. It is simple to show that a denting point
of SX∗∗ must belong to X , hence the example in Remark 5.2 hints also at the difference between
being strongly extreme and denting.

Morris proved in [Mo83] the following result.

(M1) Any separable Banach space X containing an isomorphic copy of c0 can be renormed in such
a way that all points of SX are unpreserved extreme points. (Observe that the new norm is then
strictly convex.)

The space c0 has the property that the set Ext(BX∗) of extreme points of the closed dual unit ball is
countable. The set Ext(BX∗) is an example of a James boundary, i.e., a subset of BX∗ where each
element x ∈ X attains its supremum onBX∗ . A Banach space with a countable James boundary has
a separable dual space (this follows, e.g., from the fact that a countable James boundary is strong,
i.e., its closed convex hull is the closed dual unit ball ([Ro81], see also [Go87]).

A Banach spaceX is called polyhedral if the ball of every finite-dimensional subspace (equivalently
every two-dimensional subspace, see [K59]) of X has only a finite number of extreme points. Every
polyhedral separable space has a countable James boundary ([Fo80], see also [Ve00]).

An example of polyhedral space is c0 in its canonical norm ([K60], see also [GM72] and [Go01]).
The argument in [Go01] is so nice that we cannot help but to reproduce it here. It relies on the fact
that the ∥·∥∞-norm on c0 depends locally on a finite number of coordinates (se the precise definition
of this term below). Let E be a finite-dimensional subspace of c0. For each x ∈ SE there exists
ε(x) > 0 and a finite subset F (x) of X∗ such that ∥y∥∞ = sup{|⟨y, x∗⟩| : x∗ ∈ F (x)} for all
y ∈ BE(x; ε(x)). Since SE is compact, there are x1, . . . , xn in SE such that

SE ⊂
n∪

i=1

BE(xi, ε(xi)).

Put F :=
∪n

i=1 F (xi). Then F is a finite subset of X∗ such that

∥x∥∞ = sup{|⟨x, x∗⟩| : x∗ ∈ F}

for all x ∈ E, hence E is isometric to a subspace of (R|F |, ∥ · ∥∞), a polyhedral space.
On the other side, the space c in its canonical norm is not polyhedral. The following argument was
kindly provided by L. Veselý (personal communication): Consider the points Pn := exp {i(1 −
1/n)π/4} in the plane, for all n ∈ N (see Figure 2). Let anx + bny = 1 be the equation of the
line through Pn and Pn+1 for all n ∈ N, and a0x + b0y = 1 the equation of the line through
P∞ := exp (π/4) and P0 := (−1, 0). Then a := (an)n≥0 and b := (bn)n≥0 are elements in c, and
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Figure 2: The construction to prove that c is not polyhedral

their linear span L is isometric to a plane equipped with the norm whose closed unit ball is the set
conv {±P1,±P2, . . . ,±P∞}.
There is no infinite-dimensional reflexive polyhedral space ([L64]). Actually, no infinite-dimensional
C(K) space in its canonical norm is polyhedral—although such space has, if K is a countable com-
pact topological space, obviously, a countable James boundary—. As seen below (see (H)), every
C(K) space withK a countable and compact topological space is isomorphic to a polyhedral space.

We will need the following result:

(Z) Banach spaces with a countable James boundary are c0-saturated, i.e., each closed subspace
contains an isomorphic copy of c0 ([Fo77], [PWZ81], see also [FHHMZ, Theorem 10.9]).

In this note we slightly modify Morris technique by means of a result of P. Hájek ([Ha95], see also
[FHHMZ, Theorem 10.12]) on normed spaces with a countable James boundary —a characterization
quoted below as (H)— to add, under these circumstances, smoothness —in fact, C∞-smoothness—
to the kind of renorming shown by Morris.

The norm ∥ · ∥ of a Banach space is said to depend locally on a finite number of coordinates if
given any x0 ∈ SX there exists δ > 0, continuous linear functionals {ψ1, ψ2, . . . , ψn} ⊂ X∗,
and a continuous function f : Rn → R such that, for every x ∈ B(x0; δ) we have ∥x∥ =
f(ψ1(x), ψ1(x), . . . , ψ1(x)). The result of Hájek [Ha95] (see also [FHHMZ, Theorem 10.12]) men-
tioned above, an improvement of results in [Fo77] and [PWZ81], is the equivalence (i) to (iv) in the
following. For the property (v) see [FLP01, Proposition 6.19] and, e.g., [Ve00].

(H) For a Banach space X , the following are equivalent: (i) X has a countable James boundary.
(ii) X has a James boundary that can be covered by a countable number of ∥ · ∥-compact subsets
of X∗. (iii) X is separable and has an equivalent norm that depends locally on a finite number
of coordinates. (iv) X is separable and has an equivalent norm that is C∞-smooth away from the
origin and depends locally on a finite number of coordinates. (v) X is separable and isomorphic to
a polyhedral Banach space.

The following result appears in [Mo83], with a different argument, as an ingredient of the proof of
(M1) above; it will also be used in the proof of our main result.

(M2) There exists an infinite-dimensional w∗-closed subspace M0 of ℓ∞ such that M0 ∩ c0 = {0}.

To see this, first note that every separable Banach space is isometric to a subspace of ℓ∞, thus in
particular ℓ∞ contains an isometric copy Z of a given infinite-dimensional separable reflexive space.
By a result of Rosenthal (see, e.g., [FHHMZ, Lemma 4.62]), Z is w∗-closed. Observe that Z ∩ c0
must be finite-dimensional, as any infinite-dimensional subspace of c0 contains a copy of c0. Then,
a finite-codimensional subspace M0 of Z is what we need to finish the proof.

2 The results
Theorem 1 Let (X, ∥ · ∥0) be a Banach space having a countable James boundary. Then there
exists an equivalent (strictly convex) norm |∥ · |∥ on X that is C∞-smooth away from the origin and
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such that every point in S|∥·|∥ is an unpreserved extreme point of B|∥·|∥.

Proof. By (H) above, the space X has an equivalent C∞-smooth norm ∥ · ∥ that depends locally on
a finite number of coordinates. Moreover, it contains an isomorphic copy Z of c0 (see (Z) above).
The space Z∗∗ can be canonically identified to a closed subspace of X∗∗. Let M be a w∗-closed
infinite-dimensional subspace of Z∗∗ such that M ∩ Z = {0}; it exists thanks to (M2) above. It is
clear, too, that M ∩X = {0}.
Let N := M⊥ ⊂ X∗ (the orthogonal is taken with respect to the duality ⟨X∗∗, X∗⟩). Find a
sequence {ϕn} in N such that span {ϕn : n ∈ N} = N and

∑∞
n=1 ∥ϕn∥2 < +∞. Define a linear

operator T : X → ℓ2 by Tx := (⟨x, ϕn⟩)∞n=1 for x ∈ X; then T is clearly bounded and one-to-one,
and the mapping x→ ∥Tx∥2 from X into R is certainly C∞-smooth away from the origin.
Define a norm |∥ · |∥ on X by

|∥x|∥ := ∥x∥+ ∥Tx∥2 for all x ∈ X. (1)

Clearly |∥ · |∥ is strictly convex (see e.g. [DGZ, Chapter II]) and C∞-smooth away from the origin.
Let us show that every point x0 in S|∥·|∥ is unpreserved extreme. Find δ > 0 such that ∥·∥ depends on
B∥·∥(x0; δ) on finitely many coordinates {ψ1, ψ2, . . . , ψn}, i.e., ∥x∥ = f(ψ1(x), ψ2(x), . . . , ψn(x))
for x ∈ B∥·∥(x0; δ), where f : Rn → R is a continuous function. Due to the fact that M is infinite-
dimensional, we can find h∗∗ ∈M ∩

∩n
k=1 kerψk with 0 < ∥h∗∗∥ ≤ δ.

Find a net {hi : i ∈ I, ≤} in B∥·∥(0; δ) that w∗-converges to h∗∗. Observe that x0 + hi ∈
B∥·∥(x0; δ), hence

∥x0 + hi∥ = f(ψ1(x0 + hi), ψ2(x0 + hi), . . . , ψn(x0 + hi)), for all i ∈ I. (2)

Note that ψk(x0 + hi) → ψk(x0 + h∗∗) for all k = 1, 2, . . . , n, and so, by (2),

∥x0 + hi∥ = f(ψ1(x0 + hi), ψ2(x0 + hi), . . . , ψn(x0 + hi))

→ f(ψ1(x0 + h∗∗), ψ2(x0 + h∗∗), . . . , ψn(x0 + h∗∗))

= f(ψ1(x0), ψ2(x0), . . . , ψn(x0)) = ∥x0∥. (3)

Since
x0 + hi

w∗

→ x0 + h∗∗, (4)

we get from (3) and (4) that ∥x0 + h∗∗∥ ≤ ∥x0∥. In the same way we get ∥x0 − h∗∗∥ ≤ ∥x0∥, so
finally by a standard convexity argument, ∥x0∥ = ∥x0 + h∗∗∥ = ∥x0 − h∗∗∥. Regarding the norm
|∥ · |∥, we have then

|∥x0 + h∗∗|∥ = ∥x0 + h∗∗∥+ ∥T (x0 + h∗∗)∥,

as it is easy to show, hence, since T (h∗∗) = 0,

|∥x0 + h∗∗|∥ = ∥x0∥+ ∥Tx0∥ = |∥x0|∥ = 1. (5)

Analogously,
|∥x0 − h∗∗|∥ = |∥x0|∥ = 1. (6)

Equations (5) and (6) together show that x0 is an unpreserved extreme point of B|∥·|∥. �
The following result extends what formerly was known for C2-smooth LUR norms (see, e.g.,
[FHHMZ, Exercise 9.16]) and later for C2-smooth norms with a strongly exposed point on its unit
sphere [FWZ83, Theorem 3.3].

Theorem 2 Let (X, ∥ · ∥) be an infinite-dimensional C2-smooth Banach space. If there exists a
strongly extreme point of B∥·∥, then X is superreflexive.

Proof. Assume that x is a strongly extreme point ofBX . TheC2-differentiability of ∥·∥ implies that
there exists δ > 0 such that the first derivative of ∥ · ∥ is uniformly continuous on a 2δ-ball around x.
Let g be the supporting functional to the ball at x. For h ∈ g−1(0), let f(h) = ∥x+h∥+∥x−h∥−2.
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Then f(h) ≥ 0, f(0) = 0 and inf∥h∥=δ f > 0. Indeed, otherwise there exists a sequence {hn}∞n=1

in g−1(0) such that ∥hn∥ = δ for all n ∈ N, and f(hn) → 0, meaning that ∥x + hn∥ → 1 and
∥x − hn∥ → 1, as ∥x ± hn∥ ≥ g(x ± hn) = g(x) = 1. Thus, by the definition of the strong
extremality of x, ∥hn∥ → 0, a contradiction. Hence, by standard methods we can construct a bump
function (i.e. a function with bounded nonempty support) on g−1(0) with uniformly continuous
derivative, meaning that X is superreflexive (see, e.g., [FHHMZ, Theorem 9.19]). �

Corollary 3 Let (X, ∥ · ∥) be an infinite-dimensional C2-smooth Banach space. Assume that X
does contain an isomorphic copy of c0 (in particular, assume that X is isomorphic to a polyhedral
space). Then no point of S∥·∥ is a strongly extreme point of B∥·∥.

Proof. Otherwise, according to Theorem 2, the spaceX would be superreflexive. This is impossible
since X contains an isomorphic copy of c0. In case that X is isomorphic to a polyhedral space, so it
is every separable subspace of X , thus the containment of c0 follows from (Z) and (H) above. �

Theorem 4 Let X be a separable infinite-dimensional polyhedral Banach space. Then there exists
an equivalent norm |∥ · |∥ on X such that every point in S|∥·|∥ is preserved extreme non-strongly
extreme of B|∥·|∥.

Proof. Let ∥ · ∥ be an equivalent C2-smooth norm on X (such a norm always exists, see (H) above).
Let {fi : i ∈ N} be a countable norm-dense subset of B(X∗,∥·∥) (recall that X is Asplund). Then

the equivalent norm |∥ · |∥ on X defined by |∥x|∥ :=
(
∥x∥2+

∑
1
2i f

2
i (x)

) 1
2 for all x ∈ X , is weakly

uniformly rotund, i.e., whenever xn, yn are in S(X,|∥·|∥) and |∥xn + yn|∥ → 2, then xn − yn → 0 in
the weak topology of X . This means that, in particular, the bidual norm of |∥ · |∥ is rotund (indeed,
assume that 2x∗∗ = y∗∗+z∗∗ for some x∗∗ ∈ S(X∗∗,|∥·|∥), where y∗∗ and z∗∗ are both inB(X∗∗,|∥·|∥)
and y∗∗ ̸= z∗∗. Since X∗ is separable, there exist sequences {yn} and {zn} in B(X,|∥·|∥) such that
yn → y∗∗ and zn → z∗∗ in the w∗-topology. This leads immediately to a contradiction). Moreover,
the norm |∥ · |∥ on X is clearly C2-smooth. Thus all points in S(X,|∥·|∥) are preserved extreme
points and yet, no point there is strongly extreme point of B(X,|∥·|∥) by Corollary 3 (indeed, X is not
superreflexive, as it contains an isomorphic copy of c0). �

Remark 5 1. Note that, in the setting of Theorem 4, no point in S(X,|∥·|∥) is a point where the
norm and weak topologies coincide, as otherwise, by a result in [LLT88], such a point would
be a strongly extreme point of B(X,|∥·|∥).

2. The James space J can be renormed by a norm the second bidual norm of which has the
property that all its point on its sphere are strongly extreme points ([MOTV01], see also
[LPT09]). None of the points in SX∗∗ \X can be denting. Recall that a space is reflexive if its
dual space admits an equivalent Fréchet differentiable dual norm ([FHHMZ, Corollary 7.26]).

3. The space ℓ∞ cannot be renormed so that all points on the sphere would be preserved extreme
points ([HMS]).

4. Hájek ([Ha98]) showed that, if Γ is uncountable, then there exists no C2-smooth and strictly
convex norm on c0(Γ).

5. We refer to, e.g., [HMZ12], for a survey on related topics.

References
[DGZ] R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces,

Pitman Monographs 64, London, Longman, 1993.

[FWZ83] M. Fabian, J. H. M. Whitfield, and V. Zizler, Norms with locally Lipschitzian deriva-
tives, Israel J. Mah. 44 (3) (1983), 262–275.

5
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[MOTV01] A. Moltó, J. Orihuela, S. Troyanski, and M. Valdivia, Midpoint locally uniformly
rotundity and a decomposition method for renorming, Q. J. Math. 52 (2001), 181-
193.

[Mo83] P. Morris, Dissapearance of extreme points, Proc. Amer. Math. Soc. 88, 2 (1983),
244–246.

[PWZ81] J. Pechanec, J. H. M. Whitfield, and V. Zizler, Norms locally dependent on finitely
many coordinates, An. Acad. Brasil Ci. 53 (1981), 415–417.

6
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[Ve00] L. Veselý, Boundary of Polyhedral Spaces: An Alternative Proof, Extracta Math. 15
(1), 213–217.

7


