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Abstract
A new mathematical analysis of the dynamics of laminar spray diffusion flames in the vicinity of a vortex flow field
is presented. The governing equations for a spray evaporating in an unsteady vortex are studied. New similarity
solutions are found for the dynamics of the spray and the flame it supports. Analytical solutions for the spray flames
are derived using Schvab-Zeldovich parameters, through which the radial evolution of the flames is found. The
results based on the solution reveal the significant influence the droplets size has on the diffusion flame dynamics
in the vicinity of vortical flows.

Introduction
The dynamics of evaporating sprays play an important role in many practical combustion applications such as gas-
turbines and swirl combustion chambers. The interactions between a gaseous diffusion flame and a vortex flow-field
were extensively studied [1, 2, 3]. In a previous study of Dagan et al. [4], unsteady turbulent spray-flame instability
in a concentric jet combustion chamber was studied using large eddy simulations (LES). In their study, droplet
grouping and ligament structures were identified in the vicinity of vortices in large recirculation zones.
Using direct numerical simulations (DNS) of Diesel spray combustion in the vicinity of a recirculation zone, Shinjo
et al. [5] showed that when droplets are larger than the Kolmogorov microscale, mixing is strongly enhanced by
the presence of droplets and fuel vapor clusters are likely to form quickly when the droplet number density is high.
They suggested that external group combustion is likely to occur near the recirculation zone. The effects of droplet
clustering on evaporation were thoroughly discussed by Sirignano [6] and Harstad et al. [7]. Clusters of droplets
are formed in vortical flows, as they accelerate towards the outer region of the vortex[8]. The dynamics of droplet-
vortex interactions and their influence on the structure of an evaporating spray was numerically studied by [9].
Droplet-vortex interaction in the Karman-vortex street was studied by Burger et al. [10], using DNS and a theoretical
approach imposing a harmonically oscillating flow field. Recently, Franzelli et al. [11] numerically characterized
the regimes of spray flame-vortex interactions. They used a two-dimensional Oseen type vortex in their study.
However, their study relates to a vortex moving perpendicularly through an opposed flow spray sheet. These studies
emphasize the need for a more fundamental understanding of the influence of droplet dynamics on combustion in
vortical environments and recirculating flows, which appear in turbulent, as well as laminar environments.
The objective of the present work is to analytically study the influence of a vortex flow-field has on the evaporation
and combustion of polydisperse sprays. A new mathematical formulation for the dynamics of polydisperse sprays
in the vicinity of a vortex flow field is presented. The governing equations for a polydisperse spray evaporating in
an unsteady vortex and the diffusion flame they support are studied and new similarity solutions are found for the
dynamics of the spray flames, using the sectional approach (following Tambour, Greenberg and Katoshevski [14,
15, 16, 17]). Finally, preliminary results are shown for the influence of polydispersity on the reacting diffusion spray-
flames in the vicinity of vortical flows.

Governing equations
Gas phase
The equations for a polydisperse spray evaporating in a two-dimensional unsteady axisymmetric vortex flow are
presented. A polar coordinate system (r, θ) is employed in the following derivation of equations. As a result of our
assumption of an axisymmetric flow, all derivatives with respect to the angular coordinate θ are assumed zero.
A constant density for the host gas is assumed. The constant density assumption is frequently adopted in diffusion
flame studies under conditions in which the fuel and the oxidant are heavily diluted so that the heat released by
chemical reaction is small in comparison with the thermal energy of the mixture and gas expansion is negligible.
Under these assumptions, the governing gas-phase equations are
Gas-phase momentum:
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where ρ is the gas-phase density, vr is the gas radial velocity, vθ is the tangential velocity of the host gas, ν is the kinematic
viscosity and p is the pressure. Q̃j denotes mass fraction of the liquid fuel in size section j and Ns is the total number of sections.
Ṡev accounts for the momentum transferred to the host gas by the vapors. Fr,j and Fθ,j describe the interaction between the
gas phase and the droplets of size section j in the radial and tangential directions, respectively, being proportional to the relative
velocity between the droplets and the gas

Fr,j = τ−1
j (vr − ur,j); Fθ,j = τ−1

j (vθ − uθ,j) (3)

where ur,j and uθ,j are the radial and tangential velocities of the droplets of section j, respectively. τj is the sectional droplet
relaxation time-scale.
The conservation equations for the vapour mass fraction of the fuel, mf and the oxidizer, mo, and energy equation are given by
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following Katoshevski et al. [16]. T is the temperature, k and Cp are the gas conduction coefficient and specific heat at constant
pressure, respectively. hv accounts for the latent heat of vaporization, Df and Do are the diffusion coefficients, and we assume
all species have the same CP value. The SR terms are the reaction source terms for each equation, based on the assumption
of a global reaction of the form Fuel + ζsOxidant → Products, where ζs is the stoichiometric coefficient. However, as will be
showed in the following sections, Schvab-Zeldovich type variables will be formulated in the similarity coordinate. Hence, an explicit
treatment of the reaction terms will not be required.

Liquid spray phase
In the present study the equations for the reacting flow and their solutions are obtained only for a mono-sectional case. However,
the sectional equations for the dynamics of sprays are presented here in a polydisperse formulation for the sake of generality. The
multi-size droplet population is represented by a set of Ns sectional conservation equations of the form
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where the coefficient Bj,j+l accounts for droplets from section (j + 1) which are added to section j during their evaporation,
whereas Cj accounts for evaporation of droplets within section j and for droplets that move from section j to section (j − 1).
In reality, the evaporation coefficient is a complicated function of the temperature differential between the droplets and the sur-
rounding gas, the diffusivity and other properties of the fuel and its surroundings. Here the d2 − law underlies the definition of
the evaporation coefficient. Reasonably accurate estimates of droplet size and vaporization time do provide some evidence of the
validity of this law even under transient temperature conditions [15, 21, 22]. In addition, Labowsky [19] showed that the d2 − law
provides a reasonable prediction of the actual vaporization history of an interacting droplet, especially in the initial period of com-
bustion. Considerable progress in going beyond the limitations of Labowsky’s model and its findings [19] can be found in the work
of [20]. In principle, any more sophisticated model could be used as a basis for constructing the sectional evaporation coefficients.
Inclusion of such details is likely to affect our results in a quantitative rather than a qualitative way [24]. In a similar manner, no
separate energy conservation equation is solved for the spray as the current model assumes instantaneous thermal adjustment
of the gas-liquid mixture to a common temperature; although this may not always be the case in transient situations [23]. The
present analysis is therefore limited to fairly volatile fuels and small droplets for which the d2 − law is valid.
Under these assumptions, the spray sectional momentum equations are
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The last term in the brackets on the RHS of equations 8 and 9 represents loss of linear momentum (ujSj) due to evaporation of
droplets in section j, and the linear momentum (SLMj ) added to section j due to droplets from higher sections that are added to
section j during their evaporation (see [16]).
Here,

Sj = −CjQ̃j +Bj,j+1Q̃j+1 (10)

and

SL,Mj,r = −CjQ̃jur,j +Bj,j+1Q̃j+1ur,j+1 (11)

SL,Mj,θ = −CjQ̃juθ,j +Bj,j+1Q̃j+1uθ,j+1 (12)
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Similarity transformation of the gas and spray equations
We shall now use a similarity variable, η = r2/4νt and rewrite the host gas velocities as a function of η:
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Substituting the above definitions into the droplet momentum equations one obtains
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where the primes denote differentiation with respect to η. The drag terms are written explicitly as
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where Aj = τ−1r2/ν. The characteristic time of the droplets is taken as τ =
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2
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, where d, ρd and µg are the averaged droplet

diameter in section j, liquid fuel density and the host gas viscosity, respectively. It can be demonstrated that for the range of radii
involved Aj does not change much. In order to obtain the spray equations in terms of η only, the sectional evaporation coefficients
are defined as
Cj = C̄j/t, Bj,j+1 = B̄j,j+1/t. The use of an inverse time dependence of the sectional evaporation coefficients is reasonable
in a general sense as evaporation will indeed peter out after sufficient droplet life time has elapsed. Thus, in similarity coordinates,
the spray equations take the form(
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Shvab-Zeldovich formulation of diffusion spray-flames in a vortex
In the mono-sectional framework, the following set of equations are derived in the similarity coordinate, η, for the fuel mass fraction,
the oxidizer mass fraction and temperature, respectively:(
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ū′rQ =

1

η
CQ (19)

m′′f

Scf
+

(
1 +

1

ηScf
−
v̄r

2η

)
m′f −

v̄′r
2η
mf = −

1

η
CQ+ ζfMf

1

η
SR (20)

m′′o
Sco

+

(
1 +

1

ηScf
−
v̄r

2η

)
m′o −

v̄′r
2η
mo = ζoMo

1

η
SR (21)

T ′′

Sco
+

(
1 +

1

ηPr
−
v̄r

2η

)
T ′ −

v̄′r
2η
T =

hv

CPTC
CQ−

∑
i

ζiMihi
1

η
SR (22)

Next, we assume a unity Lewis number, Scf = Sco = Pr = Sc and use the following notation:
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Finally, defining two Schvab-Zeldovich variables
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The boundary conditions for the above functions are
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Figure 1. Liquid fuel mass fraction divided by the initial mass fraction Q0 as a function of the similarity coordinate for different
values of vortex intensity Γ and evaporation coefficients C̄.

It should be mentioned that for the actual solution we use the similarity variable boundaries from some small time and radius so
that we avoid any singularity. The flame location is where β = 0. This is the same as where the leading order solution (in terms of
the usual Zeldovich number) locates the flame front.
In order to solve the equations for vortex spray dynamics analytically we shall first derive an expression for the droplet velocities
ur and uθ as follows. Appropriate manipulation of Eq. 15,16 leads to

ū2rū
′
θ + ū2θū

′
θ = −A

[
(v̄r − ūr)ū′θ − (v̄θ − ūθ)ū′r

]
. (29)

For the host velocity field, a two-dimensional Oseen-vortex will be used,

v̄θ = Γ̄(1− e−η); v̄r = 0. (30)

which is also an exact solution of Eq. 2 for η >> 1. Here, Γ̄ = Γ/2πν, where Γ is the angular velocity. For the fine sprays under
consideration, we assume that the droplets closely track the vortex flow-field in the transverse coordinate θ. On the other hand, we
expect the presence of the vortex to significantly increase the droplets radial velocity ur , especially at lower values of η. Hence,
droplets will not track the gas radial velocity which is initially assumed zero (Eq. 30). Thus, ūθ = v̄θ and equation 29 takes the
following simple form

ū2r + ū2θ −Aūr = 0, (31)

from which ūr can be extracted.
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Figure 2. Schvab-Zeldovich function β as a function of the similarity coordinate η for three different initial droplet diameters:
d0 = 10, 50, 100µm. The flame is located where β = 0 (shown in solid circles). (a) Whole region of the analysis (b) a closeup on

the flame region at lower values of η.
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Figure 3. Profiles of fuel mass fraction (mf ) and the oxidizer mass fraction (mo) in the similarity framework for three different
initial droplet diameters: d0 = 10, 50, 100µm.

Next, the equation for the liquid fuel mass fraction Q (Eq. 19) is solved by separation of variables:

Q′/Q = (2C̄ + ū′r)/(2η − ūr), (32)

from which Q(η) can be solved by integration. Assuming v̄r = v̄′r = 0, we may also evaluate β(η) numerically. The solution for
the second Schvab-Zeldovich function, γ is

γ(η) = c3Ei(−Sc η) + c4 (33)

where Ei is the exponential integral function, and c1, c2, c3 and c4 are integration constants found using the boundary conditions
(Eq. 27, 28). In the present study equation 33 is also evaluated numerically.

Results and discussion
The liquid fuel mass fraction divided by the initial mass fractionQ0 is presented in Figure. 1 as a function of the similarity coordinate
for different values of vortex values of Γ and evaporation coefficients C̄. For non-evaporating droplets, C̄ = 0, and zero vortex
intensity, Γ = 0, the liquid mass fraction does not change, as expected. On the other hand, for evaporating droplets and Γ = 0 the
liquid mass fraction decreases with decreasing values of η, which corresponds to increasing time values for a given radial location.
The vortex intensity has a substantial effect, especially at lower values of η, in effect pushing the fuel droplets from the center
outwards as time goes by. No droplets are found below η ≈ 1. The calculation of liquid mass fraction was carried out between
0.1 < η < 100. Only a a partial view is presented in the figure for clarity. Hence, for η → 100, Q/Q0 → 1.

Polydispersity effect
In our previous study [18] it was shown that in the vicinity of a vortical flow, spray dynamics is highly affected by the droplets’ size,
but also by the spray initial distribution, even when the same Sauter mean diameter is considered. It will therefore be interesting
to capture the influence of initial droplet size on the propagation of the diffusion flame.
The equations for the dynamics of the polydisperse spray were derived here in the previous sections. In this section, as a first
attempt to assess the influence polydispersity will have on the dynamics of the diffusion flame in the vicinity of vortical flows,
the flame equations were solved analytically for different initial droplet sizes. It should be noted that the solution is essentially
mono-sectional, and that the coupling effect between each section (e.g the intersection transfer of momentum) is out of the scope
for this study and will not be considered here.
The Schvab-Zeldovich function β is presented in Fig. 2a as a function of the similarity coordinate η for three different initial droplet
diameters: d0 = 10, 50, 100µm. The droplet size effect on the flame location (at β = 0) is significant, pushing the flame away from
the vortex core (which s located at η = 0). This is demonstrated in a closeup view in Fig. 2b. Although small droplets acceleration
due to the presence of a vortex is higher than that of larger droplets, it can be shown by solving equation 15 that the maximum
radial velocity reached is higher for the larger droplets. This affects the flame, as the vortex tends to push the larger droplet farther
away and thus reducing the available fuel vapor required for the flame.
Knowing the functional behaviour of β(η), and assuming that the species are totally consumed at the flame zone, one can easily
extract the fuel vapour and oxidizer mass fraction as a function of η. This is shown in Fig. 3 for lower values of η, where the flame
is located. Results for three different initial droplet diameters are presented, showing a significant droplet size effect; for a given
value of η (i.e at a given time and radial location in the physical space) lower fuel mass fraction is observed for larger droplets.
The flame is located at the point where all the fuel and oxidizer are consumed (mo = mf = 0).
Finally, solutions of the temperature distribution in the similarity framework for the same vortex intensities and evaporation coeffi-
cients are presented in Fig. 4. For larger droplets that are pushed farther than smaller droplets, the temperature curve is pushed
to higher values of η, which means that for a given time the flame will be pushed farther away from the vortex core. Increased heat
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Figure 4. Solutions of the temperature distribution in the similarity framework for three different initial droplet diameters:
d0 = 10, 50, 100µm.

loss due to evaporation also plays an important role in lowering the temperature, which in some cases might lead to extinction.
However, this is beyond the scope of the present study. Further work to elucidate the relative importance of the different factors
controlling the spray-flame in vortex flows will be reported in the future.

Conclusions
A new mathematical analysis of the dynamics of laminar spray diffusion flames in the vicinity of a viscous vortex flow field was
presented. The governing equations for sprays evaporating in an unsteady vortex were derived and new similarity solutions were
found for the dynamics of the spray in a mono-sectional framework. New analytical solutions for the spray flames were obtained
using Schvab-Zeldovich parameters, through which the radial evolution of the flames was found. The vortex flow field was shown
to have a significant effect on the location and extent of the flame, pushing the droplets outwards and therefore shifting the flame
location to larger radii for a given instant of time.
Spray flame with larger initial diameter droplets shows different flame dynamics; they are pushed away farther than spray flame
with smaller droplets and exhibit lower temperatures. Certainly, future experimental data would be helpful in validating the theory
presented in the current study.

Nomenclature
Aj dimensionless sectional drag coefficient
Bj,j+1 dimensionless sectional vaporization coefficient
Cj dimensionless sectional vaporization coefficient
CP specific heat capacity at constant pressure [J/kgK]

D diffusion coefficient [m2/s]

d droplet diameter [m]
F function of η
h specific enthalpy [J/kg]

k thermal conductivity [W/mK]
M molecular weight [g/mol]

m mass fraction
Ns number of sections
Pr Prandtl number
p pressure [Pa]
Qj sectional liquid mass-fraction
r radial coordinate [m]

S source term
Sc Schmidt number
T temperature [K]
t time [s]
u droplet velocity [m/s]
v host gas velocity [m/s]

Greek symbols
β Shvab-Zel’dovich function
Γ angular velocity [rad/s]
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γ Shvab-Zel’dovich function
η similarity coordinate
θ azimuthal coordinate [◦]
ν kinematic viscosity [m2/s]

ρ density [kg/m3]

ζ stoichiometric coefficient

Subscripts
0 condition at t = 0

C combustion
d droplet
ev evaporation
g host gas
j section number
o oxidizer
R reaction
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