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Abstract

This thesis discusses different modelling methodologies to eke out better perfor-
mance/stability results than conventional sector-nonlinearity Takagi-Sugeno (also
known as quasi-LPV) systems modelling techniques are able to yield.

Indeed, even if LMIs can prove various performance and stability bounds (decay
rate, H∞, etc.) for polytopic systems, it is well known that the proven perfor-
mance depends on the chosen model and, given a nonlinear dynamic systems, the
polytopic embeddings available for it are not unique. Thus, explorations on how
to obtain the model which is less deletereous for performance are presented.

As a last contribution, extending the polytopic Takagi-Sugeno setup to a gain-
scheduled quasi-convex difference inclusion framework allows to improve the re-
sults over the polytopic models. Indeed, the non-scheduled convex difference
inclusion framework was proposed by a research team in University of Seville
(Fiacchini, Alamo, Camacho) as a generalised modelling methodology which in-
cluded the polytopic one; this thesis poses a further generalised gain-scheduled
version of some of these results.
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Resumen

Esta tesis discute diferentes metodoloǵıas de modelado para extraer mejores
prestaciones o resultados de estabilidad que aquéllas que el modelado conven-
cional basado en sector no-lineal de sistemas Takagi-Sugeno (también denomina-
dos cuasi-LPV) es capaz de producir.

En efecto, incluso si las LMIs pueden probar distintas cotas de prestaciones
o márgenes de estabilidad (tasa de decaimiento, H∞, etc.) para sistemas
politópicos, es bien conocido que las prestaciones probadas dependen del modelo
elegido y, dado un sistema no-lineal, dicho modelo politópico no es único. Por
tanto, se presentan exploraciones hacia cómo obtener el modelo que es menos
perjudicial para la medida de prestaciones elegida.

Como una última contribución, mejores resultados son obtenidos mediante la
extensión del modelado politópico Takagi-Sugeno a un marco de inclusiones en
diferencias cuasi-convexas con planificación de ganancia. En efecto, una versión
sin planificación de ganancia fue propuesta por un equipo de investigadores de la
Universidad de Sevilla (Fiaccini, Álamo, Camacho) para generalizar el modelado
politópico, y esta tesis propone una version aún más general de algunos de dichos
resultados que incorpora planificación de ganancia.
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Resum

Aquesta tesi discuteix diferents metodologies de modelatge per extreure millors
prestacions o resultats d’estabilitat que aquelles que el modelatge convencional
basat en sector no-lineal de sistemes Takagi-Sugeno (també anomenats quasi-
LPV) és capaç de produir.

En efecte, fins i tot si les LMIs poden provar diferents cotes de prestacions o
marges d’estabilitat (taxa de decäıment, H∞, etc.) per a sistemes politòpics,
és ben conegut que les prestacions provades depenen del model triat i, donat
un sistema no-lineal, el dit model politòpic no és únic. Per tant, es presenten
exploracions cap a com obtenir el model que és menys perjudicial per a la mesura
de prestacions triada.

Com una darrera contribució, millors resultats són obtinguts mitjançant l’extensió
del modelatge politòpic Takagi-Sugeno a un marc d’inclusions en diferències quasi-
convexes amb planificació de guany. En efecte, una versió sense planificació de
guany va ser proposada per un equip d’investigadors de la Universitat de Sevilla
(Fiaccini, Álamo, Camacho) per a generalitzar el modelatge politòpic, i aquesta
tesi proposa una versiò més general d’alguns d’aquests resultats que incorpora
planificació de guany.
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Summary of the thesis

Motivation and objectives

As is well known in the literature on nonlinear systems modeling, it is possible in
a large number of cases to represent these systems as polytopic vertex models (in
most cases, locally, over a so-called modelling region), this allows us to make use
of linear matrix inequalities (LMI) and other mathematical tools, to guarantee
different performance objectives in such systems with a low computation cost.
The problem that results in most of the approaches that address this issue, is
that their methodologies are not systematic or do not provide any guidance in
which, of the infinite options of representations that result from their theories,
is more convenient for the nonlinear system that we want to analyze, yielding in
a different performance bounds depending on the model choice. To avoid such
drawback, earlier literature on the topic used another approaches, which often
require gridding on the modelling region and bilinear matrix inequalities (BMI)
conditions, in these cases obtain a good performance bound is often equivalent to
a huge computational burden.

The central objective of this thesis is to provide some guidelines for the selection
and construction of these polytopic vertex models based on some of the most
common performance objectives in the control community, considering only the
use of linear matrix inequalities. For this purpose we present different modeling
methodologies that adopt different approaches in order to satisfy our requirements
and overcome the performance of some of the most widely treated approaches in
the literature. A last objective of the thesis is departing from linear “vertex
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models” to a more general class of models whose bounds have suitable convexity-
related properties.

Structure of the thesis

This thesis is divided in three parts:

• Part I summarises the most fundamental results in the literature related to
the framework of this thesis. In Chapter 1, an overview of the concept of
an LMI and its use for the stability analysis of linear models is conducted,
some common matrix properties to transform matrix inequalities into LMIs
and some stability concepts are reviewed.

Chapter 2 shows how the direct Lyapunov method is employed altogether
with the convex structure of the TS model to express stability and stabili-
sation conditions in terms of LMIs.

Chapter 3 introduces some concepts related to set theory in the field of
control and the analysis of dynamic systems. The basic definitions will be
given and some properties of the invariant sets will be described. Properties
of convex set and convex functions will be reviewed, these will later be used
in later chapters making evident the importance of invariance and methods
based on set theory for control.

• Part II contains the contributions of this work. There are two main contri-
bution areas in this part:

1. Chapters 4 to 7 discuss how to address the problem of achieving mini-
mal performance loss with respect to a given LMI control problem over
a linearised model.

2. Then, Chapter 8 departs from this framework and explores a totally
different set-based approach.

The first contribution is presented in Chapter 4, where are introduced two
methodologies intended to address the problem of constructing the most
adequate Takagi-Sugeno representation of a nonlinear system with respect
to a performance goal: maximum decay rate. Both approaches are based
on coordinate transformations.
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Chapter 5 provides some guidelines on choosing a sector-nonlinearity Takagi-
Sugeno model, with provable optimality in the case of quadratic nonlinear-
ities. The approach is based on Hessian and restrictions of a function onto
a subspace.

Chapter 6 relaxes the condition of state-dependency of approaches in the
previous chapters, thus allowing multiple-LMI setups which might be asso-
ciated with a wider variety of performance measures. The main idea here
is based on a Frobenius-norm bound on the “perturbation” that sector-
nonlinearity models produce in the LMI matrices.

Chapter 7 instead of writing LMIs for a given model, it assumes that LMIs
for a given performance optimisation problem are already available and sets
out for a quest to determine the optimal model that keeps the proven per-
formance as close as possible to the linearised one, which is the best one
posible.

The structure of this four chapters is “progressive” in the sense that it
mimics the chronological order of submission of different ideas on the prob-
lem during the Ph.D. studies. Thus, basically each chapter builds upon
the previous one, complementing and refining its approaches; hence, they
share common issues in problem statement and initial steps of the developed
methodologies.

Chapter 8 presents the generalisation of control design via gain-scheduling
from TS models to the so-called parameter-dependent quasiconvex differ-
ence inclusions. This will enable to enlarge polyhedral domain of attraction
estimates for nonlinear control.

• This thesis ends in part III, drawing some concluding remarks.

Note that most of the content of part II is a verbatim copy of published material
(indicated at the beginning of each chapter). Thus, there may be repetitions
of preliminary material and notation changes, particularly on the progressive
improvements from chapters 4 to 7. This repetition is intentional to keep the
chapters basically identical to the published material.
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State of the Art





Chapter 1

Linear matrix inequalities in
control

The last three decades have witnessed the publication of a lot of
results where so-called linear matrix inequalities play an important
role for the study of nonlinear control systems. Their usefulness is
twofold: (a) many control problems can be cast as linear matrix in-
equalities, and (b) they belong to the class of convex optimisation prob-
lems, for which there exist computationally efficient methods to solve
them. This chapter is a short introduction to this subject originally
emerged, as many other branches of control theory, in the context of
linear time-invariant systems.

1.1 Definitions, problems, and properties

1.1.1 Definitions

As its name indicates, a linear matrix inequality (LMI) is an inequality whose
sides are linear functions of matrix variables; it is always amenable to the form

A0 +A1M1B1 +A2M2B2 + · · ·+AnMnBn︸ ︷︷ ︸
f(M1,M2,...,Mn)

> 0, (1.1)

where f(·, ·, . . . , ·) is a symmetric linear function of decision variables M1, M2, ...,
Mn, which are pre- and post-multiplied by known matrices A1, A2, ..., An and
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Chapter 1. Linear matrix inequalities in control

B1, B2, ..., Bn, respectively; A0 is a known symmetric matrix, i.e., A0 = AT0 ; and
(> 0) stands for positive-definiteness.

A symmetric matrix M is said to be positive-definite, i.e., M > 0, if it holds
xTMx > 0 for all x ∈ Rn, x 6= 0. A similar definition can be made for a negative-
definite matrix, denoted as M < 0, which with the previous one constitute the
class of strict LMIs. Non-strict ones arise from the sets of positive and negative
semi-definite matrices denoted as M ≥ 0 and M ≤ 0, respectively. Importantly,
in all cases M = MT . Positive-definiteness of a symmetric matrix M is equivalent
to its eigenvalues having positive real parts; abusing the notation, if σ(M) denotes
the spectrum of M , we express this fact as M = MT > 0 ⇐⇒ Re(σ(M)) > 0.

In many references such as (Boyd et al. 1994), an LMI is expressed in terms of a
vector of decision variables x ∈ Rm, i.e.:

F (x) = F0 +
n∑
i=1

xiFi > 0, (1.2)

where Fi = FTi ∈ Rn×n, i = 0, · · · , n are given constant symmetric matrices.
Again, keep in mind that (> 0) stands for positive-definiteness and that this can
be adapted to reflect semi-definiteness if required. Naturally, both definitions 1.1
and 1.2 are equivalent, since the entries of the vector x are the different scalar
entries in matrices Mi, i ∈ {1, 2, . . . , n}.

Example 1.1. Consider A =

[
−1 2
0 −3

]
along with symmetric matrix P =[

p11 p12

p12 p22

]
. The LMI PA + ATP < 0, written in the form (1.1), can be put

into form (1.2) by doing the following:

PA+ATP =

[
p11 p12

p12 p22

] [
−1 2
0 −3

]
+

[
−1 2
0 −3

]T [
p11 p12

p12 p22

]
=

[
−2p11 2p11 − 4p12

2p11 − 4p12 4p12 − 6p22

]
=

[
−2 2
2 0

]
︸ ︷︷ ︸

F1

p11︸︷︷︸
x1

+

[
0 −4
−4 4

]
︸ ︷︷ ︸

F2

p12︸︷︷︸
x2

+

[
0 0
0 −6

]
︸ ︷︷ ︸

F3

p22︸︷︷︸
x3

.

The feasibility set of an LMI –using definition (1.2)– is the subset of Rm such
that S = {x ∈ Rm, F (x) > 0}. It turns out that the feasibility set of an LMI is
always a convex set (Scherer 2004). A convex set S is such that for every pair
x, y ∈ S it follows that λx+ (1− λ)y ∈ S, 0 ≤ λ ≤ 1.

10



1.1 Definitions, problems, and properties

1.1.2 LMI problems

A convex optimisation problem consists in minimising a convex function f(x) on
the set S = {x ∈ Rm, g(x) ≤ 0, h(x) = 0} where g(x) : Rm → Rk is also convex
and h(x) : Rm → Rl is affine. Such sort of problems can be solved in polynomial
time and an instance of x holding the constraints be found. Convexity of the sets
on which these functions or problems are defined is relevant as it guarantees no
local minima will be found and feasibility can always be decided. If no solution
exists, the corresponding problem is called infeasible. In other words, should a
problem be stated as an LMI one, we can rest assured that a solution will be
found if it exists or, otherwise stated, that we will know if there is no solution.

The following well-known convex or quasi-convex optimization problems are rel-
evant for analysis and synthesis of control systems (Boyd et al. 1994; Scherer
2004):

1. Feasibility problem (FP): Finding a solution x to the LMI system (1.2) or
determine that there is none; it is equivalent to minimising the convex func-
tion f : x→ λmin(F (x)) and then deciding whether the solution is positive
(strictly feasible solution), zero (feasible solution), or negative (unfeasible
case).

2. Optimization problem: Minimise a linear combination of the decision vari-

ables, i.e., c1x1 + c2x2 + · · · + cmxm, where c =
[
c1 c2 · · · cm

]T
is a

given vector of coefficients and x =
[
x1 x2 · · · xm

]T
is the decision vec-

tor. This problem belongs to semi-definite programming (SDP) as it is a
generalisation of linear programming for the cone of positive semi-definite
matrices.

3. Generalised eigenvalue problem (GEVP): Minimise eigenvalues of a pair
of matrices which depend affinely on a variable, subject to a set of LMI-
constraints or determine that the problem is infeasible. More precisely:

minλ : λB(x)−A(x) > 0, B(x) > 0, C(x) > 0, (1.3)

where A(x), B(x) and C(x) are symmetric and affine with respect to x. The
problem can also be rewritten as

minλmax(A(x), B(x)) : B(x) > 0, C(x) > 0, (1.4)

where λmax(X,Y ) denotes the largest generalised eigenvalue of λY −X with
Y > 0. This is a quasi-convex problem which can be solved by bisection on
λ and LMIs on x.
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Chapter 1. Linear matrix inequalities in control

1.1.3 Solvers

As mentioned before, stating a problem as an LMI one has a computational ad-
vantage; therefore, its solution is no longer analytical (Lur’e 1957) nor graphical
(Yakubovich 1965) as intended in the past. Since the early eighties LMIs have
been solved numerically, first through convex programming (Karmarkar 1984),
then through interior-point algorithms (Nesterov and Nemirovsky 1988). The user
is no longer faced to the task of programming these algorithms as they are already
implemented in commercially available software. Most of them are MATLAB-
based, such as the LMI Toolbox (Gahinet et al. 1995), which exploits projective
methods and linear algebra; SeDuMi (Sturm 1999) and MOSEK (ApS 2015),
which are semi-definite programming solvers whose syntaxis is that of YALMIP
(Löofberg 2004); SDPT3 (Tütüncü, Toh, and Todd 2003), VSDP (Härter, Jans-
son, and Lange 2012), and LMIRank (Orsi 2005). MAXDET (Boyd et al. 1994)
and CSDP do not run under MATLAB-related platforms. The examples in this
thesis were obtained using SeDuMi or MOSEK with a Yalmip interface. Here and
there pieces of code are given to illustrate certain points, but for deeper informa-
tion on the solver syntaxis the reader is referred to the documentation cited in
this section.

1.1.4 Properties

Despite the general belief, casting a control problem in terms of LMIs might be
a challenging task as the involved conditions may require a number of matrix
manipulations before yielding its convex nature (if it is so) or a number of con-
servative assumptions to obtain a reduced convex formulation. The following are
some of the most common matrix properties that can be found in the LMI-related
literature:

Property 1.1 (Grouping). A set of LMIs F1(x) > 0, · · · , Fk(x) > 0 is equivalent
to the single LMI F (x) = diag

[
F1(x) · · · Fk(x)

]
> 0 where diag(· · · ) denotes

the block-diagonal matrix with F1(x), F2(x),...,Fk(x) on its main diagonal.

Property 1.2 (Schur Complement). Given a matrix Q(x) ∈ Rm×m, Q(x) > 0,
a full rank-by-row matrix S(x) ∈ Rn×m and a matrix R(x) ∈ Rn×n, all of them
depending affinely on x, the following inequalities are equivalent:[

R(x) S(x)
S(x)T Q(x)

]
> 0 (1.5)

R(x)− S(x)Q(x)−1S(x)T > 0. (1.6)

Property 1.3 (Slack variables (discrete)). Given matrices A, G, L, P and Q with
appropriate sizes, the following inequalities are equivalent (Oliveira and Skelton
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1.1 Definitions, problems, and properties

2001)

ATPA−Q < 0, P > 0 (1.7)[
−Q ATP
PA −P

]
< 0 (1.8)

∃G :

[
−Q ATG
GTA −G−GT + P

]
< 0, P > 0 (1.9)

∃G,L :

[
−Q+ATL+ LA −L+ATG
−LT +GTA −G−GT + P

]
< 0, P > 0 (1.10)

Property 1.4 (Slack variables (continuous)). Given matrices A, G, L, P = PT

and Q with appropriate sizes, the following inequalities are equivalent (Peaucelle
et al. 2000):

ATP + PA+Q < 0 (1.11)

∃G,L :

[
ATL+ LA+Q P − L+ATG
P − LT +GTA −G−GT + P

]
< 0 (1.12)

Property 1.5 (S-procedure). Given matrices Fi = FTi , i ∈ {0, 1, . . . , p}, the
following inequalities are equivalent:

xTF0x > 0,∀x 6= 0 : xTFix ≥ 0,∀i ∈ {1, 2, · · · , p} (1.13)

∃τ1, · · · , τp ≥ 0 : F0 −
p∑
i=1

τiFi > 0. (1.14)

Property 1.6 (Finsler’s Lemma). Given a vector x ∈ Rn and matrices Q =
QT ∈ Rn×n, R ∈ Rm×n and S ∈ Rm×n such that rank(R) < n, rank(S) < n,
the following inequalities are equivalent:

xTQx < 0, ∀x 6= 0 : Rx = 0, Sx = 0 (1.15)

RT⊥QR⊥ < 0, ST⊥QS⊥ < 0 (1.16)

∃σ ∈ R : Q− σRTR < 0, Q− σSTS < 0 (1.17)

∃X ∈ Rn×m : Q+ STXR+RTXTS < 0 (1.18)

Getting expression (1.16) from (1.18) is usually referred as the elimination lemma
for the obvious reason that expression (1.16) is equivalent to (1.18) without X.

Property 1.7 (Congruence). Given a matrix P = PT and a full rank-by-column
matrix Q, P > 0⇒ QPQT > 0.

Property 1.8 (Completion of squares). Given two matrices X, Y of proper size,
∀Q = QT > 0, XY T + Y XT ≤ XQXT + Y Q−1Y T .
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Chapter 1. Linear matrix inequalities in control

1.2 LMIs in linear time-invariant systems

Many “classical” problems in standard linear control involving Lyapunov and Ric-
cati equations can be cast as LMI ones. As these LMI problems will be the root of
generalisations to polytopic-uncertainty (Takagi-Sugeno) in later developments,
they will be briefly reviewed. Of course, LMIs can be applied to nonlinear systems
(see next chapter) as well as delayed (Richard 2003; Gonzalez et al. 2013), switch-
ing (Sala, Hernández-Mej́ıas, and Ariño 2017), etc. but most of these options root
on the basic ideas described below.

1.2.1 Stability

LMIs have not always been recognised as such, for they have appeared in control
contexts since the very origins of the Lyapunov theory (Lyapunov 1892) and, in
the linear context, through the famous Ricatti equation (Willems 1971). Nowa-
days, we refer to them mainly because of its computational properties which allow
solving control problems as convex optimisation ones. To see this in some detail,
it is better to begin with linear time-invariant (LTI) systems as stability analysis,
controller and observer design, maximisation or minimisation of a performance
measure, are all well-known tasks that can be easily cast as LMIs.

Consider an autonomous LTI system of the form

ẋ(t) = Ax(t), (1.19)

with x ∈ Rn denoting the state and A the system matrix. If this system has an
isolated equilibrium point it can only be globally asymptotically stable (GAS)
(which includes stable nodes and foci), stable, but not GAS (center), or unstable
(saddle points, unstable nodes and foci) (Chen 1984). GAS stability is equivalent
to ensuring that Re(σ(A)) < 0, i.e., all the eigenvalues of A must have negative
real parts. Such matrices are referred to as Hurwitz matrices. Since A is not
necessarily symmetric, this is equivalent to the existence of a matrix P such that

PA+ATP < 0. (1.20)

The reader surely identifies the previous inequality with an expression resulting
from Lyapunov analysis of LTI systems. We will get later into the Lyapunov the-
ory of stability because it is the basic tool in the nonlinear context; nevertheless,
it can also be used in the linear one: an LTI system (1.19) is GAS if and only if
there exists a quadratic Lyapunov function of the form V (x) = xTPx associated
with it. In other words, in linear contexts quadratic stability is sufficient and nec-
essary for a GAS equilibrium point. Since V (x) needs to be a Lyapunov function,

14



1.2 LMIs in linear time-invariant systems

it must be positive-definite, i.e., V (x) > 0 ∀x 6= 0 while V̇ (x) < 0 ∀x 6= 0. These
conditions straightforwardly translate into LMIs (Boyd et al. 1994):

V (x) = xTPx > 0, ∀x 6= 0 ⇐⇒ P > 0

V̇ (x) = xTPẋ+ ẋTPx = xT (PA+ATP )x < 0, ∀x 6= 0 ⇐⇒ PA+ATP < 0.

Since the Lyapunov function can be scaled without loss of generality, long before
the arrival of LMIs, a test equivalent to (1.20) has been established via the Lya-
punov equation which is a particular case of the algebraic Ricatti one: find P > 0
such that for a given Q > 0, the resulting system of equations in PA+ATP = −Q
holds.

1.2.2 Stabilisation

For non-autonomous LTI systems of the form

ẋ(t) = Ax(t) +Bu(t), (1.21)

where u ∈ Rm is an input vector, state feedback has long ago been proposed as a
way of driving the state x to 0, a task which is known as stabilisation. A classical
linear state feedback is

u(t) = Fx(t), (1.22)

where F ∈ Rm×n is a gain which can be proposed for a posteriori checking on
stability of the closed-loop system (analysis) or precisely calculated to guarantee
that the origin of the closed-loop system is GAS (synthesis).

The closed-loop system seems as

ẋ(t) = (A+BF )x(t), (1.23)

whose origin, according to criteria in (1.20), is GAS if ∃P = PT > 0 such that
P (A + BF ) + (A + BF )TP < 0. For analysis, the latter is an LMI in P as it
assumes F is already given; for synthesis, this expression is not an LMI as it has
products of decision variables P and F . This is the occasion of recurring to some
of the matrix properties of the previous sections.

Indeed, by congruence (1.7), we have that

PA+ PBF +ATP + FTBTP < 0 ⇐⇒ AX +BFX +XAT +XFTBT < 0

with X = P−1 as a full-rank symmetric matrix that pre- and post-multiplies the
original expression. Defining M = FX we have that the latter inequality becomes

AX +BM +XAT +MTBT < 0, (1.24)
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which, if feasible, will produce a solution pair X, M , from which the desired gain
F = MX−1 is univocally defined. The associated quadratic Lyapunov function
will be V (x) = xTPx with P = X−1. This development, though very elementary,
shows that properties can be used to reveal the LMI nature of expression that
does not seem so at first sight.

Example 1.2. The linear system

ẋ(t) =

[
1 2
0 3

]
x(t) +

[
4
−2

]
u(t)

is unstable. The following MATLAB code in Yalmip calls the SeDuMi solver to
search X > 0 and M such that (1.24) holds; the interested reader is referred to
the software documentation in (Sturm 1999) for details:

A=[1 2; 0 3]; B=[4; -2];

X=sdpvar (2); M=sdpvar(1,2,’full’); LMI =[];

LMI=[LMI ,X>=-(1e-6)* eye (2)];

LMI=[LMI ,A*X+B*M+(A*X+B*M)’<=-(1e-6)* eye (2)];

5 ops=sdpsettings(’solver ’,’sedumi ’,’verbose ’,0,

’warning ’,0,’shift’,1e-5);

SOL=solvesdp(LMI ,[],ops);

if SOL.problem ==0

X=double(X); P=inv(X); M=double(M); F=M*P;

10 end

The following solution has been found, which means the LMIs above are feasible;
correspondingly, the control gain F = MX−1 and the Lyapunov matrix P = X−1

are also given:

X =

[
2.3203 −0.6999
−0.6999 0.2207

]
, P =

[
9.9325 31.5004
31.5004 104.4338

]
,

M =
[
−0.3416 0.4728

]
, F =

[
11.5009 38.6172

]
.

With these results, the control law (1.22) can be applied to the system above. The
trajectories from different initial conditions are shown in Fig. 1.1, which shows
that the system was indeed stabilised.
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Figure 1.1: Phase portrait.

1.2.3 Observer design

Classical observer design for LTI systems can also be cast as an LMI problem.
To see this, consider a system output y(t) = Cx(t), C ∈ Rp×n, along with the
following observer:

˙̂x(t) = Ax̂+Bu(t) + L(y(t)− ŷ(t)), ŷ(t) = Cx̂(t), (1.25)

with x̂ ∈ Rn, ŷ ∈ Rp, L ∈ Rn×p being the observer state, the observer output,
and the observer gain, respectively. Observer design amounts to calculating L
such that limt→∞ e(t) = 0 with e(t) = x(t)− x̂(t); therefore, it follows that

ė(t) = (A− LC)e(t) (1.26)

corresponds to the error dynamics. Since this is an LTI system, guaranteeing that
e = 0 is a GAS equilibrium point is equivalent to the existence of V (e) = eTPe
such that P = PT > 0 and V̇ (e) = eTP (A−LC)e+eT (A−LC)TPe < 0, ∀e 6= 0.
The latter inequality is guaranteed if

P (A− LC) + (A− LC)TP = PA−NC +ATP − CTNT < 0, (1.27)

where the substitution N = PL has been made as a solution pair P , N univocally
defines L = P−1N .
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1.2.4 Discrete-time systems

Similar results to the ones above can be obtained in the discrete-time case, i.e.,
systems of the form

x(t+ 1) = Ax(t) +Bu(t). (1.28)

Clearly, if u(t) = 0 and V (x) = xTPx, P = PT > 0, a Lyapunov function
candidate, the resulting autonomous system x(t+ 1) = Ax(t) is stable if and only
if ∆V = V (t+ 1)− V (t) < 0, a condition that translates into an LMI:

V (t+ 1)− V (t) =xT (t+ 1)Px(t+ 1)− xT (t)Px(t)

=xT (t)ATPAx(t)− xT (t)Px(t)

=xT (t)
(
ATPA− P

)
x(t) < 0 ⇐⇒ ATPA− P < 0.

The same goes for controller design as linear state feedback (1.22) produces a
closed-loop system of the form x(t + 1) = (A + BF )x(t) which, when combined
with the quadratic Lyapunov function candidate V (x) = xTPx, P = PT > 0
yields the following condition for ∆V < 0:

(A+BF )TP (A+BF )− P < 0 ⇐⇒ X(A+BF )TP (A+BF )X −XPX < 0

⇐⇒ X −X(A+BF )TX−1(A+BF )X > 0

⇐⇒
[

X X(A+BF )T

(A+BF )X X

]
>0 ⇐⇒

[
X XAT +MTBT

AX+BM X

]
>0,

where X = P−1 and M = BF . Notice that besides the congruence property
1.7, the Schur complement in property 1.2 has been employed. As before, the
substitution of variables univocally defines P and F from the solution pair X, M .
Of course, similar developments can be done for observer design (Duan and Yu
2013).

1.2.5 Constraints on input and output

A common requirement in control tasks is to hold a specific bound µ > 0 for the
control signal, i.e., ||u(t)|| < µ. Since this condition can be written as

||u(t)|| < µ ⇐⇒ ||u(t)||2 = uTu = xTFTFx ≤ µ2 ⇐⇒ xTFTµ−2Fx ≤ 1,
(1.29)

it can be related with the quadratic Lyapunov function by imposing an extra
condition on it (without loss of generality):

V (x) = xTPx ≤ xT (0)Px(0) ≤ 1. (1.30)
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1.2 LMIs in linear time-invariant systems

Thus, when searching for a control law (1.22), inequalities (1.29) and (1.30) com-
bine as:

xTFTµ−2Fx ≤ xTPx ≤ xT (0)Px(0) ≤ 1 ⇐⇒
{
xT
(
P − FTµ−2F

)
x ≥ 0

1− xT (0)Px(0) ≥ 0
(1.31)

By Schur complement –property 1.2– the matrix expression in (1.31) is equivalent
to [

P FT

F µ2I

]
≥ 0,

[
1 xT (0)

x (0) P−1

]
≥ 0,

which, by congruence property 1.7 with

[
X 0
0 I

]
, X = P−1 y M = FX, becomes

[
X MT

M µ2I

]
≥ 0,

[
1 xT (0)

x (0) X

]
≥ 0, (1.32)

which are already in an LMI form that can be combined with those in (1.24) to
guarantee ||u(t)|| < µ.

Similarly, guaranteeing ||y(t)|| < λ for an output y(t) = Cx(t) leads to an LMI
expression of the form[

X XCT

CX λ2I

]
≥ 0,

[
1 xT (0)

x (0) X

]
≥ 0. (1.33)

1.2.6 Performance specification

So far, the control problems just presented let to the LMI solver the task of
defining what instance of the solution space (i.e, which specific Lyapunov matrices
and gains) is to be proposed. They correspond to the feasibility problem in the
previous section, which means they are not concerned with the appropriateness
of the solution, but only with its existence. If the LMI solutions above are to be
used in real-time-oriented simulations and applications, one must come up with
an LMI way to impose restrictions on the control input (actuators energy), the
output signals (which might be connected to something else), and a number of
performance measures such as decay rate, cost functions, and H∞ attenuation
level.

Pole placement is the basic tool for control performance specification in the linear
context as pole location in the complex plane is related with the output settling
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time, i.e., the “stabilisation speed” of the controlled signals. Via LMIs, any region
in the complex plane of the form

R =
{
s ∈ C : Q+ sS + s̄ST + s̄Rs

}
, (1.34)

with s̄ being the complex conjugate of s, Q, S, and R matrices of adequate size
such that Q = QT and R = RT , can be described via LMIs. In the “region
template” given by (1.34) we can find strips, circles, ellipses, etc. Since LMIs
can be simply stacked together as to hold several restrictions, any intersections
of such regions can also be described by LMIs by property 1.1.

As shown in (Scherer 2004), given an autonomous continuous- or discrete-time
system of the form (1.19) or (1.28), respectively, the eigenvalues of A are in the
region (1.34) if and only if there exists X > 0 such that[

I
A⊗ I

]T [
X ⊗Q X ⊗ S
X ⊗ ST X ⊗R

] [
I

A⊗ I

]
< 0. (1.35)

Notice that the stability results given above are particular cases of the LMI above
as they intend to guarantee the poles lie in the left half complex plane C− for
continuous-time systems and within the unitary circle for discrete-time systems.

Decay rate

For controller synthesis, i.e., determining the gain F in (1.22) such that the poles
of a continuous- or discrete-time system are within an LMI region (1.34), we begin
by referring to the concept of decay rate, i.e., the largest Lyapunov exponent α
such that limt→∞ e

−αt |x(t)| = 0:

1. Continuous-time case: Finding the maximum (or imposing a given) α > 0
such that V̇ (x(t)) ≤ −2αV (x(t)).

2. Discrete-time case: Finding the maximum (or imposing a given) 0 ≤ α ≤ 1
such that ∆V (x(t)) ≤ (α2 − 1)V (x(t)).

Imposing a decay rate implies placing the poles beyond a certain vertical threshold
in the left half complex plane (continuous case) or in a circle smaller than the
unitary one (discrete case), which belongs to the class of problems that can be
solved via LMIs (1.35). Alternatively, LMIs can be deduced from the conditions
listed above; in the continuous-time case (1.23):

V̇ (x(t)) ≤ −2αV (x(t)) ⇐⇒ AX +BM +XAT +MTBT + 2αX ≤ 0
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1.2 LMIs in linear time-invariant systems

or the discrete-time case:

∆V (x(t)) ≤ (α2 − 1)V (x(t)) ⇐⇒
[

α2X XAT +MTBT

AX +BM X

]
> 0 (1.36)

Notice that maximising α subject to the LMIs above is a GEVP problem. In the
discrete-case it suffices to substitute α2 by some new variable β > 0, then run the
GEVP problem over it. GEVP problems have a built-in instruction within the
LMIToolbox; for SeDuMi/MOSEK platforms there is a bisection minimisation
function which can be called instead.

Example 1.3. Obviously, bigger decay rates can be achieved at the cost of bigger
size of the control input. To illustrate this, consider the problem of achieving the
maximum decay rate for the system

ẋ(t) =

[
1 −3
0 5

]
x(t) +

[
0
3

]
u(t), (1.37)

with ||u(t)|| ≤ 10, x(0) =
[
−1 2

]T
. LMIs (1.36) should be combined with those

in (1.32) as illustrated in the following MATLAB/Yalmip code:

A=[1 -3; 0 5]; B=[0; 3]; mu=10; x0=[-1; 2];

sdpvar invalfa;

X=sdpvar (2); M=sdpvar(1,2,’full’); LMI =[];

LMI=[LMI ,X>=(1e-6)* eye (2)];

5 LMI=[LMI ,invalfa *(A*X+B*M+(A*X+B*M) ’)+2*X<=-(1e-6)* eye (2)];

LMI=[LMI ,[X M’; M mu^2] >=(1e -10)* eye (3)];

LMI=[LMI ,[1 x0 ’; x0 X]>=(1e -10)* eye (3)];

LMI=[LMI invalfa >=0.00001];

Objective = invalfa;

10

SOL=bisection(LMI ,Objective ,sdpsettings(’solver ’,’mosek’))

if SOL.problem ==0

invalfa=double(invalfa ); alfa =1/ invalfa

X=double(X); P=inv(X); M=double(M); F=M*P;

15 end

It yields a maximum decay rate of α = 1.7156. Yet, if the maximum allowable
magnitude of the input is ||u(t)|| ≤ 5, the maximum decay rate falls to α = 0.0520;
moreover, if ||u(t)|| ≤ 1, the LMIs become infeasible.
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H∞ disturbance rejection

What is referred as H∞ disturbance rejection consists in finding a control law
(1.22) such that the scaled `2 gain γ > 0 (also known as the attenuation level)
between the disturbance signal w(t) and output signal y(t) in the LTI system
configuration

ẋ(t) = Ax(t) +Bu(t) +Dw(t), y(t) = Cx(t) + Ew(t), (1.38)

subject to a linear state feedback control law u(t) = Fx(t), is minimised (El
Ghaoui et al. 1992). In other words, we intend to minimise γ subject to

sup
‖w(t)‖2 6=0

‖y(t)‖2
‖w(t)‖2

≤ γ. (1.39)

Recall that norm `2 of a signal, let say y(t), is defined as (Doyle, Francis, and
Tannenbaum 1992): (∫ ∞

−∞
yT (t)y(t)

) 1
2

. (1.40)

Given a Lyapunov function candidate, it can be shown that condition

V̇ + yT y − γ2wTw ≤ 0 (1.41)

is sufficient for inequality (1.39) to hold. Therefore,

V̇ + yT y − γ2wTw = ẋTPx+ xTPẋ+ (Cx+ Ew)
T

(Cx+ Ew)− γ2wTw

= xTP ((A+BF )x+Dw) + ((A+BF )x+Dw)
T
Px

+ (Cx+ Ew)
T

(Cx+ Ew)− γ2wTw

= xT
(
PA+ PBF + FTBTP +ATP + CTC

)
x+ xT

(
PD + CTE

)
w

+wT
(
ETC +DTP

)
+ wT

(
ETE − γ2I

)
w ≤ 0

=

[
x
w

]T [
PA+ PBF + FTBTP +ATP + CTC PD + CTE

ETC +DTP ETE − γ2I

] [
x
w

]
≤ 0.

Clearly, the last inequality holds if and only if[
PA+ PBF + FTBTP +ATP + CTC PD + CTE

ETC +DTP ETE − γ2I

]
≤ 0,
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which can be pre- and post-multiplied by

[
X 0
0 I

]
using the property 1.7, with

X = P−1 and M = FX to get:[
AX +BM +MTBT +XAT +XCTCX D +XCTE

DT + ETCX ETE − γ2I

]
≤ 0.

Applying the Schur complement in property 1.2 to block element (1, 1), we finally
arrive to an LMI expression:AX +BM +MTBT +XAT XCT D +XCTE

CX −I 0
DT + ETCX 0 ETE − γ2I

 ≤ 0, (1.42)

which, if feasible, sets F = MX−1 as the desired gain.

Example 1.4. We intend to apply H∞ control to minimise the attenuation level
between the disturbance signal w(t) and output signal y(t) in the following LTI
system

ẋ(t) =

[
1 2
2 3

]
x(t) +

[
1
2

]
u(t) +

[
0.1
0.4

]
w(t), y(t) = x2.

To do so, the following MATLAB code in Yalmip calls the SeDuMi solver to search
the minimum γ with X > 0 and M such that (1.42) holds:

A=[1 2; 2 3]; B=[1; 2]; C=[0 1]; E=0; D=[0.1;0.4];

gamahinfty=sdpvar (1); X=sdpvar (2); M=sdpvar(1,2,’full’); LMI =[];

LMI=[LMI ,X>=(1e-6)* eye (2)]; LMI=[LMI ,gamahinfty >=(1e -10)];

LMI=[LMI ,[A*X+B*M+M’*B’+X*A’ X*C’ D+X*C’*E;

5 C*X -1 0;

D’+E’*C*X 0 E’*E-gamahinfty ]<=-(1e-10)* eye (4)];

ops = sdpsettings(’solver ’,’sedumi ’,’verbose ’,

0,’warning ’,0,’shift’,1e-5);

SOL=optimize(LMI ,gamahinfty ); %,ops);
10 if SOL.problem ==0

X=double(X); P=inv(X); M=double(M); F=M*P;

gamahinfty=sqrt(double(gamahinfty ))

end

It was found that γ = 0.2 is the minimum attenuation level that renders the previ-
ous LMIs feasible. Notice that instead of “solvesdp”, the instruction “optimize”
has been used.
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Chapter 2

LMI-based nonlinear control

For LMIs to be useful in nonlinear contexts, the different con-
stituents –system, controller, observer, etc.– should be amenable to
linear-like forms that allow the direct Lyapunov method to be used in
a way that mimics the results of the linear context. Linearisation is
a first –yet poor– form of achieving such goal; a convex interpolation
of models obtained by linearisation at different set points is another
one: both of them are approximate. This chapter focuses on the sector
nonlinearity approach that allows obtaining an exact convex represen-
tation in a compact set of the state space, be in the Takagi-Sugeno
or the polynomial form; it then illustrates how analysis and synthesis
derived from these forms are valid for the original setup, albeit condi-
tions are only sufficient. The issue of conservativeness is explored to
some extent as tackling one of its sources is one of the thesis goals.

2.1 Takagi-Sugeno models

2.1.1 The “fuzzy” origins

Takagi-Sugeno (TS) models originally emerged in the fuzzy literature as a connec-
tion between linguistic fuzzy systems and ordinary sets of differential or difference
equations (Takagi and Sugeno 1985). Up to their appearance, fuzzy systems were
considered as sets of “heuristic” linguistic rules intended to describe the behavior
of a plant or controller in order to obtain a numerical description of it (Wang
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1997). Though powerful for model-free control tasks, fuzzy systems such as the
Mamdani one (Mamdani and Assilian 1975) were not fit for mathematical analy-
sis of the sort traditional control systems employed, even if introduction of some
“possibilistic uncertainty” was intended to better transcript relevant features of
some control problems (Sala and Albertos 1998).

Thus, fuzzy TS models aimed originally to fill the heuristic/formal control gap
by proposing a trade-off between linguistic descriptions and traditional state-
space representations: instead of describing the actual values of the states, they
provided ẋ(t) (continuous-time) or x(t+ 1) (discrete-time) as the consequents of
Mamdani fuzzy systems. For illustration, consider the following continuous-time
linguistic representation (Tanaka and Wang 2001):

IF z1(t) is Mi1 and · · · and zp(t) is Mip

THEN ẋ(t) = Aix(t) +Biu(t), i ∈ {1, 2, . . . , r},

that reduces to the following defuzzified equivalent:

ẋ(t) =

∑r
i=1wi(z(t)) (Aix(t) +Biu(t))∑r

i=1wi(z(t))

=
r∑
i=1

hi(z(t)) (Aix(t) +Biu(t)) ,

with Mij(zj(t)) being the grade of membership of zj(t) in fuzzy set Mij , r the
number of rules (models), x(t) ∈ Rn the state vector, u(t) ∈ Rm the input vector,
Ai and Bi system matrices of appropriate size (perhaps obtained by linearisation
of a nonlinear model at certain operating points, bias neglected), z1(t), ..., zp(t)
being known premise variables that are functions of the state, exogenous signals,
and/or time, z(t) the vector that groups them; wi(z(t)) known as weights and
hi(z(t)) known as membership functions (MFs), calculated as:

wi(z(t)) =

p∏
j=1

Mij (zj(t)) , hi(z(t)) =
wi(z(t))∑r
i=1wi(z(t))

.

Normally, fuzzy sets Mij are normalised, which implies that weights wi(z(t))
and MFs hi(z(t)) always hold the convex-sum property

∑r
i=1 hi(z(t)) = 1, 0 ≤

hi(z(t)) ≤ 1, regardless of the state x(t) or input u(t) values.

Fuzzy TS systems of the sort just described can be subsumed in the broader class
of quasi linear parameter varying (qLPV) systems as, in addition to possible un-
certainties θ, the MFs may depend also on states x(t) (Apkarian and Gahinet
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1995). These MFs are viewed then as interpolating functions among linear sys-
tems ẋ(t) = Aix(t)+Biu(t), i ∈ {1, 2, . . . , r}. This leads to their interpretation as
polytopic linear differential inclusions (PLDIs) as the state-, time-, or parameter-
nature of the MFs might be ignored by focusing on the MFs convex-sum property.
Thus, a TS model can be subsumed in the class of PLDI as they are polytopes
of linear systems due to the convexity of the MFs whose dependency is neglected
(Boyd et al. 1994).

This introduction was intended to trace back the origins of the TS systems we are
about to study in greater detail as well as to clarify common misunderstandings
regarding “close-friend” classes of systems, but in the sequel we will not refer to
fuzzy TS models as our approach is not model-free nor fuzzy. We are interested
in TS models as means for analysis and synthesis of nonlinear control systems
whose model is a priori known. To be useful for this purpose, a TS model must
be an exact convex rewriting of a nonlinear one, at least in some region. Under
mild assumptions, we are about to discover this is possible.

2.1.2 Exact convex modelling

Consider a function z : Rn → R such that for x ∈ Ω ⊂ Rn, Ω being a compact
set, there exist values z1 and z0 such that z(x) ∈

[
z0, z1

]
, i.e., z(x) is bounded in

Ω. In this case, z(x) can be written as a convex sum of its bounds as follows:

z(x) =
z1 − z(x)

z1 − z0︸ ︷︷ ︸
w0(x)

z0 +
z(x)− z0

z1 − z0︸ ︷︷ ︸
w1(x)

z1, (2.1)

where w0(x) and w1(x) hold the convex-sum property w0(x) + w1(x) = 1, 0 ≤
w0(x), w1(x) ≤ 1.

Convex sums hold interesting properties when they appear in nested expressions,
for instance, given two bounded nonlinearities z1(x) ∈

[
z0

1 , z
1
1

]
and z2(x) ∈

[
z0

2 , z
1
2

]
modelled as in (2.1) via functions w1

0(x), w1
1(x) and w2

0(x), w2
1(x), respectively,

we have:

z1(x)z2(x) =

(
1∑
i=0

w1
i (x)zi1

)(
1∑
i=0

w2
i (x)zi2

)
=

1∑
i=0

1∑
j=0

w1
i (x)w2

i (x)zi1z
i
2 (2.2)

z1(x) + z2(x) =
1∑
i=0

w1
i (x)zi1 +

1∑
i=0

w2
i (x)zi2 =

1∑
i=0

1∑
j=0

w1
i (x)w2

i (x)
(
zi1 + zi2

)
(2.3)
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With these tools at hand, consider an affine in-control continuous-time nonlinear
system of the form

ẋ(t) = A(x)x(t) +B(x)u(t), (2.4)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, A(·) and
B(·) are smooth matrix possibly nonlinear functions of appropriate dimensions.
Assume there are p different non-constant terms zi(x), i ∈ {1, 2, . . . , p}, in A(x)
and B(x) which are bounded in a compact set Ω ⊂ Rn such that 0 ∈ Ω; they will
be the entries of the so-called premise vector z(x) ∈ Rp.

Let zj(x) ∈
[
z0
j , z

1
j

]
, j ∈ {1, 2, . . . , p} be the set of bounded non-constant terms

in A(x) and B(x) belonging to Ω. Similarly to (2.1), each of these terms can

be written as a convex sum of its bounds, i.e., zj(x) = wj0(x)z0
j + wj1(x)z1

j with

wj0(x), wj1(x), j ∈ {1, 2, . . . , p}, being weighting functions (WFs) of the form:

wj0(zj) =
z1
j − zj(x)

z1
j − z0

j

, wj1(zj) = 1− wj0(zj), j ∈ {1, 2, . . . , p}. (2.5)

Due to properties (2.2) and (2.3), (2.4) can be exactly rewritten as the following
tensor-product Takagi-Sugeno model :

ẋ(t) =
1∑

i1=0

1∑
i2=0

· · ·
1∑

ip=0

w1
i1w

2
i2 · · ·w

p
ip

(
A(i1,i2,...,ip)x(t) +B(i1,i2,...,ip)u(t)

)
(2.6)

=
∑
i∈Bp

wi (Aix(t) +Biu(t)) , (2.7)

where i = (i1, i2, . . . , ip), B ∈ {0, 1}, wi = w1
i1
w2
i2
· · ·wpip , Ai = A(x)|wi=1, Bi =

B(x)|wi=1, 1 = (1, 1, . . . , 1)︸ ︷︷ ︸
p ones

.

Adding the following definition of membership functions (MFs):

hi = h1+i1+i2×2+···+ip×2p−1 =

p∏
j=1

wjij (zj), (2.8)

with i ∈ {1, 2, . . . , r}, r = 2p, ij ∈ {0, 1}, which, as WFs, hold the convex-sum
property in Ω:

r∑
i=1

hi(·) = 1, hi(·) ≥ 0, i ∈ {1, 2, . . . , r}, (2.9)
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2.1 Takagi-Sugeno models

another exact representation of (2.4) in Ω is given by the following classical
Takagi-Sugeno (TS) model :

ẋ(t) =
r∑
i=1

hi (z(x)) (Aix(t) +Biu(t)) = Ahx(t) +Bhu(t), (2.10)

with (Ai, Bi) = (A(x), B(x))
∣∣
hi=1

, i ∈ {1, 2, . . . , r}. Notice the similarities and

differences of this model with respect to the fuzzy one in the previous section: the
structure is the same, yet dependency of the MFs and the model origin is entirely
different. Fuzzy systems arise from linguistic descriptions or linearisation, they
are model-free approximations; TS systems as (2.6) and (2.10) are model-based
and exact, i.e., they are not approximations.

More generally, exact TS models may also be used to rewrite in a convex way
any bounded expression, whether it depends on the state or not, for instance,
parametric uncertainties. If we know that certain parameter θ belongs to the
interval [θ0, θ1] we can always write

θ =
θ1 − θ
θ1 − θ0︸ ︷︷ ︸
w0(θ)

θ0 +
θ − θ0

θ1 − θ0︸ ︷︷ ︸
w1(θ)

θ1,

where w0(θ) and w1(θ) hold the convex-sum property w0(θ) + w1(θ) = 1,
0 ≤ w0(θ), w1(θ) ≤ 1. Similarly, any function of several variables –states or
uncertainties– can be written as a convex sum as long as it is bounded.

At first sight, this may seem as an advantageous flexibility: there are many ways
to obtain a TS model with a polytopic structure as those above. Nevertheless,
we will see that analysis and synthesis of nonlinear control systems based on
these convex structures depends critically on the vertex choice of the polytope,
i.e., the way nonlinearities are chosen to obtain matrices Ai, Bi in (2.6) or Ai,
Bi in (2.10). Moreover, we will see that these structures induce straightforward
generalisations of linear state feedback control laws that employ the WFs or the
MFs of the controlled model. Clearly, using these functions implies that they
are available, which excludes uncertainties (i.e., they cannot be fed back to the
system as they are unknown) and may depend on the state availability (if this
state is not available, observers may come at hand). Nevertheless, combinations
of “known” WFs associated to measured quantities with “unknown” ones (giving
rise to unmeasured polytopic uncertainty) can also be handled, see for instance
(Kruszewski 2006).
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Chapter 2. LMI-based nonlinear control

Example 2.1. Consider the following 2nd-order nonlinear system with paramet-

ric uncertainty θ ∈ [−2, 2] and state x(t) =
[
x1 x2

]T
:

ẋ1(t) = x2
1x2θ + sinx2, (2.11)

ẋ2(t) = x3
1 + (x2 + θ)u(t), (2.12)

with scalar states x1(t), x2(t) and input u(t). Suppose we are interested in con-
trolling this system within Ω = {x : −1 ≤ xi ≤ 1}. Then, defining the premise
variables z1 = x1, z2 = x2, z3 = θ, z4 = sinx2/x2, whose extreme values (given
or deduced) are listed in table 2.1, the following WFs can be defined:

wi0(zi) =
z1
i − zi
z1
i − z0

i

, wi1(zi) = 1− wi0(zi), i ∈ {1, 2, 3, 4}. (2.13)

Equations (2.11)-(2.12) are thus equivalent to:

ẋ(t) =

[
x1x2θ sinx2/x2

x2
1 0

]
︸ ︷︷ ︸

A(x,θ)

x(t) +

[
0

x2 + θ

]
︸ ︷︷ ︸
B(x,θ)

u(t) =
1∑

i1=0

1∑
i2=0

1∑
i3=0

1∑
i4=0

1∑
i5=0

w1
i1(x1)

× w2
i2(x2)w3

i3(θ)w4
i4(x2)w1

i5(x1)


[
zi11 z

i2
2 z

i3
3 zi44

zi11 z
i5
1 0

]
︸ ︷︷ ︸

Ai

x(t) +

[
0

zi22 + zi33

]
︸ ︷︷ ︸

Bi

u(t)

 ,

with i = (i1, i2, i3, i4, i5), which corresponds to a tensor-product TS model of the
form (2.6). Note that a fifth sum is given using the same WF of the first one,
w1
j (x), because x2

1 is interpreted as the product of two identical convex sums, each
of them representing x1.

Obviously, both the decoupling A(x, θ)x and the way nonlinearities have been cho-
sen afterwards could have been differently done. Consider, for instance, a decou-

Table 2.1: Nonlinearities in (2.11)-(2.12) and their bounds

Nonlinearity Definition Lower bounds z0
i Upper bounds z1

i

z1 x1 −1 1
z2 x2 −1 1
z3 θ −2 2
z4 sinx2/x2 0.842 1
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2.2 Nonlinear control

pling of the form:

A(x, θ) =

[
0 x2

1θ + sinx2/x2

x2
1 0

]
,

with the choice of nonlinearities z1 = x2
1, z2 = sinx2/x2, z3 = θ, z4 = x2. Such

options will produce 24 instead of 25 different pairs (Ai, Bi), something which is
highly appreciated in the literature as a lower number of vertex models directly
reflects in fewer LMIs. By now the reader may have noticed that the premise
variables may be chosen as depending on more than one variable or parameter, for
instance, for the same decoupling we can choose z1 = x2

1θ+sinx2/x2, z2 = x2
1, and

z3 = x2+θ, as to obtain 23 different pairs (Ai, Bi), the bounds will be of course the
combined minimum and combined maximum resulting from the minima/maxima
of the states and the uncertainty.

The tensor-product TS model above has WFs that depend exclusively on states and
another one that depends only on the uncertainty. Such selection is convenient for
control purposes as will be discussed in the next section, because only known states
can be fed back for control purposes as uncertainties are bounded, but unknown.
This distinction will be lost if an ordinary TS model with a single set of MFs (2.8)
is constructed, for instance, via the WFs in (2.13), i.e. (arguments omitted for
WFs):

h1(x, θ) = w1
0w

2
0w

3
0w

4
0w

1
0, h2(x, θ) = w1

0w
2
0w

3
0w

4
0w

1
1, . . . , h32(x, θ) = w1

1w
2
1w

3
1w

4
1w

1
1,

leading to

ẋ(t) =
32∑
i=1

hi(x, θ) (Aix(t) +Biu(t)) ,

with Ai = A(x, θ)|hi=1, Bi = B(x, θ)|hi=1.

Once an exact convex model is at hand, analysis and synthesis via LMIs is at
reach since the inequalities involved in Lyapunov-based analysis translate into
LMIs over the vertexes of the TS systems. This is the subject of the next section.

2.2 Nonlinear control

2.2.1 Lyapunov stability

Consider a nonlinear system of the form

ẋ(t) = f(x(t)), x(0) = x0, (2.14)
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Chapter 2. LMI-based nonlinear control

with x(t) ∈ Rn as the system state, f(·) : Ω→ Rn a locally Lipschitz function from
a domain Ω ⊆ Rn into Rn, ψ(t, x0) the solution of (2.14) from initial condition
x0 (which is assumed to be unique). Recall that an isolated equilibrium point x̄
is a state value such that ∃r > 0 : ∀x ∈ {x : |x| ≤ r, x 6= 0} ⇒ f(x) 6= 0, and
f(x̄) = 0.

In contrast with linear systems, nonlinear ones may present multiple equilibrium
points as well as a variety of phenomena such as limit cycles, finite-time escape,
chaos, etc. Without loss of generality, in the sequel we assume that the equi-
librium point under analysis is at the origin, i.e., x̄ = 0. Stability of isolated
equilibrium points of nonlinear systems is studied via Lyapunov stability theory,
first appeared in “The General Problem of Stability of Motion” (1892) from the
Russian mathematician Aleksandr Lyapunov. It consists in two methods: an “in-
direct” one based on the eigenvalues of the linearised system and a “direct” one
based on the existence of a Lyapunov function, i.e., an energy-like function of the
states that monotonically decreases over time for stable trajectories.

Some types of stability of equilibrium points are now defined:

Definition 2.1. (Haddad and Chellaboina 2008)

• The equilibrium point x̄ is said to be Lyapunov stable, if, for every ε > 0,
there exists a δ = δ(ε) such that, if ‖x(0)− x̄‖ < δ, then for every t ≥ 0 we
have ‖x(t)− x̄‖ < ε.

• The equilibrium point x̄ is said to be asymptotically stable if it is Lyapunov
stable and there exists δ > 0 such that if ‖x(0)−x̄‖ < δ, then limt→∞ ‖x(t)−
x̄‖ = 0.

• The equilibrium point x̄ is said to be exponentially stable if it is asymptoti-
cally stable and there exist α > 0, β > 0, δ > 0 such that if ‖x(0)− x̄‖ < δ,
then ‖x(t)− x̄‖ < α‖x(0)− x̄‖e−βt, for t ≥ 0.

• An equilibrium point x̄ is unstable if it is not Lyapunov stable.

The indirect Lyapunov method is now stated:

Theorem 2.1. (Khalil 2002) Consider a nonlinear system (2.14) with Ω being a
neighborhood of the isolated equilibrium point x = 0. Given the Jacobian matrix
of f(x) at x = 0

A =
∂f(x)

∂x

∣∣∣∣
x=0

, σ(A) = {λ1, λ2, . . . , λn},
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2.2 Nonlinear control

the origin is asymptotically stable if Re(λi) < 0 for all eigenvalues of A, or
unstable if Re(λi) > 0 for one or more of the eigenvalues of A.

Despite its simplicity, this theorem does not exhaust the different possibilities of
location of eigenvalue of A; it may therefore be useless if a system does not fall
in the aforementioned categories. Nevertheless, when it succeeds, it implies the
existence of a quadratic Lyapunov function V (x) = xTPx with P > 0 such that
PA + ATP < 0, which is also a Lyapunov function of the nonlinear system in
some neighborhood of the origin.

Naturally, the direct Lyapunov method is far more general than the previous
one. It is not only sufficient and necessary for stability of an equilibrium point
x = 0, but it helps us determining the domain of attraction, which is the region
D := {x ∈ Rn : ψ(t, x) ∈ Ω∀t ≥ 0, limt→∞ ψ(t, x) = 0}. Such estimation provides
the designer of a control system with a guaranteed domain (initial conditions) for
the desired behaviour.

The direct Lyapunov method is now stated:

Theorem 2.2. (Lyapunov 1992) Consider a nonlinear system (2.14) with Ω being
a neighborhood of the isolated equilibrium point x = 0. Let V : Ω → R be a
continuously differentiable function in Ω such that the following conditions are
fulfilled:

V (0) = 0 (2.15)

V (x) > 0 ∀x ∈ Ω, x 6= 0 (2.16)

V̇ (x) =
dV (x)

dt
< 0 ∀x ∈ Ω, x 6= 0 (2.17)

then the origin is asymptotically stable in the sense of Lyapunov. If Ω ≡ Rn and
V (x) being radially unbounded, i.e., ‖x‖ → ∞ ⇒ V (x) → ∞, then the origin is
globally asymptotically stable.

The existence of a Lyapunov function is a sufficient condition for the stability of an
equilibrium point; conversely, for every stable equilibrium point there must exist
a Lyapunov function (Hahn 1967). Despite its power and generality, this result
has a major drawback: there is no general methodology for searching Lyapunov
functions for nonlinear systems. Some forms, such as the quadratic one, have
been used for simplicity because they work fine in the linear case.

Theorem 2.2 helps providing an estimate of the DA of the origin: if there exist a
Lyapunov function V (x) that satisfies the conditions of asymptotic stability over
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Chapter 2. LMI-based nonlinear control

a domain Ω, then every trajectory staring in Ec := {x ∈ Rn : V (x) ≤ c}, Ec ⊂ Ω,
remains in Ec and approaches the origin as t → ∞. Therefore, Ec is an estimate
of the DA, i.e, Ec ⊂ D.

In the case of linear time-invariant (LTI) systems, the existence of a quadratic
Lyapunov function V (x) = xTPx is a sufficient and necessary condition for global
asymptotic stability of ẋ = Ax leading to the LMI conditions presented in the
previous chapter when linear systems where analysed. In particular, to apply
Theorem 2.2 to ẋ = Ax, consider the Lyapunov function candidate V (x) = xTPx,
where P = PT > 0 to satisfy condition (2.16). The time derivative of V (x) is
given by:

V̇ (x) = xTPẋ+ ẋTPx = xT
(
PA+ATP

)
x. (2.18)

Now, (2.17) is guaranteed if and only if PA + ATP < 0 as it coincides with the
definition of a negative-definite matrix. The inequalities P > 0 and PA+ATP < 0
are linear matrix expressions; determining whether or not there is an instance of
P such that the inequalities hold is an LMI problem.

2.2.2 The quadratic framework

From the previous chapter we already know the remarkable soundness of LMIs
within the context of linear control systems. This owns a great deal to the fact that
quadratic stability usually implies sufficiency and necessity of LMI conditions.
This of course is no longer the case for nonlinear systems; yet, sufficiency of LMI
conditions and much of their soundness can be preserved with the aid of TS
systems and the convex structure built in them.

Consider the following quadratic Lyapunov function candidate

V (x) = xT (t)Px(t), P = PT > 0 (2.19)

along with a continuous-time nonlinear system (2.4) with u(t) = 0, i.e., ẋ(t) =
A(x)x(t), x ∈ Rn. By the sector nonlinearity approach presented in section 2.1.2,
the following TS model of the system within a compact set of the state space Ω
containing the origin, is obtained; it is similar to (2.10) with u(t) = 0:

ẋ(t) =
r∑
i=1

hi (z(x))Aix(t) = Ahx(t), (2.20)

where Ai ∈ Rn×n and hi, i ∈ {1, 2, . . . , r} are the MFs holding the convex-
sum property in Ω. The following result establishes an LMI test for asymptotic
stability of the origin x = 0 of ẋ(t) = A(x)x(t) via the TS model (2.20) within Ω:
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Theorem 2.3. (Tanaka and Wang 2001) The origin x = 0 of the autonomous
model ẋ(t) = A(x)x(t) with TS equivalent (2.20) is asymptotically stable if there
exists a matrix P = PT > 0 such that PAi +ATi P < 0 for i ∈ {1, 2, . . . , r}.

Proof. According to the direct Lyapunov method in (2.2), the origin of the system
under analysis is asymptotically stable if there exists a function V (x) such that
V (x) > 0, x 6= 0 (a condition fulfilled by V (x) = xTPx, P = PT > 0) and
V̇ (x) < 0 ∀x ∈ Ω, x 6= 0, 0 ∈ Ω, a condition guaranteed by PAi + ATi P < 0 for
i ∈ {1, 2, . . . , r}, since

∑r
i=1 hi(·) = 1, 0 ≤ hi ≤ 1 and:

V̇ (t) = ẋT (t)Px(t) + xT (t)Pẋ(t)

=

(
r∑
i=1

hi(z)Aix(t)

)T
Px(t) + xT (t)Px(t)

(
r∑
i=1

hi(z)Aix(t)

)

=
r∑
i=1

hi(z)x
T (t)

(
PAi +ATi P

)
x(t),

which concludes the proof.

Since the convex sum property holds only in the compact set Ω, any trajectory
starting in the outermost Lyapunov level V (x) = x(t)TPx(t) = k, k ∈ R within
Ω goes to zero. Note that if Ω = Rn, i.e., if the convex sum property of the MFs
hold everywhere, the origin is globally asymptotically stable; this is the case of
the TS models in the fuzzy context (Tanaka and Wang 2001). Moreover, should
the model (2.6) be used instead of (2.10), with u(t) = 0, similar LMI results will
follow, namely: P = PT > 0, PAi +ATi P < 0, i ∈ Bp.

Example 2.2. Consider investigating the stability of the origin of the following
continuous-time nonlinear model:[

ẋ1

ẋ2

]
=

[
0 1

−3 + x2
1 −2− sinx2/x2

] [
x1

x2

]
. (2.21)

Notice that this model has 3 isolated equilibrium points at (0, 0), (±
√

3, 0). There-
fore, the origin cannot be globally asymptotically stable.

Consider a TS model of the form (2.10) within the square Ω = {x : |xi| ≤ x̄},
with x̄ to be defined later; the premise variables z1(x) = x2

1 ∈ [0, x̄2], z2(x) =
sinx2/x2 ∈ [−0.2173, 1]:

ẋ(t) =

4∑
i=1

hi(z(x))Aix(t), (2.22)
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with A1 =

[
0 1
−3 −1.7827

]
, A2 =

[
0 1
−3 −3

]
, A3 =

[
0 1

−3 + x̄2 −1.7827

]
, A4 =[

0 1
−3 + x̄2 −3

]
, w1

0 = (x̄2 − x2
1)/x̄2, w1

1 = 1 − w1
0, w2

0 = (1 − sinx2/x2)/1.2173,

w2
1 = 1 − w2

0, h1(z(x)) = w1
0w

2
0, h2(z(x)) = w1

0w
2
1, h3(z(x)) = w1

1w
2
0, and

h4(z(x)) = w1
1w

2
1.

The following MATLAB code uses SeDuMi to search P > 0 such that PAi +
ATi P < 0 for i ∈ {1, 2, 3, 4} when x̄ = 1:

barx =1;

A{1}=[0 1; -3 -1.7827]; A{2}=[0 1; -3 -3];

A{3}=[0 1; -3+barx^2 -1.7827]; A{4}=[0 1; -3+barx^2 -3];

P=sdpvar (2); LMI =[];

5 LMI=[LMI ,P>=(1e-6)* eye (2)];

for i=1:4

LMI=[LMI ,P*A{i}+(P*A{i})’<=-(1e-6)* eye (2)];

end

ops=sdpsettings(’solver ’,’sedumi ’,’verbose ’,0,

10 ’warning ’,0,’shift’,1e-5);

SOL=solvesdp(LMI ,[],ops);

if SOL.problem ==0

P=double(P)

end

x
1

-1 -0.5 0 0.5 1

x
2

-1

-0.5

0

0.5

1

Figure 2.1: Phase portrait.
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The LMIs above are feasible with P =

[
1.1805 0.1898
0.1898 0.3249

]
; this means that every

trajectory within the biggest Lyapunov set V (x) = xTPx ≤ k that fits in Ω = {x :
|xi| ≤ 1} goes asymptotically to zero. This is confirmed in Fig. 1.1, which shows
that the system was indeed stabilised (solid lines from initial conditions marked
with squares). The outermost Lyapunov level is the ellipsoid in dashed lines.
Obviously, since the nonlinear system has three equilibrium points, x̄ cannot go
too far before rending the LMIs above infeasible, which is the case, for instance,
if x̄ = 3.

Deriving LMI conditions for stabilisation of a nonlinear system through an exact
TS model (2.10) and quadratic Lyapunov functions is almost as straightforward
as in the linear case. Assuming the whole state is available, linear state feedback
can be generalised to parallel distributed compensation(PDC), first appeared in
(Sugeno and Kang 1988), to exploit the information gathered in the system MFs:

u(t) =
r∑
j=1

hj(z(x))Fjx(t) = Fhx(t), (2.23)

where Fj ∈ Rm×n are gains of adequate size to be determined. Notice this is no
longer linear state feedback as nonlinearities enter the control law through the
MFs. Similarly, if a tensor-product TS model is employed, the PDC control law
has the form u(t) =

∑
j∈Bp wj(z(x))Fix(t) = Fwx(t), where the set of gains is Fj,

j ∈ Bp.

Substituting the control law (2.23) in the TS model (2.10) gives the following
closed-loop system:

ẋ(t) =
r∑
i=1

hi(z(x))Aix(t) +

(
r∑
i=1

hi(z(x))Bi

) r∑
j=1

hj(z(x))Fjx(t)


=

r∑
i=1

r∑
j=1

hi(z(x))hj(z(x)) (Ai +BiFj)x(t) = (Ah +BhFh)x(t), (2.24)

where, again, the fact that
∑r
i=1 hi(·) = 1 has been taken into account.

Though conditions in the next theorem are not LMIs, they serve as the departure
point for introducing the important subject of sum relaxations that intend to
solve through the less conservative set of LMIs the co-positivity problem (Murty
and Kabadi 1987) therein stated:
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Theorem 2.4. The origin x = 0 of the nonlinear system ẋ(t) = A(x)x(t) +
B(x)u(t) with TS model (2.10) in Ω, 0 ∈ Ω, under the control law (2.23), is
asymptotically stable if ∃X = XT > 0 and Mj, j ∈ {1, 2, . . . , r}, such that

Γhh = AhX +BhMh +XATh +MT
h B

T
h < 0, (2.25)

with Mh =
∑r
j=1 hj(z(x))Mj. Thus, the controller gains are Fh = MhX

−1

(equivalently, Fj = MjX−1, j ∈ {1, 2, . . . , r}) whereas the Lyapunov function
is given by V (x) = xTPx, P = X−1. Moreover, any trajectory starting in the
outermost Lyapunov level V (x) ≤ k inside Ω goes asymptotically to zero.

Proof. Applying the property 1.7 in (2.25) pre- and post-multiplying by P = X−1

leads to:
PAh + PBhMhP +AThP + PMT

h B
T
h P < 0,

which, defining Mh = FhX, leads to

PAh + PBhFh +AThP + FTh B
T
h P = P (Ah +BhFh) + (Ah +BhFh)TP < 0,

which, by theorem 2.3 implies that the closed-loop system (2.24) has its origin
x = 0 asymptotically stable with V (x) = xTPx, P = PT > 0, as the associated
Lyapunov function and the last inequality above the expression of the fact that
V̇ (x) < 0 ∀x ∈ Ω, x 6= 0.

As mentioned before, condition (2.25) is not an LMI, but a double convex sum
(dependency of the MFs hi on z(x) is omitted for brevity):

Γhh =AhX +BhMh +XATh +MT
h B

T
h

=

(
r∑
i=1

hiAi

)
X+

(
r∑
i=1

hiBi

) r∑
j=1

hjMj

+X

(
r∑
i=1

hiAi

)T
+

 r∑
j=1

hjMj

T( r∑
i=1

hiBi

)T

=
r∑
i=1

r∑
j=1

hihj

AiX +BiMj +XATi +MT
j B

T
i︸ ︷︷ ︸

Γij

 .

Clearly, guaranteeing the double convex sum above is negative-definite can be
done via LMIs AiX+BiMj +XATi +MT

j B
T
i < 0, i, j ∈ {1, 2, . . . , r}, but this is a

very clumsy way to do so as, though sufficient, is clearly not necessary. Relaxing
this sufficiency is the purpose of the so-called sum relaxations. A very obvious
one is that in (Tanaka and Sano 1994), which takes into account the fact that
hihj = hjhi:
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Lemma 2.1. The double convex-sum Γhh < 0 is verified if

Γii < 0, ∀i ∈ {1, 2, . . . , r},
Γij + Γji < 0, ∀(i, j) ∈ {1, 2, . . . , r}2, i < j. (2.26)

Another common relaxation is that in (Tuan et al. 2001); as the preceding one,
it does not use slack matrices (Kim and Lee 2000):

Lemma 2.2. The double convex-sum Γhh < 0 is verified if

Γii < 0, ∀i ∈ {1, 2, . . . , r},
2
r−1Γii + Γij + Γji < 0, ∀(i, j) ∈ {1, 2, . . . , r}2, i 6= j. (2.27)

The problem of co-positivity has been solved twice with asymptotically sufficient
and necessary conditions via the Polya Theorem in (Sala and Ariño 2007) and
via triangulation in (Kruszewski et al. 2009); these solutions are not presented
here because they will not be used in this thesis as they rapidly exhaust the
computational resources of the LMI solvers due to the enormous number of LMIs
which emerge close to necessity.

By now, the reader may correctly deduce that the performance measures such
as decay rate, cost functions, and H∞ attenuation level, already defined in the
context of linear systems, are easily extrapolated to the nonlinear case with the
aid of convexity of TS representations (2.10) or (2.6). Due to the “modularity”
of LMI results, such performance specifications can be stacked without further
adaptation in order to get a controller holding any subset of them.

Example 2.3. Consider the Furuta pendulum shown in Fig.2.2. The control
task consists in keeping the free beam at the vertical position through the induced

Figure 2.2: Furuta pendulum [source: www.quanser.com]
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Chapter 2. LMI-based nonlinear control

rotations of the horizontal beam, which is driven at the center by a fixed DC motor.
A state-space representation of this plant can be found in (Quanser 2006):

ẋ1 = x2

ẋ2 =
(β + γ)

(
δx2

4 sinx3 − 2βx2x4 cosx3 sinx3 + u
)

((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

−
δ cosx3

(
βx2

2 cosx3 sinx3 + σg sinx3

)
((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

ẋ3 = x4 (2.28)

ẋ4 =

(
β sin2 x3+α

) (
βx2

2 cosx3 sinx3 + σg sinx3

)
((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

−
δcosx3

(
δx2

4sinx3−2βx2x4cosx3sinx3+u
)

((β + γ)β + δ2) sin2 x3 + (β + γ)α− δ2

with x1 being the angle of the horizontal beam with respect to a fixed position,
x2 its angular velocity, x3 the angle between the vertical beam and the vertical
upright axis, and x4 the corresponding angular velocity. We intend to keep the
second beam in its upright position, which coincides with driving the system to
x3 = 0. The parameters are given by: α =

(
J0 +m1L

2
0

)
/Tc, β =

(
m1l

2
1

)
/Tc, γ =

J1/Tc, δ = (m1L0l1) /Tc, σ = (m1l1) /Tc, L0 = 0.068m and J0 = 6.9885e−5kg·m2

are length and total moment of inertia of the horizontal link, respectively, m1 =
0.02366kg, l1 = 0.08m, and J1 = 1.7590e−4kg·m2 are the mass, center of mass,
and total moment of inertia of the vertical beam, respectively, g = 9.81m/s2 and
Tc = 0.0049431 N·m/V are the gravitational constant and the torque constant,
respectively.

Obtaining a TS model of (2.28) requires rewriting every nonlinearity as a convex
sum. Consider the choice z1 = (β + γ) δx2

4−2β (β + γ)x2x4 cosx3−βδx2
2 cos2 x3−

δσg cosx3, z2 = (sinx3) /x3, z3 =
(
β sin2 x3 + α

) (
βx2

2 cosx3 + σg
)
−δ cosx3(δx2

4−
2βx2x4 cosx3), z4 = cosx3, and z5 = 1/

((
β2 + γβ + δ2

)
sin2 x3 + αβ + αγ − δ2

)
,

then, (2.28) is equivalent to:

ẋ =


0 1 0 0
0 0 z1z2z5 0
0 0 0 1
0 0 z2z3z5 0

x+


0

(β + γ)z5

0
−δz4z5

u. (2.29)

Consider the operational regime given by the compact |x2| ≤ 10 rad/s, |x3| ≤ 15
(in degrees), and |x4| ≤ 3 rad/s (x1 is not at the right-hand side of the model).
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2.2 Nonlinear control

Thus, the variables in (2.29) can also be bounded as z1 ∈ [−0.2833,−0.0324],
z2 ∈ [0.9886, 1.0000], z3 ∈ [0.1251, 0.2961], z4 ∈ [0.9659, 1.0000], and z5 ∈
[524.0978, 579.0187]. Writing each of zi ∈ [z0

i , z
1
i ] as a convex sum of its bounds,

we have the following identities:

zi =
z1
i − zi
z1
i − z0

i︸ ︷︷ ︸
wi0

(
z0
i

)
+
zi − z0

i

z1
i − z0

i︸ ︷︷ ︸
wi1

(
z1
i

)
,

wi0 + wi1 = 1,
0 ≤ wij ≤ 1,

(2.30)

based on which the following TS model in the form (2.10) arises:

ẋ =
1∑

i1=0

1∑
i2=0

· · ·
1∑

i5=0

w1
i1w

2
i2 · · ·w

5
i5




0 1 0 0

0 0 zi11 z
i2
2 z

i5
5 0

0 0 0 1

0 0 zi22 z
i3
3 z

i5
5 0


︸ ︷︷ ︸

Ai

x

+


0

(β + γ)zi55
0

−δzi44 z
i5
5


︸ ︷︷ ︸

Bi

u


=

r∑
i=1

hi(x) (Aix+Biu) , (2.31)

where hi = w1
i1
w2
i2
· · ·w5

i5
, [i1i2 · · · i5] is the 5-digit binary representation of (i−1),

i ∈ {1, 2, . . . , r}, r = 25 = 32. Despite its appearance, system (2.31) is not linear
nor an approximation of (2.28): its construction proves that it is algebraically
equivalent to the original one.

For brevity, only some of the 32 pairs (Ai, Bi) are given below; they correspond
to the cases described in table 2.2, where zi, i ∈ {1, 2, . . . , 5} have taken some of
their corresponding extreme values.

A1 =


0 1 0 0
0 0 −146.77 0
0 0 0 1
0 0 64.84 0

 , A8 =


0 1 0 0
0 0 −162.15 0
0 0 0 1
0 0 169.48 0

 ,

A16 =


0 1 0 0
0 0 −164.02 0
0 0 0 1
0 0 171.43 0

 , A32 =


0 1 0 0
0 0 −18.77 0
0 0 0 1
0 0 171.43 0


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Chapter 2. LMI-based nonlinear control

Figure 2.3: Left: angle x3 (solid-line). Right: control signal u(t)

B1 =


0

34.695
0

−13.162

 , B8 =


0

38.331
0

−15.055

 ,

B16 =


0

38.331
0

−15.055

 , B32 =


0

38.331
0

−15.055

 .
Using LMIs (2.27) with Γij = AiX +BiMj +XATi +MT

j B
T
i , i, j ∈ {1, 2, . . . , 32}

yields a feasible solution. Due to space limitations, only the Lyapunov matrix and

Table 2.2: Some values for (2.29)

i z1 z2 z3 z4 z5

1 -0.2833 0.9886 0.1251 0.9659 524.0978
8 -0.2833 0.9886 0.2961 1.0000 579.0187
16 -0.2833 1.0000 0.2961 1.0000 579.0187
32 -0.0324 1.0000 0.2961 1.0000 579.0187
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2.2 Nonlinear control

some of the controller gains are given:

P =


0.0032 0.0078 0.1325 0.0244
0.0078 0.0272 0.4562 0.0844
0.1325 0.4562 14.3922 1.6289
0.0244 0.0844 1.6289 1.6289

 , F1 =


0.6351
2.2343
78.3388
8.0989


T

,

F8 =


0.2771
0.9938
53.5306
4.0084


T

, F16 =


0.2776
0.9954
53.4616
4.0117


T

, F32 =


0.1992
0.7203
45.3536
3.0391


T

.

On the left, fig. 2.3 shows that the angle x3 is stabilised from initial conditions

x(0) =
[
0 0 12.5◦ 0

]T
; on the right, the control signal u(t) is also shown for

completeness.

It is worth mentioning that the quadratic framework includes much more than
stability analysis and controller design of nonlinear systems: it covers observers
(Tanaka, Ikeda, and Wang 1998), output feedback (Yoneyama et al. 2000), de-
scriptors (Taniguchi et al. 1999), delay systems (Cao and Frank 2000), etc., both
in the continuous- and discrete-time domain. The interested reader is referred to
these works and the references therein for further information (Sala, Guerra, and
Babuska 2005; Guerra, Sala, and Tanaka 2015).

Despite its success, the TS-LMI quadratic framework has one caveat when ad-
dressed to nonlinear control systems: its conditions are only sufficient. Such issue
has a variety of sources and has been the main motivation of the different works
appeared in the last two decades. Since this thesis tackles one of this sources,
namely, modelling with respect to some performance objective as to optimise it,
conservativeness is studied in some detail in the next section.

2.2.3 The issue of conservativeness

Long ago, three sources of conservatism (Sala 2009) have been recognised in the
TS-LMI framework:

1. The treatment of the MFs: As seen in the previous section, analysis and
synthesis of nonlinear control systems via TS models requires embedding
them in convex representations in order to focus on the associated vertexes.
In other words, the MFs only play a limited role in the derivation of the LMI
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conditions as they are dropped off via relaxations or other results intending
to involve them more without losing the LMI quality of solutions.

2. The choice of Lyapunov function: Converse theorems establish the existence
of a Lyapunov function for every isolated asymptotically stable equilibrium
point of a nonlinear system, but of course they say nothing about the type
of Lyapunov function, let alone limiting ourselves to the class of quadratic
Lyapunov functions the results in the previous section are based upon.

3. The model choice: It has been seen that TS models can be constructed in
a variety of ways, leading to a different set of vertex matrices; feasibility
of the LMIs depends on these matrices, which means that different mod-
elling choices may produce radically different results (feasible/unfeasible,
for instance) or provide different optimisation values.

The first issue has been already mentioned in the previous section with respect
to sum relaxations. The approaches therein mentioned are shape-independent
in the sense that they do not take into account anything else about the MFs
except that they hold the convex-sum property. In contrast, shape-dependent
approaches intend to exploit the particular form of the MFs in order to achieve
less conservative LMI conditions: (Sala and Ariño 2007; Sala and Ariño 2008;
Bernal, Guerra, and Kruszewski 2009; Narimani and Lam 2009; Arino and Sala
2015).

Other classes of Lyapunov functions

The second issue has sparked the investigation of different classes of Lyapunov
functions that included the quadratic one as a particular case; some of them are
briefly described below:

Piecewise Lyapunov functions (PWLF): Originally appeared in the context of
fuzzy TS systems, they consist in a set of quadratic forms that get activated
according to a pre-defined piecewise partition of the state space (Johansson and
Rantzer 1998). This partition was usually made according to the operating or
interpolating regimes induced by the MFs. Clearly, if the Lyapunov function can-
didate is allowed to change according to this partition, it may increase the chances
of becoming an actual Lyapunov function not only because it will provide more
flexibility (different Lyapunov matrices per partition (Johansson, Rantzer, and
Arzen 1999)), but also because there are several ways of including the geometric
information of the partition. Discrete-time counterparts can be found in (Feng
2003; Feng et al. 2005).
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Basically, PWLFs have the form

V (x) =


xT (t)Pix(t), x ∈ Xi, i ∈ I0[
x
1

]T
P i

[
x
1

]
, x ∈ Xi, i ∈ I1

(2.32)

where the state space is partitioned in a collection of cells Xi indexed by I0
which will contain the indices of cells that contain the origin and I1 which will
have the indices of cells that do not contain the origin. Continuity of the PWLF
across the borders between regimes is guaranteed by parametrisation of matrices
F i = [Fi fi], with Fi ∈ Rn×n, fi ∈ Rn×1, fi = 0 for i ∈ I0, such that:

F i

[
x
1

]
= F j

[
x
1

]
, x ∈ {Xi ∩Xj}, i, j ∈ I. (2.33)

A systematic procedure for constructing these matrices is given in (Johansson,
Rantzer, and Arzen 1999). Then, Pi and P i in (2.32) are parameterised as follows:

Pi = FTi TFi, i ∈ I0
P i = F

T

i TF i, i ∈ I1.
(2.34)

with T being a symmetric matrix of appropriate dimensions which collects the free
parameters of the Lyapunov function. Note that this arrangement is a compromise
between continuity and LMI formulation of the results, which is hereby possible.

The partition is usually decided along the TS model structure, which due to
locality can be extended to include affine TS models

ẋ(t) =
r∑
l=1

hl(z(x)) (Alx(t) + al) , (2.35)

where Al ∈ Rn×n and al ∈ Rn×1 are the local matrices and affine terms, respec-
tively, and MFs hl, l ∈ {1, 2, . . . , r} depend on the premise vector z(·), which in
turn is assumed to depend linearly on the system state x(t), i.e., z(x) = Cx, with
C ∈ Rp×n.

Since matrices Pi or P i are only used to describe the Lyapunov function in cell Xi,
it is possible to use the S-procedure in property 1.5 to reduce conservativeness by
constructing matrices Ei = [Ei ei] with Fi ∈ Rn×n, fi ∈ Rn×1, ei = 0 for i ∈ I0,
that satisfy

Ei

[
x
1

]
� 0, x ∈ Xi, i ∈ I (2.36)
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where for every matrix Wi with nonnegative entries Wi � 0, condition (2.36)
implies that [

x
1

]T
E
T

i WiEi

[
x
1

]
> 0, ∀x ∈ Xi, i ∈ I.

As with matrices F i, these Ei can also be systematically constructed (Johansson,
Rantzer, and Arzen 1999).

Since this approach was originally addressed to fuzzy TS models, regions where
hl(x) = 1 for some l (operating regimes) and those in between operating regimes
(interpolation regimes) were employed to derive LMI conditions; they replace
stability analysis LMIs in theorem 2.3 by

Pi − ETi UiEi > 0
ATk Pi + PiAk + ETi WikEi < 0

(2.37)

for i ∈ I0, k ∈ K(i), and

P i − E
T

i UiEi > 0

A
T

k P i + P iAk + E
T

i WikEi < 0
(2.38)

for i ∈ I1, k ∈ K(i), K(i) being the set of indexes of those systems associated
with region i. The reader may notice the relaxation is twofold: P is no longer
unique and local information has been added through the S-procedure.

Extensions for stability analysis of nonlinear systems modelled as exact affine
TS ones appeared in (Gonzalez and Bernal 2016) with interesting geometric re-
finements in (Gonzalez et al. 2017c). Stabilisation based on PWLFs remains,
unfortunately, a BMI problem as shown in (Feng et al. 2005); observer design
and output feedback based on PWLFs can be found in (Qiu, Feng, and Gao
2012) and (Qiu, Feng, and Gao 2013), respectively.

Parameter-dependent Lyapunov functions (PDLFs): They incorporate the convex
structure provided by the MFs of a TS model to enrich the choice of a common
matrix P by replacing it by a convex sum of matrices Pi (Blanco, Perruqueti, and
Borne 2001):

V (x(t)) =
r∑
i=1

hi(z(x))xT (t)Pix(t) = xT (t)Phx(t) (2.39)

where Pi = PTi > 0 and hi(z(x)) are the same MFs of the associated TS model
(2.10), for i ∈ {1, 2, . . . , r}. PDLFs are also known as fuzzy (Guelton et al. 2010),
multiple (Tanaka, Hori, and Wang 2003), non-quadratic (Bernal and Guerra
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2010), convex (Fiacchini, Girard, and Jungers 2016), basis-dependent (Su et al.
2014), and poly-quadratic (Pandey and DeOliveira 2017).

Though increasing the flexibility, PDLFs faced a lot of problems in the continuous-
time case since the time derivative of the Lyapunov function (2.39) implies deling
with the time derivative of Ph which in turn involves the time derivatives of
the MFs hi(z), thus breaking the convexity of expressions and creating algebraic
loops. Solutions using direct bounds can be found in (Tanaka, Hori, and Wang
2001; Wu and Dong 2006a; Mozelli et al. 2009); others based on further analysis
of the partial derivatives of the MFs ḣi appeared in (Guerra and Bernal 2009;
Bernal and Guerra 2010; Guerra et al. 2012; Pan et al. 2012); some more solved
the algebraic loop under mild conditions (Aguiar, Márquez, and Bernal 2016;
Gonzalez et al. 2017b).

In contrast, PDLFs have made an impressive progress in the discrete-time domain,
as they are not faced with the problem of the time derivative of the MFs: different
pairs of control laws and Lyapunov functions were proposed in (Guerra and Ver-
meiren 2004), the α-samples approach was proposed in (Guerra, Kruszewski, and
Bernal 2009), interesting generalisations for observers can be found in (Estrada-
Manzo, Lendek, and Guerra 2016).

Closely related with the PDLFs, the proposal in (Rhee and Won 2006) intended to
involve the MFs without dealing with their time derivatives by using the following
path-independent line-integral Lyapunov function:

V (x) =

∫
Γ(0,x)

f(ψ)dψ, (2.40)

with Γ(0, x) being a path from the origin 0 to the current state x, ψ as a dummy
vector for the integral, and f(x) =

∑r
i=1 hi(z(x))Pix = Phx. Path-independency

conditions translate into f(x) = [f1(x), f2(x), . . . , fn(x)]
T

holding the condition
∂fi(x)

∂xj
=

∂fj(x)

∂xi
, i, j,∈ {1, 2, . . . , n}. Extensions to the line-integral proposal

appeared in (Marquez et al. 2013; Gonzalez et al. 2017a).

Other models

Recall that the LMI conditions for analysis and synthesis of nonlinear systems in
the TS-LMI framework depend almost exclusively on the vertexes of the resulting
polytope. Therefore, choosing a set of nonlinearities. Besides the fact that there
are infinitely many TS models for a given nonlinear system, far beyond the obvious
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choices described in section 2.1.2, there are other convex models that will be briefly
described for the sake of completeness.

Exact polynomial TS models: Based on the Taylor series, the work in (Sala
and Ario 2009) proposed a generalisation of the well-know TS sector nonlin-
earity methodology where non-polynomial expressions are rewritten as a convex
sum of polynomials (TS models are convex sums of linear terms), leaving ver-
tex polynomial vectors to be used via the sum-of-squares (SOS) tools (Prajna,
Papachristodoulou, and Wu 2004).

Systems of the form ẋ(t) = f̃(η(x), x), where η(x) =
[
η1(x) η2(x) · · · ηp(x)

]T
collects all non-polynomial nonlinearities in f(·), are analysed by rewriting the
latter as a convex sums of polynomials of arbitrary order. Since for any sufficiently
smooth function of one real variable, η(x) there exists a Taylor expansion of degree
N (Apostol 1967), there must be a point ψ(x) ∈ [0, x], so that:

η(x) =
N−1∑
i=0

η[i](0)

i!
xi +

η[N ](ψ(x))

N !
xN , (2.41)

where η[i](x) denotes the i-th derivative of η(·) and η[0](x) is defined, plainly, as
η(x) (Chesi 2009). Additionally, assume that η[N ](x) is continuous in a compact
region of interest Ω. Denoting the Taylor approximation of orderN of the function
η(x) by:

ηN (x) =
N−1∑
i=0

η[i](0)

i!
xi,

and let

TN (x) =
η(x)− ηN (x)

xN
.

In the region Ω, TN (x) is bounded; therefore, the following bounds are well de-
fined:

ψ0 := sup
x∈Ω

TN (x), ψ1 := inf
x∈Ω

TN (x),

based on which the following convex rewriting of TN (x) aries:

TN (x) = w0(x) · ψ0 + w1(x) · ψ1, (2.42)

with

w0(x) =
Tn(x)− ψ2

ψ0 − ψ1
, w1(x) = 1− w0(x). (2.43)
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Then, an equivalent convex representation of (2.41) exists in the form:

η(x) = w0(x) · p0(x) + w1(x) · p1(x) =
1∑
i=0

wi(x)ṗi(x)∀x ∈ Ω, (2.44)

where p0(x) = ηN (x)+ψ0x
N and p1(x) = ηN (x)+ψ1x

N are polynomials of degree
N , and w0(x), w1(x) are weighting functions which hold the convex sum property
in the compact region Ω.

If every ηj(x) is rewritten as in (2.44), then ẋ(t) = f̃(η(x), x) can be rewritten as
the following exact polynomial TS model:

ẋ =
1∑

i1=0

1∑
i2=0

· · ·
1∑

iq=0

w1
i1w

2
i2 · · ·w

q
iq
F(i1,i2,··· ,iq)(x), (2.45)

= Fw(x(t)),

where F(i1,i2,··· ,iq) = f̃(η(x), x)|w1
i1

=w2
i2

=···=wqiq=1. Note that this is a polynomial

TS generalisation of the tensor-product structure (2.6) (Ariño and Sala 2007).

Exact descriptor TS models: Descriptor models describe a wider class of dynam-
ical systems than the standard state-space representation. They are constituted
by a set of differential algebraic equations (Luenberger and Arbel 1977) and have
been used to represent implicit or singular systems arising in many physical setups,
especially mechanical ones, where they are able to describe parametric perturba-
tions with higher accuracy than standard representations (Guelton, Delprat, and
Guerra 2008; Schulte and Guelton 2009). A nonlinear descriptor model has the
form:

E(x)ẋ(t) = A(x)x(t) +B(x)u(t), (2.46)

where E ∈ Rn×n is a novel element which, depending on its complexity and
singularity, may induce interesting nonlinear phenomena such as impasse points
and indeterminacies. The sector nonlinearity methodology, even the Taylor-based
one in the previous section, can be used to exactly model the previous system as
to obtain a TS one, for instance:

re∑
i=1

vi(z(t))Eiẋ(t) =
r∑
i=1

hi(z(t)) (Aix(t) +Biu(t)) (2.47)

where Ei are matrices of proper size, r MFs hi represent the usual combination
instance of extreme values of the nonlinearities in the right-hand side, and re MFs
vi have the same meaning for the left-hand side. Of course, due to the convex sum
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property, these two sets of models can be combined into a single one if convenient
by defining a new set of MFs in terms of the two original sets, i.e., h̄k = hivj ,
k ∈ {1, 2, . . . , r × re}.

Approximate models: A word must be added to give account of the numerous
models available in the literature that are close to the spirit of the original TS
methodology, most of them approximate. Despite of the lack of exactness, the
methodologies involved therein might be of relevance for our contributions.

1. Linearisation in multiple points: A TS fuzzy approximation of a given non-
linear model can be obtained by a Taylor series expansion in different repre-
sentative points (Johansen, Shorten, and Murray-Smith 2000), which may
or may not be equilibria. However, this approximation will in general result
in affine consequents.

2. The substitution method: To avoid affine TS models arising from linearisa-
tion while preserving a linear family of models, this method, first proposed in
(Kiriakidis 2007), writes the righthand side of the model as A(x)x+B(x)u(t)
and, instead of representing each nonlinearity as the convex sum of two linear
functions, the values are simply substituted for a chosen grid of points. The
resulting points are used instead of vertexes of a polytopic representation
for analysis and synthesis.

3. Least squares fit: Available data sets from identification processes can serve
well for constructing a TS model by conventional least-squares fit (Baruah
and Angelov 2011).

This thesis is concerned with contributions on reducing the issue of conservative-
ness by better choosing the TS model. Yet, the approach is a completely new one,
for the model is not chosen a priori but as a result of aiming to achieve the best
performance measure once this is given. Before proceeding to these contributions
we briefly review the theory of invariant sets, as this is an alternative to the use of
Lyapunov theory for stability analysis and controller design in the discrete-time
domain.
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Set-based control theory

This chapter will outline the basic ideas underlying set-based sta-
bility analysis and control design that will be later on used in the de-
velopments in Chapter 8. We will discuss invariant sets, one step
sets and polyhedron manipulation.

3.1 Invariant sets

An invariant set for a given dynamic system is a region of the state space such
that the trajectory generated by the system remains confined in the set if the
initial condition lies within it (Blanchini and Miani 2008).

Definition 3.1. (Fiacchini 2010b) A set in Ω ∈ Rn is a invariant set for the the
discrete-time autonomous system (3.1) if Ω ⊂ D and f(x) ∈ Ω for all x ∈ Ω.

Of course, the idea of invariant sets roots at the basics of linear and nonlinear
control (Khalil 2000; Blanchini 1999; Blanchini 1991). The importance of invari-
ant sets in control is due to the implicit stability properties of these regions of
the state space. Consider the autonomous discrete-time system

x+ = f(x) (3.1)

where x ∈ Rn is the state, x+ ∈ Rn is the successor state and f : D → Rn is
a function defined on the set D ∈ Rn. Ω is a invariant set if every trajectory
generated by (3.1) with initial condition x0 in Ω, remains confined in the set Ω.
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Originally, the term invariant set may denote a set of initial conditions whose
trajectory “backward and forward” in time is confined in the set, in this thesis
it will refer as a invariant set only the future part of trajectories are required to
belong to the set (other authors explicitly define such sets as “positively invariant”
(Khalil 2000)).

Analogous definitions can be given for uncertain autonomous systems, that is,
in presence of uncertainties, in this case were uncertainties affects the dynamic
system, the condition of robust invariance has to be introduced. Consider a
discrete-time uncertain autonomous system

x+ = f(x,w) (3.2)

where x ∈ Rn is the state, x+ ∈ Rn is the successor state, w ∈ Rp is the uncer-
tainty, i.e. w ∈ W with W ⊂ Rp, and f : D ×W → Rn is a function defined on
the set D ×W ⊂ Rn+p.

Definition 3.2. (Fiacchini 2010b) A set Ω ⊂ Rn is a robust invariant set for the
uncertain autonomous system (3.2) if Ω ⊂ D and f(x,w) ∈ Ω for all x ∈ Ω and
all w ∈W .

That is, robust invariance means that any trajectory of the uncertain system
starting inside the set Ω, remains confined in it for every possible realization of
the uncertainty w ∈ W , at every time instant. We have that set Ω ⊂ D is a
robust invariant set for system 3.2 if it is such that f(⊂,W ) ⊂ Ω.

In the same way, definitions can be given for non-autonomous systems, that is, in
presence of a manipulable input, this is a control invariant set: a region Ω of the
state space such that, for any of its elements x ∈ Ω, there exists a control input
u(x) that maintains the successor state inside Ω.

Given a control invariant set Ω, there exists at least a control law u(x) defined
on Ω such that the set is an invariant set for the system in closed-loop with u(x),
i.e., consider the non-autonomous system

x+ = f(x, u) (3.3)

where x ∈ Rn is the state, x+ ∈ Rn is the successor state, u ∈ U is the control
input and f : D × U → Rn is a function defined on the set D × U ⊂ Rn+m.

A set Ω ⊂ D is a control invariant set if there exists a control law u = u(x) ∈ U ,
defined for every x ∈ Ω, such that every trajectory xk generated by (3.3), in
closed-loop with u(x) and with x0 ∈ Ω, is such that xk ∈ Ω for all k ∈ N.
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Definition 3.3. A set Ω ⊂ D is a control invariant set for the discrete-time
system (3.3) if there exists a control law u = u(x) ∈ U such that Ω ⊂ D and
f(x, u(x)) ∈ Ω for all x ∈ Ω.

Definition 3.4. (C-set) A C-set is a convex and compact subset of Rn including
the origin as an interior point.

The concept of invariance can be further refined to include geometric contraction.

Definition 3.5. (Contractive set, discrete-time). The C-set S is contractive for
the system

x+ = f(x, u, w)

where w ∈W , u ∈ U , if and only if there exists a control function u(x) ∈ U such
that, for every x ∈ S, the following condition holds:

ΨS(f(x, u, w)) < λ,∀w ∈W

where ΨS(x) is the Minkowski function1 of S, for some 0 < λ < 1. In this case
the set S is said to be λ-contractive.

Geometric contraction is closely related to stability of linear systems, as in this
case all scalings of a contractive set are contractive. It is also related to decay-rate
stability, see Section 3.3.1.

Model predictive control. Due to the relevance of the role that the theory
of invariant sets plays in the design of control laws for model predictive control
(MPC), this thesis makes mention of it, showing, very briefly, some of its prop-
erties and rudimentary notions of how the theory of invariant sets intervenes.
Recalling some of the principals characteristics of a standard MPC, it has to be
mentioned: Model based prediction, where is assume the real system is know,
measured and is possible a prediction of the system evolution as a function of
the input. Contrains, where are gather the state and control input sequences
which stated possible trajectories of the system and it is arranged as a optimiza-
tion problem which is solved on-line. The solution to this optimization problem
give a subset of the space of input sequences which represented potential admis-
sible trajectories for the system. Cost function have for objective compute the
optimization problem providing high performance with low control effort, i.e.,
obtain admissible control sequences and associated trajectories with low control
effort. Receding horizon, to avoid discrepancies between the actual behavior of the

1Minkowski function is defined as ΨS(ψ) := inf{κ ≥ 0 : ψ ∈ κS}.
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system and the predicted trajectory, only the first control action of the feasible
input sequence obtained is considered, this is possible because a new solution is
calculated and obtained at each instant of time.

Convergence for a MPC are often linked to a terminal region and a local control
law which guarantees stability. Intuitively, we can consider this terminal region
as an invariant set with its corresponding control law ensuring stability once
the system reaches such the set, at this point there is no more necessity of the
computation of MPC. In addition, it is possible to use assist at the problem
of designing control laws for MPC by means of the invariant set methods, for
example, assuming that there is an invariant set control for the system of interest,
it is enough to replace the contrains of the MPC by a restriction that stipulates
that the state belongs to the set at next time step, this guarantees the existence
of a controller.

Nevertheless, as multi-step predictive control is out of the scope of this thesis, the
reader is referred to, for instance, (Kerrigan 2000) where the set-based method-
ologies for MPC are developed, the widely-cited book (Camacho and Alba 2013)
for an in-depth global coverage of MPC issues, or the work (Ariño, Querol, and
Sala 2017) in which these set-based MPC ideas are generalised to a gain-scheduled
Takagi-Sugeno (polytopic LDI) framework. In fact, set-based MPC control ideas
apply too to switching/Markov jump systems (Sala, Hernández-Mej́ıas, and Ariño
2017) but, again, these classes of models are out of the scope of the present
document, so the reader is referred to the cited references for further detail, if
interested.

3.2 Convex functions and sets

This section provided some essential notions of convex sets which will be useful
in the sequel (Blanchini and Miani 2008).

Definition 3.6. (Convex set) A set S ∈ Rn with x1 ∈ S and x2 ∈ S, is said to
be convex if

αx1 + (1− α)x2 ∈ S for all 0 ≤ α ≤ 1 (3.4)

Note that this definition applies to the empty set ∅, therefore the empty set ∅ is
convex.

The above definition make use of the expression of the point x = αx1 +(1−α)x2,
which is called a convex combination of the pair x1 and x2. This is important
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due the set of all such points is the segment connecting the points x1 and x2. An
alternative view of a convex set is a set that includes all the segments connecting
all the pairs of its points (in case of more of two points).

Definition 3.7. (Convex hull). Given a set S, its convex hull is the smallest
convex set containing S.

The convex hull of a set S can be alternatively seen as the intersection of all the
convex sets S̄i containing S, i.e.,

co(S) =
⋂
i

S̄i

Following, is introduces the definition of convexity for functions.

Definition 3.8. (Convex function). A real function ψ ∈ S with S ⊂ Rn, ψ :
S → R is said to be convex if

ψ(αx1 + (1− α)x2) ≤ αψ(x1) + (1− α)ψ(x2), 0 ≤ α ≤ 1 (3.5)

holds for all x1, x2 ∈ S.

Any sublevel set φ̄[ψ(x), κ] := {x : ψ(x) ≤ κ, κ > 0} of a convex function ψ(x) is
a convex set. However, the vice-versa is not true, functions whose sublevel sets
are convex are not necessarily convex.

Definition 3.9. (Quasi-convex function). A function ψ(x) with x ∈ Rn and
φ(·) : Rn → R is quasi-convex if the following condition holds

ψ(αx1 + (1− α)x2) ≤ max{ψ(x1), ψ(x2)}, ∀x1, x2, 0 ≤ α ≤ 1. (3.6)

Note: Convexity implies quasi-convexity, while the opposite is not true. A func-
tion is quasi-convex if and only if its sublevel sets are convex.

Definition 3.10. (Support function). Given a convex set S, a support function
is defined as

φS(z) := sup
x∈S

zTx. (3.7)

It is possible represented a convex and closed set in terms of its support function,
i.e., if the set S is convex and closed,

S = {x : zTx ≤ φS(z) ∀z ∈ Rn} (3.8)
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3.2.1 Set operations

(Blanchini and Miani 2008) Some basic operations between sets are presented.
Consider A and B as subsets of Rn, i.e., A,B ⊂ Rn

Definition 3.11. (Operations on convex sets)

1. Sum of sets A and B: the set

A⊕ B := {x = a+ b, a ∈ A, and b ∈ B}

where λ is a real number.

2. Scaled set of A: the set

λA := {x = λa, a ∈ A}, λ ≥ 0

3. Image of a set under an affine map M : the set

M(A) := {y = M(x), x ∈ A}

with M : Rn → Rm

4. Projection of A on a subspace X : the set

ProjX (A) := {b ∈ X : ∃a ∈ A : a = b+ c, with c ∈ X⊥}

where X⊥ denotes the subspace orthogonal to X .

Theorem 3.1. All sets in the above definition are convex if A and B are convex.

3.3 One-step sets

Consider a dynamic system
x+ = f(x, u) (3.9)

defined for x ∈ X and for u ∈ U being X and U known sets.

Given a set Ω ⊂ X in the state space and a dynamic system, the one-step set
Q(Ω) relates Ω to the set of points in X whose evolution through the dynamic
function is contained in Ω. That is, given Ω ⊂ X, a point x belongs to the one-step
set Q(Ω) if x ⊂ X and f(x) ∈ Ω. Hence, X1 = Q(X) is the set of points in X
which remain in X at least at the first instant. It is clear that iterative application
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generates a sequence of sets Xk+1 = Q(Xk) ∩Xk , such that a point x belongs to
Xk if and only if the trajectory generated with initial condition x0 = x remains
in X at least during the first k steps, for all k ∈ N . It should be also evident
that the maximal invariant set can be obtained iterating the procedure for an
infinite number of steps.

The result would be not very useful unless the maximal invariant set can be ob-
tained after a finite number of iterations. In this case the invariant set is said
to be finitely determined and the number of iterations is denoted as determina-
tion index. Important contributions have been provided in literature, mainly for
linear systems, which permit to establish conditions under which the maximal
invariant set is finitely determined. Basically, if LMIs can be proven to achieve
some (quadratic decay rate) V (x+) ≤ λ2

∗V (x), then the maximal invariant (or
contractive) set can be proven to converge in a finite number of iterations for any
geometric decay λ > λ∗.

The basic ideas above can be formalised in the definitions below:

Definition 3.12. Given an arbitrary target set Ω, the one-step set Q(Ω) is the
set of states x in X from which the next state of system (3.9) can be driven to Ω
with an admissible u ∈ U, i.e.,

Q(Ω) := {x ∈ X|∃u ∈ U : f(x, u) ∈ Ω}

Note that x ∈ Q(Ω) iff UΩ(x) 6= ∅. Also, Ω is control λ-contractive iff Ω ⊂ Q(λΩ).

Definition 3.13 ((Gilbert and Tan 1991)). The so-called i-step set Cλi (Ω) is
recursively defined, starting with Cλ0 (Ω) := Ω as Cλi+1(Ω) := Q

(
λCλi (Ω)

)
∩ Ω, for

i ≥ 0.

If there exists a finite i such that Cλi+1(Ω) = Cλi (Ω), it can be proved (Kerrigan

2000) that Cλi (Ω) is the maximal control λ-contractive set. Such set will be
denoted as Cλ∞(Ω). Also, in case such finite i does not exist, but there exists Cλ∞,
for any 1 ≥ λ∗ > λ, there exist a finite i∗ such that Cλi is control λ∗-contractive
for all i ≥ i∗, albeit possibly non-maximal (Blanchini 1991, Theorem 3.2).

Efficient computational characterisation of the one-step set Q in Definition 3.12
can only be easily carried out for special cases of f ; for instance, the linear case
(Kerrigan 2000).

Example 3.1. In a linear system x+ = Ax+Bu, for X = Rn, Ω := {Rxx ≤ sx},
U := {Ruu ≤ su} the one-step set is the projection onto the x subspace of the set

Q∗ := {(x, u) : Rx(Ax+Bu) ≤ sx, Ruu ≤ su}
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Figure 3.1: One-step set computation for a linear-polyhedral case.

Using the Multiparametric Toolbox MPT 3.0 (Herceg et al. 2013), the following
code computes such one-step set for a particular example:

A=[0.9 0.9;.2 0.9];B=[0.2;-0.3];

Rx=[eye(2);-eye(2)];

sx=[1 1 1 1]’;

Ru=[1;-1]; su=[.01;.01];

omega=Polyhedron(Rx,sx);

unpasoomegaxu=Polyhedron([ Rx*[A B]; [zeros(2,2) Ru]] ,[sx;su]);

unpasoproj=projection(unpasoomegaxu,[1 2])

plot([omega unpasoproj])

legend(’\Omega’,’Q(\Omega)’)

resulting in the plot in Figure 3.1 where the target set Ω, a square, appears in red,
and its one-step set appears in orange.

Another important property of the one-step operator is the fact that applying the
operator to a set which is invariant, generates another invariant set which contains
the previous one. Thus, the iterative application of the one-step operator, with a
given invariant set as initial element, produces a growing sequences of invariant
sets. Notice that the same iterative process with X0 = X as initial element,
generates a sequence of sets not necessarily invariant, which entails that invariance
of the current set is not guaranteed until the determination index is reached (if
finite).
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In some cases, it can be proved that iterations initialized with an invariant set
converge to the domain of attraction of an equilibrium point, that is, to the set
of points which converge to the equilibrium. Clearly, assumptions on stability of
the system are required in this case.

3.3.1 Convex Lyapunov functions and contractive sets

Consider a discrete-time system x+ = f(x, u).

Definition 3.14. (Ariño et al. 2017) A convex function V (x) such that V (0) = 0
is a (local) control Lyapunov function (CLF) ensuring geometric contraction rate
λ for system (3.9) if there exists a convex set Ω ⊂ X including the origin in which,
for all x ∈ Ω ∼ {0}, V (x) > 0 and there exists u ∈ U such that V (λ−1f(x, u)) ≤
V (x) .

The above definition is an adaptation to the discrete-time and contraction-
rate setting of well-known concepts defined in, for instance, (Sontag 1999) for
continuous-time stabilization. The motivation of the definition is the fact that V
is a Lyapunov function as, by convexity, V (f(x, u)) ≤ λV (λ−1f(x, u)) ≤ λV (x)
and the level sets are control λ-contractive, as a level set Ω := {V (x) ≤ γ} scaled
would be λΩ = {V (λ−1x) ≤ γ}, so if x ∈ Ω, next state f(x, u) will lie in λΩ
for some u. If f(x, u) were linear, condition in the definition could be stated as
V (f(x, u)) ≤ V (λx), because V (f(x, u)) = V (λ−1f(λx, λu)) ≤ V (λx).

In many common cases, V (x) is a homogeneous degree-q polynomial in x, then
V (λ−1x) = λ−qV (x); standard discrete decay-rate formulas V (λ−2xk+1) ≤ V (xk)
arise with, for instance, q = 2. In the homogeneous case, we have

V (λ−kxk) = λ−(k−1)qV (λ−1xk) ≤ λ−(k−1)qV (xk−1) = V (λ−(k−1)xk−1)

so, by induction, we can easily prove V (λ−kxk) ≤ V (x0) or, equivalently, by
multiplication by λkq we get V (xk) ≤ V (λkx0).

Corollary 3.1.1. Any level set of a local CLF in X ensuring contration rate λ
is a subset of the maximal control λ-contractive set in X.

Proof. Evident, because of the above-mentioned fact that the referred level sets
are control λ-contractive and all such sets are subsets of the maximal one.
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3.3.2 One-step sets for Takagi-Sugeno systems

Consider a Takagi-Sugeno model:

x+ =
r∑
i=1

µi(x)(Aix+Biu) (3.10)

For this TS system (which is a “rewriting” of a nonlinear dynamics), the true
one-step set is:

Q(Ω) = {x ∈ X | ∃u ∈ U :
r∑
i=1

µi(x)(Aix+Biu) ∈ Ω} (3.11)

The shape of Q(Ω) may be very hard to compute, due to the nonlinearities in the
membership functions µi(x).

A reasonable approach, in order to deal with this drawback, is disregarding the
information about the actual value of the membership functions, dealing with
the Takagi-Sugeno model for any possible value of µi –assumed known to the
controller, as done in most TS literature (i.e., a shape-independent analysis (Sala
2009))–. Hence, the one-step set in Definition 3.12 should be replaced by the one
below (Ariño et al. 2017):

Definition 3.15. The shape-independent one-step set of a TS system (3.10) is

Qsi(Ω) := {x ∈ X | ∀µ ∈ ∆ ∃u ∈ U :
r∑
i=1

µi (Aix+Biu) ∈ Ω} (3.12)

A shape-independent definition of λ-contractiveness also follows: Ω is shape-
independent λ-contractive if Ω ⊆ Qsi(Ω).

The definition ensures that for each (x, µ) ∈ Qsi(Ω)×∆ there exists a non-empty
set of membership-dependent control actions defined as:

UΩ(x, µ) := {u ∈ U | f̃(µ, x, u) ∈ Ω} (3.13)

If Ω is polyhedral, the set UΩ(x, µ) is itself a polytope, for fixed x and µ. Unfor-
tunately, exact computation of Qsi is still cumbersome, due to the nonlinearities
involving products of µi with x and u.

Let us show that Qsi(Ω) ⊂ Q(Ω). Indeed,

Q(Ω) = {x ∈ X | for µ ≡ µ(x) ∃u ∈ U :

r∑
i=1

µi (Aix+Biu) ∈ Ω} ⊃ Qsi(Ω) (3.14)
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as the conditions in the left-hand side of (3.14) involve only the single point µ(x),
instead of the whole simplex in (3.12).

The following facts hold for the above shape-independent sets, see (Ariño et al.
2017) for details and proofs.

Proposition 3.1. If Ω is shape-independent control λ-contractive for the TS sys-
tem (3.10), so it is its convex hull Co(Ω). Thus, the maximal shape-independent
control λ-contractive set is convex.

Proposition 3.2. If Ω is shape-independent control λ-contractive for the TS
system (3.10), then any linear scaling γΩ, with 0 < γ ≤ 1, is shape-independent
control λ-contractive, too.

Hence, as shape-independent control λ-contractive sets are control λ-contractive,
the following well-known result and Proposition 3.2 can be joined to induce a
control Lyapunov function, if a shape-independent control λ-contractive set is
found:

Proposition 3.3. (Blanchini 1999) Consider Ω = {x ∈ Rn|max1≤i≤nh Hix ≤
1}. If γΩ is control λ-contractive, for the TS system (3.10), for all 0 ≤ γ such
that γΩ ∈ X then

V (x) := max
1≤i≤nh

(Hix) (3.15)

is a control Lyapunov function ensuring contraction rate λ.

3.3.3 Inner approximation of shape-independent control
λ-contractive sets for TS systems

The above shape-independent sets need choosing a particular controller parametri-
sation u(x, µ) in order to be computable whith available computational geometry
software such as Multi-Parametric Toolbox (MPT) (Herceg et al. 2013). This is
the topic of this section.

The simplest approximation is choosing u not depending on memberships. Indeed,
let us consider:

Q0
si(Ω) := {x ∈ X | ∃u ∈ U : Aix+Biu ∈ Ω ∀ i = 1 . . . r} (3.16)

The above expression comes from plugging a membership-independent u(x, µ) :=
u(x) into (3.12) and considering that

∑r
i=1 µi(Aix + Biu) ∈ Ω if and only if

Aix+Biu ∈ Ω for all i. Obviously, Q0
si(Ω) ⊂ Qsi(Ω).
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In fact, the set Q0
si(Ω) is the robust one-step set in uncertain polytopic systems

literature (Pluymers et al. 2005): its main drawback is its conservativeness coming
from the fact that, for a given state, the control action should be the same for
any value of the membership functions, i.e., the resulting controllers will be in
the form u(x) and not u(µ, x).

Given that µi(xk) are actually known, a clear improvement is using gain-
scheduling in µ, i.e., defining a so-called parallel distributed control parametrisa-
tion in the form:

u(x) =
r∑
j=1

µj(x)uj(x) (3.17)

which defines a different “vertex controller” uj(x) for each model. This well-
known formula is, of course, the key idea behind “fuzzy” controllers since the
1990s, building a “complicated” nonlinear controller from “simpler” components
uj(x); in particular, there exist design methods for vertex controllers based on
convex optimisation.

The closed-loop system with the parametrisation (3.17) can be written as

xk+1 =
r∑
i=1

r∑
j=1

µi(xk)µj(xk)(Aixk +Biuj(xk)) (3.18)

Let us introduce the augmented notation

ū(x) =

 u1(x)
...

ur(x)

 , Ej = [0m×m0m×m . . . Im×m . . . 0m×m] (3.19)

being Ej an m× (mr) matrix with an identity matrix in the j-th block position,
for 1 ≤ j ≤ r. In this way, we have uj(xk) = Ej ū(xk), so the closed-loop system
can be written as the augmented-input one:

xk+1 =

r∑
i=1

r∑
j=1

µi(xk)µj(xk)(Aixk +BiEj ū(xk)) (3.20)

where the new input is a vector of length r ×m. In this case, disregarding again
the fact that memberships depend on state, the shape-independent one-step set
of system (3.20), to be denoted as Q1

si(Ω), is readily expressed as:

Q1
si(Ω) :=

x ∈ X | ∃ū ∈ Ur,
r∑
i=1

r∑
j=1

µiµj(Aix+BiEj ū) ∈ Ω ∀µ ∈ ∆

 (3.21)
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where ū is understood as a length-r vector whose elements belong to U; such
elements must be the same for all membership values but might be different for
different states; in an analogous way to (3.13), a set ŪΩ(x) could be suitably
defined, and a continuous ū(x) : Q1

si(Ω) 7→ Ur can be proven to exist, thus
justifying the chosen parametrisation (3.17), obtained from ū(x) by reverting
back the vertical stacking to a fuzzy summation.

Now, Q0
si(Ω) ⊆ Q1

si(Ω) ⊂ Qsi(Ω) because forcing all uj to be equal converts (3.21)
into the particular case (3.16) and, on the other hand, the parametrisation of the
underlying u(x, µ) in (3.12) is generic, not restricted to being linear as (3.17)
postulates. Notation Q1

si is used to emphasise that the candidate controller is a
polynomial of degree 1 in the memberships.

In order to obtain a computable approximation of Q1
si(Ω), a Polya relaxation of

(3.21) must be carried out. For instance, denoting Ξij(x, ū) := Aix+BiEj ū

Q̃1
si(Ω) :=

{
x ∈ X | ∃ū ∈ Ur, 1

2
(Ξij(x, ū) + Ξji)(x, ū) ∈ Ω

}
(3.22)

is a Polyhedron that can be guaranteed to be a subset of Q1
si(Ω), but more relaxed

options do exist, see (Ariño et al. 2017). The iterations on the above approxima-
tions to one-step sets, when converge, provide polytopic inner approximations to
the maximal contractive sets in which there exist membership-dependent control
actions stabilising the TS system. As these polytope manipulations are carried
out with the Multi-Parametric Toolbox ( MPT ), it is shortly reviewed next.

3.4 Polytopes and Multi-Parametric programming (MPT)

The Multi-parametric toolbox (MPT) is a tool whose objective is to provide effi-
cient computational means for a wide variety of complex computational problems,
between these, constrained optimal control problems with great results belonging
to the lines of interest of this thesis.

3.4.1 Polytopes

Some of the definitions and basics operations with polytopes that involved the
use of MPT are presented (Kvasnica et al. 2004).

Definition 3.16. (Polyhedron): A polyhedron Q ⊆ Rn is a convex set given as
the intersection of a finite number of hyper- planes and half-spaces (or a convex
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combination of a finite number of vertices)

S = {x ∈ Rn|Ax ≤ b} (3.23)

Definition 3.17. (Polytope): A polytope P ⊂ Rn is a bounded (convex) polyhe-
dron

P = {x ∈ Rn|Ax ≤ b} (3.24)

From the above definitions, every polytope represents a convex and compact set.
A polytope can also be described by its vertices

P = {x ∈ Rn|x =

vp∑
i=1

λiV
(i)
p , 0 ≥ λi ≥ 1,

vp∑
i=1

λi = 1} (3.25)

where V
(i)
p denotes the i-th vertex of P , and vP is the total number of vertices

of P.

Definition 3.18. (face) Linear inequality a′x ≤ b is called valid for a polyhedron
P if a′x ≤ b holds for all x ∈ P. A subset of a polyhedron is called a face of P if
it is represented as

F = P
⋂
{x ∈ Rn|a′x = b},

for some valid inequality a′x ≤ b. The faces of polyhedron P of dimension 0, 1,
(n− 2) and (n− 1) are called vertices, edges, ridges and facets, respectively.

We say that a polytope P ⊂ Rn , P = {x ∈ Rn|Ax ≤ b} is in a minimal
representation if a removal of any of the rows in Ax ≤ b would change it (i.e.,
there are no redundant halfspaces).

3.4.2 Basic Polytope Manipulation

The Set-difference of two polytopes P1 and P2 is a union of polytopes R =
⋃
iRi

R = P1�P2 := {x ∈ Rn|x ∈ P1, x /∈ P2} (3.26)

The Minkowski-Addition of two polytopes P and W is a polytope

P �W := x+ w ∈ Rn|x ∈ P, w ∈ W (3.27)

The convex hull of a union of polytopes Pi ⊂ Rn , i = {1, ..., p}, is a polytope

hull

(
p⋃
i=1

)
:= {x ∈ Rn|x =

p∑
i=1

λixi, xi ∈ P, 0 ≤ λi ≤ 1,

p∑
i=1

λi = 1} (3.28)
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The envelope of two H-polyhedra P = {x ∈ Rn|Apx ≤ bp} and Q = {x ∈
Rn|Aqx ≤ bq} is an H-polyhedron

env(P,Q) = {x ∈ Rn|Āpx ≤ n̄p, Āqx ≤ b̄q} (3.29)

where Āpx ≤ b̄p is the subsystem of Apx ≤ bp obtained by removing all the
inequalities not valid for the polyhedron Q, and Aqx ≤ bq are defined in the
similar way with respect to Āqx ≤ b̄q and P.

3.5 Convex Difference Inclusions

In (Fiacchini 2010b; Alamo et al. 2009; Fiacchini, Alamo, and Camacho 2012;
Fiacchini 2010a) an extended modelling framework was presented so that invariant
and contractive sets could be computed for a larger class of systems than the
polytopic ones. In Chapter 8, a gain-scheduled extension of these ideas will be
laid out. Here, we will review the main ideas of the “convex difference inclusion”
approach the authors of the above-cited works introduced.

Invariant and contractive sets can be easily determined for linear systems and
uncertain linear systems characterised as polytopic Linear difference inclusions
(LDI) (Kouramas et al. 2005), either from a set-based approach as discussed in
earlier sections of this chapter, or in a linear matrix inequality framework (LMI),
(Boyd and Vandenberghe 2004; Guerra and Vermeiren 2004; Sala 2009; Wu and
Dong 2006b) discussed in earlier chapters. As many nonlinear systems can be
embedded in a polytopic LDI via a systematic modelling procedure, described in
the previous chapter of this Thesis, the above results apply to them.

The works (Fiacchini 2010a; Fiacchini, Alamo, and Camacho 2010; Fiacchini,
Alamo, and Camacho 2012) show that set-based LDI ideas can be generalised to
the so-called convex differential inclusions (CDI), which are more general mod-
els capable of representing nonlinear and uncertain systems with lower conser-
vatism (overbounding) than LDI, being these a particular case. Furthermore,
they present iterative scaling/shooting algorithms to compute contractive sets,
both in analysis and robust control design settings. In the polytopic case, such
steps can be carried out with polytope manipulation software such as the multi-
parametric toolbox (MPT, (Herceg et al. 2013)).

Consider a discrete-time dynamic system where the successor of a current state
x ∈ Rn, denoted by x+, is given by:

x+ = f(x, d, u) (3.30)
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being u is the so-called input vector, with values u ∈ U ⊂ Rm, and d ∈ D ⊂ Rv a
set of time varying parameters or disturbances. In many cases an uncertain “em-
bedding model” of the dynamics (3.30) can be built so that an inclusion condition
can be stated as follows:

f(x, d, u) ∈ F(x, u) ∀ d ∈ D ∀x ∈ X ∀u ∈ U (3.31)

where F(x, u) ⊂ Rn is the image of (x, u) under a known set-valued map, F :
X × U 7→ P(Rn) being P(·) the power set. The set X will be denoted as the
modelling region. Under this embedding F(x, u) is a set of possible successor
states. The motivation towards using these uncertain embeddings is that they will
exchange conservatism for computational advantages, if F fulfills some convexity-
related properties, to be later discussed.

Uncertain dynamic systems in the form:

x+ ∈ F(x, u) (3.32)

are denoted as difference inclusions (DI) (Fiacchini, Alamo, and Camacho 2010).
If there is no input vector x+ ∈ F(x), the DI is called autonomous. Of course, if
F(x, u) were a single point, the above DI would reduce to a deterministic dynamic
system.

We will assume that the origin (x = 0, u = 0) is an equilibrium point of the
undisturbed system, i.e. f(0, 0) = 0 and, additionally, that 0 ∈ X, 0 ∈ U and
0 ∈ D. Also, X, U and D will be assumed to be compact polyhedra.

Let us consider a set-valued map F : D 7→ P(Rn); the domain D will be assumed
to be a convex set in the sequel. So, the image under such a map of x ∈ D is
a set F(x) ⊂ Rn. The image of a set Ω ⊆ D under a set-valued map F will be
understood as F(Ω) := ∪ξ∈ΩF(ξ).

Definition 3.19. A set-valued map F is convex-valued if F(ξ) is convex for
every ξ ∈ D. Additionally, it will be denoted as polytopic if F(ξ) is a compact
polytope for all ξ in D.

Definition 3.20. A set-valued map is linear if F(λξ) = λF(ξ) and F(λ1ξ1 +
λ2ξ2) = λ1F(ξ1)⊕ λ2F(ξ2), for all λ, λ1, λ2 in R.

Definition 3.21. A set-valued map is S-convex if F(λξ1 +(1−λ)ξ2) ⊆ λF(ξ1)⊕
(1− λ)F(ξ2) for all ξ1, ξ2 in D and for all 0 ≤ λ ≤ 1.

Proposition 3.4 (cf. Prop. 1 in (Fiacchini, Alamo, and Camacho 2010)). A set-
valued map F with F(x) being convex and compact, is S-convex iff f̌(η, x) :=
supx∈F(x) η

Tx is a convex function of x when η is fixed, for all η ∈ Rn.
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Theorem 3.2. Given a polytope P , and an S-convex set-valued map F , we have

F(ξ) ⊆ Ξ := co

 ⋃
ζ∈vert(P )

F(ζ)

 , ∀ξ ∈ P

Proof. See the original references by Fiacchini and coworkers; also a more general
quasi-convex version will be proven in Chapter 8.

Classification of DI. The properties of the set-valued map F(x, u) associated
to a DI x+ ∈ F(x, u), defined in D := X × U,will define different types of DI.
Based on the nomenclature in (Kerrigan 2001; Fiacchini, Alamo, and Camacho
2010), a difference inclusion (3.32) will be denoted as linear (LDI), uncertain-
convex (UCDI), if F is linear or S-convex, respectively. Additionally, a convex
DI (CDI), as defined in (Fiacchini 2010a; Fiacchini, Alamo, and Camacho 2012)
will be understood as having an associated S-convex map where F(0) = {0}.

3.5.1 Modelling: embedding nonlinear functions in set-valued maps

In literature, embedding a nonlinear system onto a convex combination of linear
“vertex” models is a widely-used approach to prove properties of nonlinear sys-
tems based on the properties of the linear vertices, see the quasi-LPV or Takagi-
Sugeno modelling approaches in (Tanaka and Wang 2004; Rugh and Shamma
2000a; Kwiatkowski and Werner 2008a), for instance. In particular, given a model
in the form:

x+ =
[
A(x) G(x) E(x)

]xu
d

 := Ψ(x)

xu
d

 (3.33)

the above references show that a polyhedral bound for Ψ in a compact modelling
region X can be found under mild continuity assumptions. Let us denote such
polyhedral bound as Ψ̂ := Co({(Ai Gi Ei) i = 1, . . . , NΨ}), being NΨ the

number of vertices, such that Ψ(x) ∈ Ψ̂ for all x ∈ X. Elementary convexity
argumentations prove that the above nonlinear system can be rewritten as a
parameter-dependent expression:

x+ =

NΨ∑
i=1

hi(x)(Aix+Giu+ Eid) (3.34)

being h a parameter vector ranging in the standard simplex ∆ := {h ∈ RNΨ :∑NΨ

i=1 hi = 1, hi ≥ 0}. Abusing the notation, in the sequel ∆ will denote the
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standard simplex in any vector space, not just RNΨ . Disregarding the actual
“shape” of h(x), we can obtain an embedding in DI form (3.31):

x+ ∈ Co ({Aix+Giu} ⊕ EiD, i = 1, . . . , NΨ) (3.35)

It can be proved that the above DI is linear (LDI) if D := {0} (undisturbed case)
and UCDI in the case D is a compact convex set.

There are other more general techniques to embed a nonlinear system onto a CDI,
UCDI, QCDI, . . . , see (Fiacchini 2010a; Fiacchini, Alamo, and Camacho 2010).

LDI can be built for multiple-argument functions in several ways. The topic
is well studied, so the reader is referred to Chapter 5 (Robles et al. 2017) for
contributions on “optimal” modelling, the previous chapter of this Thesis and
references therein for ample detail.

This section will outline methodologies for embedding a (non-uncertain) nonlin-
earity f(x) inside a set-valued map F(x) with a CDI structure. Parametric/addi-
tive uncertainty elements can be added on top of that, with minor modifications,
see sections 2.1.1.2 and 2.1.1.3 in (Fiacchini 2010a), as well as some other classes
of uncertainty such as ellipsoidal (section 2.2 in the cited work).

Let us consider the case where a function ρ(x) : Ω 7→ R, with Ω ⊂ Rn, can be
bounded by known fl, fu such that fl(x) ≤ ρ(x) ≤ fu(x). If the bounds fulfill
some convexity-related properties, the associated set-valued maps will accordingly
do.

Proposition 3.5. (Fiacchini 2010a, Property 3.3) The set-valued map defined
by F(x) = [fl(x), fu(x)] where fl(x) ≤ fu(x) and fl is concave and fu is convex
is S-convex.

For instance, the 1st-order dynamic system x+ = x3 can be embedded in x+ ∈
[fl(x), fu(x)] with fl(x) = min(x3, 0) and fu(x) = max(x3, 0). As fl is concave
and fu is convex, and fl(0) = fu(0) = 0 the embedding is a CDI.

Proposition 3.6. (Fiacchini 2010a, Property 3.18) Assume that ρ(x) can be
expressed as ρ(x) = g(x) − h(x) being g and h convex functions (the so-called
difference-of-convex functions (Fiacchini 2010a)). Let ξg(x) be any linear function
such that ξg(x) ≤ g(x) and let ξh(x) be any linear function such that ξh(x) ≤ h(x).
Then, under the above assumption, the set-valued map F(x) = [ξg(x)−h(x), g(x)−
ξh(x)] is S-convex.
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Figure 3.2: A convex(red)-concave(yellow) bound inducing a S-convex set-valued map
embedding sin(x) + x/3.

Proof. Indeed, note that ξg and ξh exist by supporting hyperplane results. Then,
ρ = g − h ≥ ξg − h (which is a concave function) and ρ = g − h ≤ g − ξh (which
is convex).

There are other ways to obtain CDI/UCDI bounds for nonlinear systems, the
reader is referred to Fiacchini 2010a and other related works of this author for
details.

Note that, as in the well-developed linear LDI case, the result of an S-convex
embedding is not unique, and some resulting maps will give different performance
and contractive set (domain of attraction) estimates. This is, indeed, a well-known
fact (Sala 2009).

Stability

In the case of CDIs (no uncertainty at the origin in the model), stability can be
proved if a λ-contractive set is found.

Theorem 3.3. If there exists a control λ-contractive set Ξ for a CDI x+ ∈
F(x, u), then there exists a Lyapunov function V (x), V (x) > 0 for x 6= 0, which
is homogeneous, i.e., V (κx) = κV (x), and a control law ũ(x) such that V (x+) ≤
λV (x) for all x ∈ Ξ, for all x+ ∈ F(x, ũ(x)).

Proof. See original references. A more general version will be proved in Chapter
8.
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3.5.2 Contractive set computation by shooting algorithms

Theorem 3.4. Assume that x+ ∈ F(x, u) is a UCDI. Given a known “target”
polytope Ω, assume that a known polytope Ξ has been proved to fulfill Ξ ⊆ Q(Ω).
Given a point x̂ 6∈ Ξ, if there exists û ∈ U such that F(x̂, û) ⊆ Ω, then Co(Ξ ∪
{x̂}) ⊆ Q(Ω).

Proof. See original references. A more general version will be proved in Chapter
8.

The above results can be used to enlarge an initial estimate Ξ of Q(Ω) by drawing
a collection of new x̂ in random directions, via shooting algorithms (Fiacchini
2010a; Fiacchini, Alamo, and Camacho 2012).

In order to implement algorithms from Theorem 3.4, a polynomial-time sufficient
condition to check, given a target set Ω and x̂, if there exists û such that F(x̂, û) ∈
Ω is needed. In the case (3.35), such problem amounts to solving a set of linear
programming feasibility conditions. The same case would hold if F(x, u) were
affine in u, i.e., in the form F(x, u) = F1(x) ⊕ F2(x)u for some set-valued maps
F1 and F2. In a general case, if the support function of F(x, u) is convex in u,
computationally viable conditions can be cast.

As a conclusion of Theorem 3.2, the shooting algorithm in (Fiacchini, Alamo, and
Camacho 2010) can obtain progressively larger λ-contractive sets if one of them
is available, with the following algorithm:

[contractive set expansion]

1. Obtain an initial λ-contractive polyhedral “seed” set Ω0 overbound-
ing with an LDI and using set-based LDI approches ((Fiacchini,
Alamo, and Camacho 2010, $4.1)) . Set k = 0.

2. Choose a random direction vector ρ.
3. Determine, by bisection, the largest scaling γ > 0 such that there

exists û such that F(γρ, û) ∈ λΩk.
4. Set Ωk+1 = Co(Ωk ∪ {γρ}), and k = k + 1. If k < kmax, go to step

2.
5. End. The set Ωk is control λ-contractive.
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Chapter 4

Choosing a Takagi-Sugeno
model for improved

performance

This chapter presents two methodologies intended to address the
problem of constructing the most adequate Takagi-Sugeno representa-
tion of a nonlinear system with respect to a performance goal: max-
imum decay rate. Both approaches are based on coordinate transfor-
mations: the first one uses the Hessian of the system in an attempt to
represent nonlinearities as sum of squares of independent variables;
the second one takes into account the direction provided by a “fail-
ing” eigenvector with respect to the desired performance acting on the
linearization of the system. It is shown that, in some respects, both
methodologies offer better solutions than ordinary “blind” TS mod-
elling.

The contents of this chapter appeared in the conference article:

• R. Robles, A. Sala, M. Bernal, and T. Gonzalez (2015). “Choosing a Takagi-
Sugeno model for improved performance”. In: Proceedings of the 2015 IEEE
International Conference on Fuzzy Systems. Istanbul, Turkey, pp. 1–6.
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4.1 Introduction

Originally intended for fuzzy logic heuristic applications, Takagi-Sugeno (TS)
models (Takagi and Sugeno 1985) have evolved during the last three decades until
they became a well-established nonlinear control methodology (Tanaka and Wang
2001; Sala, Guerra, and Babuska 2005; Lendek et al. 2010). For model-based
methodologies, the sector nonlinearity approach allows TS models to exactly
represent nonlinear systems in a compact subset of the state space (Taniguchi,
Tanaka, and Wang 2001) as a convex combination of some vertex models, being
the combination coefficients functions of the state. If the number of nonlineari-
ties is high, a sensible fuzzy model simplification strategy might be advisable. A
number of methods is available to reduce complexity in a TS model: empirical
(Setnes et al. 1998), more or less systematic though depending on the number of
inputs (Gegov 2007), and systematic based on the functional principal component
analysis (Mat́ıa, Marichal, and Jiménez 2014). These issues are, however, out of
the scope of this contribution, even if they are advisable as an a posteriori step
to some of our results.

Once a TS model is available, stability analysis and design conditions for TS
systems can often be expressed as linear matrix inequalities (LMIs), see (Wang,
Tanaka, and Griffin 1996), which can be efficiently solved via convex optimization
techniques (Boyd et al. 1994). Most results pose LMIs in terms of the TS model
vertices; such results are called membership-shape independent (Sala 2009) and
actually prove stability for a family of linear time-varying systems in which the
plant is embedded. This step introduces quite a lot of conservatism. Recent
shape-dependent options (Bernal, Guerra, and Kruszewski 2009; Kruszewski et
al. 2009) try to partially avoid such issues.

It is well known that TS representations, even if exact in a compact set of interest
Ω : Ω ⊂ Rn, may not be unique (Feng 2006). Thus, a natural question arises: is
there a way to decide whether a TS model will be the most appropriate for a par-
ticular objective? As basically all shape-independent LMI results for TS systems
depend on the vertex models , different choices of supposedly “equivalent” TS rep-
resentations of a particular nonlinear system may result in different performance
levels being proved (because of the shape-independent conservatism).

The objective of this chapter is indagation, in a systematic way, about the causes
of the non-uniqueness of the TS models. Given a nonlinear system, a family of
TS models will be crafted using as design parameter a coordinate transforma-
tion. Based on that idea, some guidelines for choosing the “best” coordinate
transformation in order to optimise a decay-rate performance objective will be
presented.
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This chapter is organized as follows: next section introduces notation, preliminar-
ies and motivates the problem statement; the intermediate section 4.3 explains
how a systematic linear coordinate transformation can be made to “decouple”
nonlinearities in order to search for the best under some performance require-
ments; Section 4.4 introduces the first approach towards the work’s objective: it
is based on the Hessian of the system; Section 4.5 presents the linearization-based
methodology which transforms the original nonlinear system into a narrower rep-
resentation close to the origin which proves to be better than other approaches
to a certain extent; examples are offered all along the chapter to illustrate these
techniques.

4.2 Preliminaries

Consider a given nonlinear model

ẋ(t) = f(x(t)) (4.1)

with x(t) ∈ Rn being the state and f(·) : Rn → Rn being a continuously differ-
entiable nonlinear vector-valued function. Without loss of generality, the origin
x = 0 will be assumed to be the equilibrium point and Ω a region of interest
containing the origin.

Usually, the sector nonlinearity methodology (Taniguchi, Tanaka, and Wang 2001)
to obtain a TS model starts by grouping all the nonlinearities of f(x) (assume
there are s of them) in a vector

ρ(x) =
[
ρ1(x) ρ2(x) · · · ρs(x)

]
∈ Rs, (4.2)

so that (4.1) can be expressed as:

ẋ(t) = f̂(x, ρ(x)) (4.3)

being f̂(·, ·) a linear function.

Then, considering the modelling region Ω each nonlinearity is bounded in two
sectors, by expressing:

ρj(x) =
ρj(x)

ηj(x)
ηj(x) := ρ̃j(x)ηj(x), j = 1, . . . , s (4.4)

being ηj(x) a linear function of the state. The choice of ηj is not arbitrary: as
the origin must be an equilibrium point and linearity of ηj forces ηj(0) = 0, the
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limit of ρ̃j must exist. Then, the bounding:(
min
q∈Ω

ρ̃j(q)

)
ηj(x) ≤ ρj(x) ≤

(
max
q∈Ω

ρ̃j(q)

)
ηj(x) (4.5)

entails that ρj can be expressed as an interpolation between the minimum and
maximum value in the above expression, i.e., ρj = wj ∗ ρ̃j + (1−wj) ∗ ρ̃j , where:

ρ̃j = max
q∈Ω

ρ̃j(q), ρ̃j = min
q∈Ω

ρ̃j(q) (4.6)

Subsequently, a TS model with 2s vertices is built. A total of r = 2s mem-
bership functions (MFs) hi(x), i = 1, . . . , r, lying on the standard simplex Γ =
{hi : 0 ≤ hi ≤ 1,

∑r
i=1 hi = 1}, are constructed and a TS model

ẋ(t) =
r∑
i=1

hi(x)Aix(t), (4.7)

is crafted so that it is equivalent to the nonlinear one in the region Ω. For brevity,
membership functions will be grouped in a vector h(x), h ∈ Γ.

The basic idea motivating this manuscript is the fact that there might be more
than one option to build (4.2) (for instance sin(x1)− cos(x1) may be considered a
single nonlinearity or two of them) and even with the same choice of ρ(x), there
might be more than one option when choosing ηj(x) to build the “sector” bound
(for instance x1x2 can be modeled as [µx1,min + (1 − µ)x1,max]x2 or [µx2,min +
(1 − µ)x2,max]x1), i.e., there might be many equivalent TS models of the same
nonlinear system. Another problem in TS modelling is the fact that the number
of vertices grows rapidly with the number of nonlinearities, thus leading to higher
complexity in modelling (Mat́ıa, Marichal, and Jiménez 2014).

From a philosophical point of view, being (4.7) and (4.1) equivalent expressions,
simply rewritten in a different way, for whatever choice of ρ, a non-conservative
analysis of (4.7) would yield exactly the same results with any TS model fed to it.
However, most stability analysis and control design methodologies in literature
are membership-shape independent, in the sense that, instead of studying stability
of (4.7), stability of the following system is actually studied:

ẋ(t) =

(
r∑
i=1

hi(t) ·Ai

)
x(t), (h1(t), . . . , hr(t)) ∈ Γ (4.8)

and stability conditions hold for all h(t) ∈ Γ, i.e., disregarding the fact that hi are
actually functions of x and, simply, considering (4.8) to be a linear-time-varying
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system whose interpolating coefficients may jump arbitrarily in time from one
point of the simplex to other (though refinements considering bounded variation
rates do exist).

In the most basic interpretation, shape-independent conditions are usually cast as
LMI conditions involving only the vertex models A1, . . . , Ar. So, the properties
of the vertex models Ai are key in determining the properties of (4.1) (conserva-
tively, because of shape-independence). However, the parameters of the models
Ai heavily depend on the way the vector (4.2) and the linear functions η have
been chosen. However, systematic criteria for such choices are not present in prior
fuzzy literature to the author’s knowledge. This motivates the following problem
statement:

In concrete terms, shape-independent conditions consider all the convex hull of
vertices Ai as “uncertainty”. Different models will, hence, have different shape
and orientation of such “uncertainty” polytope. The overal objective of this
chapter is suggesting a “good” TS model, with respect to some criteria regarding
how the uncertainty is allocated in different directions.

4.3 Linear Coordinate Transformations

As TS modelling depends on the choice of some linear transformations ηj in (4.4),
in this work, linear coordinate transformations η = Tx will be considered, with
invertible T , and ηi will be considered to be

ηj = Tjx

being Tj the j-th row of matrix T . Dependence on x of the functions ηj has been
removed for notational simplicity.

In order to be systematic, given a scalar function q : Rn 7→ R, q(x) can be
expressed in the η coordinates as g(η) = q(T−1η). Under these coordinate trans-
formation, the functions ρ in (4.2) will be chosen as:

g(η) =
n∑
j=1

ρj(η) (4.9)
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where the choice of ρ is, specifically:

ρ1(η) =g(η)− g(0, η2, . . . , ηn)

ρ2(η) =g(0, η2, . . . , ηn)− g(0, 0, η3, . . . , ηn)

ρ3(η) =g(0, 0, η3, . . . , ηn)− g(0, 0, 0, η4, . . . , ηn)

...

ρn(η) =g(0, . . . , 0, ηn).

With such choice of ρ, if g has continuous partial derivatives at the origin, then
it is straightforward to see that:

lim
ηj→0

ρ̃j(η) = lim
ηj→0

ρj(η)

ηj
=
∂ρj
∂ηj

∣∣∣∣
ηj=0

(4.10)

so the required limit in (4.4) exists, and in fact ρj(η) and ρ̃j(η) are functions of
only (ηj , . . . , ηn). So, using (4.6), the associated sector-nonlinearity 2-rule model
of ρj is:

ρj(η) =
(
wj · ρ̃j + (1− wj) · ρ̃j

)
ηj (4.11)

where wj is only dependent of (ηj , . . . , ηn).

In this way, a family of TS models of q(x) is obtained, parameterised by the
coordinate transformation T . The above proposal is systematic in the sense that
apart from T no other modelling decision is involved.

Now, searching for the best T under some performance requirements can be pro-
posed.

4.4 A Hessian-based methodology

This section is motivated by the idea that near to the origin all smooth nonlin-
ear functions have a quadratic behavior given by the Taylor series up to degree
2. Thereby, it is possible to approximate these functions in a spherical ball of
arbitrary radius containing the origin by the Hessian matrix, which describes the
local characteristics of a multi-variable function from quadratic elements.

As the Hessian is a symmetric matrix, there exists an orthonormal basis which
diagonalises it: hence, all nonlinearities close to the origin can be represented
as a sum of squares of single independent variables. So, the fuzzy model of
q(x) = λx2, expressed as λ (µ1x+ (1− µ1)x)x being x and x the minimum and
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4.4 A Hessian-based methodology

maximum values of x in a modelling region can be generalised to the Hessian
coordinates, as follows.

Consider again a nonlinearity q(x), being an smooth and differentiable scalar
nonlinear function in Ω, dependent of the state x ∈ Rn.

By this way, the respective Hessian matrix H ∈ Rn×n at the origin is obtained,
i.e.

H =
1

2

∂2q(x)

∂xi∂xj

∣∣∣∣
x=0

, i, j ∈ {1, . . . , n}. (4.12)

which is symmetric.

Consider the set of normalized eigenvectors of H, grouped in so-called eigenvec-
tor matrix, V =

[
v1 v2 · · · vn

]
∈ Rn×n, to define the following coordinate

transformation:

η = V x⇔ x = V −1η (4.13)

The motivation of the above transformation is the fact that, if q(x) is quadratic,
then

q(x) = g(η) = λ1η
2
1 + · · ·+ λnη

2
n (4.14)

where λ1, . . . , λn are the Hessian eigenvalues.

In this way, the functions ρj in (4.9) verify:

ρj(η) = λjη
2
j (4.15)

and its TS model would involve using ρ̃j = λjηj in (4.4), and the required vertices
would simply be obtained from the maximum and minimum of ηj in the modelling
region in consideration.

Example 4.1. Consider the nonlinear function q(x) = x1x2 to be modeled for a
general purpose; it is assumed that the space of interest Ω : Ω ⊂ R2 is a circle of
radius 1. In order to implement the methodology of the approach, it is necessary
to obtain its Hessian transformation (4.12):

H =

[
0 0.5

0.5 0

]
.

Once H is calculated, the associated normalized eigenvector matrix V is obtained
such that

H = V ΛV −1,
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yielding

V =

[
−0.7071 0.7071
0.7071 0.7071

]
and Λ =

[
−0.5 0

0 0.5

]
.

Thus, the system can be rewritten according to (4.13) as

x1 = −0.7071η1 + 0.7071η2

x2 = 0.7071η1 + 0.7071η2

where q(x) can be rewritten in terms of η as

g(η) =
η2

2

2
− η2

1

2
. (4.16)

Note that the resulting function is expressed in quadratic terms and consequently
the election of these terms, to perform the nonlinear sector part, is given in a
natural way. Following the methodology, (4.16) is treated as shown in (4.9), this
is

g(η) = ρ̃1(η)η1 + ρ̃2(η)η2,

where |ρ̃i(η)| ≤ 0.5, i = {1, 2}: a corresponding TS representation with suitable
membership functions can be thus performed, yielding:

q(x) =
2∑
i=1

2∑
j=1

wi(η1)wj(η2)Aijx (4.17)

with

A11 =
[
0 0.7071

]
, A12 =

[
−0.7071 0

]
A21 =

[
0 −0.7071

]
, A22 =

[
0.7071 0

]
In order to compare the Hessian based methodology with alternative linear trans-
formations, we considered the set of transformations:

T (α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
(4.18)

where α ∈ [−π/2, π/2] and actually, the Hessian corresponds to α = π/4.

The measure of “uncertainty” around the actual value of q(x) = x1x2 induced by
the shape-independent TS model can be assessed by replacing the actual w1(η1)

80



4.4 A Hessian-based methodology

and w2(η2) in (4.17) by arbitrary scalars in the unit simplex, and evaluating:

δ(x) = max
w1,w2∈Γ

∣∣∣∣∣∣
2∑
i=1

2∑
j=1

wiwjAijx− q(x)

∣∣∣∣∣∣ (4.19)

as, indeed, δ(x) only depends on the vertices Aij.

Figure 4.1 depicts the value of uncertainty δ(x) when x lies in the frontier of the
modelling region (unit circle), i.e., x = x(β) = (cos(β), sin(β)), for β ∈ [0, 2π] for
the different choices of T (α) in (4.18).

In the referred figure, β appears in the abscissa axis, and δ(x(β)) in the ordinate
one. The modelling error of the proposed Hessian approach appears in thick solid
line, whereas the modelling error of the rest of transformations is presented with
thin dotted lines. Clearly, the Hessian has the lowest maximum modelling error:
other coordinate transformations have regions below the Hessian and regions above
it.
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Figure 4.1: Comparison of modelling error

With generic nonlinear functions, close enough to the origin the TS model will
be similar to the above case, so there will be an approximate “decoupling” with
the proposed Hessian-based transformation, as well as minimising the worst-case
uncertainty figure.
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In the case we have a vector of several nonlinearities (indeed, in a system’s equa-
tions (4.1), we have n nonlinear functions to model as f : Rn 7→ Rn) we might
consider modelling each of it in terms of its respective Hessian transformation in
order to provide almost-optimal modelling when close to the origin (in terms of
minimum worst-case “error”).

However, the idea has drawbacks due to the need of multiple transformations
and the fact that the dynamic performance might depend strongly on the “uncer-
tainty” in some particular directions and not in other ones. This motivates the
next section.

4.5 Linearization-based methodology

In this section, alternative modelling approaches will be compared in terms of a
goal to meet, such as a performance criterion. For simplicity, decay-rate perfor-
mance will be chosen for further development.

In particular, we seek a modelling methodology able to keep the linearised system
performance when the radius of the modelling region expands (such region will be
assumed to be spherical). Indeed, nonlinearity “opens” the TS vertex models as
distance from the origin increases and the linearised system belongs to the convex
hull of the models. Obviously, the performance provable with the TS model will
decrease with the size of the modelling region, and it will be always worse or equal
to the linearised one.

The basic idea of this section is considering the directional information from the
LMIs arising from the linearised model as coordinate transformation for the TS
modelling.

Consider the system in (4.1), and obtain its linearization as:

A =
∂f(x)

∂x

∣∣∣∣
x=0

(4.20)

The maximum decay rate, which we have chosen as performance objective, is
obtained by the GEVP below (Boyd et al. 1994):

max γ > 0

subject to P0 > 0,(
ATP0 + P0A

)
< −2γP0

(4.21)

with P0 = PT0 . Then, the state can be bounded by ‖x(t)‖ ≤ ce−γt for some c > 0.
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Once the LMIs are solved for the optimal γ, compute the Cholesky factor Q0 such
that P0 = QT0 Q0.

Taking Qo as a matrix transformation such that x̃ = Qox, the second condition
in (4.21) can be rewritten1 as

Ξ = ÃT + Ã+ 2γI ≤ 0 (4.22)

where Ã = QoAQ
−1
o . If γ is optimal, then Ξ has at least one eigenvalue equal to

zero. Consider now the eigenvalue-eigenvector decomposition of Ξ, i.e:

Ξ = QDQT . (4.23)

where D is diagonal, positive semi-definite, with diagonal elements in ascending
order.

Then, generate the matrix transformation

T = QTQo (4.24)

This transformation will “position” the nonlinear system (4.1) in the direction
of interest based on the analysis of the linearization. The intuitive justification
lies in the fact that the first elements of the transformed state will be the ones
associated to the smallest (zero if optimal γ) eigenvalues of Ξ.

First, from (4.1) obtain, the “nonlinear” part

fx(x) = f(x)−Ax

so the linearisation of fx(x) is zero.

Then, transform the model into ẋ = Ax + g(η), with g(η) : Rn 7→ Rn defined as
g(η) := fx(x) = fx(T−1η), using the transformation matrix T in (4.24). Let us
denote each of the elements of g(η) as

g(η) =
[
g1(η) g2(η) · · · gn(η)

]T
(4.25)

In order to apply sector-nonlinearity TS modelling and ensure the existence of
the required limits, each of these entries is written as (4.9), i.e.,

gk(η) =
n∑
i=1

ρ̃ki(η) · ηi, (4.26)

1Expression (4.22) for the Lyapunov equation could have been obtained directly via diagonalisa-
tion of A. However, generalising the proposal to TS systems with several vertex models far from the
origin (currently under research) cannot resort to such diagonalisation, as it would be different for
each vertex; hence, the Lyapunov inequality has been presented in the form (4.21) as the basis of
development, as it might be better suited for future generalisations.
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where ρki (and, subsequently, ρ̃ki) are chosen as proposed in (4.9), but individually
for each component gk so the double sub-index appears. In this way we can
construct the following equivalent matricial form

fx(x) = g(η) = G(η) · η =

ρ̃11(η) · · · ρ̃1n(η)
...

. . .
...

ρ̃n1(η) · · · ρ̃nn(η)

 · η (4.27)

Obtaining the maximum and minimum of each element of the matrix G(η) in a
chosen modelling region (details omitted for brevity, as they are well known) the
final TS model ensues:

ẋ = Ax+ G(η)η, (4.28)

where, letting q = n2,

G(η) =
2∑

i1=1

· · ·
2∑

iq=1

wi1 . . . winGi1...iq (4.29)

so, transforming back from η to x, a TS model in tensor-product form can be
written as:

ẋ =
2∑

i1=1

· · ·
2∑

iq=1

wi1 . . . win(A+Gi1...iqT )x (4.30)

Now, if the original decay-rate optimisation problem for the nonlinear system is
formulated with the above proposed TS model –LMIs are well known, replacing
A by the above vertices in (4.21)–, the proposed selection of vertices can attain
better performance than other options, as the example below discusses.

Example 4.2. Consider the following nonlinear system

ẋ =

[
−2x1 − sin(0.5x1x2)− x1x

2
2 − x2

−0.7x2 − 0.5x1 sin(x2
1)− 0.5x2 sin(x2

2)

]
(4.31)

whose linearization is given by:

A =

[
−2 −1
0 −0.7

]
,

whose eigenvalue of 0.7 will, of course, give rise to a decay rate γ of 0.7 in (4.21).
Indeed, after solving the LMIs in (4.21), the optimal Lyapunov matrix and the
associated decay rate are achieved for the linearised system:

P0 =

[
1.609 1.237
1.237 3.5136

]
, γ = 0.7.
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The resulting Cholesky factorisation of P0 is

Qo =

[
1.2686 0.9756

0 1.6

]
from which diagonalisation (4.23) is:

Q =

[
−1 0
0 −1

]
, D =

[
−2.6 0

0 0

]
.

Now we build the matrix transformation as T = QTQo, i.e.,

T =

[
−1.2686 −0.9757

0 −1.6

]
. (4.32)

Following the methodology, once we have T , we proceed to extract the nonlinear
part of the system in (4.31) and apply η = Tx to obtain the TS model (4.30),
with 16 rules.

Comparative analysis with alternative TS models The proposed model
is compared with other more “classical” ways of obtaining the sector-nonlinearity
TS model, such as the four equivalent expressions of (4.31) below:

ẋ =

[
−2− sin(0.5x1x2)−x1x

2
2

x1
−1

0.5 sin(x2
1) −0.7− 0.5 sin(x2

2)

]
x (4.33)

ẋ =

[
−2 − sin(0.5x1x2)

x2
− x1x2 − 1

0.5 sin(x2
1) −0.7− 0.5 sin(x2

2)

]
x (4.34)

ẋ =

[
−2− sin(0.5x1x2)

x1
−x1x2 − 1

0.5 sin(x2
1) −0.7− 0.5 sin(x2

2)

]
x (4.35)

ẋ =

[
−2− x2

2 − sin(0.5x1x2)
x2

− 1

0.5 sin(x2
1) −0.7− 0.5 sin(x2

2)

]
x (4.36)

and obtaining the maximum and minimum of each of the elements of the above
matrices to get the corresponding TS representation, with 8 rules in (4.33) and
(4.34), and 16 rules in the last two cases.

Figure 4.2 depicts the maximum decay-rate performance achieved by the proposed
Cholesky-based approach and the other TS modelling options as the radius of a
proposed circular modelling region increases: the idea of emphasising accuracy in
the key direction provided by the linearised LMIs proves fruitful and performance
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Figure 4.2: Performance comparison

keeps better even at a significant distance from the origin with the proposed coor-
dinates.

In Figure 4.2 the modelling with the proposed Cholesky-based approach is presented
in a thick solid line referred as TSη, whereas the models in (4.33,4.34,4.35,4.36)
referred as TS1 to TS4, respectively, are presented with thin dotted lines.

4.6 Conclusions

This chapter is a first approach towards bringing into systematic procedures the
idea that TS models might be selected so that the generated “uncertainty” is
suitably managed.

A Hessian-based approach has been presented, which is performed in a systematic
way, and it “decouples” multivariable nonlinearities (up to 2nd degree approxi-
mation) providing minimum maximal error.

Hessian might be a good option when modelling a nonlinearity without knowl-
edge on how its error might influence later results; however, its complexity lies
in the fact that multiple Hessians might be needed in a systems with multiple
nonlinearities thereby increasing the complexity and number of linear models of
the resulting Takagi-Sugeno model.
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4.6 Conclusions

In the case where it is required to keep a performance measure as close as possible
to the linearised case, the proposed linearisation-based approach in section 4.5 is
an advantageous alternative over “blind” methodologies since, in a systematic
way, the system’s “orientation”, through a linear transformation, is sought so
that it is the most beneficial to the performance measure. Obviously, increased
performance improvements due to nonlinear transformations might be achievable;
they are left as a matter of future research.
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Chapter 5

Subspace-Based Modelling for
Improved LMI Performance

Given a nonlinear system, the sector-nonlinearity methodology
provides a systematic way of transforming it in an equivalent Takagi-
Sugeno model. However, such transformation is not unique: conser-
vatism of shape-independent performance conditions in the form of
linear matrix inequalities results in some models yielding better re-
sults than others. This chapter provides some guidelines on choosing
a sector-nonlinearity Takagi-Sugeno model, with provable optimality
(in a particular sense) in the case of quadratic nonlinearities. The
approach is based on Hessian and restrictions of a function onto a
subspace.

This chapter extends and improves the results of conference work presented in
the Chapter 4. The contents of this chapter appeared in the journal article:

• R. Robles, A. Sala, M. Bernal, and T. Gonzalez (2017). “Subspace-Based
Takagi-Sugeno Modeling for Improved LMI Performance”. In: IEEE Trans-
actions on Fuzzy Systems 25.4, pp. 754–767.
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5.1 Introduction

Analysis and design of nonlinear control systems via Takagi-Sugeno (TS) models
is well developed, evolving from model-free heuristics (Takagi and Sugeno 1985;
Wang 1997) to model-based exact representations, combined with the direct Lya-
punov method in order to obtain linear matrix inequalities (LMIs) (Tanaka and
Wang 2001; Sala, Guerra, and Babuska 2005; Lendek et al. 2010). The latter case
is based on the sector nonlinearity approach, obtaining an exact TS model via
maximum and minimum bounds of a nonlinearity in a compact modelling region.
Approximate TS models can, too, be obtained, via linearisation at several points
(Tanaka and Wang 2001), or based on approximate fitting via H2 or SVD ar-
gumentations (linear or polynomial in the scheduling parameters (Petersson and
Löfberg 2009), tensor-product summation (Nagy et al. 2009)); SVD-based tech-
niques for rule reduction of complex TS systems appear in (Escaño and Bordons
2014). However, these “approximate” TS models are intentionally left out of
the scope of this chapter, concentrating on presenting improvements to the exact
sector-nonlinearity technique. Polynomial-fuzzy models (Sala and Ario 2009) will
also not be considered in the present work.

Although the models are exact, a first drawback comes from the conservatism of
considering only the vertices and not the combination coefficients in the stability
conditions. Thus, stability is actually proven for a family of linear time-varying
(LTV) systems in which the plant is embedded; these results are therefore called
shape-independent (Sala 2009). Shape independency is the easiest way to get
conditions in the form of LMIs, which in turn are advantageous because they
belong to the class of convex optimization problems, which are efficiently solved1

(Boyd et al. 1994). A few shape-dependent options are available (Bernal, Guerra,
and Kruszewski 2009), not considered here.

Another drawback of the TS/LMI methodology is the well-known fact that TS
representations may not be unique (Feng 2006). Hence, different performance
levels can be proven with shape-independent LMIs for the same nonlinear system,
depending on the chosen TS model. To handle this issue, apart from naive trial-
and-error, no systematic procedure of choosing a “good” TS model from the
many options (infinitely many, actually) is available in literature, to the authors’
knowledge.

1In some cases, performance optimisations are in generalised-eigenvalue problem form (GEVP);
bisection plus LMI is a well-known option: this chapter will understand “LMI” as the convex or
quasi-convex problems involving matrix inequalities, including GEVP, discussed in (Boyd et al.
1994).

90



5.2 Preliminaries

From the above discussion, the objective of this chapter is choosing an appropriate
TS model in order to maximise a performance objective in regions close to the
origin. The approach is based in first and second partial derivatives (Jacobian and
Hessian). As shape-independent conditions consider all the convex hull of vertices
Ai as polytopic uncertainty, different TS models will, hence, have different shape
and orientation of such uncertainty polytope. The key idea to be presented is
making the intersection of such polytope with some vector subspaces (appearing in
performance-related LMIs) as small as possible. A preliminary approach appears
in Chaperter 4 (Robles et al. 2015).

This chapter is organized as follows: section 5.2 introduces preliminaries and
motivates the problem; section 5.3 presents shape-independent uncertainty mea-
sures; section 5.4 shows how a Hessian based transformation can optimise such
measures; restrictions onto a subspace are discussed in section 5.5; consequences
in an LMI context appear in section 5.6. Discussion and examples, are sections
5.7 and 5.8, respectively.

5.2 Preliminaries

Consider a nonlinear dynamic system in the form

ẋ(t) = f(x(t)) (5.1)

with f : Rn 7→ Rn, having continuous second derivatives and f(0) = 0. Consider
the linearised model of (5.1) to be:

ẋ = Ax, A :=
∂f(x)

∂x

∣∣∣∣
x=0

(5.2)

Takagi-Sugeno modelling

The well-known sector nonlinearity methodology (Taniguchi, Tanaka, and Wang
2001) allows algebraically rewriting (5.1) as an equivalent convex sum of linear
models

ẋ =
∑r
i=1 hi(x)Aix, (5.3)

where the membership functions (MFs), grouped in a vector h ∈ Rr, belong to
the r − 1-dimensional standard simplex:

∆ := {h ∈ Rr :
∑r
i=1 hi = 1, hi ≥ 0 ∀i} (5.4)
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Basically, each Ai ∈ Rn×n is the matrix corresponding to a particular combi-
nation of maxima/minima of previously defined nonlinearities in a compact set
of the state space Ω. Although the methodology is well known, a brief outline,
introducing some notation needed later on, appears in Appendix, justifying that
the number of rules in (5.3) is a power of two, see (5.72). For later developments,
let us denote as A the ordered list of consequents matrices A := {A1, . . . , Ar}.
The sector-nonlinearity technique may not produce a unique TS model, resulting
in possible conservatism (Sala 2009). It is also well known that the linearised
matrix A can be cast as a convex combination of the vertices A of any TS model
of (5.1).

From the developments in the Appendix, the actual structure of hi coming from
sector-nonlinearity TS model of f : Rn 7→ R is either in the form (5.71), as the
sum of s two-rule models:

f(x) =
∑s
i=1

∑1
j=0 µij(x)Aijx (5.5)

where the MFs belong to:

∆s={µij : µi0=1− µi1, µij ≥ 0, i=1, . . . , s, j=0, 1}

or as a tensor-product (5.72), where hi in (5.3) has the structure:

hi(x) =
∏s
l=1 µl bitl(i)(x) (5.6)

The reader is referred to the Appendix for detailed definition and obtention of
the above expressions.

Performance measures

Once a TS model is obtained, analysis and design can be done taking advantage of
its convex structure combining them with Lyapunov functions such as V = xTPx,
P = PT > 0, which naturally leads to conditions in the form of LMIs in P . A
generic assumption on the problem structure will be made:

Assumption 5.1. The pursued control objective is the minimisation of a per-
formance measure γ subject to some model-independent matrix-definiteness con-
straints

Ψ(D) � 0 (5.7)

and model-dependent constraints:

xTΥ(Ai, D, γ)x ≥ 0 ∀x 6= 0,∀i = 1, . . . , r (5.8)
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where D denotes the decision variables (Lyapunov function, controller gains, etc.)
and all Ai ∈ A are given by the TS model under consideration. Matrix expression
Υ(·, ·, ·) will be assumed symmetric, convex in its first argument, and linear in
the third argument. We will assume, too, that Ψ and Υ can be transformed to
tractable problems such as, for instance, LMI, so that suitable convex optimisation
software will find the optimal γ and D.

Many contributions, referred to in the introduction, set up problems which can be
expressed as the above assumption (for instance, decay-rate or H∞ norm compu-
tations for continuous- and discrete-time TS systems, see example section). Note
that problem (5.8) is shape-independent as memberships h do not appear there: in
(conservative) shape-independent analysis non-uniqueness of sector-nonlinearity
models ends up in different performance levels being proven for different (suppos-
edly equivalent) TS models (Sala 2009).

Under the above assumption, linearity in the third argument will force that the
optimal solution of (5.8), to be denoted as γopt,TS , hits the boundary of the
constraint set: there will exist i∗ such that Υ(Ai∗ , D, γ

opt,TS) will be positive
semi -definite (non-empty nullspace) for all feasible D.

Relation with performance of linearised model

When problem (5.8) is solved with single matrix A, the optimal performance of
the linearised model is obtained.

Proposition 5.1. The optimal performance measure for (5.2), say γopt, is ob-
tained when there exists Dopt such that the above conditions (5.8), particularised
to a single matrix A, are

xTΥ(A,Dopt, γopt)x = 0 ∀x 6= 0, x ∈ C (5.9)

xTΥ(A,Dopt, γopt)x > 0 ∀x 6= 0, x ∈ C⊥ (5.10)

for some vector subspace C ⊂ Rn, being C⊥ its orthogonal complement.

Proof. As Υ(·, ·, ·) is a symmetric matrix, it has an orthonormal basis of eigen-
vectors, so when conditions cease to be strictly feasible they will be equal to
zero in a subspace (associated to the null eigenvalues of Υ(A,Dopt, γopt), de-
noted as C) and strictly positive in vectors associated to the non-zero eigenvalues
of Υ(A,Dopt, γopt) (which will belong to the orthogonal complement of C, i.e.,
C⊥).
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With a suitable change of variable in the original linearised dynamics, there is no
loss of generality in assuming that the linearised dynamics yields some constraints
which fail when x lies in the canonical q-dimensional subspace2

C = {x ∈ Rn : x =

(
0
I

)
η, η ∈ Rq} (5.11)

In these coordinates, the constraints for the linearised system (5.9) and (5.10) can
be equivalently written as a single one in the form below, for some matrix Υ11:

xTΥ(A,Dopt, γopt)x = xTc

(
Υ11 0

0 0

)
xc (5.12)

Proposition 5.2. The (shape-independent) optimal performance for (5.3) proven
with (5.8), γopt,TS, is equal or worse than γopt for the linearised system (5.2)
proven by (5.9)–(5.10): γopt,TS ≥ γopt.

Proof. Note that the linearised A is in the convex hull of the matrices in the
TS consequents A in exact sector-nonlinearity models. Convexity in the first
argument of Υ(·, ·, ·) entails that for any D such that Υ(Ai, D, γ

opt,TS) ≥ 0 we
would have Υ(A,D, γopt,TS) ≥ 0. Evidently, then, the best performance provable
with (5.8) will be larger or equal than γopt from the linearised model (5.9)–
(5.10).

5.2.1 Other preliminary results

Through this section, some other results/notation will be used.

Proposition 5.3. For any two vectors ψ, x in Rn,

max
‖x‖≤1

ψTx = ‖ψ‖, min
‖x‖≤1

ψTx = −‖ψ‖.

Proof is trivial from scalar product properties.

GivenM ∈ Rm×n, the Frobenius norm ofM is defined as ||M ||F :=
√∑m

i=1

∑n
j=1m

2
ij ,

where mij denotes the element of M at row i and column j; it verifies ||M ||F =√∑min{m,n}
i=1 λ2

i , where λi are the singular values of M (Meyer 2000). If M is
square and symmetric, λi are, actually, its eigenvalues.

2Indeed, if Υ fail in a subspace C (in original coordinates), canonical expression (5.11) is obtained
by conforming a transformation matrix x = Txc, with xc = (ξT , ηT )T as T =

(
TC⊥ TC

)
, where

columns of TC are a basis of C, and those of TC⊥ are a basis of C⊥.
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Classical interval arithmetic: An interval η = [a, b] is a convex subset of the
real line, with minimum a and maximum b, a ≤ b. The sum [a, b] + [c, d] will be
defined as [a+c, b+d]. The product x×[a, b] will be defined as [ax, bx] if x ≥ 0, and
as [bx, ax] otherwise. The width of an interval [a, b], with b ≥ a, will be denoted
as w([a, b]) := b− a. The absolute value will be defined as |[a, b]| = max(|a|, |b|).
Let us denote sym([a, b]) = [−|[a, b]|, |[a, b]| ]. Obviously, w([a, b]) ≤ 2|[a, b]|, and
[a, b] ⊂ sym([a, b]).

Proposition 5.4. Let η =
∑n
i=1 xi × [ai, bi] be an interval. Then,

max
‖x‖≤1

w(η) ≤ 2

√∑n
i=1 |[ai, bi]|

2

Proof. Obviously, η ⊂
∑n
i=1 xi × sym([ai, bi]). Elementary manupulations and

Proposition 5.3 yield the required result.

Second-order approximation. Smooth functions f(x) around the origin based
on Taylor series can be seen as:

f(x) ≈ Jx+
1

2
xTHx,

where J stands for the Jacobian while H stands for the Hessian matrix, evaluated
at the origin:

H :=
∂2ρ(x)

∂xi∂xj

∣∣∣∣
x=0

, i, j ∈ {1, . . . , n}.

Since the Hessian is a symmetric matrix, there exists an orthonormal basis which
diagonalises it; this implies that each nonlinearity close to the origin can be
represented as a sum of squares of single independent variables. If H = V TΛV ,
the transformation η = V x can express

xTHx = g(η) = λ1η
2
1 + · · ·+ λnη

2
n, (5.13)

where λ1, . . . , λn are the Hessian eigenvalues.

5.2.2 Motivation

The basic idea arising from the above propositions is that, as TS vertex matrices
Ai drift away from the linearisation A, then, the “closer” the matrices Ai could
be made to the such linearisation, the better the obtained proven performance
γopt,TS might be. As the worst-case directions are those in subspace C, the goal of
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the TS modelling will be fitting “as closely as possible” the model in the subspace
C. This idea motivates this manuscript.

Given the non-uniqueness of the TS modelling, the first objective of this chapter
is providing a systematic methodology to build an infinite family of possible TS
models based on some coordinate transformations, from a set of functions ηi(x),
see (5.69) in Appendix.

Then, the next objective will be defining what the above-mentioned fit means
in formal terms, proposing a choice of the aforementioned ηi(x) derived from the
equations which define subspace C, proving optimality for quadratic nonlinearities.
Given that all smooth functions are locally quadratic by the Taylor series up to
degree 2 when close enough to the origin, the proposal in this chapter allow to find
the optimal TS model in the above settings in small enough modelling regions.

Examples will show that the proposed TS models preserve performance of the
linearised model (the best one, from Proposition 5.2) in a better way than other
arbitrary choices as the modelling region increases.

5.3 Systematic TS modelling

Let us consider a TS model in box form (5.5) with a suitably ordered consequent
list A.

Definition 5.1. The shape-independent TS model fsi(x,A) is defined as a set-
valued map fsi : Rn 7→ C(Rm), where C(Rm) denotes the convex subsets of Rm,
given by:

fsi(x,A):={y∈R : ∃µij∈∆s s.t. y=
s∑
i=1

2∑
j=1

µijAijx} (5.14)

where A in the left-hand side has been implicitly used to denote the whole list of
consequent models.

With the above definition, the following is evident:

Proposition 5.5. For any of the possible TS models of a given f(x), evidently,
f(x) ∈ fsi(x,A).

The core step in the sector-nonlinearity methodology deals with single-output
nonlinear functions ρi : Rn 7→ R, conforming a vector ρ such that f(x) = Ax +
Mρ(x), see (5.68). Each ρi is a nonlinearity with one output, to be bounded
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between two linear functions, see (5.70); therefore, this chapter focuses first on
analising these mappings Rn 7→ R in order to tackle the problem of choosing a
TS model for improved performance. Later on, the case of multiple nonlinearities
is discussed.

Let us, then, consider a function f : Rn 7→ R, with f(0) = 0. Due to convex-
ity, fsi(x,A) is an interval for the chosen class of one-output functions. The
width of such interval will be related to the conservatism of shape-independent
developments with the TS model.

As TS consequents are linear, considering properties of the TS model over {‖x‖ =
1} will be informative enough. This motivates the definition below:

Definition 5.2. The normalised worst-case width (WCW) of a one-output TS
model with consequent list A is:

σ̄(A) := max
x∈Ω,x6=0

w(fsi(x,A))

‖x‖
(5.15)

Definition 5.3. A TS model with consequent list A is WCW-optimal if there is
no other choice of consequent matrices with better σ̄(A).

Actually, this chapter will prove that a Hessian-based methodology obtains such
optimal TS model if f(x) is quadratic.

Later, the optimality criteria will be recast to finding the model having the lowest
uncertainty width in the intersection of modelling region Ω with a particular
subspace3 C.

Definition 5.4. Given a vector subspace C, the subspace-constrained WCW of a
one-output TS model is defined as:

σ̄C(A) := max
x∈Ω∩C,x6=0

w(fsi(x,A))

‖x‖

So, the optimal TS model will be redefined to be the one minimising σ̄C. Again, in
a quadratic case, the solution to the minimum σ̄C will be provided in this chapter.

3Such subspace will actually come from constraints (5.9).
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5.3.1 Optimal shape-independent TS model for SISO nonlinearity

Consider a single-variable nonlinearity with f : R 7→ R, f(0) = 0 and its classical
sector-nonlinearity TS model, (5.67) in Appendix, here repeated for convenience:

f(x) = h(x)f̃0x+ (1− h(x))f̃1x (5.16)

being f̃0 = maxx∈Ω f̃(x) and f̃1 = minx∈Ω f̃(x), with f̃(x) = f(x)/x. Consider

now any other possible consequent models q̂0 and q̂1 such that there exists ĥ(x)
allowing writing

f(x) = ĥ(x)q̂0x+ (1− ĥ(x))q̂1x (5.17)

Using (5.14), with s = m = 1, so fsi is an interval, we have:

f(x) ∈ fsi(x, {q̂0, q̂1}) =

{
[q̂0x, q̂1x], x ≤ 0

[q̂1x, q̂0x], x ≥ 0.

In order for the above ĥ to exist, the consequents must verify (proof is straight-
forward, omitted for brevity):

q̂0 ≥ f̃0, q̂1 ≤ f̃1 (5.18)

Then (5.18) translates to:

Proposition 5.6. The shape-independent TS model (5.16) fulfills

fsi(x, {f̃0, f̃1}) ⊂ fsi(x, {q̂0, q̂1})

for any q̂0, q̂1 such that f(x) ∈ fsi(x, {q̂0, q̂1}) for all x ∈ Ω.

Note: on the sequel, fsi(x,A) will be shorthanded to fsi(x) when no confusion on
the consequent parameters arises. In functions of one variable, the only reasonable
choice of consequents is that in (5.67), because of the above proposition. Such
model fsi(x, {f̃0, f̃1}) will be, also, shorthanded to fsi,opt(x).

The objective of this chapter is generalising the easily provable Proposition 5.6
above to functions of several variables. In order to do that, a reformulation of
the sector nonlinearity methodology, altogether with a coordinate transformation
will be presented in next section.
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5.4 Coordinate transformations

In ordinary TS modelling, as discussed in the previous section and the Appendix,
the selection of a particular element of ρ(x) in model (5.68), say ρi(x), assumes
the existence of a specific linear function of the state ηi(x); these selections are
usually chosen by “manual inspection”, such that, defining

ρ̃i(x) :=
ρi(x)

ηi(x)
, ρi(x) = ρ̃i(x)ηi(x)

suitable limits of ρ̃i(x) exist, so a 2-rule model of ρi can be crafted (see Appendix).

Example 5.1 (Ad-hoc modelling). Consider f(x) := −4x1 + 4x1x2, expressed
as f(x) = −4x1 + 4ρ(x), ρ(x) := x1x2, to be modelled in the unit circle. Either
{ρ̃(x) := x1, η(x) := x2} or {ρ̃(x) := x2, η(x) := x1} could be reasonable choices
to craft a TS model. These two possible choices for η can be visually found in the
aforementioned inspection, leading to:

• f(x) = −4x+h1(x1)x2 +h2(x1) · (−x2), h1 = 0.5(x1 + 1), h2 = 1−h1, with
the associated shape-independent model fsi(x) = [−x2, x2], or

• f(x) = −4x+h1(x2)x1 +h2(x2) · (−x1), h1 = 0.5(x2 +1), h2 = 1−h1, being
fsi(x) = [−x1, x1].

Introducing generic coordinate transformations, the above TS models can be ex-
pressed as a particular case of an infinite family of choices, as the discussed below.

Example 5.2 (i.e., Example 1, continued). The motivation of this section is
that, actually, there are infinitely many other choices for the TS models of f(x)
in example 5.1. If we express

f(x) = −4x1 +
1

αβ
ρ1(x)− 1

αβ
ρ2(x)

with ρ1(x) = (αx1 + βx2)2 and ρ2(x) = (αx1 − βx2)2, we could also think of
η1 = (αx1 + βx2) for the TS model of ρ1(x) = η2

1(x), and, on the other hand,
choose η2 = (αx1 − βx2) for the TS model of ρ2(x) = η2

2(x). For notational
convenience, let us define v1 := (α β), v2 := (−α β), so we have η1 = v1x,
η2 = v2x.

The resulting TS model, in box form (5.5), would be a four vertex representation:

f(x) = ((µ10A10 + µ11A11) + (µ20A20 + µ21A21))x
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where µ10 + µ11 = 1, µ20 + µ21 = 1, and

Ai0=(−2 0) +
1

αβ
ξi0vi, Ai1=(−2 0) +

1

αβ
ξi1vi

ξi0 = maxx∈Ω ηi(x), ξi1 = minx∈Ω ηi(x), details omitted for brevity. Note that the
two prior “manually” obtained TS models in Example 5.1 correspond to (α = 1,
β = 0) or (α = 0, β = 1), respectively.

As the number of possible models is infinite, the question of which is the “best”
one arises. Using the WCW-optimality criteria in Definition 5.3, in the quadratic
case, such best model can be found via eigenvalue decomposition, leading to the
main result in this section below.

Theorem 5.1. Consider a quadratic nonlinearity f : Rn 7→ R, f(x) := xTMx,
with M symmetric, with an eigenvalue-eigenvector decomposition M = V ΛV T

with Λ diagonal and V orthonormal matrices. Consider, too, a modelling region
Ω := {x : ‖x‖ ≤ 1}. Then, the WCW-optimal TS model is given by expressing

f(x) =
∑n
i=1 λiρi(x) (5.19)

being λi the eigenvalues of M and ρi(x) = η2
i (x), for ηi(x) = V Ti x, i.e. ηi being

the projection of x over the unit-norm eigenvector V Ti associated to λi. Then, the
optimal TS model has the form:

f(x) =
∑n
i=1

∑1
j=0 µij(x)ψijV

T
i x (5.20)

where ψi0 := maxx∈Ω λiηi(x), ψi1 := minx∈Ω λiηi(x) and membership functions
are:

µi0(x) :=
V Ti x− ψi1
ψi0 − ψi1

, µi1(x) := 1− µi0(x), i = {1, . . . , n}.

Proof. For symmetric M , f(x) can be expressed as:

f(x) =
∑n
i=1

(
Miix

2
i +

∑n
j>i 2Mijxixj

)
=
∑n
i=1

(
Miixi +

∑n
j>i 2Mijxj

)
xi.

(5.21)

The last expression can be equivalently written as

f(x) =
∑n
i=1 ρ̃i(x)xi, (5.22)

with ρ̃i defined as:
ρ̃i(x) := Miixi +

∑n
j>i 2Mijxj . (5.23)
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Note that each ρ̃i(x) is linear in x; its maximum and minimum over the unit ball,
defined as ρ

i
, ρi respectively, so ρ

i
≤ ρ̃i(x) ≤ ρi, are from Proposition 5.3:

ρi :=
√
M2
ii + 4

∑n
j>iM

2
ij , ρ

i
:= −ρi, (5.24)

hence the TS model arising from (5.22) will be:

f(x) =
n∑
i=1

(
µi0(x)ρi + µi1(x)ρ

i

)
xi

and the map in (5.14) will be the interval:

fsi(x,A) = [−
∑n
i=1 ρi|xi|,

∑n
i=1 ρi|xi|] (5.25)

So, from Definition 5.2 we have

σ̄ = max
‖x‖=1

n∑
i=1

2ρi · |xi|

and such maximum on the unit sphere (Proposition 5.3 again) is given by:

σ̄ =
√∑n

i=1 4ρ2
i

which, substituting (5.24), results in:

σ̄2 =
n∑
i=1

4

M2
ii+4

n∑
j>i

M2
ij

 = 4
n∑
i=1

M2
ii+2

n∑
j 6=i

M2
ij


which can be bounded as

σ̄ ≥ 2

√√√√ n∑
i=1

(
M2
ii +

∑n
j 6=iM

2
ij

)
(5.26)

where the term at the right-hand side of the inequality is, actually, twice the
Frobenius-norm, i.e., σ̄ ≥ 2||M ||F .

The key idea for the theorem is the fact that the above bound is tight if M is
diagonal, i.e.,

σ̄ = 2||M ||F = 2
√∑n

i=1 λ
2
i . (5.27)
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Hence, if the representation of f(x) = xTMx had been chosen in diagonalised
coordinates xTV ΛV Tx, V Tx = η, f(η) = ηTΛη, the resulting σ̄ would have
been the lowest possible one. Note that, as M is symmetric, there exists an
orthonormal basis of eigenvectors so the transformation η = V Tx preserves the
norm and, hence, exploration over ‖x‖ = 1 is the same as exploring over ‖η‖ = 1.
This proves that the diagonalised representation is WCW-optimal.

Remark 5.1. If the modelling region is not the unit ball, a scaling/change of vari-
able should be carried out before obtaining the optimal TS model for a quadratic
nonlinearity so that the new modelling region coincides with the one required in
the above theorem.

Remark 5.2. If the function to be modelled is non-quadratic. the diagonalisation-
based approach no longer applies. However, close to x = 0, the function may be
approximated to:

f(x) ≈ Jx+
1

2
xTHx

where J is the Jacobian and H is the Hessian at x = 0. Hence, the coordinate
changes arising from diagonalisation of the Hessian would obtain a TS model
guaranteed to be optimal in a small enough sphere around the origin (so that
higher-order terms can be neglected).

In later developments, the optimal shape-independent TS model from (5.20) will
be denoted as fsi,opt(x).

5.5 TS models with optimal performance in a subspace

As discussed earlier, an accurate fit of the shape-independent TS model in the
performance-critical subspace C is often needed. This issue will be now ad-
ddressed.

5.5.1 Restrictions

Definition 5.5 (Restriction of a function or set-valued map). The restriction
of a function f : Rn 7→ R to a linear q-dimensional (q < n) vector subspace C,
will be denoted as f |C : C 7→ R, trivially defined as f |C(x) := f(x) ∀x ∈ C. An
analogous definition will be assumed for the restriction of a set valued map, such
as fsi, i.e., fsi|C(x) := fsi(x) ∀x ∈ C.
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Consider now the subspace C being defined as:

C = {x ∈ Rn : ∃η ∈ Rq s.t. x = Hη} (5.28)

thus, being H a n× q matrix mapping from canonical coordinates in Rq to C.

Then, abusing the notation, the restriction can be also defined in terms of q-
dimensional subspace coordinates η, as

f |C : Rq 7→ R
f |C(η) := f(Hη), η ∈ Rq (5.29)

Given a function and its restriction, a complementary function can be defined
fulfilling the following proposition.

Proposition 5.7 (Complementary function). For any subspace C, a function
f : Rn 7→ R can be decomposed as:

f(x) = f¬C(x) + f |C(x)

where f¬C(x), denoted as complementary function, fulfills f¬C(x) = 0 for x ∈ C.

Proof. It is evident, setting f¬C(x) := (f(x)− f |C(x)).

Consider an invertible n×n matrix T :=
(
Hξ H

)
, formed by completing H with

suitable n−q linearly independent columns, so the following linear transformation
T : Rn 7→ Rn is set up:

x = T (ξ, η) := T

(
ξ
η

)
(5.30)

with η ∈ Rq the subspace coordinates, and ξ ∈ Rn−q being dummy complemen-
tary coordinates. Then, using the above transformation T between x and (ξ, η)
and notation (5.29), we can express:

f(x) = f(T (ξ, η)) = f [1](ξ, η) + f [2](η) (5.31)

being f [1] and f [2] defined as:

f [1](ξ, η) := f(T (ξ, η))− f(T (0, η)) = f¬C(x)

f [2](η) := f(T (0, η)) = f |C(η)

If the original function f verifies f(0) = 0 then these functions verify f [1](0, η) = 0,
f [1](0, 0) = 0, f [2](0) = 0.
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Definition 5.6 (Restriction of a TS model). Consider a box-TS model of f(x)
given by (5.5). The restriction of such model to a linear subspace C given in
(5.28) results in:

f |C(η) =
s∑
i=1

1∑
j=0

µij(Hη)AijHη (5.32)

The shape-independent TS model fsi(x,A) from (5.14) can be also restricted to
C, allowing to prove:

Proposition 5.8. The restriction of f to C is contained in the restriction of the
shape-independent TS model, i.e.,

f |C(η) ∈ fsi|C(Hη,A)

Proof is obvious from Definition 5.6 and Proposition 5.5,

Proposition 5.9. If the subspace C is one-dimensional, denoting g(η) := f |C(η),
the optimal TS model of the univariate function g(η) : R 7→ R fulfills

gsi,opt(η) ⊆ fsi|C(Hη,A) (5.33)

for any choice of consequents A in the original model.

Proof. Representation (5.32) is a TS model of f |C(η), i.e., of g(η). Then, Propo-
sition 5.6 yields the required result.

In subspaces whose dimension might not be one, we can assert the following
result for quadratic functions, which extends Theorem 5.1 in order to consider
restrictions:

Theorem 5.2. Consider f(x) being a quadratic function. Denote as g(η) :=
f |C(η) the restriction of f to C, being gsi,opt(η) the Hessian-based optimal shape-
independent TS model of g. Then:

σ̄(gsi,opt) ≤ σ̄(fsi|C(η,A)) (5.34)

Proof. Proof is analogous to Proposition 5.9: as g(η) ⊂ fsi|C(η,A), the Hessian-
based representation of g(η) has the lowest maximum uncertainty width, by The-
orem 5.1.

104



5.5 TS models with optimal performance in a subspace

Basically, as intuitively expected, Proposition 5.9 and Theorem 5.2 say that it
is better (or at least equal) to get a direct TS model on the restriction of a
function –left-hand side of (5.33) and (5.34)– than, first, modelling on a larger
space and, later, restricting the resulting TS model –right-hand side of the re-
ferred inequalities–. This motivates using the decomposition in Proposition 5.7
–equivalently, (5.31)– to obtain WCW-optimal TS models of the restrictions, as
detailed in next section.

5.5.2 Global models with optimal performance in C

Up to now, results in previous section have discussed optimality of certain TS
models defined only on a subspace C (indeed, restrictions from Definition 5.5 are
meaningless outside C). However, applications usually require TS modelling in
all of Rn and not only in C. Expression (5.31) comes handy now.

Consider a quadratic function f(x) = xTMx and the q-dimensional subspace
defined in (5.28). Consider, too, any of the possible linear transformations T and
its associated matrix T in (5.30), and express f in the new coordinates as:

f(x) =
(
ξT ηT

)
F

(
ξ
η

)
(5.35)

for F = T
T
MT . Using the new coordinates (ξ, η), the subspace C becomes the

canonical subspace (0, η), η ∈ Rq.

Express, then f(x) decomposed in the form (5.31). Given the fact that f [1](η, 0) =
0, as f [1] is quadratic we can express, with trivial manipulations of matrix F
above:

f [1](ξ, η) =
(
ξT ηT

)(F11 0
F21 0

)(
ξ
η

)
(5.36)

f [2](η) = ηTF22η (5.37)

With suitable choices of H and Hξ when conforming T , are assumed F11 and F22

diagonal, without loss of generality4.

4Indeed, if it were not the case, consider the diagonalisations F22 = V Tη ΛηVη , F11 = V Tξ ΛξVξ.

Then, the change of variable η∗ = Vηη, ξ∗ = Vξξ would render a representation:

f [1](ξ∗, η∗) =
(
ξ∗T η∗T

)( Λξ 0
VηF21V Tξ 0

)(
ξ∗

η∗

)
f [2](η∗) = η∗TΛηη

∗

So, replacing a supposed (initial guess) Ĥη by a corrected Hη = VηĤη and Ĥξ by Hξ = VξĤξ, the
requested diagonal form would be obtained.
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Denote as λ
[2]
i , i = 1, . . . , q the diagonal elements (i.e., eigenvalues) of F22; denote

as λ
[1]
i , i = 1, . . . , n−q the diagonal elements of F11. Then, in the η, ξ coordinates,

we can write

f [1](ξ, η) =
(
ξT ηT

)(F11

F21

)
ξ (5.38)

Let us denote f [1](ξ, η) = F(ξ, η)ξ, being F the linear function F : Rn 7→ Rn−q
multiplying ξ in (5.38), i.e.,

F(ξ, η) :=
(
ξT ηT

)(F11

F21

)
actually expressed as a 1× (n− q) row vector, and denote as Fi its elements, for
1 ≤ i ≤ n− q. Then, (5.38) can be expressed as:

f [1](ξ, η) =

n−q∑
i=1

Fi(ξ, η)ξi

Denoting F i0 := max
x∈Ω
Fi(T−1x), and F i1 := min

x∈Ω
Fi(T−1x), we can express f [1]

as the TS model:

f [1](ξ, η) =

n−q∑
i=1

1∑
j=0

µij(x)F ijξi (5.39)

Manipulating f [2](η) =
∑q
i=1 λ

[2]
i η

2
i , we can express it as:

f [2](η) =

q∑
i=1

1∑
j=0

µij(x)Gijηi (5.40)

with Gi0 := max
x∈Ω

λ
[2]
i ηi and Gi1 := min

x∈Ω
λ

[2]
i ηi.

From Theorem 5.2, because of the diagonal representation of f [2](η), the above
TS model (5.40) is the WCW-optimal one, in the sense of Definition 5.3, for the
restriction f |C in η coordinates.

Combination of the optimal f [2] with its complementary function f [1] results in
the main theorem of this section:

Theorem 5.3. Given a quadratic function f(x) = xTMx, subspace C defined in
(5.28), and the change of variable (5.30), the TS model

f(x) = f [1](ξ, η) + f [2](η)

=

n−q∑
i=1

1∑
j=0

µij(ξ, η)F ijξi +

q∑
i=1

1∑
j=0

µij(η)Gijηi
(5.41)
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is WCW-optimal in subspace C in the sense of Definition 5.4.

Proof. As the restriction of f [1] onto C is zero, and so it is the restriction to C of
the shape-independent TS model arising from (5.39), i.e., f [1],si(0, η) = {0}, it is
easily seen that:

fsi|C(ξ, η) = f [2],si|C(η)

so optimality in C is not lost when adding (5.39) and (5.40) as the complementary
function (and its TS model) is zero on C.

Note that the diagonal form in F11 is, actually, not needed in the proof. However,
there is no loss of generality in assuming it: it has been stated as such in the
above discussion because, being both F11 and F22 diagonal, the same matrices
F11, F21 and F22 in (5.36) and (5.37) would be usable for obtaining the optimal
model in either the subspace ξ = 0 or η = 0.

Note also that the change of variable should be reverted in ξi, ηi, in order to
have the TS model (5.41) depending on the original x coordinates instead of the
transformed ones (details omitted for brevity).

So, basically the procedure to obtain the optimal model for a subspace C of a
quadratic function would be:

1. Get a basis H of C, complete it and obtain T , F , and subsequently, f [1] and
f [2].

2. Obtain the Hessian eigenvectors of f [1] (yielding diagonal F11) and f [2]

(yielding diagonal F22).

3. Combine both steps in a single change of variable.

4. [optional] Express the box-TS model (5.41) in original coordinates.

The outline of the procedure is illustrated in example below.

Example 5.3. Let us model the function f : R5 7→ R given by f(x) = x2
1 in the

2-dimensional subspace5 spanned by C={x ∈ R5 : x=Hη, η ∈ R2} with

H=

(
1 1 −1 0.5 1
2 0 2 −4 −2

)T
.

5The actual subspace is generated via performance optimisation (5.9) of a 5th-order linearised
model. The actual model matrices and LMIs are omitted because they are not relevant for the time
being. Full examples will appear on Section 5.8.
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In order to avoid scalings so that the unit circle in original coordinates keeps be-
ing the unit circle in transformed ones, let us obtain an orthonormal basis of C
(overwriting H with Matlab command H=orth(H), for instance), as well as an or-
thonormal basis of its complementary space (Matlab H xi=null(H’)). With these
two basis, we can form the change of variable T in (5.30), with T actually being
an orthonormal matrix. So, variables x1 to x5 will be mapped to (ξ1, ξ2, ξ3, η1, η2)
and the above subspace will be, in the new coordinates:

C = {(ξ1, ξ2, ξ3, η1, η2) ∈ R5 : ξ1 = ξ2 = ξ3 = 0}.

Let us check the accuracy on C of several possible TS models:

a) Inspection-based coordinates: The first TS model to be considered is the
“inspection” one given by:

f(x) = h1(x1)A0x+ h2(x1)A1x (5.42)

with h1(x1) = 0.5(x1+1), h2(x1) = 1−h1(x1), A1 = −A0, and A0=
(
1 0 0 0 0

)
.

The model yields
fsi(x) = [−x1, x1]. (5.43)

Of course, this would end the classical way of TS modelling in prior liter-
ature. The issue under discussion is, however, how accurate is such model
in subspace C.

In order to assess the accuracy of (5.42) on C, let us trivially carry out
the change of coordinates T by rewriting fsi in (5.43) replacing x1 by its
expression on the new coordinates (η, ξ) arising from matrix T

x1 = −0.1379ξ1 + 0.6081ξ2 + 0.1379ξ3

+ 0.3385η1 + 0.6911η2

As η are subspace coordinates, the restriction fsi|C is

fsi|C = [−(0.3385η1 + 0.6911η2), 0.3385η1 + 0.6911η2]

for η ranging in the unit ball (T is orthonormal), the worst-case width
(Definition 5.4) on the subspace C is given by twice the norm of κ :=
(0.3385, 0.6911)T , by Proposition 5.3 and the fact that all intervals are sym-
metric. The result for the TS model (5.42) is:

σ̄C = 2‖κ‖ = 2× 0.7695 = 1.5391 (5.44)
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a) Non-optimised change of variable: Now, let us test the ideas in Section
5.5.1, i.e., that carrying out TS modelling after the change of variable will
lead to a better model than the one above, where TS modelling was carried
before the change x = T (η, ξ).

Writing now f(x) = xTMx being M the matrix with all its entries equal
to zero except the (1, 1) term (equal to 1), we can express it in the new

coordinates as F = T
T
MT (not displayed, to save space). The restriction

to C, in such η coordinates is f |C(x) = ηTF22η, with:

F22 =

(
0.1146 0.2339
0.2339 0.4777

)
(5.45)

where, as expected, F22 = κ · κT . So, we can express g(η) = f |C(Hη) =
(0.1146η1+0.4679η2)η1+(0.4777η2)η2. Computing the norms of (0.1146, 0.4679)T

and (0, 0.4777)T , by Proposition 5.3, the resulting TS model yields on the
unit circle a shape-independent interval:

gsi=[−0.4817, 0.4817]×η1 + [−0.4777, 0.4777]×η2 (5.46)

It can be shown that, as η range on the unit ball, the worst-case width in
this case will be:

σ̄C = 2
√

0.48172 + 0.47772 = 1.357 (5.47)

which is lower than that from (5.44), as expected.

a) Optimised coordinates: Obtaining three orthonormal eigenvectors of the
top-left 3 × 3 block of F , arranged in a 3 × 3 matrix V1, as well as two or-
thonormal eigenvectors of the bottom-right 2×2 block of said F –the F22 ma-
trix in (5.45) above–, in a 2×2 matrix V2, the matrix V = blockdiag(V1, V2)
is the Hessian-based coordinate transform of each of the subspaces so that
the resulting TS model is optimal in the sense of Theorem 5.1. The overall
coordinate change is x = T ·V · (ξT ηT )T , yielding the transformed model of
x2

1 as:

f(x) =0.4078 ξ2
3 + 0.9828 ξ3η2 + 0.592 η2

2

=(0.4078 ξ3 + 0.9828 η2)ξ3 + 0.592 η2
2

which, as
√

0.40782 + 0.98282 = 1.064 would lead to a 4-rule TS model on
the unit circle given by:

fsi(x) =fsi
(
T · V ·

(
ξT ηT

)T) (5.48)

=[−1.064, 1.064]× ξ3+[−0.592, 0.592]× η2
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The worst-case width on the subspace ξ1 = ξ2 = ξ3 = 0 results, in this case:

σ̄C = 2× 0.592 = 1.184 (5.49)

which is, as expected, lower than that from (5.44) and (5.47). In fact, as
f(x) was quadratic, Theorem 5.3 states that there is no other linear coordi-
nate change which gives a better figure for σ̄C than that in (5.49).

For illustration, reverting the change of variable by suitable inversion of the
transformation matrices, we can write:

ξ3 =
(
0.6386 −0.5473 0.1672 0.4865 −0.1672

)
x

η2 =
(
0.7696 0.4542 −0.1388 −0.4037 0.1388

)
x

so, replacing these expressions in (5.48) and multiplying by 1.064 and 0.592,
respectively, we can define consequent matrices:

A10 =
(
−0.8591 0.2088 0.1779 −0.5449 −0.1477

)
A20 =

(
−0.1104 0.4794 −0.0990 0.3032 0.0822

)
A11 = −A10, A21 = −A20

such that a final (WCW-optimal in the requested subspace) box model (5.5)
with s = 2 can be written in the original x coordinates, as an alternative to
the naive (5.42).

The above example has shown how a rewriting of x2
1 has reduced the uncertainty

due to shape-independence from 1.54 to 1.18 in a particular subspace C. These
manipulations will be able to improve associated LMI results in fuzzy control, as
discussed in next section.

5.6 Use of optimal TS models in LMIs

Let us consider a nonlinear system (5.1), its linearisation A in (5.2) and the
nonlinearities ρ(x) in (5.68). The objective of this section is using the previous
developments to suggest a TS model which preserves performance of the linearised
system proven with some LMIs (arising by suitable transformations of (5.7) and
(5.8), if needed) by avoiding larger than necessary uncertainty of fsi in key sub-
spaces, given by Proposition 5.1.
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5.6.1 Effect of the nonlinearity in the Lyapunov equations

When the optimal solution of a LMI for the linearised system ẋ = Ax has been
obtained, we are in the situation in (5.9)–(5.10). However, the actual perfor-
mance proved for a nonlinear system would require replacing the linearised state
derivatives ẋ = Ax by the nonlinear ones ẋ = Ax+Mρ(x). Of course, that would
destroy the LMI form as ρ is nonlinear, so the objective is generating a sector-
nonlinearity TS model of Mρ with low conservatism which still allows proving
good enough performance with LMIs.

As the perfomance limit in (5.9) and (5.10) is hit for x ∈ C, that means that the
restriction of ρ(x) onto subspace C must be modelled with precision in order to lose
the least possible performance (ideally). So, at first glance, applying Theorem 5.3
to each element of ρ might seem a viable solution and so it is, indeed. However,
further improvements may be crafted by considering the structure of matrix M
and the obtained Lyapunov function. Such ideas will be detailed next.

First, note that, actually, it is not each component of ρ(x) the magnitude to be
precisely modelled. Indeed, let us assume there exists a Lyapunov function whose
time-derivative will require, in turn, the use of the state derivatives. Say, such
Lyapunov function having the form V (x) := xTPx will give rise to V̇ = 2xTPẋ,
so the difference between (a) the linearised system’s behaviour V̇L := 2xTPAx
and (b) that from the nonlinear system V̇NL := 2xTP (Ax+Mρ(x)) is

Ξ(x) := V̇NL − V̇L = 2xTPMρ(x) (5.50)

So, the actual term whose uncertainty must be small, when x lies in subspace C,
is Ξ(x).

Of course, qualitatively speaking, if each element (nonlinearity) in vector ρ(x)
is modelled with a “precise enough” TS system, the overall Ξ will be precise.
However, the different intervals of uncertainty in ρ will result in a cumulative
uncertainty in PMρ given by the rules of classical interval arithmetic (Moore,
Bierbaum, and Schwiertz 1979). Such uncertainty is larger than that arising from
the joint evaluation of each element of the vector g̃(x) := PMρ, because interval
arithmetic assumes all intervals may vary independently, which is not usually the
case. Suitable canonical structure choices for g̃ will be discussed below to try to
avoid such a source of conservatism.

Remark 5.3. In a discrete-time case, Lyapunov equations would have considered
∆V = (Ax + Mρ)TP (Ax + Mρ) so the difference between linear and non-linear
would be: 2xTATPMρ+ρTMTPMρ. As ρ is O(x2), then the first term is O(x3)
and the second one is O(x4). So, in order to minimise the discrepancy close the
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origin, concentrating on the terms of the order of x3 will suggest setting, in this
case,

Ξ(x) = 2xTATPMρ(x) (5.51)

5.6.2 Diagonalisation of Ξ(x)

With PM=I (or ATPM=I in the discrete case), we have:

Ξ(x) = 2xT ρ(x) (5.52)

Consider, too, that a suitable TS model for each element of ρ(x), yielding a
shape-independent interval of uncertainty ρsii (x), is available. Denote the interval
of uncertainty of Ξ as Ξsi, given by:

Ξsi(x) = 2
∑n
i=1 xiρ

si
i (x) (5.53)

obtained with standard interval arithmetic from intervals ρsii .

Proposition 5.10. In the above case, the interval of uncertainty Ξsi fulfills:

w(Ξsi(x)) ≤ 2‖x‖ ·
√∑n

i=1 |ρsii (x)|2 (5.54)

Proof. Proof is a consequence of Proposition 5.4 and linearity in x of Ξ.

Otherwise, with PM 6= I, such bound would need to include terms regarding the
norm (singular values) of PM , and not all elements of ρ would have the same
relevance in Ξ (depending on alignment with the worst-case singular vectors). As
handling PM 6= I results quite cumbersome, the objective of the next develop-
ments is showing that some changes of variable can lead to a TS model in which
Ξ(x) has the expression (5.52) above (in the relevant q-dimensional subspace given
by the failing LMIs).

In that way, all directions would have the same influence (so measuring uncer-
tainty on the unit circle is meaningful) and sums in (5.54) will be carried only for
i ranging from 1 to q.

Restrictions

As discussed in Section 5.2, constraints (5.8) actually fail in a q-dimensional
subspace C. Considering the change of variable T leading to canonical form

112



5.7 Discussion

(5.12), the expression of Ξ(x) in (5.50) can be written in the new coordinates
xc = (ξT , ηT )T being η the subspace coordinates as:

Ξ(x) = 2(ξT ηT )T
T
PMρ(Txc)

= ξTΓ1ρ(Txc) + ηTΓ2ρ(Txc) := xTc Γρ(Txc)
(5.55)

where matrix Γ1 is formed by selecting the first n − q rows of Γ := 2T
T
PM

and Γ2 is built with the last q rows of Γ. Abusing the notation, we will define
ρ(ξ, η) := ρ(Txc).

As subspace C is the one with ξ = 0, the proposed goal of the optimal TS modelling
is producing a WCW-optimal model of ρ̃(η) := Γ2ρ(ξ, η) in C in order to avoid
losing performance with respect to (5.12), because the restriction of Ξ to C is

Ξ|C(η) = ηT ρ̃(0, η) (5.56)

Such optimal model of ρ̃ can be obtained by the techniques in previous sections.

Note that (5.56) is a reduced-dimensionality version of (5.52). Hence, with
straightforward modifications Proposition 5.10 applies to bound uncertainty in
Ξ|C(η), simply changing ρ(x) to ρ̃(0, η) and summing over q dimensions (instead
of n) in (5.54).

Last, regarding the remaining nonlinearities in Γ1ρ(ξ, η), a TS model of them can
be crafted using any available technique and choice of coordinates as, from (5.55),
it will not influence modelling accuracy in the requested subspace.

5.7 Discussion

To conclude the theoretical part of the chapter, let us discuss potential limitations
and future lines of research.

The first issue is the resulting number of rules. For instance, the inspection-based
model of x2

1 –case (a) in Example 5.3– has two rules, whereas the ones arising from
our recommended changes of variables have four rules. In a quadratic case, it can
be shown that, for a nonlinearity xTMx, with M being of rank m, the overall
number of rules associated to the q-dimensional subspace C where it should be
optimal will be equal to 2ϑ, being ϑ = min(q,m). Now, regarding the model on
the orthogonal subspace C⊥ , which must forcedly be carried out to build a global
model, the nonlinearities should be modelled in the simplest possible way, but, of
course, it would require at least two more rules, so the total number of rules will
be 2ϑ+1 or higher, for each of the involved nonlinearities. Hence, our approach
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may result in a larger number of rules than inspection-based ones looking for
“simple” TS representations. In complex cases, combining our approach with
the approximate complexity reduction techniques mentioned in the introduction
might be needed.

Now, the discussion on what is more conservative, few inexact rules (classical
approach) versus our new proposal of more rules with optimal fit in a subspace
should be addressed. If the modelling region is small enough, it has been proved
that our model will fit inside the projections onto C of the vertex models of any
other TS model. Of course, this fit might not be true on C⊥ but such possible
worse accuracy in the complementary subspace is irrelevant due to the excess
performance margin implicit in the strict inequality (5.10). So, for small-enough
modelling regions our approach will yield performance equal to or better than
alternative options.

In larger modelling regions, for a heavily nonlinear system, the geometry of the
state trajectories might change substantially from that around the origin; hence,
our proposal cannot claim optimality in such a situation, because the directions
critical for performance cease to be those in subspace C from the linearised LMIs
(5.9). Further research is needed in order to generalise the idea in Proposition 5.1
to, for instance, LMIs arising from preexisting TS models, incorporating a set
of Ai instead of the linearisation A; however, some technical difficulties arise.
Detailed analysis of the issues arising with non-quadratic nonlinearities far from
the origin is also needed in further research.

A last observation is the fact that, if LMIs were shape-dependent (such as (Bernal,
Guerra, and Kruszewski 2009)), in an ideal case, as “all” possible TS models are
equivalent rewritings of the nonlinearities, a “perfect” shape-dependent approach
should give the same results whichever the TS model used; however such perfect
algorithm has not yet been discovered.

5.8 Additional Examples

Example 5.4. This first example illustrates the advantages of the proposed ap-
proach in order to obtain an optimal model in the sense of finding the maximum
decay rate of the following continuous nonlinear system:

ẋ =

 −3x1 − 2x2 − x3

−4x2 − x3

−8(x2
1 + x1) + x2 − 2x3

 (5.57)
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where x ∈ Ω, Ω ⊂ R3 being a spherical modelling region (several values for its
radius being tested later on). Taking into account the single nonlinearity x2

1 in
(5.57), a conventional inspection-based 2-rule TS model can be obtained:

ẋ =
2∑
i=1

µi(x)

 −3 −2 −1
0 −4 −1

−8(αi + 1) 1 −2

x (5.58)

with µ1(x) = x1−α2

α1−α2
, µ2(x) = 1 − µ1(x), α1 = max

x∈Ω
x1, α2 = min

x∈Ω
x1. Maximum

decay rate γopt for V = xTPx under TS model (5.58) is obtained maximising
γ > 0 subject to:

P > 0, ATi P + PAi ≤ −2γP, i = {1, 2} (5.59)

These conditions fulfill Assumption 5.1 and are in GEVP form.

The above model’s performance will be compared with the maximum decay rate
obtained from the proposed modelling technique. To that end, (5.57) is rewritten
as (5.68), i.e.,

ẋ = Ax+Mρ(x) (5.60)

where A is the linearization of (5.57), M =
(
0 0 −8

)T
and, ρ(x) = x2

1. Once
ρ(x) is defined, the GEVP test of decay rate (4.21) was applied for the linearised
system, i.e. (5.60) with ρ(x) = 0, and achieved a γopt = 1. No TS model will be
able, of course, of getting a faster decay (Proposition 5.2).

The one-dimensional subspace C = {x ∈ R3 : x =
(
−0.1764 0.3014 0.9371

)T
η, η ∈

R} is the one which prevents the linearised decay-rate problem to progress any
further: its basis correspond to the eigenvector of the matrix ATP +PA+ 2γoptP
associated to the minimal eigenvalue (λmin = 0 due to γopt).

Following identical modelling procedures to those in Example 5.3 with the above
subspace, the resulting TS model (4 rules), when used in decay-rate optimisation,
gives the results in Figure 5.1 (solid red line), which clearly improve over the
first proposed TS model (5.58) (dashed-blue line). For instance, the improved
modelling can prove marginal stability (γ = 0) up to a radius of the spherical
modelling region of 3, whereas the conventional non-optimised model only proves
stability up to radius 0.7. For any of the radius values in the figure, the proposed
TS model gets a faster decay (larger γ).
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Figure 5.1: Comparison of performance of the proposed approach in a solid line against
the TS model (5.58) in dotted lines.

Example 5.5. This example illustrates the advantages of the proposed approach
for H∞ control synthesis. Consider the following discrete-time nonlinear system

x[k+1]=

(
0.5x1+0.8x2+x1 sinx2+x2

2+w1−0.2u
0.25x1−0.45x2+1.5x1 sinx2+w2+0.1u

)
y[k] =

(
0.5x1 0.5u

)T (5.61)

where x ∈ Ω, Ω ⊂ R2 is the state, w ∈ R2 is the perturbation, u ∈ R is the control
input. For comparison a set of 4-rule TS models are proposed, based on extracting
the state as a common factor in three different ways:

x[k+1] = ATS[i] x+Bu+ Ew, i = {1, 2, 3}
y[k] = Cx+Du

(5.62)

where ATS[i] denotes the arrangement of nonlinearities of the i-th TS model as

follows (see Remark 5.4 in Appendix):

ATS[1] =

(
0.5 0.8 + x1 sincx2 + x2

0.25 + 1.5 sinx2 −0.45

)
ATS[2] =

(
0.5 + sinx2 0.8 + x2

0.25 + 1.5 sinx2 −0.45

)
ATS[3] =

(
0.5 0.8 + x1 sincx2 + x2

0.25 −0.45 + 1.5x1 sincx2

)
being sinc(α) := sin(α)

α , and the respective constant matrices:

B=

(
−0.2
0.1

)
, C=

(
0.5 0
0 0

)
, D=

(
0

0.5

)
, E=

(
1 0
0 1

)
.
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Of course, all representations are equivalent. Subsequently, corresponding TS[i]

models are obtained using the maximum and minimum in Ω of each element of
its respective 2× 2 matrix ATS[i] (details omitted).

Now, in order to apply the methodology in this chapter, let us first linearise and
then rewrite (5.61) in the form (5.68), i.e.,

x[k + 1] = Ax+Bu+ Ew +Mρ(x)

y[k] = Cx+Du
(5.63)

with

A=

(
0.5 0.8
0.25 −0.45

)
, M=

(
1 1
0 1.5

)
, ρ(x)=

(
x2

2

x1 sinx2

)
where ρ(x) is the vector of nonlinearities present in the system.

Then, sufficient conditions for the well-know H∞ Lyapunov inequality ∆V +yT y−
γ2
optw

Tw ≤ 0 are posed minimising γ subject to: −X (∗) (∗)
AiX+BFi −X+Eγ−2ET (∗)
CX+DFi 0 −I

≤0 (5.64)

where X and Fi are decision variables given by the Lyapunov function V =
xTX−1x and the control gains, respectively (Tanaka and Wang 2001). (∗) refers
to completion to obtain a symmetric matrix.

Let us now consider the linearised case, i.e., (5.63) with ρ(x) = 0, in order to
obtain the relevant subspaces where modelling must be precise. In that case, from
straightforward Schur complement manipulations, it can be proved that the above
problem is feasible if and only if it is so for the worst-case disturbance w∗ = (γ2I−
ETPE)−1ETP (A + BK)x. Replacing such disturbance in the H∞ inequality, it
can be proved that if (5.64) holds, equivalently, P > 0 and

xT
(
(A+BK)T (P−1−Eγ−2ET )−1(A+BK)−P
+(C+DK)T (C+DK)

)
x ≤ 0 ∀x.

(5.65)

also hold, with P := X−1 and K := FX−1. These conditions, too, fulfill Assump-
tion 5.1 even if (5.65) is not directly in LMI form; note that convexity in Ai is
ensured by the presence of −X + Eγ−2ET in the constraints in (5.64).

As (5.64) is an LMI problem in (X,Fi, γ
−2), solving it for the linearized system

results in γopt = 1.4644. Replacing the obtained optimal decision variables in
(5.65), the one-dimensional subspace where (5.65) marginally holds, see expression
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(5.9), is C = {x ∈ R2 : x =
(
0.9518 0.3068

)T
η, η ∈ R}, this allows to obtain a

transformation matrix x = Txc that rewrites (5.65) in the form (5.12), i.e.,

T =

(
−0.3068 0.9518
0.9518 0.3068

)
.

Now, in order to generate the optimal TS model, following analogous reasoning
to (5.51) and (5.55) in Section 5.6, nonlinearity enters the Lyapunov equation
(5.65), disregarding quadratic terms in ρ, as:

Ξ = 2xTc T (A+BK)T (P−1 − Eγ−2ET )−1Mρ(Txc)

yielding

Ξ = xTc Γρ(Txc) = xTc

(
0.7051 −0.4719
1.3140 2.4020

)
ρ(Txc) (5.66)

Defining now ρ̂(ξ, η) as ρ̂(ξ, η) := Γρ(Txc), we can express Ξ = xTc ρ̂(ξ, η) =
(ξT ηT )ρ̂(ξ, η). In this way, (5.66) has the overall form (5.52) and the restriction
can be written as (5.56), after the proposed coordinate changes. By decomposing
ρ̂ as in (5.31), standard TS modelling in the coordinates ξ and η of ρ̂[1] and ρ̂[2],
respectively, is used to find an expression analogous to (5.41), which concludes
the modelling step (details omitted).

This allows finding a 16-rule TS model fulfilling the bound in Proposition 5.10 for
subspace C, with the sum ranging in a single dimension. Such model has been used
for locally searching for controllers guaranteeing an H∞ norm for the nonlinear
system in circular regions.

For illustrative purposes, we present Fig. 5.2, which describes the performance
bound γopt using the TS models in LMIs (5.64), as the radius of modelling region Ω
increases. Results corresponding to the proposed modelling technique are presented
in a solid line, whereas those three TS models in (5.62) are presented with dotted
lines. As expected, all TS models match the performance of the linearization at the
origin, but as they move away from it, the proposed subspace-based approach out-
performs the alternative ones (which disregard the linearised geometry), yielding a
lower disturbance-rejection bound (theoretical optimality only for small modelling
regions). For completeness, a time simulation presenting ‖y[k]‖ = ‖Cx + Du‖
(whose squared sum should be minimised, according to the requested performance
criterion) appears in figure 5.3. The original nonlinear dynamics is simulated
with four different controllers arising from each of the TS modelling alternatives
for a step disturbance. Results show that the achieved figures for ‖y[k]‖ with our
proposed methodology are the lowest ones, and time response is better damped. Of
course, we cannot prove that the chosen disturbance is the worst-case one for the
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Figure 5.2: Comparison of proven LMI performance between the proposed approach in
solid line and the TS models in (5.62) in dotted lines labelled as TS[i]. A close-up zoom of
the radius range [0,0.5] is also provided.
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Figure 5.3: Time response of ‖y[k]‖ for a step w = (−0.17,−0.09)T of the nonlinear system,
with the four controllers arising from each of the considered TS modelling options, using a
modelling region radius of 0.3.

nonlinear system (it is an unsolved problem) but, at least with the chosen w[k],
the observed performance of our proposal is better than the classical ones.

Note that optimality in the above examples is only claimed “close enough” to the
origin: in fact, changing parameters in system matrices, alternative setups can be
built in which the proven performance of the proposed approach is only optimal
up to a certain radius.

5.9 Conclusions

This chapter has presented a Hessian and subspace based methodology to min-
imise the conservatism of TS models to be later used in shape-independent LMI
conditions. The presented procedure is optimal (in minimax worst-case uncer-
tainty width) for TS models of quadratic functions, hence approximately optimal
for any smooth nonlinearity close enough to the origin. Different examples prove
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that, indeed, the uncertainty width measures, as well as decay-rate and H∞ per-
formance figures are better with the proposed TS modelling technique than those
obtained with frequently used “inspection” and “extraction of factors” ideas. The
LMIs discuss only the preservation of linearised performance. Other LMI setups
and reduction/simplification of the number of rules, as well as optimality for large
modelling regions, are matter of future research.

Appendix

5.9.1 sector nonlinearity approach

Consider a single-input nonlinear function f : R 7→ R. If f(0) = 0 and its
derivative is continuous, then the function:

f̃(x) =

{
f(x)x−1 x 6= 0

limx→0 f(x)x−1 x = 0

can be defined, because the required limit exists; furthermore, f̃(x) is continuous.
As f(x) = f̃(x)x, we can trivially express, in any compact region Ω ⊂ R:

f(x) = h(x)f̃0x+ (1− h(x))f̃1x (5.67)

being f̃0 = maxx∈Ω f̃(x) and f̃1 = minx∈Ω f̃(x).

In a multi-input case, a nonlinear model (5.1), as f is linearisable at the origin,
can be expressed as:

ẋ(t) = f̂(x, ρ(x))

being f̂(·, ·) a linear function and ρ a vector of nonlinearities, i.e., there exists
ρ(x) : Rn 7→ Rs such that (5.1) is equivalent to

ẋ = Ax+Mρ(x) (5.68)

being A the Jacobian of f at x = 0, from (5.2). Note that representation (5.68)
may be not unique (there might be several options in choosing M and ρ). Each
element of ρ, denoted as ρi(x) will be a function ρi(x) : Rn 7→ R; subindex will
be omitted in notation if ρ has a single element.

Consider a modelling region Ω. The objective of sector-nonlinearity TS modelling
is bounding in Ω each element ρi(x), by two linear functions: actually , finding
linear ηi(x) such that αηi(x) ≤ ρi(x) ≤ βηi(x) for some α, β in R.
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Considering, then, a particular ρi(x). Assume there exists a function of the state
ηi(x) : Rn 7→ R, such that ρi(x) = 0 for all x in B = {x ∈ Ω : ηi(x) = 0}. Defining
ρ̃i(x) as:

ρ̃i(x) =
ρi(x)

ηi(x)
, for x 6∈ B (5.69)

Then, if the following limit exists for all x ∈ B:

γ(x) = limξ→x ρ̃i(ξ)

then, the definition of ρ̃i(x) can be extended, i.e., defined everywhere in Ω (in-
cluding the set B), by defining ρ̃i(x) = γ(x) for x ∈ B, and (5.69) elsewhere. It is
well known that the limit γ(x) exists, and the resulting extended ρ̃i(x) is contin-
uous in Ω if ρi(x) has continuous first derivatives (which it does, by assumption).
Hence, the relationship

ρi(x) = ρ̃i(x)ηi(x)

holds in all Ω. By compactness of Ω, the bounding:(
min
y∈Ω

ρ̃i(y)

)
ηi(x) ≤ ρi(x) ≤

(
max
y∈Ω

ρ̃i(y)

)
ηi(x) (5.70)

entails that each ρi(x) can be expressed as an interpolation ρi(x) = wi(x)× ρ̃i0 +
(1− wi(x))× ρ̃i1 where:

ρ̃i0 = max
y∈Ω

ρ̃i(y), ρ̃i1 = min
y∈Ω

ρ̃i(y), wi(x) =
ρ̃i(x)− ρ̃i1
ρ̃i0 − ρ̃i1

When bounding each ρi, i = {1, . . . , s} as above discussed, ηi(x) are linear, say
ηi(x) = NT

i x, denoting byM[i] the i-th column ofM in (5.68), and µi0(x) = wi(x),
µi1(x) = 1− wi(x), the result will be an expression in the form:

ẋ=
s∑
i=1

1∑
j=0

µij
(
A+M[i]ρ̃ijN

T
i

)
x:=

s∑
i=1

1∑
j=0

µijAijx (5.71)

which is a box-like parameter uncertainty description (Gahinet, Apkarian, and
Chilali 1996, Eq. (2)). Converting box representations to tensor-product ones
(Tanaka and Wang 2001; Ariño and Sala 2007; Nagy et al. 2009) can be done in

a straightforward way. Indeed, as
∑1
j=0 µij(x) = 1 we can express (5.71) as:

ẋ=
∑s
i=1

∑1
j=0

(
µij

(∏
k 6=i
∑2
j=1 µkj

)
Aij

)
x

=
∑2s

k=1

(∏s
i=1 µi biti(k)Abiti(k)i

)
x =

∑2s

k=1 hkAkx (5.72)
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where biti(k) ∈ {0, 1} is the i-th bit (1 ≤ i ≤ s) of the binary representation of
integer k − 1, and hk is thus formed as the product of a specific combination of
wi (or 1− wi, depending on the corresponding binary digit).

In summary, once M , ρ(x) and the linear functions ηi(x) are chosen, the above
well-known steps end up in a TS system with power-of-two vertex models (box
or tensor-product form).

Ideally, the TS model of a scalar expression ρ(x) = λx2 is λ (µ1x+ (1− µ1)x)x,
being x and x the minimum and maximum values of x in a modelling region. For
quadratic multivariable functions, the idea is generalised to the Hessian coordi-
nates applying the above to each of the squares in (5.13).

Remark 5.4. In some references, TS models are generated from a representation

ẋ = A(x)x (5.73)

instead of (5.68), such that limx→0A(x) exists; then, maximum and minimum in
the modelling region of each element of matrix A(x) are sought. Evidently, this
is a particular case of the above procedure, considering ηi = xi.
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Chapter 6

Optimal-Performance Models
via the LMI Null Space

The problem of achieving optimal performance for nonlinear sys-
tems by constructing the most adequate exact Takagi-Sugeno model of
the plant and considering its relationship with the linear matrix in-
equalities it gives rise to, is considered in this report. In contrast with
recent approaches on the subject, the performance goal can be chosen
from a wide variety of definitions while constraints are no longer re-
quired to be state-dependent. As before, this approach is based on
coordinate transformations that isolate the effects of the system non-
linearities and allow optimisation with respect to some performance
level, by keeping some norm close enough to the linearised perfor-
mance. It is shown that the proposed methodology outperforms both
ordinary “blind” TS modelling as well as former similar approaches.

The contents of this chapter appeared in the conference publication:

• R. Robles, A. Sala, M. Bernal, and T. Gonzalez (2016). “Optimal-
Performance Takagi-Sugeno Models via the LMI Null Space”. In: (Proc.
of 4th IFAC Conf. Intell. Control and Autom. Sc.) IFAC-PapersOnLine
49.5, pp. 13–18
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6.1 Introduction

Takagi-Sugeno (TS) models appeared as a way to incorporate mathematical
knowledge about nonlinear plants in the construction of a rule-based fuzzy ap-
proximation. Quadratic Lyapunov-based methodologies for analysis and design
of TS models were developed (Wang, Tanaka, and Griffin 1996): their focus was
put on exploiting the convex structure of TS models as to obtain conditions in
the form of linear matrix inequalities (LMIs), which could be efficiently solved by
convex optimization techniques (Boyd et al. 1994; Tanaka and Wang 2001). No
attention was paid to the actual modelling since it was assumed a TS model was
readily available: whether this came from a nonlinear system or a parameter-
dependent structure, was irrelevant: functions of the nonlinearities/parameters
were assumed to lie in a simplex where the convex sum property held.

In the seminal work of (Taniguchi, Tanaka, and Wang 2001), a modelling tech-
nique called sector nonlinearity was presented: in contrast with former ap-
proaches, this methodology allows obtaining exact convex representations of
nonlinear systems within a compact set of the state space; results thus obtained
were directly valid for the original nonlinear setup without further adjustment.
Therefore, during the next years, mainstream research abandoned earlier model-
free ideas, to concentrate on model-based methodologies, where exact TS models
and LMI conditions were seen as vehicles to analyse and control general nonlinear
systems (Sala, Guerra, and Babuska 2005; Guerra, Sala, and Tanaka 2015).

Nevertheless, sector nonlinearity was not without disadvantages. Modelling was
identified as one of the main reasons for conservativeness in the TS/LMI frame-
work since a family of systems can be represented by the same TS model and
different TS representations can be found for a given nonlinear expression; con-
servatism issues in fuzzy control are discussed in (Sala 2009). This led to the study
of wider classes of convex structures such as descriptors (Guerra, Estrada-Manzo,
and Lendek 2015) and polynomial models (Sala and Ario 2009). Moreover, since
the complexity of the TS model critically depends on the number of nonlinearities
in the nonlinear system, a number of methods were developed to reduce the num-
ber of rules: empirical (Setnes et al. 1998), depending on the number of inputs
(Gegov 2007), minimising the H2 norm between a possibly complex expression of
the gain-scheduling parameters and a linear-fractional one (Petersson and Löfberg
2009), based on higher-order singular value decomposition (SVD) in order to ap-
proximate the system with another one in tensor-product form (Nagy et al. 2009),
and based on the functional principal component analysis (Escaño and Bordons
2014), among others. The former are shape-independent approaches; when the
shape of the convex functions capturing the system nonlinearities is taken into
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account, some relaxations can also be achieved (Bernal, Guerra, and Kruszewski
2009; Kruszewski et al. 2009). These issues are, however, out of the scope of
this contribution, since some of them are a posteriori methodologies (once a first
model has been obtained) and others deal with approximations at a finite set of
points rather than exact models.

This work inverses the usual approach on the TS/LMI framework: instead of
writing LMIs for a given TS model, it assumes that LMIs for a given (linearisation-
based) optimisation problem are already available and sets out for a quest to
determine the optimal TS model that keeps the proved performance as close
as possible to the linearised one (which, as proven later, is the ideal). A first
answer to this problem has been offered in former works by the authors, based on
subspaces of the state space in which performance is more sensible to modelling
errors, see Chapter 4 and Chapter 5 (Robles et al. 2015; Robles et al. 2017).

This work relaxes the condition of state-dependency of former approaches, thus
allowing multiple-LMI setups which might be associated with a wider variety
of performance measures. The main idea here is based on a Frobenius-norm
bound on the “perturbation” that sector-nonlinearity models produce in the LMI
matrices.

This chapter is organized as follows: section 6.2 defines the class of nonlinear sys-
tems under consideration and the problem of linearised performance optimisation,
establishing their relationship with TS modelling and performance optimisation
based on such models; section 6.3 develops the main results in this report, this is
to say, a more direct approach where several constraints involving the model can
be exploited towards an optimisation objective to keep results as close as possible
to the linearised case; the methodology is illustrated in section 6.4 via suitable
examples.

6.2 Preliminaries

Nonlinear affine-in-control dynamic systems will be considered in this report, i.e.

ẋ(t) = f(x(t)) + g(x(t))u(t) (6.1)

with x(t) ∈ Rn being the state, u(t) ∈ Rm being a control input, f : Rn 7→ Rn,
having continuous second-order derivatives and f(0) = 0. Also, consider the
linearised model of (6.1):

ẋ = Ax+Bu, A :=
∂f(x)

∂x

∣∣∣∣
x=0

, B :=
∂g(x)

∂x

∣∣∣∣
x=0

(6.2)
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6.2.1 Linearised performance optimisation

Assumption 6.1. The pursued control objective is the optimisation of a perfor-
mance measure γ subject to LMI constraints:

minimise γ,

subject to γ > 0, ζTLMI(L,D, γ)ζ ≥ 0, ∀ζ 6= 0
(6.3)

where ζ ∈ Rq, D denotes the decision variables (usually matrix variables associ-
ated to the Lyapunov function, controller gains, etc.) and L stands for constant
model matrices associated to the system under consideration; for instance, L could
be defined as L := {A,B} given by the linearised system in (6.2)1. Expression
LMI(·, ·, ·) will be assumed to be (separately) linear in its arguments. Suitable
convex optimisation2 software will be employed to find the optimal γ and D.

Proposition 6.1. The optimal performance measure γopt for the linearised model
(6.2) is obtained when there exists Dopt such that conditions (6.3), are

ζTLMI(L,Dopt, γopt)ζ = 0 ∀ζ 6= 0, ζ ∈ C (6.4)

ζTLMI(L,Dopt, γopt)ζ > 0 ∀ζ 6= 0, ζ ∈ C⊥ (6.5)

for some vector subspace C ⊂ Rq, being C⊥ its orthogonal complement.

Proof is trivial, as symmetric matrices have an orthonormal basis of eigenvectors.

6.2.2 Takagi-Sugeno modelling

The well-known sector nonlinearity methodology rewrites the nonlinear expression
on the right-hand side of (6.1) as an algebraically equivalent convex sum of linear
models

ẋ(t) =
r∑
i=1

hi(x) (Aix+Biu) , (6.6)

where the membership functions (MFs) hi, grouped in a vector h ∈ Rr, belong
to the r − 1-dimensional standard simplex

∆ := {h ∈ Rr :
r∑
i=1

hi = 1, hi ≥ 0 ∀i},

1Other problems would include additional model matrices in L, for example, matrices relating the
system with output-feedback settings, disturbance rejection, exact convex representations of (6.1),
etc. Details omitted for brevity.

2Although the second constraint in problem (6.3) is named LMI, any tractable matrix inequality
constraint, such as GEVP problems, can be considered in the referred expression.
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provided the nonlinearities belong to a compact set of the state space Ω, including
the origin.

Basically, sector nonlinearity methodology begins by taking the nonlinearities of
(6.1), each of these, say ρj(x), as in Chapter 4 (Robles et al. 2015), is decomposed
as follows:

ρj(x) =
ρj(x)

ηj(x)
ηj(x) := ρ̃j(x)ηj(x), j = 1, . . . , s (6.7)

where ηj(x) is any linear function of the state such that ηj(0) = 0, thus enforcing
that the limit of ρ̃j exists when x → 0. The number of such nonlinearities has
been denoted with s. Then, bounding ρj(x) by two sectors(

min
x∈Ω

ρ̃j(x)

)
ηj(x) ≤ ρj(x) ≤

(
max
x∈Ω

ρ̃j(x)

)
ηj(x) (6.8)

means that the nonlinearity ρj can be expressed as an interpolation between the
minimum and maximum value in the above expression, i.e., ρj = wj ρ̃j+(1−wj)ρ̃j ,
where:

ρ̃j = max
x∈Ω

ρ̃j(x), ρ̃j = min
x∈Ω

ρ̃j(x). (6.9)

Consider a vector ρ(x)∈Rs whose entries are the terms ρj defined above; then,
every combination of maxima/minima of the s nonlinear terms defined as (6.8),
when substituted in f(x(t)) and g(x(t)), produces Ai and Bi, respectively,
i∈{1, 2, . . . , r}, r=2s. Each of them corresponds to a MF hi which is defined as
the product of wj and/or 1−wj , j ∈ {1, 2, . . . , s}, according to the corresponding
combination. For later developments, let us denote as L the ordered list of TS
consequents L:={L1, L2..., Lr}, where Li={Ai, Bi}.

Remark 6.1. Note that the freedom in choosing ηj for the nonlinearities in f(x)
is not present for those in g(x). Indeed, considering nonlinearities of g (x(t))u(t)
in (6.1), when following the structure of (6.7), we notice that u can be considered
already “extracted” as a right factor, taking the role of u ≡ ηj, so ρ̃ are also
forcedly set as the nonlinear elements in g (x(t)). As there is no freedom in g, for
simplicity, in the sequel this work will consider only systems in the form:

ẋ = f(x) +Bu (6.10)

trying to produce a wise choice of the ηi in f(x).
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6.2.3 Performance optimisation in TS models

Assumption 6.2. The pursued control objective for a TS model is the optimisa-
tion of a performance measure γ subject to LMI constraints:

minimise γ > 0,

subject to ζT
r∑
i=1

r∑
j=1

hihjLMI (Li, Dj , γ) ζ ≥ 0,

∀ζ 6= 0 ∈ Rq, ∀i, j ∈ {1, 2, . . . , r}.

(6.11)

where Li ∈ L denote model vertices and
∑r
j=1 hjDj denotes the decision vari-

ables, which have been made membership-dependent, contrarily to the single set of
variables in (6.3). Simple sufficient conditions for positivity of the double convex
summation in (6.11) are given in (Tanaka and Wang 2001):

minimise γ > 0, subject to

ζT (LMI (Li, Dj , γ) + LMI (Lj , Di, γ)) ζ ≥ 0

More powerful relaxed conditions approaches for (6.11) are presented in (Ariño
and Sala 2007; Tuan et al. 2001).

Note that setting up (6.11) with a single L (from the linear model) but multiple Dj

will not prove better performance than the single D in (6.3). This is a well-known
result.

As discussed in the introduction TS modelling is not unique, and some choices
render better proven performance with latter LMIs.

This work will assume that LMIs (6.3) are available. Then, the goal will be deter-
mining the optimal TS model of (6.10), wishing to keep the proved performance
as close as possible to the linearised one when LMIs (6.11) are later posed.

This problem has been addressed in prior chapters: in Chapter 4 and Chapter 5
(Robles et al. 2015; Robles et al. 2017), a procedure for decay-rate optimisation
(analysis only) was presented based on some Cholesky factors of the Lyapunov
function; relevant performance-critical subspaces of the state space were thus
identified and suitably exploited; an H∞ example was also proposed in the second
work.

The basic drawback of such approaches is that constraints should be state-
dependent, i.e., (6.3) required ζ ≡ x in the citepd works. That cannot be
achieved if model matrices appear at different places in the LMIs, such as, for
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instance, Schur complements in discrete-time systems; In some cases, transforma-
tions can be made so that the citepd procedures can be applied, but this chapter
presents a more direct approach applicable to a generic ζ, with the possibility of
several constraints involving the model (dimension of ζ needs not be the same as
the state one).

6.3 Main result

Consider the optimal solution of the linearised LMIs (6.3). We can express the
model (6.10) as ẋ = Ax+Bu+ (f(x)−Ax) and, suitably extracting the nonlin-
earities, we can set up a representation

ẋ = Ax+Bu+Mρ(x) (6.12)

With this, note that (6.12) expresses the linear and nonlinear components of (6.1)
as two separated terms.

Example 6.1. Consider the following first-order nonlinear system

ẋ =

(
−x1 − x2 + x2

2

x1 − x2
2 + x2 sin(x1) + u

)
, (6.13)

with

f(x) =

(
−x1 − x2 + x2

2

x1 − x2
2 + x2 sin(x1)

)
, and B =

(
0
1

)
.

A representation as (6.12) of this model can be obtained from its linearisation
(6.2), which results in A =

(
−1 −1; 1 0

)
; then, by rewriting (6.13) as (6.12),

it is obtain:

ẋ =

(
−1 −1
1 0

)
x+

(
0
1

)
u+

(
x2

2

−x2
2 + x2 sin(x1)

)
where it is easy to see, following (6.12), that M=

(
1 0;−1 1

)
and ρ(x) =(

x2
2 x2 sin(x1)

)T
.

Now, once the expression for ρ(x) has been selected, with the aim of obtaining a
TS representation, express it as ρ(x) = Q(x)x with

Q(x) =

q11 q12 · · · q1n

...
...

. . .
...

qs1 qs2 · · · qsn

 (6.14)
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For notational brevity, dependence on x of each element qij has been omitted.
Notice that limx→0Q(x) does exist because the linearisation of ρ is zero. This
means that (6.12) can be expressed as

ẋ = Ax+Bu+Mρ(x) = (A+MQ(x))x+Bu. (6.15)

Note that, as expression (6.7) in the previous section suggests, there might be
infinitely many options to express the original nonlinearities as (6.15). The goal
is to obtain the “optimal” decomposition exploring in a set of coordinate trans-
formations, in the line of Chapter 4 (Robles et al. 2015).

In order to obtain an optimal TS model it is suggested to pay special attention
to the directions that are critical for performance measure in Proposition 6.1.
Considering this proposition, there exists a matrix H ∈ Rq×p such that C = {ζ :
ζ = Hη, η ∈ Rp}, i.e., whose columns form an orthonormal basis of the null space
of LMI(L,Dopt, γopt). Hence,

W = HTLMI(L,Dopt, γopt)H ≡ 0 ∈ Rp×p.

Now, in order to find out how the nonlinear part of the original system (Mρ(x))
affects the performance of its linearisation, we can use (6.15) to define:

WNL(x) = HTLMI({A+MQ(x), B}, Dopt, γopt)H (6.16)

The linearity of LMI in its first argument, altogether with W=0, explains the fact
that the contribution of the nonlinearities to the performance “loss” in the LMIs
is given by:

WNL(x) = HTLMI(MQ(x), Dopt, γopt)H (6.17)

Then, informally stated, the objective of the “optimal” TS modelling will be
obtaining a TS model (i.e., an expression for Q(x)) such that the norm of matrix
WNL(x) will be “small”. For geometrical reasons, to be discussed later, we will
choose the Frobenius matrix norm.

Note that in an idealistic “optimal” case, for a TS representation, the norm of
matrix WNL is zero for Q(x) = 0, which coincides with the linearisation. Thus,
to maintain the linearisation performance, the goal is keeping the Frobenius norm
of WNL as low as possible for MQ(x) 6= 0 by a reasonable choice of the elements
of Q(x). Also, consider that each entry of WNL can be expressed as:

W ij
NL = N ij · vec(Q(x))

where vec(Q(x)) ∈ R(n·s)×1 is the vectorization of Q(x) (column form), this is

vec(Q(x)) =
(
q11 q12 · · · q1n · · · qs1 qs2 · · · qsn

)T
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and row vector N ij ∈ R1×n·s is the constant Jacobian vector of the entry W ij
NL

with respect to vec(Q(x)). Note that N ij contains only known numerical con-
stants. Generalising, the following structure is obtained:

vec(WNL) = N · vec(Q(x)) (6.18)

with vec(WNL) being the vectorization of WNL, and N ∈ Rp2×(n·s) being the
resulting constant matrix whose rows are the row vectors N ij , in the same order
as the corresponding elements of vec(WNL).

Through the singular value decomposition (SVD) of N , the representation of
vec(WNL) in (6.18) will provide in a weighted way the directions of interest
(principal components) in which the modelling of ρ(x) has a greater effect on
the standard 2-norm of vec(WNL) which is, actually, the Frobenius norm of ma-
trix WNL. Let us discuss the details below.

Given that the same nonlinearity (trough the corresponding qij elements) might
affect several elements of WNL, the decomposition of N in principal components
separates the effect of the nonlinearity in “orthogonal” elements (in the vectorised
space), as follows

N = USV T (6.19)

where S ∈ Rp2×(n·s) is a matrix containing the singular values of N in the diag-
onal, and V ∈ R(n·s)×(n·s) is a square matrix whose columns correspond to the
critical directions for LMI(·, ·, ·) in (6.16). Then, consider matrix Z := SV T ,

Z ∈ Rp2×(n·s),

Z =


z1,1 · · · z1,n · · · z1,(s−1)·n+1 · · · z1,s·n
z2,1 · · · z2,n · · · z2,(s−1)·n+1 · · · z2,s·n

...
. . .

...
. . .

...
. . .

...
zp2,1 · · · zp2,n · · · zp2,(s−1)·n+1 · · · zp2,s·n

 (6.20)

which represents the vectors of interest weighted by importance. Notice that the
norm of Z is equal to the norm of N , due to the fact that U ∈ Rp2×p2

is an
orthogonal matrix; hence, we will concentrate on the effect of the nonlinearities
on the Frobenius norm of Z.

Now, for each row i, i ∈ {1, . . . , p2} of Z in (6.20), to be denoted as Zi, a matrix
Ξi ∈ Rs×n is built as follows:

Ξi =


zi,1 · · · zi,n
zi,n+1 · · · zi,2·n

...
. . .

...
zi,(s−1)·n+1 · · · zi,s·n

 . (6.21)
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The above is motivated by the following relationship:

Zivec(Q(x)) = tr
(
ΞiQ(x)T

)
,

where tr(·) stands for the trace. Thus, modelling the nonlinearities so that the
projection over Ξ1 is as small as possible is, hence, suggested.

Example 6.2. Assume there is an interest on applying the H∞ controller prob-
lem and obtain the lower disturbance-rejection bound of a TS representation for
the Example 6.1 with the presented approach. Considering the adequate set of
restrictions for the mentioned problem, there are obtained the following matrices:

H =

(
0 0 0.0243 0.7067 0.0243 −0.7067
0 0 −0.7067 0.0243 −0.7067 −0.0243

)T
,

which is an orthonormal basis of the null space of the assumed set of restrictions
for the H∞ problem,

WNL(x) =

(
W 11
NL W 12

NL

W 21
NL W 22

NL

)
,

described in (6.17) with

W 11
NL = 0.034q21 − 0.964q12 − 0.033q11 + 0.998q22,

W 12
NL = 0.464q11 − 0.533q12 − 0.498q21 + 0.034q22,

W 21
NL = 0.464q11 − 0.533q12 − 0.498q21 + 0.034q22,

W 22
NL = 1.033q11 − 0.035q12 − 0.034q21 + 0.001q22.

Then, WNL = N · vec(Q(x)) where

N =


−0.033 −0.964 0.034 0.998
0.464 −0.533 −0.498 0.034
0.464 −0.533 −0.498 0.034
1.033 −0.035 −0.034 0.001

 , (6.22)

Then, following the idea, after the first SVD of (6.22), Z is obtained as in (6.20),
resulting in:

Z =


0.723 −1.170 −0.447 0.723
0.948 0.316 −0.316 −0.632
0.276 0.170 0.447 0.276

0 0 0 0

 ,

and consequently, the following matrices Ξi, as in (6.21) are obtained:

Ξ1 =

(
0.723 −1.170
−0.447 0.723

)
,Ξ2 =

(
0.948 0.316
−0.316 −0.632

)
,

Ξ3 =

(
0.276 0.170
0.447 0.276

)
,Ξ4 =

(
0 0
0 0

)
.
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Hence, we recommend modelling the first nonlinearity x2
2 so that its projection on

the first row of Ξ1 is minimised, and modelling the second one −x2
2 + x2 sin(x1)

so that its projection on the second row of Ξ1 is minimised.

6.4 Decay-Rate analysis example

Example 6.3. This example illustrates the advantages of the proposed approach
in order to obtain an optimal model in the sense of finding the maximum decay
rate of the following continuous nonlinear system:

ẋ =

 −4x1 − x2 + 4x3

−2x1 − 4x2 + 3x3

2x1 + 3x2 + 4x2
3 − 4x3

 (6.23)

where x ∈ Ω, Ω ⊂ R3 being a spherical modelling region (several values for its
radius being tested later on). Taking into account the single nonlinearity x2

3 in
(6.23), a conventional 2-rule TS model can be obtained:

ẋ =
2∑
i=1

µi(x)

−4 −1 4
−2 −4 3
2 3 4αi − 4

x (6.24)

with α1 = maxx∈Ω x3, α2 = minx∈Ω x3, µ1(x) = x3−α2

α1−α2
, and µ2(x) = 1 − µ1(x).

The maximum decay rate γopt > 0 for V = xTPx under the TS model (6.24) via
sufficient conditions

maximise γ > 0

subject to

{
P > I,
ATi P + PAi ≤ −2γP, i = {1, 2}

(6.25)

is obtained.

The above model’s performance will be compared with the maximum decay rate
obtained from the proposed modelling technique. To that end, (6.23) is rewritten
as (6.15), i.e.,

ẋ = Ax+Mρ(x) (6.26)

where A is the linearisation of (6.23), M =
(
0 0 4

)T
and, ρ(x) = x2

3. Once
ρ(x) is defined, the LMI test of decay rate (6.25) was applied for the linearised
system, i.e. (6.26) with ρ(x) = 0, which for this particular case reduces to:

LMI(A,P opt, γopt)

=

(
P opt − I 0

0 −ATP opt − P optA− 2γoptP opt

)
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and achieved a γopt = 1 (numerical values for P opt are omitted for brevity). No
TS model will be able, of course, of proving a faster decay as the linearisation
should be in the convex hull of the vertices.

Now in order to obtain an optimal TS model through the described idea, decompose
the single element ρ(x) as indicated (6.14), i.e.,

ρ(x) =
(
ρ̃11 ρ̃12 ρ̃13

)
x.

Then, rewrite as (6.15), this is

ẋ = (A+Mρ̃(x))x

=

 −4 −1 4
−2 −4 3

4ρ̃11 + 2 4ρ̃12 + 3 4ρ̃13 − 4

x

Matrix H is built from the nullspace of LMI(A,P opt, γopt), which resulted to be
one-dimensional with the LMI solver, yielding:

H =
(
0 0 0 0.7864 0.0873 0.6116

)T
It is easily verifiable that W = HTLMI(A,P, γopt)H ≡ 0. Then, proceed to
introduce the nonlinear terms into LMI(A,P, γopt) to obtain W (Mρ̃) as follows

W (Mρ̃) = HTLMI(A+Mρ̃(x), P, γopt)H

= 87.5ρ̃11 + 9.71ρ̃12 − 68ρ̃13

Now, we rewrite W (Mρ̃) as (6.18), i.e.:

W (Mρ̃) =
(
87.5 9.71 −68

)ρ̃11

ρ̃12

ρ̃13


in this case N in (6.19) is N =

(
87.5 9.71 −68

)
, and the direction of interest

for the TS model is given by vector associated to the largest singular values of N ,
which correspond to the first row of V in (6.19); for this case it is just one vector:

V =
(
−0.7864 −0.0873 −0.6116

)T
Now, complete the transformation matrix T with two more columns, to make it
full rank orthonormal; in this example the transformation matrix has been chosen
as:

T =

−0.6116 −0.0873 −0.7864
−0.0299 0.9957 −0.0873
0.7906 −0.0299 −0.6116

 (6.27)
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6.4 Decay-Rate analysis example

Then, at this point the presented approach is reduced to follow the methodology
described in Chapter 4 (Robles et al. 2015) from (24) therein and onwards, as a
transformation matrix has been crafted. This is that, the nonlinearity in (6.23)
is expressed and decomposed in new coordinates x = Tη with T given by (6.27).
Thus, we can express

x3 = 0.7906η1 − 0.0299η2 − 0.6116η3

and, hence, the nonlinearity will be expressed as:

x2
3 =(0.625η1 − 0.0473η2 − 0.967η3)η1

+ (0.0008942η2 + 0.03658η3)η2 + (0.374η3)η3.

Notice that this arrangement in terms of η correspond to what it is described in
Section 6.2.2. This leads us to 3 functions to be modelling through sector nonlin-
earity, these are ρ̃1(η) = (0.625η1 − 0.0473η2 − 0.967η3), ρ̃2(η) = (0.0008942η2 +
0.03658η3), and ρ̃3(η) = (0.374η3).

With these three ρ̃1, ρ̃2, ρ̃3, maximum and minimum on the requested modelling
region are computed and, as a result, an 8-rule TS model is obtained.

The resulting TS model, when used in LMI decay-rate optimisation, gives the
results in Fig. 6.1 (solid-blue line), which clearly improve over the first proposed
“inspection-based” 2-rule TS model (6.24) (dotted-red line). The figure depicts
the proven decay rate bound as the radius of the modelling region (chosen to be a
circle) increases. The obtained results are almost identical to those in Chapter 4

0 0.01 0.02 0.03 0.04 0.05
0.85

0.9

0.95

1

Radius of modeling region ΩD
ec
ay

ra
te

p
er
fo
rm

an
ce

γ

Presented approach
Approach in Robles et al. (2015)

Model TS

Figure 6.1

(Robles et al. 2015). This was intentional, presenting a comparative example in
order to assert that no loss is incurred with the here discussed procedure, when
applied to the prior considered cases. Note, however, that the new methodology
allows a more general LMI setup for more complex cases; such extensive examples
and methodological refinements are left for further research.
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6.5 Conclusion

Generating an “optimal” TS model from nonlinear equations is an overlooked
aspect in literature.

This chapter has presented a null-space based methodology to craft a coordinate
transformation from which a TS model is generated. There are prior works by
the team which discuss related issues, but such works can only be applied in
very restrictive setups (no LMI transformations). The presented procedure al-
lows for arbitrary LMI setups, with the model apearing as many times as wished
in Schur/multicriteria problems. Numerical examples seem to show that perfor-
mance is comparable to the prior solutions, with a more general applicability.
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Chapter 7

On Modelling of Nonlinear
Systems as Quasi-LPV Ones

Polytopic quasi-LPV models of nonlinear processes allow using
linear matrix inequalities (LMI) to guarantee some performance goal
on them (in most cases, locally, over a so-called modelling region).
In order to get a finite number of LMIs, nonlinearities are embedded
on the convex hull of a finite set of linear models. However, for a
given system, these quasi-LPV representations are not unique, yield-
ing different performance bounds depending on the model choice. To
avoid such drawback, earlier literature on the topic used annihilator-
based approaches, which require gridding on the modelling region, and
non-convex BMI conditions for controller synthesis: optimal perfor-
mance bounds are obtained, but with a huge computational burden.
This chapter proposes building a model by minimising the projection
of the nonlinearities onto directions which are deleterious for perfor-
mance. For a small modelling region, these directions are obtained
from LMIs with the linearised model. Additionally, these directions
will guide the selection of the polytopic embedding’s vertices. The pro-
cedure allows gridding-free LMI controller synthesis, as in standard
LPV setups, with a very reduced performance loss with respect to the
above BMI+gridding approaches, at a fraction of the computational
cost.

The contents of this chapter improve over those of the previous one. Indeed,
the Frobenius norm of some uncertainty-related matrices in an LMI may be only
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indirectly related to performance. Thus, this chapter presents an alternative
approach. Its contents appear in a draft journal article, currently under review.

7.1 Introduction

Many nonlinear systems can be embedded into a linear parameter-varying (LPV)
dynamics, resulting in the so-called quasi-LPV (Rugh and Shamma 2000b; Huang
and Jadbabaie 1999; Lendek et al. 2010) or Takagi-Sugeno (TS) (Tanaka and
Wang 2001; Guerra and Vermeiren 2004) systems. Efficient linear matrix inequal-
ity (LMI) techniques for LPV systems have been developed in order to analyse
their properties or synthesise gain-scheduled controllers for them, see the above-
cited works, (Apkarian and Gahinet 1995; Scherer 2001; Guerra, Estrada-Manzo,
and Lendek 2015; Mohammadpour and Scherer 2012) and references therein.
Nonlinearities can also be embedded into the convex hull of polynomials (Sala
2009), amenable to sum-of-squares optimisation (Prajna, Papachristodoulou, and
Wu 2004); these approaches are intentionally out of the scope of this chap-
ter. Function-approximation setups and identification-based LPV models (Tóth,
Heuberger, and Hof 2012) will also be left out of the present discussion, focusing
on obtaining quasi-LPV models from first-principle nonlinear ODEs.

Rewriting a nonlinear model as a quasi-LPV one consists in decomposing a C1

nonlinearity ρ(z), present in a first-principle model, as ρ(z) = Q(z)z, see (Rugh
and Shamma 2000b; Tanaka and Wang 2001; Robles et al. 2017) and references
therein. The knowledge about the relationship between the factors Q(z) and z is
usually disregarded, so Q(z(t)) is considered as an uncertain linear time-varying
element ∆(t) (assumed measurable in gain-scheduled designs (Apkarian, Gahinet,
and Becker 1995; Rugh and Shamma 2000b)). Subsequently, some LMIs involving
Q(z) must hold for all z in a modelling region Ωz. If feasible decision variables
are found, system properties will be proven inside some bounded invariant set
(usually a Lyapunov level set in the undisturbed case, or an inescapable set if
disturbances are present and amplitude or integral bounds for them are known
(Sala and Pitarch 2016a)).

As the above problem would require solving an infinite set of LMIs, in order to
get computable results, either evaluating Q(z) in a “dense enough” grid (Wu et
al. 1996; Huang and Jadbabaie 1999; Sala 2005) or obtaining a polytopic bound1

1In some LPV developments, stability conditions are relaxed via additional a priori bounds on
the time-derivatives of the arguments of Q, see (Gahinet, Apkarian, and Chilali 1996; Huang and
Jadbabaie 1999; Wu and Dong 2006a). In the quasi-LPV setup, this might be justified in stability
analysis if bounding ż is possible; however, in controller synthesis, as ẋ depends on the to-be-designed
control u, such derivative bound assumption may imply a posteriori checks of their fulfillment (for
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with a finite number of vertices (Tanaka and Wang 2001; Kwiatkowski and Werner
2008b) are routinely used in applications.

The main motivation of this chapter is the fact that the decomposition ρ(z) =
Q(z)z is, in general, not unique. For instance, in ρ(z) = sin(z1z2) both
(sin(z1z2)/z1 0) and (0 sin(z1z2)/z2) can be equally used as two alternative
options for Q(z). However, different performance results for the ensuing anal-
ysis or control design steps might be proven for each choice. This is one of
the several causes of the inherent conservatism of the quasi-LPV/TS approach
with respect to an ideal nonlinear controller (Sala 2009). Actually, there are
infinitely many of options for Q(z): the use of annihilators N(z)z = 0, such
that ρ(z) = (Q(z) + N(z))z, has been proposed in (Huang and Jadbabaie 1999;
Bruzelius, Pettersson, and Breitholtz 2004; Coutinho, Fu, and Trofino 2004;
Trofino and Dezuo 2014), where decision variables in N(z) are used to diminish
conservatism; however, most results require gridding and are BMI in control
synthesis problems, so these approaches will be not pursued here. An alterna-
tive option is a subspace-based selection of the optimal factorisation in order to
diminish the “spread” of Q(z) on some directions deleterious for performance;
these idea is exploited in (Bruzelius, Pettersson, and Breitholtz 2004), and in the
previous chapters, Chapter 4 and Chapter 5 (Robles et al. 2015; Robles et al.
2017), which present preliminary approaches to the developments here.

The objective of this chapter is reversing the usual approach on the quasi-LPV
framework: instead of writing LMIs for a given model, it assumes that LMIs for
a given performance optimisation problem are already available and sets out for
a quest to determine the optimal model that keeps the proven performance as
close as possible to the linearised one (indeed, as the linearisation is included in
the LPV embedding, the proven performance cannot be better than the linearised
one). A general subspace-based method is presented, determining a worst-case
matrix perturbation to the linearised LMIs.

The structure of this chapter is as follows: section 7.2 introduces preliminaries
and motivates the problem; section 7.3 presents the main result of this chapter
and the assumptions involved. Examples in sections 7.4. For readability, some
ideas and notation are presented in an appendix.

instance, by simulation (Huang 1999, Chap. 4)). In some cases, the time-derivative components may
be cancelled (Gonzalez et al. 2016). Last, conditions on the gradient on the polytopic interpolation
coefficients (Lee and Kim 2014; Bernal and Guerra 2010) seem more natural in the quasi-LPV context
than plain time-derivative bounds. Nevertheless, these issues will not be considered in the scope of
the present work.
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7.2 Preliminaries

Let us consider a class of nonlinear systems expressed as:

ẋ =Ax+Mxv +Bu+ Ew (7.1)

z =Czx+Dzu+ Fzw (7.2)

y =Cyx+Myv +Dyu+ Fyw (7.3)

v =ρ(z) (7.4)

where x ∈ Rn, v ∈ Rm, u ∈ Rq, w ∈ Rp, z ∈ Rs, y ∈ Rr, and ρ(z) fulfills the
following assumption:

Assumption 7.1. The function ρ : Rs 7→ Rm is a vector of continuously differ-
entiable nonlinearities ρ ∈ C1, with ρ(0) = 0. Also, without loss of generality, we
will assume that ρ has null Jacobian2.

Under the above assumption, x = 0 is an equilibrium point of the above system
for u = w = 0 and the classical linearisation of the above system is obtained
replacing (7.4) by v = 0.

From Taylor’s theorem (Peano form), the following result is well known (Huang
and Jadbabaie 1999, Lemma 3.1):

Proposition 7.1. Under Assumption 7.1, there exists a factorisation

ρ(z) = Q(z)z (7.5)

with Q(z) being a continuous matrix-valued function, with limz→0Q(z) = 0.

Finding Q(z) is trivial in the case s = 1, as the only option for Q(z) is Q(z) =
ρ(z)/z, taking suitable limits when z → 0, guaranteed to exist by the assump-
tions3.

Actually, a systematic construction of a particular Q(z) from an explicit ρ(z)
appears in the Appendix of this chapter, where an invertible change of variable
z = Tη has been assumed (to be later discussed).

Nevertheless, as discussed in the introduction, the above decomposition is not
unique if the dimension of z is equal or larger than two, as infinitely many ℵ(z)

2Indeed, if an original model had nonzero linearisation of ρ, such linearisation could be embedded
into the linear part of the dynamics (7.1)–(7.3), via straightforward manipulations.

3On the sequel, we will assume an expression ρ(z)/z to be understood, with a slight abuse of
notation, for z = 0, as limz→0 ρ(z)/z.
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such that ℵ(z)z = 0 can be found (Bruzelius, Pettersson, and Breitholtz 2004;
Huang and Jadbabaie 1999) so that given ρ(z) = Q0(z)z, the decomposition below
is still valid:

ρ(z) = (Q0(z) + ℵ(z))z (7.6)

Once a decomposition (7.5) is chosen, the representation (7.1)–(7.4) replacing the
last equation by (7.5) is named in the literature as quasi-LPV system (Bianchi,
Mantz, and Christiansen 2005a), because the original nonlinear dynamics can be
embedded into the LPV system conformed by equations (7.1)–(7.3) plus

v =∆(t) · z (7.7)

being ∆(t) := Q(z(t)). Now, if the linear expression (7.7) is substituted on (7.1)–
(7.3), a representation:

ẋ =Ã(∆)x+ B̃(∆)u+ Ẽ(∆)w (7.8)

y =C̃(∆)x+ D̃y(∆)u+ F̃y(∆)w (7.9)

can be obtained where system matrices are affine4 in ∆ (i.e., affine in Q(z) in the
quasi-LPV setup).

Note that, in most cases, the LMIs arising from posing some control problems to
(7.8)–(7.9) disregard the relationship between ∆ and z. This, of course, introduces
conservatism with respect to an “ideal” nonlinear control explicitly using ρ(z).
This is the reason on why different choices ofQ(z) influence the final LPV obtained
performance.

As discussed in the introduction, in order to get a finite number of LMI condi-
tions, if z is assumed to lie in a so-called modelling region Ωz either a “dense
enough grid” of values of Q(z) (Leite and Peres 2003) or a polytopic embed-
ding (Angeli, Casavola, and Mosca 2000) are pursued in many cases. The most
straightforward polytopic bounding would be obtaining the 2m×s vertices from
the infimum and supremum of each element of matrix Q(z) when z ranges in
Ωz (Tanaka and Wang 2001); for instance, these vertices are guaranteed to exist
if Ωz is compact. However, there might be better options with a lower penalty
on the achieved performance (see later discussion on the topic). These polytopic
quasi-LPV systems are also denoted as Takagi-Sugeno ones in literature (Tanaka
and Wang 2001; Guerra and Vermeiren 2004; Sala 2009).

4The linear-fractional representation (Packard 1994) is a more general, widely studied, LPV
representation. See footnote 7 for a discussion on the applicability of the proposals in this work to
such setting.
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Annihilator approaches in prior literature. Options for selecting ℵ(z) in
(7.6) have been proposed in (Huang and Jadbabaie 1999; Bruzelius, Petters-
son, and Breitholtz 2004; Coutinho, Fu, and Trofino 2004; Trofino and Dezuo
2014), where ℵ(z) is denoted as “annihilator”. Note that, if ℵ(z)z = 0, we have
R(z)ℵ(z)z = 0 for any matrix function R(z), so elements in R(z) can be decision
variables. For instance, the above approach, in a state-feedback control synthesis
problem, would translate into:

(A+Q0(z) +R(z)ℵ(z))X +BF + (∗) � 0

where (∗) denotes the transpose needed to conform a symmetric matrix.

However, the above expression hints the main drawbacks of the annihilator pro-
posal:

• Non-convex synthesis problems, due to the products between decision vari-
ables in R(z) and those in X.

• Need of setting a grid on Ωz, yielding approximate results, as there is the
risk of not hitting close enough to the “worst-case” point5.

Due to the above computational concerns, the annihilator approach will not be
pursued in this work; only some comparisons with it will be made in the example
section.

7.2.1 Performance optimisation problem

Under the conditions discussed above, considering that ∆(t) := Q(z(t)) in
the usual LPV analysis of nonlinear systems, some matrix inequalities (actu-
ally, in many cases, LMIs) can be asserted on the model matrices L(Q) :=
{Ã(Q), B̃(Q), C̃(Q), D̃(Q), Ẽ(Q), F̃ (Q)} arising from (7.8)–(7.9). The structure
of problem to be solved over the original nonlinear system is in the form given
by the assumption below:

Assumption 7.2. The pursued objective over the model (7.1)–(7.4), whose LPV
embedding is (7.8)–(7.9) is the optimisation of a performance measure γ subject

5 Gridding can be avoided only with polytopic Ωz on some classes of polynomial systems, setting
constant R and affine ℵ (Coutinho, Fu, and Trofino 2004; Trofino and Dezuo 2014). That makes the
approach related to the sum-of-squares techniques in (Prajna, Papachristodoulou, and Wu 2004), as
pinpointed in (Trofino and Dezuo 2014). Anyway, the relationship with polynomial approaches is
intentionally left out of the scope of this chapter, restricted to LPV/TS settings.
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to some constraints in the form of a matrix inequality, i.e., obtaining γLPV below:

γLPV := inf
D1,D2(·)

γ,

subject to MI(L(Q(z)), {D1, D2(Q(z))}, γ) � 0 ∀z∈Ωz

(7.10)

where {D1, D2(Q(z))} are the decision variables, usually arranged in matrices
with elements ranging in R, with D1 denoting a set of decision variables which
cannot depend on z (usually matrix variables associated to the Lyapunov func-
tion), and D2(Q(z)) are decision variables which can depend on Q(z) (for in-
stance, those related to controller gains in gain-scheduled setups). MI(·, ·, ·) � 0
will be understood as MI being positive semi-definite, with MI(·, ·, ·) assumed to
be a continuous matrix-valued expression, monotonic in γ, i.e., for fixed L, D1

and D2, condition γ1 ≥ γ2 implies MI(L, {D1, D2}, γ1) �MI(L, {D1, D2}, γ2).
The modelling region Ωz will be assumed to be the unit ball around the origin6.

Of course, problems stated as multiple matrix inequalities will be assumed to be
equivalently cast as a single block-diagonal one.

Robust versus gain-scheduled designs. In stability analysis or robust linear
control (u independent of ∆(t) ≡ Q(z(t))) there is no need of assuming the valued
of Q(z(t)) being explicitly known (Scherer 2004). On the other hand, with a gain-
scheduled controller, say u = ū(Q(z(x, u, w)), x), factorisation (7.5) should be set
up so that unmeasurable components of w are not present in Q(z). Also, if Q
depends on u then an algebraic loop would need to be solved at each instant
of time in order to compute u (and well-posedness conditions would need to be
added). If Dz = 0 such algebraic loop is be avoided. Alternatively, if Q(z) is
forced to be in the form Q(x), i.e., a nonlinearity v = (1+x2)u is forcedly factored
with Q = (1 + x2), then such algebraic loops would also be avoided. As there is
no “freedom” in choosing such “pinned” components of Q, the discussion is this
work will be centered on giving good options for the “unrestricted” elements of
Q, so pinned components of Q will not be considered any further.

Due to the non-uniqueness of the decomposition (7.5), different performance re-
sults can be obtained for different choices of Q. In any case, as the modelling
region includes the origin, Q(0) = 0 will be included in the inequalities (7.10), so
proven performance (in the setting in Assumption 7.2) will always be worse than
or equal to that of the linearised model.

6If the modelling region were expressed in terms of ellipsoids containing a modelling region of
variables x, u, w, there is no loss of generality on assuming Ωz to be the unit ball, after linear changes
of variable.
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The main goal of this chapter is providing guidelines on how to select a suit-
able Q(z) so that “performance loss” with respect to the linear case is reduced,
at least when the modelling region Ωz is small. Also, as a by-product, some
worst-performance directions are obtained (projection of Q(z) over them must be
minimised); these directions can, too, contribute to minimising the performance
loss when using polytopic embeddings.

7.3 Main Result

Consider the linearisation of (7.1)–(7.4) at the origin, i.e.:

ẋ =Ax+Bu+ Ew (7.11)

z =Czx+Dzu+ Fzw (7.12)

y =Cyx+Dyu+ Fyw (7.13)

The restriction to Q(0)=0 of the problem stated in Assumption 7.2 gives rise to
the following definition:

Definition 7.1 (linearised performance). The pursued objective over the above
linearised model is the optimisation of a performance measure γ subject to some
constraints in the form of matrix inequalities in decision variables D1 and D2,
obtaining γlin below:

γlin := inf
D1,D2

γ,

subject to MI(L(0), {D1, D2}, γ) � 0
(7.14)

Assumption 7.3. We will assume that the above linearised performance problem
is feasible and that the objective function is bounded from below (γlin > −∞).
The decision variable values achieving γlin will be denoted by {Dlin

1 , Dlin
2 } (or any

arbitrary selection of them if non-unique). By assumption, too, conditions MI
will be such that the linearised problem has a finite solution {Dlin

1 , Dlin
2 } achieving

optimality.

Let us denote the null space of the optimal solution as:

C := null(MI(L(0), {Dlin
1 , Dlin

2 }, γlin)) (7.15)

which, by continuity of MI, boundedness of γlin and linearity of the objective
function will be non-empty (linear functions attain a minimum in the frontier of
the feasible set).
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Now, let us consider the nonlinear model (7.1)–(7.4) and consider expressing
ρ(z) = Q(z)z with

Q(z) =

 q11 q12 · · · q1s

...
...

. . .
...

qm1 qm2 · · · qms

 (7.16)

For notational brevity, dependence on z of each element qij has been omitted.
Considering the control problem in Assumption 7.2, given that the dependence
on z of the model matrices will be only through Q(z), the problem in the referred
assumption will be equivalently recast as:

γLPV = inf
D1,D2(·)

γ,

subject to MI(L(Q), {D1, D2(Q)}, γ) � 0 ∀Q ∈ Q(Ωz)
(7.17)

where, with a slight abuse of notation, we define Q(Ωz) as

Q(Ωz) := {ξ ∈ Rm×s|∃z ∈ Ωz s.t. ξ = Q(z)}. (7.18)

As earlier discussed, evidently γLPV ≥ γlin.

Now, let us assert additional assumptions for the conditions (7.17), i.e., (7.10),
which will allow us to bound γLPV−γlin for small Ωz from geometric considerations
over (7.10) and (7.15). On the sequel, ‖ · ‖F will denote the Frobenius norm.

Now, keeping the linearised solution for D1, i.e., Dlin
1 , introducing an “incremen-

tal” notation in D2 and in performance, a conservative version of problem (7.17)
may be written as:

∆γ∗ := sup
Q∈Q(Ωz)

∆γ̄(Q) (7.19)

∆γ̄(Q) := inf
∆D2

∆γ (7.20)

subject to MI(L(Q), {Dlin
1 , Dlin

2 + ∆D2}, γlin + ∆γ) � 0 (7.21)

where ∆γ̄(Q) is the performance loss (or gain, if negative) if system matrices were
modified to the currently tested Q (keeping Dlin

1 ). Obviously a different ∆D2 for
each Q can be used in (7.21), analogously to (7.17). Conservatism arises from
fixing D1 to the linearised solution, instead of searching for a common D1 in
(7.17), not necessarily equal to Dlin

1 ; this implies γLPV ≤ γlin + ∆γ∗. In exchange
for such conservatism, conditions (7.21) can be conceptually solved independently
for each Q, motivating the definition of ∆γ̄(Q) in (7.20); this was not possible for
(7.17).
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Assumption 7.4. We will consider MI to be:

1. (Jointly) affine 7 in arguments (Q,D2, γ),

2. The linearised solution is robust, in the sense that for any ε > 0, there exists
δ > 0 such that for any Q such that ‖Q‖F ≤ δ, condition (7.21) is feasible
and the optimal ∆γ̄(Q) and its associated ∆D2 in (7.20) fulfill ‖∆D2‖F ≤ ε,
|∆γ̄(Q)| ≤ ε.

Let H be a matrix whose vectors form a basis of the subspace C defined in (7.15),
and let H⊥ a basis of the orthogonal subspace to C. Hence, considering the
optimal conditions for the linearised model, introducing notation in incremental
variables and a congruence matrix, we have an equivalent condition to (7.21):(

HT
⊥

HT

)
MI(L(Q), {Dlin

1 , Dlin
2 + ∆D2}, γlin + ∆γ)

(
H⊥ H

)
=

(
Ξ11(Q,∆D2,∆γ) Ξ12(Q,∆D2,∆γ)

Ξ12(Q,∆D2,∆γ)T W(Q,∆D2,∆γ)

)
� 0 (7.22)

And, by definition, we have Ξ11(0, 0, 0) � 0, Ξ12(0, 0, 0) = 0, W(0, 0, 0) = 0.

The sorted eigenvalues of a matrix are Lipschitz continuous with respect to its
elements (Bronshtein 1979); therefore, there exists ε such that for all ‖Q‖F ≤ ε,
‖∆D2‖F ≤ ε, |∆γ| ≤ ε the inequality Ξ11(Q,∆D2,∆γ) � 0 holds. Now, from
Assumption 7.4.(2), for all ‖Q‖F ≤ min(ε, δ), the LMIs (7.22), equivalent to
(7.21), are feasible, and the optimal solution ∆γ̄(Q) in (7.20) is attained with
‖∆D2‖F ≤ ε, ∆γ̄(Q) ≤ ε. Then, as Ξ11(·) � 0, by Schur complement, the
optimisation problem of minimising ∆γ subject to:

Ξ11(Q,∆D2,∆γ) � 0 (7.23)

W(Q,∆D2,∆γ)− Ξ12(·)Ξ11(·)−1Ξ12(·)T � 0 (7.24)

7 In order to approximately fulfill Assumption 7.4.1 in gain-scheduled cases where B(Q)u(Q, x)
appears, for small Q we can linearise B(Q)u(Q, x) ≈ B(0)(u(Q, x)−u(0, x))+B(Q)u(0, x). Similarly,
if the model equation (7.2) were changed to z = Czx+Mzv+Dzu+Fzw, then the model would be a
more general linear-fractional representation (Packard 1994), which would result in model matrices
in (7.8) and (7.9) being rational in ∆ ≡ Q. For instance, A(Q) would be A(Q) = A + MxQ(1 −
MzQ)−1Cz . As this model matrix is rational in Q, Assumption 7.4.(1) does not apply. Again, the
1st-order approximation to A(Q) is A(Q) ≈ A + MxQCz so the results from our proposal to the
model with Mz = 0 can, approximately, be applied to LFT models with Mz 6= 0 for small modelling
regions.
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will be feasible, too, for all ‖Q‖F ≤ min(ε, δ), and the optimal solution ∆γ̄(Q)
will be limited only by active constraints in (7.24). The above reasoning, then,
proves the following proposition:

Proposition 7.2. Under assumptions 7.1 to 7.4, there exists ε > 0 such that,
for all Q verifying ‖Q‖F ≤ ε, the solution of (7.20) subject to (7.21) is the same
as (7.20) subject to (7.24).

Note, however, that (7.24) is a nonlinear matrix inequality. Expressing the
affine Ξ11(Q,∆D2,∆γ) as Ξ11(Q,∆D2,∆γ) = M +N (Q,∆D2,∆γ), being M :=
Ξ11(0, 0, 0), and N a linear function of its arguments, the nonlinear term in (7.24)
can be written as:

Ξ̂ : = −Ξ12(·)Ξ11(·)−1Ξ12(·)T

= −Ξ12(·)M−1Ξ12(·)T + Ξ12(·)M−1N (·)M−1Ξ12(·)T + . . .

which shows that it contains quadratic, cubic, etc. terms in Q and the decision
variables, which will be negligible for small enough ε: as the eigenvalues of Ξ12

are O(ε), the eigenvalues of Ξ̂ are O(ε2). Thus, the solution to (7.19)–(7.21), for
small enough Ωz will be approximately equal to the netx one:

∆γ∗L := sup
Q∈Q(Ωz)

∆γ̄L(Q) (7.25)

∆γ̄L(Q) := inf
∆D2

∆γ (7.26)

subject to W(Q,∆D2,∆γ) � 0 (7.27)

because the difference between (7.27) and (7.24) shrinks as O(ε2).

Note, however, that the above W is linear in all its arguments, so if we have
a solution of (7.26) subject to (7.27) for some Q, the solution for a “scaled”
Q′ := λQ would be ∆γ̄L(Q′) = λ∆γ̄L(Q). This scaling and convexity arguments
will allow us to give a bound on ∆γ∗L considering the solution of the above problem
over a canonical basis of Q, as follows:

Let us now define as Ejk ∈ Rs×n the matrix with the same size as Q whose
element (j, k), is one, being the rest of elements zero (j denotes row, k denotes
column number).

Lemma 7.1. Let us denote by ∆γ[jk] the solution to the LMI problem

∆γ[jk] := inf
∆D2

∆γ (7.28)

subject to W(Ejk,∆D2,∆γ) � 0 (7.29)
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Defining ∆Γ ∈ Rm×s as the matrix whose element (j, k) is ∆γ[jk], and the set of
matrices

J := {Q ∈ Rs×n : tr(∆ΓQT ) ≤ δ},

it follows that, if Q(Ωz) ⊂ J , then ∆γ∗L ≤ δ.

Proof. By linearity of W in its arguments, conditions (7.27) are (convex) LMIs.
Hence, for an arbitrary Q with structure (7.16), which can be trivially expressed
as Q =

∑m
j=1

∑s
k=1 qjkEjk, we can state that the optimal ∆γ̄L(Q) in (7.26) will

fulfill, by convexity:

∆γ̄L(Q) ≤
m∑
j=1

s∑
k=1

qjk∆γ[jk] = tr(∆ΓQT ) (7.30)

Thus, for any Q ∈ J we have ∆γ̄L(Q) ≤ δ, which implies the assertion in the
lemma.

7.3.1 Quasi-LPV modelling methodology

The above argumentations sum up asserting that for a small enough Ωz, the
solution ∆γ∗L from (7.25) will be approximately equal to ∆γ∗ from (7.19), so
γLPV ≤ γlin + ∆γ∗ ≈ γlin + ∆γ∗L.

From the fact that tr(∆ΓQT ) is the scalar product on the vector space of ma-
trices, and ‖Q‖F=tr(QQT )1/2, we can assert that, for a given Q such that
‖Q‖F≤ε, tr(∆ΓQT ) ≤ ‖∆Γ‖F ‖Q‖F (Schwartz inequality) and that equality holds
if Q=α∆Γ, being α a positive scalar. So the largest performance loss would be
incurred if the components of Q “collinear” with ∆Γ are large.

Thus, the problem addressed next is finding a factorisation ρ(z)=Q(z)z, being
Q(z) a row vector, such thatQ(Ωz) has the smallest possible orthogonal projection
over a 1-dimensional subspace.

Consider a real-valued nonlinearity v = ρ(z), ρ : Rs 7→ R, fulfilling assumptions
in Section 7.2 (i.e., being C1 and ρ(0) = 0) and a modelling “direction” given by
column vector ψ ∈ Rs, normalised so that ψTψ = 1 without loss of generality8.

Let us denote the 1-dimensional vector subspace generated by ψ as Ξ := {ηψ, η ∈
R}. Considering the projection matrix onto Ξ, ΠΞ := ψψT , the orthogonal pro-

8From the above-discused geometric considerations, the actual model direction to be evaluated
comes from transposing a s× 1 row of ∆Γ in Lemma 7.1.
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jection of a set S of row vectors over Ξ will be understood as:

proj(S,Ξ) := {yΠΞ : y ∈ S} (7.31)

Defining the line segment L:=Ωz ∩ Ξ, evidently proj(Q(L),Ξ) ⊆ proj(Q(Ωz),Ξ)
because L ⊆ Ωz.

Definition 7.2. A factorisation ρ(z) = Q(z)z, Q(z) = [q1(z) . . . qs(z)] is tight
on subspace Ξ if

proj(Q(Ωz),Ξ) = proj(Q(L),Ξ).

Proposition 7.3. Under the assumptions in Section 7.2, given any arbitrary
vector ψ, generating the 1-dimensional subspace Ξ, there exists a factorisation
ρ(z) = Q(z)z which is tight on Ξ.

Proof. Considering ΠΞ, and Π⊥ := I − ΠΞ, z can be decomposed on two or-
thogonal components z = zΞ + z⊥, being zΞ = ΠΞz and z⊥ = Π⊥z. Also, if
z ∈ Ωz, zΞ ∈ L. Consider now the decomposition ρ(z) = ρ(zΞ)+δ(z), being
δ(z) = ρ(z)−ρ(ΠΞz). Obviously, for z ∈ L, we have z = zΞ so δ(z) = 0.

If, for fixed zΞ, we define δ̄(z⊥) := δ(z⊥ + zΞ) it fulfills Assumption 7.1 so, from
Proposition 7.1, there exists a factorisation δ̄(z⊥) = Q(z⊥, zΞ)z⊥ = δ(z). Thus,
we can decompose:

ρ(z) = ρ(ΠΞz)
ψT z

ψT z
+Q(z⊥, zΞ)Π⊥z

Now, denoting:

Q(z) =

(
ρ(ΠΞz)

ψT z
ψT +Q(z⊥, zΞ)Π⊥

)
(7.32)

we can, indeed, express ρ(z) = Q(z)z. Now,

proj(Q(zΞ + z⊥),Ξ) =
ρ(zΞ)

ψT zΞ
ψT = proj(Q(zΞ),Ξ)

so the projection of Q(z) only depends on the component zΞ ∈ L. Thus,
proj(Q(Ωz),Ξ) ⊆ proj(Q(L),Ξ) and, as inclusion in the other sense comes from
Ωz ⊇ L, the proof is complete.

The above proof constructs the component of Q(z) collinear with ψT , but does
not consider how to build Q̄. A recursive application of the idea is outlined in
the Appendix to completely specify Q, after making a change of variable z = Tη
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where the last row of T is ψT and the remaining rows are built to conform an
orthogonal matrix.

Once the methodology to obtain Q(z) has been discussed, Algorithm 1 is proposed
to minimise the performance bound in Lemma 7.1. In this way, the spread of Q(z)
in the directions more deletereous for performance (at least for small enough
modelling regions) will be minimised. Examples in Section 7.4 will show the
performance improvement achieved with the resulting model from the referred
algorithm.

Algorithm 1 Factorisation ρ(z) = Q(z)z

1: Solve the linearised performance problem, obtaining {Dlin
1 , Dlin

2 } and γlin.
2: Using Dlin

1 , obtain matrix ∆Γ defined on Lemma 7.1.
3: Denoting as ∆Γ[i] the i-th row of ∆Γ and, likewise, Q[i] the i-th row of Q,

model each nonlinearity as ρi(z) = Q[i](z)z, in such a way so that Q[i] is tight
in the direction ∆Γ[i], in the sense of Definition 7.2.

Note that only the geometry of the null space C is used in the factorisation
proposal (Algorithm 1), and not any “shape” information on ρ(z). Thus, final
performance loss will depend on (a) the actual range of Q(z), (b) the improvement
a new D1 in problem (7.10) might be able to achieve and, (c) the influence of
other directions not in the null space C as modelling region size increases (so Q(z)
significatively departs from zero). Hence, the ideas inspiring Algorithm 1 only
apply for small enough modelling regions.

7.3.2 Polytopic bounds for Q(z)

Once Q(z) has been chosen, a so-called polytopic embedding (a.k.a. TS model)

of Q(z) is a set of nv vertex points Q̂i such that Q(z) ∈ Co{Q̂i, i=1, . . . , nv} for
all z∈Ωz. Of course, the best embedding would be Co{Q(η)|Tη ∈ Ωz} but that
set might not have a finite number of vertices9.

Figure 7.1 illustrates the idea for a case of a single nonlinearity
ρ(z1, z2)=Q(z)z=(q11(z) q12(z))z, where Q(Ωz) is depicted as a blue region,
and its convex hull is shown with a dotted-black boundary.

9In practice, the convex hull of a set of (dense enough) grid points might be the best reasonable
approximation but it might, nevertheless, have a large number of vertices. Such grid appears as a
collection of white dots on Figure 7.1.
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Figure 7.1: Illustration of options for polytopic bounding of Q(Ωz) [blue] for Q ∈ R2×1.
Best bounding is the convex hull [dotted-black line]. Given direction ∆Γ [green arrow], the
rectangle with minimal projection on ∆Γ, equation (7.53), is P1. The principal-component
box from (Kwiatkowski and Werner 2008b) is P2 [dash-dotted violet rectangle]. The inter-
section between P2 and P∆ from (7.34) is the shaded gray region P3.

However, some simple alternatives exist to avoid gridding, by bounding Q(Ωz) in
a “box” (hyperrectangle), obtaining infimum and supremum over some orthogonal
directions, as follows:

(a) Worst-performance directions: expression (7.53) in the Appendix provides
a polytopic hyper-rectangle bounding, given some change of variable. For
the case ∆Γ = (0.966 −0.259), which appears as a green arrow in the figure,
the resulting bound would be the rectangle delimited by dashed-red lines,
labelled as P1 in the figure.

(a) Principal-component (PCA) directions: the work (Kwiatkowski and Werner
2008b) proposes vectorising Q(z) and obtaining the principal directions
(eigenvectors of the covariance matrix), to reduce possible overbounding
arising from choosing boxes not “aligned” with the principal components of
Q(Ωz); indeed, this does improve the obtained performance over other box
orientations in many cases, see the cited work for details and examples. The
result of their algorithm would be the rectangle whose edges are outlined in
dash-dotted violed line on Figure 7.1, labelled P2.
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Combined PCA plus worst-performance direction embedding. The
above approaches have drawbacks arising from the fact that principal directions
of the dataset Q(z) might not be aligned with the worst-performance directions
arising from the rows ∆Γ[i]. Thus, choosing just one of the two options may lead
to either overbounding, in case (a), or nonminimal projection over ∆Γ[i], in case
(b) losing the “tightness” pursued in the previous subsection.

Thus, to avoid any overbounding in the most influential direction, our proposal is
to obtain both the principal directions and the supporting hyperplanes given by

l1 := inf
z∈Ωz

tr(∆ΓQ(z)T ), l2 := sup
z∈Ωz

tr(∆ΓQ(z)T ) (7.33)

so that the principal-component polytope P2, is intersected with the set

P∆ := {l1 ≤ tr(∆ΓQT ) ≤ l2} (7.34)

being P∆ represented as a yellow band on the figure.

So we can state that Q(Ωz) ⊆ P3, P3 := P2 ∩ P∆. The set P3 is the shaded gray
region on the figure10.

Let us summarise, in the form of an algorithm, the proposed polytopic bounding,
see Algorithm 2. Note: in the algorithm, we denote as vec : Rm×s 7→ R1×(ms)

the vectorisation operation so that a matrix is transformed to a row vector by
concatenating its rows. The inverse operation (building the matrix again), will
be denoted as vec−1.

7.4 Examples

Consider the following nonlinear system, assuming z = x in (7.2):

ẋ =

(
−2.6x1 + 0.7x2 − 0.5u+ 1.2v1 − 1.7v2 + w1

−3.4x1 − 3.4x2 + 0.9u− 0.1v1 + 0.5v2 + w2

)
Y∞ =

(
0.9x2 − 0.5x1

u

)
, Y2 =

(
0.9x2 + 0.5x1

u

)
,(

v1

v2

)
=

(
ρ1(x)
ρ2(x)

)
=

(
x1x2

sin(0.4x1x2)

) (7.35)

10Obviously, the polyhedral bound could be further trimmed by actually intersecting P1 and P2 or
obtaining supporting hyperplanes in more directions; nevertheless, that would increase the number of
vertices but their effect on the performance (for small Ωz) would likely not be significant, according
to the ideas in Lemma 7.1. Thus, the recommended option is the set P3, and it will used that way
in the examples.
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Algorithm 2 Performance-aware polytopic embedding

1: Obtain ∆Γ from the linearised problem using Algorithm 1, as well as the
explicit expression of Q(z).

2: Denote
Θ := {vec(Q(z)) : z ∈ Ωz} ⊂ Rms

Obtain the covariance matrix of Θ, defined as Σ =
∫

Θ
φTφdφ, see

(Kwiatkowski and Werner 2008b). The dimensions of Σ are ms×ms.
3: Obtain the eigenvalue decomposition Σ = V ΛV T .
4: Denoting the i-th column of V as V [i], compute the bounds:

λi1 = inf
φ∈Θ

φV [i] λi2 = sup
φ∈Θ

φV [i]

5: Using the above bounds and (7.33), form the polytopic subset of Rms given
by:

P3 := {l1 ≤ vec(∆Γ)φ ≤ l2, li1 ≤ (V [i])Tφ ≤ li2, i = 1, . . . ,ms}

6: Obtain the vertices of P3, so P3 = Co({v[1], . . . v[j]}) for some finite j.
7: Obtain the polytopic bounding of Q(Ωz) inverting the vectorisation, so we

can state that:

Q(z)∈Co({vec−1(v[1]), . . . , vec−1(v[j])}) ∀z∈Ωz

Once a quasi-LPV representation v = Q(x)x is available, in this example, the
performance objective will be minimising γ subject to conditions (7.37)–(7.41) on
top of next page, being

A(Q) =

(
−2.6 0.7
−3.4 −3.4

)
+

(
1.2 −1.7
−0.1 0.5

)
Q (7.36)

where A(Q) comes from trivially rewriting the state equation in (7.35) in matrix
form, as in (7.1).

X � 0 (7.37)

γ − 3γ∞ − γ2 ≥ 0 (7.38)(
A(Q)X +BF (Q) + (A(Q)X +BF (Q))T (C2X +D2F (Q))T

C2X +D2F (Q) −γ2I

)
� 0 (7.39)

(7.40)

153



Chapter 7. On Modelling of Nonlinear Systems as Quasi-LPV Ones

A(Q)X +BF (Q) + (A(Q)X +BF (Q))T (C∞X +D∞F (Q))T ET

C∞X +D∞F (Q) −γ∞I 0
E 0 −γ∞I

 � 0

(7.41)

This problem verifies the conditions in Assumption 7.2, withD1 ≡ X, D2 ≡ F (Q),
indicating that a gain-scheduled state feedback controller u(Q, x) := F (Q)X−1x
is sought, being V (x) := xTX−1x a common quadratic Lyapunov function, inde-
pendent of Q.

If the above-referred conditions are feasible, they guarantee that ‖Y∞‖2 ≤
γ∞‖w‖2 under zero initial conditions and, too, that with w = 0 but nonzero
initial state x(0), ‖Y2‖2 ≤ γ2x

T (0)x(0), where 2-norm of signals are understood
in the integral sense ‖y‖22 =

∫∞
0
y(t)T y(t) dt. In the proposed problem, the im-

portance weight of the γ∞ performance bound has been arbitrarily set to be three
times that of γ2, in order to write (7.38).

Solving the above problem for the linearized system (Q = 0), the obtained optimal
linearised performance is γlin = 1.4121, jointly with Lyapunov function Dlin

1 ≡
X lin and linear controller decision variable Dlin

2 ≡ F lin, omitted for brevity; so,
Assumption 7.3 is fulfilled. The used LMI software was SeDuMi 1.3 in Matlab
R2014a. With these variables, obtaining the suitable basis H of the relevant null
space of the optimal LMIs Ω(Qz), and checking four vertex values for Q:

E11 =

(
1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E22 =

(
0 0
0 1

)
on the incremental version of the LMIs, sensitivity matrix ∆Γ in Lemma 7.1
results in

∆Γ =

[
0.6435 −0.7654
−0.6333 0.7739

]
(7.42)

Hence, the proposal in this work suggests that the nonlinearities ρ1 and ρ2 are
modelled for minimal projection onto the subspace spanned for the first and
second row of ∆Γ, respectively, following Algorithm 1. As a result, the finally
proposed factorisation is (7.43), understanding the fractions at ξ3 = 0 or ξ4 = 0
in a limit sense, see the Appendix.
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ρ1(x) =
(
0.493ξ1 − 0.172ξ2 −0.493ξ2

)(ξ1
ξ2

)
,

ρ2(x) =
(

sin(0.196ξ2
4)+sin(a)
ξ3

− sin(0.196ξ2
4)

ξ4

)(
ξ3
ξ4

)
,

ξ1 := 0.7654x1 + 0.6435x2, ξ2 := ∆Γ[1]x = 0.6435x1 − 0.7654x2,

ξ3 := 0.7739x1 + 0.6333x2, ξ4 := ∆Γ[2]x = −0.6333x1 + 0.7739x2,

a := 0.196ξ2
3 + 0.0792ξ3ξ4 − 0.196ξ2

4

(7.43)

The proposal in Algorithm 1 to generate Q(x) will be compared with other ones
in literature.

Gain-scheduled controller parametrisation. In gridding-based approach,
one controller gain will be sought for each grid point. In later polytopic-based
embeddings, one controller gain Fi will be obtained for each vertex: given the
structure of LMIs (7.39) and (7.41), it is well-known (De Caigny et al. 2010) that
these vertex gains can be used to synthesise a gain-scheduled controller with the
same interpolation coefficients as the model matrices.

7.4.1 Comparison with alternative options for Q(z)

In order to compare with alternative approaches, a grid of 481 points {x[k], k =
1, . . . , 481} over a modelling region Ωx being a circle of radius r in the state
space R2 has been chosen: the origin plus a grid of 480 points in 10 radius val-
ues {0.1, 0.2, . . . , 1} × r and 48 equally-spaced angle steps. In gridding-based
approaches, the proposed Q(z) would be evaluated at these 481 points, and com-
pared with other possibilities for Q(z); of course, later on, gridding will be avoided
by embedding Q(z) in a polytope with a small number of vertices. Obviously, a
naive scaling transforms Ωz to the unit ball required in the assumptions.
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Annihilator approach. Let us first compare with BMI+gridding annihila-
tor approaches in earlier literature (Coutinho et al. 2008). A factorisation v =
(Q0(x)+ℵ(x))x has been used, for any annihilator ℵ(x) such that ℵ(x)x = 0. We
chose Q0(x) to be the one suggested by our proposed subspace approach. The
choice for ℵ(x), at each grid point, was the linear annihilator:

ℵ(x[k]) :=

(
−l[k]

1 x
[k]
2 l

[k]
1 x

[k]
1

−l[k]
2 x

[k]
2 l

[k]
2 x

[k]
1

)
(7.44)

being l
[k]
1 and l

[k]
2 decision variables for each grid point. The total number of BMI

decision variables is 1928: 481× 2 for l
[k]
i , 481× 2 for F [k] ∈ R1×2, three for the

symmetric x, plus γ, γ∞ and γ2, and the total number of LMIs arise from (7.37),
(7.38) and repeating 481 times, for each Q(x[k]) the LMIs (7.39) and (7.41); this
can be expressed as a big block-diagonal BMI of size 4813 × 4813. For the sake
of comparison, in our approach to search for the best Q(z), each element of ∆Γ
was obtained with a 13× 13 LMI, with 8 decision variables.

Note that, starting with l
[k]
1 = l

[k]
2 = 0, the resulting BMI search, if properly

converged, should always yield a better performance bound than our proposal:
this is intentional, as the issue is determining whether the achieved improvement
is significant or worthwhile, given the increase of computational cost arising from
the iterative BMI steps. Results will be later discussed after other alternatives
options are presented.

Inspection-based factorisation. For the sake of comparison, four other easy
“common sense factorisations” will be evaluated, either extracting x1 or x2 as a
factor, as follows:

v =

( ρ1

x1
0

ρ2

x1
0

)
x =

(
x2 0

sin(0.4x1x2)
x1

0

)
x (7.45)

v =

(
0 ρ1

x2
ρ2

x1
0

)
x =

(
0 x1

sin(0.4x1x2)
x1

0

)
x (7.46)

v =

( ρ1

x1
0

0 ρ2

x2

)
x =

(
x2 0

0 sin(0.4x1x2)
x2

)
x (7.47)

v =

(
0 ρ1

x2

0 ρ2

x2

)
x =

(
0 x1

0 sin(0.4x1x2)
x2

)
x (7.48)

Trivially, these options can give a simple 4-vertices polytopic embedding repre-
sentation, later evaluated.
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Figure 7.2: Peformance comparison of choices for Q(z), gridding approach. Our proposal
from Algoritm 1, i.e., Q(z) in (7.43), labelled as (**) achieves a very good performance with
significantly less computational cost than the (BMI) one.

Comparison of results (gridding approach). Comparing all options for
Q(z) in the same grid of 481 points results in Figure 7.2. It can be clearly seen
that our proposal for Q(z), labelled as (**), provides the best results except the
marginal improvements of the costly annihilator-BMIs, as expected (at least for
small modelling region radius). The common-sense factorisations above incur
in a clear performance penalty. Note that, as intuitively expected, performance
is close to the linearised one (1.4121) for small modelling region radius, but it
worsens as such radius increases (indeed, the set Q(Ωz) grows larger as the radius
of Ωz expands).

Computation time (gridding approach). On a Core I5-4690 processor,
computation of ∆Γ with our LMI proposals takes around 0.088 seconds. Once
Q(z) is crafted from the resulting ∆Γ, solving the LMIs with SeDuMi 1.3 over the
481-point grid to obtain the new gain-scheduled controller takes 8.76 seconds. On
the other hand, using PenBMI2.1 32 bit with default configuration, a 481-point
grid takes around 420 seconds in average for each tested radius.

Note that the computational cost would exacerbate for higher-order systems be-
cause of the larger dimension of the matrix inequalities and the likely need of
an exponentially larger number of grid points; thus, polytopic bounding to avoid
gridding is important, and it will be discussed below in the context of this exam-
ple.

As a conclusion, our subspace approach has two worthwile advantages (at least
in this example): first, it clearly outperforms ad-hoc inspection-based factorisa-
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0 0.5 1 1.5 2
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Gridding
Polytopic
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 (a)

 (**)

 (b)Embedding  ( )

Figure 7.3: Performance degradation due to different options for polytopic embedding, for
the fixed Q(z) arising from Algorithm 1 in (7.43). See enumeration in the text for label in-
terpretation. Our proposal (c) achieves comparable performance with a 10-fold improvement
in computational time over the gridding results (**) and 700-fold over (BMI), both copied
from Figure 7.2.

tions; second, BMI+gridding options in other literature achieve only marginal
improvements and the computational cost is much higher.

7.4.2 Effect of polytopic embedding

Once Q(z) is chosen from our proposal, in order to avoid gridding, performance of
polytopic embeddings will be tested. On Figure 7.3, the three different approaches
discussed on Section 7.3.2 are compared with the gridding-based “best-possible”
performance11. First, the simpler options:

(a) the 16-vertices box arising from an orthogonal transformation induced by
worst-performance directions in ∆Γ, using (7.53); the methodology is anal-
ogous to the one yielding P2 in the simplfied example on Figure 7.1.

(a) the PCA approach from (Kwiatkowski and Werner 2008b) (with, too, 16
vertices), symbolically depiced as P1 on Figure 7.1.

and, finally, our proposed combined approach, labelled as (�) in the Figure, in-
tersecting the principal-component box with the supporting hyperplanes (7.33),

11If the grid were “dense enough”; indeed, otherwise, such an estimate would be optimistic if
leaving out the worst-case points from the grid. In this example, denser grids were tested with no
appreciable performance improvement.
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Table 7.1: Performance versus computation time (radius 2)

Method
Num. of
vertices

Computation
time (s)

Performance
(penalty%)

Earlier literature:
BMI-Gridding (Coutinho et al. 2008) Grid 481 420 1.729

LMI-Gridding (7.45) Grid 481 8.73 1.842 (6.5%)
PCA bound (7.45) 4 0.14 1.929 (11.5%)

inf/sup bound of (7.45) 4 0.11 11.60 (570%)
LMI-Gridding (7.46) Grid 481 7.14 3.832 (121%)
LMI-Gridding (7.47) Grid 481 7.19 4.819 (178%)
LMI-Gridding (7.48) Grid 481 6.68 1.857 (7.4%)

Proposals in this work:
Alg. 1 Q(z)+LMI Grid 481 8.76 1.742 (0.7%)

Alg. 1+Alg. 2. LMI 24 0.56 1.756 (1.5%)

which results in a polytope with 24 vertices (symbollically depitec as P3 on Figure
7.1).

In order to better assess the performance loss due to the poytopic embedding, the
original BMI+grid approach and the LMI+grid on our proposed Q(z) have been
copied over from Figure 7.2 to Figure 7.3, and additional lines added.

Computation time comparison. As intuitively expected, polytopic embed-
ding achieves more conservative performance bounds than gridding options, but
at a much lower computational cost.

Table 7.1 depicts an overall comparison between the different approaches showing
computation time and performance (and the number of considered vertices/grid
points). Let us discuss the different table entries below:

The first rows describe proposals in prior literature. Row 1 lists data for the
already discussed BMI-gridding, whose performance is, obviously, the best one.
Rows 2 to 4 use the inspection-based factorisation (7.45): directly on a grid (row
2), bounding it with the PCA-based approach in (Kwiatkowski and Werner 2008b)
(row 3), or using the most straightforward bounding by computing the minimum
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and maximum over Ωz of the matrix elements 12 (row 4). Rows 5 to 7 are the
results of alternative inspection-based options.

The last two rows present the data from our proposals: first, a gridding approach
(row 8) to point out the effect of the choice of Q(z) with respect to the other
gridding options (rows 1, 2, 5, 6, 7). Apart from the reference row 1 (BMI), the
performance from our proposal beats by a large marging the rest of the referred
rows. Finally, row 9 presents the combination of our choice of Q(z) plus the poly-
topic embedding from Algorithm 2, with a minor performance loss with respect
to rows 1 and 8, and a significantly faster execution.

In conclusion, our proposals yield 0.7% performance penalty with a 46 times
lower computation time (Algorithm 1 with LMI gridding), and 1.5% performance
penalty with more than 700 times lower computation time (Algorithm 2, polytopic
embedding) with respect to the ideal BMI-gridding results. These computational
advantages would, likely, accentuate for higher dimensions.

On the other hand, for sake of comparison, the inspection-based polytopic em-
beddings were unable to approach the optimal performance points. For instance,
(7.45) was the best factorisation when evaluated on the 481-point grid, yield-
ing a performance of 1.84 (6.4% penalty); however, the 4-vertices PCA bound of
(7.45) incurred in a 11.5% penalty, and a much larger penalty figure appeared
for the straightforward inf/sup bound of each matrix component over the circle
Ωz. Similar results were achieved with the other options (7.46)–(7.48), omitted
for brevity.

7.5 Conclusions

This chapter has addressed the problem of choosing a good quasi-LPV model for
a nonlinear system. Our proposals are able to mitigate the performance loss from
a reference linearised design, compared to other “inspection-based” modelling
choices, while avoiding BMIs needed in prior literature for controller synthesis
problems. The main idea is based on obtaining the more harmful perturbations
of the model matrices in the linearised design, proposing then a coordinate trans-
formation so that the projection of the uncertainty over these model perturbations
is minimised. This direction plays, too, a fundamental role in later polytopic em-
bedding options which are built to avoid the need of gridding. As the root of the

12This approach is routinely proposed in many applications (Shamma and Cloutier 1992;
Kwiatkowski and Werner 2008b); in this particular case, in the ball of radius 2 we can bound:

−2 ≤ x2 ≤ 2, and −0.8 ≤ sin(0.4x1x2)
x1

≤ 0.8 yielding a 4-vertices polytopic LPV model, details left

for the reader.
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procedure is the linearised design, the results are only valid, formally, for small
modelling regions around the origin.

Appendix: Systematic factorisation of a nonlinearity

Let us consider a nonlinearity ρ̃ : Rs → R:

v = ρ̃(η) (7.49)

and present a factorisation option inspired in Chapter 4 (Robles et al. 2015) and
(Gao et al. 2012) and the proof of Proposition 7.3.

Let us define ξ1 := ρ̃(η1, . . . , ηs) and ξi(ηi, . . . , ηs) := ρ̃(0, . . . , 0, ηi, . . . , ηs) for
i = {2, . . . s}, ξs+1 := 0 and let us denote, for i = {1, . . . , s}:

ζi(ηi, . . . , ηs) := ξi(ηi, . . . , ηs)− ξi+1(ηi+1, . . . , ηs) (7.50)

so, as ζi(0, ηi+1, . . . , ηs) = 0 and ζi(·) ∈ C1, by Proposition 7.1, there exists a
factorisation

ζi(ηi, . . . , ηs) =
ζi(ηi, . . . , ηs)

ηi
· ηi

taking suitable limits when ηi → 0. Thus, as trivially:

ξi(ηi, . . . , ηs) = ζi(ηi, . . . , ηs) + ξi+1(ηi+1, . . . , ηs)

with these definitions, we can express:

ρ̃(η) =
s∑
i=1

ζi(ηi, . . . , ηs) =
s∑
i=1

ζi(·)
ηi
· ηi (7.51)

Considering the expression in the form (7.32) below:

Q(η) =
ζs
ηs

(
0 . . . 0 1

)
+
(
ζ1
η1

. . . ζs−1

ηs−1
0
)

(7.52)

it can be easily proved that the resulting Q(η) is tight on the subspace generated
by (0 . . . 0 1)T , details left to the reader.
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Polytopic embedding via inf/sup bounds. A straightforward embedding
with nv=2s vertices can be built by obtaining the infimum and supremum of
ζi(ηi, . . . , ηs)/ηi for z ∈ Ωz, denoted as ζ∗i and ζ∗i , respectively (assuming they

exist). Indeed, straightforward interpolation allows us to express:

ρ̃(η) =
s∑
i=1

(
µi1(η)ζ∗i + µi2(η)ζ∗i

)
ηi (7.53)

with µi1 + µi2 = 1, µi1 ≥ 0, µi2 ≥ 0. Apart from this “box” embedding, other
possibilities exist, as discussed in Section 7.3.2 on the main text.
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Chapter 8

Gain-Scheduled Control via
Polytopic Difference Inclusions

Many works in literature are based on the idea that a nonlin-
ear system with sector-bounded nonlinearities can be expressed as a
quasi-LPV system (convex combination of linear models, with state-
dependent interpolation coefficients). The convex difference inclusion
(CDI) modelling framework proposed by M. Fiacchini and coworkers
in several of their works generalises the modelling procedure and pro-
poses robust controllers for them. This works generalises the approach
allowing for gain-scheduled controllers applicable to a wider class of
models than the quasi-LPV ones. As most set-based approaches, the
proposal is tractable in low-dimensional cases.

This chapter proposes a radical departure from the modelling approaches in the
previous contributions. Its objective is to address a larger class of models than
the TS one discussed until now. Instead of searching for the optimal model given
some LMIs, a set-based approach will be pursued to show that larger domain of
attraction estimates are possible with the new modelling framework.

Its contents form the basis of a journal article, currently under review.
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8.1 Introduction

Determining invariant and contractive sets for dynamic systems is a control prob-
lem which has been addressed in a variety of settings (Blanchini 1999). Such sets
can be easily determined for linear systems and uncertain linear systems char-
acterised as polytopic Linear difference inclusions (LDI) (Kouramas et al. 2005),
either from a set-based approach (Blanchini 1999; Mayne 2001; Kerrigan 2001;
Rakovic et al. 2004; Herceg et al. 2013) or in a linear matrix inequality framework
(LMI), (Boyd and Vandenberghe 2004; Guerra and Vermeiren 2004; Sala 2009;
Wu and Dong 2006b). As some nonlinear systems can be embedded in a poly-
topic LDI via a systematic modelling procedure (quasi-LPV embedding (Rugh
and Shamma 2000a; Bianchi, Mantz, and Christiansen 2005b; Kwiatkowski and
Werner 2008a), Takagi-Sugeno models (Tanaka and Wang 2004; Sala 2009)), the
above results apply to some robust nonlinear control problems and gain-scheduled
extensions, with, of course, a dose of conservatism.

This work will pursue an approach based in polyhedron manipulation, as LMIs
do not apply to an extended class of models to be discussed below. The works
(Fiacchini 2010a; Fiacchini, Alamo, and Camacho 2010; Fiacchini, Alamo, and
Camacho 2012) show that set-based LDI ideas can be generalised to the so-called
convex differential inclusions (CDI), which are more general models capable of rep-
resenting nonlinear and uncertain systems with lower conservatism (overbound-
ing) than LDI, being these a particular case. Furthermore, they present iterative
scaling/shooting algorithms to compute contractive sets, both in analysis and ro-
bust control design settings. In the polytopic case, such steps can be carried out
with polytope manipulation software such as the multiparametric toolbox (MPT,
(Herceg et al. 2013)). The preliminary conference paper (Sala 2017) outlines a
generalisation of some concepts to a quasi-convex setup so that the above-referred
algorithms still work.

The goal of this chapter is generalising the ideas in (Fiacchini 2010a; Fiacchini,
Alamo, and Camacho 2010; Fiacchini, Alamo, and Camacho 2012; Sala 2017), in
order to incorporate gain-scheduling options. Definitions of shape-independent
gain-scheduled one-step sets will be given to generalise the standard one-step set
definitions in the cited works, and they will be used to obtain invariant/contractive
estimates achievable with gain-scheduling controllers. In this way, set-based gain-
scheduling developments for LDI (Ariño et al. 2017) will be generalised to the
wider class of convex and quasi-convex DI models.
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8.2 Preliminaries

This chapter will consider a discrete-time dynamic system where the successor of
a current state x ∈ Rn, denoted by x+, is given by:

x+ = f(x, d, u) (8.1)

being u is the so-called input vector, with values u ∈ U ⊂ Rm, and d ∈ D ⊂ Rv a
set of time varying parameters or disturbances. In many cases an uncertain “em-
bedding model” of the dynamics (8.1) can be built so that an inclusion condition
can be stated as follows:

f(x, d, u) ∈ F(x, u) ∀ d ∈ D ∀x ∈ X ∀u ∈ U (8.2)

where F(x, u) ⊂ Rn is the image of (x, u) under a known set-valued map, F :
X × U 7→ P(Rn) being P(·) the power set. The set X will be denoted as the
modelling region. Under this embedding F(x, u) is a set of possible successor
states. The motivation towards using these uncertain embeddings is that they will
exchange conservatism for computational advantages, if F fulfills some convexity-
related properties, to be later discussed.

Uncertain dynamic systems in the form:

x+ ∈ F(x, u) (8.3)

are denoted as difference inclusions (DI) (Fiacchini, Alamo, and Camacho 2010).
If there is no input vector x+ ∈ F(x), the DI is called autonomous. Of course, if
F(x, u) were a single point, the above DI would reduce to a deterministic dynamic
system.

Assumption 8.1. We will assume that the origin (x = 0, u = 0) is an equi-
librium point of the undisturbed system, i.e. f(0, 0) = 0 and, additionally, that
0 ∈ X, 0 ∈ U and 0 ∈ D. Also, X, U and D will be assumed to be compact
polyhedra.

Convexity-related properties of set-valued maps. Let us first introduce
some notation: Given a set Σ ⊂ Rn and a matrix M with compatible dimensions
(or a real scalar), MΣ := {z : ∃s ∈ Σ s.t. z = Ms} will denote the linear scaling of
it. Minkowsky sum of two sets will use notation: A⊕B := {z ∈ Rn : ∃a ∈ A, b ∈
B s.t. z = a + b}. Sets of matrices (or vectors) will be also considered. Given
sets of matrices C and D with compatible dimensions, its product C ⊗ D will
be understood analogously to the Minkowski sum, replacing addition by matrix
product.
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Let us consider a set-valued map F : D 7→ P(Rn); the domain D will be assumed
to be a convex set in the sequel. The image of a set Ω ⊆ D under a set-valued
map F will be understood as F(Ω) := ∪ξ∈ΩF(ξ).

Definition 8.1. A set-valued map F is convex-valued if F(ξ) is convex for
every ξ ∈ D. Additionally, it will be denoted as polytopic if F(ξ) is a compact
polytope for all ξ in D.

Definition 8.2. A set-valued map is linear if F(λξ) = λF(ξ) and F(λ1ξ1 +
λ2ξ2) = λ1F(ξ1)⊕ λ2F(ξ2), for all λ, λ1, λ2 in R.

Definition 8.3. A set-valued map is S-convex if F(λξ1 + (1− λ)ξ2) ⊆ λF(ξ1)⊕
(1− λ)F(ξ2) for all ξ1, ξ2 in D and for all 0 ≤ λ ≤ 1.

Definition 8.4. A set-valued map is S-quasiconvex if F(λξ1 + (1 − λ)ξ2) ⊆
Co(F(ξ1) ∪ F(ξ2)) for all ξ1, ξ2 in D and for all 0 ≤ λ ≤ 1.

Definition 8.5. A set-valued map is sub-homogeneous if F(λξ) ⊆ λF(ξ), for all
ξ ∈ D and for all λ ∈ [0, 1].

Evidently from the definitions, all linear set-valued maps are S-convex, and all
S-convex ones are S-quasiconvex1. Also, linear maps are sub-homogeneous and
so they are S-convex maps if, additionally, F(0) = {0} holds.

Theorem 8.1. Given a polytope P , and an S-quasiconvex set-valued map F , we
have

F(ξ) ⊆ Ξ := co

 ⋃
ζ∈vert(P )

F(ζ)

 , ∀ξ ∈ P

Proof. Denote the vertices of P as {ζ1, . . . , ζr, . . . , ζNP }. Obviously, the image of
the vertices fulfils the inclusion stated in the theorem, and so for the image of
the convex combinations of two vertices directly from Definition 8.4. Now, let us
assume that the convex combination of r − 1 vertices fulfills the assertion. Any
point ξ ∈ P which is not a vertex and is a convex combination of r vertices can
be expressed, for some ηi(x) > 0, i = 1, . . . , r as

ξ =

r∑
i

ηi(ξ)ζi = ηrζr + (1− ηr)ẑr−1 (8.4)

1Notions of convexity and quasi-convexity of set-valued maps are discussed in, for instance,
(Kuroiwa 1996) so that they extend the concepts for real- and vector-valued mappings in (Jeyaku-
mar, Oettli, and Natividad 1993). These notions are such that the definitions, when F(ξ) is a single
point, reduce to the standard convex and quasiconvex function cases. However, in order to apply
later results in this manuscript, stronger conditions than these in the mentioned works must be
posed, in definitions 8.3 and 8.4.
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being

ẑr−1 :=

(
r−1∑
i=1

ηi(x)

1− ηr(ξ)
ζi

)
∈ P (8.5)

i.e., as the convex combination of a vertex of P and a point ẑr−1 which is a convex
combination of r − 1 vertices. By the induction assumption, F(ẑr−1) ⊆ Ξ; thus,
as F(ζr) ⊆ Ξ, Definition 8.4 entails F(ξ) ⊆ Ξ. As it its true for r = 2 and
r = 3, so it is for any integer r. As every point of P can be expressed as a convex
combination of its vertices, the proof is complete.

The theorem enables to bound the image of a polyhedron F(P ) by just computing
the image of its vertices.

Classification of DI. The properties of the set-valued map F(x, u) associated
to a DI x+ ∈ F(x, u), defined in D := X×U,will define different types of DI. Based
on the nomenclature in (Kerrigan 2001; Fiacchini, Alamo, and Camacho 2010;
Sala 2017), a difference inclusion (8.3) will be denoted as linear (LDI), uncertain-
convex (UCDI), or uncertain quasi-convex (UQCDI) if F is linear, S-convex,
or S-quasiconvex, respectively2. Additionally, a convex DI (CDI), as defined in
(Fiacchini 2010a; Fiacchini, Alamo, and Camacho 2012) will be understood as
having an associated S-convex and sub-homogeneous F(x, u).

Embedding a nonlinear model onto a DI. In literature, embedding a non-
linear system onto a convex combination of linear “vertex” models is a widely-
used approach to prove properties of nonlinear systems based on the properties
of the linear vertices, see the quasi-LPV or Takagi-Sugeno modelling approaches
in (Tanaka and Wang 2004; Rugh and Shamma 2000a; Kwiatkowski and Werner
2008a), for instance. In particular, given a model in the form:

x+ =
[
A(x) G(x) E(x)

]xu
d

 := Ψ(x)

xu
d

 (8.6)

the above references show that a polyhedral bound for Ψ in a compact modelling
region X can be found under mild continuity assumptions. Let us denote such

2The approach to set-valued maps in (Fiacchini, Alamo, and Camacho 2010; Fiacchini, Alamo,
and Camacho 2012) is strongly based on the so-called support function of a non-empty, compact
set (Fiacchini, Alamo, and Camacho 2010, Def. 1).The equivalence between that approach and the
above definitions is discussed in Appendix 8.8.2.
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polyhedral bound as Ψ̂ := Co({(Ai Gi Ei) i = 1, . . . , NΨ}), being NΨ the

number of vertices, such that Ψ(x) ∈ Ψ̂ for all x ∈ X. Elementary convexity
argumentations prove that the above nonlinear system can be rewritten as a
parameter-dependent expression:

x+ =

NΨ∑
i=1

hi(x)(Aix+Giu+ Eid) (8.7)

being h a parameter vector ranging in the standard simplex ∆ := {h ∈ RNΨ :∑NΨ

i=1 hi = 1, hi ≥ 0}. Abusing the notation, in the sequel ∆ will denote the
standard simplex in any vector space, not just RNΨ . Disregarding the actual
“shape” of h(x), we can obtain an embedding in DI form (8.2):

x+ ∈ Co ({Aix+Giu} ⊕ EiD, i = 1, . . . , NΨ) (8.8)

It can be proved that the above DI is linear (LDI) if D := {0} (undisturbed case)
and UCDI in the case D is a compact convex set.

There are other more general techniques to embed a nonlinear system onto a CDI,
UCDI, QCDI, . . . , see (Fiacchini 2010a; Fiacchini, Alamo, and Camacho 2010;
Sala 2017). For completeness, Appendix 8.8.3 in this manuscript recalls some
of these, but the reader is referred to the original sources for further discussion
in modelling issues, important but out of the scope of this thesis for brevity.
For instance, the 1st-order dynamic system x+ = x3 can be embedded in x+ ∈
[fl(x), fu(x)] with fl(x) = min(x3, 0) and fu(x) = max(x3, 0). As fl is concave
and fu is convex, and fl(0) = fu(0) = 0 the embedding is a CDI (Proposition
8.2). Actually, as x3 is quasilinear, the embedding x+ ∈ {x3} is a UQCDI in
which no conservatism in the modelling step has arisen.

8.3 Set-based approach to dynamic system analysis and
control design

A plethora of results exist for DIs in the form (8.8) proving stability (LDI case),
finding inescapable sets, state-feedback controller design, etc. both using set-
manipulation software (Kerrigan 2001; Herceg et al. 2013) and convex linear ma-
trix inequalities (LMI), see for instance (Boyd and Vandenberghe 2004; Guerra
and Vermeiren 2004; Sala 2009; Wu and Dong 2006b) and references therein.
However, LMIs do not easily apply to more general3 non-LDI models (CDI, UCDI,

3Another way of obtaining more general models is using polynomial bounds and using Sum-of-
squares convex programming techniques for them (Prajna, Papachristodoulou, and Wu 2004; Chesi
2009; Sala and Pitarch 2016b). The sum-of-squares generalisation of LMIs, however, will not be
considered in the scope of this thesis, either.
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UQCDI) so, intentionally, the scope of this chapter will be directed to the set-
based approach.

The advantages of the set-based approach are its applicability to more general
systems than (8.8) –discussed later on–, as well as the ability to naturally con-
sider saturation and possible non-symmetric constraints in state and input. The
disadvantage comes from the need of vertex enumeration steps, which make it
impractical for high-dimensional systems in a general case. The basic definitions
in the set-based approach are recalled below.

Definition 8.6 (one-step set). Given a target set Ω, the disturbance-rejection
one-step set of Ω under model (8.1) is defined as:

Q(Ω) := {x ∈ Rn : ∃u ∈ U s.t. f(x, d, u) ∈ Ω ∀d ∈ D} (8.9)

The above definition implies that there exists a nonlinear state-feedback law u =
ν(x) such that for all x ∈ Q(Ω) and for all d ∈ D, f(x, d, ν(x)) ∈ Ω.

Definition 8.7 (robust one-step set). Given a target set Ω, the (robust) one-step
set of Ω under model (8.3) is defined as:

QF (Ω) := {x ∈ Rn : ∃u ∈ U s.t. F(x, u) ⊆ Ω} (8.10)

Obviously, if F is an embedding of (8.1), i.e., (8.2) holds, then QF (Ω) ⊆ Q(Ω).

8.3.1 Geometric invariance and Stability

The concepts of stability (undisturbed systems) and invariance/inescapability
(disturbed case) are closely related to the geometric contractiveness definition
below.

Definition 8.8. (Kerrigan 2001; Fiacchini, Alamo, and Camacho 2012) A set
Ω ⊆ X is control λ-contractive for (8.1) if Ω ⊆ Q(λΩ). If λ = 1 the sets are named
control invariant (or, plainly, invariant, in the autonomous case). Analogous
definitions for (8.3) arise if Ω ⊆ QF (λΩ).

Trivially, due to the embedding, if a set is control λ-contractive set for (8.3), and
(8.2) is fulfilled, so it is for (8.1).

If a control λ-contractive set Ω can be found, there exists a state-feedback control
law that keeps the state into Ω at all future time, if initial conditions lie in Ω.
The following theorem generalises the CDI stability with a given geometric decay
rate in (Fiacchini, Alamo, and Camacho 2010, Prop. 6) or (Fiacchini, Alamo,
and Camacho 2012, Cor. 4.17) to sub-homogeneous (maybe non S-convex) maps.
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Theorem 8.2. If there exists a control λ-contractive set Ξ for x+ ∈ F(x, u) with
sub-homogeneous F , then there exists a Lyapunov function V (x), V (x) > 0 for
x 6= 0, which is homogeneous, i.e., V (κx) = κV (x), and a control law ũ(x) such
that V (x+) ≤ λV (x) for all x ∈ Ξ, for all x+ ∈ F(x, ũ(x)).

Proof. Let us prove that the function:

V (x) := min {γ : γ ≥ 0, x ∈ γΞ} (8.11)

is a control Lyapunov function the required properties in the theorem statement.
Under the definition of V (x), κΞ = {x : V (x) ≤ κ} for any κ ≥ 0. As Ξ is
λ-contractive, there exists a control law u(x) such that, for any x ∈ Ξ, V (x+) ≤ λ
for all x+ ∈ F(x, u(x)). Also, for any x ∈ Ξ, we have 1

V (x)x ∈ Ξ. Let us define:

ũ(x) := V (x) · u
(

1

V (x)
x

)
(8.12)

Now, consider that:

F(x, ũ(x)) = F
(
V (x) · 1

V (x)
x, V (x) · u

(
1

V (x)
x

))
(8.13)

Thus, as F is sub-homogeneous, and 0 ≤ V (x) ≤ 1 we can assert that:

F(x, ũ(x)) ⊆ V (x) · F
(

1

V (x)
x, u

(
1

V (x)
x

))
(8.14)

Hence, for any x+ ∈ F(x, ũ(x)), there exists x̃ ∈ F
(

1
V (x)x, u

(
1

V (x)x
))

such that

x+ = V (x)x̃. Thus, as V is homogeneous, V (x+) = V (x)V (x̃) ≤ V (x)λ.

Computation of one-step sets for DI. From the above results, computation
of one-step sets is the key step in the set-based approach to control. For instance,
for DIs in the form (8.8) and polyhedral Ω := {x : Hx ≤ 1} and D, the one-step
set is the polyhedron

Q(Ω) = Projx ({(x, u) : H(Aix+Biu+ Eiε) ≤ 1,

∀i = 1, . . . , Nφ,∀ε ∈ vert(D)}) (8.15)

where Projx denotes the component x of a pair (x, u). Software based on this idea
(Herceg et al. 2013) has been developed to design state-feedback and predictive
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controllers for (8.8), as well as computing the so-called maximal λ-contractive
sets, fulfilling Ω = Q(λΩ), see (Kerrigan 2001).

The works (Fiacchini 2010a; Fiacchini, Alamo, and Camacho 2010; Fiacchini,
Alamo, and Camacho 2012) propose a generalisation of the one-step set compu-
tation to CDI and UCDI. In these works, the fact that an explicit expression
analogous to (8.15) cannot be easily given is suitably justified; as an alternative,
they provide means to compute a polytopic approximation, based on the results
below (cf. (Sala 2017, Prop. 6), (Fiacchini, Alamo, and Camacho 2010, Cor. 1)):

Theorem 8.3. Assume that x+ ∈ F(x, u) is a UQCDI. Given a known “target”
polytope Ω, assume that a known polytope Ξ has been proved to fulfill Ξ ⊆ QF (Ω).
Given a point x̂ 6∈ Ξ, if there exists û ∈ U such that F(x̂, û) ⊆ Ω, then Co(Ξ ∪
{x̂}) ⊆ QF (Ω).

Proof. For every ξ ∈ vert(Ξ) we have uξ such that F(ξ, uξ) ∈ Ω. Thus, Theorem
8.1 ensures that every point in the augmented polyhedron

Ξ̂ := Co

(x̂, û) ∪
⋃

ξ∈vert(Ξ)

(ξ, uξ)

 ⊆ X× U
maps to Ω. Now, Co(Ξ ∪ {x̂}) = Projx(Ξ̂).

Corollary 8.3.1. If Ξ is control λ-contractive for a UQCDI (8.3) and, given a
point x̂ 6∈ Ξ, there exists û ∈ U such that F(x̂, û) ∈ λΞ, then Co(Ξ ∪ {x̂}) is, too,
control λ-contractive for (8.3).

Proof. Evident from Theorem 8.3, replacing Ω for λΞ.

The above results can be used to enlarge an initial estimate Ξ of Q(Ω) by drawing
a collection of new x̂ in random directions, via shooting algorithms (Fiacchini
2010a; Fiacchini, Alamo, and Camacho 2012). For completeness, Appendix 8.8.1
outlines the main ideas in them.

8.3.2 Problem statement

In some cases, although the full dynamics (8.1) might not be known (unmeasur-
able d), partial knowledge of it can be available, in the form of some scheduling
parameters comprising a vector h(x, d). This setup encompasses, for instance, the
partial knowledge of some elements of d, or the knowledge of some nonlinearities
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h(x) involved in system dynamics4; thus, control action can depend on h, giving
rise to the so-called gain-scheduled controllers.

Indeed, gain-scheduling is well-developed with LMI approaches for the LDIs in
literature (Rugh and Shamma 2000a; Tanaka and Wang 2004; Mohammadpour
and Scherer 2012); a set-based approach for LDIs appears in (Ariño et al. 2017).
However, the convex/quasi-convex DI framework developed in the works by Fi-
acchini and coworkers does not consider the possibility of such scheduling, as
in Theorem 8.3 a single control action u must map all the uncertain DI output
onto Ω, whereas in a gain-scheduled setup such u can depend on “scheduling
parameters”.

The objective of this work is extending to a gain-scheduled setup the robust
set-based methods from the convex and quasi-convex difference inclusion (Fiac-
chini, Alamo, and Camacho 2010; Sala 2017) cases, and including prior set-based
LDI/quasi-LPV (Ariño et al. 2017) results in them. The basic idea will be re-
laxing Theorem 8.3 with further flexibility in the control action depending on
scheduling parameters. In this way, one-step and λ-contractive sets which are
larger than the robust ones in prior literature can be obtained.

8.4 Main result: computation of gain-scheduled one-step sets

A parameter-dependent DI (PDDI) is defined as:

x+ ∈ F̃(x, u, h) (8.16)

being F̃ a set-valued map. By assumption, there is a known polytopic set-valued
map H(x) such that h ∈ H(x) and h will be assumed computable in operation
from available measurements.

As x+ ∈ F̃(x, u, h) ⊆ F̃(x, u,H(x)), gain-scheduling u(x, h) provides an inter-
mediate approach between the robust approach (designing controllers u(x) for

F(x, u) := F̃(x, u,H(x))) and an (idealistic) pure-nonlinear controller design for
(8.1).

The focus of this work will be shape-independent gain scheduling, which amounts
to assuming that an explicit expression for h is not known at design time but its
numerical value will be available for control computation, and that these numeri-
cal values take values on the known set5 H(x). This is a conservative assumption

4The case (8.7) is the most well-known example of this situation (LPV/quasi-LPV systems).
5For instance, in shape-independent quasi-LPV gain-scheduled control of (8.7), only the fact that

h ∈ ∆ is used, but that allows well-known gain-scheduling LMIs (Scherer 2006; Sala 2009).
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which, in exchange, can ease subsequent control design steps under suitable con-
vexity structures of H and F̃ .

Definition 8.9. Given a target set Ω, the gain-scheduled shape-independent
one-step set of Ω under model (8.16) is defined as:

QF̃ (Ω) := {x ∈ Rn : ∃υx : H(x) 7→ U such that

F̃(x, υx(h), h) ⊆ Ω ∀h ∈ H(x)} (8.17)

The gain-scheduled one-step set requires, for each x, the existence of a function
of h, u = υx(h), defined over all H(x), instead of a single value of u, to be used
as control action in Definitions 8.6 and 8.7. As υx will be, in general, different
for different x, the above definition implies that there exists a gain-scheduled
controller u = ν(h, x) such that for all x ∈ QF (Ω), and for all h ∈ H(x) we have

x+ ∈ F̃(x, ν(h, x), h) ⊆ Ω. Actually the robust one-step set (Definition 8.7) is the
particularisation of Definition 8.9 for constant υx (i.e., control action depending
on the state but not on the scheduling parameters h).

Definition 8.10. A set Ω ⊆ X is said to be (shape-independent) gain-scheduled
control λ-contractive for (8.16) if Ω ⊆ QF̃ (Ω).

Theorem 8.4. Assume that the model (8.16) is such that F̃(x, u, h) is S-
quasiconvex for fixed x, considering (u, h) as arguments. Denote the elements of
vert(H(x)) as ζi, i = 1, . . . , NH, being NH the number of such vertices (depen-
dence on x of such vertices omitted for notational clarity).

If, for each ζi there exists υi ∈ U such that F̃(x, υi, ζi) ⊆ Ω then x ∈ QF̃ (Ω).
Furthermore, for any h ∈ H(x) denoting as η(h) ∈ ∆ any arbitrary choice of

convex coordinates such that h =
∑NH
i=1 ηi(h)ζi the control function:

υx(h) :=

nη∑
i=1

ηi(h)υi (8.18)

achieves F̃(x, υx(h), h) ⊆ Ω for all h ∈ H(x).

Proof. Indeed, Theorem 8.1 ensures that for any h ∈ H(x), the function υx(h) :=∑nη
i=1 ηi(h)υi will ensure F̃(x, υx(h), h) = F̃(x,

∑nη
i=1 ηi(h)υi,

∑nη
i=1 ηi(h)ζi) ⊆ Ω.

Now, the result can be used to assert gain-scheduled versions of Theorem 8.3.
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Notation: The following results will discuss conditions for a polytope Ξ to be a
subset of the gain-scheduled one-step set of another set Ω. The vertices of Ξ will
be enumerated as ξj , j = 1, . . . , NΞ. Subsequently, the vertices of H(ξj) will be
enumerated as ζji, for i = 1, . . . , Nξj .

Theorem 8.5. Assume that x+ ∈ F̃(x, u, h) is such that F̃ is an S-quasiconvex
set-valued map, and h ∈ H(x), being H a polytopic S-convex set-valued map.
Consider a known “target” polytope Ω, and a candidate polytope Ξ. If for each
ζji there exists υji ∈ U su that F̃(ξj , υji, ζji) ⊆ Ω, then Ξ ⊆ QF̃ (Ω).

Proof. First, Theorem 8.4 ensures that vertices ξj ∈ QF̃ (Ω) for all j, as F̃ is
S-quasiconvex. We will now prove that a scheduling control law can be obtained
for any point in Ξ from the vertex ones. By S-convexity of H, as Ξ = Co(ξj),
denoting by θ(x) ∈ ∆ the convex coordinates such that:

x =

NΞ∑
j=1

θj(x)ξj (8.19)

we can assert that:

H(x) ⊆ Φ(x) :=

nΞ⊕
j=1

θj(x)H(ξj) ∀ x ∈ Ξ

Now, the direct-sum expression of Φ(x) above entails that, for any h ∈ H(x), there

exist points ζ̂j(x, h) ∈ H(ξj), such that, we can express h =
∑NΞ

j=1 θj(x)ζ̂j(x, h).

Given that each ζ̂j is in the convex hull of {ζji|i = i = 1, . . . , Nξj}, there exist
convex coordinates ηj· ∈ ∆ such that

ζ̂j(x, h) =

Nξj∑
i=1

ηji(x, h)ζji (8.20)

In summary, there exist θ and η such that the expression below holds for any
h ∈ H(x):

h =

NΞ∑
j=1

Nξj∑
i=1

θj(x)ηji(x, h)ζji (8.21)

From (8.19), we also have, because the η coordinates add one, that:

x =

NΞ∑
j=1

Nξj∑
i=1

θj(x)ηji(x, h)ξj (8.22)
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Now, S-quasiconvexity of F̃ entails that the scheduling function:

υx(h) :=

NΞ∑
j=1

Nξj∑
i=1

θj(x)ηji(x, h)υji (8.23)

drives the successor state to Ω for every h ∈ H(x), as required by (8.17), because

S-quasiconvexity of F̃ entails that:

F̃ (x, υx(h), h) = F̃

NΞ∑
j=1

Nξj∑
i=1

θj(x)ηji(x, h)ξj ,

NΞ∑
j=1

Nξj∑
i=1

θj(x)ηji(x, h)υji,

NΞ∑
j=1

Nξj∑
i=1

θj(x)ηji(x, h)ζji

 ∈ Ω (8.24)

which fulfills the conditions in (8.17) for x ∈ QF̃ (Ω).

If F̃ does not depend on the state, conditions on H can be relaxed, as follows.

Theorem 8.6. Assume that x+ ∈ F̃(u, h) is such that F̃ is an S-quasiconvex
set-valued map, and h ∈ H(x), being H a polytopic S-quasiconvex set-valued map.
Consider a known “target” polytope Ω, and a candidate polytope Ξ. If for each
ζji there exists υji ∈ U such that F̃(υji, ξji) ⊆ Ω, then Ξ ⊆ QF̃ (Ω).

Proof. Theorem 8.4 ensures that each ξj ∈ QF̃ (Ω), i.e., the vertices of Ξ can have
a gain-scheduled law mapping them onto Ω.

Now, S-quasiconvexity of H ensures that for x ∈ Ξ, we will have H(x) ⊆
Co{ζji | j = 1, . . . , NΞ, i = 1, . . . , Nξj}, thus there exist coordinates ηji(h) ∈ ∆
such that, for any h ∈ H(x):

h =

NΞ∑
j=1

Nξj∑
i=1

ηji(h)ζji (8.25)

Hence S-quasiconvexity of F̃ ensures that

υx(h) :=

NΞ∑
j=1

Nξj∑
i=1

ηji(h)υji (8.26)
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fulfills:

F̃

NΞ∑
j=1

Nξj∑
i=1

ηji(h)υji,

NΞ∑
j=1

Nξj∑
i=1

ηji(h)ζji

 ⊆ Ω (8.27)

hence the condition for x ∈ QF̃ (Ω) required in (8.17) is fulfilled for any x ∈ Ξ.

Remark: in Theorem 8.6, although the dependence of F̃ on the state is not
explicit, the gain-scheduled control does depend on the state due to the role of
H(x).

Theorem 8.7 (gain-scheduled stabilization). If a gain-scheduled control λ-

contractive set Ξ for (8.16) is available with both F̃ and H being sub-homogeneous
maps, then there exists a Lyapunov function V (x), V (x) > 0 for x 6= 0, which
is homogeneous, i.e., V (κx) = κV (x), and a control law ũ(x, h) such that
V (x+) ≤ λV (x) for all x ∈ Ξ, for all h ∈ H(x), for all x+ ∈ F(x, ũ(x, h), h) .

Proof. Let us prove that the function:

V (x) := min {γ : γ ≥ 0, x ∈ γΞ} (8.28)

is a control Lyapunov function with the required properties in the theorem state-
ment. Under the definition of V (x), κΞ = {x : V (x) ≤ κ} for any κ ≥ 0. Also,
V (x) is homogeneous, in the sense that V (κx) = κV (x).

As Ξ is λ-contractive, there exists a control law u(x, h) such that, for any x ∈ Ξ,
for any h ∈ H(x), we have V (x+) ≤ λ for all x+ ∈ F(x, u(x, h), h). Also, for
any x ∈ Ξ, we have 1

V (x)x ∈ Ξ and, as H is sub-homogeneous, also H(x) ⊆
V (x)H( 1

V (x)x). Let us define:

ũ(x, h) := V (x) · u
(

1

V (x)
x,

1

V (x)
h

)
(8.29)

Now, denoting x̂ := V (x)−1x, ĥ := V (x)−1h, we can write:

F̃(x, ũ(x, h), h)

= F̃
(
V (x) · x̂, V (x) · u(x̂, ĥ), V (x) · ĥ

)
(8.30)

Thus, as F̃ is sub-homogeneous, and 0 ≤ V (x) ≤ 1 we can assert that:

F̃(x, ũ(x, h), h) ⊆ V (x) · F̃
(
x̂, u(x̂, ĥ), ĥ

)
(8.31)
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Hence, for any h ∈ H(x) and any x+ ∈ F̃(x, ũ(x, h), h), there exists ĥ ∈ H(x̂)

and x̃ ∈ F̃
(
x̂, u(x̂, ĥ), ĥ

)
such that x+ = V (x)x̃. Thus, as V is homogeneous,

V (x+) = V (x)V (x̃) ≤ V (x)λ.

Algorithm modifications. Given that conditions in theorems 8.6 and 8.5 re-
quire independent “control decision variables” νji for each vertex of Ξ, algorithms
in Appendix 8.8.1 can be applied, changing QF by QF̃ , so that if conditions in
the statement of Theorem 8.4 are fulfilled for a point in a random direction, such
a point can be added to a one-step set (or to enlarge an initial λ-contractive seed
set). If all involved maps are polytopic and linear in u, conditions end up being
plain linear-programming feasibility problems.

Example 8.1. In order to show a sensible setup where the above gain-scheduling
theorems apply, consider the model x+ = f(x) +Gu+ e(x, d) such that f(x) is a
vector of known functions, and e(x, d) contains uncertainty/disturbances6.

Consider that f(x) and e(x, d) are bounded by known polytopic set-valued maps
f(x) ∈ F(x) and e(x, d) ∈ E(x), respectively.

If the state is measurable, we can set up a gain-scheduled law with h ≡ f(x). In
order to apply the above theorems, we can express the model as the PDDI:

x+ ∈ F̃(x, u, h) := {h+Gu} ⊕ E(x) (8.32)

with H(x) := F(x).

Let us consider some particular cases:

Case 1: undisturbed system E(x) := {0}, and S-quasiconvex F . In that case,

Theorem 8.6 applies as F̃(x, u, h) = {h + Gu} is a deterministic linear
system (hence, S-quasiconvex).

Case 2: uncertain system with both E and F being S-convex. In that case,
F̃(x, u, h) is an S-convex map and conditions of Theorem 8.5 apply.

For instance, a quasi-LPV model F(x) := Co({Aix, i = 1, . . . , r}), E(x) :=
M∆N · x⊕D being ∆ a polytope of matrices7 would readily fit the above case 2.

Note, too, that Theorem 8.7 would apply if both E and F were sub-homogeneous,
thus proving stabilisability if a λ-contractive set is found.

6Nonlinearities g(x)u will be considered in Section 8.5.
7Of course, ∆ can be an ellipsoid if the set-based approach were to be pursued with LMI software,

details omitted for brevity.
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8.5 Convexification of product nonlinearities

In general, when expressions such as f(x, u)g(x, u) appear, if separate maps such
that f(x, u) ∈ F(x, u) and g(x, u) ∈ G(x, u) are built, then the product F ⊗ G
loses the convexity properties that might be present in F or G. Thus, a product
g(x)u may lose whichever convexity properties g and u have.

Scheduling in input-channel nonlinearities. To apply prior results, we
should embeds the nonlinearities in input onto a constant polytope of input un-
certainty (the associated columns of Σ̄) in order to preserve convexity structures.

In order to be able to design a control u which depends on the specific shape
of G(h, x, d) and not only on a polyhedral bound of it, we can now consider a
controller with the form:

u = Υ(x, h)û, (8.33)

with Υ ∈ Rs 7→ Rm being a matrix of user-defined “basis functions” and û being
“artificial” input variables; note that the size s of û may not be coincident with
that of u, if so wished8. The idea can remove conservatism if Υ(x, h) is suitably
selected to carry out, for instance, cancellation/linearisation of some elements of
G(h, x, d).

Once (8.33) we can replace input nonlinearity G(h, x, d) by G(h, x, d)Υ(x, h) and
try to bound it with a polyhedron. Note that input constraints u ∈ U should
be enforced now by Υ(x, h)û ∈ U, so another polytopic bound for Υ(X,H(X))
would need to be computed in order to get sufficient conditions expressed as
linear inequalities.

As a simple example, consider a system d+ = f(x) + G(x)u, with G(·) being a
known function depending only on the state, so we can express G(x) as a convex
combination of some vertex matrices, i.e.:

G(x) =
r∑
i=1

µi(x)Gi (8.34)

with µ ∈ ∆. Considering a vector $ of monomials in µ, and setting Υ = $⊗Im×m
where ⊗ denotes Kronecker product, an homogeneous polynomial representation
in µ can be built and Polya relaxations (Scherer 2006; Sala and Arino 2007; Ariño
et al. 2017) can be applied. Full detail on a generic case is omitted for brevity

8Evidently, results will be equal or better than the non-transformed approach if Υ(x, h) contains
the identity as a submatrix.
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(see the cited references): for illustration and details on a particular example, see
Example 8.2 below.

8.6 Numerical Example

Example 8.2. Consider the 2nd-order nonlinear system:(
x1+

x2+

)
= f(x) +

( 0.1
1+x2

2

0.05

)
u (8.35)

where

f(x) :=

(
x1 − 0.05x2

0.05x1 + 0.95x2 − 0.05x2x
2
1

)
(8.36)

with a control input u constrained to U := [−0.5, 0.5]. We will consider a modeling
region X = {(x1, x2) : x1 ∈ [−a, a], x2 ∈ [−b, b]}, for different (positive) values of
a and b.

Let us first consider modeling the input-channel nonlinearity 0.1
1+x2

2
u, fulfilling:

G(x) :=

( 0.1
1+x2

2

0.05

)
∈ Ḡ[1] := Co ({G1, G2}) (8.37)

with G1 := (0.1 0.05)T and G2 := ( 0.1
1+b2 0.05)T . Thus, we can express the system

as the difference inclusion

x+ ∈ F(x)⊕ Ḡ[1] · u (8.38)

for any set-valued map F(x) such that f(x) ∈ F(x). Hence, using an S-convex
bound F would obtain a non-scheduled (robust) controller for (8.38).

The proposal in this chapter will generalise such results, using that fact that we can
find µ1(x2) and µ2(x2) such that (µ1, µ2) ∈ ∆ and G(x) = µ1(x2)G1 +µ2(x2)G2.

Indeed, the fact that µ2(x2) :=
x2

2(1+b2)

b2(1+x2
2)

and µ1(x2) = 1 − µ2(x2) can be easily
proven.

Thus, the functions µ can be considered to be part of the scheduling vector h in
state-feedback control, and, according to the ideas in Section 8.5, we can propose
a control law depending on µ: u(µ, x) := µ1(x2)û1(x) + µ2(x2)û2(x) which would
correspond to using Υ(x, h) := (µ1 µ2).

Hence, the transformed dynamics can be expressed as:

x+ = f(x) + µ2
1G1û1 + µ1µ2(G2û1 +G1û2) + µ2

2G2û2 (8.39)
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Now, as µ1 + µ2 = 1, we can write that (µ1 + µ2)2 = µ2
1 + 2µ1µ2 + µ2

2 = 1, too.
Hence, by defining the matrix polyhedron Ḡ[2] := Co([G1 0], [0 G2], 0.5[G2 G1]),
the dynamics can be embedded on the set-valued map:

x+ ∈ F(x)⊕ Ḡ[2]

(
û1

û2

)
(8.40)

which is a generalisation of (8.38), obtained from (8.40) if we enforce û1 = û2

(details omitted for brevity).

Different options for F(x) will be now considered, arising from different boundings
of the nonlinearity ς(x) := −x2x

2
1.

LDI case. In the previously-defined modelling region X, we can bound9 −x2x
2
1 ∈

[−ba, ba] · x1, thus we can ensure that:

f(x) ∈ FLDI(x) :=

(
x1 − 0.05x2

0.05x1 + 0.95x2+0.05[−ba, ba] · x1

)
(8.41)

CDI case. If the nonlinearity ς(x) is bounded as x2x
2
1 ∈ [−b, b] · x2

1 we can
assert:

f(x) ∈ FCDI(x) =

(
x1 − 0.05x2

0.05x1 + 0.95x2 + 0.05[−bx2
1, bx

2
1]

)
where FCDI(x) is an S-convex set-valued map (because −bx2

1 is concave and bx2
1

is convex, from Proposition 8.2), and FCDI(0) = {0}.

The CDI bound is tighter than the LDI one, because for any x ∈ X, it is straight-
forward to realise that FCDI(x) ⊆ FLDI(x).

Note, additionally, that only the bound on x2 has been used to craft the above
CDI bounded. Thus, the above mapping can apply to a modelling region X̂ :=
{(x1, x2) : −b ≤ x2 ≤ b} with x1 being unconstrained.

9Of course, the LDI modelling is not unique; we made the choice arbitrarily for this example. For
instance, another option might have been the bounding −x2x2

1 ∈ [0, a2] · x2.
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Computation of λ-contractive sets. In order to compute shape-independent
gain-scheduled contractive sets, Theorem 8.6 was used10 with h ≡ f , H(x) =

FCDI(x), and F̃(u, h) = h + G[2]û. Note that Polya-based bounding has ellimi-
nated the input-channel scheduling variables µ, although, of course, they are im-
plicitly present: they are needed to reconstruct the actual u from û.

Note that F̃ is linear (hence sub-homogeneous), and FCDI is, too, sub-homogeneous
as [−b(λx)2, b(λx)2] ⊆ λ[−bx2, bx2] for λ ∈ [0, 1]. Thus, λ-contractive sets can be
considered to be level-sets of homogeneous control Lyapunov functions (Theorem
8.7).

A contraction rate of 0.999 was sought. Using the LDI representation Using
F(x) ≡ FLDI(x) from (8.41) in the overall model (8.40), the maximal shape-
independent gain-scheduled λ-contractive set for the modelling region X with a =
b = 0.9 can be obtained as standard gain-scheduled LDI algorithms (Ariño et
al. 2017) converge in a finite number of steps. The maximal set corresponds to
the inner red region in Figure 8.1. Actually, trying with a = b = 1, these LDI
algorithms did not succeed.

As FCDI(x) ⊆ FLDI(x), the above maximal gain-scheduled contractive set for the
LDI is, too, contractive for the more precise CDI model. Thus, it can be used as
a seed set in the shooting algorithms (Appendix 8.8.1).

When the algorithms are actually implemented, given a point x, checking that
x ∈ QF̃ (Ω), for a polyhedral Ω := {x : Rx ≤ s} is straightforward, as it reduces to
computing the two vertices of F(x), denoted as ζ1, ζ2, and checking the feasibility
of some linear inequalities in two decision variables.

After 1500 iterations in random directions, an enlarged λ-contractive set for mod-
elling region X̂ is obtained; such a set is the union of the brown and red regions
in Figure 8.1.

Increasing the size of the modelling region. Noting that the evolution of the
growth of the sets in Figure 8.1 seems to be limited by the bound in x2, we propose
to enlarge the modeling region in such a way that |x2| ≤ 2. We can remodel with
a larger b and use the model FCDI(x) to try to enlarge the proven domain of
attraction in the vertical direction.However, in such a case, if we use the brown
region as a seed set, we have no guarantee that such sets are contractive with the
new model as there is more uncertainty. Hence, only computation of one-step sets

10There are no disturbances or state-dependent uncertainty so there is no need of using Theorem
8.5.
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Figure 8.1: Shooting algorithm results with LDI, CDI and a new CDI valid in a larger
region.

is a viable solution. With search directions equally spaced 5 degrees, computing
24 one-step set approximations results in the multi-colored regions in the referred
figure which expand the proven domain of attraction of the origin. Of course,
controller implementation would try to steer a state in the N -th one-step set to
the N − 1th one, guaranteed feasible, until the brown region is reached. Then, a
control with geometric decay rate 0.999 and a scaled version of the brown set as
control Lyapunov function is, too, guaranteed feasible.

8.7 Conclusions

This chapter has presented a gain-scheduled generalisation of set/shooting al-
gorithms to compute control λ-contractive sets in prior literature. The gain-
scheduled solutions incorporate the quasi-LPV solutions and its Polya relaxations,
as well as the robust controllers for convex difference inclusions, resulting in larger
contractive set estimates given the additional information available to decide the
control action. Modelling issues have been left out of the scope of the chapter;
difference inclusion boundings of nonlinear systems are not unique and, hence,
different results can be obtained with different models, as shown in the numerical
example. Actual computations of the proposed algorithms for affine-in-control
systems are based on polyhedron manipulation software.
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8.8 Appendix

8.8.1 Shooting algorithms

In order to implement algorithms from Theorem 8.3 and Corollary 8.3.1, a
polynomial-time sufficient condition to check, given a target set Ω and x̂, if there
exists û such that F(x̂, û) ∈ Ω is needed. In the case (8.8), such problem amounts
to solving a set of linear programming feasibility conditions. The same case would
hold if F(x, u) were affine in u, i.e., in the form F(x, u) = F1(x) ⊕ F2(x)u for
some set-valued maps F1 and F2. In a general case, if the support function of
F(x, u) is convex or quasi-convexin u, computationally viable conditions may be
cast (Eppstein 2004).

As a conclusion of Theorem 8.1, in order to determine an inner approximation
of the one-step set of a set Ω for a DI x+ ∈ F(x, u), we can use the following
algorithm:

Algorithm 1 [one-step set approximation]

1. Generate a set of K vectors ρ1, . . . , ρK either randomly or in a suitable grid
of the unit hypersphere in Rn.

2. For each ρk, k = 1, . . . ,K, determine by bisection the largest scaling γk such
that ξk := γkρk ∈ QF (Ω).

3. Form Ξ := Co({ξk, k = 1, . . . ,K}).

4. End. Theorem 8.1 ensures that Ξ ⊆ QF (Ω).

As a variation, the shooting algorithm in (Fiacchini, Alamo, and Camacho 2010)
can obtain progressively larger λ-contractive sets if one of them is available:

Algorithm 2 [contractive set expansion]

1. Obtain an initial λ-contractive polyhedral “seed” set Ω0 overbounding with
an LDI and using set-based LDI approches ((Fiacchini, Alamo, and Cama-
cho 2010, $4.1)) . Set k = 0.

2. Choose a random direction vector ρ.

3. Determine, by bisection, the largest scaling γ > 0 such that there exists û
such that F(γρ, û) ∈ λΩk.
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4. Set Ωk+1 = Co(Ωk ∪ {γρ}), and k = k + 1. If k < kmax, go to step 2.

5. End. Corollary 8.3.1 ensures that Ωk is control λ-contractive.

8.8.2 Support function approach

Proposition 8.1 (cf. Prop. 1 in (Fiacchini, Alamo, and Camacho 2010)).
A set-valued map F with F(x) being convex and compact, is S-convex (S-
quasiconvex) iff f̌(η, x) := supx∈F(x) η

Tx is a convex (quasiconvex ) function of
x when η is fixed, for all η ∈ Rn.

Proof. From support function properties, a convex and compact set Ω can be
equivalently defined as Ω = {x : ηTx ≤ ΦΩ(η) ∀η ∈ Rn}. If Σ and Γ are compact
and convex sets, support function has the properties :

Σ ⊆ Γ ⇔ ΦΣ(η) ≤ ΦΓ(η) ∀η (8.42)

ΦλΣ(η) = |λ|ΦΣ(sign(λ)η) (8.43)

ΦΩ⊕Γ(η) = ΦΩ(η) + ΦΓ(η) (8.44)

ΦCo(Ω∪Γ)(η) = max(ΦΩ(η),ΦΓ(η)) (8.45)

Thus, the condition in Definition 8.3 can be stated as

ΦF(λx1+(1−λ)x2)(η) ≤ λΦF(x1)(η) + (1− λ)ΦF(x2)(η)

and that in Definition 8.4 as:

ΦF(λx1+(1−λ)x2)(η) ≤ max(ΦF(x1)(η),ΦF(x2)(η))

so, with suitable notation changes to f̌ the convexity and quasi-convexity in the
theorem statement follow, respectively.

8.8.3 Modelling: embedding nonlinear functions in set-valued maps

LDI can be built for multiple-argument functions in several ways. The topic is well
studied, so the reader is referred to Chapter 5 (Robles et al. 2017) and the works
(Tanaka and Wang 2004; Rugh and Shamma 2000a; Sala 2009; Kwiatkowski and
Werner 2008a) for ample detail.

This section will outline methodologies for embedding a (non-uncertain) nonlin-
earity f(x) inside a set-valued map F(x) with an S-convex/S-quasiconvex struc-
ture. Of course, parametric/additive uncertainty elements can be added on top

184



8.8 Appendix

of that, with minor modifications, see sections 2.1.1.2 and 2.1.1.3 in (Fiacchini
2010a), as well as some other classes of uncertainty such as ellipsoidal (section 2.2
in the cited work).

Let us consider the case where a function ρ(x) : Ω 7→ R, with Ω ⊂ Rn, can be
bounded by known fl, fu such that fl(x) ≤ ρ(x) ≤ fu(x).

Proposition 8.2. (Fiacchini 2010a, Property 3.3) The set-valued map defined
by F(x) = [fl(x), fu(x)] where fl(x) ≤ fu(x) and fl is concave and fu is convex
is S-convex.

Proposition 8.3. (Sala 2017) The set-valued map defined by F(x) = [fl(x), fu(x)]
where fl(x) ≤ fu(x) and fl is quasiconcave and fu is quasiconvex is S-quasiconvex.

Proposition 8.4. (Fiacchini 2010a, Property 3.18) Assume that ρ(x) can be
expressed as ρ(x) = g(x) − h(x) being g and h convex functions (the so-called
difference-of-convex functions (Fiacchini 2010a)). Let ξg(x) be any linear function
such that ξg(x) ≤ g(x) and let ξh(x) be any linear function such that ξh(x) ≤ h(x).
Then, under the above assumption, the set-valued map F(x) = [ξg(x)−h(x), g(x)−
ξh(x)] is S-convex.

Proposition 8.5 (stacking). If F1(x) ⊂ Rm and F2(x) ⊂ Rq are S-convex set-
valued maps, so it is the map (F1(x),F2(x)) ⊂ Rm+q.

Proof. Straightforward from definition. However, the S-quasiconvex version of
the proposition is not true.

Proposition 8.6. Consider an expression ρ(x) = A(x)f(x) and assume that
vector f(x) can be embedded onto an S-quasiconvex (S-convex) map, i.e., f(x) ∈
F(x). Then, obtaining a polytopic bound A such that A(Ω) ⊆ A, with vert(A) =
{Ai, i = 1, . . . , r}, the map G(x) := A ⊗ F(x) = Co (∪ri=1Ai · F(x)) is S-
quasiconvex (S-convex).

Proof. Note that for any set S ⊆ Rn and a linear transformation given by matrix
A, we have that Co(AS) = ACo(S). Thus, consider x̃ = γx1 + (1 − γ)x2, with
0 ≤ γ ≤ 1. As F(x̃) ⊆ Co(F(x1) ∪ F(x2)), we can assert that

G(x̃) ⊆ Co
(
∪ri=1 ∪2

j=1 Ai · F(xj)
)

= Co(Co (∪ri=1Ai · F(x1)) ∪ Co (∪ri=1Ai · F(x2)))

= Co(G(x1) ∪ G(x2)) (8.46)

The proof of the S-convex case roots on the fact that a linear transformation of
an S-convex map is S-convex and so it is the union of them, but details are left
to the reader, for brevity.
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Note that, as in the well-developed linear LDI case, the result of an S-convex or S-
quasiconvex embedding is not unique, and some resulting maps will give different
performance and contractive set (domain of attraction) estimates. This is, indeed,
a well-known fact (Sala 2009). Note also that S-quasiconvex modelling of multi-
dimensional outputs is a difficult task, as quasiconvexity is neither preserved after
linear combinations nor after mere stacking. Thus, even if some of the results in
this chapter apply to a quasiconvex case, systematic quasiconvex modelling is an
open issue. As DI modelling is not the main topic of this chapter, the reader is
referred to (Fiacchini 2010a; Sala 2017) for further information.
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Conclusions

This tesis is a first approach towards bringing into systematic procedures the idea
that TS models might be selected so that the generated “uncertainty” is suitably
managed.

A Hessian-based approach has been presented, which is performed in a systematic
way, and it “decouples” multivariable nonlinearities (up to 2nd degree approxi-
mation) providing “minimum maximal error”.

Hessian might be a good option when modelling a nonlinearity without knowl-
edge on how its error might influence later results; however, its complexity lies
in the fact that multiple Hessians might be needed in a systems with multiple
nonlinearities thereby increasing the complexity and number of linear models of
the resulting Takagi-Sugeno model.

In the case where it is required to keep a performance measure as close as pos-
sible to the linearised case, the proposed linearisation-based approach is an ad-
vantageous alternative over “blind” methodologies since, in a systematic way, the
system’s “orientation”, through a linear transformation, is sought so that it is the
most beneficial to the performance measure. Obviously, increased performance
improvements due to nonlinear transformations might be achievable; they are left
as a matter of future research.

This thesis has also presented a subspace based methodology to minimise the con-
servatism of TS models to be later used in shape-independent LMI conditions.
The presented procedure is optimal (in minimax worst-case uncertainty width) for
TS models of quadratic functions, hence approximately optimal for any smooth
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nonlinearity close enough to the origin. Different examples prove that, indeed,
the uncertainty width measures, as well as decay-rate and H∞ performance fig-
ures are better with the proposed TS modelling technique than those obtained
with frequently used “inspection” and “extraction of factors” ideas. The LMIs
discuss only the preservation of linearised performance. Other LMI setups and
reduction/simplification of the number of rules, as well as optimality for large
modelling regions, are matter of future research.

Generating an “optimal” TS model from nonlinear equations is an overlooked
aspect in literature. This paper has presented a null-space based methodology
to craft a coordinate transformation from which a TS model is generated. There
are prior works by the team which discuss related issues, but such works can only
be applied in very restrictive setups (no LMI transformations). The presented
procedure allows for arbitrary LMI setups, with the model apearing as many
times as wished in Schur/multicriteria problems. Numerical examples seem to
show that performance is comparable to the prior solutions, with a more general
applicability.

This thesis also addressed the problem of choosing a good quasi-LPV model for a
nonlinear system. Our proposals are able to mitigate the performance loss from
a reference linearised design, compared to other “inspection-based” modelling
choices, while avoiding BMIs needed in prior literature for controller synthesis
problems. The main idea is based on obtaining the more harmful perturbations
of the model matrices in the linearised design, proposing then a coordinate trans-
formation so that the projection of the uncertainty over these model perturbations
is minimised. This direction plays, too, a fundamental role in later polytopic em-
bedding options which are built to avoid the need of gridding. The root of all the
procedure is the linearised design, the results are only valid, formally, for small
modelling regions around the origin.

The last contribution of this thesis presents a radical departure from the TS
setup, using bounds for nonlinearities that are no longer required to be linear,
but convex or quasi-convex. In this framework, the linear (quasi-LPV, TS) case is
a particularisation of the general theory. In the same way that ellipsoidal domain
of attraction estimates from LMIs can be “beaten” by set-based methodologies
approaching the “maximal invariant set” in polytopic models (both robust and
gain-scheduled versions), the proposals here enable to further enlarge such esti-
mates with gain-scheduled controller over this expanded class of models.
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Open issues, discussion

This thesis approached the problem of modelling in an “optimal” way a nonlinear
system to be controlled with convex optimisation or convex set manipulation.

However, the concept of “optimality” is only proved in a restrictive sense and,
in some cases, theorems only apply to quadratic nonlinearities; all functions are
quadratic close to the origin but, formally, we have not truly departed from “in-
finitesimal” modelling regions, and actually the target optimal performance is
that of a LTI linearisation with quadratic Lyapunov function.

Also, in practice, when comparing an “optimal” model with high numerical com-
plexity and a “less optimal” model with reasonable complexity, the designers may
end up choosing the latter one, regardless of the involved mathematical develop-
ments behind the optimal model. Thus, a practical compromise between model
complexity, controller computation requirements, closed loop performance, etc.
may be needed.

Additionally, given that some control problems are amenable to polynomial ap-
proaches via Sum-of-squares (convex) optimisation, improvements over the lin-
earised model may be achievable by considering its higher-degree Taylor series
in a polynomial-only approach. However, Taylor series models abruptly diverge
as distance to the origin increases, so, in some cases, the actual performance in
“large” modelling regions is worse than the TS one. Combining/extending the
proposals in this paper to the polynomial case might be an interesting future
work.

Regarding the issues on the set-based gain-scheduled difference inclusions, the
basic drawback is that some convex-hull and vertex enumeration steps are com-
putationally demanding problem so the results, even if elegant, may apply in real
applications only to low-order systems. Also, although the results apply to “quasi-
convex” setups generalising earlier “convex” ones, given that the mere “stacking”
of two quasiconvex functions is not quasiconvex, a systematic methodology for
quasiconvex modelling in several dimensions may be a difficult endeavour.

In summary, this thesis tried to approach a mostly open issue in “nonlinear control
via convex structures” regarding the different modelling options available, yielding
different performance results. Even if we first tried to settle some ideas for a
TS/quasi-LPV framework, later on, the breadth of possible modelling options
was opened up again with the difference-inclusion approach. Each framework has
its own advantages and drawbacks and, actually, the “best convex structure” for
a generic nonlinear control problem was, and still is, a challenging issue.
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