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Abstract

Arc Routing Problems consist of finding a traversal on a graph satisfying some condi-
tions related to the links of the graph. In the Chinese Postman Problem the aim is to
find a minimum cost tour (closed walk) traversing all the links of the graph at least
once. Both the Undirected CPP, where all the links are edges that can be traversed
in both ways, and the Directed CPP, where all the links are arcs that must be tra-
versed in a specified way, are known to be polynomially solvable. However, if we deal
with a mixed graph (having edges and arcs), the problem turns out to be NP-hard.
In this paper, we present a heuristic algorithm for this problem, the so-called Mixed
CPP (MCPP), based on GRASP —Greedy Randomized Adaptive Search Procedure—
techniques. The algorithm has been tested on a wide collection of randomly generated
instances, with up to 200 nodes and 600 links, producing encouraging computational
results. As far as we know, this is the best heuristic algorithm for the MCPP, with
respect to solution quality, published up to now.
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1 Introduction

The abundance of optimization problems encountered in practical settings has mo-
tivated the development of powerful optimization techniques in the last few years.
Research in optimization has concentrated on analyzing complex problems and devel-
oping effective algorithms to solve them. The marriage between operations research
and computer science has permitted the growth of the research area known as approxi-
mate algorithms, often called heuristic methods. Any new development which leads to
better results in a particular problem, or to new approximate methods which may be
applied to a wide range of problems, is of considerable value to science and industry.

Metaheuristics are a class of approximate methods that provide general frameworks
that allow the creation of new heuristic methods to solve hard combinatorial optimiza-
tion problems. They include genetic algorithms, scatter search, greedy randomized
adaptive search procedures (GRASP), neural networks, tabu search and their hybrids.
They have been highly successful in finding optimal and near optimal solutions to many
optimization problems. However, the design of a good metaheuristic continues to be
an art nowdays, since it mainly depends on the skill and experience of the designer,
both in solving techniques and in knowledge of the specific problem under considera-
tion. This paper explores the metaheuristic approach called GRASP in the context of
routing problems.

Arc Routing Problems, ARPs, have their origin in the celebrated Königsberg Bridge
Problem solved by Euler. They basically consist of finding a route over the links of a
graph which satisfies certain conditions related to the links. These problems have been
deeply studied in the last 30 years due to:

(1) the large number of real situations that can be modelled as an ARP: collection
or delivery of goods, mail distribution, network maintenance (electrical lines or gas
mains inspection), snow removal, garbage collection, etc. Papers by Eiselt, Gendreau
& Laporte (1995a,1995b), Assad & Golden (1995) and the recent book edited by Dror
(2000) summarize the state of the art and real-life applications of the ARPs. In most
applications, there are some restrictions for the vehicle to traverse some streets in a
specified way, and the problem needs to be modelled with a mixed graph. As a rule,
one-way streets are represented by arcs (directed links) and two-way streets by edges
(undirected links).

(2) the progressive power and speed improvement of modern computers, which
allows the handling of graphs corresponding to real applications with hundreds (or
even thousands) of vertices and links.

In this paper we present a GRASP for the Mixed Chinese Postman Problem. In
Section 2 the problem is defined and the previous work on it is summarized. The
algorithm is described in detail in Section 3. Computational results are given for a
wide set of test instances in Section 4. Finally, some concluding comments are made
in Section 5.
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2 The Problem

Given a graph G with non-negative costs associated with its links, the Chinese Postman
Problem (CPP) consists of finding a minimum cost tour (closed walk) traversing, at
least once, every link of G. This well known problem (Guan, 1962) was shown to be
solvable in polynomial time both for undirected graphs —all the links are edges— and
for directed graphs —all the links are arcs— by Edmonds & Johnson (1973). However,
if the CPP is defined over a mixed graph —having simultaneously edges and arcs—
, the problem of traversing all the links in G with total minimum cost is NP-hard
(Papadimitriou, 1976). A precise definition of the problem is as follows:

Given a strongly connected mixed graph G = (V,E,A) with vertex set V , edge set E,
arc set A and a non-negative cost ce for each e ∈ E ∪ A, the Mixed Chinese Postman
Problem (MCPP) is that of finding a minimum cost tour passing through each link
e ∈ E ∪ A at least once.

If a (undirected, directed or mixed) graph G is eulerian, there is a tour passing
through each link of G exactly once. Obviously this tour is optimum. Furthermore,
this (eulerian) tour can be easily computed and, hence, graph G can itself be considered
as the CPP solution. If a (undirected, directed or mixed) graph G is not eulerian,
the CPP can be formulated as the problem of finding a set of copies of links with
minimum cost such that when added to G a eulerian graph is obtained. As before, the
‘augmented’ graph formed by G plus the added copies of the links can be considered
as the solution of the problem.

For the undirected CPP, a eulerian graph can be obtained from G by adding edges
to match odd degree vertices (Edmonds & Johnson, 1973; Christofides, 1973). This
can be done by finding a minimum cost perfect matching. For the directed case, if G is
a strongly connected directed graph, a minimum cost eulerian graph can be obtained
by solving a directed flow problem as follows. For every vertex i, let si be the number
of arcs entering i minus the number of arcs leaving i. Solve the minimum cost flow
problem on G with supplies si for vertices i with si > 0 and demands −si for vertices
i with si < 0 (Liebling, 1970; Edmonds & Johnson, 1973).

In order to describe the way of dealing with the MCPP we need some definitions.
Given a vertex i, d−i (in-degree) will denote the number of arcs entering i, d+i (out-
degree) will be the number of arcs leaving i and di (degree) will denote the number of
links (arcs and edges) incident with i. A mixed graph G = (V,E,A) is called even if
all its vertices have even degree, it is called symmetric if d−i = d+i for each vertex i and
it is said to be balanced if, given any subset S of vertices, the difference between the
number of arcs directed from S to V \ S and the number of arcs directed from V \ S
to S is no greater than the number of (undirected) edges joining S and V \ S. In the
process of solving the MCPP, besides duplicating some arcs and edges, we may also
orient some edges by giving them a direction.

It is well known that a mixed graph G is eulerian if and only if G is even and
balanced (Ford & Fulkerson, 1962). Notice that if G is even and symmetric then G is
also balanced (and eulerian). Moreover, if G is even, the MCPP can be exactly solved
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in polynomial time (Edmonds & Johnson, 1973). The procedure works as follows
(Minieka, 1978):

Even MCPP Algorithm:

(1) Given an even and strongly connected mixed graph, G = (V,E,A), let
A1 be the set of arcs obtained by arbitrarily assigning a direction to
the edges in E and with the same costs. Compute si = d−i − d+i for
each vertex in the directed graph (V,A ∪ A1). A vertex i with si > 0
(si < 0) will be considered as a source (sink) with supply (demand) si
(−si). Note that as G is an even graph, all supplies and demands are
even numbers (zero is considered an even number).

(2) Let A2 be the set of arcs with opposite direction to those in A1 and
with the costs of the corresponding edges, and let A3 be a set of arcs
parallel to that of A2 with zero costs.

(3) Solve a minimum cost flow problem to satisfy the demands of all the
vertices in the graph (V,A ∪ A1 ∪ A2 ∪ A3), in which each arc in
A ∪ A1 ∪ A2 has infinite capacity and each arc in A3 has capacity 2.
Let xij be the optimal flow.

(4) For each arc (i, j) in A3 do: if xij = 2 then orient the corresponding
edge in G from i to j (the direction, from j to i, assigned to the
associated edge in step 1 was ”wrong”); if xij = 0 then orient the
corresponding edge in G from j to i (in this case, the orientation given
to the corresponding edge in step 1 was the ”good” one). (Note that
the case xij = 1 is impossible as all flow values through arcs in A3 are
even numbers).

(5) Augment G by adding xij copies of each arc in A ∪ A1 ∪ A2. The
resulting graph is even and symmetric.

Although it does not provide the optimum MCPP tour when the mixed graph
G = (V,E,A) is not even, the above algorithm is the basis of two heuristics suggested
by Edmonds & Johnson (1973) and developed and improved by Frederickson (1979).
Algorithm MIXED1 would be equivalent to first transforming G into an even graph
and then applying the previous Even MCPP Algorithm. Specifically:

Algorithm MIXED1:

(1 Evendegree) Let G = (V,E,A) be a strongly connected mixed graph.
Ignoring arc directions solve a minimum cost matching of odd degree
vertices and augment G by adding all links used for the matching
solution. The resulting graph G′ = (V,E ′, A′) is an even graph.

(2 Inoutdegree) With supplies and demands computed in graph (V,A′),
solve a minimum cost flow problem in G′ to obtain a symmetric graph
G” = (V,E”, A”). (Frederickson pointed out that after this step some
vertices in G” may have odd degree).
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(3 Evenparity) Let Vo be the set of odd degree nodes in G”. Identify
cycles consisting of alternating paths in A” \ A and E”, with each
path starting and ending at vertices in Vo. The paths in A” \ A will
be formed without considering the arc directions. As the cycles are
covered, its arcs are either duplicated or deleted and its edges are
directed, so the resulting graph becomes even, while maintaining the
symmetry for each vertex.

Steps 1 and 2 above were first proposed by Edmonds & Johnson (1973), who showed
that there is a minimum cost solution to the flow problem in Step 2 that preserves the
property that each vertex has even degree. But, as Frederickson (1979) pointed out,
their argument merely proves the existence of such a solution. Step 3 above is a simple
linear time algorithm proposed by Frederickson to perform this task.

Algorithm MIXED2 can be considered as the reverse version of MIXED1. It first
solves a minimum cost flow problem in G, with supplies and demands computed in
graph (V,A), to obtain a symmetric graph (V,E ′, A′). In a second step, it solves the
(undirected) CPP on each connected component of subgraph (V,E ′) to finally obtain
an even and symmetric graph.

Frederickson (1979) showed that both algorithms, MIXED1 and MIXED2, have
a worst case ratio of 2, but the Mixed Algorithm, which consists of applying both
algorithms consecutively and select the best tour obtained, has a worst case ratio of
5/3. Recently, Raghavachari & Veerasamy (1998) have proposed a modification to the
Frederickson’s Mixed Algorithm with a better worst case ratio of 3/2:

Modified Mixed Algorithm:

• Given G = (V,E,A), solve a minimum cost flow problem in G with
supplies and demands computed in graph (V,A). The resulting graph
is (V,E ′, A′), where E ′ ⊆ E are the edges of G that were not oriented
(used) by the flow solution and A′ ⊇ A are arcs that satisfy in-degree
equal to out-degree at each vertex.

• Before running Evendegree of MIXED1 algorithm, reset the costs of all
arcs and edges in A′ to 0, forcing Evendegree of MIXED1 to duplicate
edges and arcs in A′ whenever possible.

• Use the original costs for the rest of MIXED1 algorithm.

• There are no changes in the MIXED2 algorithm.

See also Hertz and Mittaz (2000) for some illustrations and other details on the
above heuristic procedures.

With respect to exact algorithms, Christofides, Benavent, Campos, Corberán &
Mota (1984) proposed a formulation with a variable for each arc, two variables for each
edge (representing the number of times it is traversed in either direction) and a variable
for each vertex. Then a Branch & Bound algorithm was implemented in which two
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different lower bounds, obtained by relaxing two types of constraints in a Lagrangean
manner, were computed at each node of the search tree. A set of 34 randomly generated
instances with 7 ≤ |V | ≤ 50, 3 ≤ |A| ≤ 85 and 4 ≤ |E| ≤ 39 were solved to optimality.

Grötschel & Win (1992) have proposed a cutting-plane procedure to solve the
Windy Postman Problem (WPP) that can also be applied to the MCPP. Given an
undirected graph G = (V,E), with two costs cij, cji ≥ 0 associated with each edge
(i, j) ∈ E (the cost of traversing an edge depends on the direction of travel), the WPP
consists of finding the shortest tour traversing all edges of G at least once. Note that
the MCPP can be considered as a special case of the WPP with some costs equal to
infinity. Based on a WPP formulation in which two variables are also associated with
each edge, the cutting-plane algorithm by Grötschel & Win (1992) was able to solve to
optimality the nine MCPP instances tried, with 52 ≤ |V | ≤ 172, 31 ≤ |A| ≤ 116 and
37 ≤ |E| ≤ 154.

Nobert & Picard (1996) present a cutting plane algorithm that exactly solves the
MCPP based in the neccessary and sufficient condition for a mixed graph to be eulerian
given by Ford & Fulkerson (1962). In their formulation, and for the first time, only
one variable is associated with each edge of G. They also proved an important result:
balanced-set inequalities, modelling the balanced sets condition, can be separated in
polynomial time. With this algorithm they solved 148 instances out of 180 randomly
generated instances, with 10 ≤ |V | ≤ 169, 2 ≤ |A| ≤ 2876 and 15 ≤ |E| ≤ 1849.

Corberán, Romero & Sanchis (1999) have implemented a preliminary cutting plane
algorithm for the General Routing Problem (GRP) defined on a mixed graph and have
studied its associated polyhedron. This problem consists of finding the shortest tour
on a mixed graph traversing a given subset of (required) links and a given subset of
(required) vertices. Hence, mixed GRP includes the MCPP as a particular case (when
all the links are required) and some of the polyhedral results and the GRP algorithm
can also be applied to the MCPP. Lower bounds presented in section 4 were obtained
with this cutting plane algorithm.

Finally, polyhedral results directly related to the MCPP can be found in Eglese &
Letchford (2000).

3 Proposed Procedure

Greedy randomized adaptive search procedure (GRASP) is by now a well known meta-
heuristic for solving hard combinatorial optimization problems. The origins of this
technique can be traced back to Feo and Resende (1989). Numerous applications of
this method have appeared (see, for instance, Laguna et al., 1994, and Resende, 1998),
along with tutorial papers designed to expand the knowledge related to this method-
ology (Feo and Resende, 1995).

Each GRASP iteration consists of two phases, a construction phase and a local
search phase. The construction phase is iterative, greedy and adaptive. A feasible
solution is iteratively constructed, one element at a time according to a greedy function
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evaluation. The method is adaptive in the sense of updating relevant information from
one construction step to the next. Therefore, the greedy evaluation, associated with
each element at each iteration, is modified to reflect the changes brought on by the
selection of the previous element.

Since the solutions generated by a GRASP construction are not guaranteed to be
locally optimal, a local search is usually applied to improve each constructed solution.
GRASP implementations are generally robust in the sense that it is difficult to find
or devise pathological instances for which the method will perform arbitrarily badly.
It has been found that the sampling distribution of the solution space performed by
GRASP has a mean value that can be worse than the one obtained with a deterministic
construction, but the best over all trials dominates this solution with a high probability.
We now describe the details of our GRASP implementation for the Mixed Chinese Rural
Postman Problem.

3.1 Construction Phase

Given a mixed graph, an edge is oriented if we assign a direction to it. Then it can
be considered an arc since it must be traversed in the assigned direction. If all the
edges in the mixed graph are oriented, then the graph can be considered as a directed
graph. As has been described in the previous section, the Chinese Postman Problem
on a directed graph is polynomially solvable by a minimum cost flow problem.

Basically, our construction method orients the edges of the graph in order to obtain
a directed graph in which a CPP is solved. In this way we obtain a solution to the
MCPP in the original mixed graph. The construction phase starts by creating a list
of non-oriented edges (U) which at the beginning consists of all the edges in the graph
(initially U = E). At each construction step, an edge is selected and oriented. The set
of oriented edges will be denoted by Ed.

From now on, let d(v) be the difference between the number of arcs and oriented
edges with end point in v and the number of arcs and oriented edges with initial point
in v. For the sake of simplicity, d(v) will be called the degree of vertex v. The greedy
evaluation w(i, j) of the edge (i, j) represents, in a certain sense, the convenience of
orienting it. Consider, for instance, an edge (i, j) such that d(i) = 3 and d(j) =
−4. Then, it seems more appropriate to orient this edge from i to j than in the
other direction (obviously this is a ”local” argument that depends on the available
information at a given step). On the other hand, if d(i) = 2 and d(j) = 2 there is no
information indicating a direction for the edge, and then it would be better to wait
until a later iteration in which other incident edges with i and j have been oriented.
We propose the following evaluation w(i, j) of the edge (i, j), where ε represents a very
low positive quantity:

Case 1: If d(i)d(j) > 0 then w(i, j) = −|d(i)+d(j)| d(j) < 0 or, d(i) < 0 and d(j) > 0
then w(i, j) = |d(i)− d(j)|

Case 2: If d(i)d(j) < 0 then w(i, j) = |d(i)− d(j)|
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Case 3: If d(i) = 0 and d(j) = 0 then w(i, j) = −ε

Case 4: If d(i) = 0 or d(j) = 0 then w(i, j) = ε

This edge evaluation ranks the edges according to the amount of current information
relative to orient each one of them. Then, the set U is ordered according to w, with
the first edge the one with maximum w-value. At each construction step, an edge
(i, j) is randomly selected from the first s elements in U . Then edge (i, j) is oriented
from the vertex with higher degree to the vertex with lower degree; if i and j have the
same degree, edge (i, j) is randomly oriented. Sets U and Ed are updated by deleting
and adding (i, j) respectively, and d(i), d(j) and w(u, v) are also updated for all edges
(u, v) ∈ U incident with i or j. The construction phase terminates after |E| steps, when
all the edges have been selected and oriented. Then, a minimum cost flow problem
with demands and supplies computed with respect to the arcs in A ∪ Ed is solved on
the directed graph (V,A ∪Ed ∪E ′d), where E ′d is the set of arcs parallel to those in Ed

with the same costs but with opposite directions. Adding the arcs in the flow solution
to the graph (V,A ∪ Ed), an eulerian digraph is obtained. This graph corresponds to
a solution (tour) in the original mixed graph.

It should be noted that there are some cases in which there is only one possible
orientation for an edge. Specifically, consider a vertex i incident with only one edge
(i, j) ∈ U and with no arc or oriented edge leaving (entering) it. Then (i, j) must be
directed from i to j (respectively from j to i), since otherwise the cost of the final
solution should be greater. Therefore, at each construction step, once an edge has
been oriented, we check this condition on its both end vertices in order to orient, if it
is possible, another incident edge.

3.2 Improvement Phase

In this phase a local search procedure is applied with the objective of finding a locally
optimal solution that may be better than the constructed solution. The procedure
starts from the MCPP tour obtained in the constructive phase. It is represented by a
strongly connected digraph, containing all the original arcs and edges (oriented) of the
graph and some duplications of these links (that can appear more than once).

A simple but effective step to improve the solution obtained in the constructive
phase follows. Delete any two copies of any edge appearing more than twice in the
solution with opposite orientations. Note that in the solution graph there is either a
single arc, two arcs with opposite directions or two or more arcs, all of them with the
same direction associated to each original edge e ∈ E.

Switches are used as the primary mechanism in the local search algorithm to move
from one solution to another. Given two vertices i, j linked by a path of duplications,
we define move m(i, j) as deleting this path of duplications from the current solution
and adding the shortest path in G joining both vertices (i.e.: a duplication of each link
in the path). The move value is the difference between the objective function values

7



before and after the move. It can be computed as the cost of the deleted path minus
the cost of the added shortest path.

Each step of the improvement phase consists of selecting a pair of vertices to be
considered for a move. We have restricted our attention to some pairs of vertices in
order to reduce the computational effort associated with each move. Obviously, only
vertices joined by a path of duplications are suitable for moves. The following procedure
selects those ”promising” pairs:

From the solution graph Gs, a new mixed graph G′ = (V,E ′, A′) is constructed as
follows. For each original arc (i, j) ∈ A we put n− 1 copies of it in A′, where n is the
number of times it appears in Gs. For each original edge e ∈ E having exactly two
arcs with opposite directions associated in Gs we put an edge in E ′; otherwise, n − 1
copies of its associated arc are added to A′, where again n is the number of times the
arc appears in Gs.

Then, we compute the (non trivial) connected components of graph G′ and reduce
the search to pairs of vertices inside each component. These components are acyclic
graphs (with eventually several arcs joining two adjacent vertices) since they come from
the solution of a minimum cost flow problem. In order to reduce the computational
effort, we restrict our attention to those vertices adjacent to only one other vertex (like
the leaves in a tree graph). We have experimentally found that, in most cases, long
paths join these vertices, so it is expected that good moves be associated to these pairs
of vertices. If the move has a positive value, it is performed; otherwise it is rejected.
An improvement phase terminates when all pairs of these vertices have been considered
within each component and no further reduction can be performed.

It is worth mentioning that when a move is performed, the connected components
can be modified since we remove one path and add another one to the graph. We
have implemented a multiple pointer structure to efficiently handle those changes in a
dynamic way.

After completing Niter consecutive GRASP iterations without any improvement,
the best solution found so far is returned to as the final solution. The following outline
summarizes the algorithm:

Do while (iter < Niter)

Construction phase:

(1) iter = iter + 1. Let Ed = ∅ and U = E. For each edge e = (i, j) ∈ U
compute weigth(e)=w(i, j).

(2) Repeat while U 6= ∅:
(2.1) Consider the s edges in U with greater weight, where s is a

given parameter (size)

(2.2) Select one of them randomly, say (i, j), and delete it from U .
Edge (i, j) is oriented from the vertex with higher degree to the
vertex with lower degree; it will be randomly oriented if i and j
have the same degree. Label it as ‘oriented from i to j’ and add
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(i, j) to Ed, or as ‘oriented from j to i’ and add (j, i) to Ed.

(2.3) Update the weights of all edges in U incident with i and j.

(3) Compute the demand/supply of each vertex with respect to the arcs
and oriented edges.

(4) Solve a minimum cost flow problem on a directed graph having:
one arc (i, j) for each (i, j) ∈ A with the same cost,
two arcs (i, j), (j, i) for each edge (i, j) ∈ E with the same cost and
the demands/supplies computed in (3).

(5) Add to A∪Ed one copy of each arc and each oriented edge used by the
flow (4) to obtain a eulerian directed graph. Associated to this graph
there is a tour T for the MCPP on G with cost z(T ).

Improvement phase: Do while (Improvement> 0)

(6) Remove from T any two copies of every edge e appearing more than
twice in T and having opposite ‘orient-labels’. Update z(T ).

(7) Construct the mixed graph G′ = (V,E ′, A′) as has previously been
defined and compute its connected components.

(8) For each one of these connected components:
Find a pair of nodes u and v such that the length of the shortest
path from u to v in G, say P , is less than the length of the shortest
path from u to v, Q, in this connected component. Remove from T
the (copies of) links in Q and add to T (one copy of) each link in
P . Set Improvement = length(Q) − length(P) and z(T ) := z(T ) −
Improvement.

Termination Test:

(9) If (z(T ) < zbest) then zbest = z(T ), store T as Tbest and do iter = 0.

Write Tbest and zbest

4 Computational Experiments

The procedure described in the previous section was implemented in C, and all the
experiments were performed on a Pentium III 450 Mhz personal computer. Before
testing the effectiveness of our procedure, we performed some preliminary experiments
to explore the effect of changes in the search parameter Size. We have also tested the al-
gorithm with some variants in the edge function evaluation w given in the construction
phase.

The graph generator works as follows. Given a number n of vertices, the number of
links is randomly chosen between 2n and 3n. This total number of links is multiplied
by the desired percentage of edges in order to determine the number of edges. Costs of
links are randomly selected between 1 and a random number in the interval (20, 30).
Then we check if the graph is strongly connected or not. If it is not, additional links
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are added until obtaining a strongly connected graph. We use this generator to create
225 instances with the following characteristics. For each combination of 50, 100 and
200 vertices and 0.3, 0.5 and 0.7 percentage of edges, 25 instances were generated.

As was mentioned in Section 2, lower bounds have been obtained with a preliminary
cutting plane algorithm devised for the General Routing Problem on a mixed graph
(Corberán, Romero & Sanchis, 1999). This cutting plane algorithm includes separation
procedures for the odd cut and balanced-set inequalities. Therefore, in what MCPP
respects, it can be considered equivalent to the Nobert & Picard (1996) algorithm.
The initial LP relaxation includes one odd cut inequality for each odd vertex and one
balanced-set inequality for each ‘unbalanced’ vertex.

The separation problem associated with odd cut inequalities is solvable in poly-
nomial time by means of the Padberg & Rao (1982) procedure to find minimum odd
cut-sets. Standard heuristics were also implemented, as well as the exact method for
identifying violated balanced-set inequalities described in Nobert & Picard (1996). The
interested reader may find more details in the above mentioned papers and in Benavent,
Corberán & Sanchis (2000).

We have considered 5 different values for the length of the restricted candidate list
in the construction phase (parameter Size). A value of 1 means that the selection is
made on a list of only one element, which is equivalent to a pure greedy algorithm. On
the other hand, a value of 1000 means that the random selection is made over the whole
list of non-oriented edges, which is equivalent to a pure random method. Between both
extreme values we have considered three regular values for the list length: 5, 10 and
20. We have also tested another variant (labelled as > 0) given by restricting the list to
those elements with a positive value of w(i, j). These 6 variants have been compared
on a set of 18 instances of different sizes and edge percentages. The results of this
experiment are reported in Table 1, where the number of total iterations Niter has
been set to 100.

Size > 0 1 5 10 20 1000

% Desv. 1,53 2,83 1,31 1,15 1,30 1,58

Run Time 30,38 0,32 32,98 44,15 31,52 34,69

Table 1: Experiments with several candidate list lengths.

Table 1 shows that the best results are obtained with Size = 10, although this
method requires more computational effort. As was expected, the worst results corre-
spond to the greedy and pure random strategies. Since the greedy option (Size = 1)
produces the same solution in all the runs, we have only performed one run for this
method (Niter = 1). Therefore, it presents a significant lower run time than the other
procedures.
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Now we compare some variants in the edge evaluation w given in the construction
phase of the algorithm. Let w(i, j) be the evaluation function defined in the previous
section, and let w′(i, j) be the new evaluation function that replaces the old one in the
algorithm. We have considered four different variants that try to emphasize or to limit
the effect of edge weights according to their costs:

Variant 2: w′(i, j) = w(i, j)c(i, j)

Variant 3: w′(i, j) = w(i, j)/c(i, j)

Variant 4: w′(i, j) = w(i, j)c(i, j) if w(i, j) ≥ 0; w′(i, j) = w(i, j)/c(i, j) otherwise

Variant 5: w′(i, j) = w(i, j)c(i, j) if w(i, j) < 0; w′(i, j) = w(i, j)/c(i, j) otherwise

Table 2 reports the results of these 4 variants for different values of the parameter
Size over the same set of instances. Tables 1 and 2 show that the best solution quality
is obtained by the algorithm with the original evaluation w and a value for parameter
Size equal to 10, considering its average percent deviation from the lower bound of
1.15. Then, we will use this variant in the following computational experiments.

Size > 0 1 5 10 20 1000

% Desv. 1,48 2,84 1,36 1,37 1,41 1,60
Variant 2

Run Time 33,94 0,33 34,61 34,49 31,41 39,78

% Desv. 1,46 3,31 1,17 1,32 1,26 1,83
Variant 3

Run Time 44,47 0,34 37,53 43,43 43,23 28,11

% Desv. 1,49 3,04 1,43 1,26 1,33 1,53
Variant 4

Run Time 36,52 0,32 36,05 30,04 25,87 30,27

% Desv. 1,62 3,41 1,31 1,32 1,24 1,72
Variant 5

Run Time 29,96 0,31 37,43 32,53 33,28 30,72

Table 2: Experiments with different w(i, j) functions.
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Table 3 reports the percentage deviation from the lower bound and the running
times of the GRASP procedure with Size = 10 and Niter = 1000 in each set of instances.
Each set contains 75 instances of 50, 100 and 200 vertices respectively, divided into
3 groups of 25 instances according to the percentage of arcs. The average number of
links for each set is shown in the column Links.

Links % of Arcs 30% 50% 70% Average

% Deviation 0,42 0,60 0,66 0,56
|V | = 50 131,6

Run Time 13,98 5,93 2,94 7,61

% Deviation 1,34 1,36 0,69 1,13
|V | = 100 256,5

Run Time 132,76 42,49 13,34 62,86

% Deviation 2,04 2,06 0,90 1,67
|V | = 200 509.6

Run Time 1023,84 368,54 94,11 495,50

Table 3: Experiments with different instance characteristics.

Table 3 shows that the GRASP procedure performs quite well on graphs with 50
vertices since it presents an average percentage deviation from the lower bound of
0.56% achieved in an average of 7.6 seconds. For these instances, the performance
of the heuristic, although slightly better when the percentage of arcs is 30%, may be
considered as similar for all instance characteristics. The algorithm also presents good
results on larger instances although, as was expected, percentage deviation and running
time increase with the number of vertices and links (1.13% on 62.8 seconds for graphs
with 100 vertices and 1.67% on 495.5 seconds for graphs with 200 vertices). In addition,
the table shows the algorithm’s expected behaviour with respect to the percentage of
arcs. In these larger instances better deviation percentages and lower running times
are associated with larger percentages of arcs. It can easily be explained by the fact
that our procedure is based primarily on the assignment of a direction to every edge
in the graph until a fully directed graph is obtained.
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5 Conclusions

We have developed a heuristic procedure for the Mixed Chinese Postman Problem. The
procedure is based on the GRASP methodology. Computational comparisons with a
lower bound have been performed to study the efficiency of the algorithm.

Computational testing was performed on a set of 225 randomly generated graphs
with up to 200 vertices and 600 arcs and edges. Comparisons were made with a
lower bound that has been shown to be relatively close to the optimal solution. The
computational experiments show that our GRASP procedure performs quite well in
these instances.
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