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SPECTRUM AND COMPACTNESS OF THE CESÀRO

OPERATOR ON WEIGHTED `P SPACES

ANGELA A. ALBANESE, JOSÉ BONET and WERNER J. RICKER

(May 4, 2015)

Abstract

An investigation is made of the continuity, the compactness and the spectrum of the Cesàro
operator C when acting on the weighted Banach sequence spaces `p(w), 1 < p <∞, for a
positive, decreasing weight w, thereby extending known results for C when acting on the
classical spaces `p. New features arise in the weighted setting (e.g., existence of eigenvalues,
compactness) which are not present in `p.
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1. Introduction

The discrete Cesàro operator C is de�ned on the linear space CN (con-
sisting of all scalar sequences) by

Cx :=

(
x1,

x1 + x2
2

, . . . ,
x1 + . . .+ xn

n
, . . .

)
, x = (xn)n∈N ∈ CN. (1)

The operator C is said to act in a vector subspace X ⊆ CN if it maps
X into itself. Of particular interest is the situation when X is a Banach
space. The fundamental questions in this case are: Is C : X → X continuous
and, if so, what is the spectrum of C : X → X? Amongst the classical
Banach spaces X ⊆ CN where precise answers are known we mention `p
(1 < p < ∞), [6], [15], and c0, [15], [19], and both c, `∞, [1], [15], as well
as cesp, p ∈ {0} ∪ (1,∞), [8], the Bachelis spaces Np, 2 ≤ p < ∞, [9],
and the spaces of bounded variation bv0, [18], and bounded p-variation bvp,
1 ≤ p <∞, [2]. In all of these cases, the operator norm of C : X → X equals
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its spectral radius and C has at most one eigenvalue, namely 1. There is no
claim that this list of spaces (and references) is complete.

The aim of this paper is to investigate the two questions mentioned above
for C acting on the weighted Banach spaces `p(w). To be precise, let w =
(w(n))∞n=1 be a bounded sequence, always assumed to be strictly positive.
De�ne the space

`p(w) :=

x = (xn)n∈N ∈ CN : ‖x‖p,w :=

( ∞∑
n=1

|xn|pw(n)

)1/p

<∞

 ,

for each 1 < p <∞, equipped with the norm ‖ · ‖p,w. Observe that `p(w) is
isometrically isomorphic to `p via the linear multiplication operator

Φw : `p(w)→ `p, x = (xn)n∈N → Φw(x) := (w(n)1/pxn)n∈N.

Therefore, each `p(w) is a Banach space. The dual space (`p(w))′ of `p(w) is
the Banach space `p′(v), where 1

p + 1
p′ = 1 (i.e., p′ is the conjugate exponent

of p) and v(n) = w(n)−p
′/p for n ∈ N. In particular, `p(w) is re�exive

and separable for 1 < p < ∞. Moreover, the canonical unit vectors ek :=
(δkn)n∈N, for k ∈ N, form an unconditional basis in `p(w) for 1 < p <∞. If
infn∈Nw(n) > 0, then `p(w) = `p with equivalent norms and we are in the
standard situation. Accordingly, we are mainly interested in the case when
infn∈Nw(n) = 0.

By Hardy's inequality, [14, Theorem 326, p.239], for every 1 < p < ∞
the restriction of the Cesàro operator C : CN → CN as given in (1) de�nes a
bounded linear operator from `p into itself with operator norm equal to p′.
Denote these operators by C(p) so that ‖C(p)‖ = p′. In Section 2, where the
papers [5], [11], [12] are relevant, we discuss various aspects of the continuity
of C when it is restricted to `p(w), 1 < p <∞; denote this operator by C(p,w)

whenever it is continuous.
For any Banach space X, let I denote the identity operator on X and

L(X) denote the space of all continuous linear operators from X into itself.
The spectrum and the resolvent set of T ∈ L(X) are denoted by σ(T ) and
ρ(T ), respectively; see [10, Ch. VII], for example. The set of all eigenvalues
of T , called the point spectrum of T , is denoted by σpt(T ). The spectral

radius r(T ) := sup{|λ| : λ ∈ σ(T )} of T always satis�es r(T ) ≤ ‖T‖, [10,
p.567].

Section 3 is devoted to an analysis of the spectrum of C when acting in
`p(w). The main result is Theorem 3.3; it is complemented by Examples 3
which clarify the scope of this theorem. Unlike for C(p), it can happen that
σpt(C

(p,w)) 6= ∅. Actually, C(p,w) can even have in�nitely many eigenvalues;
see Proposition 3.4. The �nal section deals with the compactness of C(p,w).
Relevant is how fast w decreases to 0; see Proposition 4.1, Theorem 4.2,
Corollary 4.3 and Proposition 4.4. Unlike for C acting in the classical Banach
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spaces mentioned in the opening paragraph, it may happen in `p(w) that
r(C(p,w)) < ‖C(p,w)‖; see Proposition 4.1.

2. Continuity of C in weighted `p spaces

Some of the concepts and results from [12] that are quoted in this section
actually have their origins in the paper [11]. We begin with the following
fact.

Lemma 2.1. Let w = (w(n))∞n=1 be a positive sequence and 1 < p < ∞.

Then the Cesàro operator C maps `p(w) continuously into itself if, and only

if,

sup
m∈N

(
m∑
k=1

w(k)−p
′/p

)−1( m∑
n=1

w(n)

np

(
n∑
k=1

w(k)−p
′/p

)p)
<∞,

i.e., if, and only if, there exists K > 0 such that

m∑
n=1

w(n)

np

(
n∑
k=1

w(k)−p
′/p

)p
≤ K

(
m∑
k=1

w(k)−p
′/p

)
, m ∈ N. (2)

Moreover, if the constant K satisfying (2) is chosen as small as possible,

then the operator norm of C is at most p′K1/p.

Proof. Let Tw : CN → CN denote the linear operator de�ned by

Twx :=

(
w(n)1/p

n

n∑
k=1

w(k)−1/pxk

)
n∈N

, x = (xn)n∈N ∈ CN. (3)

Then ΦwC = TwΦw. Since Φw is isometric from `p(w) onto `p, it follows
that C maps `p(w) continuously into itself if, and only if, Tw maps `p con-
tinuously into itself. But, the matrix of Tw is factorable (cf. [5, �4] with
an = w(n)1/p/n and bk = w(k)−1/p for 1 ≤ k ≤ n) and so it follows from [5,
Theorem 2] that Tw ∈ L(`p) if, and only if, (2) holds.

The proof of Theorem 2 in [5] yields that the operator norm of C is at
most p′K1/p.

Proposition 2.2. Let w = (w(n))∞n=1 be a decreasing, positive sequence

and 1 < p <∞. Then the Cesàro operator C(p,w) ∈ L(`p(w)) and satis�es

1 <

(
1

w(1)

∞∑
n=1

w(n)

np

)1/p

≤ ‖C(p,w)‖ ≤ p′. (4)
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Proof. Fix m ∈ N. Because w is decreasing, we have

m∑
n=1

w(n)

np

(
n∑
k=1

w(k)−p
′/p

)p
=

m∑
n=1

(
w(n)1/p

n

n∑
k=1

w(k)−p
′/p

)p

≤
m∑
n=1

(
w(n)1/p

n
· n

w(n)p′/p

)p
=

m∑
n=1

w(n)−p
′/p,

which is precisely (2) withK = 1. So, Lemma 2.1 implies that C is continuous
on `p(w) with ‖C(p,w)‖ ≤ p′.

For an alternate proof of the continuity of C(p,w), based directly on
Hardy's inequality in `p, see [12, Proposition 5.1].

Since Tw = ΦwC
(p,w)Φ−1w , with Φw mapping the closed unit ball of `p(w)

onto that of `p and Φ−1w mapping the closed unit ball of `p onto that of `p(w),
it follows that ‖Tw‖ = ‖C(p,w)‖. Of course,

Φ−1w x = (w(n)−1/pxn)n∈N, x ∈ `p.

Substituting x = e1 into (3) it follows that

‖C(p,w)‖ = ‖Tw‖ ≥ ‖Twe1‖p =

(
1

w(1)

∞∑
n=1

w(n)

np

)1/p

≥
(

1 +
w(2)

w(1)2p

)1/p

> 1.

See also [12, Proposition 5.5].

Some comments regarding Proposition 2.2 are in order. As noted above,
for each 1 < p < ∞ we have ‖C(p)‖ = p′ and, for a positive, decreasing
weight w, that (4) holds. These estimates are not the best possible in general.
Denote by δp(w) the set of all decreasing, non-negative sequences in `p(w)
and de�ne

∆p,w(C(p,w)) := sup{‖C(p,w)x‖p,w : x ∈ δp(w), ‖x‖p,w = 1} ≤ ‖C(p,w)‖.

The following result follows from Propositions 6.3, 6.5 and 6.6 of [12].

Proposition 2.3. Let 1 < p <∞ and w(n) = 1/nα, n ∈ N, for a �xed

α > 0. Then

max{m1,m2} ≤ ∆p,w(C(p,w)) ≤ ‖C(p,w)‖ ≤M2(r) := [rζ(r + α)]r/p, (5)

for 1 ≤ r ≤ p, where m1 := p/(p + α − 1) and m2 := ζ(p + α)1/p, with ζ
denoting the Riemann zeta function. Moreover, for α ≤ r < (p + α), it is
also the case that

‖C(p,w)‖ ≤M3(r) :=

(
p

p+ α− r

)1/p′

ζ

(
1 +

r

p′
+
α

p

)1/p

. (6)
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We provide some relevant examples.

Example 1. (i) For w(n) = 1/nα, if α = 0.9 and p = 1.1, then
max{m1,m2} ' 1.572 and M2(1) = M3(0.9) ' 1.663 (see pp.15-16 of [12])
and so Proposition 2.3 shows that

1.572 ≤ ‖C(p,w)‖ ≤ 1.663.

On the other hand, p′ = 11 and so Proposition 2.2 only yields ‖C(p,w)‖ ≤ 11.
(ii) Still for w(n) = 1/nα, but now with α = 0.5 and p = 2, we have

m1 = 4/3 and M3(3/4) ' 1.593 (see p.16 of [12]) so that Proposition 2.3
reveals that

4

3
≤ ‖C(p,w)‖ ≤ 1.593.

In this case, p′ = 2 and so Proposition 2.2 only yields ‖C(p,w)‖ ≤ 2.
(iii) Again for w(n) = 1/nα, with α > 0, it follows (in the notation of

Proposition 2.3) that(
1

w(1)

∞∑
n=1

w(n)

np

)1/p

=

( ∞∑
n=1

1

np+α

)1/p

= ζ(p+ α)1/p = m2.

Hence, the lower bound in (4) reduces to m2 ≤ ‖C(p,w)‖ whereas (5) yields
max{m1,m2} ≤ ‖C(p,w)‖. Of course, (4) applies to more general weights w.

The following example is not a consequence of Proposition 2.3.

Example 2. Let p = 2 and set w(n) = 2−n for n ∈ N. The proof of
Proposition 2.2 yields that ‖C(2,w)‖ = ‖Tw‖. Recall, via (3), that

Twx =

(
1

n2n/2

n∑
k=1

2k/2xk

)
n∈N

, x = (xn)n∈N ∈ `2.

For every x ∈ `2, it follows via the Cauchy-Schwarz inequality and the iden-
tity

∑n
k=1 r

k = (r − rn+1)/(1− r), for r 6= 1, that

‖Twx‖22 =

∞∑
n=1

1

n22n

∣∣∣∣∣
n∑
k=1

2k/2xk

∣∣∣∣∣
2

≤
∞∑
n=1

1

n22n
(

n∑
k=1

2k)(

n∑
k=1

|xk|2)

≤ ‖x‖22
∞∑
n=1

1

n22n
(2n+1 − 2) = ‖x‖22

∞∑
n=1

2(1− 2−n)

n2
.

Accordingly, ‖Tw‖ ≤
(∑∞

n=1
2(1−2−n)

n2

)1/2
. Observe that

∞∑
n=1

(1− 2−n)

n2
=
π2

6
−
∫ 1/2

0

− log(1− t)
t

dt,
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because of the fact that π2

6 =
∑∞

n=1
1
n2 and the identity∫ 1/2

0

− log(1− t)
t

dt =

∫ 1/2

0

∞∑
n=0

tn

(n+ 1)
=
∞∑
n=1

1

n22n
.

The function f(t) = − log(1−t)
t for t ∈ (0, 1], with f(0) := 1, is positive,

continuous and increasing on [0, 1) and so

1 = f(0) ≤ f(t) ≤ f
(

1

2

)
= 2 log 2, t ∈ [0, 1/2],

which implies that − log 2 ≤ −
∫ 1/2
0

− log(1−t)
t dt ≤ −1

2 . Consequently,

∞∑
n=1

2(1− 2−n)

n2
≤ 2(

π2

6
− 1

2
) ' 2.2898

and so

‖C(2,w)‖ = ‖Tw‖ ≤

√(
π2

3
− 1

)
' 1.513 < p′ = 2.

Direct calculation yields

‖Twe1‖2 =

(
2

∞∑
n=1

1

n22n

)1/2

≥

(
2

3∑
n=1

1

n22n

)1/2

' 1.073

and so we have

1.073 ≤ ‖C(2,w)‖ ≤

√(
π2

3
− 1

)
' 1.513;

see also Proposition 2.2.

3. Spectrum of C(p,w)

The aim of this section is to provide some detailed knowledge of the
spectrum of C(p,w). Unlike for the classical Cesàro operators C(p) ∈ L(`p),
for 1 < p <∞, it can now happen that eigenvalues appear.

Given a (strictly) positive, bounded sequence w = (w(n))n∈N and 1 <
p < ∞, let Sw(p) := {s ∈ R :

∑∞
n=1

1
nsw(n)p

′/p < ∞}. In case Sw(p) 6= ∅

we de�ne sp := inf Sw(p). Note that p′

p = 1
p−1 , for every 1 < p < ∞.

Moreover, let Rw := {t ∈ R :
∑∞

n=1 n
tw(n) <∞}. In case Rw 6= R we de�ne

t0 := supRw.
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Fix 1 < p < ∞ and let w(n) = 2−np/p
′
for n ∈ N. Then Sw(p) = ∅, i.e.,

it can happen that Sw(p) is empty. However, in the event that Sw(p) 6= ∅,
then sp ≥ 1. Indeed, for any �xed s ∈ R we have

∞∑
n=1

1

nsw(n)p′/p
≥ ‖w‖−p′/p∞

∞∑
n=1

1

ns
. (7)

So, whenever s ∈ Sw(p) it follows that
∑∞

n=1
1
ns <∞, that is, s > 1. Hence,

Sw(p) ⊆ (1,∞) which implies that sp ≥ 1. Moreover, for any r > s ∈ Sw(p)
we have

∞∑
n=1

1

nrw(n)p′/p
<
∞∑
n=1

1

nsw(n)p′/p

and so also r ∈ Sw(p). Accordingly, whenever Sw(p) 6= ∅, then it is an
in�nite interval, i.e., Sw(p) = [sp,∞) or Sw(p) = (sp,∞) with sp ≥ 1. It
is a consequence of (7) that 1 6∈ Sw(p), for all 1 < p < ∞ and all positive,
bounded sequences w.

In the event that aw := infn∈Nw(n) > 0 it follows that necessarily sp =

1. Indeed, in this case w(n)−p
′/p ≤ a

−p′/p
w , n ∈ N, which implies that

1
nsw(n)p

′/p ≤
a
−p′/p
w
ns , for all n ∈ N and s ∈ R. Hence, (1,∞) ⊆ Sw(p) and so

sp ≤ 1. Since we are assuming that Sw(p) 6= ∅, we already know that sp ≥ 1.
Accordingly, sp = 1.

Let 1 < p < ∞ and �x α > 0. For w(n) = 1/nαp/p
′
and any s ∈ R it

follows that
∑∞

n=1
1

nsw(n)p
′/p =

∑∞
n=1

1
ns−α < ∞ precisely when s > (1 + α)

and so sp = 1 + α. Hence, given any β > 1 and 1 < p < ∞, there exists a
positive, decreasing weight w ↓ 0 such that Sw(p) = (β,∞), i.e., sp = β.

Concerning the set Rw, a similar discussion applies. For w(n) = 2−n it
turns out that Rw = R with t0 = ∞. However, if Rw 6= R, then t0 is �nite
with t0 ≥ −1 andRw = (−∞, t0) orRw = (−∞, t0]. Moreover, Rw = ∅ is not
possible as

∑∞
n=1 n

tw(n) ≤ ‖w‖∞
∑∞

n=1 n
t <∞ whenever t < −1. If aw > 0,

then necessarily t0 = −1 but, −1 6∈ Rw as
∑∞

n=1 n
tw(n) ≥ aw

∑∞
n=1 n

t for
all t ∈ R.

The following result clari�es the connection between sp and t0.

Proposition 3.1. Let w = (w(n))n∈N be a bounded, strictly positive

sequence.

(i) For each 1 < p <∞ such that Sw(p) 6= ∅ we have

t0 ≤
spp

p′
= (p− 1)sp.

In particular, Rw 6= R whenever there exists p ∈ (1,∞) with Sw(p) 6= ∅.

(ii) If Rw 6= R, then Sw(p) ⊆ [1 + t0
(p−1) ,∞), for every 1 < p <∞.
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(iii) Suppose that 1 < p <∞ satis�es Sw(p) 6= ∅. Then

Sw(p) ⊆ Sw(q), q ∈ [p,∞).

In particular, Sw(q) 6= ∅ and sq ≤ sp whenever q ≥ p.

(iv) If Sw(p) = ∅ for some 1 < p <∞, then Sw(q) = ∅ for all 1 < q ≤ p.

Proof. (i) Suppose that Sw(p) 6= ∅. Fix s > sp. Since
∑∞

n=1
1

nsw(n)p
′/p <

∞, there exists N ∈ N such that 1
nsw(n)p

′/p ≤ 1 for n ≥ N and hence,

nsp/p
′
w(n) ≥ 1 for n ≥ N . So, the series

∑∞
n=1 n

sp/p′w(n) diverges which
yields that t0 ≤ sp

p′ . Accordingly, t0 ≤
spp
p′ . In particular, Rw 6= R.

(ii) Fix p ∈ (1,∞) and any t < t0, in which case
∑∞

n=1 n
tw(n) < ∞.

Hence, there exists K ∈ N such that nt ≤ 1
w(n) for n ≥ K, that is, ntp

′/p ≤
1

w(n)p
′/p for n ≥ K. So, for any s ∈ R we have (as 1

ns > 0 for n ∈ N) that

1

ns−(tp′/p)
=
ntp
′/p

ns
≤ 1

nsw(n)p′/p
, n ≥ K.

Choose now s ≤ 1 + tp′

p . It follows from the previous inequality that∑∞
n=1

1
nsw(n)p

′/p diverges. Hence,
∑∞

n=1
1

nsw(n)p
′/p diverges whenever s ≤

1 + tp′

p , for some t < t0, that is, whenever s ∈ (−∞, 1 + t0p′

p ). So, Sw(p) ⊆
[1 + t0p′

p ,∞) = [1 + t0
(p−1) ,∞).

(iii) Fix s ∈ Sw(p), i.e.,
∑∞

n=1
1

nsw(n)p
′/p < ∞. For every 1 < q < ∞ we

have

∞∑
n=1

1

nsw(n)q′/q
=
∞∑
n=1

1

nsw(n)p′/p
· w(n)

p′
p
− q
′
q ≤ ‖w‖

p′
p
− q
′
q

∞

∞∑
n=1

1

nsw(n)p′/p
,

which is �nite provided that p′

p ≥
q′

q . This is equivalent to (p′−1) ≥ (q′−1),
that is, to q ≥ p. Hence, whenever q ≥ p we have Sw(p) ⊆ Sw(q) which
clearly implies Sw(q) 6= ∅ and sq ≤ sp.

(iv) Follows immediately from part (iii).

De�ne Σ := { 1n : n ∈ N} and let Σ0 := {0} ∪ { 1n : n ∈ N} be its closure.
The following inequalities will be needed later.

Lemma 3.2. (i) Let λ ∈ C \ Σ0 and set α := Re
(
1
λ

)
. Then there exist

constants d > 0 and D > 0 (depending on α) such that

d

nα
≤

n∏
k=1

∣∣∣∣1− 1

kλ

∣∣∣∣ ≤ D

nα
, n ∈ N. (8)
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(ii) For each m ∈ N we have that

(n− 1)!

(n−m)!
' nm−1, for all large n ∈ N. (9)

(iii) Let 1 < p < ∞ and w = (w(n))n∈N be a positive, decreasing se-

quence. Then

(nmw(n))n∈N ∈ `p, ∀m ∈ N, (10)

if and only if

(nmw(n)1/p)n∈N ∈ `p, ∀m ∈ N, (11)

Proof. (i) The inequalities in (8) follow as in the proof of Lemma 7 in
[19], where the restriction α < 1 is assumed. Indeed, with 1

λ = α + iβ (for
α, β ∈ R) and using 1 + x ≤ ex for x > 0, we have

n∏
k=1

∣∣∣∣1− 1

kλ

∣∣∣∣ =
n∏
k=1

(
1− 2α

k
+
α2 + β2

k2

)1/2

≤ exp
n∑
k=1

(
−α
k

+
C

k2

)
≤ exp (−α log(n) + v) ≤ D

nα
.

An application of Taylor's formula to x 7→ (1 + x)−1/2, for x > −1, yields

n∏
k=1

∣∣∣∣1− 1

kλ

∣∣∣∣−1 =

n∏
k=1

(
1− 2α

k
+
α2 + β2

k2

)−1/2
≤

n∏
k=1

(
1 +

α

k
+
C ′

k2

)

≤ exp

n∑
k=1

(
α

k
+
C ′

k2

)
≤ exp

(
α log(n) + v′

)
= d−1nα.

(ii) Fix m ∈ N. Then, for all large n > m, we have

(n− 1)!

(n−m)!
= (n−1)·. . .·(n−m+1) = nm−1·

(
1− 1

n

)
·. . .·

(
1− m− 1

n

)
' nm−1.

(iii) Suppose that (10) holds. Fix m ∈ N. Let k ∈ N satisfy k ≥ (2 + mp).
Since (nkw(n))n∈N ∈ `p, there exists N ∈ N such that

w(n) ≤ 1

nk
≤ 1

n2+mp
, n > N.

It follows that

∞∑
n=1

nmpw(n) ≤
N∑
n=1

nmpw(n) +
∞∑

n=N+1

nmp
(

1

n2+mp

)
<∞,

that is, (nmw(n)1/p)n∈N ∈ `p. Accordingly, (11) is satis�ed.
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Conversely, suppose that (11) holds. Since (nw(n)1/p)n∈N ∈ `p, there
exists K ∈ N such that w(n) ≤ 1 for n ≥ K and hence, w(n) ≤ w(n)1/p

for n ≥ K. Fix m ∈ N. Then nmw(n) ≤ nmw(n)1/p for n ≥ K. Since
(nmw(n)1/p)n∈N ∈ `p, we can conclude that also (nmw(n))n∈N ∈ `p. Hence,
(10) is satis�ed.

If Sw(p) 6= ∅, then sp ≥ 1 and so p′

2sp
≤ p′

2 , which is relevant for the

following results. Also relevant is that ‖C(p,w‖ < p′ is possible; see Section
2.

We now come to the main result of this section.

Theorem 3.3. Let w = (w(n))n∈N be a positive, decreasing sequence.

(i) Suppose that Sw(p) 6= ∅ for some 1 < p < ∞. Then for the dual

operator (C(p,w))′ ∈ L((`p(w))′) of C(p,w) we have{
λ ∈ C :

∣∣∣∣λ− p′

2sp

∣∣∣∣ < p′

2sp

}
∪ Σ ⊆ σpt((C(p,w))′) (12)

and

σpt((C
(p,w))′) \ Σ ⊆

{
λ ∈ C :

∣∣∣∣λ− p′

2sp

∣∣∣∣ ≤ p′

2sp

}
. (13)

For the Cesàro operator C(p,w) itself we have{
λ ∈ C :

∣∣∣∣λ− p′

2sp

∣∣∣∣ ≤ p′

2sp

}
∪ Σ ⊆ σ(C(p,w)) (14)

and

σ(C(p,w)) ⊆
{
λ ∈ C :

∣∣∣∣λ− p′

2

∣∣∣∣ ≤ p′

2

}
∩
{
λ ∈ C : |λ| ≤ ‖C(p,w)‖

}
. (15)

(ii) Suppose that Rw 6= R, i.e., t0 <∞. Then, for every 1 < p <∞, we

have{
1

m
: m ∈ N, 1 ≤ m <

t0
p

+ 1

}
⊆ σpt(C(p,w)) ⊆

{
1

m
: m ∈ N, 1 ≤ m ≤ t0

p
+ 1

}
.

(16)
If Rw = R, then

σpt(C
(p,w)) = Σ, ∀ 1 < p <∞. (17)

Proof. The proof is via a series of steps.
(i) By Proposition 2.2 we have C(p,w) ∈ L(`p(w)) with ‖C(p,w)‖ ≤ p′. The

dual operator A := (Cp,w)′ ∈ L(`p′(w
−p′/p)) also satis�es ‖A‖ ≤ p′ and is

given by

Ay =

( ∞∑
k=n

yk
k

)
n∈N

, y = (yn)n∈N ∈ `p′(w−p
′/p). (18)
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Step 1. 0 6∈ σpt(A).

Observe that Ay = 0, for some y ∈ `p′(w
−p′/p), implies that zn :=∑∞

k=n
yk
k = 0 for all n ∈ N. Hence, yn = n(zn− zn+1) = 0, for n ∈ N, and so

A is injective.

Step 2. Σ ⊆ σpt(A).

Let λ ∈ Σ, i.e., λ = 1
m for some m ∈ N. Via (19) below, the non-zero

vector y = (yn)n∈N de�ned via y1 ∈ C\{0} arbitrary, yn := y1
∏n−1
k=1

(
1− 1

λk

)
for 1 < n ≤ m and yn := 0 for n > m, which belongs to `p′(w

−p′/p), satis�es
Ay = λy.

Step 3.
{
λ ∈ C :

∣∣∣λ− p′

2sp

∣∣∣ < p′

2sp

}
⊆ σpt(A).

Let λ ∈ C \ {0}. Then Ay = λy for some non-zero y ∈ `p′(w
−p′/p) if,

and only if, λyn =
∑∞

k=n
yk
k for all n ∈ N. This yields, for every n ∈ N, that

λ(yn − yn+1) = yn
n and so yn+1 =

(
1− 1

λn

)
yn. It follows that

yn+1 = y1

n∏
k=1

(
1− 1

λk

)
, n ∈ N, (19)

with y1 6= 0. In particular, each eigenvalue of A is simple.

Let now λ ∈ C\Σ satisfy
∣∣∣λ− p′

2sp

∣∣∣ < p′

2sp
(equivalently, α := Re

(
1
λ

)
>

sp
p′ ,

i.e., αp′ = Re
(
p′

λ

)
> sp). For such a λ the vector y = (yn)n∈N ∈ CN de�ned

by (19) actually belongs to `p′(w
−p′/p). Indeed, via Lemma 3.2(i) there exists

c = c(λ) > 0 such that

n∏
k=1

∣∣∣∣1− 1

λk

∣∣∣∣p′ ≤ cn−Re(p′/λ), n ∈ N.

It then follows from (19) that

∞∑
n=1

|yn|p
′
w(n)−p

′/p = |y1|p
′
w(1)−p

′/p + |y1|p
′
∞∑
n=2

n∏
k=1

∣∣∣∣1− 1

λk

∣∣∣∣p′ w(n)−p
′/p

≤ |y1|p
′
w(1)−p

′/p + c|y1|p
′
∞∑
n=2

n−Re(p′/λ)w(n)−p
′/p,

where the series
∑∞

n=2 n
−Re(p′/λ)w(n)−p

′/p converges because Re(p′/λ) ∈
Sw(p), that is, y ∈ `p′(w−p

′/p). Hence, λ ∈ σpt(A).

Step 4. σpt(A) \ Σ0 ⊆
{
λ ∈ C :

∣∣∣λ− p′

2sp

∣∣∣ ≤ p′

2sp

}
.

Fix λ ∈ σpt(A) \ Σ0. According to (8) there exists β = β(λ) > 0 such
that

n∏
k=1

∣∣∣∣1− 1

λk

∣∣∣∣p′ ≥ β · n−Re(p′/λ), n ∈ N. (20)
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But, as argued in Step 2 (for any y1 ∈ C \ {0}) the eigenvector y =
(yn)n∈N corresponding to the eigenvalue λ of A, which necessarily belongs
to `p′(w

−p′/p), i.e.,
∑∞

n=1 |yn|p
′
w(n)−p

′/p < ∞, is given by (19). Then (20)

implies that also
∑∞

n=1
1

nRe(p′/λ)w(n)p′/p
< ∞, i.e., Re

(
p′

λ

)
∈ Sw(p) and so

Re
(
p′

λ

)
≥ sp. Equivalently, Re

(
1
λ

)
≥ sp

p′ , i.e., λ ∈
{
µ ∈ C :

∣∣∣µ− p′

2sp

∣∣∣ ≤ p′

2sp

}
.

It is clear that Steps 1-4 establish the two containments in (12) and (13).

For every T ∈ L(X) with X a Banach space, it is known that σpt(T
′) ⊆

σ(T ), [10, p.581], with σ(T ) a closed subset of C. Accordingly, (14) follows
from (12).

Step 5. σ(C(p,w)) ⊆
{
λ ∈ C :

∣∣∣λ− p′

2

∣∣∣ ≤ p′

2

}
.

It su�ces to show that every λ ∈ C with
∣∣∣λ− p′

2

∣∣∣ > p′

2 belongs to

ρ(C(p,w)). To do this we argue as in [7]. We recall the formula for (C −
λI)−1 : CN → CN whenever λ 6∈ Σ0, [19, p.266]. For n ∈ N the n�th row of
the matrix for (C− λI)−1 has the entries

−1

nλ2
∏n
k=m

(
1− 1

λk

) , 1 ≤ m < n,

n

1− nλ
=

1
1
n − λ

, m = n,

and all the other entries in row n are equal to 0. So, we can write

(C− λI)−1 = Dλ −
1

λ2
Eλ, (21)

where the diagonal operator Dλ = (dnm)n,m∈N is given by dnn := 1
1
n
−λ and

dnm := 0 if n 6= m. The operator Eλ = (enm)n,m∈N is then the lower
triangular matrix with e1m = 0 for all m ∈ N, and for every n ≥ 2 with
enm := 1

n
∏n
k=m(1− 1

λk )
if 1 ≤ m < n and enm := 0 if m ≥ n.

If λ 6∈ Σ0, then d(λ) := dist(λ,Σ0) > 0 and |dnn| ≤ 1
d(λ) for n ∈ N.

Hence, for every x ∈ `p(w), we have

‖Dλ(x)‖p,w =

( ∞∑
n=1

|dnnxn|pw(n)

)1/p

≤ 1

d(λ)

( ∞∑
n=1

|xn|pw(n)

)1/p

=
1

d(λ)
‖x‖p,w.

This means that Dλ ∈ L(`p(w)). So, by (21) it remains to show that Eλ ∈
L(`p(w)) whenever λ ∈ C satis�es

∣∣∣λ− p′

2

∣∣∣ > p′

2 . To this end, we note that
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if λ ∈ C \ Σ0 then, with α := Re
(
1
λ

)
, it follows from (8) that

|en1| ≤
d−1

n1−α
, n ≥ 2,

|enm| ≤
d−1D′

n1−αmα
, 2 ≤ m < n,

for some constants d > 0 andD′ > 0 depending on λ. So, for every λ ∈ C\Σ0

there exists c = c(λ) > 0 such that

|(Eλ(x))n| ≤ c(Gλ(|x|))n, x ∈ CN, n ∈ N, (22)

where (Gλ(x))n :=
∑n

k=1
xk

n1−αkα with α := Re
(
1
λ

)
and for all x ∈ CN and

n ∈ N. Clearly (22) implies that Eλ ∈ L(`p(w)) whenever Gλ ∈ L(`p(w)).

Claim: Gλ ∈ L(`p(w)) whenever λ ∈ C satis�es
∣∣∣λ− p′

2

∣∣∣ > p′

2 .

To establish this claim �x λ ∈ C with
∣∣∣λ− p′

2

∣∣∣ > p′

2 . Then necessarily

λ 6∈ Σ0 with α := Re
(
1
λ

)
< 1

p′ and so (1−α)p > 1. This implies that α < 1.

Observe that Gλ ∈ L(`p(w)) if, and only if, the operator G̃λ : CN → CN

given by

(G̃λ(x))n = w(n)1/p
n∑
k=1

w(k)−1/p

n1−αkα
xk, x ∈ CN, n ∈ N,

de�nes a continuous linear operator on `p (the proof of this is along the
lines of that of Lemma 2.1). To prove that indeed G̃λ ∈ L(`p) we need to
distinguish the three cases; a) α = 0; b) α < 0 and c) 0 < α < 1 and
establish relevant inequalities in each case.

Case a). Since w is decreasing, we have, for every n ∈ N, that

n∑
k=1

1

w(k)1/(p−1)kαp/(p−1)
=

n∑
k=1

1

w(k)1/(p−1)
≤ n

w(n)1/(p−1)

and hence, for every m ∈ N, that

m∑
n=1

(
w(n)1/p

n

n∑
k=1

1

w(k)1/(p−1)

)p
≤

m∑
n=1

1

w(n)1/(p−1)
. (23)

Case b). Observe, for every n ∈ N, that

n∑
k=1

1

w(k)1/(p−1)kαp/(p−1)
≤ 1

w(n)1/(p−1)

∫ n+1

1
x−αp/(p−1) dx

=
1

w(n)1/(p−1)
((n+ 1)

− αp
p−1

+1 − 1)

− αp
p−1 + 1

≤ (p− 1)

(p(1− α)− 1)

(n+ 1)
p(1−α)−1

p−1

w(n)1/(p−1)
.
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Setting c := p−1
p(1−α)−1 > 0 it follows, for every m ∈ N, that

m∑
n=1

(
w(n)1/p

n1−α

n∑
k=1

1

w(k)1/(p−1)kαp/(p−1)

)p
≤ cp

m∑
n=1

(n+ 1)
p[p(1−α)−1]

p−1

w(n)1/(p−1)n(1−α)p

≤ 2
p(p(1−α)−1)

p−1 cp
m∑
n=1

1

w(n)1/(p−1)nαp/(p−1)
. (24)

Case c). We have, for every n ∈ N, still with c = p−1
p(1−α)−1 , that

n∑
k=2

1

w(k)1/(p−1)kαp/(p−1)
≤ 1

w(n)1/(p−1)

∫ n

1

1

xαp/(p−1)
dx

=
c

w(n)1/(p−1)
(n

p(1−α)−1
p−1 − 1).

Since (1−α)p > 1 (i.e., (1−α)p− 1 > 0) and αp > 0 with 1
w(1) ≤

1
w(n) , this

implies, for every n ∈ N, that(
w(n)1/p

n1−α

n∑
k=1

1

w(k)1/(p−1)kαp/(p−1)

)p

≤

[
w(n)1/p

n1−αw(1)1/(p−1)
+

w(n)1/pc

n1−αw(n)1/(p−1)
(n

p(1−α)−1
p−1 − 1)

]p

≤

[
w(n)1/p

n1−αw(n)1/(p−1)
+

w(n)1/pc

n1−αw(n)1/(p−1)
(n

p(1−α)−1
p−1 − 1)

]p

=

[
(1− c) w(n)1/p

n1−αw(n)1/(p−1)
+

w(n)1/pc

n1−αw(n)1/(p−1)
n
p(1−α)−1

p−1

]p

=

(
−αp

p(1− α)− 1

w(n)1/p

n1−αw(n)1/(p−1)
+
w(n)−1/p(p−1)c

n1−α
n
p(1−α)−1

p−1

)p

≤

(
w(n)−1/p(p−1)c

n1−α
n
p(1−α)−1

p−1

)p
= cpw(n)−1/(p−1)n−αp/(p−1).

Hence, for every m ∈ N, we have that
m∑
n=1

(
w(n)1/p

n1−α

n∑
k=1

1

w(k)1/(p−1)kαp/(p−1)

)p
≤ cp

m∑
n=1

1

w(n)1/(p−1)nαp/(p−1)
.

(25)
The inequalities (23), (24) and (25) imply that G̃λ ∈ L(`p); indeed, in each
case, suitable choices of an and bk (with p = q) allow us to apply Theorem
2(ii) of [5]. This establishes the claim and hence, also Step 5.
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Step 6. σ(C(p,w)) ⊆ {λ ∈ C : |λ| ≤ ‖C(p,w)‖}.
This is well known, [10, Ch.VII Lemma 3.4].
Steps 5 and 6 clearly yield (15). The proof of part (i) is thereby complete.
(ii) Suppose �rst that Rw 6= R. Fix any 1 < p <∞.
Step 7. Both of the inclusions in (16) are valid.

The Cesàro operator C(p,w) is clearly injective. So, 0 6∈ σpt(C(p,w)). Let
λ ∈ C \ {0}. Consider the equation (λI − C)x = 0 with x = (xn)n∈N ∈
CN\{0}. Then x1 = λx1 and (2λ−1)x2 = x1 and (nλ−1)xn = λ(n−1)xn−1
for all n ≥ 3. Ifm ∈ N denotes the smallest positive integer such that xm 6= 0,
then it follows that λ = 1

m and so xn = n−1
n−mxn−1 for all n > m. Thus, we

deduce that

xn = xm+(n−m) =
(n− 1)!

(m− 1)!(n−m)!
xm, n ≥ m. (26)

According to (9) we have (n−1)!
(m−1)!(n−m)! '

1
(m−1)! · n

m−1, for each m ∈ N. So,
x ∈ `p(w) if, and only if, the series

∑∞
n=m+1 n

(m−1)pw(n) converges. But,

the series
∑∞

n=m+1 n
(m−1)pw(n) converges precisely when (m−1)p ∈ Rw. In

this case, (m− 1)p ≤ t0, i.e., m ≤ t0
p + 1. So, σpt(C

(p,w)) ⊆ { 1
m : m ∈ N, 1 ≤

m ≤ t0
p + 1}.

Conversely, if m < t0
p + 1 for some m ∈ N, i.e., (m − 1)p < t0, then

(m − 1)p ∈ Rw as t0 = supRw. Then the vector x ∈ CN de�ned according
to (26), with x1 = . . . = xm−1 = 0 and for any arbitrary xm 6= 0, belongs to
`p(w). Therefore, 1

m ∈ σpt(C
(p,w)).

Step 8. Assume now that Rw = R. Then (17) is valid.

Fix 1 < p < ∞. As argued in Step 7, the point 1
m ∈ σpt(C

(p,w)) if and
only if (m − 1)p ∈ Rw. But, for Rw = R, this is satis�ed for every m ∈ N
and so Σ ⊆ σpt(C

(p,w)). On the other hand, it is also shown in the proof of
Step 7 that every eigenvalue λ of C : CN → CN must have the form λ = 1

m

for some m ∈ N. Since every eigenvalue of C(p,w) is also an eigenvalue of C
(as `p(w) ⊆ CN), it follows that σpt(C

(p,w)) ⊆ Σ.

Remark 1. (i) If sp 6∈ Sw(p), for some 1 < p <∞, then the argument of
Step 4 in the proof of Theorem 3.3 implies that (12) reduces to the equality

σpt((C
(p,w))′) =

{
λ ∈ C :

∣∣∣∣λ− p′

2sp

∣∣∣∣ < p′

2sp

}
∪ Σ.

Also, if t0 6∈ Rw, then (16) reduces to the equality

σpt(C
(p,w)) =

{
1

m
: m ∈ N, 1 ≤ m <

t0
p

+ 1

}
, 1 < p <∞.

(ii) For w(n) = 1 for all n ∈ N, in which case `p(w) = `p and sp = 1, we
have that C(p,w) = C(p) for all 1 < p <∞ with ‖C(p,w)‖ = ‖C(p)‖ = p′. Then
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(14) and (15) imply the known fact that

σ(C(p)) =

{
λ ∈ C :

∣∣∣∣λ− p′

2

∣∣∣∣ ≤ p′

2

}
. (27)

Since t0 = −1, we also recover from (16) the known fact that σpt(C
(p)) = ∅.

(iii) According to (14), for w positive, decreasing and with Sw(p) 6= ∅ we
have

p′

sp
≤ max{1, p

′

sp
} ≤ ‖C(p,w)‖ ≤ p′. (28)

In particular, whenever sp = 1 (see e.g., Example 3(i) below), the inequalities
in (28) imply that necessarily ‖C(p,w)‖ = p′ is as large as possible.

For the special case when w(n) = 1
nα , n ∈ N, for some α > 0, direct

calculation yields that sp = 1 + αp′

p and so Sw(p) 6= ∅ for all 1 < p < ∞. It
follows that

p′

sp
=

p

α+ p− 1
= m1,

where m1 occurs in the lower bound for ‖C(p,w)‖ as given in (5); see Propo-
sition 2.3. Hence, (28) yields that m1 ≤ ‖C(p,w)‖. Combined with Example
1(iii) we can conclude that

max{m1,m2} ≤ ‖C(p,w)‖.

This provides an alternate proof, to that in [12], of the same estimate in (5).
(iv) An examination of the argument for Step 2 in the proof of Theorem

3.3(i) shows that the assumption Sw(p) 6= ∅ is not used there, i.e., we always
have

Σ ⊆ σpt((C(p,w))′)

for every 1 < p <∞ and every positive, decreasing weight w.

We now present some relevant examples.

Example 3. (i) Suppose that w(n) = 1
(log(n+1))γ for n ∈ N with γ ≥ 0.

Then
∑∞

n=1
1

nsw(n)p
′/p < ∞ if and only if s > 1 and hence, sp = 1 for every

1 < p <∞. In view of Remark 1(iii) we have that ‖C(p,w)‖ = p′. Moreover,∑∞
n=1 n

tw(n) < ∞ if and only if t < −1 or t ≤ −1 in case γ > 1. Hence,
t0 = −1. According to Theorem 3.3 we have, for each 1 < p <∞, that

σ(C(p,w)) =

{
λ ∈ C :

∣∣∣∣λ− p′

2

∣∣∣∣ ≤ p′

2

}
, σpt(C

(p,w)) = ∅.

In particular, equality may occur in (15). For the case when γ = 0 (so that
w(n) = 1 for n ∈ N), we recover the known result about the spectrum of
C(p) ∈ L(`p), for 1 < p <∞, [6], [15].
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(ii) More generally, suppose that w(n) = 1
nβ(log(n+1))γ

for n ∈ N with

β ≥ 0 and γ ≥ 0. Then
∑∞

n=1
1

nsw(n)p
′/p <∞ if and only if s > β p

′

p + 1 and

so sp = β p
′

p + 1 for every 1 < p < ∞. Moreover,
∑∞

n=1 n
tw(n) < ∞ if and

only if t < (β−1) or t ≤ (β−1) in case γ > 1. Hence, t0 = β−1. According
to Theorem 3.3 we have, for each 1 < p <∞, that{

λ ∈ C :

∣∣∣∣λ− p′

2((βp′/p) + 1)

∣∣∣∣ ≤ p′

2((βp′/p) + 1)

}
∪ Σ ⊆ σ(C(p,w))

and

σpt(C
(p,w)) =

{
1

m
: m ∈ N, 1 ≤ m <

β − 1

p
+ 1

}
.

In particular, σpt(C
(p,w)) = ∅ whenever β ∈ [0, 1]. We claim that actually{

λ ∈ C :

∣∣∣∣λ− p′

2((βp′/p) + 1)

∣∣∣∣ ≤ p′

2((βp′/p) + 1)

}
∪ Σ = σ(C(p,w)), (29)

which shows that equality may occur in (14).
Keeping in mind the argument for Step 5 in the proof of Theorem 3.3, to

verify (29) it su�ces to prove that every λ ∈ C\{0} satisfying
∣∣∣λ− p′

2((βp′/p)+1)

∣∣∣ >
p′

2((βp′/p)+1) belongs to ρ(C(p,w)), i.e., that the operator G̃λ ∈ L(`p). So, �x

such a λ and note that α := Re
(
1
λ

)
<
(
β p
′

p + 1
)
/p′ = β

p + 1
p′ . We also

observe, for our particular w, that the operator G̃λ is given by

(G̃λ(x))n =
1

n1−α+(β/p) logγ/p(n+ 1)

n∑
k=1

xk

kα−(β/p) log−γ/p(k + 1)
,

for x = (xn)n∈N ∈ CN. So, G̃λ is given by the factorable matrix with
an := n−(1−α+(β/p)) log−γ/p(n+1) and bk := k−(α−(β/p)) logγ/p(k+1), where
α < β

p + 1
p′ = β

p + 1 − 1
p implies that 1 − α + β

p > 1
p and we have that(

1− α+ β
p

)
+
(
α− β

p

)
= 1 = 1

p + 1
p′ and also that

(
γ
p

)
+
(
−γ
p

)
= 0.

According to Corollary 9(ii) of [5] it follows that G̃λ ∈ L(`p) and the claim
is proved.

Finally, since sp = β+p−1
p−1 , it follows from (28) that

p′ · p− 1

β + p− 1
≤ ‖C(p,w)‖ ≤ p′, 1 < p <∞,

with p−1
β+p−1 ↑ 1 for β ↓ 0. This example also shows that the inequality

t0 ≤ spp′

p (cf. Proposition 3.1(i)) can be strict. For β ↓ 0 it follows from (14)
and (15) that

σ(C(p,w)) ↑
{
λ ∈ C :

∣∣∣∣λ− p′

2

∣∣∣∣ < p′

2

}
,

whose closure equals σ(C(p)) = σ(C(p,w)) for w as in (i).

17



It is clear from (16) that C(p,w) has at most �nitely many eigenvalues
whenever t0 ∈ R. The following result characterizes when σpt(C

(p,w)) is
an in�nite set ; see also Remark 2(i) below. Recall that a sequence u =
(un)n∈N ∈ CN is rapidly decreasing if (nmun)n∈N ∈ `1 for every m ∈ N. The
space of all rapidly decreasing, C-valued sequences is usually denoted by s.

Proposition 3.4. Let w = (w(n))n∈N be a positive, decreasing sequence.

(i) The following assertions are equivalent.

(1) Rw = R.

(2) (nmw(n))n∈N ∈ `1 for all m ∈ N.

(3) (nmw(n))n∈N ∈ c0 for all m ∈ N.

(4) w ∈ s.

(ii) For each 1 < p <∞, the following assertions are equivalent.

(5) Σ ⊆ σpt(C(p,w)).

(6) (nmw(n))n∈N ∈ `p for all m ∈ N.

(iii) Any one of the equivalent assertions (1)-(4) implies that both (5) and
(6) are valid, for every 1 < p <∞.

(iv) If (6) holds for some 1 < p < ∞, then each assertion (1)-(4) is

satis�ed.

Proof. (i) (1)⇔(2) follows from the de�nition of Rw.
(2)⇔(3). That (2)⇒(3) is immediate from `1 ⊆ c0.
Assume (3). Fix t ∈ N and set m = t + 2. Then (nmw(n))n∈N ∈ c0

implies that supn∈N n
mw(n) <∞. Accordingly,

∞∑
n=1

ntw(n) =
∞∑
n=1

1

n2
nmw(n) ≤ π2

6
sup
n∈N

nmw(n) <∞.

Since t is arbitrary, we can conclude that (2) holds.
(2)⇔(4). Clear from the de�nition of the space s.
(ii) Since C(p,w) is injective, 0 6∈ σpt(C(p,w)). By (9) and (26), λ ∈ C \

{0} is an eigenvalue of C(p,w) if and only if λ = 1
m for some m ∈ N with

the corresponding 1-dimensional eigenspace generated by a vector x[m] =

(x
[m]
n )n∈N ∈ CN satisfying x

[m]
n ' nm−1. So, Σ ⊆ σpt(C

(p,w)) if and only if
(nm−1)n∈N ∈ `p(w) for all m ∈ N, that is, if and only if (nmw(n)1/p)n∈N ∈ `p
for all m ∈ N, which is equivalent to (6) via Lemma 3.2(iii).

(iii) Follows immediately from parts (i) and (ii) and the fact that (2)⇒(6)
since `1 ⊆ `p for every 1 < p <∞.

(iv) Immediate from `p ⊆ c0 for every 1 < p <∞.

18



Given a decreasing sequence w = (w(n))n∈N of positive real numbers,
set αn := − logw(n), for n ∈ N. Then w(n) = e−αn , for n ∈ N. Moreover,
αn →∞ for n→∞ if and only if w(n)→ 0 for n→∞.

Corollary 3.5. Let w = (w(n))n∈N be a decreasing, positive sequence.

(i) If w ∈ s, then limn→∞
logn
αn

= 0.

(ii) If limn→∞
logn
αn

= 0 and w(N) < 1 for some N , then w ∈ s.

Proof. (i) Since w ∈ s, condition (3) in Proposition 3.4 implies that

∀m ∈ N ∃nm ∈ N ∀n ≥ nm : nmw(n) =
nm

eαn
< 1,

i.e., that

∀m ∈ N ∃nm ∈ N ∀n ≥ nm : nm < eαn .

It follows that

∀m ∈ N ∃nm ∈ N ∀n ≥ nm : m log n < αn.

This implies that necessarily αn > 0 for all n ≥ nm and so

∀m ∈ N ∃nm ∈ N ∀n ≥ nm :
log n

αn
<

1

m
.

This means precisely that limn→∞
logn
αn

= 0.

(ii) Fix m ∈ N. Then there is n0 ∈ N with n0 ≥ N such that logn
αn

< 1
m+1

for all n ≥ n0. Since w(N) < 1 implies that αn = − logw(n) > 0 for all
n ≥ n0, we can conclude that (m+ 1) log n < αn, i.e., n

m+1w(n) < 1 for all
n ≥ n0. So, supn∈N n

m+1w(n) <∞. It follows that

nmw(n) ≤ 1

n
sup
r∈N

rm+1w(r), n ∈ N,

with 1
n supr∈N r

m+1w(r) → 0 as n → ∞. By (3)⇔(4) in Proposition 3.4(i)
it follows that w ∈ s.

Remark 2. (i) Concerning condition (5) in Proposition 3.4 (for any
given 1 < p < ∞), we claim that the entire set Σ ⊆ σpt(C

(p,w)) when-
ever σpt(C

(p,w)) is an in�nite set. To see this, suppose that 1
m ∈ σpt(C

(p,w))
for some m ∈ N. According to the argument in Step 7 of the proof of Theo-
rem 3.3, we can conclude that (nm−1)n∈N ∈ `p(w). So, for all 1 ≤ k < m, it
follows that

∞∑
n=1

(nk)pw(n) ≤
∞∑
n=1

(nm−1)pw(n) <∞
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and hence, via (9), that the vector (xn)n∈N ∈ CN given by (26), with k
in place of m, also belongs to `p(w), i.e., it is an eigenvector of C(p,w) cor-
responding to λ = 1

k . This shows that
{
1
k

}m
k=1

⊆ σpt(C
(p,w)) whenever

1
m ∈ σpt(C

(p,w)), which clearly implies the stated claim.
(ii) Let 1 < p0 < ∞. The constant vector 1 := (1, 1, . . .) ∈ CN satis�es

C1 = 1 and so 1 ∈ σpt(C(p0,w)) if and only if, 1 ∈ `p0(w), i.e., if, and only
if, w ∈ `1. In this case, 1 ∈ σpt(C(p,w)) for every 1 < p <∞. Then Theorem
3.3(ii) implies that necessarily t0 ∈ (0,∞].

(iii) Let w(n) = 1
nα , for all n ∈ N and some α > 0. Then

∑∞
n=1 n

tw(n) <
∞ if, and only if, t < (α − 1) and so t0 = (α − 1). In particular, Rw 6= R.
Moreover, for any 1 < p <∞, we have{

1

m
: m ∈ N, 1 ≤ m <

t0
p

+ 1

}
=

{
1

m
: m ∈ N, 1 ≤ m <

(α− 1)

p
+ 1

}
.

So, given any 1 < p <∞, it is possible to choose an appropriate α > 0 such
that σpt(C

(p,w)) is a �nite set with any pre-assigned cardinality; see (16).
(iv) Condition (1) of Proposition 3.4, i.e., Rw = R, implies that neces-

sarily Sw(p) = ∅ for every 1 < p <∞; see Proposition 3.1(i).

Let w = (w(n))n∈N be any decreasing, (strictly) positive sequence and
let 1 < p < ∞. The Cesàro operator C(p,w) is similar (via an isometry) to
an operator Tw ∈ L(`p) which is de�ned by the factorable matrix A(w) =

(ank)n,k∈N with entries ank = anbk = w(n)1/p

n · w(k)−1/p for 1 ≤ k ≤ n and

ank = 0 for k > n (see the proof of Lemma 2.1). In particular, σ(C(p,w)) =
σ(Tw). Moreover, the matrix A(w) satis�es the following two conditions:

(i) supn∈N
∑∞

k=1 |ank| = supn∈N
w(n)1/p

n

∑n
k=1w(k)−1/p ≤ 1,

because w decreasing implies that
∑n

k=1w(k)−1/p ≤ nw(n)−1/p, n ∈ N,
and

(ii) fk := limn→∞ ank = w(k)−1/p limn→∞
w(n)1/p

n = 0, k ∈ N,
because w ∈ `∞.

If, in addition, the matrix A(w) also satis�es the condition

(iii) α := limn→∞
∑∞

k=1 ank = limn→∞
w(n)1/p

n

∑n
k=1w(k)−1/p exists,

then the linear operator corresponding to A(w) is a selfmap of c, the space
of all convergent sequences, that is, A(w) is conservative, [20, p.112].

Suppose now that the matrix A(w) satis�es condition (iii) with α = 1.
Then A(w) is regular and the linear operator corresponding to A(w) is limit
preserving over c, [20, p.114]. De�ne η := lim supn→∞ anbn. For the operator
Tw (which is similar to the Cesàro operator C(p,w)) it turns out that η = 0
and so a result of Rhoades and Yildirim [20, Theorem 3] yields that{

λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
⊆ σ(C(p,w)), (30)

20



after noting that S := {anbn : n ∈ N} = Σ0 ⊆
{
λ ∈ C :

∣∣λ− 1
2

∣∣ ≤ 1
2

}
.

It is worthwhile to compare (14) with (30). So, let 1 < p <∞ and w be
a positive, decreasing sequence such that Sw(p) 6= ∅. Then{

λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
⊆
{
λ ∈ C :

∣∣∣∣λ− p′

2sp

∣∣∣∣ ≤ p′

2sp

}
⊆ σ(C(p,w))

with the �rst inclusion holding if, and only if, sp ≤ p′. Observe that if(
w(n)−1/p

n

)
n∈N
∈ `p′ , then sp ≤ p′ is valid and conversely, if sp < p′, then(

w(n)−1/p

n

)
n∈N
∈ `p′ . In this case, (14) is a better inclusion than (30). For

instance, if w(n) := 1
nr for all n ∈ N and some r > 0, then

(
w(n)−1/p

n

)
n∈N
∈

`p′ if, and only if, r < 1. On the other hand, the reverse inclusion{
λ ∈ C :

∣∣∣∣λ− p′

2sp

∣∣∣∣ ≤ p′

2sp

}
⊆
{
λ ∈ C :

∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1

2

}
holds if, and only if, p′ ≤ sp. Observe that if

(
w(n)−1/p

n

)
n∈N

6∈ `p′ , then

p′ ≤ sp is valid and conversely, if p′ < sp, then
(
w(n)−1/p

n

)
n∈N
6∈ `p′ . In this

case, modulo the additional requirement that α = 1 (see condition (iii)), in
which case (30) is actually valid, we see that (30) is a better inclusion than
(14).

The following example shows that condition (iii) above and the property
Sw(p) 6= ∅ can be compatible.

Example 4. Fix 1 < p < ∞. For each n ∈ N set w(n) = 1
(log(n+1))p , in

which case w(n) ↓ 0. Then Sw(p) = (1,∞) and{
λ ∈ C :

∣∣∣∣λ− p′

2

∣∣∣∣ ≤ p′

2

}
= σ(C(p,w)) with σpt(C

(p,w)) = ∅;

see Example 3(i) with γ = p. Moreover, concerning condition (iii) observe
that

w(n)1/p

n

n∑
k=1

w(k)−1/p =
1

n log(n+ 1)

n∑
k=1

log(k + 1), n ∈ N.

The inequalities

[(n+1) log(n+1)−n] ≤
n∑
k=1

log(k+1) ≤ [(n+2) log(n+2)−n−2 log 2], n ∈ N,

then imply that

α = lim
n→∞

w(n)1/p

n

n∑
k=1

w(k)−1/p = 1.

Note also that
(
w(n)−1/p

n

)
n∈N

=
(
log(n+1)

n

)
n∈N
∈ `p′ .
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We conclude this section with some comments about the mean ergodicity
and the linear dynamics of C(p,w). For X a Banach space, recall that T ∈
L(X) is mean ergodic if its sequence of Cesàro averages T[n] := 1

n

∑n
m=1 T

m,
for n ∈ N, converges to some operator P ∈ L(X) for the strong operator
topology, i.e., limn→∞ T[n]x = Px for each x ∈ X, [10, Ch.VIII]. Since
1
nT

n = T[n] − n−1
n T[n−1], for n ∈ N (with T[0] := I), a necessary condition

for T to be mean ergodic is that limn→∞
1
nT

n = 0 (in the strong operator
topology).

Let w be a positive, decreasing sequence and 1 < p <∞ with Sp(w) 6= ∅.
If sp < p′, then it follows from (12) that µ := 1

2

(
1 + p′

sp

)
∈ σpt((C(p,w))′) and

so there exists a non-zero vector x′ ∈ `p′(w−p
′/p) such that (C(p,w))′x′ = µx′.

Choose any x ∈ `p(w) \ {0} satisfying 〈x, x′〉 6= 0. Then

〈 1
n

(C(p,w))nx, x′〉 =
1

n
〈x, ((C(p,w))′)nx′〉 =

µn

n
〈x, x′〉, n ∈ N,

with µ > 1 and so the set
{

1
n(C(p,w))nx : n ∈ N

}
is unbounded in `p(w). In

particular, the sequence
{

1
n(C(p,w))n

}
n∈N cannot converge to 0 for the strong

operator topology in L(`p(w)). Accordingly, C(p,w) fails to be mean ergodic

whenever sp < p′. This is the case when w(n) = 1, for all n ∈ N, in which
case sp = 1, and we recover the known fact that the classical Cesàro operator
C(p) fails to be mean ergodic for every 1 < p < ∞; see [3, Section 4], where
it is also shown that the Cesàro operator fails to be mean ergodic in the
classical Banach sequence spaces c0, c, `p (1 < p ≤ ∞), bv0 and bv but, that
it is mean ergodic in bvp (1 < p < ∞). For w as in Example 3(i) we recall
that also sp = 1, for every 1 < p <∞, and so C(p,w) is not mean ergodic.

Concerning the dynamics of a continuous linear operator T de�ned on a
separable Banach space X, recall that T is hypercyclic if there exists x ∈ X
such that the orbit {Tnx : n ∈ N0} is dense in X. If, for some x ∈ X, the
projective orbit {λTnx : λ ∈ C, n ∈ N0} is dense in X, then X is called
supercyclic. Clearly, hypercyclicity always implies supercyclicity.

Let now w be a positive, decreasing sequence and 1 < p <∞. According
to Remark 1(iv) the in�nite set Σ ⊆ σpt((C

(p,w))′). Then, by a result of
Ansari and Bourdon [4, Theorem 3.2], C(p,w) is not supercyclic and hence,

also not hypercyclic.

4. Compactness of C(p,w)

According to (27), for each 1 < p < ∞ the classical Cesàro operator
C(p) ∈ L(`p) is surely not compact. However, in the presence of a positive
weight w ↓ 0, this may no longer be the case for C(p,w) acting on `p(w). We
begin with the following fact.

Proposition 4.1. Let w be a positive, decreasing weight.
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(i) For every 1 < p <∞ we have Σ ⊆ σ(C(p,w)).

(ii) Suppose that C(p,w) is a compact operator, for some 1 < p <∞. Then

σ(C(p,w)) = Σ0 and σpt(C
(p,w)) = Σ. (31)

Moreover, w ∈ s and r(C(p,w)) < ‖C(p,w)‖.

Proof. (i) According to Remark 1(iv) we have Σ ⊆ σpt((C(p,w))′). But,
always σpt((C

(p,w))′) ⊆ σ(C(p,w)), [10, p. 581], and so Σ ⊆ σ(C(p,w)).
(ii) Since C(p,w) is injective, 0 6∈ σpt(C(p,w)). The compactness of C(p,w)

then implies that σpt(C
(p,w)) = σ(C(p,w))\{0}, [16, Theorem 3.4.23]. Accord-

ing to the proof of Step 8 for Theorem 3.3 we also have that σpt(C
(p,w)) ⊆ Σ.

In view of part (i), the equalities in (31) follow.
By Theorem 3.3(ii) we must have Rw = R (if not, then t0 is �nite and so

(16) would imply that σpt(C
(p,w)) is �nite which is a contradiction to (31).

Then, via Proposition 3.4(i), we can conclude that w ∈ s.
It follows from (4) and the equality r(C(p,w)) = 1 (see (31)) that r(C(p,w)) <

‖C(p,w)‖.

To decide when C(p,w) is compact, �rst observe that C(p,w) = Φ−1w TwΦw

(see Lemma 2.1 and its proof), where Tw ∈ L(`p) is given by (3). Given any
x ∈ Bp := {x ∈ `p : ‖x‖ ≤ 1} and i ∈ N, it follows from Hölder's inequality
that

∞∑
n=i

|(Twx)n|p =

∞∑
n=i

w(n)

np

∣∣∣∣∣
n∑
k=1

1

w(k)1/p
· xk

∣∣∣∣∣
p

≤
∞∑
n=i

w(n)

np

(
n∑
k=1

1

w(k)p′/p

)p/p′
.

So, Tw (hence, also C(p,w)) will be compact whenever w satis�es the following

Compactness criterion:
∞∑
n=1

w(n)

np

(
n∑
k=1

1

w(k)p′/p

)p/p′
<∞. (32)

Indeed, (32) implies that limi→∞
∑∞

n=i |(Twx)n|p = 0 uniformly with respect
to x ∈ Bp, from which the relative compactness in `p of the bounded set
Tw(Bp) ⊆ `p follows, [10, pp.338-339].

We introduce some notation. Let w be a positive, decreasing sequence.
De�ne

An(p, w) := w(n)p
′/p

n∑
k=1

1

w(k)p′/p
, n ∈ N, 1 < p <∞.

The compactness criterion (32) then states that C(p,w) is a compact operator
if
∑∞

n=1(An(p, w))p/p
′
/np <∞.
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Theorem 4.2. Suppose, for some 1 < p <∞, that there exist constants

M > 0 and 0 ≤ α < 1 such that

An(p, w) ≤Mnα, n ∈ N. (33)

Then C(q,w) is a compact operator for every 1 < q ≤ p. In particular, w ∈ s.

Proof. Observe, for �xed 1 < q ≤ p, that

γ :=
q′

q
− p′

p
=

1

q − 1
− 1

p− 1
=

p− q
(q − 1)(p− 1)

≥ 0.

For each n ∈ N we have

n∑
k=1

1

w(k)q′/q
=

n∑
k=1

1

w(k)p′/p
· w(k)−γ .

Accordingly, for each n ∈ N,

An(q, w) =
w(n)q

′/q

w(n)p′/p
· w(n)p

′/p
n∑
k=1

1

w(k)p′/p
· w(k)−γ

= w(n)p
′/p

n∑
k=1

1

w(k)p′/p
·
(
w(n)

w(k)

)γ
.

Since w is decreasing, w(n)w(k) ≤ 1 for all 1 ≤ k ≤ n and so

An(q, w) ≤ w(n)p
′/p

n∑
k=1

1

w(k)p′/p
= An(p, w) ≤Mnα.

Accordingly,

∞∑
n=1

(An(q, w))q/q
′

nq
≤M q/q′

∞∑
n=1

nαq/q
′

nq
= M q/q′

∞∑
n=1

1

nq−(αq/q′)
.

But, q − αq
q′ = q − α(q − 1) = q(1− α) + α > (1− α) + α = 1 and so

∞∑
n=1

(An(q, w))q/q
′

nq
<∞.

Then the compactness criterion yields that C(q,w) is a compact operator.

That w ∈ s is a consequence of Proposition 4.1(ii).

The following consequence of Theorem 4.2 leads to a rich supply of
weights w for which C(p,w) is compact.
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Corollary 4.3. Let w be a positive weight with w ↓ 0. If the limit

l := lim
n→∞

w(n)

w(n− 1)
(34)

exists in R \ {1}, then C(p,w) is compact for every 1 < p <∞.

Proof. Fix 1 < p < ∞. According to Theorem 4.2 (with α = 0) it
su�ces to prove that supn∈NAn(p, w) < ∞. Set an :=

∑n
k=1w(k)−p

′/p and
bn := w(n)−p

′/p for n ∈ N. Since w ↓ 0, we have bn ↑ ∞. Moreover, the limit

lim
n→∞

an − an−1
bn − bn−1

= lim
n→∞

w(n)−p
′/p

w(n)−p′/p − w(n− 1)−p′/p

= lim
n→∞

1

1− (w(n)/w(n− 1))p′/p
=

1

1− lp′/p

exists in R as l 6= 1. According to the Stolz-Cesàro criterion, [17, Theorem
1.22], it follows that limn→∞

an
bn

= 1/(1− lp′/p) ∈ R, i.e., limn→∞An(p, w) =

1/(1− lp′/p) ∈ R. In particular, supn∈NAn(p, w) <∞ is indeed satis�ed.

Remark 3. (i) Let w be a positive, decreasing weight.

(a) According to (14), if C(p,w) is a compact operator for some 1 < p <∞,
then Sw(p) = ∅.

(b) The condition w ↓ 0 by itself need not imply that Sw(p) = ∅ (see
Examples 3, for instance).

(ii) Suppose Sw(p) 6= ∅ for some 1 < p < ∞. Then C(q,w) fails to be
compact for every q ∈ [p,∞). This follows from part (i)(a) and Proposition
3.1(iii).

(iii) The following examples (a)-(c) all fall within the scope of Corollary
4.3. So, in each case w ∈ s and the identities in (31) hold; see Proposition
4.1.

(a) For any �xed a > 1 and r ≥ 0 set w(n) := nr/an for n ∈ N. Then

lim
n→∞

w(n)

w(n− 1)
= a−1 6= 1.

(b) For any �xed a ≥ 1, the weight w(n) := an/n! for n ∈ N satis�es

lim
n→∞

w(n)

w(n− 1)
= 0 6= 1. (35)

(c) The weight w(n) := 1/nn for n ∈ N also satis�es (35).
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We point out, since w is decreasing, that w(n)
w(n−1) ∈ (0, 1] for all n ∈ N.

Hence, whenever the limit (34) exists, then necessarily l ∈ [0, 1].
As an application, suppose that the positive, decreasing weight w has

the property that l := limn→∞
w(n)
w(n−1) exists in [0, 1). Then, for each r >

0, the positive, decreasing weight wr : n 7→ w(n)r, for n ∈ N, satis�es

limn→∞
w(n)r

w(n−1)r = lr ∈ [0, 1). Hence, C(p,wr) is a compact operator for
every 1 < p <∞.

(iv) The following criterion is su�cient to ensure that the limit (34) exists
in R \ {1}. Hence, both Proposition 4.1 and Corollary 4.3 are applicable to
such a weight w. In particular, w ∈ s.

Let β = (βn)n∈N be a positive, increasing sequence with β ↑ ∞ such that

limn→∞(βn−βn−1) =∞. Then the weight w(n) := e−βn, for n ∈ N, satis�es
l := limn→∞

w(n)
w(n−1) = 0 6= 1.

It is routine to verify that limn→∞
w(n)
w(n−1) = 0.

For the weight w(n) := a−n for n ∈ N (with a > 1) we have that
βn := − logw(n) = n log(a) ↑ ∞ but, (βn − βn−1) log(a) 6→ ∞ for n → ∞.
So, the above criterion is not applicable to this weight. However, according
to part (iii)(a) of this remark (with r = 0) the weight w is admissible for
Corollary 4.3.

The following examples illustrate that Theorem 4.2 is more general than
Corollary 4.3.

Example 5. (i) Fix 0 < β < 1 and set wβ(n) := e−n
β
for n ∈ N, in

which case w ↓ 0, but

lim
n→∞

wβ(n)

wβ(n− 1)
= lim

n→∞
e(n−1)

β−nβ = lim
n→∞

e−β/n
(1−β)

= 1,

as (n− 1)β−nβ = nβ
[(

1− 1
n

)β − 1
]

= nβ
[
1− β

n + o
(
1
n

)
− 1
]
' − β

n1−β for

n→∞. So, Corollary 4.3 is not applicable. We show that Theorem 4.2 does
apply.

Fix 1 < p <∞ and set γ := p′

p . Then, for each n ∈ N, we have that

An(p, wβ) = e−γn
β

n∑
k=1

eγk
β ≤ e−γnβ

∫ n+1

1
eγx

β
dx

=
e−γn

β

β

∫ (n+1)β

1
eγtt

1
β
−1
dt ≤ e−γn

β

β

∫ (n+1)β

1
eγttm dt,

where m ∈ N is chosen minimal such that (m − 1) < 1
β − 1 ≤ m. An

integration by parts (m+ 1)-times yields that∫ (n+1)β

1
eγttm dt ≤ a0 + a1(n+ 1)βeγ(n+1)β + a2(n+ 1)2βeγ(n+1)β

+ . . .+ am(n+ 1)mβeγ(n+1)β
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for positive constants a0, a1, . . . , am. It follows that∫ (n+1)β

1
eγttm dt ≤M(1 + n)mβeγ(1+n)

β
, n ∈ N,

for some constant M > 0. Accordingly,

An(p, wβ) ≤ M

β
(1 + n)mβeγ((1+n)

β−nβ), n ∈ N.

Since (n+ 1)β − nβ ' β
n1−β and (1 + n)mβ ' nmβ for n → ∞, there exists

K > 0 (independent of n) such that

An(p, wβ) ≤ Knmβ, i ∈ N.

Since (m − 1) < 1
β − 1 implies that α := mβ ∈ (0, 1), Theorem 4.2 yields

that C(p,wβ) is compact.
For β ≥ 1 the compactness of C(p,wβ) follows from Corollary 4.3. Indeed,

if β = 1, then wβ(n) = e−n for n ∈ N and so Remark 3(iii)(a) implies the
compactness of C(p,wβ). For β > 1, observe from above that

lim
n→∞

wβ(n)

wβ(n− 1)
= lim

n→∞
e(n−1)

β−nβ = lim
n→∞

e−βn
β−1

= 0

and so the compactness of C(p,wβ) follows again from Corollary 4.3.
(ii) There also exist positive, decreasing weights w ∈ s such that the

sequence { w(n)
w(n−1)}n∈N fails to converge at all, yet C(p,w) is a compact operator

for every 1 < p <∞.
De�ne w(n) := 1

jj
, n = 2j − 1, and w(n) := 1

2jj
, n = 2j, for each

j ∈ N. Then w is (strictly) decreasing to 0. For nj := 2j, j ∈ N, we have
w(nj)
w(nj−1) = 1

2 for all j ∈ N and so limj→∞
w(nj)
w(nj−1) = 1

2 , whereas for nr :=

2r+ 1, r ∈ N, the subsequence { w(nr)
w(nr−1)}r∈N of { w(n)

w(n−1)}n∈N converges to 0.

Accordingly, the sequence { w(n)
w(n−1)}n∈N is not convergent and so Corollary

4.3 is not applicable.
Fix 1 < p < ∞ and set γ := p′

p > 0. To establish the compactness of

C(p,w) observe, for every j ∈ N, that

A2j(p, w) =
1

(2jj)γ

(
j∑

k=1

(kk)γ +

j∑
k=1

(2kk)γ

)
=

1 + 2γ

2γ
1

(jj)γ

j∑
k=1

(kk)γ , (36)

and that

A2j−1(p, w) = 1+
1

(jj)γ

2(j−1)∑
k=1

w(k)−γ = 1+
(j − 1)(j−1)γ

(jj)γ
A2(j−1)(p, w), (37)
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with limj→∞
(j−1)(j−1)γ

(jj)γ
= 0. Set aj :=

∑j
k=1(k

k)γ and bj := (jj)γ for j ∈ N.
Then bj ↑ ∞. Moreover,

lim
j→∞

aj − aj−1
bj − bj−1

= lim
j→∞

(jj)γ

(jj)γ − ((j − 1)j−1)γ
= lim

j→∞

1

1− (j−1)(j−1)γ

(jj)γ

= 1.

According to the Stolz-Cesàro criterion, [17, Theorem 1.22], it follows that
also limj→∞

aj
bj

= 1. So, via (36) and (37) we obtain that limj→∞A2j(p, w) =
1+2γ

2γ and limj→∞A2j−1(p, w) = 1. In particular, supi∈NAi(p, w) < ∞ and

so Theorem 4.2 applies (with α = 0). Hence, C(p,w) is compact and w ∈ s.

The following result is a comparison type criterion for compactness. One
knows something about the compactness of C(p,w) in `p(w) for a certain
weight w and 1 < p < ∞ and one has a second weight v whose growth
relative to w is controlled. Then also C(p,v) ∈ L(`p(v)) is compact.

Proposition 4.4. Let w be a positive, decreasing sequence. Suppose, for

some 1 < p <∞, that there exists 0 ≤ α < 1 such that

An(p, w) ≤Mnα, n ∈ N, (38)

for some constant M > 0.

Let v be any positive, decreasing sequence such that { v(n)w(n)}n∈N ∈ `∞ and

satisfying

w(n) ≤ Knβv(n), n ∈ N, (39)

for some 0 ≤ β < (p − 1)(1 − α) and some constant K > 0. Then C(q,v) ∈
L(`q(v)) is a compact operator for every 1 < q ≤ p.

Proof. Let L := supn∈N
v(n)
w(n) . Then, for each n ∈ N, we have via (38)

and (39) that

An(p, v) = v(n)p
′/p

n∑
k=1

1

v(k)p′/p
=

(
v(n)

w(n)

)p′/p
w(n)p

′/p
n∑
k=1

1

w(k)p′/p
·
(
w(k)

v(k)

)p′/p
≤ Lp′/pw(n)p

′/p
n∑
k=1

1

w(k)p′/p
(Kkβ)p

′/p ≤ (LK)p
′/pw(n)p

′/p
n∑
k=1

1

w(k)p′/p
nβp

′/p

= (LK)p
′/pnβp

′/pAn(p, w) ≤M(LK)p
′/pnα+(βp′/p).

Moreover, α + βp′

p = α + β
(p−1) < 1 because 0 ≤ β < (p − 1)(1 − α) implies

β
(p−1) < (1 − α) which implies α + β

(p−1) < 1. So, Theorem 4.2 applied to v

(with α + β
(p−1) in place of α) implies that C(q,v) ∈ L(`q(v)) is compact for

all 1 < q ≤ p.
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Example 6. Let v(n) := 1

en
β
logγ(n+1)

for n ∈ N, where 0 < β < 1 and

γ > 0. Then C(p,v) ∈ L(`p(v)) is compact for every 1 < p < ∞. Observe

that limn→∞
v(n)
v(n−1) = 1 and so Corollary 4.3 is not applicable.

So, �x 1 < p < ∞. De�ne w(n) := e−n
β
for n ∈ N. According to

Example 5(i), there exist constants M > 0 and 0 < α < 1 such that

An(p, w) ≤Mnα, n ∈ N.

Since v(n) ≤ w(n) for n ∈ N, it is clear that
{
v(n)
w(n)

}
n∈N
∈ `∞. Choose any

r ∈ (0, (p− 1)(1− α)). Then

w(n)

v(n)
= logγ(n+ 1) =

logγ(n+ 1)

nr
· nr ≤ Knr, n ∈ N,

for some K > 0 (as limn→∞
logγ(n+1)

nr = 0). According to Proposition 4.4,

we can conclude that C(p,v) is compact in `p(v).
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