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Abstract 
In light of the potential of ethanol and butanol as alternative fuels for blending with conventional kerosene in gas 
turbine engines, experimental data regarding the burning characteristics of these blends are required in order to 
better understand their combustion process. In this study, free-falling droplets of Jet A, ethanol, butanol and their 
mixtures (20% alcohol in Jet A by volume) were examined in a combustion chamber which provides 
representative conditions of real flames, both in terms of temperature and oxygen availability. Results show that 
the evolution of droplet diameter for Jet A and its blends with both alcohols are very similar, regardless of the 
obvious compositional differences. On the other hand, sooting behaviors are found to be quite different, with a 
clear reduction in the sooting propensity of the Jet A/alcohol mixtures when compared to neat kerosene. These 
results are consistent with previous studies in gas turbines, suggesting that such blends are viable alternative 
fuels with similar combustion characteristics to Jet A, but with much less propensity to produce soot. Moreover, 
this study provides new results on the combustion properties of Jet A/ethanol and Jet A/butanol mixtures, for 
which very scarce data exist in the open literature. 
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Introduction 
Renewable fuels derived from biofeedstocks (i.e. biofuels) are recently gaining importance due to 

environmental and sustainability reasons. Biofuels are reported to have negligible sulphur content and to inhibit 
PAH and soot formation [1]. Furthermore, the biomass used to produce biofuels is renewable, carbon-neutral and 
domestically available. Although fossil fuels are likely to remain dominating transportation and energy systems in 
the near future [2], the use of biofuels as additives can significantly reduce their consumption, and therefore their 
environmental footprint. The most widely used biofuel today is by far bio-ethanol [1, 2], which is commonly added 
to gasoline for its use in internal combustion engines. Ethanol production via fermentation of plants and starches 
was among the very first developments in biofuels because of the already well-established alcohol industry [3]. 
Although ethanol production from edible crops poses serious concerns, such as competition with the food industry 
or indirect land-use change, it remains nowadays as the major source for bio-ethanol feedstock [2]. These 
concerns have motivated efforts to find more environmentally-friendly processes for ethanol production, such as 
lignocellulosic biomass or residual waste conversion (second generation bio-ethanol). 

Even though ethanol is the most used biofuel nowadays, some of its properties entail significant limitations.  A 
research on potential new fuel molecules has been carried out in order to overcome these drawbacks. One of the 
most promising candidates is butanol, which has several well-known advantages when compared with ethanol [2-
8]: 

- Higher energy density. 
- Lower propensity for water absorption. 
- Higher miscibility with hydrocarbons. 
- Boiling point closer to the gasoline/diesel fuel range: lesser impact on the fuel distillation curve. 
- Better material compatibility: corrosion towards ferrous metals and elastomers swelling are reported to 

be much less severe than in the case of ethanol. 
- Lower vapor pressure: safer manipulation and less volatile organic compounds emission. 
- Lower heat of vaporization, which facilitates ignition. 
- Current engines can run on more enriched butanol blends without any modification. 

Bio-butanol can be both produced by fermentation of edible crops (first generation biofuel) or through more 
advanced technologies, using lignocellulosic biomass or algae as feedstock (second generation biofuel) [3-5]. 
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The monosized droplets were injected along the axis of a quartz tube, coaxially with the combustion products 
generated by a flat-flame premixed methane-air burner (McKenna). This coflow provided a controllable and 
realistic environment to study the evolution of fuel droplets under representative conditions of real flames, both in 
terms of oxygen availability and temperature. As in real flames a droplet might be subjected to different oxygen 
conditions, the droplet combustion process was studied both at 3 and 10% of oxygen (by volume, dry basis) in the 
coflow. 

Different imaging methods were used to record visual information describing the various aspects of droplet 
combustion. Size and velocity evolution of droplets were recorded through a black and white (BW) high sensitivity 
CCD camera (QImaging Retiga SRV, 12-bit Mono) fitted with a long distance microscope and backlighted via LED 
strobe. This optical system was programmed to record two sequential shots of a droplet in the same frame with a 
time lapse of 500 µs between them. As it can be seen in Figure 1, this imaging method not only gives information 
about the droplet size and motion, but also about the existence of a soot shell for certain conditions. A color 
camera (Teledyne DALSA Genie HC1024, 8-bit) perpendicularly placed to the BW camera and faintly backlighted 
was used to record the flame images. The weak backlight was provided in order to make the droplet 
distinguishable from the self-illuminated flame, capturing in the same image the free-falling droplet surrounded by 
its flame, as also shown in Figure 1.  

Pictures taken with both imaging methods were post-processed in order to extract the relevant droplet 
combustion features in the most precise and repeatable way. However, for the fuels and conditions examined in 
this study, the flames registered in the color images were so weak that the involved uncertainties are considered 
too high to extract reliable quantitative data. 
 
 
Fuels investigated 

Commercial Jet A obtained from a local airport, ethanol (99.8% purity) and 1-butanol (99.4% purity) were 
used for the tests. Additionally, two mixtures were prepared with 80% Jet A and 20% alcohol by volume, denoted 
as B20 and E20 for blends of Jet A with butanol and ethanol, respectively. The main properties for the pure fuels 
are shown in Table 1. Ethanol and butanol properties are extracted from the literature, whereas a specific analysis 
of the Jet A sample was performed at the Instituto de Carboquímica (ICB-CSIC) in order to obtain its composition 
and most significant properties. 
 

Table 1. Selective properties of the fuels investigated. 
 

 Molecular 
formula 

MW 
(g/mol) 

% C 
(mass) 

% H 
(mass)

% O 
(mass)

Boiling point 
(°C) 

Lower Heating 
Value (MJ/kg)

Density at    
20°C (kg/m3) 

Vaporization 
Enthalpy (kJ/kg)

Jet A C10.6 H19.6 146.8 86.6 13.4 - 99 – 286 42.60 791  330 a 

1-Butanol b C4 H10 O 74.1 64.9 13.5 21.6 117 33.10 810 584 

Ethanol b C2 H6 O 46.0 52.2 13.0 34.8 78 26.95 789 838 
 

 

a From ref. [7] 
b From ref. [17] 

 
 
Results and discussion 
 

Droplet size and burning rate evolution 
As stated above, tests were performed for Jet A, B20, E20, butanol and ethanol for two different oxygen 

conditions: 3 and 10% O2. The normalized droplet size evolutions for these two conditions are shown in Figures 
2a and 2b respectively. Based on the quasi-steady theory of droplet burning, measurements are displayed as 
normalized square diameter versus normalized time. Normalization is performed with the droplet diameter value 
at injection (D0).  
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