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Abstract 

In this paper the experimental setup of a commercial third generation common rail solenoid injector with advanced 

measurement is discussed. The motion of the control piston is measured while performing injection rate 

investigations using a purpose-built injection rate analyzer of the Bosch type. At the same time fuel pressure in the 

feed line of the nozzle is gauged and contrasted to fuel pressure before the inlet connector. 

In contrast to the steady rise observed in a similar study, the motion of the control piston in this case is characterized 

by a changing gradient in the upward movement. The magnitude of the negative displacement of the upper part of 

the control piston due to the fuel pressure in the control volume corresponds to simulation results of the elastic 

deformation. 

Pressure before the inlet connector and pressure in the feed line exhibit a similar course with a difference in 

magnitude that is rising with higher rail pressures. Precisely with the end of injection the pressure in the feed line 

surpasses the pressure before the inlet connector for a short moment. The measurement results of control piston 

motion and pressure inside the injector are of particular interest because these parameters are to serve as indicators 

for changes in the injection rate caused by phenomena like wear and coking amongst others. 
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Introduction 

The act of injecting diesel not only supplies the fuel for the subsequent combustion, but at the same time also 

determines the start of combustion with the diesel combustion process. This is unlike the gasoline combustion 

process, where injection and ignition are separated. Thus, the injection process is a major influence factor to 

consider in order complying with the increasingly severe emission legislation for compression ignition engines. 

Furthermore, alterations affecting the injection parameters of common rail diesel injectors that emerge during engine 

operation have been identified. Research efforts focused on brittle external nozzle deposits mostly consisting of 

carbon referred to as coking. In recent years, a type of sticky, the so-called internal diesel injector deposits (IDID) 

have appeared in production engines and caused needles to stick in common rail diesel injectors. It has been 

observed that the addition of certain additives (polyisobutylene succinimide; PIBSI) to diesel fuel, which are to inhibit 

the formation of coking deposits, have the side effect of contributing to the formation of IDID [1][2]. These PIBSI 

react with acids that emerge from fatty acid methyl ester (FAME), a biodiesel supplement to common diesel in the 

European Union, to form IDID. Other major factors that influence the occurrence of IDID are high fuel temperatures 

and the content of aromatics and oxygen in the diesel fuel [2]. 

Deposits on the nozzle tip and inside the nozzle holes due to coking cause numerous adverse effects. It is proven 

that this type of deposits exerts a great influence on the injection rate of an injector, impairs the break-up of the fuel 

spray and leads to an inferior mixing of fuel and air in the combustion chamber [3]. In addition, coked nozzles exhibit 

larger cyclic variations of cylinder peak pressure than clean nozzles, even though the visible spray pattern appears 

unchanged [4]. Ultimately, external deposits lead to a deterioration of combustion efficiency, a decrease in rated 

power and cause a rise in brake specific fuel consumption [5]. The formation of coking deposits is driven by higher 

temperatures at the nozzle and in its spray holes, while cavitation inside the nozzle serves as an inhibitor to their 

built-up [6][7]. Cavitation inside the nozzle induced by a lower discharge coefficient proved to be beneficial against 

coking. A positive effect also applies to high spray hole conicity due to a built-up of deposits which is predominant 

in the inlet region of the hole [6]. In summary, coking deposits will be a key influencing parameter for future nozzle 

designs [8]. 

Legislative constraints together with the problem of internal and external injector deposits have led to the 

development of systems that are to maintain optimal fuel consumption and emissions optimal over the entire engine 

lifetime [9][10][11][12]. These closed-loop control strategies have been presented for both light [9][12] and heavy 

duty engines [11]. All these principles have in common that the fuel pressure inside the injector is measured and 
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evaluated applying pressure transducers to the injectors [9][11] or utilizing the piezo-actuator of the injector itself to 

calculate the inside pressure [12]. Algorithms are utilized to determine key injection parameters like start and end 

of injection as well as the maximum injection rate and quantity [10]. These injection controls enable a very high 

injection quantity accuracy and close timings between pilot and main injection that are favorable for reducing 

nitrogen oxide emissions [9]. 

It is postulated that these closed-loop control systems allow to compensate for detrimental effects like wear or 

coking by maintaining injection rate and quantities over engine lifetime [10][11]. The German Research Foundation 

has funded a project at Technical University of Munich to investigate the influence of these alterations like wear and 

coking onto critical parameters as the injection rate and eventually the engine-out emissions. The key goal is to find 

parameters related to the deterioration of the injection rate and to develop an open-loop control that enables to 

restore the desired injection parameters. The model approach for the identification of these aging effects is 

presented in [13]. 

 

Experimental Setup 

The measurement setup consists of a third generation common rail diesel injector that is equipped with multiple 

sensors. A solenoid valve in the upper part regulates the start and end of injection by opening and closing the 

discharge throttle of the control volume. When the solenoid is energized, diesel flows out of the control volume 

through the discharge throttle and less fuel is flowing in through the inlet throttle, which possesses a smaller 

diameter. Hence, fluid pressure inside the control volume decreases. The upward force generated by the rail 

pressure on the annular upper part of the nozzle needle exceeds the downward force of the control volume pressure, 

which is acting on the top area of the control piston. This difference in forces leads to the lift of the needle, which in 

turn drives the control piston. When the energizing of the solenoid ends, the downward force of the control volume 

pressure together with the nozzle spring force surpasses the nozzle sac pressure force. The nozzle subsequently 

closes and injection ends. 

 

Figure 1. Schematic sensor setup of the modified solenoid injector (note: some sensors and lines are projected to the section 

plane for clarity) 

For the measurement of needle or control piston motion measurement principles like opto-electronical sensors have 

been presented [14]. Furthermore, a solution to detect needle opening and closing by employing an electric circuit, 

which is closed by the needle in its extreme positions, has been introduced [15]. Nevertheless, as they prove high 

robustness and a high signal-to-noise ratio, two eddy current sensors are utilized to measure the motions of control 

piston and needle, respectively. A piezo-resistive pressure transducer gauges the fuel pressure inside the feed line 

of the injector (see Figure 1). The sensors are mounted in different parts of the injector for measuring independent 

parameters. These parameters in turn are the basis for the development of an open-loop control compensating for 

alterations of injection behavior caused by aging effects. 

The linear measurement range of the eddy current sensors of 0.5 mm is not significantly larger than the lift of both 

control piston and needle with 0.35 mm and previous measurements showed an overlay of control piston motion 

and its deformation caused by fluid pressure. To clarify the extent of this deformation those two components are 

simulated using the finite element method. 

The simulation model uses a force (D) to represent the diesel fluid acting downward on top of the control piston with 

rail pressure. The upper part of the piston that is guided in the control volume unit is represented by a frictionless 

support (B). All inside faces of the nozzle are pressurized with rail pressure (E) while the ring-shaped outside face 

serves as a fixed support (A). The needle is guided frictionless inside the nozzle (F) and the needle spring force (C) 

acts on top of the needle (see Figure 2). 
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Simulation results show that outfitting both control piston and needle with circular grooves does not have a 

significant effect on their deformation compared to their unaltered counterparts in the production injector (see Figure 

2). These grooves are necessary for the measuring principle of the eddy current sensor. The simulation proves that 

the stiffness properties of the two moving parts remain unchanged, thus the injection process is left uninfluenced. 

As the static deformation is barely greater than the difference between linear measurement range of the eddy 

current sensor and the operational lift of the control piston (for the needle it is considerably smaller), the eddy current 

sensors are able to measure both deformation and lift of control piston and needle in the linear measurement range. 

 

   

Figure 2. Comparison of needle 𝒙𝑵 and control piston 𝒙𝑪𝒑 deformations due to rail pressure 𝒑𝑹𝒂𝒊𝒍,𝒔𝒆𝒕 = 180 MPa (left: boundary 

conditions of finite element simulation; middle: needle and control piston for lift measurements; right: unaltered needle and 

control piston) 

A custom software is used for the data acquisition and the processing of measurement data. The analysis steps 

are shown in Table 1. The injection rate 𝑚̇ is derived from measuring the dynamic pressure in the fuel-filled coiled 

tube using a piezoelectric pressure transducer. Because of this measurement principle, the signal undergoes a drift 

compensation, a filtering process and a subsequent conversion to a mass-flow using the cross-section of the tube, 

the speed of sound and the density of diesel (compare [16]). 

Table 1. Data processing steps applied to measurement parameters 

Data processing 

steps 

 

Parameter 

1. 2. 3. 4. 

Drift 

compensation 
Filtering Conversion Averaging 

Injection rate 𝑚̇ ● ● V to mg/ms ● 

Injector inside pressure 𝑝𝐼𝑛𝑗 - ● V to MPa ● 

Measured rail pressure 𝑝𝑅𝑎𝑖𝑙,𝑚𝑒𝑎 - ● V to MPa ● 

Control piston lift 𝑥𝐶𝑝 - ● V to mm ● 

Needle lift 𝑥𝑁 - ● V to mm ● 

All measurements in this paper are performed while measuring the injection rate utilizing a purpose-built injection 

rate analyzer applying the Bosch working principle [16]. The fuel supply system for the common rail injector consists 

of a commercial high-pressure system with low-pressure pump, high-pressure pump with suction valve and common 

rail. Figure 3 outlines the experimental setup and the most import measurement parameters. 
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All other signals are filtered likewise with a second order Butterworth filter to reduce high-frequent noise and are 

converted from current or voltage signal into their physically correct dimension. Generally every signal is averaged 

using multiple (here: five) single measurements in order to avoid statistically distributed deviating signals. 

 

Figure 3. Schematic overview of measurement setup and main parameters 

 

Measurement Results 

Although the motion of the nozzle needle regulates the fluid flow from feed line to nozzle sac, it is neglected in this 

study. The implementation of the eddy current sensor for measuring control piston motion leaves the external 

geometry of the injector body unaltered. The nozzle with the applied eddy current sensor changes the external 

geometry of the injector as it necessitates a different union nut. This union nut is to make room for the minimum 

bending radius of the wire of the eddy current sensor. In the future, engine investigations will be performed with the 

developed injector and different nozzles. Under the premise of using the existing cylinder head, no major change 

in the external geometry of the injector is admissible. Thus, the main aim of the presented investigations is to clarify 

correlations of control piston motion and fuel pressure at two distinct positions to key injection parameters. 

Figure 4 illustrates the measured injection rates for four different set rail pressures. Higher rail pressures cause a 

steeper increase and an earlier decrease of injection rate while at the same time a rise in maximum injection rate 

is observed. 

The reason for this behavior is the increase in nozzle sac pressure that exerts a higher upward force on the needle. 

This causes a faster acceleration of the needle and a faster increase of the hydraulic flow area between needle 

seat and nozzle tip. Ultimately, a higher injection rate results for higher rail pressures at the same instant of time in 
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the opening phase of the nozzle needle. The same but inverse causal relationship applies to the closing phase of 

the needle. 

 
Figure 4. Injection rate profiles of the modified common rail 

injector utilized for control piston and needle lift 

measurements (𝑡𝐸𝑇 = 2.2 ms) 

 
Figure 5. Pressure inside feed line 𝑝𝐼𝑛𝑗 (dashed lines) and 

before inlet connector 𝑝𝑅𝑎𝑖𝑙,𝑎𝑐𝑡 (solid lines) (𝑡𝐸𝑇 = 2.2 ms) 

The maximum injection rate is a function of the difference of common rail pressure and backpressure inside of the 

injection rate analyzer (see Equation (1) according to [17]). Therefore, it increases with higher common rail 

pressures as the backpressure is kept constant for all investigations. 

𝑚̇ =  𝐶𝑑  ∙  𝐴ℎ  ∙ 𝜌𝑓  ∙  √
2 ∙  (𝑝𝑅𝑎𝑖𝑙,𝑚𝑒𝑎 − 𝑝𝐸𝑉𝐼,𝑑𝑦𝑛) 

𝜌𝑓
 (1) 

Various studies have demonstrated the feasibility of detecting injection events by analyzing the rail pressure trace 

[9]. It has also been proven that by subjecting the rail pressure signal to a short-time Fourier analysis, it is possible 

to discriminate between pilot and main injection as well as to detect injector malfunction [18]. Therefore, both 

pressure before inlet connector and pressure inside the feed line are evaluated. 

The comparison of pressure before the inlet connector and in the feed-line of the injector shows an overlap of both 

pressures between 3.2 ms and 3.6 ms. Here the pressure in the feed line reaches the level of the pressure before 

the inlet connector or even slightly surpasses its level (see Figure 5). The temporal concurrence of the peaks of 

both measured pressures demonstrates a correlation to the end of injection. 

At the end of injection a pressure wave is generated by the closing needle [19]. This pressure wave propagates 

from the needle seat upstream through feed line and inlet connector. Thus, a local maximum is detectable first in 

the signal of the pressure transducer in the feed line and only afterwards at the sensor before the inlet connector. 

When evaluating the temporal difference between these first local maxima on feed line pressure and pressure 

before inlet connector, a distance of around 400 mm between the two pressure transducers is calculated (see Table 

5 lists the data for the calculation of the distance between the two pressure sensors. 

Table 5 in Annex). This is in good agreement with the actual distance between the sensors and supports the thesis 

of the wave propagation as the cause for the local pressure peaks on both signals. 

The difference between the first minimum of the injection rate (used here as end of injection) and the coinciding 

pressure peaks is in the magnitude of under 100 µs, while the temporal deviation of the concurrence of pressures 

peak with regard to the end of injection is under 3 % for rail pressures between 60 and 180 MPa (see Table 2). 

Higher set rail pressures show a smaller discrepancy between end of injection and concurrence of pressures peak. 

This temporal accuracy of detecting the end of injection by indirect means is remarkably higher than the one of a 

different approach, which determines the end of injection by detecting and evaluating the sound-borne noise in 

engine parts utilizing knock sensors [20]. 

Furthermore, a method to detect start and end of injection by assessing the derivative of the common rail pressures 

signal has been presented [19]. The here presented method by regarding the concurrence of the pressure peaks 

of the two sensors as a detection of end of injection is more precise than that method. Table 2 presents the 

difference between the maximum derivative of the pressure before the inlet connector, which is only more accurate 

for a set rail pressure of 60 MPa. 
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Table 2. Assessment of correlation between injection rate and pressure inside feed line (𝒕𝑬𝑻 = 2.2 ms) 

Set rail 

pressure 

𝒑𝑹𝒂𝒊𝒍,𝒔𝒆𝒕 

[MPa] 

1. Minimum 

of control 

piston lift 

𝒕𝑴𝒄𝒑 

[ms] 

1. Minimum 

of injection 

rate 𝒕𝑴𝒊𝒓 

[ms] 

Concur-

rence of 

pressure 

peaks 𝒕𝑪𝒑𝒑 

[ms] 

Difference 

𝒕𝑫𝒊𝒇𝟏 =

𝒕𝑪𝒑𝒑 − 𝒕𝑴𝒊𝒓 

[ms] 

Deviation 

𝒕𝑫𝒆𝒗 =

𝒕𝑫𝒊𝒇/𝒕𝑫𝒊 

[%] 

Max. derivative 

of pressure 

before inlet 

connector 

𝒕𝑴𝒅𝒑  

[%] 

Difference 

𝒕𝑫𝒊𝒇𝟐 =

𝒕𝑴𝒅𝒑 − 𝒕𝑴𝒊𝒓 

[ms] 

60 3.448 3.485 3.568 0.083 2.64 3.432 -0.053 

100 3.323 3.350 3.415 0.065 2.17 3.285 -0.065 

140 3.245 3.273 3.323 0.050 1.71 3.192 -0.081 

180 3.175 3.195 3.240 0.045 1.58 3.112 -0.083 

Figure 6 shows that the gradient in control piston upward motion is considerably steeper for higher set rail pressures. 

Thus, the maximum lift is attained earlier and maintained for a longer period of time. The comparison of control 

piston motions with another investigation [21], in which an eddy current sensor is utilized, reveals a remarkable 

difference as in this study there is no change in gradient in the upward motion (see Figure 7). 

 
Figure 6. Control piston lifts with varied set rail pressures 

𝑝𝑅𝑎𝑖𝑙,𝑠𝑒𝑡 (𝑡𝐸𝑇 = 2.2 ms) 

 
Figure 7. Comparison of control piston lift of reference [21] 

and measured control piston lift (𝑝𝑅𝑎𝑖𝑙,𝑠𝑒𝑡 = 140 MPa, 𝑡𝐸𝑇,𝑇𝑈𝑀 

= 2.2 ms, 𝑡𝐸𝑇,[21] = 2.0 ms) 

The temporal starting point for the descent of the control piston is identical for every set rail pressure while the 

gradient of the downward motion is again depending on the set rail pressure. The changing gradient in the rising 

motion is noteworthy, as it points to the elastic behavior of the steel control piston. After energizing the solenoid 

valve the pressure in the control volume decreases what leads to a lower downward force on top of the control 

piston and a reduction of the elastic deformation. The elongation of the control piston overlays with the upward 

motion of the piston in the ballistic stage of the injection process and causes the change of gradient. This 

observation is in accordance with control piston behavior in one-dimensional hydraulic injector simulations. 

Table 3. Comparison of simulated and measured elastic deformation of the control piston due to applied rail pressure and 

closed solenoid valve 

Set rail pressure 

𝒑𝒓𝒂𝒊𝒍,𝒔𝒆𝒕 

[MPa] 

Simulated control 

piston lift 𝒙𝒄𝒑,𝒔 [mm] 

Measured control 

piston lift 𝒙𝒄𝒑,𝒎 [mm] 

Difference 𝑫𝒄𝒑𝒂 =

 𝒙𝒄𝒑,𝒎 − 𝒙𝒄𝒑,𝒔 

[mm] 

Deviation 𝑫𝒄𝒑𝒓 =

𝑫𝒄𝒑𝒂/𝒙𝒄𝒑,𝒎 

[%] 

60 -0.0533 -0.0696 -0.0163 23.4 

100 -0.0882 -0.1026 -0.0144 14.0 

140 -0.1235 -0.1258 -0.0023 1.8 

180 -0.1585 -0.1371 -0.0214 15.6 
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The comparison of measured (lift at 𝑡𝐸𝑇 = 0 ms in Figure 6) and simulated elastic deformation (see paragraph 

Experimental Setup) illustrates a strong congruence in terms of magnitude (see Table 3). One possible reason for 

the deviation of measured control piston deformation is the non-linearity of the controller of the eddy current sensor 

at the end of its linear measuring range. As the nozzle needle is significantly shorter than the control piston of the 

investigated injector, elastic deformation exerts a minor influence on its motion and the findings of the control piston 

motion are not transferrable to needle motion. 

 

Conclusions 

A common rail injector was equipped with two eddy current sensors and a piezoelectric pressure transducer. This 

novel setup allowed to measure control piston and needle motion along with injector inside pressure simultaneously 

for the first time. 

Finite elements simulations proved that the geometrical alterations of control piston and needle did not affect their 

mechanical behavior. Moreover, these simulations clarified the magnitude of their deformation due to fluid pressure 

in the control volume and confirmed the measured initial deformation of these two parts. 

A concurrence of local maxima of pressure before the inlet connector and pressure in the feed line of the injector 

occurred in close temporal vicinity to the end of injection. The measurement results showed that the gradient of 

control piston upward motion changes as the control piston is lifted due to the decrease of its elastic deformation. 

This non-linear motion of the control piston was different to the linear motion in a similar study, but was supported 

by a one-dimensional hydraulic simulation of the injector. 

In general measuring the control piston motion of a common rail diesel injector with an eddy current sensor exhibited 

a low level of noise on the raw signal and proved a very high repeatability (see Figure 8 and Figure 9 in Annex). 

Additionally no detrimental electromagnetic influence of the energization of the solenoid valve on the raw signal 

was detectable as asserted in a previous study [14]. 

In summary, the presented sensor arrangement exhibited a high temporal accuracy and an ability to detect small 

differences in the measured parameters. It is suited for detecting aging effects if these alterations affect the control 

piston motion and the injector inside pressure. Therefore, these two parameters are an appropriate basis for the 

development of an open-loop control strategy countering diesel injector aging. Furthermore, the measured control 

piston lifts are a validation basis for hydraulic injector simulations and the concurrence of local pressure maxima is 

useful as indirect means to detect the end of injection in future investigations. 
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Nomenclature 

Symbol  Unit  Measured parameter 

𝐴ℎ  m2  Total cross-section of nozzle holes 

𝐶𝑑  -  Discharge coefficient of nozzle hole 

𝐼𝐼𝑛𝑗,𝑟𝑒𝑓  A  Reference injector current 

𝐼𝐼𝑛𝑗,𝑚𝑒𝑎  A  Measured injector current 

𝐼𝑆𝑣  A  Suction valve current 

𝑘  -  Conicity factor 

𝑚̇  mg/ms  Injection rate 

𝑝𝐸𝑉𝐼,𝑑𝑦𝑛  MPa  Dynamic pressure injection rate analyzer 

𝑝𝐸𝑉𝐼,𝑠𝑡𝑎𝑡  MPa  Static pressure injection rate analyzer 

𝑝𝐼𝑛𝑗  MPa  Pressure inside feed line of injector  

𝑝𝑂𝑖𝑙  MPa  Oil pressure inside gear box 

𝑝𝑅𝑎𝑖𝑙,𝑚𝑒𝑎  MPa  Measured rail pressure 

𝑝𝑅𝑎𝑖𝑙,𝑠𝑒𝑡  MPa  Set rail pressure 

𝑝𝑅𝑎𝑖𝑙,𝑠𝑡𝑎𝑡  MPa  Static rail pressure 

𝑡𝐷𝑖𝑓1  ms  Difference between 𝑡𝐶𝑝𝑝 and 𝑡𝑀𝑖𝑟 

𝑡𝐷𝑖𝑓2  ms  Difference between 𝑡𝑀𝑑𝑝 and 𝑡𝑀𝑖𝑟 

𝑡𝐸𝑇  ms  Energizing time 

𝑡𝐶𝑝𝑝  ms  Concurrence of pressure peaks 

𝑡𝑀𝑐𝑝  ms  First minimum of control piston lift 
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𝑡𝑀𝑑𝑝  ms  Maximum derivative of pressure before inlet connector 

𝑡𝑀𝑖𝑟  ms  First minimum of injection rate 

𝑇𝐸𝑉𝐼  K  Fuel temperature injection rate analyzer 

𝑥𝐶𝑝  mm  Control piston lift 

𝑥𝑁  mm  Needle lift 

𝜌𝑓  ms  Fuel density 
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Annex 

In Figure 8 and Figure 9 five consecutive control piston lift are depicted. A low level of noise on the lift curves is 

clearly visible. 

 
Figure 8. Raw data of five single control piston motion 

measurements (𝑝𝑅𝑎𝑖𝑙,𝑠𝑒𝑡 = 180 MPa, 𝑡𝐸𝑇 = 2.2 ms) 

 
Figure 9. Illustration of noise level of raw signal of control 

piston motion (magnification of Figure 8) 

Table 4 summarizes the key properties of the injector and of its production nozzle that are utilized for the here 

presented investigations. 

Table 4. Parameters of nozzle and injector 

Injector 

Type Commercial third generation 

common rail  

Rail pressure 180 MPa 

Nozzle 

Type Sac 

Conicity factor 𝑘 1.5 

Spray hole diameter 0.177 mm 

Discharge coefficient 𝐶𝑑 0.87 

Table 5 lists the data for the calculation of the distance between the two pressure sensors. 

Table 5. Evaluation of pressure data 

1. Maximum 
pressure feed line 
[ms] 

1. Maximum 
pressure before inlet 
connector [ms] 

Difference [ms] Bulk modulus 
[N\mm2] 

Density 
[kg\m3] 

Speed of 
sound [m/s] 

Length 
[m] 

3,305 3,567 0,262 1738 840 1438 0,377 

3,152 3,395 0,243 2155 857 1585 0,385 

3,070 3,315 0,245 2567 871 1716 0,421 

3,000 3,225 0,225 2961 884 1830 0,412 
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