

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

https://doi.org/10.1007/PL00011426

http://hdl.handle.net/10251/100424

Springer-Verlag

A Cutting Plane Algorithm for the General

Routing Problem.

Angel Corberán◦, Adam N. Letchford∗ and José Maŕıa Sanchis+

◦ DEIO, Faculty of Mathematics, University of Valencia, Spain

∗ Dept. of Management Science, Lancaster University, England

+ Dept. of Applied Mathematics, University Polytechnic of Valencia, Spain

November 9th, 1998.

Abstract

The General Routing Problem (GRP) is the problem of finding a minimum cost route
for a single vehicle, subject to the condition that the vehicle visits certain vertices and
edges of a network. It contains the Rural Postman Problem, Chinese Postman Problem
and Graphical Travelling Salesman Problem as special cases. We describe a cutting plane
algorithm for the GRP based on facet-inducing inequalities and show that it is capable
of providing very strong lower bounds and, in most cases, optimal solutions.

Key Words: valid inequalities, cutting planes, General Routing Problem, Rural Post-
man Problem, Graphical Travelling Salesman Problem.

1 Introduction

Given a connected, undirected graph G with vertex set V and edge set E, a cost ce for
each edge e ∈ E, a set VR ⊆ V of required vertices and a set ER ⊆ E of required edges,
the General Routing Problem (GRP) is the problem of finding a minimum cost vehicle route
passing through each v ∈ VR and each e ∈ ER at least once [24].

The GRP is of practical application (see, e.g., [9]) and contains several other important
routing problems as special cases:

• When VR = ∅, the Rural Postman Problem (RPP) is obtained [24]. If, in addition,
ER = E, the Chinese Postman Problem (CPP) is obtained [8].

• When ER = ∅, the Steiner Graphical Travelling Salesman Problem (SGTSP) is obtained
[7]. This problem was also called the Road Travelling Salesman Problem in [10]. If, in
addition, VR = V , the Graphical Travelling Salesman Problem (GTSP) is obtained [7].

The RPP was shown to beNP-hard in [18], although the CPP can be solved in polynomial
time by reduction to a matching problem [8]. The GTSP is also NP-hard [7]. Hence the
SGTSP and GRP are also NP-Hard.

The GTSP is a relaxation of the well-known (Symmetric) Travelling Salesman Problem
(STSP): in the GTSP, the route must pass through each vertex at least once and each edge
may be traversed any number of times. In the STSP, the route must pass through each vertex

1

exactly once and, moreover, G must be a complete graph (see, e.g., [16, 17]).

In recent years, spectacular progress has been made on solving large-scale STSP instances
to optimality. The most successful algorithms to date (e.g., [2, 27]) are based on linear pro-
gramming relaxations, strengthened by the addition of facet-defining inequalities as cutting
planes (see, e.g., [22]). Successful algorithms have also been devised for other routing prob-
lems using this paradigm [2, 3, 10, 11, 14, 23].

An important ingredient of a cutting plane algorithm is the ability to detect inequalities
which are violated by the current LP relaxation. For a given class of inequalities, an exact
separation algorithm is a routine which takes an LP relaxation as input and outputs one or
more violated inequalities in that class (if any exist). A heuristic separation algorithm is
similar except that it may fail to detect a violated inequality in the class (see, e.g., [26]).

In [5], various facet-inducing inequalities were discovered for the RPP, including non-
negativity, connectivity, R-odd cut and K-Component (K-C) inequalities. Using these in-
equalities, the authors solved 25 out of 26 RPP instances using a pure cutting plane algorithm
(the other was solved by branching). However, the violated inequalities were identified by
visual inspection rather than by automated separation algorithms.

The present authors have also written three papers on GRP polyhedra. The non-negativity,
connectivity, R-odd cut and K-C inequalities were adapted to the GRP in [6], where also the
K-C inequalities were generalized to give the honeycomb inequalities. In [19], the path-bridge
inequalities were introduced and an exact separation algorithm was proposed for a restricted
subclass. Further classes of inequalities were introduced in [20], including projected binested,
projected chain and projected bipartition inequalities.

These good theoretical results suggested that it would be possible to solve large-scale
GRP instances to optimality, or at least to obtain excellent lower bounds, with a dedicated
cutting-plane algorithm. The purpose of the present paper is to give a description of such an
algorithm which has been implemented and tested by the authors. This includes a detailed
description of some exact and heuristic (polynomial-time) separation algorithms which have
been devised for various classes of valid and facet-inducing inequalities.

Note that it can be assumed, without loss of generality, that the end-vertices of any
required edge are also required. Our algorithms actually rely on the stronger assumption
that V = VR. This is not a serious restriction, however, as there is a simple way to transform
GRP instances which do not satisfy the assumption into instances which do (see, e.g., [4]).
The transformation can occasionally increase the number of edges in G, but it frequently
decreases it.

In [16], some RPP instances were solved by transforming them into STSP instances and
then using a branch-and-cut algorithm for the STSP. Although this worked adequately for the
instances tested, the transformation involved the addition of a large number of redundant
variables. Our algorithm is more ‘natural’ and has some dedicated separation algorithms
which work very well. We believe that it will be much faster for larger instances.

The outline of the paper is as follows. In Section 2, the relevant results on GRP polyhedra
are reviewed. In Section 3, a detailed description is given of the separation algorithms. The
way in which these separation algorithms are integrated to form the overall algorithm is
described in Section 4. Computational results are given for a wide variety of test problems
in Section 5. Some concluding comments are made in Section 6.

2

2 Polyhedral Results

2.1 Formulation

The fundamentals of the integer programming approach to the GRP are given in [6]. We use
the same notation, with some minor simplifications due to our assumption that V = VR. Let
xe represent the number of times e is traversed (if e /∈ ER), or one less than this number (if
e ∈ ER). Given S ⊂ V , let δ(S) denote the set of edges, commonly called the edge cutset,
with one end-vertex in S and one end-vertex in V \S. We also write E(S : T) for δ(S)∩δ(T),
E(S) for the set of edges with both end-vertices in S and x(F) for

∑
e∈F xe. Finally, we write

ER(S : T) for E(S : T) ∩ ER and δR(S) for δ(S) ∩ ER. The set of feasible solutions to the
GRP is then described by:

x(δ(S)) ≥ 2, ∀S ⊂ V, δR(S) = ∅ (1)

x(δ({i})) ≡ δR({i}) mod 2, ∀i ∈ V (2)

x ∈ Z |E|+ (3)

The connectivity inequalities (1) ensure that the route is connected. The degree conditions
(2) ensure that the vehicle departs each vertex as many times as it arrives. Note that the
degree conditions are congruences, not linear equations or inequalities.

The convex hull in <|E| of feasible solutions to (1) - (3), known as GRP(G), is a full-
dimensional, unbounded polyhedron. We can therefore formulate the GRP as the problem of
minimizing

∑
e∈E cexe subject to x ∈ GRP(G). As mentioned in Section 1, many classes of

valid inequalities and facets are known for GRP(G) [5, 6, 19, 20]. The most trivial inequalities
are the non-negativity inequalities xe ≥ 0 for each e ∈ E. These induce facets unless e is a
cut-edge in G.

The non-negativity inequalities are handled implicitly by any LP solver. The authors have
devised separation algorithms for five non-trivial classes of inequalities; namely, connectivity,
R-odd cut, K-C, path-bridge and honeycomb inequalities. These inequalities are described in
the following subsections.

2.2 Connectivity inequalities

As mentioned in the previous subsection, connectivity inequalities are just constraints (1).
They induce facets of GRP(G) if and only if the subgraphs induced by S and V \ S are
connected [5, 6].

2.3 R-odd cut inequalities

Due to the degree conditions, the vehicle must cross any given edge cutset an even number
of times. This means that if S ⊂ V is such that |δR(S)| is odd, then the R-odd cut inequality

x(δ(S)) ≥ 1 (4)

is valid for GRP(G).
Like connectivity inequalities, R-odd cut inequalities induce facets of GRP(G) if and only

if the subgraphs induced by S and V \ S are connected [5, 6].

3

~
~

~

~
~

~

��
��

��
��PPPPPPPP

��
��

��
��PPPPPPPP

V0

V1

V2

V3

VK−1

VK

Figure 1: K-C configuration.

2.4 K-C inequalities

In order to present the remaining inequalities, we will need some more definitions. Consider
the (generally disconnected) subgraph of G obtained by deleting all non-required edges from
G. We call a connected component of this subgraph an R-connected component. A set of
vertices defining an R-connected component will be called an R-set. An R-set with only one
member will be called an isolated vertex.

The K-Component or K-C inequalities [5, 6] are defined in terms of an associated K-
C configuration. A K-C configuration is (see Figure 1) a partition {V0, . . . VK} of V , with
K ≥ 3, such that

• V1, . . . VK−1 and V0 ∪ VK are clusters of one or more R-sets,

• |ER(V0 : VK)| is positive and even,

• E(Vi : Vi+1) 6= ∅ for i = 0, . . . ,K − 1.

The corresponding K-C inequality can be written as:

F (x) =
K−1∑
i=0

x(δ(V0 ∪ · · · ∪ Vi))− 2x(E(V0 : VK)) ≥ 2(K − 1) (5)

K-C inequalities induce facets of GRP(G) when certain mild connectivity assumptions are
met [5, 6].

2.5 Path-bridge inequalities

The path-bridge (PB) inequalities [19] are defined in terms of an associated path-bridge (PB)
configuration. Suppose p ≥ 1 and b ≥ 0 are integers such that p+ b ≥ 3 and odd. Let ni ≥ 2
for i = 1, . . . , p also be integers. A PB configuration is (see Figure 2) a partition of V into
vertex sets A, Z and V i

j for i = 1, . . . , p, j = 1, . . . , ni with the following properties:

• each V i
j is a cluster of one or more R-sets,

4

~
~

~

~
~

~

~ ~

��
��

��
��PPPPPPPP

��
��

��
��PPPPPPPP

A

Z

V 1
1

V 1
2

V 1
3

V 2
1

V 2
2

V 2
3

Figure 2: PB configuration.

• |ER(A : Z)| = b,

• E(A : V i
1) 6= ∅ and E(V i

ni
: Z) 6= ∅ for i = 1, . . . , p,

• E(V i
j : V i

j+1) 6= ∅ for i = 1, . . . , p and j = 1, ..., ni − 1.

The edges in ER(A : Z) constitute the bridge. When b = 0, the bridge is empty and the
PB configuration reduces to a path configuration, see [7]. In such a case, either or both of A
and Z are permitted to be empty.

The formula for the coefficients in the PB inequality is rather complicated. However,
our separation algorithms (Subsections 3.5 and 3.6) are designed for so-called n-regular PB
inequalities, in which all of the ni are equal to the same value n [7, 19]. For such inequalities,
there is a nice description of the coefficients in terms of vertex sets called handles and teeth.
There are n − 1 handles, denoted by H1, . . . ,Hn−1, and p teeth, denoted by T1, . . . , Tp (see
Figure 3). The first handle is defined as H1 = A∪V 1

1 ∪ . . .∪V
p
1 ; the other handles are defined

inductively as Hi = Hi−1 ∪ V 1
i ∪ . . . ∪ V

p
i . The teeth are defined as Tj = V j

1 ∪ . . . ∪ V j
n . The

n-regular PB inequality is then:

n−1∑
i=1

x(δ(Hi)) +
p∑

j=1

x(δ(Tj)) ≥ np+ n+ p− 1 (6)

and is valid for GRP(G). It is facet-inducing under mild connectivity assumptions.

For brevity, we will call regular PB inequalities n-PB inequalities (where n may or may
not be specified). Certain special cases of n-PB inequalities are of note. When p = 1, a
K-C inequality is obtained. When b = 0, a regular path inequality is obtained [7]. The 2-PB
inequalities are analogous to the well-known comb inequalities for the STSP (see, e.g., [13]).
Finally, a 2-PB inequality in which each tooth consists merely of two isolated vertices (con-
nected by a non-required edge) is called simple [19]. Simple 2-PB inequalities are analogous
to the 2-matching inequalities for the STSP [13].

5

~
~

~

~
~

~

~ ~

��
��

��
��PPPPPPPP

��
��

��
��PPPPPPPP

'

&

$

%

'

&

$

%

�

�

�

�

�

�

�

�

H1

H2

T1 T2

Figure 3: Handles and teeth in a 3-regular PB configuration.

2.6 Honeycomb inequalities

The honeycomb inequalities [6], like PB inequalities, are also a generalization of K-C inequal-
ities. However, the generalization is in a different direction and neither class contains the
other. A honeycomb configuration is a partition of V into sets Si such that:

• for all i, | δ(Si) \ δR(Si) |6= ∅ and | δR(Si) | is even or zero;

• there are at least two values i such that δR(Si) 6= ∅;

• there are at least two values i such that δR(Si) = ∅;

together with a set of non-required edges crossing between the Si which form a tree spanning
the Si.

Many, but not all, honeycomb configurations can be formed by ‘gluing’ K-C configura-
tions together by identifying edges [6]. In general, honeycomb configurations can be extremely
complicated and computing the coefficients in the associated honeycomb inequality can be a
formidable task. For this reason, we restrict ourselves in this paper to honeycomb configura-
tions with a special structure. These consist of:

• a partition {V1, . . . , VL,W1, . . . ,WK−1} of V , with L ≥ 2, K ≥ 3, such that (V1 ∪ . . . ∪
VL), W1, . . . ,WK−1 are clusters of one or more R-sets, δ(Vi) contains a positive and
even number of required edges for all i and the graph induced by the required edges on
the vertex set {V1, . . . , VL} is connected.

• a tree T spanning the sets V1, . . . , VL,W1, . . . ,WK−1 such that the degree in T of every
vertex set Vi is 1, the degree of vertex sets Wj is at least 2 and the path in the tree
connecting any distinct Vi, Vj is of length 3 or more.

6

~ ~ ~

~ ~ ~

C
C
C
C
C
C
C
C
C
CC

�
�
�
�
�
�
�
�
�
��

V1 V2 V3

W1 W2 W3 ~ ~

~ ~

~

~

~

~

�
�
�
�
��

@
@
@
@
@@ �

�
�
�
��

@
@
@
@
@@

W1 W2

W3
W4

V1 V2

V3 V4

Figure 4: Two suitable honeycomb configurations.

If L = 2 the tree degenerates to a mere path and we have a K-C configuration. If L ≥ 3,
then K ≥ 4 is needed in order for the path in the tree connecting any distinct Vi, Vj to be of
length 3 or more.

For honeycomb configurations with this special structure, the coefficient αe of edge e ∈ E
in the associated honeycomb inequality is equal to the number of edges traversed (if any)
in the spanning tree to get from one end-vertex of e to the other, except for the edges with
one end-vertex in Vi and the other in Vj , i 6= j, when the coefficient is 2 units less. The
honeycomb inequality is then: ∑

e∈E
αexe ≥ 2(K − 1) (7)

These honeycomb inequalities define facets of GRP(G) if certain mild connectivity assump-
tions are met.

Figure 4 shows two suitable honeycomb configurations. The bold lines represent edges
in δR(Vi) for some i and the thin lines represent edges in the spanning tree. The rhs of the
associated inequality is 6 for the configuration on the left and 8 for the configuration on the
right.

3 Separation Algorithms

3.1 Preliminary Comments

In this section, separation algorithms are presented for the inequalities described in the
previous section. Before proceeding, however, we will need some definitions.

Given an LP relaxation vector x∗ ∈ <|E|+ , define the weighted graph G∗(V,E, x
∗). This

weighted graph is input to all of the separation procedures. Given a graph G(V,E), a cut-
vertex is a vertex the removal of which causes G to become disconnected. A block is a
maximal connected subgraph of G which contains no cut-vertices. If a block consists of a
single edge, then it is called a cut-edge. A decomposition of G into blocks can be found in

7

O(|E|) time using the algorithm in [29]. We will also need the concept of shrinking a set
of vertices in a weighted graph (see, e.g., [10, 26]). Given a graph G(V,E) with weights on
the edges, and a set W ⊂ V , shrinking W means identifying the vertices in W , deleting any
resulting loops and merging each resulting set of parallel edges, if any, into a single edge.
When merging parallel edges, the new edge is given a weight equal to the sum of the original
weights. Shrinking can be done iteratively and, in the case of the GRP, a single edge in the
shrunk graph can represent a mixture of any number of required or non-required edges in the
original graph.

In the following subsections, we describe heuristic (and sometimes exact) separation al-
gorithms for each of the classes of inequalities described in the previous section. Some of the
heuristics require the choice of a parameter (called ε), or even two parameters (called ε1, ε2).
For details on which values of ε (or ε1, ε2) we use and how the exact and heuristic algorithms
are embedded in the overall algorithm, see Subsection 4.2.

3.2 Connectivity Separation

Connectivity inequalities can be separated exactly in polynomial time. This is done by finding
a minimum weight cut in the shrunk graph Gs = (Vs, Es, x̄

∗) obtained from G∗ by shrinking
each R-set into a single vertex. A minimum weight cut in an undirected graph with n vertices
and m edges can be found in O(nm+ n2 log n) time using the algorithm in [21].

A faster (O(|E|) time) heuristic algorithm is obtained by computing the connected compo-
nents of the subgraph induced by the edges e ∈ Es with x̄∗e > ε, where ε is a given parameter.
Let S1, S2, . . . , Sq be the sets of vertices in the original graph G corresponding to the vertex
sets of these connected components. Then x(δ(Si)) ≥ 2 is a violated connectivity inequality
if q > 1 and x∗(δ(Si)) < 2. Note that when q = 2 we have x(δ(S1)) = x(δ(S2)), but when
q > 2 all of the inequalities are distinct.

3.3 R-odd cut separation

R-odd cut inequalities can also be separated exactly in polynomial time. Before describing
the exact algorithm, however, we describe an effective separation heuristic. As for the connec-
tivity inequalities, we choose a parameter ε. We compute the vertex sets S1, S2, . . . , Sq of the
connected components of the subgraph of G∗ induced by the edges e ∈ E with x∗e > ε. Then
x(δ(Si)) ≥ 1 is a violated R-odd cut inequality if q > 1, |δR(Si)| is odd and x∗(δ(Si)) < 1.

This heuristic runs in O(|E|) time and is inspired by a heuristic presented in [12] for
blossom inequalities in the context of the perfect matching problem.

The exact algorithm is much slower and involves finding a minimum weight R-odd cutset
in G∗. Using a result of [25], this can be reduced to a series of maximum flow problems on
G∗. The number of maximum flow computations needed in the worst case is equal to the
number of R-odd vertices in G minus 1 and an R-odd cut inequality is violated if and only
if the weight of the cutset is less than 1.

As noted in [26] (in the context of the STSP), the idea of connected components can also
be used to simplify the problem of finding an odd cut of weight less than 1. Consider the
connected components of the subgraph of G∗ induced by the edges e ∈ E with x∗e > 0. Under
the assumption that the separation heuristic has already been (unsuccessfully) invoked with
ε = 0, we know that each of these components contains an even number of R-odd vertices. It
is easy to show that we can examine each of these components independently for an odd cut
of weight less than 1. This typically leads to considerable speed improvements in the exact
algorithm.

8

~ ~

~ ~

~

~@
@
@
@
@
@
@
@
@
@@��

��
��

��

PPPPPPPP

{u}

Figure 5: Getting seeds for V0 and VK .

3.4 K-C separation

A vertex v ∈ V will be called R-odd if |δR({v})| is odd, otherwise it will be called R-even.
Isolated vertices are R-even.

It is not known if the problem of separating K-C inequalities can be solved in polynomial
time or not, but our guess is that this problem is NP-hard. However, we have designed a
heuristic algorithm which appears to work very well. It has three consecutive phases. In
phase I, we find ‘seeds’ for V0 and VK . In phase II, we use these seeds to determine the Vi
for i = 0, . . . ,K. In phase III, we check the resulting inequality for violation, and, if it is not
violated, we also check some other inequalities for violation which are obtained by shrinking
the K-C configuration appropriately.

The details of these three phases are based on the following considerations:

• We have examined the structure of the solutions obtained when all the connectivity and
R-odd cut inequalities are satisfied. The effect of the K-C inequalities is to separate
solutions x∗ where an R-even vertex u belonging to an R-set Ci with |Ci| > 2 satisfies
x∗(δ({u})) ∼= 1 and x∗(E({u} : Ci \ {u})) ∼= 0. Thus, {u} and Ci \ {u} are suitable
vertex sets to be considered as seeds for V0 and VK , respectively, in phase I. Figure 5
illustrates this idea: the bold lines represent the required edges in E(Ci) and the narrow
lines represent non-required edges with x∗e = 1. This idea is generalized by considering
as seeds for V0 any vertex sets with an even number of R-odd vertices forming an
x∗-connected component on the subgraph induced by Ci.

• Given the seeds for V0 and VK , consider the graph obtained from G∗ by shrinking the
seeds and the remaining R-sets into a single vertex each. In order to define V0, . . . , VK ,
we have to find a path in the shrunk graph connecting the seeds (preferably one with
a large x∗-weight). Once this is done, we merely have to assign any vertices which are
not in the path to one of the vertices in the path in order to complete phase II.

• Suppose that a K-C inequality with K ≥ 4 is not violated. For i = 0, 1, 2, . . . ,K−1, let
LHS(i) = x∗(δ(V0∪. . .∪Vi)). For some 1 ≤ i ≤ K−2, we could merge sets Vi, Vi+1 into
a single set, yielding a new ‘smaller’ (K-1)-C configuration, with an associated (K-1)-C
inequality. From equation (5), for a given x∗, the slack of the new inequality will be
equal to that of the original inequality, plus 2−LHS(i). Thus, iteratively merging sets
Vi, Vi+1 with LHS(i) > 2 will lead to inequalities with smaller slack, as long as K ≥ 3
remains.

9

Alternatively, consider what would happen if we were to merge sets V0, . . . , Vs into a
single set for some s ≤ K−3. The resulting change in slack would be 2s−

∑s
i=1(LHS(i−

1) + 2x∗(Vi : VK)). Then, if this quantity was negative, the slack would have been
reduced by shrinking. A similar argument applies if we merge sets Vt, . . . , VK for some
t ≥ 3.

It can also be shown that a K-C inequality cannot be violated if x∗(E(V0 : VK)) ≥ 1
and x∗ satisfies all connectivity and R-odd cut inequalities.

These are the ideas behind phase III.

In our computer code, a given K-C configuration is stored by simply labelling each vertex
in the graph according to the set Vi of the K-C configuration it belongs to. Computing
coefficients from these labels is a simple matter and so is the operation of merging two or
more Vi into one.

Taking into account the above points, the global procedure is as follows:

• Phase I: Define seeds for V0 and VK .
Given a specified R-set Ci, we say that a vertex in Ci is x∗-external if it is connected
to at least one vertex in a different R-set by an edge e with x∗e > 0. For each R-set Ci

with at least two x∗-external vertices and connected to at least two different R-sets, do
the following. Choose a parameter ε and construct the subgraph of G(Ci) induced by
edges e with x∗e > ε. Look for an x∗-external vertex u whose corresponding connected
component in the subgraph has an even number of R-odd vertices. If one is found,
the connected component is a candidate for V0 and the complementary set in Ci is a
candidate for VK (if VK 6= ∅).

• Phase II: Define the vertex sets V0, . . . , VK .
Given the seeds for V0 and VK , we proceed as follows:
(a) construct the graph obtained from G∗ by shrinking the seeds and the remaining
R-sets into a single vertex each.
(b) Compute a spanning tree by iteratively adding the edge of maximum weight not
forming a cycle (and not connecting the seeds). If this is not possible (because the
removal of Ci disconnects the graph), then move on to another x∗-external vertex.
(c) Transform the tree into a path linking the seeds, by (iteratively) shrinking each
non-seed vertex with degree one into its (unique) adjacent vertex. If the length of the
path is only 2, then move on to another x∗-external vertex. Otherwise, the vertices
of the path define the vertex sets V0, V1, . . . , VK . Note that the seeds may have been
enlarged in this process and therefore that either or both of V0 and VK may contain
vertices from more than one R-set.

• Phase III: Check the K-C inequality.
We now have a K-C configuration like that of Figure 1.

For each i = 0, 1, . . . ,K − 1, compute LHS(i) = x∗(δ(V0 ∪ . . . ∪ Vi)). Then, F (x∗) =∑K−1
i=0 LHS(i)− 2x∗(V0, VK) is the left hand side of the corresponding K-C inequality

computed on x∗. If F (x∗) < 2(K − 1), the K-C inequality is violated.

If the K-C inequality is not violated, check if a violated inequality could be obtained
by shrinking the K-C configuration.

– Shrink all pairs Vi, Vi+1 with LHS(i) > 2, 1 ≤ i ≤ K−2 and reduce K accordingly.
If K < 3, stop (no violated inequality was found).

10

– Compute the values:

a = LHS(0) + 2x∗(E(V1 : VK))− 2

b = LHS(K − 1) + 2x∗(E(V0 : VK−1))− 2

c = a+ b+ 2x∗(E(V1 : VK−1))

corresponding to the reductions in slack which would be obtained if we shrank,
respectively, the pair V0, V1 or the pair VK−1, VK , or both pairs simultaneously. If
max{a, b, c} is larger than the slack, then shrink the pair V0, V1 and/or the pair
VK−1, VK (depending on where the maximum of {a, b, c} is reached), to obtain a
violated K-C inequality (if K ≥ 3 remains).

– If this fails, it may yet be possible to obtain a violated inequality by shrinking.
Compute for every 0 ≤ s, t ≤ K − 3, s + t ≤ K − 3, the reduction in slack
(denoted by Ast) which would be obtained if we shrank sets V0, V1, . . . Vs and sets
VK , VK−1 . . . VK−t into single sets (this can be done quickly if the computations
are performed in an intelligent way). If Ast > slack for any s, t such that K ≥ 3
would remain after shrinking, then select the s, t which gives the inequality with
greatest violation.

For a fixed value of ε, the algorithm looks for only one violated K-C inequality associated
to each R-set. For each R-set Ci, priority is given to single vertices in Ci as candidates for V0.
Only if this fails to yield a violated inequality for the given Ci are more complex candidates
for V0 considered.

A simple extension of the heuristic allows us to search for violated K-C inequalities where
the required edges in E(V0 : VK) belong to more than one R-connected component. This
is done by (iteratively) joining a pair of R-sets adjacent in G∗ and then applying the above
procedure as if they formed a single R-set.

3.5 n-PB separation: the case n = 2

When considering the separation of n-PB inequalities, it is useful to give the 2-PB inequalities
special attention. Accordingly, the present subsection is concerned with 2-PB inequalities,
whereas general n-PB inequalities are dealt with in the following subsection.

In [19] it was shown, using ideas in [25], that the simple 2-PB inequalities can be separated
exactly in polynomial time, provided that two conditions are met:

• x∗ satisfies all non-negativity and R-odd cut inequalities,

• x∗(δ(e)) + x∗e ≥ 3 holds for each e ∈ E.

The first condition is obviously no problem. As for the second condition, it is easy to show
that it is satisfied whenever x∗ satisfies all connectivity inequalities.

There are however two problems with the simple 2-PB separation algorithm. First, it is
rather slow as it involves the computation of a minimum weight odd cut in a graph with
O(|E|) vertices and O(|E|) edges. This problem can be alleviated to some extent by using
the idea of connected components, as outlined in Subsection 3.3. The second problem is
that there are likely to be very few violated simple 2-PB inequalities, if any, when the GRP
instance has few isolated vertices. Indeed, simple 2-PB inequalities are not defined at all for
RPP instances.

One way of improving the simple 2-PB separation algorithm would be to find conditions
under which G∗ can be shrunk (see Subsection 3.1) in such a way that

11

• A 2-PB inequality is violated in the shrunk graph if and only if a 2-PB inequality is
violated by x∗,

• A violated simple 2-PB inequality in the shrunk graph can be ‘expanded’ into a (not
necessarily simple) 2-PB inequality violated by x∗.

Although this idea has been applied successfully to related separation problems (see [10, 26]),
we did not use it here because it turned out to be very difficult to devise appropriate data
structures to account for the presence of required edges. A different idea was used instead.

Consider the graph G′∗ obtained from G∗ by deleting non-required edges e with x∗e = 0.
Suppose we have a block decomposition of G′∗ (see Subsection 3.1) and that there are h ≥ 2
blocks. Let V (j) for j = 1, . . . , h denote the set of vertices in block j, let Gj for j = 1, . . . , h
denote the subgraph of G′∗ induced by V (j) and let x(j) denote the vector obtained from
x∗ by dropping all components apart from those corresponding to edges in E(V (j)). It is
possible to show that a 2-PB inequality is violated by x∗ if and only if there is at least one j
such that a 2-PB inequality (valid for GRP(Gj)) is violated by x(j).

We therefore apply the simple 2-PB algorithm to each Gj separately. If a violated simple
2-PB inequality is found for some Gj , we expand it into a (not necessarily simple) 2-PB in-
equality violated by x∗. This is done by viewing Gj as being obtained from G′∗ by shrinking,
in any order, those V (i) such that i 6= j. This approach typically yields considerable speed
improvements, because it is frequently the case that there are h ≥ 2 blocks. Moreover, it
typically leads to more violated inequalities being discovered. Even for RPP instances, where
there are no isolated required vertices in the original graph G, it is possible for one or more
blocks to contain isolated required vertices and therefore for violated simple 2-PB inequalities
to be found on individual blocks.

To avoid difficulties due to rounding errors, we actually define G′∗ a little differently: we
delete from G∗ all non-required edges e with x∗e < 0.01.

3.6 n-PB separation: the general case

The separation of n-PB inequalities appears to be very difficult and is likely to be NP-hard.
However, the authors have devised a separation heuristic which is fast (it can be implemented
to run in O(|V |.|E|. log |V |) time) and quite effective. In fact, it has proved worthwhile to run
this heuristic before the heuristic for 2-PB inequalities described in the previous subsection.

Like the 2-PB heuristic, the n-PB heuristic is applied to each block Gj of G∗ separately
and each resulting violated inequality is ‘expanded’ to yield an inequality violated by x∗.
From now on we assume that we are working on an individual block, but for simplicity of
notation we assume that there is in fact only one block, the graph G∗ itself.

Given any two R-sets S1, S2 connected by at least one edge, let θ(S1, S2) = x∗(δ(S1 ∪
S2)) + x∗(E(S1 : S2)) − 3. In limited experiments, adjacent pairs V i

j and V i
j+1 in violated

n-PB inequalities often turned out to be R-sets S1, S2 such that θ(S1, S2) was small. This
fact is used in the first stage of the heuristic, which is to get a good set H of candidates for
H1:

• Choose two parameters 0 ≤ ε1, ε2 ≤ 1.

• Initially all edges are unlabelled.

12

• Examine each pair S1, S2 of R-sets connected by at least one edge. If θ(S1, S2) ≤ ε1,
then label the edges in E(S1) and E(S2) ‘strong’ and the edges in E(S1 : S2) ‘weak’.
Store (S1, S2) as a ‘candidate tooth’. S1 and S2 are the ‘ends’ of the candidate tooth.

• Examine the remaining unlabelled edges. Label such an edge e ‘weak’ if x∗e ≤ ε2.

• Delete all weak edges from G∗.

• Examine each connected component in the resulting graph. Let C be the set of vertices
in one such component. Let b = |δR(C)| and let p equal the number of candidate teeth
with exactly one end in C. If p + b ≥ 3 and odd, p ≥ 1 and the p candidate teeth
mentioned are vertex-disjoint, then put C into the list H of candidates for H1.

It is possible to implement this to run in O(|E|) time, by first of all computing x∗(δ(S))
for each R-set S. Notice also that, for fixed ε1, ε2, |H| is O(|V |). The remainder of the
heuristic is repeated for each candidate H1 ∈ H.

First, we check whether the simple 2-PB inequality with handle H1 and the p candidate
teeth is violated. If so, we store this violated inequality. Whether or not this simple 2-PB
inequality is violated, we then proceed to look for a more general n-PB inequality which is
violated.

To this end, we set V 1
1 , . . . , V

p
1 to be the ends of the p candidate teeth lying in H1. The

remainder of H1, if any, is used to form A. The other ends of the p candidate teeth are used
to form ‘seeds’ for V 1

2 , . . . , V
p
2 . We then construct a shrunk graph from G∗ as follows:

• Shrink the R-sets which are contained entirely in H1 into a single vertex each, and do
the same for the R-sets which are contained entirely in V \H1.

• Shrink the vertices in H1 which are incident on one or more crossing required edges
into a single ‘inner pole’ vertex (unless there are no such vertices).

• Shrink the vertices in V \H1 which are incident on one or more crossing required edges
into a single ‘outer pole’ vertex (unless there are no such vertices).

Let Gs(Vs, Es, x̄
∗) denote the weighted shrunk graph and let Hs denote the shrunk H1.

In the next stage, Gs is used to enlarge the PB configuration. We distinguish two cases.

• Case 1: b ≥ 1. Here, A is non-empty and we also have an obvious ‘seed’ for Z; namely,
the outer pole. If x̄∗(E(A : Z)) ≥ 1, we give up. Otherwise we follow a similar idea
to that used in the K-C heuristic: we iteratively add edges in order of non-increasing
weight so as to build a tree in Gs with the following properties:

– It spans all vertices in Vs apart from those representing A and the V i
1 .

– It consists of p+ 1 edge-disjoint subtrees.

– Subtree i for i = 1, . . . , p contains a path from the V i
2 seed to the Z seed but does

not contain any paths from the V i
2 seed to any other V j

2 seed, j 6= i.

– Subtree p + 1 (which may be empty) connects the Z seed to other vertices, but
does not contain any paths from Z to any of the V i

2 seeds.

Once the structure has been made, we iteratively shrink vertices of degree one (different
from the V i

2 and Z seeds) into their unique adjacent vertex to obtain a (not necessarily
regular) PB configuration.

13

• Case 2: b = 0. Here, p ≥ 3, it is possible for A to be empty and we do not have a
‘seed’ for Z. We build two structures, one in which Z is forced to be empty and one in
which Z is forced to non-empty.

In the first case, we build a forest in Gs which spans all vertices in Vs apart from those
representing A and the V i

1 . It must consist of p vertex-disjoint trees, such that each of
the V i

2 seeds is contained in exactly 1 tree. Once the forest is made, we pick longest
paths going out from each of the V i

2 seeds to get the p necessary paths and shrink
vertices of degree 1 as before.

In the second case, we build a tree in Gs which spans all vertices in Vs apart from those
representing A and the V i

1 . Now, an edge is permitted to create a path connecting two
distinct V i

2 seeds. Once this happens, one of the vertices on the path (different from
the V i

2 seeds) must now be a Z seed. The remainder of the tree is built with this in
mind: The addition of an edge forming a path connecting one of the possible Z seeds
to a third V i

2 seed is not permitted unless it is incident on a potential Z seed (which is
then chosen as the actual Z seed). If this never happens (because the shrunk graph is
not sufficiently connected), the tree is abandoned. Otherwise, we proceed as in case 1
now that we have our Z seed.

At this stage, we will generally have a non-regular PB configuration (or possibly two).
Moreover, the structure of the configuration in the vicinity of Z is likely to be ‘messy’. We
deal with both of these problems simultaneously: We choose n according to the length of the
shortest of the p paths in the configuration and shrink any paths which are longer than this
by merging Z with adjacent V i

j .

Now that we have an n-PB inequality, we check if is violated. If not, we may still be
able to obtain a violated inequality by ‘removing handles’ (analogous to shrinking a K-C
configuration). It is easy to see from the inequality (6) that the slack of the n-PB inequality
will be decreased by removing any handle Hi such that x∗(δ(Hi)) > p + 1 and merging
adjacent V i

j accordingly. This is done iteratively, as long as n ≥ 2 remains.

3.7 Honeycomb separation

As for the K-C inequalities, we first try to separate honeycomb inequalities in which a single
R-connected component is partitioned into more than 2 parts. The effect of these honeycomb
inequalities is to separate solutions x∗ where some R-even vertices u1, u2, . . . , uL (or sets
with an even number of R-odd vertices) belonging to an R-set Ci satisfy x∗(δ(uj)) ∼= 1 and
x∗(E({uj} : Ci \ {uj})) ∼= 0, j = 1, 2, . . . , L.

The idea of our algorithm is, given an R-connected component, to find the x∗-external
vertices, say u1, u2, . . . , ut, and, then, assign the remaining vertices to some of the previous
ones in order to define vertex sets V1, V2, . . . , Vt in such a way that x∗(E(Vi : Vj)) is as small
as possible, for 1 ≤ i < j ≤ t. The procedure is as follows:

Phase I: Define seeds for V1, V2, . . . , VL.
Given an R-set Ci, we assign to each x∗-external vertex uj a label k corresponding to the
R-set Ck with x∗({uj} : Ck), k 6= i maximum. To each of the remaining vertices in Ci,
a different negative label is assigned. Starting with the edge (u, v) in E(Ci) with largest
x∗-weight, let lmin (lmax) be the smaller (larger) label of that of u and v. We assign the
label lmax to all vertices in Ci having label lmin. This procedure is repeated until all vertices

14

have positive label. Vertices with the same label define a partition V1, V2, . . . , Vt of the set of
vertices of Ci. If the number of R-odd vertices in each Vj , j = 1, . . . , t is even, we are done.
Otherwise, all the sets Vj with an odd number of R-odd vertices are joined, forming a single
set. Hence, we have defined a partition V1, V2, . . . , VL. If L ≥ 3, these sets are suitable to
be considered as part of a honeycomb configuration. If L = 2, these sets are suitable to be
considered as V0 and VK for a K-C configuration. Since this way of defining V0 and VK is
different from that of Phase I in the above K-C separation algorithm, it is worthwhile to look
for a violated K-C inequality. We then apply Phases II and III of K-C separation. Otherwise
(L = 1), we study another R-connected component.

Phase II: Define the vertex sets W1,W2, . . . ,WK−1 and the tree.
After (seeds for) V1, V2, . . . , VL have been defined, we consider the graph obtained by shrinking
each V1, V2, . . . , VL and each of the remaining R-sets into single vertices. As in the separation
of K-C and n-PB inequalities, we try to compute a spanning tree with large x∗ weight in
this shrunk graph, by iteratively adding the edge of maximum weight not forming a cycle
(and not crossing between the Vi). Initially we forbid adding edges of zero weight. If we
obtain a tree without having to add an edge of zero weight, we then shrink (iteratively) each
vertex with degree one on the tree (different from V1, V2, . . . , VL) into its (unique) adjacent
vertex, thus obtaining the vertex sets W1,W2, . . . ,WM and the tree defining the honeycomb
configuration. If we do not, then before adding edges of zero weight, we check each one of
the connected components in the forest to see whether it defines a honeycomb configuration
by itself. Only if this also fails do we add to the forest the edges of zero weight needed to get
a spanning tree. If the degree of any vertex Vi on the tree is more than two, we reject that
honeycomb configuration and consider another R-connected component. Otherwise, for each
vertex Vi incident with two vertices, Wj and Wk, on the tree, we replace one of the edges
(Vi,Wj) or (Vi,Wk) (that with largest x∗-weight) by edge (Wj ,Wk) on the tree. Then, every
vertex Vi has degree one in the configuration tree.

If the above procedure has been successful, we now have a honeycomb configuration
defined by V1, V2, . . . , VL and W1,W2, . . . ,WK−1 and its corresponding inequality F (x) ≥
2(K − 1).

Phase III: Check the Honeycomb inequality.
For a given vector x∗, in order to compute F (x∗), we define a vector with a record T (e)
for each edge in the configuration tree. For each edge e ∈ E, we add x∗e to the records
corresponding to the edges in the (unique) path on the tree joining the two ‘shrunk’ vertices
containing the two end-vertices of edge e. Then, we can compute easily

F (x∗) =
∑
e∈T

T (e)− 2
∑

1<i<j<L

x∗(Vi : Vj) (8)

Given a honeycomb configuration, if we shrink any pair of sets Wi, Wj adjacent in the
tree into a single one, we will obtain a new ‘smaller’ honeycomb inequality. Furthermore,
when we shrink Wi, Wj , the obtained inequality will be of the form F ′(x) ≥ 2(K − 2), where
F ′(x∗) = F (x∗)− T (i, j). Hence, shrinking sets Wi, Wj with T ((Wi,Wj)) > 2 leads to hon-
eycomb inequalities with greater violation. As for the K-C inequalities, if a given honeycomb
inequality is not violated, we check if we will obtain a new violated honeycomb inequality by
shrinking pairs of adjacent vertices on the tree and if so we shrink them accordingly. We do
not shrink sets of the form Vi, Wj , since doing this could lead to a honeycomb configuration
in which a vertex of type Vj has degree more than one in the tree, a situation which was

15

forbidden in Subsection 2.6 to make the computation of coefficients tractable.

As for the separation of K-C inequalities (Subsection 3.4), the above procedure can also
be extended to search for violated honeycomb inequalities in which the required edges crossing
between Vi and Vj belong to more than one R-connected component.

4 The Overall Algorithm

In this section we will describe how the separation algorithms are integrated to form the
overall cutting-plane algorithm.

4.1 Initial Relaxation

The first stage in the algorithm is to construct an initial LP relaxation to be input to the
LP solver. We have found that a good choice is to include one connectivity inequality for
each R-component and one R-odd cut inequality for each R-odd vertex (together with the
non-negativity inequalities, which are handled implicitly by the LP-solver). We also found
it useful to include the upper bounds xe ≤ 2 for each e ∈ E. (It is easy to show that these
upper bounds hold in any optimal solution).

We also want to mention that, for some problems, it is possible to fix some variables at
zero. If, for three vertices i, j, k, the cost of edge {i, j} is equal to the sum of the costs of edges
{i, k} and {k, j}, then edge {i, j} is redundant and its associated variable can be removed
from the problem. However, this criterion only applied to a few of our test instances (see
Section 5).

4.2 Inequalities Added in Each Iteration

In each iteration of the cutting-plane algorithm, the exact and heuristic separation algorithms
are invoked in a specific order and a number of violated inequalities are added to the LP re-
laxation, which is then resolved using the dual simplex method. We have experimented with
various priority orderings for the separation algorithms. The following ordering works very
well for problems in which ER 6= ∅:

1. R-odd cut and connectivity separation heuristics with ε = 0.
2. If no violated inequality was found in step 1, then repeat with ε = 0.25.
3. If no violated inequality was found in step 2, then repeat with ε = 0.5.
4. Exact connectivity separation if the heuristics failed.
5. Exact R-odd cut separation if the heuristics failed.
6. If the number of violated inequalities detected so far is > 10, stop.
7. K-C separation heuristic with ε = 0.
8. If no violated inequality was found in step 7, then repeat with ε = 0.25.
9. If no violated inequality was found in step 8, then repeat with ε = 0.5.
10. If the number of violated inequalities detected so far is > 15, stop. Else do honeycomb
separation heuristic (that can also find K-Cs).
11. If the number of violated inequalities detected so far is > 15, stop. Else do n-PB heuristic
with ε1 = 0, 0.25, 0.5, 0.75 and 1 and ε2 = min{0.25, ε1}.
12. If the number of violated inequalities detected so far is > 5, stop. Else do heuristics for
K-Cs and honeycombs with iterative merging of adjacent R-components.
13. If no violated inequality has been found so far, then do 2-PB heuristic (which is exact

16

for simple 2-PBs).

When ER = ∅ (i.e., when the GRP instance is a SGTSP instance), it is better to use the
following strategy:

1. Connectivity separation heuristics with ε = 0.
2. If no violated inequality was found in step 1, then repeat with ε = 0.25.
3. If no violated inequality was found in step 2, then repeat with ε = 0.5.
4. If the number of violated inequalities detected so far is > 15, stop. Else do n-PB heuristic
with ε1 = 0, 0.25, 0.5, 0.75 and 1 and ε2 = min{0.25, ε1}.
5. If no violated inequalities have been detected so far (or, every fifth iteration, no connec-
tivity inequalities have been found so far), do exact connectivity separation algorithm.
6. If no violated inequality has been found so far, then do 2-PB heuristic.

4.3 Constraint Management and the Cut Pool

When a large number of cuts have been added, the LPs can become rather large, causing
speed and memory problems. To alleviate this problem, it is helpful to occasionally ‘purge’
constraints from the LP formulation. We found that a good strategy was to remove, every
10 iterations, any constraints which have a slack of 0.01 or more.

However, it can happen that a constraint which was removed at one time can become
violated in a subsequent iteration. Because of the heuristic nature of some of the separation
algorithms, this could lead to a useful constraint being lost forever. To avoid this difficulty,
we use the idea of a cut pool [27]. Every time a violated inequality is found, it is stored in
the cut pool. Then, whenever the LP is purged, the cut pool is checked to see if it contains
any violated constraints. If so, these are added to the LP and the LP is then re-solved.

We also search through the cut pool whenever the separation algorithms fail to find a
violated inequality.

4.4 Additional Phase

If no more violated inequalities can be found and the solution vector x∗ still does not represent
an optimal tour, we do some more things.

First, we use a recent result in [11]. Consider the graph obtained by shrinking each R-set
of G into a single vertex, but without merging parallel edges. Construct a minimum cost
spanning tree T on this graph (using the ce as costs). Then there is an optimal solution to
the GRP such that the following conditions hold:

• xe ≤ 2 for all e ∈ T ,

• xe ≤ 1 for all e /∈ T .

These upper bounds dominate the ones mentioned in Subsection 4.1. We insert these upper
bounds into the LP relaxation and then call the separation procedures again. (The reason
that we do not put these upper bounds in from the very start is that, on some instances,
their presence can create spurious ‘odd’ vertices in the LP relaxation.)

If this still does not yield the optimal tour and the lower bound is not an integer value,
we append an extra inequality which enforces integrality of the objective and then call the
separation procedures again. (For example, if the lower bound was 100.23, then we would
add the constraint

∑
e∈E cexe ≥ 101.)

17

If, after all this, the LP relaxation is still not integral, we invoke branch-and-bound. To
avoid the solution of very large integer programs (IPs), we first delete all constraints with a
slack of 0.01 or more. We have found that the resulting IP is usually solved quickly and often
leads to the optimal solution of the GRP. However, it is possible that the IP solution might
not be feasible for the GRP, since the associated ‘tour’ could fail to be connected, Eulerian,
or both. In such a case, the procedure terminates with a (very tight) lower bound, but no
feasible GRP solution.

5 Computational Experiments

The algorithm has been coded in the C language and run on a SUN Sparc 20 workstation,
using the CPLEX library to solve the LP problems. (Note that the SUN machine is rather
slow. Its speed is comparable to a 66 MhZ Pentium). The algorithm has been tested on RPP
and GTSP instances, as well as ‘genuine’ GRP instances. A description of the test instances
follows:

• 24 RPP instances, denoted by I1 to I24, from [4] and two more RPP instances, denoted
by IAA and IAB, from [5] obtained by randomly selecting some edges in the real-world
based graph, with 116 vertices and 174 edges, of the city of Albaida (Valencia) (Table
1).

• 92 RPP instances from [15]. In these problems, the vertices lie on the Euclidean plane
and edge costs are proportional to Euclidean distances. The set E is formed according to
one of three procedures and then the set ER is chosen randomly. In the first procedure
(used for 20 instances, Table 2), E is made of edges with short length in the plane.
In the second procedure, (used for 36 instances, Table 3), E forms a unit grid graph.
In the third procedure (also used for 36 instances, Table 4), G is a graph in which
all vertices have degree 4, made from two edge-disjoint Hamiltonian cycles found by a
nearest neighbour heuristic. These instances have 16 ≤ |V | ≤ 100 and 24 ≤ |E| ≤ 200.

• 10 GRP instances generated from the Albaida graph by visually selecting the required
edges. We select, for example, edges corresponding to streets oriented from north to
south, from east to west, forming cycles, etc. (Table 5).

• 15 GRP instances randomly generated from the Albaida graph, by defining each edge
as required with probability P and considering all the vertices of the graph as required.
Five graphs were generated for each value of P = 0.7, 0.5 and 0.3, named alb-7-1 to
alb-3-5 (Table 6).

• 15 GRP instances, named mad-7-1 to mad-3-5, randomly generated from the real-world
based graph of the city of Madrigueras (Albacete) — with 196 vertices and 316 edges
— in the same way as for Albaida (Table 7).

• 7 GTSP instances with between 150 and 225 vertices and between 296 and 433 edges
(Table 8). These were formed by taking planar Euclidean TSP instances from TSPLIB
[28] and making the associated graphs sparse by deleting all edges apart from

– The edges in an optimal TSP tour

– The edges connecting each vertex to its three nearest neighbours.

18

For these instances, the cost of the optimal solution was known beforehand. Also,
some of the edges in these instances could be eliminated using the criterion given in
Subsection 4.1. However, we only did this for the two largest instances (rat195g and
ts225g).

In the following tables, LB0 shows the lower bound values corresponding to the initial
relaxations, while LB shows the lower bound values obtained at the end of the cutting-plane
procedure. For the cases where branch and bound was used, the solution cost is given in
the B&B column. Total running times have also been included. For each instance in Tables
1 and 5 to 8, the number of identified violated connectivity, R-odd cut, K-C, honeycomb,
K-C and honeycombs with merging of adjacent R-sets, n-PB and simple 2-PB constraints
are presented under headings conn, odd, K-C, HC, KC2, HC2, nPB and SPB, respectively.

In all tables, a ‘*’ on a LB or B&B entry means that not only the optimal value but
also an optimal GRP solution was obtained using the cutting-plane algorithm alone, or the
cutting-plane algorithm plus B&B, respectively. A ‘*’ on an UB entry means that this upper
bound is optimal.

In Tables 2 to 4 the entries corresponding to the different types of constraints and to the
running time represent the accumulated amount for all the instances in each group. Moreover,
the number of instances in each group solved to optimality with cutting-planes alone and the
number of instances that were solved to optimality after B&B are shown.

Finally, the upper bounds shown in Table 5 for instances grp4 and grp10 were obtained
by Alain Hertz (private communication) using the methods in [15]. Instances grp4 and grp10
were built to be difficult, but it is our belief that both upper bounds should be optimal or very
near optimal, as the sophisticated heuristic procedures of [15] produced optimal solutions for
all the instances reported in Tables 1 to 4 and for the 8 other instances of Table 5.

It will be seen that 116 out of 118 RPP instances were solved to optimality by cutting
planes alone and the other 2 were solved after invoking branch and bound. The maximum
percentage gap between the LP lower bound value and the optimal cost was 0.26% for these
instances. Thus, the algorithm works extremely well for RPP instances.

When it comes to ‘genuine’ GRP instances, it will be seen that 28 out of 40 instances
were solved to optimality by cutting planes alone and a further 6 were solved by branch and
bound. The maximum percentage gaps between the LP lower bound and the optimal cost or
upper bound were 1.81% for instance grp10 in Table 5, 0.5% for instance alb-3-1 in Table 6
and 0.37% for instance mad-5-5 in Table 7.

Finally, 3 out of the 7 GTSP instances, 6 if we resorted to branch and bound, were
solved to optimality. The worst performance was obtained for the instance ts225g. For this
instance, the percentage gap was 1.62%, and the branch-and-bound algorithm failed to find
the optimal integer solution after 20,000 nodes had been explored. (Note, however, that the
corresponding TSPLIB instance, ts225, was deliberately constructed to be difficult for cutting
plane algorithms). It will also be noticed that the running times were somewhat larger for
the GTSP instances than for the RPP and GRP instances. Even so, they are acceptable
given that our machine is at least 8 times slower than a modern PC.

6 Conclusions

The computational results given in the previous section show that our cutting plane algorithm
is capable of solving many GRP instances of realistic size to proven optimality. This provides

19

further evidence, if evidence were needed, that the study of integer polyhedra is important
from a practical as well as a theoretical point of view.

Of course, there is still room for improvement in our algorithm. One obvious improvement
would be the addition of better separation algorithms. In this context, ‘better’ could simply
mean faster, or it could mean generating more inequalities or inequalities of greater generality.
Another improvement would be to embed the separation algorithms within a full branch-and-
cut scheme (see [27]).

Finally, we would also like to mention that the separation procedures presented in this
paper could be useful for more complex routing problems, perhaps containing multiple vehi-
cles, directed arcs or other complications encountered in practice (see [9] for a survey).

Acknowledgements: The authors want to thank Alain Hertz for providing us his in-
stances and upper bounds.

References

[1] D. Applegate, R.E. Bixby, V. Chvátal & W. Cook (1995) Finding cuts in the TSP.
DIMACS Technical Report TR 95-05, Rutgers University, New Brunswick, NJ, USA.

[2] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberán, D. Naddef & G. Rinaldi (1995).
Computational results with a branch-and-cut code for the capacitated vehicle routing
problem. Research report RR949-M, ARTEMIS-IMAG, France.

[3] J.M. Belenguer & E. Benavent (1998) The capacitated arc routing problem: valid in-
equalities and facets. Computational Optimization & Applications, 10, 165-187.

[4] N. Christofides, V. Campos, A. Corberán & E. Mota (1981) An algorithm for the rural
postman problem. Imperial College Report IC.OR.81.5. London.

[5] A. Corberán & J.M. Sanchis (1994) A polyhedral approach to the rural postman problem.
Eur. J. Opl Res., 79, 95-114.

[6] A. Corberán & J.M. Sanchis (1998) The general routing problem polyhedron: facets
from the RPP and GTSP polyhedra. Eur. J. Opl Res., 108, 538-550.

[7] G. Cornuéjols, J. Fonlupt & D. Naddef (1985) The travelling salesman on a graph and
some related integer polyhedra. Math. Prog., 33, 1-27.

[8] J. Edmonds & E.L. Johnson (1973) Matchings, Euler tours and the Chinese postman
problem. Math. Prog., 5, 88-124.

[9] H.A. Eiselt, M. Gendreau & G. Laporte (1995) Arc-routing problems, part 2: the rural
postman problem. Oper. Res., 43, 399-414.

[10] B. Fleischmann (1985) A cutting-plane procedure for the travelling salesman problem
on a road network. Eur. J. Opl Res., 21, 307-317.

[11] G. Ghiani & G. Laporte (1997) A branch-and-cut algorithm for the undirected rural
postman problem. Working paper, Centre for Research on Transportation, University of
Montréal.

20

[12] M. Grötschel & O. Holland (1985) Solving matching problems with linear programming.
Math. Prog., 33, 243-259.

[13] M. Grötschel & M.W. Padberg (1979) On the symmetric travelling salesman problem I:
inequalities. Math. Prog., 16, 265-280.

[14] M. Grötschel & Z. Win (1992) A cutting plane algorithm for the windy postman problem.
Math. Prog., 55, 339-358.

[15] A. Hertz, G. Laporte & P. Nanchen (1998) Improvement procedures for the undirected
rural postman problem. Working paper, Centre for Research on Transportation, Univer-
sity of Montréal.

[16] M. Jünger, G. Reinelt & G. Rinaldi (1995) The travelling salesman problem. In Ball et
al. (Eds.) Network Models. Handbooks on Operations Research and Management Science
Vol. 7. Amsterdam: Elsevier.

[17] M. Jünger, G. Reinelt & G. Rinaldi (1997) The travelling salesman problem. In
Dell’Amico et al. (Eds.) Annotated Bibliographies in Combinatorial Optimization. New
York: Wiley.

[18] J.K. Lenstra & A.H.G. Rinnooy-Kan (1976) On general routing problems. Networks, 6,
273-280.

[19] A.N. Letchford (1997a) New inequalities for the general routing problem. Eur. J. Opl
Res., 96, 317-322.

[20] A.N. Letchford (1997b) The general routing polyhedron: a unifying framework. To ap-
pear in Eur. J. Opl Res., Vol. 112 (1999).

[21] H. Nagamochi, T. Ono & T. Ibaraki (1994) Implementing an efficient minimum capacity
cut algorithm. Math. Prog., 67, 325-341.

[22] G.L. Nemhauser & L.A. Wolsey (1988) Integer and Combinatorial Optimization. New
York: Wiley.

[23] Y. Nobert & J.-C. Picard (1996) An optimal algorithm for the mixed Chinese postman
problem. Networks, 27, 95-108.

[24] C.S. Orloff (1974) A fundamental problem in vehicle routing. Networks, 4, 35-64.

[25] M.W. Padberg & M.R. Rao (1982) Odd minimum cut-sets and b-matchings. Math. Oper.
Res., 7, 67-80.

[26] M.W. Padberg & G. Rinaldi (1990) Facet identification for the symmetric travelling
salesman polytope. Math. Prog., 47, 219-257.

[27] M.W. Padberg & G. Rinaldi (1991) A branch-and-cut algorithm for the resolution of
large-scale symmetric travelling salesman problems. SIAM Rev., 33, 60-100.

[28] G. Reinelt (1991) TSPLIB - a travelling salesman problem library. ORSA J. on Comput.,
3, 376-384.

[29] R.E. Tarjan (1972) Depth first search and linear graph algorithms. SIAM J. on Comp.,
1, 146-60.

21

constraints

R- time
|V | sets LB0 conn. odd K-C KC2 HC HC2 nPB LB (scs.)

I01 11 4 31 5 10 - - - - - 51* 0.03

I02 14 4 62 4 10 4 - - - - 72* 0.04

I03 28 4 24 5 16 9 4 - - - 29* 0.10

I04 17 3 24 3 14 7 - - - - 29* 0.10

I05 20 5 49 5 14 14 9 - - - 55* 0.17

I06 24 7 27 8 24 13 6 - - - 32* 0.23

I07 23 3 35 3 18 - - - - - 37* 0.08

I08 17 2 26.5 2 16 - - - - - 29* 0.09

I09 14 3 18 3 12 1 - - - - 26* 0.06

I10 12 4 27 5 10 8 - - - - 35* 0.10

I11 9 3 9 3 6 - - - - - 9 * 0.08

I12 7 3 6 3 6 2 - - - - 6 * 0.02

I13 7 3 23 3 6 - - - - - 23* 0.01

I14 28 6 43 9 28 18 6 - - - 57* 0.32

I15 26 8 207 16 30 2 1 - - - 261* 0.23

I16 31 7 53 8 25 14 3 6 - 2 64* 0.64

I17 19 5 39 7 16 9 6 2 1 - 49* 0.17

I18 23 8 54 12 26 - - 1 1 - 85* 0.17

I19 33 7 112 7 30 3 - - - - 116* 0.12

I20 50 7 80 12 34 26 8 3 2 - 116* 0.54

I21 49 6 52 9 40 41 19 8 3 - 78 * 1.25

I22 50 6 103 7 30 3 - 1 - - 122* 0.31

I23 50 6 78 10 45 51 32 2 2 2 95 * 1.18

I24 41 7 96 8 33 28 16 6 5 2 113* 1.17

IAA 102 10 2896 11 114 105 90 15 15 3 3304* 6.98

IAB 90 11 1728 17 87 11 4 4 2 - 2826* 2.42

Table 1: Computational results for the Christofides et al (1981) and Corberán & Sanchis
(1994) instances.

22

TOTAL constraints for all 5 instances # of # of Total time

of R-sets LB B&B (scs.) for all
n inst. average conn. odd K-C KC2 HC HC2 nPB opt. opt. 5 instances

20 5 3.4 18 44 2 - - - - 5 - 0.20

30 5 4.8 30 80 24 13 - - - 5 - 0.56

40 5 7.0 46 107 31 17 2 1 2 5 - 1.18

50 5 8.2 59 130 13 10 4 2 4 5 - 1.60

Table 2: Computational results for Class 1 RPP random instances from Hertz et al. (1998).

TOTAL constraints for all 3 instances # of # of Total time

of R-sets LB B&B (scs.) for all
n Prob. inst. average conn. odd K-C KC2 HC HC2 nPB opt. opt. 3 instances

0.3 3 4.0 13 26 - - - - - 3 - 0.11

16 0.5 3 4.3 13 28 2 2 - - - 3 - 0.11

0.7 3 4.0 14 30 19 6 - - - 3 - 0.21

0.3 3 8.3 33 72 45 28 - - 1 3 - 1.0

36 0.5 3 6.6 24 96 46 23 2 2 - 3 - 1.22

0.7 3 5.6 22 91 64 34 9 6 - 3 - 1.28

0.3 3 12.0 57 137 51 22 3 2 4 3 - 2.75

64 0.5 3 9.0 35 226 102 43 14 9 1 3 - 9.19

0.7 3 5.0 21 151 80 26 - - - 3 - 2.97

0.3 3 19.6 86 243 97 43 28 12 9 3 - 16.6

100 0.5 3 14.0 72 977 571 312 154 81 3 2 1 109

0.7 3 6.3 35 528 281 107 66 24 - 3 - 42.4

Table 3: Computational results for Class 2 RPP random instances from Hertz et al. (1998).

23

TOTAL constraints for all 3 instances # of # of Total time

of R-sets LB B&B (scs.) for all
n Prob. inst. average conn. odd K-C KC2 HC HC2 nPB opt. opt. 3 instances

0.3 30 3.0 10 24 6 2 - - - 3 - 0.09

16 0.5 3 3.6 13 26 4 - - - - 3 - 0.19

0.7 3 4.6 16 34 8 2 - - - 3 - 0.22

0.3 3 8.3 30 72 20 12 - - - 3 - 0.59

36 0.5 3 7.3 25 74 29 19 - - - 3 - 0.79

0.7 3 5.3 20 106 31 8 - - - 3 - 0.96

0.3 3 12.3 45 122 49 34 3 2 1 3 - 2.04

64 0.5 3 10.3 43 273 106 57 13 6 6 3 - 8.61

0.7 3 6.6 23 192 69 40 7 4 3 3 - 3.46

0.3 3 20.3 93 325 93 57 5 4 4 3 - 21.8

100 0.5 3 13.0 61 275 82 26 14 4 5 3 - 8.08

0.7 3 9.0 38 348 151 57 32 4 - 2 1 23.6

Table 4: Computational results for Class 3 RPP random instances from Hertz et al. (1998).

constraints

R- time # of
sets LB0 conn. odd K-C KC2 HC HC2 nPB LB B&B UB (scs.) iter.

grp1 56 4183 84 127 53 16 8 3 9 5625* 42.1 14

grp2 52 3748 87 194 128 96 22 9 6 5569* 506 36

grp3 55 3937 90 125 31 16 4 4 1 5688* 65.4 13

grp4 48 2576 114 45 311 26 350 49 - 5119 5158 5186 1156 67

grp5 45 3620 68 115 26 16 12 6 2 5191* 119 13

grp6 10 2568 13 92 - - - - - 3442* 1.3 4

grp7 64 4525 103 113 52 27 18 4 2 6618* 110 14

grp8 47 5044 85 132 44 16 17 2 3 6814* 31.5 17

grp9 60 3329 93 92 17 12 15 8 3 4506* 207 15

grp10 48 2480 121 - 404 66 429 82 - 5029 5070 5122 2011 85

Table 5: Computational results for 10 visually generated instances from the Albaida graph
(116 vertices and 174 edges).

24

constraints

R- time # of
sets LB0 conn. odd K-C KC2 HC HC2 nPB SPB LB B&B UB (scs.) iter.

7-1 18 2789 24 242 100 84 3 1 - 2 4374* 106 63

7-2 10 2538 10 122 3 1 2 - - - 3562* 3.0 14

7-3 15 2480 20 178 242 225 36 31 2 - 3559* 33.0 43

7-4 10 2456 11 190 - - - - - - 3582* 20.2 49

7-5 13 2714 15 155 22 21 3 3 - - 4077* 30.9 34

5-1 33 3374 45 144 125 93 19 12 8 - 4785* 84.8 24

5-2 30 3219 42 124 10 10 4 1 - - 4641* 26.0 9

5-3 28 3432 38 106 15 5 8 - - - 4322* 13.0 11

5-4 33 3140 46 107 43 24 10 - 2 3 4714 4719* 102 23

5-5 30 3400 41 106 21 - 1 - - - 4332* 6.2 8

3-1 66 4042 115 160 56 25 30 18 4 2 5703 5712 5732* 277 29

3-2 71 4666 122 122 57 34 16 6 15 - 6699 6716* 194 25

3-3 72 4490 133 99 22 12 4 3 10 - 6189 6189 6201* 192 20

3-4 67 4165 120 135 84 25 11 5 8 - 5926* 139 25

3-5 62 4395 97 107 26 6 24 15 4 - 5856* 147 13

Table 6: Computational results for 15 randomly generated instances from the Albaida graph
(116 vertices and 174 edges).

25

constraints

R- time # of
sets LB0 conn. odd K-C KC2 HC HC2 nPB SPB LB B&B UB (scs.) iter.

7-1 15 4325 19 160 35 19 8 4 - - 5260* 11.0 10

7-2 6 4520 6 172 - - - - - - 4930* 7.8 11

7-3 11 4322.5 12 164 8 6 - - - - 5135* 9.8 10

7-4 7 4047.5 8 162 - - 3 - - - 4775* 9.4 14

7-5 8 4617.5 8 192 - - - - - - 5375* 9.0 17

5-1 41 6010 51 206 100 92 14 3 3 - 6920* 450 25

5-2 47 5715 57 172 17 - 8 - - - 6560* 20.5 7

5-3 53 6160 73 222 104 73 25 14 5 - 6949 6955* 1351 29

5-4 53 5857 82 228 180 64 79 25 12 - 6915* 499 39

5-5 53 5900 70 204 39 16 10 - 5 - 6765 6780 6790* 174 18

3-1 111 7680 180 338 172 47 25 6 12 - 8672 8680* 2515 44

3-2 88 7037.5 127 237 50 14 19 - 20 2 8155* 491 21

3-3 95 7295 163 702 122 43 41 7 9 - 8526 8555 8555* 3115 64

3-4 95 7355 153 395 134 55 45 15 21 2 8665 8680* 2375 48

3-5 103 7645 161 250 97 19 26 - 11 2 8745 8755* 1871 32

Table 7: Computational results for 15 randomly generated instances from the Madrigueras
graph (196 vertices and 316 edges).

constraints

time # of
LB0 conn. nPB SPB LB B&B UB (scs.) iter.

kroA150g 21604.5 282 24 - 26489 26524* 1045 23

kroA200g 23491.5 361 23 - 29368* 1142 15

kroB150g 20761.5 264 21 - 26130* 332 15

kroB200g 23888 342 8 - 29435 29437* 775 13

pr152g 43232 360 - - 73682* 74 11

rat195g 2097 369 48 12 2317 2323* 15773 73

ts225g 115605 617 617 - 124591 125052 126643* 17976 265

Table 8: Computational results for 7 GTSP instances generated from TSP instances in
TSPLIB.

26

