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Abstract 
Ultrasonic atomization is very convenient because it can generate droplets with diameters of a few microns and 
with very narrow size distribution. Besides, opposite to twin fluid nozzles, in ultrasonic atomization, droplet 
generation and transport are decoupled processes. Droplets are ejected from the liquid surface with very low 
velocities, so driving them is relatively simple. Although this atomization method is now common in some specific 
applications, for example in household humidifiers, there are still some details about the physics of this process 
that are not completely understood. Up to date, most of the published results have been limited to experiments 
with water. However, it has been demonstrated that atomization rates quickly decrease as liquid viscosity 
increases. This work analyzes the characteristics of ultrasonic atomization of some alternative fluids to determine 
if there is any influence of other physical properties such as surface tension or vapor pressure. Experiments are 
performed using a commercial piezoceramic disk with a resonance frequency of 1.65 MHz. The disk is excited 
with a sinusoidal signal with voltage amplitudes that go up to 60 V. Sprays are visually characterized analyzing 
instantaneous images and high speed video sequences. Besides atomization rates are calculated by measuring 
the weight loss in a fixed time. 
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Introduction 
Ultrasonic atomization has some unique characteristics that are ideal for many specific applications. Typical 
examples are most commercial household air humidifiers, or some inhalers for drug delivery to the lungs. In these 
devices, atomization is achieved by vibration of an ultrasonic transducer submerged in a liquid volume. As a 
result, droplets can be generated from the liquid surface with diameters of a few microns, with very narrow size 
distribution, and with low velocity. Opposite to pressure and twin fluid nozzles, in which small droplet diameters 
are associated to high liquid and gas velocities, in ultrasonic atomization, droplet generation and transport are 
decoupled processes. Droplets are ejected from the liquid surface with very low velocity, so driving them is 
relatively simple. 
The possibility to generate a cloud of droplets by means of ultrasonic waves was first reported by Wood and 
Loomis in 1927 [1]. Since then, many theoretical and experimental works have been published to explain the 
physics controlling this phenomenon. Two main mechanisms are considered to be responsible for the spray 
formation: cavitation inside the liquid mass and instabilities of standing waves on its free surface. Droplet 
detachment from wave crests can clearly be observed for low excitation frequencies but cannot be distinguished 
for frequencies in the MHz range. The importance of cavitation might be dependent on the forcing frequency or 
the ultrasonic power, but these extremes have not been demonstrated in a definite way. As confirmed by 
numerous experiments, it is now generally accepted that, in ultrasonic atomization, spray mean droplet diameter 
is essentially determined only by the oscillation frequency. The oscillation amplitude controls the spray flow rate 
but does not have a major influence on drop diameter [2]. When using ultrasonic transducers this amplitude is 
proportional to the driving signal voltage. 
A major part of the published results are limited to water atomization. The influence of fluid physical properties 
has been studied in a relative low number of papers [3]. Most of them are based on experimental considerations 
[4,5], although some theoretical analysis can also be found [6]. Furthermore, in some of these works, the 
ultrasonic frequency is low [7]. Liquid viscosity does not substantially alter the droplet size distribution, but has a 
dramatic effect on atomization rate [8]. With the specific conditions in the present experiments, efficiency drops 
dramatically for kinematic viscosity values over 3x10-6 m2/s. This is a severe limitation that can preclude the use 
of this atomization method in many processes of industrial interest, for example in surface coating, or to introduce 
the droplets in a chemical reactor. However mists of viscous liquids can be obtained diluting them first in volatile 
solvents and atomizing the low viscosity mixture [9]. Once the solvent has evaporated, the result is a mist of a 
liquid that otherwise could not have been directly nebulized. To facilitate this possibility and advance in the 
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To determine the atomization rates, the decrease in the liquid mass inside the vessel during a minimum time 
interval of 5 minutes was monitored by weighting it with a Kern FCB scales, capable of measuring a maximum 
mass of 8 kg with a precision of 0.1 g. For all the measurements the initial liquid level was identical and equal to 3 
cm. Care was taken to evacuate the liquid droplets out of the atomizer to prevent condensation, suctioning them 
with an extraction fan. This extraction, however, was limited to the small droplets that form the spray mist and not 
to other larger drops. This group includes, for example, splashing caused by falling of the liquid cone tip onto the 
pool surface. This is mainly because these drops are not useful for most applications requiring small droplets 
where ultrasonic atomization could be a first choice. Besides, they can be filtered out in a relatively simple 
manner. This study will, thus, focus on the micron-sized droplets resulting from the ultrasonic atomization. 
Droplet size distributions were measured with a Malvern Mastersizer S laser difractometer equipped with a 300 
mm focal length lens. According to the manufacturer specifications, this lens is suitable to cover a droplet 
diameter range from 0.5 µm to 900 µm. The maximum obscuration in the Malvern measurements was lower than 
25%, with a minimum of 3.6%. The room was darkened to maximize the contrast for low obscuration values. To 
calculate the droplet size distribution, the polydisperse model of the Malvern software was selected. The small 
droplets were driven to the laser beam dragging them with an air flow. To visualize the atomization process, 
instantaneous images were acquired with a Hamamatsu 1,024 x 1,344 pixels 12-bit C4742-95-12 ORCA-ER CCD 
camera with a Sigma 70 – 200 mm zoom lens. Exposure time was set to 10 ms, and the covered field of view was 

90 mm x 118 mm (87.8 m/pixel). Image sequences were also acquired with a high speed CMOS RedLake 
Motion Pro HS4 camera, capable of recording 5,000 frames per second (fps) at a maximum image size of 512 x 
512 pixels. Two different types of sequences were registered. The first one corresponds to a field of view of 130 

mm x 130 mm, recording speed of 5000 fps and exposure time varying between 50 s and 150 s. The second 
configuration corresponds to close ups with a field of view reduced to 4.2 mm x 4.2 mm, recording speed of 3000 

fps and exposure time of 330 s. To achieve this magnification (8.2 m/pixel), a Nikon PB6 bellows focusing 
attachment was placed between the camera and the lens, together with a set of three Kenko extension rings. Two 
500 W halogen lamps were used as illumination source. 
Experiments were performed atomizing several organic compounds as well as pure water. Table 1 summarizes 
the values of several physical properties that can be influential in the atomization process. Liquid selection 
includes three alkanes and three alcohols. Density and surface tension values are quite similar for all of them, in 
all cases lower than those for water. Viscosity and vapor pressure cover a wider range, increasing for increasing 
number of C atoms. 

Table1. Physical properties of the atomized liquids 

Density ρ 
(kg/m3) 20°C 

Viscosity  
(m2/s) 20°C  

Surface 
tension σ 
(N/m) 20°C  

Vapor 
pressure 
(Pa) 25°C 

Compressibility 
modulus K (Pa) 
20°C 

Boiling 
Temperature 
(°C) 

Water  998.2 1x10-6 0.0728  3.167x103 22.0x108 100 
Hexane 654.8 0.294x10-6 0.01843 20.4x103 7.9x108 69 
Heptane 683.8 0.408x10-6 0.0197  6.06x103 9.4x108 98 
Decane 730.0 0.92x10-6 0.02337 0.185x103 11.0x108 174 
Methanol 781.8 0.745x10-6 0.02261 16.96x103 8.23x108 65
Ethanol 789.0 1.36x10-6 0.0228 7.924x103 8.94x108 78
2-Propanol 786.3 3.05x10-6 0.022 6.02x103 7.5x108 82

Results and discussion 
Before presenting and discussing the results obtained from the different measurements, it can be interesting to 
describe the ultrasonic atomization process. It takes place according to the following scheme. The piezoceramic 
disk submerged below the fluid surface starts vibrating when excited with a 1.65 MHz sinusoidal wave. For low 
voltages the only noticeable effect is the appearance of some waves on the liquid surface over the disk. As the 
voltage is increased, this part of the surface assumes a conical shape most likely induced by an acoustic 
streaming phenomenon [10]. A further increase causes the elongation of the cone that forms a stem with a neck 
zone. Eventually, the tip of the cone detaches, and falls on the liquid pool forming big droplets due to splashing. 
When voltage surpasses a determinate value that depends on the liquid to be atomized and its viscosity, 
superimposed both to the whole mass displacement that produces the conical shape and the interfacial waves, a 
fine mist of small micron-sized droplets is generated, particularly in the middle part of the cone region. Together 
with it, some medium sized droplets are also ejected from the cone surface. The amount of this last type of 
droplets and their detachment velocity clearly increase with increasing forcing voltage. All these steps are 
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Measurements for water were already obtained in previous works [2,8]. Some of them have been retaken to 
ensure repeatability. Main results are compiled in Fig. 9. As expected, it is confirmed that for the liquids in these 
experiments and for the droplets in the micron range, variation in their physical properties has a weak influence 
on the size distribution function. For most of the liquids, the shape of the distribution function is nearly identical, 
with two distinct peaks at 3.3 m and 6.2 m. Size distributions for hexane, ethanol and propanol show a slightly 
different shape. It may be due to the fact that accuracy of these measurements is somewhat lower. The 
measurements for hexane are inaccurate because they were affected by laser beam steering due to the high 
concentration of vapors. Non-zero results were obtained flowing the dragging air inside the liquid container with 
the ultrasonic transducer disconnected. However, we were unable to separate the vapor from the droplets to be 
measured. Ethanol and 2-Propanol measurements are also inaccurate because droplet concentration was very 
low and laser obscuration was below the recommended level. Measurements for the rest of the liquids seem to 
confirm the hypothesis postulated in many previous papers that relates droplet size only to ultrasonic frequency. 

Figure 9. Droplet size distribution functions for the different atomized liquids. 

Conclusions 
An experimental study has been conducted to analyze the characteristics of ultrasonic atomization when working 
with different organic compounds. Three alkanes (hexane, heptane and decane) and three alcohols (methanol, 
ethanol and 2-propanol) have been considered. Density and surface tension values are quite similar for all of 
them, in all cases lower than those for water. Viscosity and vapor pressure cover a wider range, increasing for 
increasing number of C atoms. Tests operating with water have also been performed for comparison purposes. A 
commercial piezoceramic disk with a resonance frequency of 1.65 MHz, has been used in the experiments. It has 
been forced with a sinusoidal wave coincident with the resonance frequency and variable amplitude. The 
maximum applied voltage has been limited to 80 V. In all cases, atomization rates have been measured. Sprays 
have been characterized analyzing instantaneous images and high speed video sequences, and measuring 
droplet size distribution functions. It has been observed that in the process of atomization a fine mist of small 
micron-sized droplets is generated, together with some medium sized droplets that are also ejected from the 
liquid surface. The amount of this last type of droplets and their detachment velocity clearly increase with 
increasing forcing voltage. In this study, attention has been only focused on the small drops that form the mist. 
The large droplets have not been considered of interest because they can be produced in an efficient way by a 
variety of atomization methods and can be easily filtered out. It is the generation of micron-sized droplets what is 
difficult to achieve with other procedures alternative to ultrasonic atomization. A somehow unexpected 
observation is that, contrary to the case of operation with water in which atomization rate always increases with 
voltage, alkane and alcohol atomization presents a maximum for a certain value, decreasing when voltage is 
further increased. The presence of this maximum can be attributed to an increase with voltage in the formation of 
medium-sized droplets, in detriment of the production of the smallest ones. Results also confirm that viscosity 
strongly conditions the atomization efficiency. On the other hand it has been verified that for a fixed ultrasonic 
frequency, size of the fog droplets seems to be independent of the liquid nature. 
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