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Abstract 10 

This paper presents a non-invasive fully automatic procedure to obtain highly accurate fish length estimation in adult 11 

Bluefin Tuna, based on a stereoscopic vision system and a deformable model of the fish ventral silhouette. The present 12 

work takes a geometric tuna model, which was previously developed by the same authors to discriminate fish in 2D 13 

images, and proposes new models to enhance the capabilities of the automatic procedure, from fish discrimination to 14 

accurate 3D length estimation. Fish length information is an important indicator of the health of wild fish stocks and for 15 

predicting biomass using length-weight relations. The proposal pays special attention to parts of the fish silhouette that 16 

have special relevance for accurate length estimation. The models have been designed to best fit the rear part of the fish, 17 

in particular the caudal peduncle, and a width parameter has been added to better fit the silhouette. Moreover, 18 

algorithms have been developed to extract snout tip and caudal peduncle features, allowing better initialization of model 19 

parameters. Snout Fork Length (SFL) measurements using the different models are extracted from images recorded 20 

with a stereoscopic vision system in a sea cage containing 312 adult Atlantic Bluefin Tuna. The automatic 21 

measurements are compared with two ground truths: one configured with semiautomatic measurements of favourable 22 

selected samples and one with real SFL measurements of the tuna stock collected at harvesting. Comparison with the 23 

semiautomatic measurements demonstrates that the combination of improved geometric models and feature extraction 24 

algorithms delivers good results in terms of fish length estimation error (up to 90% of the samples bounded in a 3% 25 

error margin) and number of automatic measurements (up to 950 samples out of 1000). When compared with real SFL 26 

measurements of the tuna stock, the system provides a high number of automatic detections (up to 6706 in a video of 27 

135 minutes duration, i.e., 50 automatic measurements per minute of recording) and highly accurate length 28 

measurements, obtaining no statistically significant difference between automatic and real SFL frequency distributions. 29 

This procedure could be extended to other species to assess the size distribution of stocks, as discussed in the paper. 30 

Keywords: Underwater stereo-vision; Computer vision; Fisheries management; Automatic fish sizing; Biomass 31 

estimation;  32 

1. Introduction 33 

Monitoring of wild fish stocks and inspection in aquaculture require extremely gentle handling of the target to avoid 34 

damage, but traditional sampling methods are usually invasive, expensive, time-consuming and laborious. Optical 35 

sensors and machine vision systems have proven to be very appropriate for developing faster, cheaper and non-invasive 36 
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methods to work with live fish (in situ), as reported in recent years (Zion, 2012), (Shortis et al., 2016), (Mallet and 37 

Pelletier, 2014), (Boutros et al., 2015), (Hao et al., 2015), (Saberioon et al., 2017). 38 

Automatic identification of a single fish is an essential step in achieving a fully automatic sizing process. Body 39 

bending while swimming means that the same individual is observed with very different shapes, sizes and orientations, 40 

depending on the video frame. So, robust fish detection methods dealing with these variations are required (Lines et al., 41 

2001), (Rosen et al., 2013), (Rahim et al., 2012), (Atienza-Vanacloig et al., 2016). In (Atienza-Vanacloig et al., 2016) a 42 

deformable adaptive model based on computer vision methods that automatically fit the body ventral silhouette of adult 43 

Bluefin Tuna (Thunnus Thynnus) while swimming was proposed. This model achieved very high success rates (up to 44 

90%) discriminating individuals in complex images acquired in real conditions, but it was not strong enough to estimate 45 

sizes.  46 

The purpose of this study is to define an effective geometric tuna model to automatically process the stereo videos 47 

and obtain accurate fish measurements. The present work takes the geometric model (M1) defined in (Atienza-48 

Vanacloig et al., 2016) as a starting point and studies three new models (M2, M3 and M4) to reach high similitude 49 

between models and real tuna silhouettes. Geometric models can provide a set of parameters and landmarks to capture 50 

the essential features of a tuna silhouette considering its variability. When the target has been identified and 51 

characterized in the images, 3D biometric measurements can be obtained from a calibrated stereo vision system. The 52 

models are compared from three points of view: quantity of successful fittings, computing time and accuracy of the 53 

length measurements. 54 

To evaluate our proposals, fish length measurements using the different models are extracted from images recorded 55 

with a stereoscopic vision system under real conditions in Grup Balfegó growing farms, on the west Mediterranean 56 

coast. These measurements are compared with semiautomatic measurements of selected samples and with true data 57 

from Snout Fork Length (SFL) measurements of the tuna stock collected by Grup Balfegó at harvesting. The results 58 

confirm the potential of our fully automatic sizing method, which could be applied to monitor fish in aquaculture for 59 

growth management purposes and biomass estimation in fish transfers between cages and to monitor wild fish stocks. 60 

1.1. State of the art 61 

A variety of applications with optical sensors and machine vision systems have been developed to work in 62 

underwater conditions: fish sizing (Ruff et al., 1995), (Tillett et al., 2000),  (Lines et al., 2001), (Harvey et al., 2003), 63 

(Costa et al., 2006), (Dunbrack, 2006), (Torisawa et al., 2011), (Letessier et al., 2015), (Williams and Lauffenburger, 64 

2016); fish counting and sizing (Costa et al., 2009), (Rosen et al., 2013); fish sizing in combination with acoustic 65 

techniques (Sawada et al., 2009), (Espinosa et al., 2011), (Kloser et al., 2011); fish farm automation (Martinez-de Dios 66 

et al., 2003); wild fish stock assessment (Willis and Babcock, 2000), (Watson et al., 2009), (Harvey et al., 2012), 67 

(Langlois et al., 2012), (Seiler et al., 2012), (Zintzen et al., 2012), (Wakefield et al., 2013), (Santana-Garcon et al., 68 

2014), (McLaren et al., 2015) and fish species classification (Hu et al., 2012), (Zion, 2012), (Huang et al., 2013), 69 

(Spampinato et al., 2010),(White et al., 2006).  70 

Fish measurements, such as length, height and width, are commonly used for different purposes: as indicators of 71 

health in wild fish stocks (Dunbrack, 2006), (Shortis et al., 2016), (Rosen et al., 2013), (Shafait et al., 2017); for 72 

biomass estimation to control fishing quotas (ICCAT, 2015), to monitor growth rates in fish farms (Puig et al., 2012); 73 

and for fish sorting and grading (Hong et al., 2014), (Zion et al., 2007), (Hao et al., 2016), (Shafait et al., 2017). 74 

Measurements of live fish can be achieved with underwater stereoscopic vision systems, two cameras in a side-by-side 75 

arrangement, as recommended by the International Commission for the Conservation of Atlantic Tunas (ICCAT) in 76 

(ICCAT, 2015), to control catches for tuna farming. Nevertheless, vision sensors and image processing methods have to 77 
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overcome difficulties such as limited visibility, temporal and spatial variations in lighting, varying distances and aspects 78 

between cameras and objects, motion and density of the monitored targets, and even lack of physical stability. 79 

Moreover, for the case of stereoscopic vision systems, the cameras must be synchronised to ensure temporal 80 

correspondence between both videos. In addition, underwater calibration of the system is required for accurate and 81 

reliable measurements. All these conditions represent a very demanding challenge, which have limited the development 82 

of fully automatic solutions. In fact, most of the aforementioned applications and the most widely used commercial 83 

systems for fish sizing, AQ1 AM100 (Phillips et al., 2009) and AKVAsmart, formerly VICASS (Shieh and Petrell, 84 

1998), require human intervention in some of their stages, making the process slow and laborious, and introducing the 85 

variability of manual measuring. Some authors, such as (Lines et al., 2001), (Zion, 2012), (Shortis et al., 2016), 86 

(Atienza-Vanacloig et al., 2016), (Shafait et al., 2017), highlight the need for fully automatic methods for these tasks. 87 

 88 

2. Geometric Tuna models 89 

Fish length and other features, such as bending angle, can be properly characterized using geometric models, since 90 

they are able to fit the tuna silhouette considering its variability due to different shapes, sizes and orientations. A 91 

geometric model for adult tunas (M1), formerly presented in (Atienza-Vanacloig et al., 2016) to discriminate 92 

individuals, is used in this paper to estimate fish length using a stereoscopic vision system. Based on that model (M1), 93 

three new models (M2, M3 and M4) have been developed to improve the fit to the fish silhouette and the fish length 94 

estimation. Figure 1 shows a graphical representation of these models. 95 

The first main modification to model M1 involves considering that areas with high variability, or with greater 96 

significance for providing accurate biometric measurements, should be represented by a greater number or higher 97 

density of silhouette landmarks, which are estimated projecting the silhouette mid-body points. Both landmarks and 98 

mid-body points can be seen in Figure 1 for the different models. Note that the area around the caudal peduncle has 99 

been modelled with a higher number of mid-body points in M2, M3 and M4. The second main modification addresses 100 

the difficulties with modelling pectoral fins. In (Atienza-Vanacloig et al., 2016) they were included in the model 101 

because the proportionality between pectoral fin position and full body length helped to deliver better fitting in the 102 

model length parameter. However, they are seen in the images with highly variable shapes, which hinders silhouette 103 

fitting and results in fewer automatic measurements. Instead, in the new models, accuracy in the model length 104 

parameter is addressed by modelling the caudal peduncle, making the modelling of the pectoral fins unnecessary. The 105 

third main modification refers to the number of parameters used in each model, which implies different capabilities, 106 

from discrimination of individuals to highly accurate measurements. Moreover, feature extraction algorithms for caudal 107 

peduncle and snout tip recognition have also been developed to provide a better initialization of the model parameters, 108 

which is critical to avoid local minima and increase the number of successful fittings. 109 

The parameters and features of the tuna models are summarized in Table 1, and the fish silhouettes for each model 110 

are shown in Figure 1. In M2, the pectoral fins are removed and the caudal peduncle is modelled with a greater number 111 

of mid-body points for more accurate fish length estimation. In M3, the width feature is added to the fish model, 112 

providing a better fit to the fish silhouette. In M4, a different modelling of the caudal peduncle and an improved width 113 

parameter is applied to obtain highly accurate measurements. Note that the caudal fins are not included in any model 114 

due to their great variability, as mentioned in (Atienza-Vanacloig et al., 2016).  115 

The different geometric models and the feature extraction algorithms are described in detail in the subsections below. 116 

 117 
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Tuna model M1 M2 M3 M4 

Characteristic 

feature 
pectoral fins caudal peduncle 

caudal peduncle and 

width 

caudal peduncle back part 

and vector of widths 

Parameters 

𝑠𝑥,  𝑠𝑦, 𝑙, 𝛼, 𝜃 

𝑠𝑥𝑠𝑦: Snout tip location 

𝑙: Length 

𝛼: Angle to horizontal 

𝜃: Bending angle 

𝑠𝑥,  𝑠𝑦, 𝑙, 𝛼, 𝜃 

𝑠𝑥𝑠𝑦: Snout tip location 

𝑙: Length 

𝛼: Angle to horizontal 

𝜃: Bending angle 

𝑠𝑥,  𝑠𝑦, 𝑙, 𝛼, 𝜃, 𝑤 

𝑠𝑥𝑠𝑦: Snout tip 

location 

𝑙: Length 

𝛼: Angle to horizontal 

𝜃: Bending angle 

𝑤: Width 

𝑠𝑥,  𝑠𝑦, 𝑙, 𝛼, 𝜃, 𝐰, 𝑙𝑝, 𝑠𝑝 

𝑠𝑥𝑠𝑦: Snout tip location 

𝑙: Length 

𝛼: Angle to horizontal 

𝜃: Bending angle 

𝐰: Vector of widths 

𝑙𝑝: Caudal peduncle 

length 

𝑠𝑝: Caudal peduncle slope 

Silhouette 

landmarks 
39 35 35 39 

Mid-body 

points: 

20 18 18 20 

4  to model 

the pectoral fins 

4  to model 

the caudal peduncle 

4  to model 

the caudal peduncle 

4  to model the back part 

of the caudal peduncle 

Shape of 

pectoral fins 
Yes None None None 

Shape of caudal 

peduncle 
None Front and back part Front and back part Only the back part 

Table 1. Parameters and main features of the proposed geometric tuna models (M1, M2, M3 and M4). 118 

 119 

 120 

Figure 1. Graphical representation of the four different geometric tuna models (M1, M2, M3 and M4). Small dots representing model mid-body 121 

points and large dots representing model landmarks. 122 

2.1. Base model with pectoral fins: M1 model 123 

Figure 2a shows the deformable model M1 of tuna fish defined in (Atienza-Vanacloig et al., 2016) as a vector of five 124 

parameters M1 = [𝑠𝑥 ,  𝑠𝑦 , 𝑙, 𝛼, 𝜃], where: sx and sy  give the image location of the snout tip; 𝑙  is the length of the 125 

vertebral column; α denotes the angle of the fish head in relation to the horizontal axis, and 𝜃 is the global bending 126 

angle of the vertebral column. 127 
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 128 

Figure 2. Deformable tuna model M1 presented in (Atienza-Vanacloig et al., 2016). 129 

On the left, sx and sy give the image location of the snout tip, 𝑙 is the length of the vertebral column, α denotes the angle of the fish head in relation to 130 

the horizontal axis and 𝜃 is the global bending angle of the vertebral column. On the right, white and yellow dots represent the mid-body points, 131 

whereas green dots correspond to landmarks. Grid size  𝑆𝑙 = 𝑙 16⁄  132 

The M1 model is characterized by 20 mid-body points 𝑣𝑖 = ( 𝑥𝑖
𝑣 ,  𝑦𝑖

𝑣), 16 of them distributed along the fish length 𝑙 133 

using a grid of size  𝑆𝑙 = 𝑙 16⁄ , and 4 of them to model the pectoral fins (see Figure 2b). The position of the mid-body 134 

points is computed according to the model parameters using the following equation: 135 

(
𝑥𝑖

𝑣

 𝑦𝑖
𝑣) = (

𝑠𝑥

𝑠𝑦
)  + (

cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

) (
𝑙𝑖  cos (𝜃𝑖)
𝑙𝑖  sin (𝜃𝑖)

)  (1) 136 

where 𝑙𝑖  is the length from the snout to the ith-vertebra and 𝜃𝑖  the bending angle of the ith-vertebra, which are 137 

calculated proportionally to model parameters 𝑙 and 𝜃 using the following expressions: 138 

 139 

𝑙𝑖 = 𝐜𝐥(𝑖) 𝑙   ;    𝜃𝑖 = 𝐜𝛉(𝑖) 𝜃   ;    𝑖 = 1 … 𝑛   (2) 140 

where 𝑛 is the number of mid-body points and 𝐜𝐥 and 𝐜𝛉 are constant coefficient vectors. 141 

The silhouette is modelled with 39 landmarks, one landmark for the snout tip and 19 landmarks for each side of the 142 

tuna body profile. The landmarks 𝑘𝑖 = (𝑥𝑖
𝑘, 𝑦𝑖

𝑘) that configure the M1 model silhouette are obtained from mid-body 143 

points 𝑣𝑖 with the following expressions: 144 

𝑥𝑖
𝑘 = 𝑥𝑖

𝑣  ±  𝑙𝑖  𝑤𝑖  sin 𝜃𝑖 ;      𝑦𝑖
𝑘 =   𝑦𝑖

𝑣  ±  𝑙𝑖  𝑤𝑖  cos 𝜃𝑖  ;      𝑖 = 1 … 𝑛   (3) 145 

where the positive or negative sign depends on the side of the tuna body profile, while 𝑤𝑖  is the distance from vertebra 146 

to landmark, that is, the width of the ith-vertebra. As width is not a model parameter, 𝑤𝑖  is calculated proportionally to 147 

model length 𝑙 according to the following expression: 148 

𝑤𝑖 =  𝐜𝐰(𝑖) 𝑙        ;    𝑖 = 1 … 𝑛   (4) 149 

where 𝐜𝐰 is a constant coefficient vector. 150 

Coefficient vectors 𝐜𝐥, 𝐜𝛉 and 𝐜𝐰 are built empirically from a dataset of tuna silhouettes. 151 

2.2. Model with caudal peduncle keel: M2 model 152 

The capabilities of M2 model have been increased compared to M1 by introducing the following modifications: (i) 153 

more mid-body points are concentrated in the caudal peduncle, a crucial zone for length measurements; (ii) the area 154 

around the pectoral fin is not considered, as its many shapes can hinder model fitting because of the ambiguity between 155 

points on the silhouette of the body and these fins.  156 

Deformable model M2 is defined as a vector of five parameters M2 = [𝑠𝑥 ,  𝑠𝑦 , 𝑙, 𝛼, 𝜃], the same as M1, and is 157 

characterized by 18 mid-body points 𝑣𝑖 = ( 𝑥𝑖
𝑣,  𝑦𝑖

𝑣), 14 of them distributed along the fish length using a grid of 158 
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size  𝑆𝑙 = 𝑙 16⁄ , and 4 of them to model the caudal peduncle (see Figure 1). The position of the mid-body points and 159 

landmarks are calculated using equations (1)-(4). 160 

2.3. Model with caudal peduncle keel and width: M3 model 161 

  M3 model capabilities have been increased compared to M2, to include also a width parameter that allows a better fit 162 

to the fish silhouette. Consequently, M3 is defined as a vector of six parameters M3 = [𝑠𝑥 ,  𝑠𝑦 , 𝑙, 𝛼, 𝜃, 𝑤], where the new 163 

parameter 𝑤 is a coefficient that widens the model proportionally to a fattening factor.  M3 is characterized by the same 164 

18 mid-body points 𝑣𝑖 = ( 𝑥𝑖
𝑣,  𝑦𝑖

𝑣) as M2 (see Figure 7Figure 1) and the position of mid-body points and landmarks is 165 

calculated using equations (1)-(3). However, 𝑤𝑖  is calculated in this case proportionally to the tuna width parameter, 166 

rather than tuna length, according to the following expression: 167 

𝑤𝑖 =  𝐜𝐰(𝑖) 𝑤        ;    𝑖 = 1 … 𝑛   (5) 168 

2.4. Model with back peduncle part and width vector: M4 model 169 

This M4 model attempts to improve the fit to the fish silhouette by redesigning the caudal peduncle and the model 170 

width. In this case, the front part of the caudal peduncle is not modelled, and the back part is modelled as a segment (see 171 

Figure 1). Moreover, changes in peduncle shape are considered by adding length and slope of the segment as 172 

parameters to the model. This modification improves the fit to the fish silhouette in the caudal peduncle, allowing more 173 

accurate fish length estimations. Regarding the model width, parameter 𝑤 in M3 is modified to become a vector of 174 

widths 𝐰. While in the previous models, 𝑤𝑖  is considered a function of length (in M1 and M2) or width (in M3) with 175 

constant coefficients, M4 assigns a variable-bounded width for each vertebral point, improving the fit to fish width. 176 

Therefore, deformable model M4 is defined as a vector of eight parameters M4 = [𝑠𝑥 ,  𝑠𝑦 , 𝑙, 𝛼, 𝜃, 𝐰, 𝑙𝑝, 𝑠𝑝], where the 177 

new parameters are: [𝑙𝑝, 𝑠𝑝], length and slope of the segment representing the back part of the caudal peduncle, and 𝐰, 178 

the widths vector. M4 is characterized by 18 mid-body points 𝑣𝑖 = ( 𝑥𝑖
𝑣 ,  𝑦𝑖

𝑣), 14 of them distributed along the fish 179 

length and 4 of them to model the back part of the caudal peduncle.  180 

Position of the mid-body points and landmarks, excluding the ones that model the caudal peduncle, is calculated 181 

again using equations (1)-(3), but in this case, the width coefficients 𝑤𝑖 = 𝐰(𝑖) are used. For the caudal peduncle, the 182 

mid-body points and landmarks are modified with [𝑙𝑝, 𝑠𝑝], length and slope of the segment, according to the equation of 183 

a straight line. 184 

2.5. Feature extraction to initialize model parameters 185 

Prior to applying the geometric model fitting procedure, a fast template matching procedure is applied to the fish 186 

candidates to deduce swimming direction and roughly initialize the model parameters according to the matching, as 187 

detailed in (Atienza-Vanacloig et al., 2016).  188 

However, since a good initialization of the parameters is critical to avoid local minima and increase the number of 189 

successful fittings, further developments have been carried out. In particular, two feature extraction algorithms have 190 

been developed: caudal peduncle extractor and snout tip extractor. For the caudal peduncle, the algorithm searches for 191 

circles at the ends of the fish candidates using the Hough transform (Ballard, 1981). If successful, this detection is used 192 

to initialize geometric model length 𝑙. For the snout tip, the algorithm applies a fitting procedure for the geometric 193 

model of the fish head. If successful, snout tip parameters (𝑠𝑥 , 𝑠𝑦 ) are excluded from the complete model fitting 194 

procedure. Figure 3 shows a successful case of features extraction, and its contribution to model initialization is 195 

analysed in Section 4.2. 196 
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 197 

Figure 3. Graphical representation of the feature extraction algorithms: caudal peduncle extraction using Hough transform and snout tip extraction 198 

using the geometric model of the fish head. 199 

3. Materials and methods 200 

In this section, Figure 4 describes and summarizes the computer vision algorithms involved in the process of fish 201 

sizing, as well as the offline manual and semiautomatic operations performed to generate ground truth data.  202 

 203 

Figure 4. In the first row, sequence of processes performed automatically in our proposal. In the second row, intermediate results of each step in 204 

dashed line and final result in continuous line. FEI refers to Fitting Error Index. 205 

3.1. Stereo video acquisition 206 

The recording was taken in the Grup Balfegó growing farms, on the west Mediterranean coast, using the AM100 207 

stereovision system (www.aq1systems.com), consisting of two Gigabit Ethernet cameras, with image resolution of 208 

1360x1024 pixels and framerate of 12 fps, mounted in an underwater housing, with a baseline of 80cm and an inward 209 

convergence of 6º. 210 

The cameras were positioned 15 m deep in the grow-out cages and looking towards the surface to obtain a ventral 211 

silhouette of the fish. This camera arrangement has three advantages: first, with this orientation, sunlight acts like a 212 

backlight system so objects are always darker than water; second, in this set up, body bending can be clearly 213 

appreciated and dealt with; third, the most reliable measurements are obtained when fish are swimming in a plane 214 

orthogonal to the visual axis (Dunbrack, 2006). The acquired videos are processed automatically using the computer 215 

vision algorithms outlined in Figure 4 and described below. 216 

3.2. Image segmentation, blobs filtering and tuna model fitting 217 

Image segmentation was implemented using local thresholding (Petrou and Petrou, 2011), a region-based technique 218 

for extracting compact regions (blobs) on each video frame, and morphological operations. The segmented blobs are 219 

geometrically characterized and sifted using shape (aspect ratio), pixel density and dimensional filters. Afterwards, the 220 

parameters of the geometric models are initialized as described in Section 2.5. An edge detection algorithm is then 221 

applied and a minimization algorithm is used to fit the deformable tuna models presented in Section 2 to the silhouette. 222 

A Fitting Error Index (FEI), based on the quadratic distance between model points and target edge points, is computed 223 
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to analyse the accuracy of the fitting. FEI takes values in the [0. .10] range, where FEI = 0 denotes a perfect fit between 224 

the segmented blob and the geometric model. Fittings with high values (FEI > 3) are discarded. An example of image 225 

segmentation and blobs filtering with many animals swimming at the same time is shown in Figure 5. For further details 226 

on the segmentation, filtering and model fitting procedures see (Atienza-Vanacloig et al., 2016). 227 

 228 

Figure 5. Segmentation and blobs filtering. (a) original image, (b) segmented image using local thresholding and morphological operations, (c) blobs 229 

labelling and characterization and area filter, (d) aspect ratio and pixel density filters. 230 

In the first row, sequence of processes performed automatically in our proposal. In the second row, intermediate results of each step in 231 

3.3. Stereoscopic vision system calibration and stereo correspondence 232 

The results for left and right videos, obtained separately in Section 3.2, are merged to calculate fish length. The 233 

image plane information is transformed to 3D measurements using the calibration parameters of the stereoscopic vision 234 

system and 3D triangulation. 235 

Images for calibration were acquired in a tank containing seawater at IEO (Spanish Oceanographic Institute) 236 

facilities in Mazarrón (Spain). A 1.40 x 1.10 m checkerboard pattern was guided from -45º to 45º with respect to the 237 

optical axis and moved between 1 and 10 m away from the cameras. The MATLAB® Stereo Calibration Application 238 

based on (Heikkila and Silven, 1997) and (Zhang, 2000) was used to estimate the calibration parameters. The diagonal 239 

length of the checkerboard pattern was computed for 5018 samples in the stereo images to analyse our calibration 240 

accuracy in terms of proportional error between true and measured lengths, resulting in a mean error of 0.3%, similar to 241 

other results reported in the literature (Shortis, 2015).  242 

With a proper calibration of the stereoscopic vision system, the following epipolar geometry restriction can be used: 243 

given two characteristic points of the fish model in one image, the matching points in the other image must lie on the 244 

epipolar line defined by the calibration parameters. In our case, samples are discarded if the stereo correspondence is 245 

not met for the first and last model mid-body points, that is, if the distance from the points to the epipolar lines is greater 246 

than a threshold of 10 pixels. The adoption of this value is based on extensive experience with underwater stereo-image 247 

measurements and current image resolution. Such distances may occur because the individuals identified in the left and 248 

right videos do not correspond to the same fish or because left, right or both model fittings are not accurate enough. 249 

3.4. Fish length measurements using stereoscopic vision 250 

Snout Fork Length (SFL) is the fish length generally used in the literature and the fish length measured at harvesting. 251 

However, as mentioned before, the caudal fins cannot be modelled due to their great variability, so SFL cannot be 252 

directly measured in the model. To overcome this issue, we defined Snout Peduncle Length (SPL), as the Euclidean 253 

distance between the 3D coordinates of the snout tip and the caudal peduncle vertebra, which corresponds to the last 254 

vertebra of M1 and the prior-to-the-last vertebra in M2, M3 and M4. Then, we deduced the relation between SFL and 255 

SPL from a dataset of experimental semiautomatic measurements. For this purpose, 1000 samples from the video 256 

frames were selected with the following requirements: the mid-body points form a straight line (no bending) and the tail 257 

fork is clearly identifiable and aligned with the vertebral column, as shown in Figure 6a. For these samples, SPL and 258 
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SFL were computed using a semiautomatic procedure: the snout tip, the peduncle point and the tail fork point are 259 

manually marked in the left image using the mouse pointer, whereas the corresponding right image points are also 260 

marked, but with the aid of the epipolar lines resulting from the stereovision calibration. SPL and SFL are computed 261 

using the stereovision calibration parameters as the 3D Euclidean distances between snout-peduncle and snout-fork, 262 

respectively. A polynomial fitting was then applied, resulting in an SPL-SFL linear relation, as shown in Eq. 6 and 263 

Figure 6b. Note that this relation has been deduced from the stock under study, that is, adult Bluefin Tuna with SFL 264 

between 1.60 and 2.60 meters. Hence, it is species specific and based on a finite range of lengths. 265 

SFL = 1.0879 SPL + 0.050964  (6)         266 

 267 

Figure 6. (a) Sample selected to study the relation between Snout Peduncle Length (SPL) and Snout Fork Length (SFL). 268 

(b) Polynomial fitting for the SPL-SFL relation. The green solid line is the linear fitting and the red dashed lines are the 95% confidence interval. 269 

Fish are deformable due to the swimming motion and, consequently, measurements taken from a single frame may 270 

not be reliable (Shortis et al., 2016). Two main options are used in the literature to reduce the effect of swimming 271 

motion on length measurement: (i) take measurements in all frames and deduce straight body length from a sinusoid-272 

like pattern (Shortis et al., 2016);  (ii) account for body bending by adding contiguous linear segments (Williams and 273 

Lauffenburger, 2016). In our case, the swimming length problem is resolved using the tuna model bending angle θ, by 274 

identifying as valid samples the ones whose mid-body points form a straight line and discarding the others. 275 

4. Results 276 

For a quantitative evaluation of the M1, M2, M3 and M4 models, the results are presented in this section from three 277 

points of view: (i) Quantity of successful fittings achieved by each model, which allows us to assess the degree of 278 

adaptation of each model to the blobs and, therefore, its capacity to adapt to the tuna body while swimming. (ii) 279 

Computing time, analysed to compare tuna models, but taking into account that both the code and the algorithms could 280 

be optimized to speed up automatic measurements. (iii) Accuracy of the SFL measurements. In addition, four different 281 

methods of initializing the model parameters are studied, using the feature extraction algorithms detailed in Section 2.5: 282 

(a) fast template matching, (b) fast template matching and snout tip feature extractor, (c) fast template matching and 283 

caudal peduncle feature extractor, (d) fast template matching and both snout tip and peduncle feature extractors. 284 
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4.1. Datasets and ground truths  285 

Two datasets and ground truths were configured from a stereo video of 135 minutes duration, acquired with the 286 

stereoscopic vision system described in Section 3.1. The video was recorded in real conditions on an adult Atlantic 287 

Bluefin Tuna growing cage in the Mediterranean Sea containing 316 fish. 288 

The first dataset (DS1) is composed of 1000 samples, selected from the video frames but avoiding difficult cases 289 

caused by overlapping or bad lighting. These samples are measured whit the aforementioned semiautomatic procedure 290 

to configure the ground truth (GT1) and compared to automatic measurements using the different tuna models. To 291 

configure the ground truth (GT1), samples have been measured semiautomatically by three different operators to obtain 292 

a mean value. The procedure is repeated for the samples with discrepancies between operators greater than 0.5% in fish 293 

length. Relative error between measurements is defined for the different tuna models, and calculated for each sample as 294 

stated in Eq. 7, where SFLa and SFLm are the automatic and semiautomatic SFL, respectively. 295 

𝑒𝑟(%) =
 SFLa−SFLs

SFLs
· 100  (7) 296 

A second dataset (DS2) comprises all the 97341 pairs of frames from the stereo video. The whole video is processed 297 

and SFL measurements are extracted using the different tuna models. Real SFL measurements of the tuna stock 298 

collected by Grup Balfegó at harvesting configure the second ground truth (GT2). It is important to highlight that this 299 

stock corresponds to the same cage where the video was acquired because this increases the veracity of the results. SFL 300 

frequency histograms are built to compare the automatic SFL measurements from DS2 with real SFL measurements of 301 

GT2. 302 

The DS1 and DS2 results are detailed in Section 4.2 and Section 4.3, respectively. 303 

4.2. Automatic versus semiautomatic measurements 304 

Each sample of DS1 is automatically measured with the different models (M1, M2, M3 and M4) and with four 305 

different methods of initializing the model parameters (a-d). Figure 7 shows the results from different perspectives. 306 

The first subplot in Figure 7 represents the relative errors (Eq. 7) between automatic and semiautomatic 307 

measurements of GT1 in a box plot. For each box, the central rectangle represents the interquartile range or IQR, which 308 

comprises 50% of the samples, from 25th to 75th percentiles. A segment inside the rectangle shows the median error 309 

and whiskers above and below the box comprise 90% of the samples, from 5th to 95th percentile. Error margins of 3%, 310 

5% and 7% are displayed with parallel horizontal dotted lines in green to provide a visual guide. In comparison with 311 

fast template matching initialization (a), relative errors decrease when either the snout tip feature extractor (b) or the 312 

caudal peduncle feature extractor (c) is used, and greatly decrease when both feature extractors are used (d). To such an 313 

extent, that  90% of the samples for M1.d are bounded in a 7% error margin, for M2.d they are bounded in a 5% error 314 

margin, and for M3.d and M4.d they are bounded in a 3% error margin. Note that relative errors decrease for M2, M3 315 

and M4 with respect to M1, independently of model initialization. 316 

The second subplot in Figure 7 shows the number of samples successfully measured automatically. Note that a 317 

sample is considered successfully measured if these two conditions are satisfied: good FEI and stereo correspondence, 318 

as defined in Section 3.2 and 3.3, respectively. When the snout tip feature extractor is used (b), the number of samples 319 

increases only with M4, whereas it increases for all the models when the caudal peduncle feature extractor is used (c). 320 

More automatic measurements are obtained when both feature extractors are used (d), with 749, 842, 853 and 950 321 

automatic measurements out of 1000 samples for M1, M2, M3 and M4, respectively. 322 
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The third subplot in Figure 7 represents the mean and standard deviation of computing time per fish measurement. 323 

Note that computing time for M4 is almost twice the time spent by M1, M2 and M3 and computing time increases by 324 

approximately 0.1 seconds when the caudal peduncle feature extractor is used (c and d), to give computing times of 325 

0.318, 0.325, 0.362 and 0.704 seconds for M1, M2, M3 and M4, respectively. 326 

  327 

 328 

 329 

Figure 7. Automatic versus semiautomatic measurements for the different tuna models (M1, M2, M3 and M4) and feature extractors (a, b, c and d). 330 

At the top, box plot of individual relative errors (the central rectangle represents the interquartile range or IQR, which comprises 50% of the samples, 331 

the segment inside the rectangle shows median error and whiskers above and below the box comprise 90% of the samples). Error margins of 3%, 5% 332 

and 7% are displayed with parallel horizontal dotted lines in green to provide a visual guide. In the middle, number of samples automatically 333 

measured. At the bottom, mean (bar and value) and standard deviation (whiskers) of computing time per fish measurement. 334 

4.3. Automatic measurements versus real data from harvests  335 

DS2 is processed to compute automatic measurements with the different tuna models, which are compared to real 336 

SFL measurements of GT2, collected at harvesting by Grup Balfegó. Model parameters are initialized using fast 337 

template matching and both the snout tip feature extractor and the caudal peduncle feature extractor (d). This 338 

initialization method accomplishes the most accurate measurements for all models, as demonstrated in Section 4.2. 339 

Figure 8 shows the normalized SFL frequency histograms. Differences in SFL̅̅ ̅̅ ̅  between harvests and automatic 340 

measurements were examined with analysis of variance tests. Since the two groups have unequal sample sizes and 341 

homoscedasticity (homogeneity of variance) cannot be ensured, Welch’s ANOVA test (Welch, 1951) is used, as 342 
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recommended in (Rasch et al., 2011) and (McDonald, 2014). Differences in SFL frequency distributions are analysed 343 

with the Kolmogorov-Smirnov test (Massey, 1951).  344 

As Table 2 indicates, the tests for SFL̅̅ ̅̅ ̅ and SFL distribution frequency give p-values higher than the 5% significance 345 

level for models M2, M3 and M4. With these models there is no statistically significant difference between GT2 and 346 

DS2 automatic measurements. However, note that the results obtained with M1, that is, 3cm (1.4%) error in mean 347 

length, can be admissible in some applications. For example, for transfer operations, (ICCAT, 2015) establishes that 348 

fish length estimations using stereoscopic camera systems must be lower than ±5%. Moreover, Table 2 shows the 349 

number of successful model fittings for left and right videos, the number of automatic measurements and computing 350 

time, which covers the entire automatic measurement process (as outlined in Figure 4). It can be seen that using model 351 

M4, automatic measurements increase by 2536 samples (60.8%, 19 samples per minute of recording) with respect to 352 

M2 and by 1895 (39.4%, 14 samples per minute of recording) with respect to M3, at the expense of increasing 353 

computing time by more than 6 hours (57%) and 5.5 hours (47%), respectively.  354 

 355 

Figure 8. Automatic measurements versus real data from harvests. Normalized SFL frequency histograms. 356 

Automatic measurements in light-yellow and ground truth in dark-blue. SFL̅̅ ̅̅ ̅, mean SFL; n, number of automatic measurements. 357 
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 M1 M2 M3 M4 

# successful fitting in left video 41014 48017 48312 57167 

# successful fitting in right video 43962 51059 51236 60750 

# automatic measurements 3845 4170 4811 6706 

# automatic measurements per 

minute of recording 
28 31 36 50 

Computing time 11h 04’ 12’’ 11h 10’ 54’’ 11h 56’ 57’’ 17h 37’ 03’’ 

Welch’s ANOVA test p-value 0.0012 0.5127 0.5192 0.5278 

Kolmogorov-Smirnov test 

p-value 
0.0017 0.1081 0.1503 0.1544 

Table 2. Automatic system measurements and ground truth statistical comparison for the different tuna models. 358 

5. Discussion 359 

The results show the enhanced capabilities of the new models, from fish discrimination (M1) to accurate length 360 

estimation (M3 and M4), by combining improved geometric model definitions and feature extraction algorithms to 361 

initialize the model parameters.  362 

Firstly, the algorithms developed for snout tip and caudal peduncle features extraction allow a initialization of model 363 

parameters, which leads to enhanced results in terms of error in fish length estimation and number of automatic 364 

measurements, at the expense of increasing computing time. Secondly, the improved geometric models consider the 365 

following main modifications with respect to the original model (M1): the fish silhouette does not include pectoral fins 366 

and the caudal peduncle is modelled with a higher density of mid-body points. The models that consider these two 367 

modifications (M2, M3 and M4) obtain smaller errors in fish length estimation than the original model (M1). The 368 

capabilities of M3 model have been increased compared to M2, to include also a width parameter that allows better fit 369 

to the fish silhouette (smaller FEI) when both snout tip and caudal peduncle features extractors are used. M4 model 370 

improves the fit to the fish silhouette by redesigning the caudal peduncle and model width. 371 

For all models, the most accurate length estimations are obtained when both snout tip and caudal peduncle features 372 

extractors are used (M1.d, M2.d, M3.d and M4.d). Focusing on the differences between tuna models in this case, the 373 

error in fish length estimation and the number of automatic measurements improve from M1 to M4, at the expense of 374 

higher computing times. M1.d can be discarded, because worse length estimation is obtained, with no advantage in 375 

either number of samples or computing time, and M2.d can also be discarded, because M3.d has very similar but 376 

slightly better results. In conclusion, M3.d and M4.d have the highest number of samples and most accurate fish length 377 

estimations, and choosing between them would depend on the application. To extract a higher number of samples with 378 

very low errors M4.d would be preferred, but for faster automatic measurements, with slightly higher errors and lower 379 

number of samples, M3.d would be used. In both cases, very accurate results are obtained, as proved in the comparison 380 

with ground truth data from harvests. 381 

Fish length information is an important indicator of the health of wild fish stocks and for predicting biomass using 382 

length-weight relations (Lines et al., 2001), (Martinez-de Dios et al., 2003). The most common mathematical model 383 

between fish length (L) and mass (W) is W = aLb, where a and b are empirically characterized species and strain-384 

dependent parameters (Zion, 2012). The total biomass of a fish stock is commonly determined by obtaining the mean 385 

length of a statistically representative number of fish and counting the number of fish (Costa et al., 2009), (Shafait et al., 386 

2017).  Recent studies attempt to show that biomass can be estimated more accurately if fish measurements in 387 

dimensions other than length, like width and depth, are available (Aguado-Gimenez and Garcia-Garcia, 2005), (Harvey 388 

et al., 2003). Nevertheless, as stated in (Harvey et al., 2003), measuring the width of a fish is relatively subjective due to 389 

the lack of defined points in the fish silhouette. We are currently working on finding an adequate way of estimating fish 390 
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width, using the width parameter and mid-body points position in the M3 and M4 tuna models, and generating a ground 391 

truth dataset that includes width measurements at harvesting.  392 

6. Conclusions and further work 393 

The proposed procedure might be a significant contribution towards a commercial system for fully automatic fish 394 

sizing using stereoscopic vision. The proposed geometric models are able to provide high number of samples and 395 

accurate measurements of the fish length in adult tunas. The completely automatic process is the main difference of this 396 

work with respect to other studies with similar goals, such as (Lines et al., 2001), (Harvey et al., 2003), (Letessier et al., 397 

2015), (Williams and Lauffenburger, 2016) and (Shafait et al., 2017). The results demonstrate highly accurate SFL 398 

estimations and validate the automatic procedure. The system could be used to track the growth of fish trough time by 399 

scheduling a recording plan and could be integrated in an autonomous monitoring system, whose computing 400 

performance and energy requirements should be dimensioned to allow recording and analysis of statistically 401 

representative amount of measurements. The automatic system has been used for fish sizing on adult Atlantic Bluefin 402 

Tuna, but the procedure could be applied to other species, adapting segmentation parameters, blobs filtering criteria and 403 

geometric model. 404 

As further work, we are working on computing fish width from the geometric models and studying different 405 

possibilities for fish tracking, such as Kalman and particle filters (Morais et al., 2005). We plan to improve some 406 

aspects of the models to provide accurate 3D measurements of bent fish and to fit the tuna silhouette from other views 407 

in addition to the ventral one. Moreover, we want to combine this computer vision procedure with acoustic information 408 

to estimate biomass in more complex situations, such as wild environments and transfers from tow to grow-out cages. 409 
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