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Abstra
t

This thesis 
onsiders a Lyapunov-based approa
h for analysis and 
ontrol of non-

linear systems whose dynami
al equations are rewritten as a Takagi-Sugeno model

or a 
onvex polynomial one. These stru
tures allow solving 
ontrol problems via


onvex optimisation te
hniques, more spe
i�
ally linear matrix inequalities and

sum-of-squares, whi
h are e�
ient tools from the 
omputational point of view.

After providing a basi
 overview of the state of the art in the �eld of Takagi-

Sugeno models, this thesis address issues on pie
ewise, parameter-dependent and

line-integral Lyapunov fun
tions, with the following 
ontributions:

An improved algorithm to estimate the domain of attra
tion of nonlinear sys-

tems for 
ontinuous-time systems. The results are based on pie
ewise Lyapunov

fun
tions, linear matrix inequalities, and geometri
al argumentations; level-set

approa
hes in prior literature are signi�
antly improved.

A generalised parameter-dependent Lyapunov fun
tion for synthesis of 
ontrollers

for Takagi-Sugeno systems. The approa
h proposed a multi-index 
ontrol law that

feeds ba
k the time derivative of the membership fun
tion of the Takagi-Sugeno

model to 
an
el out the terms that 
ause a priori lo
ality in the Lyapunov analysis.

A new integral Lyapunov fun
tion for stability analysis of nonlinear systems.

These results generalise those based on line-integral Lyapunov fun
tions to the

polynomial framework; it turns out path-independen
y requirements 
an be over-

riden by an adequate de�nition of a Lyapunov fun
tion with integral terms.
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Resumen

Esta tesis 
onsidera un enfoque basado en Lyapunov para el análisis y 
ontrol

de sistemas no lineales 
uyas e
ua
iones dinámi
as son rees
ritas 
omo un mod-

elo Takagi-Sugeno o uno polinomial 
onvexo. Estas estru
turas permiten resolver

problemas de 
ontrol mediante té
ni
as de optimiza
ión 
onvexa, más 
on
reta-

mente desigualdades matri
iales lineales y suma de 
uadrados, que son e�
ientes

herramientas desde un punto de vista 
omputa
ional. Después de propor
ionar

una visión general bási
a del estado a
tual en el 
ampo de los modelos Takagi-

Sugeno, esta tesis aborda 
uestiones sobre las fun
iones de Lyapunov por trozos,

dependiente de parámetros e integral de línea, 
on las siguientes 
ontribu
iones:

Un algoritmo mejorado para estima
iones del dominio de atra

ión de sistemas no

lineales para sistemas de tiempo 
ontinuo. Los resultados se basan en fun
iones

de Lyapunov por trozos, desigualdades matri
iales lineales y argumenta
iones ge-

ométri
as; enfoques basados en 
onjuntos de nivel en la literatura previa se han

mejorado signi�
ativamente.

Una fun
ión Lyapunov generalizada dependiente de parámetros para la síntesis

de 
ontroladores para sistemas Takagi-Sugeno. El enfoque propone una ley de


ontrol multi-índi
e que retroalimenta la derivada del tiempo de las fun
iones

de membresía del modelo Takagi-Sugeno para anular los términos que 
ausan

lo
alidad a priori en el análisis de Lyapunov.

Una nueva fun
ión integral de Lyapunov para el análisis de estabilidad de sis-

temas no lineales. Estos resultados generalizan aquellos basados en fun
iones de

Lyapunov integral de línea al mar
o polinomial; resulta que los requisitos de in-

dependen
ia del 
amino pueden ser anulados por una de�ni
ión ade
uada de una

fun
ión Lyapunov 
on términos integrales.
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Resum

Aquesta tesi 
onsidera un enfo
ament basat en Lyapunov per a l'anàlisi i 
ontrol

de sistemes no lineals les equa
ions dinàmiques dels quals són rees
rites 
om un

model Takagi-Sugeno o un de polinomial 
onvex. Aquestes estru
tures permeten

resoldre problemes de 
ontrol mitjançant tè
niques d'optimitza
ió 
onvexa, més


on
retament desigualtats matri
ials lineals i suma de quadrats, que són eines

e�
ients des d'un punt de vista 
omputa
ional. Després de propor
ionar una visió

general bàsi
a de l'estat a
tual en el 
amp dels models Takagi-Sugeno, aquesta

tesi aborda qüestions sobre les fun
ions de Lyapunov per trossos, dependent de

paràmetres i integral de línia, amb les següents 
ontribu
ions:

Un algoritme millorat per a estimar el domini d'atra

ió de sistemes no lineals

per a sistemes de temps 
ontinu. Els resultats es basen en fun
ions de Lyapunov

per trossos, desigualtats matri
ials lineals i argumenta
ions geomètriques; enfo
a-

ments basats en 
onjunts de nivell en la literatura prèvia s'han millorat signi�
a-

tivament.

Una fun
ió Lyapunov generalitzada dependent de paràmetres per a la síntesi de


ontroladors per a sistemes Takagi-Sugeno. L'enfo
ament proposa una llei de


ontrol multi-índex que retroalimenta la derivada del temps de les fun
ions de

membres del model Takagi-Sugeno per anul·lar els termes que 
ausen lo
alitat a

priori en l'anàlisi de Lyapunov.

Una nova fun
ió integral de Lyapunov per a l'anàlisi d'estabilitat de sistemes no

lineals. Aquests resultats generalitzen aquells basats en fun
ions de Lyapunov

integral de línia al mar
 polinomial; resulta que els requisits d'independèn
ia del


amí poden ser anul·lats per una de�ni
ió adequada d'una fun
ió Lyapunov amb

termes integrals.
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Chapter 1

Introdu
tion

This 
hapter introdu
es the main ideas of the thesis, whi
h is 
on-


erned with the generalisation of previous results on stability analysis

and 
ontroller design of nonlinear systems based on 
onvex optimisa-

tion te
hniques. In order to motivate this study, we begin with a brief

histori
al review on some 
losely related 
onvex stru
tures su
h as

linear parameter varying systems, Takagi-Sugeno models, and 
onvex

polynomial models. While these stru
tures have 
ertain advantages

when used for nonlinear 
ontrol s
hemes, they present a number of

limitations; some of them are presented in the se
ond se
tion, whi
h

will be helpful for understanding the main results of this work. The


hapter 
on
ludes with a brief overview of the 
ontents and the publi-


ations derived from this resear
h.

1.1 Motivation and ba
kground

A mathemati
al model of a dynami
al system des
ribes its behaviour along time.

Within the �eld of 
ontrol systems, it usually adopts a state-spa
e representation,

whi
h is a set of multivariable di�erential equations (or di�eren
e equations for

the 
ase of dis
rete-time systems) whi
h 
ontains the states (minimal information

to determine the future behavior of the dynami
al system) obtained through 
er-

tain known physi
al laws. Usually, the equations that represent the dynami
s are

nonlinear fun
tions (polynomial, exponential, logarithmi
, sinusoidal, et
), whi
h

indu
e a variety of phenomena whi
h is hard to analyse. Some examples of nonlin-

1



Chapter 1. Introdu
tion

ear phenomena are �nite-es
ape time, multiple isolated equilibrium points, limit


y
les, 
haos, et
 (Khalil 2002).

Analysis and 
ontrol of linear time-invariant (LTI) systems has been well developed

long ago (Kailath 1980). Some of these developments 
an be straightforwardly ex-

tended to the linear time-varying (LTV) 
ase (C. T. Chen 2012). Nevertheless,

if approa
hes based on linearisation are put aside, nonlinear systems 
annot be

treated with linear te
hniques, whi
h has motivated a variety of frameworks su
h

as ba
kstepping for stri
t feedba
k systems (Khalil 2002), sliding modes whi
h

eliminate mat
hed disturban
es via dis
ontinuous terms (Utkin 1992), geometri



ontrol for exa
t feedba
k linearization (Isidori 1995), and passivity-based design

whi
h relies on the ability of �nding an energy-like Lyapunov fun
tion (Ortega

et al. 1998), et
. Nonlinear methods remain thus limited to a number of sys-

tems with low dimension and spe
ial stru
tures, la
king the level of generality

and systemati
ity linear methods have, let alone its numeri
al 
omputability and

implementation.

A di�erent route for analysis and 
ontrol of nonlinear systems has been developed

from the �eld of linear parameter varying (LPV) systems, �rst introdu
ed in

the Ph.D. thesis of Shamma (J. Shamma 1988). The origins of LPV systems


an be tra
ed ba
k to (
lassi
al) gain s
heduling 
ontrol (Safonov 1980), whi
h


onsists in a 
olle
tion of linear 
ontrollers, ea
h of them �stabilising" at di�erent

operation points and indexed by a measurable parameter or �s
heduling variable�

(J. Shamma 1999). Likewise, an LPV model 
onsists on a family of linear systems

blended together by a s
heduling parameter ; this parameter is unknown a priori,

but it is available to be measured online or, at least, bounded. Whereas the

s
heduling parameter in gain-s
heduling is a fun
tion of the states, in the LPV

framework, the s
heduling parameter is independent of the states, i.e., its possible

expli
it dependen
e on the system states or time is negle
ted. Usually, fun
tions

of the s
heduling variables were de�ned to hold the 
onvex sum property, so the

model 
ould be subsumed into a linear polytope, i.e., a 
onvex sum of linear

systems (Apkarian and Gahinet 1995).

The resemblan
e between LPV systems ẋ = A(θ)x and nonlinear ones ẋ = A(x)x,
as well as the 
on
urrent appearan
e of Takagi-Sugeno (TS) models whi
h al-

ready have a polytopi
 form depending on time, states, or parameters (Takagi

and Sugeno 1985), en
ouraged resear
hers to go further in using the dire
t Lya-

punov method and the 
onvex sum property to formally derive analysis and de-

sign 
onditions based on some 
onvex representation of su
h systems (Tanaka

and H. Wang 2001). In re
ent years, su
h 
onvex form has be
ome known as a

quasi-LPV system, as its s
heduling variables may 
ontain states, parameters, or

un
ertainties (J. S. Shamma and Cloutier 1992). Obtaining a 
onvex model from

2



1.1 Motivation and ba
kground

a nonlinear one 
an be done by approximation (Ohtake, Tanaka, and H. Wang

2001) or exa
t rewriting (Tanigu
hi, Tanaka, and H. Wang 2001); su
h represen-

tation is not unique (Sala 2009). It turns out, 
onvexity plays a great deal in

adapting linear te
hniques to the nonlinear 
ontext, although mild assumptions

and slight modi�
ations need to be made: ne
essity is lost, whi
h implies some

level of 
onservativeness is introdu
ed (Z. Lendek, T.M Guerra, et al. 2010).

Besides aiding the designer to mimi
 linear approa
hes in nonlinear 
ontexts, sub-

suming a nonlinear model into a TS one has a very important advantage: 
ondi-

tions thus derived usually lead to linear matrix inequalities (LMIs), whi
h belong

to the realm of semide�nite programming (SDP). SDP problems are solved in

polynomial time via 
onvex optimisation te
hniques (Boyd et al. 1994); a variety

of 
ommer
ial software tools are available that 
an be readily used to solve them:

the LMI Toolbox (Gahinet et al. 1995), the SeDuMi (Sturm 1999), and the Mosek

solver (E. D. Andersen and K. D. Andersen 2000), the latter two usually used

along with the Yalmip interfa
e (Löofberg 2004). Thus, thanks to 
onvexity, TS

models along with LMIs gave birth to new 
ontrol te
hniques su
h as parallel dis-

tributed 
ompensation (PDC) (H. Wang, Tanaka, and Gri�n 1996) and a variety

of solutions for observation (Tanaka, Ikeda, and H. Wang 1998), delay systems

(Y. Cao and Frank 2000), output feedba
k (Yoneyama et al. 2000), generalisa-

tions for des
riptor forms (Tanigu
hi, Tanaka, Yamafuji, et al. 1999), et
. Note

that there exist multiple pra
ti
al appli
ation of the TS-LMI framework, for in-

stan
e, (Gar
ía-Nieto et al. 2009; Pre
up and Hellendoorn 2011; Cazarez-Castro

et al. 2017). Similarly, nonlinear generalisations of TS systems known as 
onvex

or fuzzy polynomial models (Sala and C. Ariño 2009) have been su

essfully used

along with sum-of-squares (SOS) tools (Prajna, Papa
hristodoulou, Seiler, et al.

2004) whi
h, happily, also belong to the SDP sort of optimization problems.

Although the se
tor nonlinearity methodology fa
ilitates the analysis of nonlinear

systems via the dire
t Lyapunov Methods and LMIs (
on
lusions drawn on the TS

model are dire
tly valid for the nonlinear one), there are problems for whi
h the

standard TS-LMI framework is not able to �nd a solution, i.e., it is 
onservative

(Sala, T.M. Guerra, and Babuska 2005; Sala 2009; L.A. Mozelli et al. 2009).

This 
onservatism 
omes from three main sour
es:

1. The way MFs are taken into a

ount in nested 
onvex sums.

In order to obtain LMI 
onditions, the MFs should be dropped o� from signed

nested 
onvex sums. Sin
e the MFs are all positive within the modelling area,

an easy way to do so is to ask every term in the sum to have the desired sign

(Tanaka and H. Wang 2001), but of 
ourse that might be quite 
onservative.

3
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For that reason, a variety of results �referred as �sum relaxations�� have

been proposed in order to ta
kle this problem. For example, in (Tanaka and

Sugeno 1992), they take into a

ount that there are terms in a nested 
onvex

sum that share the same MFs; in (Tuan et al. 2001) a partial solution of the


o-positivity problem was proposed; in (Liu and Zhang 2003), sla
k matri
es

are added in the LMI 
onditions to relax the results; whereas in (Sala and

Ariño 2007; Kruszewski et al. 2009) asymptoti
ally ne
essary and su�
ient


onditions are proposed through a 
omplexity parameter.

Sin
e the TS models have all the nonlinearities grouped together in the MFs,

only the vertex (linear) models are 
onsidered in the LMI 
onditions. This

is to say, the MFs are 
onsidered as independent variables that only hold

the 
onvex sum property and their dependen
e on the states is negle
ted,

introdu
ing the so 
alled shape-independent 
onservatism. Thus, a nested


onvex sum may be positive even if some of its terms are not (Sala and

Ariño 2007), a 
ondition that has been ta
kled with some shape-dependent

results su
h as (Bernal, T. M. Guerra, and Kruszewski 2009).

2. The non-uniqueness of the TS model.

The se
tor-nonlinearity approa
h provides a methodology to rewrite a non-

linear system into a 
onvex model. Nevertheless, this representation is not

unique (Sala, T.M. Guerra, and Babuska 2005; Feng 2006), i.e., depending

on the 
hosen TS model, di�erent 
on
lusions 
an be rea
hed with shape-

independent LMIs for the same nonlinear system. In (Robles et al. 2017;

Robles et al. 2016) di�erent approa
hes were proposed to obtain an �opti-

mal� TS model with respe
t to some performan
e measure. The same goes

for polynomials fuzzy models whi
h 
an be di�erently 
hosen. Moreover,

if the original nonlinear model is 
onsidered, it might be better expressed

(with less number of vertexes, for instan
e) if a des
riptor form is adopted

(T. M. Guerra, Estrada-Manzo, and Zs. Lendek 2015).

3. The family of Lyapunov fun
tion whi
h is employed.

The standard TS-LMI framework is based on quadrati
 Lyapunov fun
tions,

thus negle
ting the fa
t that a system may be stable but not quadrati
ally

stable (Khalil 2002). Thus, larger 
lasses of Lyapunov fun
tions have been

proposed, all of whi
h in
lude the quadrati
 one as a parti
ular 
ase. Some

of them are: pie
ewise (PWLFs) 
ontinuous (Johansson, Rantzer, and Arzen

1999) and dis
rete (Feng 2004), where the state spa
e is partitioned a

ord-

ing to the a
tivation of the linear or pie
ewise models, allowing the Lya-

punov fun
tion to 
hange from one region to another; parameter-dependent

4



1.1 Motivation and ba
kground

(PDLF), also known as non-quadrati
, fuzzy, or 
onvex, �rst appeared in

(Blan
o, Perruqueti, and Borne 2001), makes use of the MFs of the TS

model in order to share the �exibility and stru
ture of the latter, also avail-

able in 
ontinuous (Tanaka, Hori, and H. Wang 2003; Bernal and T. M.

Guerra 2010) and dis
rete versions (T.M. Guerra and Vermeiren 2004; T.M.

Guerra, Kruszewski, and Bernal 2009); the fuzzy line-integral (LILF) �rst

proposed in (Rhee and Won 2006) and re�ned in (Marquez, T.M. Guerra,

et al. 2014), whi
h employs line integrals to avoid dealing with the time

derivative of the MFs in the 
ontinuous-time 
ontext. Similarly to the 
las-

si
al TS arena, that of polynomial/sum-of-squares (SOS) have enri
hed its

set of Lyapunov fun
tions by employing polynomial ones (Tanaka, Ohtake,

and H. Wang 2009).

As it 
an be 
on
luded from the dis
ussion above, a system may be proven stable

if more information on the MFs is taken into a

ount and more general 
lasses

of Lyapunov fun
tions are used (Z. Lendek, T.M Guerra, et al. 2010). Several

results have a
hieved the so-
alled asymptoti
al exa
tness, i.e., the 
onservatism

is redu
ed as the 
omputational resour
es in
rease (
onditions depend on a 
om-

plexity parameter); in theory, when the 
omplexity parameter in
rease to in�nity,


onservatism (from that sour
e) is redu
ed to zero. For instan
e, the use of mul-

tiple nested 
onvex stru
tures in the Lyapunov fun
tion have provided a way

to simultaneously ta
kle the 
o-positivity problem and the use of more general

Lyapunov fun
tions, namely the homogenous polynomially parameter-dependent

(HPPD) Lyapunov fun
tions (Chesi et al. 2007; R.C.L. Oliveira and P.L. Peres

2007; R.C.L.F Oliveira, C. de Oliveira, and P.L. Peres 2008; Chesi 2010; Ding

2010); nonetheless, most of these results are shape-independent. In the 
ase of

polynomial Lyapunov fun
tions, if the degree of the polynomial is in
reased at

will, the results be
ome asymptoti
ally exa
t (up to the gap between positive and

SOS polynomials (Chesi 2007)). Nevertheless, the in
rease of the 
omplexity pa-

rameter, usually leads to an exponential in
rease of the 
omputational resour
es;

in other words, these approa
hes qui
kly rea
h their 
omputational limits. Addi-

tionally, the use of PWLFs for the analysis of nonlinear systems is still 
onservative

and there is room for improvement; the time derivatives of the MFs when PDLFs

are employed is still a problem that needs re�nement; in (Rhee and Won 2006)

the problem of the time derivative of the MFs is avoided only for a limited 
lass

of TS models. This thesis provides some answers to these questions that a
tually

improve over existing results.

5



Chapter 1. Introdu
tion

1.2 Obje
tives

The main obje
tive of this thesis is to redu
e 
onservatism when 
onvex optimi-

sation te
hniques are applied for the analysis and 
ontrol of nonlinear systems. In

parti
ular, the use of di�erent 
lasses of Lyapunov fun
tions is explored, all within

an LMI framework.

The Lyapunov fun
tion studied in this work are:

1. Pie
ewise Lyapunov Fun
tion:

In the pie
ewise framework, this thesis provides three results on the use

of pie
ewise Lyapunov fun
tions for the stability analysis of nonlinear sys-

tems: (a) an a�ne pie
ewise modelling te
hniques that generalise the se
tor-

nonlinearity methodology via easily implementable optimisation-based a�ne

modelling whi
h produ
es ordinary TS models if the modelling region 
on-

tains the origin; (b) some geometri
 properties of the state spa
e are taking

into a

ount via Positivstellensatz (S-pro
edure) argumentations; (
) a new

methodology to determine the �largest� estimate of the domain of attra
tion

of the origin of a nonlinear system, within an LMI framework.

2. Parameter-dependent Lyapunov Fun
tions

As mentioned before, there has been a number of works ta
kling the prob-

lem of the time derivative of the MFs when 
ontinuous-time TS models are

analysed or synthesised with PDLFs. Some of them simply assume that the

time derivative has a known bound (Blan
o, Perruqueti, and Borne 2001;

Tanaka, Hori, and H. Wang 2003); others relate this time derivative with

the information arising from the modeling area (T.M. Guerra and Bernal

2009; Bernal and T. M. Guerra 2010; T.M. Guerra, Bernal, et al. 2012;

T.M. Guerra and Bernal 2012); some others provide LMIs to guarantee the

time derivative to be bounded under 
ertain assumptions (Pan et al. 2012;

Jaadari et al. 2012). In this thesis, a new generalised PDLF is proposed

along with a generalised multi-index 
ontrol law that 
an
els out the terms

that 
ause a priori lo
ality in the Lyapunov analysis; moreover, the resulting


onditions are purely LMI.

3. Integral Lyapunov Fun
tions

The widely-
ited work (Rhee and Won 2006) proposed an interesting fuzzy

line-integral Lyapunov fun
tion, presenting global LMI stability 
onditions

that avoided involving the time derivatives of the MFs. This thesis shows a

6



1.3 Stru
ture of the thesis

new polynomial Lyapunov fun
tion with integral terms that generalise the

work in (Rhee and Won 2006) for 
ases on whi
h the later 
annot be dire
tly

applied; it also goes beyond the TS framework in
luding the polynomial

one: it turns out that path independen
y 
onditions for line integrals are

automati
ally veri�ed if the integral is expressed as a sum of single-variable

terms.

1.3 Stru
ture of the thesis

This thesis is divided in two parts:

• Part I summarises the most relevant results in the literature related to the

obje
tives of this thesis. In Chapter 2, some stability 
on
epts are reviewed

to 
orre
tly understand the dire
t Lyapunov method. In the same Chapter,

an overview of the 
on
ept of an LMI and its use for the stability analysis of

linear models is 
ondu
ted. Additionally, some 
ommon matrix properties

to transform matrix inequalities into LMIs are given in Chapter 2.

Chapter 3 presents the se
tor nonlinearity methodology to rewrite a nonlin-

ear model as a TS one in order to perform stability analysis and 
ontroller

design. It shows how the dire
t Lyapunov method is employed altogether

with the 
onvex stru
ture of the TS model to express stability and stabili-

sation 
onditions in terms of LMIs. This 
hapter 
on
ludes by introdu
ing

the use of 
onvex Lyapunov fun
tions (PDLF and LILF) as well as PWLF;

some problems related with these Lyapunov fun
tions are 
ommented.

Chapter 4 presents a review on the standard polynomial fuzzy framework. It

begins by explaining what are SOS polynomials and their relationship with

LMIs. It then follows with the presentation of a systemati
 methodology

to obtain an exa
t 
onvex polynomial model of a nonlinear model via the

Taylor-series approa
h (generalisation of the se
tor nonlinearity approa
h);

these models 
an redu
e 
onservatism with respe
t to the TS approa
h. At

the end of the 
hapter, the dynami
al extension approa
h is presented as

an alternative to the 
onvex polynomial models. This approa
h allows to

model a nonlinear non-polynomial system as a polynomial one with algebrai


restri
tions.

• Part II 
ontains the 
ontributions of this work. The �rst 
ontribution is

presented in Chapter 5, where a new pro
edure for an exa
t pie
ewise a�ne

Takagi-Sugeno modelling is explained. This models will later prove to be

useful for stability analysis when some geometri
 restri
tions are added in

7



Chapter 1. Introdu
tion

the LMI 
onditions. With both results, an iterative LMI-based algorithm is

proposed for the estimation of the Domain of Attra
tion (DA) of a nonlinear

system. Putting all these results together, Chapter 5 
on
lude with the

important subje
t of asymptoti
 exa
tness for the proposed pro
edure.

Chapter 6 deals with the design of feedba
k 
ontrol. The proposed approa
h

makes use of a generalised PDLF and a generalised multi-index 
ontrol law

that employs the time derivative of the MFs, avoiding the problem of dealing

with the time derivatives of the MFs and providing a simpli�ed and easier al-

ternative to re
ent results on this matter; moreover, the resulting 
onditions

are purely LMI.

Chapter 7 presents a new Polynomial-Integral Lyapunov Fun
tion (PILF)

for the stability analysis of nonlinear systems. This new PILF generalise

earlier results in the LMI/Line-integral framework (Rhee and Won 2006)

to the polynomial 
ase. Additionally, the new approa
h allows using the

line-integral approa
h to a larger 
lass of nonlinear systems.

• This thesis ends in Chapter 8, drawing some 
on
luding remarks and pro-

viding some ideas for future work.

Note that most of the 
ontent of part II is a verbatim 
opy of published material

(indi
ated at the beginning of ea
h 
hapter). Thus, there may be repetitions of

preliminary material and notation 
hanges. On page 165, a full list of publi
ations

by the PhD 
andidate is presented.

8
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State of the Art





Chapter 2

Lyapunov stability and linear

matrix inequalities

This 
hapter presents an overview on the indire
t Lyapunov

method for stability analysis and 
ontroller design of nonlinear sys-

tems. Su
h method is based on the linearisation of a nonlinear sys-

tem on an equilibrium point, 
onveniently pla
ed at the origin via

a straightforward transformation. It is shown that the linearisation

method leads to 
onditions in the form of linear matrix inequalities

(LMIs), whi
h are e�
iently solved via 
onvex optimisation te
h-

niques. LMIs are dis
ussed in some detail sin
e they are the main


omputational tool used in this thesis.

2.1 Lyapunov stability

One of the most important results in the analysis of 
ontrol systems was the

theory proposed by the Russian mathemati
ian Aleksandr Lyapunov at the end

of the 19th 
entury. In his original thesis �The General Problem of Stability of

Motion� (1892), Lyapunov proposed two methods to establish the stability of

an equilibrium point of a dynami
al system. The �rst method says that if the

linearisation on su
h point is stable, there exists a �neighborhood� around the

equilibrium point where all the traje
tories of the nonlinear system go to zero as

time tends to in�nity, i.e., the equilibrium point is asymptoti
ally stable. The

se
ond method (also known as Lyapunov's dire
t method) basi
ally says that the

11



Chapter 2. Lyapunov stability and linear matrix inequalities

stability of a nonlinear system 
ould be proved if there exists a positive energy-like

fun
tion of the state whi
h monotoni
ally de
reases over time.

The following de�nitions introdu
e di�erent types of stability:

De�nition 2.1.1. (Haddad and Chellaboina 2008) Consider an autonomous non-

linear dynami
al system

ẋ(t) = f(x(t)) with x(0) = x0, (2.1)

where x(t) ∈ R
n
denotes the state spa
e ve
tor and f(·) : Ω → R

n
is a lo
ally

Lips
hitz map from a domain Ω ⊆ R
n
into R

n
. The solution of (2.1) for initial


ondition x0 will be denoted as ψ(t, x0).

• An isolated equilibrium point x̄ is a state value su
h that f(x̄) = 0 and

f(x) 6= 0 for some neighbourhood of x̄, i.e., the system will remain on it for

all future time on
e it happens to be there.

• The equilibrium point x̄ is said to be Lyapunov stable, if, for every ε > 0,
there exists a δ = δ(ε) su
h that, if ‖x(0)− x̄‖ < δ, then for every t ≥ 0 we

have ‖x(t)− x̄‖ < ε.

• The equilibrium point x̄ is said to be asymptoti
ally stable if it is Lyapunov

stable and there exists δ > 0 su
h that if ‖x(0)− x̄‖ < δ, then limt→∞ ‖x(t)−
x̄‖ = 0.

• The equilibrium point x̄ is said to be exponentially stable if it is asymptot-

i
ally stable and there exist α > 0, β > 0, δ > 0 su
h that if ‖x(0)− x̄‖ < δ,
then ‖x(t)− x̄‖ < α‖x(0)− x̄‖e−βt, for t ≥ 0.

• An equilibrium point x̄ is unstable if it is not Lyapunov stable.

Basi
ally, Lyapunov stability means that solutions starting �
lose enough� of the

equilibrium (with a distan
e δ) remain �
lose enough� forever (within a distan
e

ε from it). Asymptoti
 stability in the sense of Lyapunov means that solutions

starting 
lose enough to an equilibrium point will eventually 
onverge to it. Ex-

ponential stability is asymptoti
 stability with the extra property of having its

solutions bounded by an exponential de
ay rate α‖x(0) − x̄‖e−βt. For further

explanation the reader is referred to (Khalil 2002).

Whereas linear systems of the form ẋ = Ax 
an have only one isolated equilibrium

point at the origin x = 0, nonlinear systems may have multiple equilibria as well

as a number of ex
lusively nonlinear phenomena su
h as limit 
y
les, �nite-time

12



2.1 Lyapunov stability

es
ape, 
haos, et
. Therefore, the de�nitions above provide a formal framework to

atta
h stability 
on
epts to the properties of isolated equilibrium points. Without

loss of generality, in the sequel we assume that the equilibrium point under analysis

is at the origin, i.e., x̄ = 0.

2.1.1 Lyapunov's dire
t method

Stability of an equilibrium point x = 0 of a nonlinear system ẋ = f(x) 
an be

established via a Lyapunov fun
tion 
andidate, i.e., a positive-de�nite fun
tion

of the state, V (x), whi
h is often related to the energy of the system. If the

time derivative of su
h fun
tion monotoni
ally de
reases to zero along time, it

implies that the total �energy� of the system goes to zero and that the referred

equilibrium point is therefore asymptoti
ally stable. In other words, if V̇ (x) is a
negative-de�nite fun
tion, the Lyapunov fun
tion 
andidate V (x) be
omes a Lya-

punov fun
tion for this system, a su�
ient 
ondition for establishing the stability

properties of the origin. The usefulness of the method relies on the fa
t that

no solution of the di�erential or di�eren
e equations needs to be known. The

Lyapunov's stability theorem 
an be stated as follows:

Theorem 2.1.1. (Lyapunov 1992) Consider the system (2.1) having the origin

as equilibrium point, i.e. x(0) = 0 ⇐ f(0) = 0, and let Ω ⊂ R
n
be a domain


ontaining the origin. Let V : Ω → R be a 
ontinuously di�erentiable fun
tion in

Ω su
h that the following 
onditions are ful�lled:

V (0) = 0 (2.2)

V (x) > 0 ∀x ∈ Ω, x 6= 0 (2.3)

V̇ (x) =
dV (x)

dt
< 0 ∀x ∈ Ω, x 6= 0 (2.4)

then the origin is asymptoti
ally stable in the sense of Lyapunov. If Ω ≡ R
n
and

V (x) being radially unbounded, i.e., ‖x‖ → ∞ ⇒ V (x) → ∞, then the origin is

globally asymptoti
ally stable.

This method is 
alled �dire
t� be
ause it does not require the system to be trans-

formed in any way: it is supposed that the time derivative of the Lyapunov

fun
tion will eventually involve the system equations. The existen
e of a Lya-

punov fun
tion is a su�
ient 
ondition for the stability of an equilibrium point;


onversely, for every stable equilibrium point there must exist a Lyapunov fun
-

tion (W. Hahn 1967). Despite its power and generality, this result has a major

drawba
k: there is no general methodology for sear
hing Lyapunov fun
tions for

nonlinear systems. Some forms, su
h as the quadrati
 one, have been used for

simpli
ity be
ause they work �ne in the linear 
ase.

13



Chapter 2. Lyapunov stability and linear matrix inequalities

Indeed, in the 
ase of linear time-invariant (LTI) systems, the existen
e of a

quadrati
 Lyapunov fun
tion V (x) = xTPx is a su�
ient and ne
essary 
ondition

for the global asymptoti
 stability of ẋ = Ax. In parti
ular, to apply theorem

2.1.1 to ẋ = Ax, 
onsider the Lyapunov fun
tion 
andidate V (x) = xTPx, where
P = PT > 0 to satisfy 
ondition (2.3). The time derivative of V (x) is given by:

V̇ (x) = xTPẋ+ ẋTPx = xT
(
PA+ATP

)
x. (2.5)

Now, (2.4) is guaranteed if and only if PA + ATP < 0 as it 
oin
ides with the

de�nition of a negative-de�nite matrix. The inequalities P > 0 and PA+ATP < 0
are linear matrix expressions; determining whether or not there is an instan
e of

P su
h that the inequalities hold is an LMI problem. As we will see in Se
tion 2.2,

LMIs 
an be e�
iently 
omputationally solved, i.e, if an optimal solution exists it

will be found.

The set of all initial 
onditions from whi
h the traje
tories of a system 
onverge

to a given equilibrium point is 
alled its domain of attra
tion (DA). Clearly, given

multiple equilibrium points, their respe
tive DAs must be disjoint; moreover, if

a an equilibrium point is unstable its DA redu
es to itself. More formally, a

de�nition of the DA of an equilibrium point at the origin x = 0 is the following:

De�nition 2.1.2. (Khalil 2002) The domain of attra
tion of the system (2.1),

denoted as D, is the set of points belonging to the state spa
e whose traje
tory

x(t) = ψ(t, x0) ends in the asymptoti
ally stable equilibrium point x(t) = 0.

D :=
{

x ∈ R
n : ψ(t, x) ∈ Ω ∀t ≥ 0, lim

t→∞
ψ(t, x) = 0

}

. (2.6)

In general, 
omputing the domain of attra
tion is extremely di�
ult. Nevertheless,

Lyapunov fun
tions 
an be used to estimate the region of attra
tion. From 2.1.1,

if there exist a Lyapunov fun
tion V (x) that satis�es the 
onditions of asymptoti


stability over a domain Ω and, Ec := {x ∈ R
n : V (x) ≤ c} being a bounded

set su
h that Ec ⊂ Ω, then every traje
tory staring in Ec remains in Ec and

approa
hes the origin as t → ∞. Therefore, Ec is an estimate of the DA, i.e,

Ec ⊂ D. Nevertheless, this estimate may be mu
h smaller than the a
tual DA.

In Chapter 5, a new methodology for asymptoti
ally estimate the DA will be

presented.
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2.1 Lyapunov stability

2.1.2 Comments on nonautonomous and time-delay systems

Lyapunov theory for autonomous systems 
an be extended to nonautonmous sys-

tems, i.e, systems in the form:

ẋ = f(x, t), (2.7)

where f : [0,∞)× Ω → R
n
is pie
ewise 
ontinuous in t and lo
ally Lips
hitz in x

on [0,∞) × Ω, and Ω ⊂ R
n
is a domain that 
ontains the origin x = 0. In this


lass of systems, the expressions for the time dependen
e in f are assumed to be

known beforehand. There are plenty of extensions for this 
lass of systems, for

more details see (Khalil 2002; Maliso� and Mazen
 2009).

Beside the autonomous and nonautonomous systems, Lyapunov fun
tion theory


an also be develop for retarded fun
tional di�erential equations, whi
h have the

form

ẋ = f(t, x(t), x(t− h)), x(t0 + θ) = φ(θ), θ ∈ [−h, 0], (2.8)

where x(t) ∈ R
n
, f is 
ontinuous in all arguments and lo
ally satis�es Lips-


hitz 
ondition with respe
to to the se
ond argument, where φ is a 
ontinuous

ve
tor-valued initial fun
tion. Equations of thus type are also 
alled time delayed

di�erential equations.

Lyapunov related fun
tions are key for the stability analysis and 
ontrol design

for systems with time-delay. Two importan theorems for delayed systems are

the Razumikhin Theorem and the Lyapunov-Krasovski Theorem. Both rely on

delayed Lyapunov fun
tions or fun
tionals, whi
h are often 
onstru
ted by �rst

building Lyapunov fun
tions for the 
orresponding undelayed systems, i.e., setting

the delayed equal to zero. For a more detailed ba
kground of the stability of time-

delay systems see for instan
e (Gu, Kharitonov, and J. Chen 2003).

Over the last two de
ades, Lyapunov-Krasovski fun
tionals have been used exten-

sively for the analysis of linear systems. For linear systems, Lyapunov- Krasovski

fun
tionals give stability 
riteria in terms of linear matrix inequalities, whi
h


an be analyzed through numeri
al methods; see for instan
e (Fridman 2014).

Mostly, delay analysis involves use of Lyapunov-Krasovskii fun
tionals in the form

V = xTPx +
∫ b

a
xTQx +

∫ d

c
ẋTRẋ +

∫ f

e

∫ h

g
ẋSẋ + · · · for some delay-bound re-

lated integration limits. Nevertheless, the motivation of this thesis is fo
us on

autonomous systems without delays, although all the results presented 
an also

be extended to the nonautonomous or time-delay 
ase.
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2.1.3 Lyapunov's indire
t method

The Lyapunov's indire
t method establishes the properties of an equilibrium point

by studying the behaviour of the linearised system whi
h, under 
ertain 
ondi-

tions, lo
ally preserves the stability properties of the original nonlinear system.

Sin
e the method requires transforming the nonlinear equations and examining

the eigenvalues of the linearised system matrix instead of looking for a Lyapunov

fun
tion, it is referred to as indire
t. Nevertheless, it should be kept in mind that

the proof of the 
riteria in the following theorem is based on a quadrati
 Lyapunov

fun
tion asso
iated to the linearised system:

Theorem 2.1.2. (Khalil 2002) Let x = 0 be an equilibrium point for the nonlinear

system ẋ(t) = f(x(t)), where f(·) : Ω → R
n
is 
ontinuously di�erentiable and Ω

is a neighborhood of the origin. Let

A =
∂f(x)

∂x

∣
∣
∣
∣
x=0

be the Ja
obian matrix of f(x) at x = 0. Then,

1. The origin is asymptoti
ally stable if Re(λi) < 0 for all eigenvalues of A.

2. The origin is unstable if Re(λi) > 0 for one or more of the eigenvalues of

A.

3. if Re(λi) ≤ 0 ∀i with Re(λi) = 0 for some i, linearisation fails to determine

the stability of the equilibrium point.

λi, i ∈ {1, 2, . . . , n} are the eigenvalues of the matrix A.

Theorem 2.1.2 provides a simple pro
edure to analyse the stability of an equilib-

rium point at the origin of a nonlinear system. Moreover, the quadrati
 Lyapunov

fun
tion V (x) = xTPx with P > 0, PA + ATP < 0, is also a Lyapunov fun
-

tion for the nonlinear system in some neighborhood of the origin. The Lyapunov

fun
tion is the quadrati
 form as in the linear 
ase shown in the previous se
tion.

2.1.4 Stabilisation via linearisation

The linearisation method 
an also be used to �solve� the stabilisation problem.

This method allow us to obtain a lo
al 
ontrol law for a nonlinear model; lo
al

in the sense of that the feedba
k 
ontrol law stabilize in a neighborhood of the

origin. To this end, 
onsider the system

ẋ(t) = f(x(t), u), (2.9)
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where f(0, 0) = 0 and f(x, u) is 
ontinuously di�erentiable fun
tion in a domain

Ωx ×Ωu ⊂ R
n ×R

m
that 
ontains the origin (x = 0, u = 0). Linearisation of the

(2.9) at the origin (x = 0, u = 0) results in the linear system

ẋ = Ax+Bu (2.10)

where

A =
∂f(x, u)

∂x

∣
∣
∣
∣
x=0,u=0

B =
∂f(x, u)

∂u

∣
∣
∣
∣
x=0,u=0

.

If the pair (A,B) is 
ontrollable, or at least stabilisable, we 
an 
ontinue with

the 
ontrol design. Consider a linear state feedba
k 
ontrol u(x) = Kx, where
K ∈ R

m×n
. The 
losed-loop system yields as:

ẋ = f(x,Kx). (2.11)

Sin
e the origin remains an equilibrium point, it follows from theorem 2.1.2 that

the origin is lo
ally asymptoti
ally stable if the linearisation of the 
losed-loop

system (2.11) is stable. If a gain K is given, the linearised 
losed-loop system is

stable if and only if there exist P > 0 su
h that

P (A+BK) + (A+BK)TP < 0. (2.12)

Thanks to the Lyapunov's methods, a Lyapunov fun
tion 
an always be found for

the 
losed-loop system. Thus, the quadrati
 Lyapunov fun
tion V (x) = xTPx is

a Lyapunov fun
tion for the 
losed-loop nonlinear system in the neighborhood of

the origin.

Again, the inequality (2.12) is a matrix one, but it seems nonlinear as the variables

K and P appeared multiplied. Nevertheless, straightforward matrix manipula-

tions and properties 
an be used to show that the previous 
onditions are indeed


onvex, i.e., LMIs. Some of these properties are shown in the following se
tion.

2.2 Linear matrix inequalities

As mentioned in the se
tions above, this thesis pursue LMI 
onditions for the

analysis and synthesis of 
ontrollers for nonlinear systems via exa
t 
onvex rep-

resentations. Thus, a brief introdu
tion on the LMI theory is presented in this

se
tion. LMIs are a fundamental tool for analysis and synthesis of 
onvex non-

linear 
ontrol systems and 
an be easily implemented with 
onvex optimisation

te
hniques. More details 
an be found in (Boyd et al. 1994; Gahinet et al. 1995;

C. S
herer 2004).
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Chapter 2. Lyapunov stability and linear matrix inequalities

Before going any further, some de�nitions follow 
on
erning signed matrix expres-

sions:

De�nition 2.2.1. Consider two symmetri
 matri
es M1, M2 ∈ R
n×n

, i.e., M1 =
MT

1 and M2 =MT
2 . Then:

1. σ(M1) denotes the spe
trum of M1, i.e., the set of all its eigenvalues.

2. M1 is positive semide�nite (M1 ≥ 0) if xTMx ≥ 0 ∀x ∈ R
n
, i.e.,

Re(σ(M1)) ≥ 0.

3. M1 is positive de�nite (M1 > 0) if xTMx > 0, ∀x ∈ R
n
, x 6= 0, i.e.,

Re(σ(M1)) > 0.

4. M1 ≻M2 means that ea
h entry in matrixM1 is greater than its 
orrespond-

ing one in M2, i.e., [M1]ij > [M2]ij , ∀i, j.

5. M1 > M2 means that M1 −M2 > 0.

Similar de�nitions 
an be made for M1 < 0, M1 ≤ 0, M1 ≺M2, and M1 < M2.

Sin
e the appearan
e of semide�nite programming (SDP), a number of problems

from 
ontrol theory has been solved numeri
ally by expressing them as 
onvex

optimisation tasks with a linear obje
tive fun
tion subje
t to a 
onstraint that is

an a�ne 
ombination of symmetri
 matri
es (Vandenberghe and Boyd 1996). In

pra
ti
e, SDP is typi
ally expressed using LMI notation. Reiterating, it is 
onve-

nient expressing a result as an LMI be
ause it 
an be e�
iently solved numeri
ally

using interior-point methods; moreover, an optimal solution is guaranteed. Several

software toolboxes are available today that implement interior-point algorithms

to solve LMIs; for instan
e, the LMI Toolbox for MATLAB (Gahinet et al. 1995),

the solver SeDuMi (Sturm 1999), and the solver MOSEK (ApS 2015), the later

two are usually employed along with the YALMIP interfa
e (Löofberg 2004). A

formal de�nition follows.

De�nition 2.2.2. A linear matrix inequality (Boyd et al. 1994) has the fol-

lowing form

F (x) = F0 +

m∑

i=1

xiFi > 0, (2.13)

where x ∈ R
m

is a ve
tor of m real numbers 
alled as de
ision variables; Fi =
FTi ∈ R

n×n, i ∈ {0, 1, . . . ,m} are given real symmetri
 matri
es; the inequality

> means that F (x) is positive-de�nite, or equivalently, Re(λ(F (x))) > 0 where

λ(F (x)) denotes the spe
trum of F (x), i.e., the set of all its eigenvalues. Thereby,
(2.13) is 
alled an LMI for x.
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Generally, the variables in an LMI are matri
es, for example, the Lyapunov in-

equality PA + ATP < 0 where A is given and P = PT is the de
ision variable.

In this 
ase the LMI is not written expli
itly in the form (2.13) above, but the

equivalen
e be
ome 
lear by taking F0 = 0, Fi = −AT −A, and xi, i ∈ {1, . . . ,m}
as ea
h unknown entry of P ∈ R

n×n
, �nally m = n (n+ 1) /2. The de�nition

in (2.13) is 
loser to the spirit of the LMI toolboxes as they sear
h for a feasible

instan
e of the de
ision ve
tor with entries xi.

The following three standard problems are relevant in the LMI framework (Boyd

et al. 1994; C. S
herer 2004):

1. Feasibility problem (FP): Consists in �nding a solution instan
e x to the LMI

system F (x) > 0. If x exists, the LMI F (x) > 0 is 
alled feasible, otherwise

it is said to be infeasible.

2. Eigenvalues problem (EVP): Consists in minimising the maximum eigenvalue

of a matrix that depends a�nely on a variable, subje
t to an LMI 
onstraint

(or determine that the 
onstraint is infeasible), i.e.,

minimize λ
subje
t to λI − F (x) > 0, G(x) > 0

where F and G are symmetri
 matri
es that depend a�nely on the optimi-

sation variable x.

3. Generalised eigenvalue problem (GEVP): Consists in minimising the eigen-

values of a pair of matri
es whi
h depend a�nely on a variable, subje
t to a

set of LMI-
onstraints. The general form of a GEVP is:

minimize λ
subje
t to λG(x)− F (x) > 0, F (x) > 0, H(x) > 0

where F , G, and H are symmetri
 matri
es that are a�ne fun
tions of x.
The problem 
an be rewritten as

minimize λmax (F (x), G(x))
subje
t to G(x) > 0, H(x) > 0

where λmax(F,G) denotes the largest generalised eigenvalue of λG−F with

G > 0, i.e., the largest eigenvalue of the matrix G−1/2FG−1/2
.

The examples and results in this thesis were obtained using MOSEK as the LMI/-

SOS solver with YALMIP interfa
e.
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It 
an be noted that GEVP is a quasi
onvex optimisation problem (Boyd et al.

1994) be
ause the 
onstrains are 
onvex but the obje
tive is not. Nevertheless,

the minimum obje
tive 
an be obtained by Iterative LMI (ILMI) methods, for

example, bise
tion sear
h.

Re
alling the 
onditions in equation (2.12) (stability of the 
losed-loop system)

are not expressed as LMIs. Nevertheless, there are some properties whi
h are


ommonly used to transform matrix expressions into LMIs. Some of these are

summarised below.

Property 2.2.1 (System of LMIs). A set of LMIs F1 > 0, · · · , Fk > 0 is equiva-

lent to the single LMI:

F =









F1 0 · · · 0

0 F2 · · · .

.

.

.

.

.

.

.

.

.

.

. 0
0 · · · 0 Fk









> 0

.

Property 2.2.2 (Congruen
e). Let P = PT > 0 and Q be a full-
olumn rank

matrix, the expression QTPQ is also positive-de�nite. Indeed, if P > 0 then

xTPx > 0 hold for all x 6= 0. In parti
ular, if x = Qv and vTQTPQv > 0, hen
e
QTPQ > 0.

Property 2.2.3 (S
hur Complement). Consider the LMI

M =

[
A BT

B C

]

> 0 (2.14)

where A ∈ R
m×m > 0, B ∈ R

m×n
, and C ∈ R

n×n > 0 are full-rank matri
es.

Thus, M is equivalent to

A−BTC−1B > 0, (2.15)

C −BTA−1B > 0 (2.16)

Property 2.2.4 (S-pro
edure). Let Fi = FTi ∈ R
n×n

, x ∈ R
n
, being su
h that

xTFix ≥ 0, i ∈ {1, . . . , p}, and the quadrati
 inequality 
ondition

xTF0x ≥ 0 (2.17)

x 6= 0. There exist positive real s
alars s1, . . . , sp su
h that

F0 −
p
∑

i=1

siFi ≥ 0. (2.18)
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2.2 Linear matrix inequalities

Property 2.2.5 (Finsler's Lemma). Let x ∈ R
n
, Q = QT ∈ R

n×n
, and R ∈

R
m×n

su
h that rank(R) < n; the following expressions are equivalent:

• xTQx < 0, ∀x ∈ {x ∈ R
n : x 6= 0, Rx = 0}.

• ∃X ∈ R
n×m : Q+XR+RTXT < 0.

Resuming 
onditions in equation (2.12), they 
an be expressed as LMIs in order

to �nd the gain K and the Lyapunov matrix P by applying some of the previous

properties.

Consider again the expression (2.12), to whi
h the property of 
ongruen
e with

X = P−1
is applied to obtain:

AX +XAT +BKX +XKTBT < 0. (2.19)

Thus, taking the 
hange of variableM = KX, the following equivalent inequality

is obtained:

AX +XAT +BM +MTBT < 0. (2.20)

Note that a solution of X and M to the previous inequality guarantees a unique

pair P and K; the state-feedba
k gain K is re
overed as K = MP . This means

that the expression was an LMI all along and underlines the fa
t that an LMI is

su
h be
ause of its feasibility set and may lie hidden within an apparently non-


onvex problem. Now, we 
an investigate the stability of nonlinear systems and

design 
ontrollers for the stabilisation problem, although only lo
ally. Consider

the following examples:

Example 2.2.1. The ball and beam system is one of the most popular and im-

portant laboratory models for studying 
ontrol system engineering, whi
h 
ontrol

goal is 
al
ulated the torque u at the pivot of the beam, su
h that the ball 
an roll

moving towards the 
enter of the beam. For this sake, 
onsider the following state

spa
e representation of the ball and beam system shown s
hemati
ally in Fig. 2.1.







ẋ1
ẋ2
ẋ3
ẋ4






=










x2
−mx3(2x4x2 − g cos (x1))

mx23 + Ib
+

u

mx23 + Ib
x4

−5

7
(g sin(x1)− x3x

2
2)










, (2.21)

with x1 being the beam angle with respe
t to the horizontal line (rad), x2 being the

velo
ity of the beam angle (rad/s), x3 being the distan
e of the ball from the beam
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Chapter 2. Lyapunov stability and linear matrix inequalities

x3

x1

u

Figure 2.1: The ball and beam system.


enter (m), x4 being the linear velo
ity of the ball (m/s), u being the torque applied

to the beam (N·m), Ib =
Ma2

12 is beam's moment of inertia, M = 1kg is the mass

of beam, a = 1m is the length of the beam, and m = 0.05kg is the mass of the ball.

We are interesting in study the equilibrium point at (x = 0, u = 0), whi
h is the

point when the ball is stati
 at the 
enter of the beam. Linearisation of the system

at the origin results in:

ẋ = Ax+Bu (2.22)

where

A =







0 1 0 0
0 0 5.8860 0
0 0 0 1

−9.81
1.4 0 0 0






, B







0
12
0
0






.

The eigenvalues of A are λ1,2,3,4 = ±1.79195 ± 1.79194i. Hen
e, the origin is

unstable. Additionally, via Lyapunov's method and LMIs we 
an look for a Lya-

punov fun
tion for the linearised system. If we programm the LMI 
onditions for

stability (P > 0 su
h that PA + ATP < 0), the LMI solver will tell us that the

problem is infeasible and therefore the system is unstable.

Nevertheless, we 
an design a linear feedba
k 
ontrol in the form u = Kx using


onditions in (2.20). If we use the solver MOSEK (ApS 2015) in MATLAB, the

following Lyapunov matrix P and 
ontrol gain K is obtained:

P =







41.1430 5.4698 −16.1926 −15.9487
5.4698 1.0783 −2.0526 −2.1632

−16.1926 −2.0526 9.1622 7.5583
−15.9487 −2.1632 7.5583 7.2815






,

K =
[
−5.3692 −0.8037 1.2713 1.8018

]
.

Note that the quadrati
 Lyapunov fun
tion V (x) = xTPx prove asymptoti
al sta-

bility for the 
losed-loop nonlinear system with u = Kx. However, sin
e it is lo
al
stability, the DA of the origin is unknown.
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Time (s)
0 2 4 6 8 10

St
at

es

-0.1

-0.05

0

0.05

0.1

0.15
x1

x2

x3

x4

Figure 2.2: Time evolution of the states of the ball and beam model under the 
ontrol law

u = Kx.

In Fig. 2.2, some traje
tories of the 
losed-loop system are shown from the initial


ondition x(0) =
[
0 0 0.1 0

]
whi
h 
onverge to the origin.

The following is the MATLAB 
ode for solving the 
urrent example.

% Define decision variables:
X=sdpvar (4);

M=sdpvar (1 ,4);

% Define the know matrices:
5 A=[0 1 0 0; 0 0 5.8860 0; 0 0 0 1; -9.81/1.4 0 0 0℄;

B=[0; 12; 0; 0℄;

eps =0.0001;

% Define LMI constraints:
LMI=[X>= eps*eye (4) A*X+X*A^T+B*M+M'*B'<=- eps*eye (4)℄;

10 % Call the solver:
sol=optimize (LMI );

Noti
e that in the example above, we just guaranteed that there exist a neigh-

borhood of the origin where the nonlinear model (2.21) is stabilisable. How large

is this neighbourhood? This of 
ourse an important question as we would like to

know whi
h initial 
onditions lead to stable solutions and how far we 
an go from

the origin without losing stability. In other words, an estimation of the DA of the


losed-loop system would 
ome at hand, but provided linearisation is a result of
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existen
e, we are unable to use it for this purpose. The dire
t Lyapunov method

and the original nonlinear setup should be used to ful�ll this requirement. But 
an

we preserve the LMI approa
h we just presented? Indeed, we 
an: in the following

se
tion, stability analysis and 
ontroller design with a estimation of DA will be

proven in an LMI framework via exa
t 
onvex representations of the nonlinear

model, namely, Takagi-Sugeno models.
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Chapter 3

Takagi-Sugeno models

This 
hapter gives a brief overview on the analysis and synthe-

sis of nonlinear systems via Takagi-Sugeno (TS) models. First, it is

shown how a TS model 
an be obtained from a nonlinear one via the

se
tor nonlinearity approa
h. If the 
onvex stru
ture of the TS model

and the Lyapunov's dire
t method are 
ombined, we 
an obtain su�-


ient LMI 
onditions both for stability analysis and 
ontroller design.

The gap between su�
ien
y and ne
essity of 
onditions, i.e., 
onser-

vativeness, arise, among other fa
tors, from the 
hoi
e of Lyapunov

fun
tion, whi
h is quadrati
 in the standard TS-LMI framework. Sin
e

the 
ontributions in this thesis are fo
used on ri
her 
lasses of Lya-

punov fun
tions �parameter-dependent, line-integral, and pie
ewise�,

this 
hapter 
on
ludes presenting them as well as dis
ussing unsolved

issues whi
h will be the subje
t of the improvements later proposed in

this work.

3.1 Takagi-Sugeno modelling

Takagi-Sugeno (TS) models have attra
ted the interest of resear
hers in the �eld

of 
ontrol systems be
ause they are able to exa
tly represent a large 
lass of

nonlinear systems in a 
ompa
t set of their state spa
e by means of a 
onvex

stru
ture whi
h proves useful when 
ombined with the dire
t Lyapunov method.

A TS model is a 
onvex blending of linear models weighted by nonlinear mem-

bership fun
tions (MFs); these models arise from linearisation (approximate ap-

proa
h) (Ohtake, Tanaka, and H. Wang 2001) or from se
tor nonlinearity (exa
t
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Chapter 3. Takagi-Sugeno models

approa
h) (Tanigu
hi, Tanaka, and H. Wang 2001). Sin
e this thesis is fo
used

on the latter, a pro
edure to 
onstru
t a TS model from a nonlinear one using

the se
tor nonlinearity approa
h is presented in the following. The idea of using

se
tor-nonlinearity in fuzzy model 
onstru
tion �rst appeared in (Kawamoto et al.

1992): it allows obtaining an exa
t representation of a nonlinear model in a TS

form inside a 
ompa
t set of the state spa
e.

3.1.1 Se
tor nonlinearity

Consider an a�ne in-
ontrol 
ontinuous-time nonlinear system of the form

ẋ(t) = A(x)x(t) +B(x)u(t), (3.1)

where x(t) ∈ R
n
is the state ve
tor, u(t) ∈ R

m
is the input ve
tor, A(·) and

B(·) are smooth matrix possibly nonlinear fun
tions of appropriate dimensions.

Assume there are p di�erent non-
onstant terms zi(x), i ∈ {1, 2, . . . , p}, in A(x)
and B(x) whi
h are bounded in a 
ompa
t set Ω ⊂ R

n
su
h that 0 ∈ Ω; they will

be the entries of the so-
alled premise ve
tor z(x) ∈ R
p
.

Let zj(x) ∈
[
zj , zj

]
, j ∈ {1, 2, . . . , p} be the set of bounded non-
onstant terms

in A(x) and B(x) belonging to Ω. Clearly, ea
h of these terms 
an be written as

a 
onvex sum of its bounds, i.e., zj(x) = wj0(x)zj + wj1(x)zj with w
j
0(x), w

j
1(x),

j ∈ {1, 2, . . . , p}, weighting fun
tions (WFs) of the form:

wj0(zj) =
zj − zj(x)

zj − zj
, wj1(zj) = 1− wj0(zj), j ∈ {1, 2, . . . , p}. (3.2)

Convex sums 
an be sta
ked together as nested ones at the leftmost side of expres-

sions, whi
h implies that (3.1) 
an be exa
tly rewritten as the following tensor-

produ
t Takagi-Sugeno model :

ẋ(t) =

1∑

i1=0

1∑

i2=0

· · ·
1∑

ip=0

w1
i1w

2
i2 · · ·w

p
ip

(
A(i1,i2,...,ip)x(t) +B(i1,i2,...,ip)u(t)

)
(3.3)

=
∑

i∈Bp

wi (Aix(t) +Biu(t)) = Awx(t) +Bwu(t), (3.4)

where i = (i1, i2, . . . , ip), B ∈ {0, 1}, wi = w1
i1
w2
i2
· · ·wpip , Ai = A(x)|wi=1, Bi =

B(x)|wi=1, 1 = (1, 1, . . . , 1)
︸ ︷︷ ︸

p ones

.
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3.1 Takagi-Sugeno modelling

More 
lassi
ally and attending their fuzzy origins, TS models used to be written

in terms of membership fun
tions (MFs):

hi = h1+i1+i2×2+···+ip×2p−1 =

p
∏

j=1

wjij (zj), (3.5)

with i ∈ {1, 2, . . . , r}, r = 2p, ij ∈ {0, 1}. As the WFs, MFs (3.5) hold the


onvex-sum property in Ω:

r∑

i=1

hi(·) = 1, hi(·) ≥ 0, i ∈ {1, 2, . . . , r}. (3.6)

Based on the previous de�nitions, an exa
t representation of (3.1) in Ω is given

by the following 
lassi
al Takagi-Sugeno model :

ẋ(t) =

r∑

i=1

hi (z(x)) (Aix(t) +Biu(t)) = Ahx(t) + Bhu(t), (3.7)

with (Ai, Bi) = (A(x), B(x))
∣
∣
hi=1

, i ∈ {1, 2, . . . , r}. Importantly, this model is an

exa
t rewriting of the nonlinear model (3.1); so it is the equivalent tensor-produ
t

model (3.3): they are not approximations.

The next example illustrates how to build a TS model from a given nonlinear

dynami
al system by the se
tor nonlinearity methodology.

Example 3.1.1. Consider the nonlinear model of an inverted pendulum on a


art (Tanaka and H. Wang 2001)(
f. Fig. 3.1):

[
ẋ1(t)
ẋ2(t)

]

=





0 1
g sin x1

x1 (1.33l− alm cos2(x1))
− amlx2 sin(2x1)

2 (1.33l− alm cos2(x1))





[
x1(t)
x2(t)

]

+

[
0

− a cosx1
1.33l− alm cos2(x1)

]

u(t), (3.8)

where x1(t) denotes the angle of the pendulum measured from the verti
al upward

position, x2(t) the angular velo
ity, m = 2 the mass of the pendulum, M = 8 the

mass of the 
art, g = 9.81 the a

eleration due to gravity, l = 0.5 the length of the

pendulum, and a = (m +M )−1
a parameter. From the physi
al setup, it is 
lear

that a realisti
 assumption is that x1(t) ∈ [−0.25π, 0.25π] and x2(t) ∈ [−1, 1].
Nonlinearities 
an be 
hosen in a variety of ways; a natural 
hoi
e is:

z1(x) =
sin x1

1.33lx1 − almx1 cos2(x1)
,
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Figure 3.1: Inverted pendulum.

z2(x) =
x2 sin(2x1)

1.33l− alm cos2(x1)
,

z3(x) =
cosx1

1.33l− alm cos2(x1)
.

Then, the nonlinearities belong to the following intervals:

z1(x) ∈ [1.46, 1.7647] , z2(x) ∈ [−1.6216, 1.6216] , z3(x) ∈ [1.1467, 1.7647] .

The WFs are: w1
0(x) =

1.7647− z1(x)

0.3047
, w2

0(x) =
1.6216− z2(x)

3.2432
, w3

0(x) =

1.7647− z3(x)

0.6180
, w1

1(x) = 1 − w1
0(x), w

2
1(x) = 1 − w2

0(x), w
3
1(x) = 1 − w3

0(x).

Thus, we get 
an rewrite (3.8) as the following tensor-produ
t TS model:

ẋ(t) =

[
0 1

g
(
w1

0(z1)z1 + w1
1(z1)z1

)
−0.5aml

(
w2

0(z2)z2 + w2
1(z2)z2

)

]

x(t)

+

[
0

−a
(
w3

0(z3)z3 + w3
1(z3)z3

)

]

u(t).

=

1∑

i1=0

1∑

i2=0

1∑

i3=0

w1
i1
(z1)w

2
i2
(z2)w

3
i3
(z3)(A(i1,i2,i3)x(t) + B(i1,i2,i3)u(t)), (3.9)

where

A000 = A001 =

[
0 1

14.3226 0.0811

]

, A010 = A011

[
0 1

14.3226 −0.0811

]

,

A100 = A101 =

[
0 1

17.3117 0.0811

]

, A110 = A111 =

[
0 1

17.3117 −0.0811

]

,
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3.1 Takagi-Sugeno modelling

B000=B010=B100=B110=

[
0

−0.1147

]

, B001=B011=B101=B111=

[
0

−0.1765

]

.

Using the same WFs as above, the following MFs are obtained:

h1(z(x))=w
1
0w

2
0w

3
0 , h2(z(x))=w

1
0w

2
0w

3
1, h3(z(x))=w

1
0w

2
1w

3
0 , h4(z(x))=w

1
0w

2
1w

3
1 ,

h5(z(x))=w
1
1w

2
0w

3
0 , h6(z(x))=w

1
1w

2
0w

3
1, h7(z(x))=w

1
1w

2
1w

3
0 , h8(z(x))=w

1
1w

2
1w

3
1 ,

based on whi
h, the following 
lassi
al TS model 
an be found:

ẋ(t) =

8∑

i=1

hi(z(x)) (Aix(t) +Biu(t)) , (3.10)

where the 
orresponding matri
es of the linear lo
al models are:

A1 = A2 =

[
0 1

14.3226 0.0811

]

, A3 = A4 =

[
0 1

14.3226 −0.0811

]

,

A5 = A6 =

[
0 1

17.3117 0.0811

]

, A7 = A8 =

[
0 1

17.3117 −0.0811

]

,

B1 = B3 = B5 = B7 =

[
0

−0.1147

]

, B2 = B4 = B6 = B8 =

[
0

−0.1765

]

.

Obviously, the two TS models above are equivalent to (3.8); moreover, note that

they have the same vertex models. Nevertheless, they may serve di�erently de-

pending on the 
ontext as nested 
onvex sums may lead to polynomial expressions

of WFs or MFs, whi
h by asso
iation may produ
e di�erent sets of LMIs. These


hara
teristi
s are exploited in this work, but keep in mind that sometimes the


hoi
e of TS model is only made to keep up with the histori
al ba
kground: for

instan
e, pie
ewise 
ontexts have usually re
urred to 
lassi
al representations (Jo-

hansson, Rantzer, and Arzen 1999) while parameter-dependent Lyapunov fun
-

tions are usually asso
iated with tensor-produ
t-related relaxations (D. Lee and D.

Kim 2014).

Note that while the righthand side of the TS models above are algebrai
ally equiva-

lent to the original nonlinear setup, the 
onvex sum property only holds within the


ompa
t set Ω = {x : |x1| ≤ 0.25π, |x2(t)| ≤ 1}; outside it, some MFs hi(·) be
ome

negative or greater than one, whi
h will turn relevant for stability analysis.
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3.2 Quadrati
 Lyapunov fun
tion

Stability analysis of nonlinear systems 
an be performed via any of their exa
t

TS representations. For the latter, stability is traditionally investigated using a

quadrati
 Lyapunov fun
tion, whi
h is among the reasons why 
onditions thus

obtained are only su�
ient, i.e., if they fail nothing 
an be 
on
luded. It turns

out that quadrati
 Lyapunov fun
tions 
an be appropriately 
ombined with the


onvex stru
ture of TS models to produ
e 
onditions that mimi
 the linear 
ase

presented before; su
h 
onditions are in the form of linear matrix inequalities

(LMIs) (Boyd et al. 1994; Tanaka and H. Wang 2001).

3.2.1 Stability analysis of TS models

Consider the following quadrati
 Lyapunov fun
tion 
andidate

V (x) = xT (t)Px(t), P = PT > 0 (3.11)

along with the 
ontinuous-time autonomous TS model (whi
h 
orresponds to TS

model (3.7) with u(t) = 0):

ẋ(t) =

r∑

i=1

hi (z(x))Aix(t) = Ahx(t), (3.12)

where Ai ∈ R
n×n

and hi, i ∈ {1, 2, . . . , r}, have the usual meanings, the latter

being MFs that hold the 
onvex sum property in a 
ompa
t set Ω. As shown in

se
tion 3.1.1, this TS model may be the result of applying the se
tor nonlinearity

approa
h to a 
ontinuous-time nonlinear model to obtain an equivalent 
onvex

representation.

This TS model is quadrati
ally stable if there exists a quadrati
 Lyapunov fun
tion

(3.11) su
h that its time-derivative is negative de�nite. The derivative of (3.11)

is given by:

V̇ (t) = ẋT (t)Px(t) + xT (t)Pẋ(t)

=

(
r∑

i=1

hi(z)Aix(t)

)T

Px(t) + xT (t)Px(t)

(
r∑

i=1

hi(z)Aix(t)

)

(3.13)

=

r∑

i=1

hi(z)x
T (t)

(
PAi +ATi P

)
x(t),

where the fa
t that

∑r
i=1 hi(·) = 1 has been used to put this sum at the leftmost

side of the expression above. Now, sin
e hi(·) ≥ 0, i ∈ {1, 2, . . . , r}, a su�
ient
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ondition to guarantee V̇ (x) < 0 is PAi + ATi P < 0. Thus, this reasoning just

proved the following:

Theorem 3.2.1. (Tanaka and H. Wang 2001) The origin x = 0 of the au-

tonomous model (3.12) is asymptoti
ally stable if there exists a matrix P = PT > 0
su
h that the following LMIs are satis�ed:

PAi +ATi P < 0

for i ∈ {1, 2, . . . , r}.

Sin
e the 
onvex sum property holds only in the 
ompa
t set Ω, any traje
tory

starting in the outermost Lyapunov level V (x) = x(t)TPx(t) = k, k ∈ R within

Ω goes to zero. Note that if Ω = R
n
, i.e., if the 
onvex sum property of the MFs

hold everywhere, the origin is globally asymptoti
ally stable; this is the 
ase of

the TS models in the fuzzy 
ontext Tanaka and H. Wang 2001.

Example 3.2.1. Consider the following 
ontinuous-time nonlinear model

[
ẋ1
ẋ2

]

=

[
−2 + x21 −1
sin x2 −2

] [
x1
x2

]

, (3.14)

whi
h is assumed to operate within the 
ompa
t set Ω = {x : |x1(t)| ≤ 1, |x2(t)| ≤
0.5π}. The following TS model 
an be 
onstru
ted from (3.14):

ẋ(t) =

4∑

i=1

hi(z(x)) (Aix(t) +Biu(t)) , (3.15)

with A1 =

[
−2 −1
−1 −2

]

, A2 =

[
−2 −1
1 −2

]

, A3 =

[
−1 −1
−1 −2

]

, A4 =

[
−1 −1
1 −2

]

,

z1(x) = x21(t), z2(x) = sin x2(t), w
1
0 = 1 − x21(t), w

2
0 = 0.5 − 0.5 sinx2(t), w

1
1 =

1−w1
0, w

2
1 = 1−w2

0, h1(z(x)) = w1
0w

2
0, h2(z(x)) = w1

0w
2
1, h3(z(x)) = w1

1w
2
0, and

h4(z(x)) = w1
1w

2
1. Re
all that TS model (3.15) is an exa
t representation of the

nonlinear model (3.14) in the 
ompa
t set Ω, whose boundaries are shown in Fig.

3.2 with a solid borderline re
tangle. For this example, the following P satis�es

theorem 3.2.1:

P =

[
0.4076 −0.0985
−0.0985 0.3232

]

, (3.16)

i.e., it satis�es the inequalities:

P = PT > 0, PA1 +AT1 P < 0,

PA2 + AT2 P < 0, PA3 +AT3 P < 0, PA4 +AT4 P < 0.
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Figure 3.2: Lyapunov levels and model states traje
tories (Theorem 3.2.1)

As mentioned before, traje
tories starting in the outermost Lyapunov level V (x) =
x(t)TPx(t) = k, k ∈ R within Ω are guaranteed to 
onverge to the origin sin
e the


onvex sum property on whi
h the Lyapunov analysis is based only holds within Ω.
Fig. 3.2 shows in dashed lines some Lyapunov levels 
orresponding to (3.11); four

system traje
tories are also shown from di�erent initial 
onditions: as expe
ted,

they all 
onverge to the origin.

It is important to noti
e that having all lo
al matri
es Hurwitz (i.e. matri
es

whose eigenvalues have stri
tly negative real parts) is not enough for ensuring the

stability of a TS model, be
ause the domain of Hurwitz matri
es is non-
onvex.

Consider the following example:

Example 3.2.2. Consider the matri
es:

A1 =

[
−2 30
0 −1

]

, A2 =

[
−2 0
30 −1

]

.

These matri
es are Hurwitz stable, and they have the eigenvalues at −2 and −1.
Now, 
onsider the 
onvex 
ombination:

A = 0.5× A1 + 0.5×A2 =

[
−5 15
15 −1

]

,

whose eigenvalues are −16.5083 and 13.5083, therefore A is non-Hurwitz.
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3.2 Quadrati
 Lyapunov fun
tion

Due to the fa
t that the Lyapunov fun
tion (3.11) is quadrati
 in x, we speak

of quadrati
 stability ; similarly, when a system is quadrati
ally stable, it implies

that it is stable via a quadrati
 Lyapunov fun
tion. Nevertheless, if a system is

stable, it is not ne
essarily quadrati
ally stable. Hen
e, 
onditions obtained using

the Lyapunov fun
tion (3.11) are only su�
ient from the point of view of 
hoi
e

of Lyapunov fun
tion. There are of 
ourse other sour
es of 
onservatism when

TS models and LMIs are employed for establishing the stability properties of an

equilibrium point of a nonlinear system. Su
h 
onservativeness means that failure

to meet the 
onditions above does not establish stability nor instability of the TS

model (Z. Lendek, T.M Guerra, et al. 2010). A test of non-existen
e of a 
ommon

matrix P = PT is given in (Johansson, Rantzer, and Arzen 1999); it ex
ludes

quadrati
 stability of a given TS model:

Proposition 3.2.1. If there exists positive de�nite matri
es Ri satisfying

Ri = RTi > 0, i ∈ {1, 2, . . . , r}
m∑

i=1

(
ATi Ri +RiAi

)
> 0

then there is no matrix P = PT > 0 su
h that LMIs 
onditions in theorem 3.2.1

hold.

3.2.2 Stabilisation

To perform 
ontroller synthesis for a TS model using state feedba
k, several 
on-

trol laws 
an be used. Besides ordinary state feedba
k u(t) = Fx(t), a 
ommon

solution whi
h in
ludes it as a parti
ular 
ase is the parallel distributed 
ompensa-

tion (PDC), �rst appeared in (Sugeno and Kang 1988) without stability analysis

as a simple 
onvex blending of lo
al feedba
k gains. The LMI stability analysis was

done and the 
orresponding 
ontrol law named PDC in (H. Wang, Tanaka, and

Gri�n 1995). The PDC 
ontroller is 
omposed of linear state feedba
ks blended

together using the same MFs hi(z(x)) as the TS model, whi
h assumes that the

state and the MFs are available:

u(t) =

r∑

i=1

hi(z(x))Kix(t) = Khx(t), (3.17)

with Ki being gains of adequate size to be determined.
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Substituting the 
ontrol law (3.17) in the TS model (3.7) gives the following


losed-loop system:

ẋ(t) =

r∑

i=1

hi(z(x))Aix(t) +

(
r∑

i=1

hi(z(x))Bi

)



r∑

j=1

hj(z(x))Kjx(t)





=

r∑

i=1

hi(z(x))





r∑

j=1

hj(z(x))





︸ ︷︷ ︸
=1

Aix(t)+

(
r∑

i=1

hi(z(x))Bi

)



r∑

j=1

hj(z(x))Kjx(t)





and �nally, it is 
lear that the 
losed-loop model is 
omposed of r2 linear models:

ẋ(t) =

r∑

i=1

r∑

j=1

hi(z(x))hj(z(x)) (Ai +BiKj) x(t) = (Ah +BhKh)x(t), (3.18)

where, again, the fa
t that

∑r
i=1 hi(·) = 1 has been taken into a

ount. The next

result 
onsiders that the gains are already given; a good initial guess is to stabilise

ea
h pair (Ai, Bi) via gain Ki.

Theorem 3.2.2. (Tanaka and H. Wang 2001) The origin x = 0 of the TS model

(3.18) is asymptoti
ally stable if ∃P = PT > 0 su
h that:

PAi + ATi P + PBiKj +KT
j B

T
i P < 0, (3.19)

hold for i, j ∈ {1, 2, . . . , r}. The Lyapunov fun
tion is given by V (x) = xTPx and

any traje
tory starting in the outermost Lyapunov level inside Ω goes asymptoti-


ally to zero.

Proof. Consider a quadrati
 Lyapunov fun
tion 
andidate V (x) = xTPx, V (0) =
0 and V (x) > 0, ∀x 6= 0 with P = PT > 0, then,

V̇ (x) = ẋTPx+ xTPẋ (3.20)

= xT
(

(Ah + BhKh)
T
P + P (Ah +BhKh)

)

x (3.21)

=

r∑

i=1

r∑

j=1

hi(z(x))hj(z(x))x
T
(

(Ai + BiKj)
T
P + P (Ai +BiKj)

)

x < 0.

(3.22)

Su�
ient 
onditions to guarantee V̇ (x) < 0 are thus

PAi + ATi P + PBiKj +KT
j B

T
i P < 0, ∀i, j ∈ {1, 2, . . . , r}. (3.23)
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 Lyapunov fun
tion

Re
all that we are 
on
erned with analysis and synthesis of nonlinear systems

via TS models. Sin
e the latter is an exa
t rewriting of the former, the 
ontrol

feedba
k (3.17) stabilizes the original nonlinear system with TS model (3.7) within

the outermost Lyapunov level in the modeling region Ω.

There are two issues in the previous result:

1. Convex sum relaxations: The use of the same MFs both in the 
ontrol law

and the system produ
es, on
e the dire
t Lyapunov method is applied, a

signed double 
onvex sum; getting LMIs from it 
an be done in a variety

of ways, ea
h of them 
alled a sum relaxation and asso
iated with the 
o-

positivity problem (Murty and Kabadi 1987). The set of inequalities (3.19) is

not the only way to guarantee the double 
onvex sum in V̇ (x) to be negative.
In the next se
tion, other ways to drop o� the MFs involved in double 
onvex

sums will be given.

2. LMI synthesis: Given a set of 
ontrol gains Kj, j ∈ {1, 2, . . . , r}, the model

(3.18) is (quadrati
ally) stable if the 
onditions on theorem 3.2.2 are feasible.

However, these 
onditions assume the set of gains is already given; i.e., they

are in fa
t a stability test. In order to provide LMI 
onditions for 
ontroller

design (synthesis), i.e., to determine gains Kj, j ∈ {1, 2, . . . , r}, along with

the Lyapunov matrix P it is ne
essary to apply some of the LMI properties

in se
tion 2.2.

The �rst issue is now 
onsidered in some detail before pro
eeding with the se
ond

one.

Convex sum relaxation

As seen above, when the dire
t Lyapunov method is applied to 
losed-loop TS

models, it leads to expressions 
ontaining double 
onvex sums, from whi
h MFs

should be removed in order to obtain LMIs. There are several ways to perform

this task, some more or less 
onservative, some more or less 
omplex. The s
heme

employed to perform this task is 
alled sum relaxation. Relaxations help redu
ing

the gap that separates su�
ient LMI 
onditions from the 
onvex expressions they

guarantee. The fa
t that there is room for improvement 
omes from the absen
e of

the MFs in the LMI 
onditions used for analysis and 
ontrol design of TS models,

let alone their shape (C. Ariño and Sala 2007). Some relaxation lemmas follow:
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Lemma 3.2.1. (Tanaka and Sano 1994) Let Υij, i, j ∈ {1, . . . , r} being a 
olle
tion

of matri
es of the same size; then, the double 
onvex-sum

r∑

i=1

r∑

j=1

hi (z(x))hj (z(x))Υij < 0 (3.24)

is veri�ed if

Υii < 0, ∀i ∈ {1, 2, . . . , r},
Υij +Υji < 0, ∀(i, j) ∈ {1, 2, . . . , r}2, i < j. (3.25)

Lemma 3.2.2. (Tuan et al. 2001) Let Υij, i, j ∈ {1, 2, . . . , r} being a 
olle
tion of

matri
es of proper size. The inequality (3.24) is veri�ed if the following 
onditions

hold:

Υii < 0, ∀i ∈ {1, 2, . . . , r},
2
r−1Υii +Υij +Υji < 0, ∀(i, j) ∈ {1, 2, . . . , r}2, i 6= j. (3.26)

Noti
e that these 
onditions are only su�
ient; however, there are other relax-

ations that be
ome ne
essary through a 
omplexity parameter (Sala and Ariño

2007; Kruszewski et al. 2009). Despite the fa
t that these approa
hes �
lose� the

relaxation issue, they qui
kly be
ome intra
table for the a
tual LMI solvers due

to the enormous growth in the number of LMIs whi
h is a fun
tion of the system

order and the desired 
loseness to the ne
essity. The relaxations here presented are


onsidered more 
onvenient sin
e they make a good 
ompromise between numeri-


al 
omplexity and quality of solutions; moreover: they do not add sla
k matri
es

(E. Kim and H. Lee 2000).

LMI synthesis

Resuming 
onditions in theorem 3.2.2, we are now ready to prove that they 
an

a
tually be expressed as LMIs in order to �nd the gains Kj , j ∈ {1, 2 . . . , r} of

the PDC-
ontrol law (3.17) instead of �guessing� them and verifying a posteriori

if they produ
ed a stabilised system. This is 
alled synthesis as we intend to

synthesise a 
ontroller via an LMI whi
h will be obtained by applying some of the

properties listed in se
tion 2.2.

Consider again the expression (3.21), to whi
h the property of 
ongruen
e with

X = P−1
is applied to obtain:

AhX +XATh +BhKhX +XKT
h B

T
h < 0. (3.27)
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tion

Thus, taking the 
hange of variableMh = KhX, the following equivalent inequal-

ity is obtained.

Υhh = AhX +XATh +BhMh +MT
h B

T
h < 0. (3.28)

Note that having a solution X, Mh guarantees a unique pair P and Kh as Kh =
MhX

−1
; therefore, the solution spa
e has not been altered by the transformations

above, yet, the result is ready to be 
ast as an LMI on
e a relaxation s
heme is

applied. Indeed, to guarantee the double 
onvex sum in (3.28) to be negative-

de�nite, a sum relaxation allows us establishing the following theorem.

Theorem 3.2.3. The origin x = 0 of the TS model (3.18) is asymptoti
ally stable

if there exist matri
es X = XT > 0 and Mi, i ∈ {1, 2, . . . , r} su
h that 
onditions

(3.25) or (3.26) hold with

Υij = AiX +XATi +BiMj +MT
j B

T
i , (3.29)

for i, j ∈ {1, 2, . . . , r}. In su
h 
ase, the 
ontrol gains are given by Ki = MiX
−1

,

the Lyapunov fun
tion is xTPx with P = X−1
, and every traje
tory of the system

within the outermost Lyapunov level inside Ω goes asymptoti
ally to zero.

Example 3.2.3. Consider the TS model (3.10) of an inverted pendulum on a


art obtained in the example 3.1.1, reprodu
ed here for 
onvenien
e:

ẋ(t) =

8∑

i=1

hi(z(x)) (Aix(t) +Biu(t)) , (3.30)

where

A1 = A2 =

[
0 1

14.3226 0.0811

]

, A3 = A4 =

[
0 1

14.3226 −0.0811

]

,

A5 = A6 =

[
0 1

17.3117 0.0811

]

, A7 = A8 =

[
0 1

17.3117 −0.0811

]

,

B1 = B3 = B5 = B7 =

[
0

−0.1147

]

, B2 = B4 = B6 = B8 =

[
0

−0.1765

]

.

Using theorem 3.2.3 with 
onditions (3.26) the following results are obtained using

the solver MOSEK and the YALMIP interfa
e:

P =

[
0.5139 0.1206
0.1206 0.0438

]

, K1 =
[
407.4190 70.6658

]
, K2 =

[
270.7068 47.7490

]
,

K3=
[
406.7666 69.5068

]
, K4=

[
271.4284 46.7314

]
, K5=

[
423.7512 70.1878

]
,

K6=
[
293.6729 48.1255

]
, K7=

[
423.0828 69.0443

]
, K8=

[
294.2176 47.1462

]
.
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Figure 3.3: Lyapunov levels and model states traje
tories (Theorem 3.2.3).

Figure 3.3 shows with a solid borderline re
tangle the boundaries of the 
ompa
t Ω
where the 
onvex sum property holds, and due to the fa
t that TS model (3.10) is

an exa
t representation of the nonlinear model (3.8), this model under the PDC


ontrol law (3.17) is asymptoti
ally stable inside the outermost Lyapunov 
urve

level V (x) = x(t)TPx(t) = k, k ∈ R within Ω. Figure 3.3 shows in dashed lines

some Lyapunov 
urve levels; it also shows two state traje
tories from di�erent

initial 
onditions whi
h 
onverge to the origin as it was expe
ted.

Note that the outermost Lyapunov level within the modeling region Ω gives an

estimate of the DA. Nevertheless, determining the maximum k su
h that {V (x) ≤
k} ⊆ Ω is a task that require additional LMIs. Suppose that the region Ω is a

symmetri
 polytope 
ontaining the origin x = 0:

Ω = {x ∈ R
n : |aTi x| ≤ 1, i ∈ {1, 2, . . . , np}}

Lemma 3.2.3. (S. Cao, Rees, and Feng 1999) Θ = {x ∈ R
n|xTPx ≤ 1}, P =

PT > 0 is an ellipsoid 
ontained in Ω whi
h itself 
ontains the maximum volume

sphere 
entered of radius λ
1
2
at x = 0 if the following LMI problem is feasible:

minimize λ

subje
t to λI ≥ P > 0,
[
P ai
aTi 1

]

≥ 0, i ∈ {1, 2, . . . , np}.

Then, no other ellipsoid in Ω 
ontains a larger 
entered sphere.
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tions

Noti
e that adding LMIs to former results does not require any adaptation as they

appear as further 
onvex 
onstraints on 
onvex solution sets. This �modularity�

of LMI results is one of their most valuable 
hara
teristi
s.

As mentioned in the introdu
tion, the results above are 
onservative, i.e., (a) the

origin of a nonlinear system with a TS model (3.12) might be asymptoti
ally stable

while theorem 3.2.1 fails to establish this fa
t, (b) there exists a PDC 
ontrol

law of the form (3.17) that makes the origin of the 
losed-loop system (3.18)

asymptoti
ally stable while theorem 3.2.3 fails to provide it. Conditions are only

su�
ient, not ne
essary, due to several reasons, some of whi
h have already been

listed in the introdu
tion: the sum relaxation, the 
hoi
e of TS model, and the

kind of Lyapunov fun
tion. The following se
tions explore some of the answers

resear
hers have provided to ta
kle the latter sour
e of 
onservativeness.

3.3 Parameter-dependent Lyapunov fun
tions

In general, there is no systemati
 method to �nd a Lyapunov fun
tion asso
iated

to a stable equilibrium point of a system. Spe
i�
ally, when a TS model is under


onsideration, it is apparent that quadrati
 stability does not involve information

of the MFs; therefore, in
luding somehow the MFs 
an eliminate some drawba
ks.

Pursing this idea, the TS-LMI framework has been expanded by using parameter-

dependent Lyapunov fun
tion (PDLF) 
andidates (Blan
o, Perruqueti, and Borne

2001; Tanaka, Hori, and H. Wang 2003), whi
h share the stru
ture of the TS model

they are applied to:

V (x(t)) =

r∑

i=1

hi(z(x))x
T (t)Pix(t) = xT (t)Phx(t) (3.31)

where Pi = PTi > 0 and hi(z(x)) are the same MFs of the asso
iated TS model,

for i ∈ {1, 2, . . . , r}. PDLFs are also known as non-quadrati
 Lyapunov fun
tions

(whi
h, of 
ourse, is quite an unspe
i�
 name), 
onvex Lyapunov fun
tions (whi
h,

again, may refer to a larger family of Lyapunov fun
tions involving, for instan
e,


onvex sums of polynomials), and fuzzy Lyapunov fun
tions (whi
h is outmoded

and misleading, as we fo
us on nonlinear systems with known model, not a fuzzy

one). PDLFs are not quadrati
 sin
e the MFs hi(z(x)) depend on the states.

PDLFs a

omplish the task of in
luding the MFs in their de�nition. Nonetheless,

this in
lusion leads to some problems in the 
ontinuous-time 
ase. To see this,
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onsider the following 
ontinuous-time TS model:

ẋ(t) =

r∑

i=1

hi(z(x))Aix(t) = Ahx(t), (3.32)

whi
h is asymptoti
ally stable if there exists a PDLF (3.31) su
h that its time

derivative is negative in some vi
inity of x = 0. The time derivative of (3.31) is


al
ulated as

V̇ (x) = xT






PhAh + AThPh +

dPh
dt
︸︷︷︸

Ṗh






x

=

r∑

i=1

r∑

j=1

hi(z(x))hj(z(x))x
T

(

ATj Pi + PiAj +

r∑

i=1

ḣi(z(x))Pi

)

x

The term Ṗh involves the time derivatives of the MFs hi(z), whi
h, by the 
hain

rule have the form:

dhi
dt

=
∂hi
∂z

ż(t).

Although ∂hi(z)/∂z 
an be easily 
al
ulated and bounded, ż(t) is a priori unknown
and may depend on the states or exogenous signals (Blan
o, Perruqueti, and Borne

2001). A �rst solution to over
ome this problem for stability purposes has been to

dire
tly bound the time derivative of the MFs, i.e.,

∣
∣
∣ḣi

∣
∣
∣ < φi (Blan
o, Perruqueti,

and Borne 2001; Tanaka, Hori, and H. Wang 2001; Tanaka, Hori, and H. Wang

2003; L.A. Mozelli et al. 2009), something 
ustomary in the LPV �eld (F. Wu

and Dong 2006), but of little realism when a nonlinear system with the full state

available is 
on
erned. The main drawba
k of doing this is the need of verifying a

posteriori that the system traje
tories do not es
ape from the spe
i�ed boundaries.

Theorem 3.3.1. (Tanaka, Hori, and H. Wang 2003) Assume that

∣
∣
∣ḣρ(z(x))

∣
∣
∣ <

φρ, where φρ ≥ 0. The TS model (3.32) is stable if there exist φ1, φ2, . . . , φρ su
h

that

Pi > 0, i ∈ {1, 2, . . . , r}
r∑

ρ=1

φρPρ +
1

2
(PiAj + PjAi + (∗)) , i ≤ j

The 
orresponding PDLF is thus given by (3.31).
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Figure 3.4: Outermost Lyapunov level and system traje
tories (Example 3.3.1)

Example 3.3.1. Consider a 
ontinuous-time TS system with two lo
al models

A1 =

[
−0.23 0.30
−2 −0.75

]

A2 =

[
−2 10.4
1.3 −14.3

]

Quadrati
 stability of this system 
annot be proven, as the LMIs from theorem

3.2.1 are infeasible. However, we 
an prove asymptoti
 stability by using theorem

3.3.1 with φ1 = φ2 = 0.3279, whi
h produ
es the following feasible solution:

P1 =

[
57.8285 6.1677
6.1677 18.7128

]

, P2 =

[
98.4874 73.4775
73.4775 55.5888

]

.

As mentioned before, dire
tly bounding the time-derivative of the MFs may have

a very negative e�e
t: in �gure 3.4, bounds ḣ1 = φ1 and ḣ2 = φ2 are shown with

dotted lines. Note that the lo
al stability result is only valid for the outermost

Lyapunov level shown in this �gure inside ḣi ≤ φi, i = 1, 2. This outermost

Lyapunov level is the solid ellipsoid in the same �gure. System traje
tories from

two di�erent initial 
onditions are also in
luded for illustration purposes.

Another approa
h based on further analysis of the properties of the time-derivative

of the MFs ḣi appeared in (T.M. Guerra and Bernal 2009); it is based on the

following fa
t (T.M. Guerra and Bernal 2009; Bernal and T. M. Guerra 2010):

Theorem 3.3.2. The TS model (3.32) is asymptoti
ally stable if there exist Pi =
PTi > 0, i ∈ {1, 2, . . . , r}, su
h that PhAh + AThPh < 0.
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What does this result mean? It states a su�
ient 
ondition for lo
al stability of a

TS model by means of a PDLF; it does not guarantee global stability nor stability

in the outermost Lyapunov level inside the modeling area Ω. It simply states

that there exists a vi
inity of the origin for whi
h all traje
tories 
onverge to the

origin, making it lo
ally asymptoti
ally stable. It is a result of existen
e whi
h

does not provide any 
onstru
tive method to know the size of su
h vi
inity, let

alone the biggest one. Nevertheless, this result is the departure point for several

algorithms that employ PDLFs to get su

essively better estimates of the region

of attra
tion for TS models whose origin is lo
ally asymptoti
ally stable (T.M.

Guerra and Bernal 2009; Bernal and T. M. Guerra 2010; T.M. Guerra, Bernal,

et al. 2012).

Theorem 3.3.3. (T.M. Guerra and Bernal 2009) If there exist matri
es Pi =
PTi > 0, i ∈ {1, 2, . . . , r}, su
h that LMIs

2

r − 1
Υmαα +Υmαβ +Υmβα < 0, (3.33)

hold for (α, β) ∈ {1, . . . , r}2, m ∈ {1, 2, . . . , 2p×n} with

Υmαβ = PαAβ +ATβPα +

p
∑

k=1

n∑

u=1

(−1)d
m
kuλku (LAβ)ku

(
Pg1(α,k) − Pg2(α,k)

)
,

z = Lx, dmku de�ned from the binary representation of m − 1 = dmpn + dmp(n−1) ×
2 + · · ·+ dm11 × 2p×(n−1)

, and g1(α, k), g2(α, k) de�ned as:

g1 (α, k) =
⌊
(α− 1) /2p+1−k

⌋
× 2p+1−k + 1 + (α− 1) mod 2p−k,

g2 (a, k) = g1 (α, k) + 2p−k,

then x(t) tends to zero exponentially for any traje
tory satisfying (3.32) in the

outermost Lyapunov level 
ontained in R =
⋂

k,u

{

x :

∣
∣
∣
∣

∂wk0
∂zk

xu

∣
∣
∣
∣
≤ λku

}

.

A more re
ent alternative to deal with the time-derivatives of the MFs when

PDLFs are used, 
onsists in mixing the previous methodologies by bounding the

terms ẇk0 that appear after developing Ṗh, i.e., the expression

Ṗh =

p
∑

k=1

ẇk0
(
Pg1(z,k) − Pg2(z,k)

)

is repla
ed by

Ṗh =

p
∑

k=1

(−1)d
m
k βk

(
Pg1(z,k) − Pg2(z,k)

)
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in the inequality PhAh + AThPh + Ṗh < 0 in order to guarantee it, where g1(·, ·)
and g2(·, ·) are de�ned as above, m − 1 = dmp + dmp−1 × 2 + · · · + dm1 × 2p−1

,

m ∈ {1, 2, . . . , 2p}, and |ẇk0 | ≤ βk, k ∈ {1, 2, . . . , p} is guaranteed by some extra-

LMIs, i.e., these bounds are not assumed a priori as in the �rst approa
h presented.

PDLFs have su

eeded noti
eably in the dis
rete-time framework as they are not

fa
ed with the problem of the time derivative of the MFs (T.M. Guerra and Ver-

meiren 2004; T.M Guerra, Kruszewski, and Lauber 2009). In the 
ontinuous

framework, with the limitations des
ribed above, they have produ
ed 
ontrollers

(T.M. Guerra, Bernal, et al. 2012; Pan et al. 2012; Na
hidi, Tadeo, and Benzaouia

2012), observers (Aguiar, Márquez, and Bernal 2016), des
riptors, et
. In this the-

sis, the 
ontributions on this area are fo
used on stability and stabilisation, so the

previous referen
es are only given out of 
ompleteness.

3.4 Line-integral Lyapunov fun
tions

Although originally 
onsidered as a parameter-dependent Lyapunov fun
tion

(fuzzy in the 
ontext of its original appearan
e), the proposal in (Rhee and Won

2006) 
onstituted a breakthrough as it employed the MFs without dealing with

their time derivatives. The proposed line-integral Lyapunov fun
tion is:

V (x) =

∫

Γ(0,x)

f(ψ)dψ, (3.34)

with Γ(0, x) being a path from the origin 0 to the 
urrent state x, ψ as a dummy

ve
tor for the integral, and f(x) =
∑r
i=1 hi(z(x))Pix = Phx. Cal
ulating the time

derivative of (3.34) as:

V̇ (x) = xT
(
PhAh + AThPh

)
x, (3.35)

we 
an see that the time derivative of the MFs does not appear, unlike the previous

approa
hes using a PDLF; this idea will be resumed later for one of the main


ontributions of this thesis.

Nevertheless, to be a Lyapunov fun
tion 
andidate, V (x), has to satisfy ne
essary

path independent 
onditions. These path-independent 
onditions are presented in

the following lemma.

Lemma 3.4.1. Let f(x) = [f1(x), f2(x), . . . , fn(x)]
T
. A ne
essary and su�
ient


onditions for V (x) to be path-independent fun
tion is

∂fi(x)

∂xj
=
∂fj(x)

∂xi
, (3.36)

for i, j,∈ {1, 2, . . . , n}.
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Due to the these ne
essary 
onditions in (3.34), the approa
h in (Rhee and Won

2006) was only appli
able to a spe
ify 
lass of TS models where the number of

MFs were at most n and ea
h of them depends exa
tly on one state variable.

In the previous results some sum relaxation s
hemes have been 
hosen, but the

reader should keep in mind that any sum relaxation s
heme 
an be used instead of

those hereby proposed, for instan
e lemma 3.2.1 (Tanaka and Sano 1994), lemma

3.2.2 (Tuan et al. 2001), or the asymptoti
ally su�
ient and ne
essary 
onditions

in (Sala and Ariño 2007; Kruszewski et al. 2009).

3.5 Pie
ewise Lyapunov fun
tion

Yet another way of involving the MFs into the LMI 
onditions for stability and

stabilisation of nonlinear systems via TS models, 
onsists in dividing the state

spa
e in regions within whi
h the MFs indu
e a di�erent �perhaps simpli�ed�


onvex model of the system. If the Lyapunov fun
tion 
andidate is allowed to


hange a

ording to this partition, it may in
rease the 
han
es of be
oming an

a
tual Lyapunov fun
tion not only be
ause it will provide more �exibility (di�erent

Lyapunov matri
es per partition (Johansson, Rantzer, and Arzen 1999)), but

also be
ause there are several ways of in
luding the geometri
 information of the

partition (Yakubovi
h 1977). To illustrate these points, 
onsider the following

example adapted from (Johansson and Rantzer 1998):

Example 3.5.1. Consider the system:

ẋ(t) =

{
A1x(t), if x1 < 0
A2x(t), if x1 ≥ 0

(3.37)

with A1 =

[
−10 −8
−2 −4

]

, A2 =

[
−1 −2
10 −1

]

.

Quadrati
 stability redu
es to �nding P = PT > 0 su
h that AT1 P + PA1 < 0 and

AT2 P + PA2 < 0. Nevertheless, if

R1 =

[
0.85 −0.7
−0.7 0.67

]

, R2 =

[
2.62 1.01
1.01 0.57

]

,

then

2∑

i=1

(
ATi Ri + RiAi

)
=

[
0.74 0.04
0.04 0.53

]

> 0,

whi
h, a

ording to property 3.2.1, proves that no su
h P exists. Hen
e, quadrati


stability fails to demonstrate the stability of (3.37).
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−5 −4 −3 −2 −1 0 1

−2

−1

0

1

2

x1

x
2

Figure 3.5: Traje
tories in the phase plane of the model states (3.37).

Now 
onsider the pie
ewise Lyapunov fun
tion:

V (x) =

{

xTPx, if x1 < 0

xT
(
P + ηCTC

)
x, if x1 ≥ 0

(3.38)

with C =
[
1 0

]
, the LMI problem for stability is �nd P = PT > 0 and η su
h

that:

P + ηCTC > 0, PA1 +AT1 P < 0,

(P + ηCTC)A2 +A2(P + ηCTC) < 0,

with P =

[
0.05 −0.01
−0.01 0.20

]

and η = 0.89 a solution to the previous inequalities is

obtained, sin
e

PA1 +AT1 =

[
−0.95 −0.68
−0.68 −1.5

]

< 0,

(P + ηCTC)A2 +AT2 (P + ηCTC) =

[
−2.04 0.16
0.16 −0.37

]

< 0.

Thus, the origin of (3.37) is an asymptoti
ally stable equilibrium point. The level

surfa
es of the 
omputed Lyapunov fun
tion are indi
ated in �gure 3.5 along with

some system traje
tories.
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The previous example shows that although quadrati
 stability 
annot be proven,

introdu
ing some �knowledge� into the Lyapunov fun
tion 
an eliminate some

drawba
ks. An approa
h for systemati
ally using the MFs to indu
e a state spa
e

partition a

ording to the s
heduling variables for 
ontinuous-time Takagi-Sugeno

models �rst appeared in (Johansson and Rantzer 1998). In a subsequent work, the

same authors provided pie
ewise analysis of Takagi-Sugeno models with polyhedral

partitions; pie
ewise Lyapunov fun
tions (PWLFs) were naturally in
orporated

(Johansson, Rantzer, and Arzen 1999). Dis
rete-time 
ounterparts 
an be found

in (Feng 2003; Feng et al. 2005).

This subse
tion is based on (Johansson, Rantzer, and Arzen 1999), where MF-

indu
ed polyhedral partitions of the state spa
e where used to de�ne a PWLF for

a�ne TS models, i.e., models of the form

ẋ(t) =

r∑

l=1

hl(z(x)) (Alx(t) + al) , (3.39)

where Al ∈ R
n×n

and al ∈ R
n×1

are the lo
al matri
es and a�ne terms, respe
-

tively, and MFs hl, l ∈ {1, 2, . . . , r} depend on the premise ve
tor z(·), whi
h in

turn is assumed to depend linearly on the system state x(t), i.e., z(x) = Cx, with
C ∈ R

p×n
.

Regions where hl(x) = 1 for some l will be 
alled operating regimes sin
e only the l-
th subsystem ẋ(t) = Alx(t)+al is a
tive on them. Otherwise, in between operating

regimes, regions will be 
alled interpolation regimes. Both these regions have also

a geometri
al interpretation, provided that the premise ve
tor z(x(t)) depends

linearly on the states x(t): they form a polyhedral 
olle
tion {Xi}i∈I ⊆ R
n
, where

I is the set of 
ell indi
es. It is important to underline that this spe
i�
ations

restri
t the 
lass of TS models to whi
h this approa
h 
an be applied to those

whose linear 
onsequents are not simultaneously a
tivated ; this impedes applying

this methodology to TS models whi
h are obtained via se
tor nonlinearity.

For ea
h 
ell Xi a set K(i) will be de�ned as the set of indi
es of the system ma-

tri
es used in the interpolation within that 
ell. Naturally, for operating regimes,

K(i) 
ontains only a single element. Sin
e this approa
h investigates exponential

stability of the origin, I will be divided in two sets: I0 whi
h will 
ontain the

indi
es of 
ells that 
ontain the origin and I1 whi
h will have the indi
es of 
ells

that do not 
ontain the origin.

De�ning

Ak =

[
Ak ak
0 0

]

, x(t) =

[
x(t)
1

]

(3.40)
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where it is assumed that ak = 0 for all k ∈ K(i) with i ∈ I0, the system (3.39)


an be rewritten as

ẋ =
∑

k∈K(i)

hk(x)Akx, x ∈ Xi.

Traditionally, this approa
h partitions the state spa
e a

ording to the a
tivation

of the linear models, allowing the Lyapunov fun
tion to 
hange from one region

to another, for instan
e

V (x) =







xT (t)Pix(t), x ∈ Xi, i ∈ I0
[
x
1

]T

P i

[
x
1

]

, x ∈ Xi, i ∈ I1
(3.41)

The above partition is natural for those TS models that do not have all their linear

models a
tivated at on
e. Nevertheless, we insist that this assumption does not

hold for TS models built by using the se
tor nonlinearity approa
h, whi
h are our

fo
us in this thesis.

In order to guarantee 
ontinuity of the PWLF a
ross the borders between regimes,

this fun
tion is parameterised by matri
es F i = [Fi fi], i ∈ I, with Fi ∈ R
n×n

,

fi ∈ R
n×1

, fi = 0 for i ∈ I0, su
h that:

F i

[
x
1

]

= F j

[
x
1

]

, x ∈ {Xi ∩Xj}, i, j ∈ I. (3.42)

A systemati
 pro
edure for 
onstru
ting these matri
es is given in (Johansson,

Rantzer, and Arzen 1999). Then, Pi and P i in (3.41) are parameterised as follows:

Pi = FTi TFi, i ∈ I0

P i = F
T

i TF i, i ∈ I1.
(3.43)

with T being a symmetri
 matrix of appropriate dimensions whi
h 
olle
ts the free

parameters of the Lyapunov fun
tion. Note that this arrangement is a 
ompromise

between 
ontinuity and LMI formulation of the results, whi
h is hereby possible.

Sin
e matri
es Pi or P i are only used to des
ribe the Lyapunov fun
tion in 
ellXi,

it is possible to use the S-pro
edure in property 2.2.4 to redu
e 
onservativeness

by 
onstru
ting matri
es Ei = [Ei ei] with Ei ∈ R
n×n

, ei ∈ R
n×1

, ei = 0 for

i ∈ I0, that satisfy

Ei

[
x
1

]

� 0, x ∈ Xi, i ∈ I (3.44)

where for every matrix Wi with nonnegative entries Wi � 0, 
ondition (3.44)

implies that

[
x
1

]T

E
T

i WiEi

[
x
1

]

> 0, ∀x ∈ Xi, i ∈ I.
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As with matri
es F i, these Ei 
an also be systemati
ally 
onstru
ted (Johansson,

Rantzer, and Arzen 1999). Moreover, there is a toolbox for MATLAB that auto-

mati
ally produ
es the set of matri
es F i and Ei for a given partition (Hedlund

and Johansson 1999).

Then, we have the following result on pie
ewise quadrati
 stability of 
ontinuous-

time a�ne TS models:

Theorem 3.5.1. (Johansson, Rantzer, and Arzen 1999) If there exist symmetri


matri
es T , Ui � 0 and Wik � 0 su
h that

Pi = FTi TFi, i ∈ I0

P i = F
T

i TF i, i ∈ I1
(3.45)

satisfy

Pi −ETi UiEi > 0
ATk Pi + PiAk +ETi WikEi < 0

(3.46)

for i ∈ I0, k ∈ K(i), and

P i −E
T

i UiEi > 0

A
T

k P i + P iAk +E
T

i WikEi < 0
(3.47)

for i ∈ I1, k ∈ K(i), then x(t) tends to zero exponentially for every 
ontinuous

pie
ewise C1
traje
tory in ∪i∈IXi satisfying (3.39).

We do not intend to reprodu
e the details given in (Johansson, Rantzer, and

Arzen 1999), but it is important to noti
e that LMIs (3.46) and (3.47) guarantee

the PWLF 
andidate (3.41) to be positive everywhere and its time derivative

negative in every state-spa
e partition. Auxiliary matri
es F i and Ei guarantee

ontinuity of the PWLF as well as the in
lusion of spe
i�
 partition information via

an adaptation of the S-pro
edure, respe
tively. On
e the system traje
tory enters

the regions 
ontaining the origin, the following theorem guarantee exponential


onvergen
e to the origin.

Theorem 3.5.2. Pie
ewise exponential stability: Let V (t) be de
reasing and

pie
ewise C1
. If there exist positive s
alars α, β, and γ > 0 su
h that

α‖x(t)‖2 ≤ V (t) ≤ β‖x(t)‖2 (3.48)

d

dt
V (t) ≤ −γ‖x(t)‖2 a.e. (3.49)

then ‖x(t)‖2 ≤ βα−1e−γt/β‖x(0)‖2.
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tion

The above partition is natural for those TS models that do not have all their linear

models a
tivated at on
e. Unfortunately, this assumption does not hold for TS

models built by using the se
tor nonlinearity approa
h. In (Gonzalez and Bernal

2016) a �rst step towards this adaptation has been made; we revisit it in 
hapter

5 where it is generalised to pie
ewise a�ne TS models. Stabilisation based on

PWLFs remains unfortunately a BMI problem as shown in (Feng et al. 2005);

other tasks su
h as observer design (Qiu, Feng, and Gao 2012) or output feedba
k

(Qiu, Feng, and Gao 2013) also remain open as they fa
e the philosophi
al problem

of depending on where an estimated state lies.

Comments on other developments

Although out of the s
ope of this thesis, it is important to know that, based

on quadrati
 Lyapunov fun
tions and TS models, a whole framework has been

developed that goes beyond stability analysis and 
ontroller design of nonlinear

systems: it 
overs observers (Tanaka, Ikeda, and H. Wang 1998), output feedba
k

(Yoneyama et al. 2000; Na
hidi, Benzaouia, et al. 2008), des
riptors (Tanigu
hi,

Tanaka, Yamafuji, et al. 1999), delay systems (Y. Cao and Frank 2000), et
.

Perhaps be
ause the original results happened to be LMIs, resear
hers in this

area have always been 
on
erned about expressing their results in this numeri
ally

e�
ient form, a fa
t that be
ame a distin
tive feature of the �eld.

One additional advantage on the use of TS-LMI framework for the analysis of

nonlinear systems is that via LMI we 
an impose some performan
e 
riterios for

the dynami
al system. For example, de
ay-rate (Tanigu
hi, Tanaka, and H. Wang

2001), H2 guarantee 
ost (H. Wu and Cai 2006), H∞ robust stabilization (K. Lee,

Jeung, and H. Park 2001), et
. Additionally, apart from stability or H∞ bounds,

there are other problems of interest, su
h as bounding the deviations from the

origin under disturban
es (Sal
edo, Martínez, and Gar
ía-Nieto 2008; Pitar
h,

Sala, and C.V. Ariño 2015). Moreover, the use of TS-LMI 
an be applied to solve

two or more di�erent 
ontrol obje
tives at the same time, i.e., a set of the LMI 
an

solve two or more problems, for example: output feedba
k robust for time-delay

TS systems (K. Lee, J. Kim, and Jeung 2001), robust 
ontrol for TS systems with

time-delay (Zaidi et al. 2016), et
.
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Chapter 4

Convex-polynomial models

This 
hapter surveys results on stability analysis and stabilisation

of nonlinear systems by using polynomial models and sum-of-squares

(SOS) te
hniques. It begins with by introdu
ing the SOS 
onditions

and their relations with the LMI framework; then, the fuzzy polyno-

mial modelling methodology is presented. Similarly to the TS-LMI

approa
h, it is shown that polynomial models and SOS tools 
an be


ombined for analysis and design of nonlinear 
ontrol systems. More-

over, as an alternative to the fuzzy polynomials models, the dynami
al

extension approa
h is brie�y introdu
ed at the end of the 
hapter.

4.1 Introdu
tion

The sum-of-squares (SOS) te
hnique was introdu
ed by Parrilo in his thesis (Par-

rilo 2000), allowing an algorithmi
 analysis of polynomial nonlinear systems (i.e.,

systems 
onsisting on polynomials of the states on its righthand side) using Lya-

punov methods (Papa
hristodoulou and Prajna 2002). As its name suggests, sum

of squares is another way to imply that an expression is positive, though a positive

expression may not be SOS (Chesi 2007). The SOS approa
h is a generalisation

of the LMI framework as, in fa
t, proving that a polynomial has a SOS de
om-

position (i.e., that it 
an be written as a sum of squares) is a 
onvex problem; in

other words, polynomial positivity 
an be tested via LMIs. As produ
ts of polyno-

mials are also polynomials, Lyapunov stability analysis of a polynomial nonlinear

system 
an be performed via a polynomial Lyapunov fun
tion 
andidate (i.e., a

positive polynomial of the states amenable to SOS) and SOS te
hniques.
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Convex polynomial models were �rst introdu
ed as a dire
t generalisation of 
las-

si
al TS ones, i.e., no attention was paid to the origin of the MFs as they were

assumed to hold the 
onvex sum property everywhere; they were referred to as

fuzzy polynomial models. Sin
e they 
ame from the fuzzy framework, the 
on-

sequents in ea
h fuzzy rule, i.e., the righthand side of the model, was a matrix

of polynomials multiplied by the state (Tanaka, Yoshida, et al. 2007a; Tanaka,

Ohtake, and H. Wang 2007) or a polynomial ve
tor �eld (Sala 2007). Clearly,

via the SOS approa
h, these fuzzy polynomial models 
ould be systemati
ally

analysed in a similar way as with the TS-LMI framework.

If a TS model is to be obtained as an exa
t representation of a given nonlinear

system, the se
tor nonlinearity approa
h 
omes at hand; similarly, the generalisa-

tion in (Sala and C. Ariño 2009), based on the Taylor series, allows rewriting a

given system as a 
onvex sum of polynomials of arbitrary order within a 
ompa
t

set of the state spa
e: they are referred in this work as 
onvex polynomial mod-

els. These models 
an redu
e the 
onservatism �both in analysis and synthesis�


aused by 
onvex model 
onstru
tion with respe
t to TS approa
hes. The SOS-

fuzzy polynomial approa
h has given some su

essfully results for the stability and

stabilisation of nonlinear models (Sala and C. Ariño 2009; Tanaka, Yoshida, et al.

2007b; Tanaka, Ohtake, and H. Wang 2009; Tanaka, Yoshida, et al. 2009); all of

them as an extension of the seminal methodologies in (Prajna, Papa
hristodoulou,

and F. Wu 2004).

The SOS-
onvex polynomial framework have also a
hieved the so-
alled asymp-

toti
al exa
tness for smooth nonlinear systems: if there exists a smooth Lyapunov

fun
tion (so that its Taylor series 
onverges to it), there will exist a polynomial

Lyapunov fun
tion and a fuzzy polynomial model with a �nite degree, whi
h will

allow proving stability of the original system with some extra assumptions (Sala

and C. Ariño 2009).

Although the SOS-
onvex polynomial framework is a powerful tool for the analysis

and 
ontrol of nonlinear systems, it has some limitations, not only from the fa
t

that there are positive polynomials that are not SOS, but also from the 
ompu-

tational point of view whi
h rapidly exhausts the available resour
es; moreover,


ontrol synthesis requires an a�ne-in-
ontrol stru
ture as well as some additional

arti�
ial variables, whi
h introdu
e some 
onservativeness (Sala 2009).
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omposition

4.2 Sum-of-square de
omposition

The SOS framework is based on the idea that any 2d-degree polynomial p(x) :
R
n → R, d ∈ N, 
an be written in the form ZT (x)QZ(x) with Z(x) being a ve
tor

of all the monomials up to degree d and Q a non unique matrix built from the

polynomial 
oe�
ients. If Q ≥ 0 then the Cholesky fa
tor of it (Q = LTL), allows
expressing p(x) = ZT (x)LTLZ(x), i.e., a sum of squares. Note that the problem of

�nding a Q ≥ 0 
an be 
ast as a LMI problem, so �nding SOS de
ompositions of a

polynomial is a 
onvex problem and LMI Lyapunov results (degree 2 polynomials)


an be easily extended to higher degree polynomials in both Lyapunov fun
tions

and nonlinear models. The basi
 ideas of the SOS approa
h are summarized in

this se
tion.

De�nition 4.2.1. The set of SOS polynomials in the variables x is the set de�ned

by

Σx :=

{

p(x) ∈ R
n → R

∣
∣
∣
∣
∣
p(x) =

M∑

i=1

f2i (x)

}

, (4.1)

with M ∈ Z
+
.

An equivalent 
hara
terisation of SOS polynomials is given in the following propo-

sition.

Proposition 4.2.1. (Parrilo 2000) A polynomial p(x) of degree 2d is a SOS if

and only if there exists a positive semide�nite matrix Q and a ve
tor of monomials

Z(x) 
ontaining monomials in x of degree less or equal to d su
h that

p(x) = ZT (x)QZ(x). (4.2)

In general, the monomials in Z(x) are not algebrai
ally independent. Expanding

Z(x)TQZ(x) and equating the 
oe�
ients of the resulting monomials to the ones

in p(x), we obtain a set of a�ne 
onstraints in the elements of Q. Sin
e p(x) being
SOS is equivalent to Q ≥ 0, the problem of �nding a Q whi
h proves that p(x) is
SOS 
an be 
ast as an LMI problem. For the sake of 
larity, 
onsider the following

example:

Example 4.2.1. Suppose that we want to know if the following polynomial is

SOS:

p(x1, x2) = x41 + 2x42 − 2.5x21x
2
2

For this purpose, de�ne Z(x) =
[
x22 x21 x1x2

]T
and 
onsider the following form:

p(x1, x2) = x41 + 2x42 − 2.5x21x
2
2
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Chapter 4. Convex-polynomial models

= ZT (x)





q11 q12 q13
q12 q22 q23
q13 q23 q33



Z(x)

= q11x
4
2 + q22x

4
1 + 2q23x

3
1x2 + 2q12x1x

3
2 + (2q12 + q33) x

2
1x

2
2,

from whi
h we obtained the 
onstraints:

q11 = 2, 2q12 + q33 = −2.5, q13 = 0, q22 = 1, q23 = 0.

Then, p(x) is SOS if and only if there exist Q ≥ 0 satisfying the last equations.

The following matrix Q satisfy the above equations and it is positive de�nite:

Q =





2 −1.4 0
−1.4 1 0
0 0 3



 ,

whi
h Cholesky de
omposition Q = LTL with

L =







√
2 −1.4√

2
0

0
√
0.02 0

0 0
√
0.3






,

yields the following SOS de
omposition:

p(x) =

(

2x22 −
1.4√
2
x21

)2

+
(√

0.02x21

)2

+
(√

0.3x1x2

)

.

The following lines of 
ode present an implementation in MATLAB/YALMIP to


he
k if a polynomial is SOS.

% Define problem variables and the polynomial p(x):
sdpvar x1 x2

p=x1 ^4+2*x2 ^4 -2.5* x1^2* x2 ^2;

5 % Call the solver to check if p(x) is SOS:
[sol ,z,Q℄= solvesos (sos(p));

There are instan
es where p(x) being SOS is equivalent to p(x) ≥ 0: (i) when

n = 2; (ii) when d = 2; (iii) when n = 3 and d = 4. Che
king if a polynomial

p(x) is nonnegative is an NP-hard problem when the degree of p(x) is at least 4
(Murty and Kabadi 1987). On the other hand, 
he
king whether a polynomial

p(x) is SOS is 
omputationally tra
table; indeed, it is a LMI problem, whi
h has

worst-
ase polynomial time 
omplexity.
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4.2 Sum-of-square de
omposition

For the 
ase of Lyapunov's stability, one 
an only be interested in proving lo
al

positivity of a polynomial Lyapunov fun
tion. Sin
e, SOS polynomials are globally

nonnegative (p(x) ∈ Σx ⇒ p(x) ≥ 0, ∀x), the Positivstellensatz theorem 
omes in

handy, whi
h is re
alled in the next subse
tion.

4.2.1 Positivstellensatz

As originally explained in (Parrilo 2000), the Positivstellensatz argumentation

extends the use of Lagrange multipliers and S-pro
edure in the LMI framework

to the polynomial-SOS 
ase, thus allowing lo
al information to be in
luded as


onstraints in SOS 
onditions.

Consider a region Ω de�ned by known polynomials restri
tions as follows:

Ω={x∈R
n :g1(x)≥0, g2(x)≥0, . . . , gq(x)≥0, h1(x)=0, h2(x)=0, . . . , hr(x)=0}.

(4.3)

Then, a su�
ient 
ondition for a polynomial p(x) being positive in Ω is stated in

the following theorem.

Theorem 4.2.1. If SOS polynomials si(x) ∈ Σx and arbitrary ones tj(x) 
an be

found ful�lling:

p(x)− ε(x)−
q
∑

i=1

si(x)gi(x) +

r∑

j=1

tj(x)hj(x) ∈ Σx, (4.4)

then p(x) is lo
ally greater than or equal to ε(x) in the region Ω.

Proof. For all x ∈ Ω, the term

∑q
i=1 si(x)gi(x) ≥ 0 (it is nonnegative) and

∑r
j=1 tj(x)hj(x) = 0 (it is zero), so p(x) − ε(x) ≥ ∑q

i=1 si(x)gi(x) ≥ 0 for all

x ∈ Ω.

The polynomials si(x) and tj(x) are denoted as Positivstellensatz multipliers, anal-

ogous to Lagrange and Karush-Kuhn-Tu
ker (KKT) multipliers in 
onstrained

optimisation (Bertsekas 1999).

Theorem 4.2.1 is a simpli�ed version of the original Positivstellensatz result, in

whi
h less 
onservative expression 
an be stated by setting higher degree multipli-

ers (si(x), tj(x)), produ
ts of p(x) with new multipliers or by adding more terms

involving produ
ts of the p(x), gi(x), and hj(x) belonging to the respe
tive 
one

and ideal. However, more 
omplex statements are avoided in pra
ti
e be
ause
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Chapter 4. Convex-polynomial models

some of them lead to non
onvex problems and also the 
omputational 
omplex-

ity in
rease 
onsiderably. For more details, refer to (Jarvis-Wloszek et al. 2005;

Stengle 1974).

4.2.2 SOS matri
es

Via SOS te
hniques, we 
an also solve state dependent LMIs whi
h will appear in

Subse
tion 4.5 for nonlinear 
ontrol synthesis.

A state-dependent LMI is an in�nite dimensional 
onvex optimisation problem of

the form

minimize

m∑

i=1

aici (4.5)

subje
t to F0(x) +

m∑

i=1

ciFi(x) ≥ 0, (4.6)

where ai are some �xed real 
oe�
ients, ci are the de
ision variables, and Fi(x)
are some symmetri
 matrix fun
tions of the indeterminate x ∈ R

n
. The matrix

inequality (4.6) basi
ally means that the left hand side of the inequality is posi-

tive semide�nite for all x ∈ R
n
. Solving the above optimisation problem amounts

to solving an in�nite set of LMIs and hen
e is 
omputationally hard. However,

when all Fi(x) are symmetri
 polynomial matri
es in x, the sum of squares de-


omposition 
an provide a 
omputational relaxation for the 
onditions (4.6). This

relaxation is stated in the following proposition.

Proposition 4.2.2. (Prajna, Papa
hristodoulou, and F. Wu 2004) Let F (x) ∈
R
N×N

be a symmetri
 polynomial matrix of degree 2d in x ∈ R
n
. Furthermore,

let Z(x) be a 
olumn ve
tor whose entries are all monomials in x with degree no

greater than d, and 
onsider the following 
onditions.

1. F (x) ≥ 0 for all x ∈ R
n
.

2. vTF (x)v is a sum of squares, where v ∈ R
N
.

3. There exists a positive semide�nite matrix Q su
h that

vTF (x)v = (v ⊗ Z(x))TQ(v ⊗ Z(x)),

where ⊗ denotes the Krone
ker produ
t.

Then (1) ⇐ (2) and (2) ⇔ (3).
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4.3 Convex-polynomial modelling

The proof of this proposition is based on the Cholesky de
omposition (Higham

1990) and the eigenvalue de
omposition (Parrilo 2000). In this way, the 
lassi-


al LMI-framework (positive-de�niteness of matri
es with linear expressions as

elements (Boyd et al. 1994)) is extended to the polynomial 
ase.

It 
an be noti
ed that the above proposition in
rease the 
omplexity due to the

introdu
tion of the auxiliary variables v. However, there exist another equivalent
ways to deal with polynomials SOS matri
es with less 
omputational 
ost, for

instan
e:

Proposition 4.2.3. (C.W. S
herer and Hol 2006) Let F (x) ∈ R
N×N

a symmetri


polynomial matrix of degree 2d in x ∈ R
n
. F (x) is a SOS polynomial matrix if

and only if there exist a 
onstant matrix Q ≥ 0 satisfying

F (x) = (I ⊗ z(x))TQ(I ⊗ z(x)), ∀x ∈ R
n, (4.7)

with z(x) being a 
olumn ve
tor whose entries are all monomials in x with degree

no greater than d.

4.3 Convex-polynomial modelling

The Taylor-based modelling te
hniques is a generalisation of the well-know TS

se
tor nonlinearity methodology, but on this new 
ase ea
h non-polynomial ex-

pression is rewritten as a 
onvex sum of polynomials (TS models are 
onvex sums

of linear terms). Furthermore, this 
onvex polynomial modelling te
hniques al-

lows us to progressively obtain more pre
ise models as the degrees of the involved

polynomials in
rease; they are pre
ise in the sense of the polynomial vertexes will

�t more 
losely the nonlinearity being modelled. This methodology is detailed in

this se
tion.

Consider the following dynami
al system:

ẋ(t) = f(x(t)) + g(x)u(t), (4.8)

with x ∈ R being the state ve
tor, u(t) is the input ve
tor, and x = 0, u = 0
being an equilibrium point, i.e., f(0) = 0. Assume that f(·) 
an be expressed in

the form:

ẋ(t) = f̃(η(x), x) + g̃(η(x), x)u(t), (4.9)

being η(x) =
[
η1(x) η2(x) · · · ηp(x)

]T
a set of 
ontinuous fun
tions whi
h


olle
ts all non-polynomial nonlinearities present in f(·) and g(·) in (4.8). Thus,

on
e all the nonpolynomials fun
tions ηj(x), j ∈ {1, 2, . . . , p} have been identi�ed,
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Chapter 4. Convex-polynomial models

they will be rewritten as a 
onvex sums of polynomials of arbitrary order, following

a Taylor-series approa
h �rst des
ribed in (Sala and C. Ariño 2009) and detailed

below.

Lemma 4.3.1. (Sala and C. Ariño 2009; Chesi 2009) Consider a su�
iently

smooth fun
tion of one real variable, η(x), so that its Taylor expansion of de-

gree N exists (Apostol 1967), i.e., there exists an intermediate point ψ(x) ∈ [0, x],
so that:

η(x) =
N−1∑

i=0

η[i](0)

i!
xi +

η[N ](ψ(x))

N !
xN , (4.10)

where η[i](x) denotes the i-th derivative of η(·) and η[0](x) is de�ned, plainly,

as η(x). Additionally, assume that η[N ](x) is 
ontinuous in a 
ompa
t region of

interest Ω. Denoting the Taylor approximation of order N of the fun
tion η(x)
by:

ηN (x) =

N−1∑

i=0

η[i](0)

i!
xi,

and let

TN(x) =
η(x)− ηN (x)

xN
.

In the region Ω, TN (x) is bounded; therefore, the following bounds are well de�ned:

ψ0 := sup
x∈Ω

TN(x), ψ1 := inf
x∈Ω

TN (x),

based on whi
h the following 
onvex rewriting of TN (x) arises:

TN (x) = w0(x) · ψ0 + w1(x) · ψ1, (4.11)

with weighting fun
tions (WFs) de�ned as:

w0(x) =
Tn(x)− ψ1

ψ0 − ψ1
, w1(x) = 1− w0(x). (4.12)

Then, an equivalent 
onvex representation of (4.10) exists in the form:

η(x) = w0(x) · p0(x) + w1(x) · p1(x) =
1∑

i=0

wi(x) · pi(x) = pw(x), ∀x ∈ Ω, (4.13)

where p0(x) = ηN (x)+ψ0x
N
and p1(x) = ηN (x)+ψ1x

N
are polynomials of degree

N , and w0(x), w1(x) are weighting fun
tions whi
h hold the 
onvex sum property

in the 
ompa
t region Ω.
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4.3 Convex-polynomial modelling

If every ηj(x) in (4.9) is rewritten as in (4.13), then (4.9) 
an be rewritten as the

following tensor produ
t 
onvex polynomial model:

ẋ(t) =

1∑

i1=0

1∑

i2=0

· · ·
1∑

iq=0

w1
i1
w2
i2
· · ·wqiq

(
F(i1,i2,··· ,iq)(x) +B(i1,i2,··· ,iq)(x)u(t)

)
,

=
∑

i∈Bq

wi (Fi(x) + Bi(x)) = Fw(x) +Bw(x)u(t), (4.14)

where i = (i1, i2, . . . , iq),B ∈ {0, 1}, wi = w1
i1
w2
i2
· · ·wqiq , Fi(x) = f̃ (η(x), x)|wi=1,

Bi(x) = g̃(η(x), x)|wi=1, 1 = (1, 1, . . . , 1)
︸ ︷︷ ︸

p ones

. As in the TS models, the 
lassi
al

representation used to be written in terms of membership fun
tions (MFs):

hi = h1+i1+i2×2+···+iq×2q−1 =

q
∏

j=1

wjij (zj), (4.15)

with i ∈ {1, 2, . . . , r}, r = 2q, ij ∈ {0, 1}. As in the TS 
ase, ea
h of the r MFs

hi represents a 
ombination instan
e of extreme values of the nonpolynomials

expressions ηj ; the full polynomial 
onvex model stems from evaluating the state

fun
tions f(·) and g(·) in ea
h of these 
ombinations i.e: Fi(x) = f(·)|hi=1 and

Bi(x) = g(·)|hi=1, Then, a polynomial 
onvex representation of (4.8) is given by:

ẋ(t) =

r∑

i=1

hi(η(x)) (Fi(x) +Bi(x)u(t)) , (4.16)

= Fh(x) +Bh(x)u(t).

Owing to the way this model is 
onstru
ted, the fun
tions Fi(x) Bi(x) are ve
tors
of polynomials resulting from polynomials already present in f(·) as well as from
produ
ts of polynomials pj0, p

j
1, j ∈ {1, 2, . . . , q} produ
ed by the 
onvex rewritten

of nonpolynomials terms. Furthermore, all the nonlinearities, whi
h 
annot be

des
ribed as polynomials of a pres
ribed degree, are 
aptured in the MFs (hi, i ∈
{1, 2, . . . , r}) with 
onvex stru
tures, a key property for Lyapunov-based stability

analysis and design.

Remark 4.3.1. If f(0) = 0, setting N = 1 in the developments in lemma 4.3.1 we

obtain the usual se
tor-nonlinearity methodology that bounds a fun
tion between

two �rst degree polynomials.
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Chapter 4. Convex-polynomial models

Example 4.3.1. Consider again the ball and beam system in Example 2.2.1

whose model is reprodu
e here for 
onvenien
e:

ẋ =










x2
−mx3(2x4x2 − g cosx1)

mx23 + Ib
+

u

mx23 + Ib
x4

−5

7
(g sinx1 − x3x

2
2)










, (4.17)

with the variables in the 
ompa
t set Ω = {x : |x1| ≤ 2, |x3| ≤ 0.5, x2, x4 ∈ R},
and m = 0.05, Ib = 1/12, and g = 9.81. The obje
tive of this example is to

illustrate the Taylor-series modelling approa
h for a nonlinear model. For this

sake, 
onsider three nonpolynomial nonlinearities in (4.17) and their Taylor series

around x = 0:

sin x1 = x1 −
x31
3!

+
x51
5!

− x71
7!

+ . . .

cosx1 = 1− x21
2!

+
x41
4!

− x61
6!

+ . . .

(
mx23 + Ib

)−1
=

1

Ib
− mx23

I2b
+
m2x43
I3b

− m3x63
I4b

+ . . .

If only the �rst-degree terms from the Taylor-series expansion are used to rewrite

η1(x1) = sinx1, η
2(x1) = cosx1, and η

3(x3) =
(
mx23 + Ib

)−1
as 
onvex expres-

sions, we will obtain the same out
ome as if se
tor nonlinearity were used, i.e.,

based on the terms η11(x1) = 0, η21(x1) = 1, and η31(x3) = 12, the following expres-
sions and their bounds are found:

T 1
1 (x1) =

sin x1 − 0

x1
, 0.04546 = ψ1

0 ≤ T 1
1 (x1) ≤ ψ1

1 = 1,

T 2
1 (x1) =

cosx1 − 1

x1
, −0.7081 = ψ2

0 ≤ T 2
1 (x1) ≤ ψ2

1 = 0.7081,

T 3
1 (x3) =

(
mx23 + Ib

)−1 − I−1
b

x3
, −3.1304 = ψ3

0 ≤ T 3
1 (x3) ≤ ψ3

1 = 3.1304.

Thus, we 
an 
onstru
t bounds the nonlinearities by linear (TS) terms:

0.4546x1 ≤ sinx1 ≤ x1,

1− 0.7081x1 ≤ cosx1 ≤ 1 + 0.7081x1, (4.18)

12− 3.1304x3 ≤
(
mx23 + Ib

)−1 ≤ 12 + 3.1304x3.
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4.3 Convex-polynomial modelling

If now we use the 
ubi
 term in the Taylor series, another polynomials bounds

would be obtained by 
onsidering

η13(x1) = x1, T
1
3 (x1) =

sin x1 − x1
x31

,

η23(x1) = 1− 0.5x21, T
2
3 (x1) =

cosx1 − 1 + 0.5x21
x31

, (4.19)

η33(x3) = 12− 7.2x23, T
3
3 (x3) =

(
0.05x23 + 1/12

)−1 − 12 + 7.2x23
x33

.

Thus, T 1
3 (x1) ∈ [−0.1667,−0.1363], T 2

3 (x1) ∈ [−0.0730, 0.0730], and T 3
3 (x3) ∈

[−1.8783, 1.8783] are bounded in Ω. Hen
e, now the nonlinearities are bounded

by:

x1 − 0.1667x31x1 ≤ sin x1 ≤ x1 − 0.1363x31,

1− 0.5x21 − 0.0730x31 ≤ cosx1 ≤ 1− 0.5x21 + 0.0730x31 (4.20)

12− 7.2x23 − 1.8783x33 ≤
(
mx23 + Ib

)−1 ≤ 12− 7.2x23 + 1.8783x33.

If we pro
eed to �fth order:

η15(x1) = x1 −
x31
6
, T 1

5 (x1) =
sin x1 − x1 +

x31
6

x51
,

η25(x1) = 1− x21
2

+
x41
24
, T 2

5 (x1) =
cosx1 − 1 +

x21
2

− x41
24

x51
,

η35(x3) = 12− 7.2x23 + 4.32x43, T
3
5 (x3) =

(
0.05x23 +

1
12

)−1 − 12 + 7.2x23 − 4.32x43
x53

,

we found the following bounds:

x1 −
x31
6

+ 0.0076x51 ≤ sinx1 ≤ x1 −
x31
6

+ 0.0083x51,

1− x21
2

+
x41
24

− 0.0026x51 ≤ cosx1 ≤ 1− x21
2

+
x41
24

+ 0.0026x51,

12−7.2x23+4.32x43−1.1270x53 ≤
(
mx23 + Ib

)−1≤ 12−7.2x23+4.32x43+1.1270x53.

On
e we have the polynomials vertexes of a desired degree, we 
an rewrite (4.17)

as a 
onvex polynomial model, for example, if we desire an exa
t 3-th degree poly-
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x1
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sinx1
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Figure 4.1: Polynomial bounds of sin x1 for x1 ∈ [−2, 2].

nomial 
onvex rewriting of (4.17) 
omes as:

ẋ =

1∑

i1=0

1∑

i2=0

1∑

i3=0

w1
i1
(x1)w

2
i2
(x1)w

3
i3
(x3)

(
F(i1,i2,i3)(x) + B(i1,i2,i3)(x)u(t)

)
,

(4.21)

where

w1
0(x1) =

T 1
3 (x1) + 0.1667

−0.1363 + 0.1667
, w1

1(x1) = 1− w1
0(x1),

w2
0(x1) =

T 2
3 (x1) + 0.0730

0.0730 + 0.0730
, w2

1(x1) = 1− w2
0(x1),

w3
0(x3) =

T 3
3 (x3) + 1.8783

1.8783 + 1.8783
, w3

1(x3) = 1− w3
0(x3),

F(i1,i2,i3)(x) =








x2
−p3i3(x3)mx3(2x4x2 − gp2i2(x1))

x4

−5

7
(gp1i1(x1)− x3x

2
2)







, B(i1,i2,i3)(x) =







0
p3i3(x3)

0
0






,

with ij ∈ 0, 1, j ∈ {1, 2, 3}, and pjij (·) are the polynomials bounds in (4.20). The

same pro
edure is appli
able for any desired degree of the 
onvex polynomial.
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x1

0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5
cosx1

Degree 1
Degree 3
Degree 5

Figure 4.2: Polynomial bounds of cosx1 for x1 ∈ [−2, 2].

x3

0 0.1 0.2 0.3 0.4 0.5
10

10.5

11

11.5

12

12.5
(

mx
2
3 + Ib

)

−1

Degree 1
Degree 3
Degree 5

Figure 4.3: Polynomial bounds of

(

mx2
3 + Ib

)−1
for x3 ∈ [−0.5, 0.5].

Figures 4.1, 4.2, and 4.3 illustrate the fa
t that the bounding polynomials get

progressively 
loser to the nonlinearity as their degree in
reases.
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The Taylor-series approa
h 
an also be applied to multivariable fun
tions that 
an

be written as an expression tree with fun
tions of one variable, i.e., addition and

multipli
ation. This idea is illustrated in the following example.

Example 4.3.2. Consider the fun
tion

f(x1, x2) = sin

(
x2

x21 + 1

)

(4.22)

to be modeled in the region Ω = {x : |xi| ≤ 1, i ∈ {1, 2}}. In Ω, the argument of

the sinusoid υ =
x2

x21 + 1
satisfy υ ∈ [−1, 1]. Thus, sin υ may be modeled with the

following third-order 
onvex polynomial model:

sin υ = w1
0

(
υ − 0.1585υ3

)
+ w1

1

(
υ − 0.1667υ3

)
, (4.23)

where

w1
0 =

sin υ − υ + 0.1667υ3

0.0082υ3
, w1

1 = 1− w1
0.

Additionally,

(
x21 + 1

)−1
may be modeled in Ω as:

(
x21 + 1

)−1
= w2

0 (1 + 0.5x1) + w2
1 (1− 0.5x1) (4.24)

with w2
0 = −x1/

(
x21 + 1

)
+0.5, w2

1 = 1−w2
0. Now, repla
ing in (4.22) the sinusoid

by (4.23), υ = x2/
(
x21 + 1

)
, and later using (4.24), we get a 
onvex polynomial

model in the form:

f(x1, x2) =x2
(
w2

0 (1 + 0.5x1) + w2
1 (1− 0.5x1)

)

−
(
0.1585w1

0 + 0.1667w1
1

)
x32
(
w2

0 (1 + 0.5x1) + w2
1 (1− 0.5x1)

)3
.

4.4 Stability analysis via SOS

On
e we have a polynomial nonlinear model, either by a already polynomial one

or a 
onvex polynomial representation, we 
an apply SOS te
hniques for the sta-

bility analysis of nonlinear systems. For this sake, 
onsider the 
onvex polynomial

system of the form:

ẋ =

r∑

i=1

hi(x)Fi(x), (4.25)

the following well-known results are derived from stability theory.
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Theorem 4.4.1. (Prajna, Papa
hristodoulou, Seiler, et al. 2005; Sala and C. Ar-

iño 2009; Tanaka, Yoshida, et al. 2009) The origin x = 0 of the 
onvex polynomial

model (4.25) is asymptoti
ally stable if there exists polynomial Lyapunov fun
tion

V (x) su
h that V (0) = 0, and

V (x)− ε(x) ∈ Σx (4.26)

−∂V
∂x

Fi(x)− ε(x) ∈ Σx, , (4.27)

for i ∈ {1, 2, . . . , r}. ε(x) is a radially unbounded positive polynomial.

Sin
e V (x) needs to be positive de�nite, not just positive semide�nite, the follow-

ing proposition will help to 
hose ε(x).

Proposition 4.4.1. Given a polynomial V (x) of degree 2d, let ε(x)=
n∑

i=1

d∑

j=1

ǫijx
2j
i

su
h that:

d∑

j=1

ǫij > γ ∀i ∈ {1, 2, . . . , n},

with γ being a positive number, and εij ≥ 0 for all i and j. Then the 
ondition

V (x)− ε(x) ∈ Σx (4.28)

guarantees the positive de�niteness of V (x).

Proof. The fun
tion ε(x) as de�ned above is positive de�nite if ǫi,j 's satisfy the


onditions mentioned in the proposition. Then V (x) − ε(x) being SOS implies

that V (x) ≥ ε(x), and therefore V (x) is positive de�nite.

As in the TS 
ase, the Taylor-series 
onvex polynomial models are only valid

lo
ally in most 
ases, i.e., stability is not proved in the whole state spa
e where

the SOS 
onditions hold (unless Ω = R
n
). Due to the WFs only hold the 
onvex

sum property in the 
ompa
t set Ω, the a
tually proven DA is the largest invariant

set V (x) ≤ k, k ∈ R 
ontained in Ω.

4.4.1 Lo
al stability via SOS

Due to the fa
t that many nonlinear systems of interest are not globally stable, or

proving global stability would require high-degree polynomial Lyapunov fun
tion
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exhausting the available 
omputational resour
es, some re�nements to the above

stability 
onditions are need in order to obtain a DA estimate.

If 
ondition in theorem 4.4.1 fails to prove global stability, the Positivstellensatz

theorem 4.2.1 allow us to posed lo
al stability 
onditions. For this sake, 
onsider

a region of the state spa
e Ω de�ned by:

Ω={x∈R
n :g1(x)≥0, g2(x)≥0, . . . , gγ(x)≥0, h1(x)=0, h2(x)=0, . . . , hι(x)=0},

(4.29)

where gj(x) and hk a set of γ and ι known polynomials respe
tively. Then, the

following results is derived for lo
al stability in Ω.

Lemma 4.4.1. If a polynomial fun
tion V (x) su
h that V (0) = 0, SOS polynomials

s1j (x) ∈ Σx,s
2
j(x) ∈ Σx, and arbitrary ones t1k(x), t

2
k(x), 
an be found ful�lling:

V (x)− ε(x)−
γ
∑

j=1

s1j (x)gj(x) +

ι∑

k=1

t1k(x)hk(x) ∈ Σx, (4.30)

−∂V (x)

∂x
Fi − ε(x)−

γ
∑

j=1

s2j (x)gj(x) +

ι∑

k=1

t2k(x)hk(x) ∈ Σx, (4.31)

for i ∈ {1, 2, . . . , r}, begin ε(x) de�ned as in proposition 4.4.1, then the origin

x = 0 of the 
onvex polynomial model (4.25) is asymptoti
ally stable. Furthermore,

an estimate for the DA of the origin x = 0 is D = {x ∈ R
n : V (x) ≤ α}, where

α = minx∈∂Ω V (x) and ∂Ω is the boundary of Ω.

In order to obtain the Lyapunov fun
tion level set 
ontaining the largest region

with a parti
ular prede�ned shape, i.e., an sphere or an hyper
ube, additional

SOS 
onstrains may be added.

Example 4.4.1. Consider the polynomial system:

ẋ(t) =

[
−x2

x1 +
(
x21 − 1

)
x2

]

. (4.32)

For the above system, linearisation shows that the origin is stable: there is a neigh-

borhood of it belonging to its DA provable with a Lyapunov fun
tion. However,

phase plane simulation shows that it has an unstable limit 
y
le so there is not a

global Lyapunov fun
tion for the system.

Let us 
onsider a region of interest 
hara
terised as Ω = {x ∈ R
2|α−x21, α−x22 ≥

0 ≥ 0. Applying lemma 4.4.1 with a quadrati
 Lyapunov fun
tion and proposition

4.4.1 with γ = 0.0001, the maximum α feasible is less to one, i.e., α < 1. If lemma
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4.4.1 is applied with a polynomial Lyapunov fun
tion of degree 4, we 
an get an

α = 1.8610. For di�erent degrees polynomial Lyapunov fun
tions are summarized

in the following table. The lines of 
ode below show an implementation of the

degree V (x) 2 4 6 8 12

α 0.99 1.8610 2.3121 2.5483 2.6201


urrent example if α = 1.8610 with a polynomial Lyapunov fun
tion of degree 4.

% Define independet variables
sdpvar x1 x2

% Define the system equation
dx=[-x2; x1+( x1^2 -1)* x2℄;

5 % Tolerance epsilon (Proposition 4.4.1)
epsi1=0; epsi2=0;

CX =[℄; or =4; x=[x1;x2℄;

for i=1:2

epsum1{i}=0; epsum2{i}=0;

10 for j=1: or/2

ep1{i,j}= sdpvar (1); ep2{i,j}= sdpvar (1);

epsum1{i}= epsum1{i}+ ep1{i,j};

epsum2{i}= epsum2{i}+ ep2{i,j};

epsi1=epsi1+ep1{i,j}*x(i)^(2*j);

15 epsi2=epsi2+ep2{i,j}*x(i)^(2*j);

CX=[ CX ep1{i,j}>=0 ep2{i,j} >=0℄;

end

CX=[CX epsum1{i} >=10^( -4) epsum2{i} >=10^( -4)℄;

end

20 % Lyapuno function degree 4 and partial derivative
[V,
p ,vp℄= polynomial ([x1 ,x2 ℄,4,2);

dV=ja
obian (V,[x1 ,x2 ℄);

% Create the Positivstellensatz multiplier degree 4

oef =
p ';

25 for i=1:4

for j=1:2

[s{i,j},
s{i,j},vs{i,j}℄= polynomial ([x1 ,x2℄,4,2);


oef =[ 
oef 
s{i,j}'℄;

CX=[ CX sos(s{i,j})℄;

30 end

end

alp =1.8610^2; %
% Define SOS constraints
CX=[CX sos(V-epsi1 -s{1 ,1}*( alp -x1^2)-s{1 ,2}*( alp -x2 ^2))℄;

35 CX=[CX sos(-dV*dx -epsi2 -s{2 ,1}*( alp -x1^2)-s{2 ,2}*( alp -x2 ^2))℄;

% Solve SOS problem
sol=solvesos (CX ,[℄,[℄, 
oef );
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4.5 Stabilisation via SOS

Consider the following a�ne-in-
ontrol 
onvex polynomial model:

ẋ(t) =

r∑

i=1

hi(x)(Ai(x)Z(x) +Bi(x)u(t)) = Ah(x)Z(x) +Bh(x)u(t), (4.33)

where Z(x) ∈ R
N

is a ve
tor of monomials in x su
h that Z(x) = 0 if and only if

x = 0. Let M (x) ∈ R
N×n

be a polynomial matrix whose (i, j)-th entry is given

by

Mij(x) =
∂Zi(x)

∂xj
,

for i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , n}. Finally, let Aj(x) denotes the j-th row of

A(x), J = {j1, j2, . . . , jm} denotes the row indi
es of B(x) whose 
orresponding

row is equal to zero, and de�ne x̃ =
[
xj1 , xj2 , · · · , xjm

]T
.

A �rst approa
h to design a stabilizing 
ontrol law 
ould be extending the

well-known ideas of parallel-distributed 
ompensator (PDC) to the polynomial

framework (Tanaka, Yoshida, et al. 2007b) (whi
h it adaptation of (Prajna,

Papa
hristodoulou, and F. Wu 2004) to the fuzzy 
ase):

u =

r∑

i=0

hiKi(x)Z(x) = Kh(x)Z(x), (4.34)

where Ki, i ∈ {1, 2, . . . , r} are polynomial matri
es to be found.

De�ne a polynomial 
andidate Lyapunov fun
tion in the form:

V (x) = Z(x)TP (x̃)Z(x), (4.35)

then, the following theorem 
an be used to design a polynomial PDC 
ontrol law.

Theorem 4.5.1. The origin x = 0 of the system (4.33) is asymptoti
ally stable,

if there exist symmetri
 polynomial matrix P (x̃) ∈ R
n×n

, and polynomial matri
es

Kj ∈ R
n×N

, j ∈ {1, 2, . . . , r}, a 
onstant ε1 > 0, and ε2(x) > 0 for x 6= 0, su
h
that:

vT (P (x̃)− ε1I) v ∈ Σx,v, (4.36)

−vT
(

M (x)Ah(x)P (x̃) +M (x)B(x)K(x) + P (x̃)ATh (x)M
T (x)

+KT (x)BT (x)MT (x)−
∑

j∈J

∂P (x̃)

∂xj
(Aj(x)Z(x)) + ε2(x)I

)

v ∈ Σx,v, (4.37)
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for (i, j) ∈ {1, 2, . . . , r2}, v ∈ R
N
. Then, the 
ontroller (4.34) stabilizes the

system (4.33) in a region of the state spa
e Vc ⊂ Ω begin Ω the modelling region

and Vc = {x : V (x) = ZT (x)P−1(x̃)Z(x) < c}. Controllers gains 
an be obtained

by Kh(x) =Mh(x)P
−1(x̃).

It 
an be noti
e that 
onditions above are shown in their most general form: any

sum relaxation s
heme 
an be applied to them in order to obtain SOS 
onditions.

4.5.1 Dynami
al Extension

Another approa
h to obtain a pure polynomial model from a nonlinear one is

re
asting the non polynomial nonlinearities to new auxiliary state variables.

The following algorithm is an adaptation from the one explained in (Savageau and

Voit 1987), and it is appli
able to a very large 
lass of nonpolynomial systems,

namely those whose ve
tor �eld is 
omposed of sums and produ
tos of elementary

fun
tions, or nested elementary fun
tions of elementary fun
tion (exponential (ex),
logarithm (lnx), power (xa), trigonometri
 (sin x, , cosx, et
.), et
).

Consider the nonpolynomial system in the form ẋ = f(x), whi
h has an equilib-

rium at the origin.

1. Create new state variables xn+i for ea
h elemental nonpolynomial nonlinear

fun
tion (sinus, 
osines, logarithm, exponential, et
.) fi(x), or 
ombination

of them, and assign xn+i = fi(x).

2. Compute, using the 
hain rule, the derivative of the new state variables

ẋn+i =
dfi(x)
dt and repla
e ea
h fi(x) by the new xn+i in the whole system's

model.

3. As a results of the above step, new nonlinearities might appear in ẋn+i.
Then, repeat the above steps with the new extended dynami
al equations

until obtaining a totally polynomial model.

4. Additional information, if provided, 
an be added as algebrai
 
onstraints

over the new variables xn+i.

The following extended polynomial model is obtained:

˙̃x1 = f1(x̃1, x̃2),

˙̃x2 = f2(x̃1, x̃2), (4.38)
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where x̃1=[x1, x2, . . . , xn] are the original sate variables and x̃2=[xn+1, xn+2, . . . ,
xn+m] are the new variables introdu
ed in the re
asting pro
ess. Additionally,

some 
onstraints will aries dire
tly from the re
asting pro
ess, denoted by:

G1(x̃1, x̃2) = 0, (4.39)

G2(x̃1, x̃2) ≥ 0. (4.40)

It is best to illustrate the appli
ation of the above algorithm by an example.

Example 4.5.1. Consider a rea
tion wheel pendulum (Spong, Corke, and Lozano

2001), whose dynami
s are given by:

ẋ(t) =





x2
D−1I2 (m̄g sinx1 − u(t))

D−1I2 (−m̄g sinx1 + au(t))



 , (4.41)

being x1 the pendulum angle, x2 the pendulum velo
ity, x3 the disk velo
ity, u
motor torque input applied on the disk, m1 = 0.02 mass of the pendulum, m2 = 0.3
mass of the wheel, l1 = 0.125 length of the pendulum, lc1 = 0.063 distan
es to the


enter of mass of the pendulum, T1 = 47×10−6
moment of inertia of the pendulum,

T2 = 32 × 10−6
moment of inertia of the wheel, a = m1l

2
c1 + m2l

2
1 + T1 + T2,

D = aI2 − I22 , and m̄ = m1lc1 +m2l1.

We want to re
ast as a system with polynomial ve
tor �eld. De�ne x4 = sinx1
and 
ompute its derivative by the 
hain rule ẋ4 = cosx1ẋ1. Noti
e that ẋ4 is not

yet in a polynomial form, thus we need to de�ne another new variable x5 = cosx1.
Using the 
hain rule of di�erentiation again, we obtain:

ẋ(t) =









x2
D−1I2 (m̄gx4 − u(t))
D−1I2 (−m̄gx4 + au(t))

−x2x5
x2x4









.

At this point, we terminate the re
asting pro
ess, sin
e the equations are in a

polynomial form. In addition, the trigonometri
 
onstrain sin2 x1 + cos2 x1 = 1

an be added by the algebrai
 
onstraint: x24 + x25 − 1 = 0. A more detailed

des
ription 
an be found in (Papa
hristodoulou and Prajna 2005).

The extended model (4.38) is not a 
onvex model. Nonetheless, this te
hnique of

re
asting 
an be used as an alternative or 
an be 
ombined with the se
tor non-

linearity (4.3) in order to obtain a 
onvex representation of a new non-polynomial

nonlinearity involving any xn+i. This avoids the introdu
tion of a new variable

xn+i with its 
orresponding dynami
al equation. In this way, an extended 
onvex

polynomial model is obtained.
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4.6 Polynomial parameter-dependent Lyapunov fun
tion

The SOS approa
h has been explored along with a polynomial parameter-

dependent Lyapunov fun
tion (PPDLF). Following the same ideas as in the

TS-PDLF 
ase, a PPDLF share the stru
ture of the 
onvex polynomial model

applied:

V (x(t)) =

1∑

i1=0

1∑

i2=0

· · ·
1∑

iq=0

w1
i1w

2
i2 · · ·w

q
iq
p(i1,i2,··· ,iq)(x) =

∑

i∈Bq

wipi(x), (4.42)

where i = (i1, i2, . . . , iq),B ∈ {0, 1},wi = w1
i1
w2
i2
· · ·wqiq , pi(x) ∈ R are polynomials

to be determined, and the MFs wjij are those in the 
onvex polynomial model

(4.14). This fun
tion is a generalisation of the PDLF in se
tion 3.3 where pi(x)
are restri
ted to be homogeneous quadrati
 polynomials in the states. However,

the in
lusion of the MFs in their de�nition leads to the same problems as in the TS-

PDLF 
ase. A solution of the time-derivative of the MFs was proposed in (Bernal,

Sala, et al. 2011) via in
orporating lo
ality and membership-shape information

(bounds on the partial derivatives). For this sake, 
onsider the time-derivative of

wi in (4.42):

ẇi=
∂wi

∂η
η̇=

q
∑

k=1

∂wi

∂ηk
η̇k=

q
∑

k=1

∂

∂ηk





q
∏

j=1

wjij (ηj)



η̇k=

q
∑

k=1

∂wkik
∂ηk







q
∏

j=1
j 6=k

wjij (ηj)






η̇k.

Multiplying by wkik +
(
1− wkik

)
= 1 gives

ẇi =

q
∑

k=1

∂wkik
∂ηk






wkik

q
∏

j=1
j 6=k

wjij (ηj) +
(
1− wkik

)
q
∏

j=1
j 6=k

wjij (ηj)






η̇k

=

q
∑

k=1

∂wkik
∂ηk

(

wi +wī(k)

)

η̇k, (4.43)

where ī(k) is de�ned as the q-bit binary index resulting from 
hanging the kth bit

of i to its 
omplement. This form allows to re
over 
onvex expressions form the

Lyapunov analysis.

Continuing with the Lyapunov method, 
onsider the time-derivative of the PPDLF

(4.42) along the traje
tories of the polynomial 
onvex model (4.14) and taking
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(4.43) into a

ount gives:

V̇ (x)=
∑

i∈Bq

(wiṗi(x) + ẇipi(x))=
∑

i∈Bq

(

wiṗi(x) +

q
∑

k=1

∂wkik
∂ηk

(

wi +wī(k)

)

η̇kpi(x)

)

,

=
∑

i∈Bq

wi

(

ṗi(x) +

q
∑

k=1

∂wkik
∂ηk

η̇k

(

pi(x)− pī(k)(x)
)
)

, (4.44)

where the identity

∑

i∈Bq wī(k)pi =
∑

i∈Bq wipī(k) has been used to obtain the

above expression. Sin
e ηk and pi are polynomials and ẋ is taken from its 
onvex

polynomial representation in (4.14), substituting the expressions η̇k =
∂ηk
∂x

ẋ and

ṗi =
∂pi
∂x

ẋ in (4.44), yields:

V̇ (x)=
∑

i∈Bq

wi




∂pi
∂x

∑

j∈Bq

wjFi(x) +

q
∑

k=1

∂wkik
∂ηk

∂ηk
∂x

∑

j∈Bq

wjFi(x)
(

pi(x)− pī(k)(x)
)



,

=
∑

i∈Bq

∑

j∈Bq

wiwj

(

∂pi
∂x

Fi(x) +

q
∑

k=1

∂wkik
∂ηk

∂ηk
∂x

Fi(x)
(

pi(x)− pī(k)(x)
)
)

.

(4.45)

Note that all the terms in the above expression are MFs or polynomials, ex
ept

for

∂wk0
∂ηk

, whi
h 
an be rewritten as a 
onvex sum of polynomials in the same way

as the 
onvex polynomial model (4.14) was obtained. For this sake, 
onsider the

polynomial ve
tor

∂ηk
∂x

∈ R
n×1

and the 
onvex polynomial representation of

∂wk0
∂ηk

,

i.e.,

∂wk0
∂ηk

· ∂ηk
∂x

=
∑

vk∈B
sk

µkvk
(x)rkvk

(x), k ∈ {1, 2, . . . , q}, (4.46)

with sk being the number of possible nonpolynomial nonlinearities in

∂wk0
∂ηk

, and

µkvk
= µk

v1
k

µk
v2
k

· · ·µk
v
sk
k

,

∑1
vi
k
=0 µ

k
vi
k

(·) = 1, µk
vi
k

(·) ≥ 0 being the MFs asso
iated

with ea
h modeled nonlinearity, and rkvk
(x) ∈ R

n×1
being the resulting polynomial

ve
tor.
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Substituting (4.46) in (4.45) yields

V̇ (x) =
∑

i∈Bq

∑

j∈Bq

wiwj

(

∂pi
∂x

Fi(x) +

q
∑

k=1

∑

vk∈B
sk

µkvk
rkvk

Fi(x)
(

pi(x)− pī(k)(x)
)
)

,

=
∑

i∈Bq

∑

j∈Bq

∑

v1∈Bs1

∑

v2∈Bs2

· · ·
∑

vq∈B
sq

wiwjµ
1
v1
µ2
v2

· · ·µqvq

×
(

∂pi
∂x

Fi(x) +

q
∑

k=1

rkvk
Fi(x)

(

pi(x)− pī(k)(x)
)
)

.

De�ning the polynomial ve
tor

p̂i =








pi − p
î(1)

pi − p
î(2)

.

.

.

pi − p
î(q)







∈ R1×q, (4.47)

the polynomial matrix

Rv =








r1v1

r2v2

.

.

.

rqvq







∈ Rq×n, (4.48)

and the multi-index v = (v1,v2, . . . ,vp), the previous expression 
an be rewritten

as

V̇ (x) =
∑

i∈Bq

∑

j∈Bq

∑

v∈Bσ

wiwjµv

(
∂pi
∂x

Fi(x) + p̂Ti RvFi(x)

)

. (4.49)

with σ = s1 + s2 + · · ·+ sq. Then, the result 
an be summarized in the following

theorem.

Theorem 4.6.1. The 
onvex polynomial model (4.14) with MF-derivatives as in

(4.46) is asymptoti
ally stable if there exist polynomials pi(x), and non-negative,

radially unbounded polynomials ε1(x), ε2(x) > 0 su
h that:

pi(x)− ε1(x) ∈ Σx

−∂pi
∂x

Fi(x)− p̂Ti RvFi(x)− ε2(x) ∈ Σx,

for all i, j ∈ B
q
, v ∈ B

σ
with p̂i and Rv de�ned as in (4.47)-(4.48).

Note that this 
lass of Lyapunov fun
tions 
an redu
e 
onservatism for the stability

analysis of nonlinear systems. Nevertheless, as in the TS-LMI 
ase, the MFs need

to be a priori bounded, but in this 
ase, by polynomials of the state.
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Chapter 5

Pie
ewise Lyapunov fun
tion

This 
hapter generalises re
ent results on stability analysis and

estimation of the domain of attra
tion of nonlinear systems via ex-

a
t pie
ewise a�ne Takagi-Sugeno models. Algorithms in the form

of linear matrix inequalities are proposed that produ
e progressively

better estimates whi
h are proved to asymptoti
ally render the a
tual

domain of attra
tion; regions already proven to belong to su
h domain

of attra
tion 
an be removed and the estimate 
an 
ontain signi�
ant

portions of the modelling region boundary; in this way, level-set ap-

proa
hes in prior literature 
an be signi�
antly improved. Illustrative

examples and 
omparisons are provided.

The 
ontents of this 
hapter appeared in the journal arti
le:

• T. Gonzalez, A. Sala, and M. Bernal (2017). �Pie
ewise-Takagi-Sugeno

asymptoti
ally exa
t estimation of the domain of attra
tion of nonlinear

systems�. In: Journal of the Franklin Institute 354.3, pp. 1514�1541.

5.1 Introdu
tion

Takagi-Sugeno (TS) models, systemati
ally obtained via the se
tor nonlinearity

approa
h (Tanigu
hi, Tanaka, and H. Wang 2001), have proved to be suitable

for generalisation of linear te
hniques to handle nonlinear stability issues (H.

Wang, Tanaka, and Gri�n 1996), sin
e they are 
onvex sums of linear systems
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weighted by membership fun
tions (MFs). When 
ombined with the dire
t Lya-

punov method, TS models naturally lead to linear matrix inequalities (LMIs)

(Boyd et al. 1994), whi
h 
an be e�
iently solved via 
onvex optimization te
h-

niques already implemented in 
ommer
ially available software (Sturm 1999). The

TS modelling approa
h has been also extended to distributed-parameter systems

governed by partial di�erential equations (F. Wu and H. Li 2008; Qiu, Feng, and

Gao 2016); nevertheless, this 
lass of systems are out of the s
ope of this work.

Though the TS and nonlinear models are lo
ally equivalent in some 
ompa
t Ω,
also known as the modelling region, the LMI stability analysis is 
onservative (Sala

2009; J. Chen et al. 2016; Marquez, T.M Guerra, et al. 2016). This is mainly due

to the fa
t that only vertex (linear) models are 
onsidered, i.e., MFs are ignored,

thus introdu
ing the so 
alled shape-independent 
onservatism (Sala 2009).

Within shape-independent approa
hes, pie
ewise analysis is known for redu
ing


onservatism by lowering the separation among the vertex models via a partition

of Ω. Moreover, a�ne terms 
an be introdu
ed in TS models if the region un-

der 
onsideration does not in
lude the origin (Gonzalez, Sala, Bernal, and Robles

2015). This allows 
onsidering more general pie
ewise-quadrati
 Lyapunov fun
-

tions (PWQLF) (Johansson, Rantzer, and Arzen 1999); other pie
ewise options

are 
onsidered in (C. Ariño, Perez, et al. 2014; Guo et al. 2014; Y. Chen et al.

2015) for stability analysis. Pie
ewise TS approa
hes for 
ontrol design have also

been reported but they usually are in BMI form (Hu and Blan
hini 2010); the

work (Qiu, Feng, and Gao 2013) presents a pie
ewise 
ontrol synthesis pro
edure

keeping the LMI stru
ture, at the 
ost of 
onservatism in some steps; as we dis-


uss a non-
onservative stability-analysis setup, the issues in (Qiu, Feng, and Gao

2013) will not be 
onsidered here. Pra
ti
al appli
ations of a�ne TS models ap-

pear in, for instan
e, (S
hulte and H. Hahn 2004), and those of pie
ewise models

have been reported in (Cuesta and Ollero 2004).

The problem to be addressed in this 
hapter is the determination of the �largest�

estimate of the domain of attra
tion (DA) of the origin of a nonlinear system

ẋ = f(x) in a modelling region Ω. To be pre
ise, 
onsidering every 
on
eivable

C
2
Lyapunov fun
tion whi
h might exist for a system with 
ontinuous f(·), with

enough 
omputational resour
es, the proposal will prove any point in the interior

of the union of all level sets (see below) in Ω to be part of the DA.

The problem of estimating the DA has been partially addressed in prior literature.

Indeed, if 0 ∈ Ω, level sets of Lyapunov fun
tions for whi
h V̇ < −γxTx, γ > 0, for
all x ∈ Ω, x 6= 0, belong to the DA; this is the approa
h pursued in most stability

analysis proposals in literature (Khalil 2002); these level sets are usually �tan-

gent� to the boundary of Ω and have been already extended to the pie
ewise 
ase
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(Gonzalez and Bernal 2016). However, the DA 
an 
ontain signi�
ant portions of

the boundary of Ω if the traje
tories �point� towards its interior; hen
e, standard

level-set results 
an be expanded (Pitar
h, Sala, C.V. Ariño, and Bedate 2012).

Also, a related approa
h was pursued in (Pitar
h, Sala, and C.V. Ariño 2014) in

the polynomial-fuzzy arena, introdu
ing the idea of getting progressively better

estimates of the domain of attra
tion by subtra
ting already-proven estimates.

More re
ently, with non-pie
ewise models but pie
ewise Lyapunov fun
tions, a

shape-independent approa
h for maximal DA 
omputation for TS systems has

been presented in (C. Ariño, Perez, et al. 2014); in (Hu and Blan
hini 2010; Y.

Chen et al. 2015) a pie
ewise Lyapunov fun
tion de�ned by the minimum or max-

imum of quadrati
s (or higher-order polynomials) is 
onsidered. However, in su
h


ases the delimitation of the regions is not �xed a priori and the problem ends up

being a bilinear matrix inequality (BMI).

The most related prior-literature work on the ideas here is (Gonzalez and Bernal

2016), based on exa
t pie
ewise a�ne TS models (PWATS) and iteratively 
hang-

ing the modelling region Ω. The work here presented generalises (Gonzalez and

Bernal 2016), by 
onsidering the fa
t that level sets 
an exit Ω, introdu
ing more

general multipliers, exploiting previously proven DA estimates (lifting de
res
en
e

and 
ontinuity 
onstraints inside them), and modifying the above-mentioned it-

erations on the modelling region shape a

ounting for the more powerful results,

within an LMI framework. The proposal in this investigation, based on the Farkas

lemma, is asymptoti
ally exa
t; hen
e, if a parti
ular point belongs to the interior

of the �true� DA, a suitable �ne enough partition will prove it to belong to the

DA.

This work is organized as follows: extensive preliminaries are introdu
ed in se
tion

5.2, 
overing the de�nition of DA, the di�erent TS pie
ewise modelling options,

basi
 results on pie
ewise stability, and the relevan
e of the Positivstellensatz (S-

pro
edure) argumentation; in se
tion 5.3 new results and algorithms are inferred

that generalise previous approa
hes for estimation of the DA; the important sub-

je
t of asymptoti
 exa
tness of the proposed results is treated in se
tion 5.4;

illustrative examples are given along the 
ontents of the 
hapter. Con
lusions in

se
tion 5.5 gather some �nal remarks, and an appendix 
olle
ts the proofs of the

main results.
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5.2 Preliminaries

Consider an autonomous nonlinear model

ẋ(t) = f(x(t))
(5.1)

with x(t) ∈ R
n
as the state ve
tor and f(·) : Rn → R

n
being a C 2

nonlinear

ve
tor �eld, i.e., with 
ontinuous se
ond partial derivatives. By assumption, the

origin will be an equilibrium point, i.e., f(0) = 0. The solution of (5.1) for initial


ondition x0 will be denoted as φ(t, x0).

The domain of attra
tion (Khalil 2002) of x = 0 for (5.1) is the set

D := {x ∈ R
n : lim

t→∞
φ(t, x) = 0}. (5.2)

5.2.1 A�ne Fuzzy Modelling

The well-known se
tor nonlinearity te
hnique (Tanigu
hi, Tanaka, and H. Wang

2001) allows �nding an equivalent Takagi-Sugeno model in a 
ompa
t set Ω of

the state spa
e in
luding the origin. This work 
onsiders regions whi
h do not


ontain the origin; the se
tor-nonlinearity ideas 
an be generalised to su
h a 
ase,

following (Gonzalez, Sala, Bernal, and Robles 2015).

Indeed, as f is linearisable at the origin, denoting as A its Ja
obian, we 
an rewrite

f in (5.1) as

f(x) = Ax+

p
∑

j=1

Mjρj(x) (5.3)

with ρj : R
n 7→ R, for j = {1, 2, . . . , p}, being some nonlinearities whose linearisa-

tion is zero

1

, and Mj being 
olumn ve
tors indi
ating how nonlinearity ρj enters
in ea
h of the equations of (5.1). As Ω is 
ompa
t and f is C

2
, ea
h ρj 
an be

bounded in Ω by two a�ne fun
tions:

zj(x) ≤ ρj(x) ≤ z̄j(x) (5.4)

where:

z̄j(x) = aj1Hjx+ bj1, zj(x) = aj0Hjx+ bj0, (5.5)

being aji , b
j
i s
alars, and Hj row ve
tors, 
on�guring arbitrarily tight linear bounds

on ρj(x). On
e the bound (5.4) is available, we 
an express:

ρj(x) =

1∑

i=0

wji (x)
(

ajiHjx+ bji

)

(5.6)

1

There is no loss of generality, as the Ja
obian (�rst-derivatives) 
an be embeeded in A; for

instan
e, sin (x) = x+ g(x), with g(x) = sin (x) − x, ∂g/∂x = 0.
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being the memberships given by the well-known interpolation expression:

wj0(x) :=
zj(x)− ρj(x)

zj(x)− zj(x)
, wj1(·) := 1− wj0(·). (5.7)

Operating with all ρj , for j ∈ {1, 2, . . . , p}, then r = 2p membership fun
tions 
an

be de�ned as

hi(x) :=

p
∏

j=1

wjij
(
x), (5.8)

with i ∈ {1, 2, . . . , r}, building a binary-digit expression of i as i = ip × 2p−1 +
. . .+ i2×2+ i1+1, ij ∈ {0, 1}. Obviously, the MFs hold the 
onvex sum property,

i.e.,

∑r
i=1 hi(x) = 1, hi(x) ≥ 0. Using su
h memberships, (5.1) 
an be expressed

as:

ẋ :=

r∑

i=1

hi(x)



Ax+

p
∑

j=1

Mj

(

ajijHjx+ bjij

)




(5.9)

If the standard shorthand notation Υh :=
∑r
i=1 hi (z(t))Υi is adopted, from

(5.9), denoting Ai := A +
∑p
j=1Mja

j
ij
Hj and bi :=

∑p
j=1Mjb

j
ij
, the nonlinear

model (5.1) in Ω 
an be 
ompa
tly written as the following a�ne-TS model:

ẋ
(
t
)
= Ahx (t) + bh, x(t) ∈ Ω, (5.10)

Several options for a�ne pie
ewise TS modelling are available; the examples

worked out in this 
hapter used the minimum-weighted area approa
h in des
ribed

in the following subse
tion.

5.2.2 Minimum-Weighted Area Pie
ewise A�ne Takagi-Sugeno

Models

Se
tor-nonlinearity TS models 
ome from bounding a single-variable nonlinearity

ρ(x) between two se
tors de�ned by lines 
rossing the origin y = a1x and y = a2x,
in su
h a way that

a1x ≤ ρ(x) ≤ a2x, x ≥ 0 (5.11)

a2x ≤ ρ(x) ≤ a1x, x ≤ 0 (5.12)

Given that di�erent inequalities hold for either side of the origin, as we are 
on-

sidering �pie
ewise� models, we will restri
t our modelling proposal to regions in

whi
h the origin is not in their interior, in order to propose a�ne modelling with

just one of the 
onditions above, i.e., either (5.11) or (5.12) but not both.
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In 
ontrast with ordinary PWTS models, a�ne modelling is based on bounding

nonlinearities between hyperplanes that do not ne
essarily pass by the origin. In

the above s
alar 
ase, a�ne modelling will require bounding the nonlinearity as:

a1x+ b1 ≤ ρ(x) ≤ a2x+ b2 (5.13)

for some a1, a2, b1, b2, for all x ∈ Ωk, generalising (5.11).

Obviously, any two linear fun
tions bounding the nonlinearity as (5.13) 
annot

interse
t within the 2D region

R = {(x, y) : x ∈ Ωk, y = ρ(x)} (5.14)

so, given that the bounding is made with straight lines, evidently, su
h bounds


annot interse
t with co(R) where co(·) denotes the 
onvex hull of an arbitrary

set. Hen
e, for the PWATS model to be non-
onservative, the lines a1x+ b1 and

a2x+ b2 should be 
hosen between those delimiting the 
onvex hull of R.

However, there are many of those possible lines. So, in order to generate a sys-

temati
 way of obtaining them, an optimisation 
riteria should be 
hosen. One

possible option would be to 
hoose the two lines in whi
h the 
overed area is

smallest. However, given that LMIs are somehow using �linear� system results

impli
itly, a �weighted area� is proposed as:

A(a1, b1, a2, b2) =

∫ xmax

xmin

(a2 − a1) x+ (b2 − b1)

x
dx (5.15)

be
ause in this way, the 
loser we are to the origin, the more important the

a

ura
y of the model is. So, the �optimal� pie
ewise a�ne TS model proposed

is the one that minimises A(a1, b1, a2, b2) subje
t to 
onstraints (5.13). A
tually,

the integral above 
an be easily 
arried out, resulting in:

A(a1, b1, a2, b2) = (a2 − a1) (xmax − xmin) + (b2 − b1) (ln |xmax| − ln |xmin|) .

Note that the formula (5.15) is unde�ned if xmin ≤ 0 ≤ xmax, so the modelled

region 
annot 
ontain the origin. However, the following result gives an interesting

insight on the proposed a�ne modelling 
riterion:

Lemma 5.2.1. If 0 < xmin < xmax, then, if xmin → 0, the obtained PWATS

model tends to the pie
ewise se
tor-nonlinearity TS model.

Proof outline. As the weight of the points 
lose to the origin tends to in�nity

(in fa
t, the integral does not 
onverge for xmin → 0, �this is intentional�), the
optimal model tends to the one 
losing the se
tor the most possible, i.e., the se
tor

nonlinearity one.
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Figure 5.1: Sine bounded by two se
tors in [1,2℄.

On
e we have the optimal parameters, the PWATS is the one given by:

ρ(x) = w1ā1(x) + (1− w1)ā2(x) (5.16)

where

w1 =
a2x+ b2 − ρ(x)

a2x+ b2 − (a1x+ b1)
, w2 = 1− w1

ā1(x) = a1x+ b1, ā2(x) = a2x+ b2

Example 5.2.1. Consider the nonlinearity ρ(x) = sin(x), whi
h must be modeled

by an a�ne TS model in Ω = [1, 2]. The Figure 5.1 depi
ts the nonlinearity (in

bla
k solid line), i.e. the region R, as well as the 
onvex hull of R in red �lling.

Bounding the set by two lines is, of 
ourse, not unique. For instan
e, if we sele
ted

two lines interse
ting at the origin we would get a TS model, whose bounding

verti
es would be given by the equations of the blue lines:

ā1(x) = sin(1) · x, ā2(x) = sin(2)/2 · x

If we sele
t the �minimum weighted area� a�ne model, we would get the two bounds

depi
ted with red lines, given by:

ā1(x) = 0.0678 · x+ 0.7736, ā2(x) = 0.1255 · x+ 0.8108,

as in (5.16).
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Figure 5.2: Sine bounded by two se
tors in [0.05,1℄.

For 
omparison, if the modelling region were 
loser to the origin, for instan
e

Ω = [0.05, 1], then the TS model and the optimal weighted-area a�ne one would

be mu
h 
loser (see Figure 5.2), as expe
ted by Lemma 5.2.1: the red lines would

mat
h the blue ones when the lower bound of Ω tends to zero.

Of 
ourse, while getting an n-th order PWATS model with p nonlinearities, ea
h

of them should be rewritten as in (5.16). On
e this is done for ea
h nonlinearity

and ea
h region, an stru
ture of the sort (5.10) arises, whose validity will hold for

a partitioned region of interest Ω. The number of rules will be a power of two, as

usual in standard TS modelling, too.

Pie
ewise A�ne TS models

Consider a 
onne
ted modelling region Ω, whi
h is partitioned into q subregions

with disjoint interiors, Ωk, k ∈ {1, 2, . . . , q}, i.e.,
q
⋃

k=1

Ωk = Ω, int(Ωk) ∩ int(Ωl) = ∅.

If the above-dis
ussed a�ne fuzzy modelling te
hniques are used, we 
an express

the original nonlinear dynami
s as a pie
ewise a�ne TS model (PWATS) (Johans-
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son, Rantzer, and Arzen 1999) in the form

2

:

ẋ(t) = Akhx(t), x(t) ∈ Ωk, k ∈ K0,
ẋ(t) = Akhx(t) + bkh, x(t) ∈ Ωk, k ∈ K1,

(5.17)

where K0 := {k : 0 ∈ Ωk} is the set of indexes of those regions Ωk that in
lude

the origin and K1 := {k : 0 6∈ Ωk} is the set of indexes of the remaining ones (not


ontaining the origin).

For later analysis, ea
h of the regions Ωk will be des
ribed by a set of 
onstraints

Ωk := {σkj (x) ≥ 0, j ∈ {1, 2, . . . , nk}}. If σkj (x) are a�ne fun
tions of x, the
partition of Ω is a so-
alled polyhedral partition; these polyhedral partitions are

the ones appearing in the seminal literature (Johansson, Rantzer, and Arzen 1999);

non-polyhedral partitions with 
ir
ular boundaries are 
onsidered in (Gonzalez,

Bernal, and Marquez 2014). Polyhedral partitions of the state spa
e have the

form σk(x) := Ēkx̄ � 0, where Ēk =
[
Ek ek

]
, x ∈ Ωk, k ∈ {1, 2, . . . , q}. A

systemati
 pro
edure for their 
onstru
tion is des
ribed in (Johansson, Rantzer,

and Arzen 1999; Hedlund and Johansson 1999). Note that if ek = 0 the inequality
Ekx � 0 de�nes a polyhedral 
one with its vertex at the origin.

For ea
h region Ωk, all 
onstraints 
an be joined in a ve
tor of fun
tions σk(·) :=
[
σk1 (·) . . . σknk

(·)
]T
; thus, we 
ould de�ne Ωk = {x : σk(x) � 0}, where �� 0�

stands for element-wise �greater than 0�.

5.2.3 Lyapunov-based domain of attra
tion estimation for PWATS

Classi
al estimates of the domain of attra
tion of the origin resort to well-known

invariant set ideas su
h as Lyapunov level sets (Khalil 2002). The Lyapunov level-

set 
on
ept 
an be generalised in
luding prior estimates of the DA. In parti
ular,

the following result will be later exploited:

Theorem 5.2.1 ((Pitar
h, Sala, and C.V. Ariño 2014)). Consider two sets A, B,
su
h that B ⊂ A. If A is invariant and there exist γ > 0 and V (x), bounded in

A, su
h that V̇ (x) < −γ for all x ∈ (A − B), where A − B := {x|x ∈ A, x 6∈ B},
then all traje
tories starting in A enter B in �nite time.

LMIs in stability analysis of TS systems usually resort to expressions of the form

ATi P + PAi < 0. Let us review some already-known stability results for PWATS

systems.

2

In this work, as in (Johansson, Rantzer, and Arzen 1999), upper indexes of matrix expressions

su
h as k in Ak
h
are not powers, but only for indexation purposes.
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De�ning an augmented state and augmented matri
es:

x̄ :=

[
x
1

]

, Āki :=

[

Aki b
k
i

0 0

]

, i ∈ {1, 2, . . . , r}, k ∈ K1. (5.18)

The PWATS stability analysis in (Johansson, Rantzer, and Arzen 1999) 
an be

straightforwardly applied if Ωk 
onform to a polyhedral partition of the operating

region in the state spa
e.

To see this, 
onsider PWQLFs of the form

V
(
x
)
:= x̄T P̄kx̄, x ∈ Ωk, (5.19)

so that V (0) = 0, with 
ontinuity of the Lyapunov fun
tion a
ross the boundaries,

i.e., Vk
(
x(t)

)
=Vl

(
x(t)

)
, ∀x(t) ∈ (Ωk ∩ Ωl), guaranteed by parameterising P̄k as

P̄k := F̄Tk T F̄k, (5.20)

where T is a symmetri
 matrix of adequate dimensions, F̄k =
[
Fk fk

]
with

fk = 0 for k ∈ K0, satisfying F̄kx̄ = F̄lx̄ for x ∈ (Ωk ∩ Ωl), k, l ∈ {1, 2, . . . , q}.
Partition information 
an be systemati
ally in
orporated into the analysis via

the S-pro
edure (Boyd et al. 1994). Notation Iγ := blkdiag(γI, 0), and 0γ :=
diag(0, 0, . . . , 0, γ) will be later used. �blkdiag(·)� stands for a square blo
k-

diagonal matrix in whi
h the diagonal elements are the matri
es in the argument.

Thus, the following slight generalisations of (Johansson, Rantzer, and Arzen 1999;

Gonzalez and Bernal 2016) are given:

Theorem 5.2.2. If there exist symmetri
 matri
es T , Uk � 0, and Wki � 0 su
h

that, for a given small γ > 0, the LMIs

P̄k − ĒTk UkĒk ≥ Iγ
(
Āki
)T
P̄k + P̄kĀ

k
i + ĒTkWkiĒk ≤ −Φkγ

(5.21)

hold for i ∈ {1, 2, . . . , r}, being Φkγ = Iγ if k ∈ K0, and Φkγ = 0γ if k ∈ K1,

then x
(
t
)
tends to zero exponentially for every 
ontinuous di�erentiable pie
ewise

traje
tory in Ω =
⋃q
k=1Ωk satisfying the model equations (5.17) with initial 
on-

ditions x0 ∈ Vβ, where Vβ := {x : V (x) < β} is any level set of the pie
ewise V (x)
de�ned in (5.19) su
h that Vβ ⊂ Ω.

Proof outline. First 
ondition proves V (x) > γxTx in region Ωk, and se
ond one

proves V̇ (x) ≤ −γxTx in regions Ωk, k ∈ K0, and V̇ (x) ≤ −γ in regions Ωk,
k ∈ K1.
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Remark 5.2.1. From (5.19), in regions 
ontaining the origin (k ∈ K0), V (x) is a
standard quadrati
 form without 
onstant or linear terms. As quadrati
 forms are

positive in 
ones, only the set of 
onditions with Ēk =
[
Ek 0

]
are relevant if k ∈

K0. In the original referen
e (Johansson, Rantzer, and Arzen 1999), 
onditions

(5.21) were separated in two groups a

ording to k ∈ K0 or k ∈ K1; however,

su
h separation is impli
itly 
onsidered in Φγ above. In fa
t, in a region where

ek = 0 and the model is given by TS representation Āki = blkdiag(Aki , 0), LMIs

(5.21) would entail the Lyapunov fun
tion to be for
edly homogeneous quadrati
 if

V (0) = 0 were enfor
ed. Due to this reason, su
h separation between K0 and K1

will be no longer pursued in this work.

Theorem 5.2.2 has been extended to the 
ase of non-polyhedral partitions with


ir
ular boundaries in the 
onferen
e paper (Gonzalez, Bernal, and Marquez 2014).

For brevity, it will not be dis
ussed here as it will be a parti
ular 
ase of the

proposal in this work.

5.2.4 Farkas Lemma and Positivstellensatz

The above-reviewed prior results 
an be understood as proving positiveness of

quadrati
 fun
tions in regions with a�ne/quadrati
 boundaries; they are instan
es

of the Positivstellensatz argumentation (Jarvis-Wloszek et al. 2005, Theorem 1),

whi
h in the quadrati
-only 
ase amount to the S-pro
edure (Boyd et al. 1994), and

in the a�ne-only 
ase are a version of Farkas lemma (Jönsson 2001). Computa-

tionally, 
onditions are posed as linear programming (a�ne 
ase), LMIs (quadrati



ase) or generi
 sum-of-squares 
onstraints (Jarvis-Wloszek et al. 2005). However,

the latter exa
erbates the 
omputational 
ost, so it is intentionally left out of the

s
ope of this thesis.

De
ision variables Uk andWki are generi
ally known as multipliers. In general, the

above multiplier-based 
onditions are only su�
ient for emptiness of semialgebrai


sets or for sign-de�niteness of some polynomial fun
tions of the state in parti
ular

regions

3

.

However, there are a few well-known situations in whi
h exa
t results 
an be

asserted with few 
omputational resour
es. These situations are: the S-pro
edure

with a single quadrati
 
onstraint, and the Farkas Lemma for a�ne 
onstraints

(in linear programming setups). The latter 
an be stated as:

3

More general 
onditions may be obtained by transforming the multipliers into polynomials of

arbitrary degree; however, as pointed out at the introdu
tion, it is at the expense of a heavy 
om-

putational 
ost (Pitar
h, Sala, and C.V. Ariño 2014).
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Lemma 5.2.2 ((Jönsson 2001)). Consider an a�ne fun
tion V (x) = pTx + δ,
where p ∈ R

n×1
and δ ∈ R, and a polyhedral region Ω := {σ(x) � 0} being

σ(x) :=
[
E e

]
x̄, where E ∈ R

N×n
and e ∈ R

N×1
. Let σl(x) be the l-th element

of ve
tor σ(x). Then, the following expressions are equivalent:

a) V (x) = pTx+ δ ≥ 0 for all x ∈ Ω

b) There exist τl ≥ 0, l ∈ {1, 2, . . . , N} su
h that

V (x)−
N∑

l=1

τlσl(x) ≥ 0, ∀x ∈ R
n

(5.22)

Corollary 5.2.2.1. Under the same settings, the following expressions are equiv-

alent:

a) V (x) = pTx+ δ = 0 for all x ∈ Ω, and Ω 6= ∅.

b) There exist arbitrary τl, l ∈ {1, 2, . . . , N} su
h that

V (x)−
N∑

l=1

τlσl(x) = 0, ∀x ∈ R
n

(5.23)

Proof. The result 
an be proved 
onsidering V (x) = 0 as V (x) ≥ 0, −V (x) ≥ 0,
and applying twi
e the above lemma, i.e., for V (x) = 0, ∀x ∈ Ω, there exist c1 ≥ 0
and c2 ≥ 0 su
h that:

V (x)−
N∑

l=1

τ ′lσl(x) = c1 ≥ 0, −V (x)−
N∑

l=1

τ∗l σl(x) = c2 ≥ 0

where linearity of V for
es c1 and c2 being 
onstants. Adding, we would have:

−
N∑

l=1

(τ ′l + τ∗l )σl = c1 + c2

but, if we assume the region Ω is not empty, the above 
annot happen unless

c1 = c2 = 0 (standard Positivstellensatz). Now, subtra
ting and dividing by 2, we

obtain:

V −
N∑

l=1

1

2
(τ ′l − τ∗l )σl = 0

so τl = 0.5(τ ′l − τ∗l ).
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In the next se
tions, earlier results will be generalised using the ideas in Se
tions

5.2.4 and 5.2.3; asymptoti
al exa
tness of the proposed approa
h will be estab-

lished via universal-approximation argumentations.

5.3 Main Results

Let us 
onsider a 
onne
ted modelling region Ω partitioned into q subregions Ωk
with disjoint interiors where ea
h region is de�ned

4

as:

Ωk =
{
x : Ekx̄ � 0, x̄TQlkx̄ ≥ 0, l ∈ {1, 2, . . . , ℓk}

}
(5.24)

where x̄ is obtained from x using (5.18). The j-th a�ne 
onstraint, 
orresponding

to the j-th row of Ek will be denoted as Ejk
5

. The �fa
es� of Ωk will be de�ned

by 
hanging just one of the a�ne or quadrati
 inequalities to equality.

If Qlk = 0, or, equivalently, ℓk = 0, the partition will be said to be polyhedral.

Given that the regions have disjoint interior by assumption, the interse
tion of

two regions Ωk and Ωl must be a subset of a fa
e in ea
h of them. The region Ωk
will have a number of verti
es lo
ated at the interse
tion of n fa
es.

5.3.1 Continuity in the Pie
ewise Lyapunov Fun
tion

Continuity of the pie
ewise Lyapunov fun
tion was enfor
ed via (5.20) in prior

works. A more �exible alternative will be proposed next. Consider a non-empty

set

X := {x̄ : Ex̄ = 0, x̄TQ1x̄ = 0, x̄TQ2x̄ = 0, . . . , x̄TQℓ̄x̄ = 0},
su
h that Ωk ∩ Ωm ⊂ X , for some k, m.

Lemma 5.3.1. The pie
ewise quadrati
 fun
tion

V (x) =

{
x̄T P̄kx̄ for x ∈ Ωk,
x̄T P̄mx̄ for x ∈ Ωm,

is 
ontinuous in the �fa
e� Ωk ∩ Ωm if, given X in the above form su
h that

Ωk ∩ Ωm ⊂ X , there exists an arbitrary multiplier matrix U and arbitrary s
alars

4

For notational simpli
ity, denoting 
onstraints asso
iated to regions 
ontaining the origin with

Ek, and those where 0 6∈ Ωk with Ēk (established in (Johansson, Rantzer, and Arzen 1999)), will

no longer be used. All matri
es in (5.24) will be assumed to apply on the extended state x̄. In

this way 
luttering all matri
es with barred notation is avoided while leaving Ē available for future

de�nitions.

5

Following notation in (Johansson, Rantzer, and Arzen 1999), indexes will be sta
ked together in

order to avoid long expressions; system matri
es will use upper and lower ones.
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τj su
h that:

P̄k − P̄m + UE +ETU +

ℓ̄∑

j=1

τjQj = 0 (5.25)

Proof. Sin
e 0 = x̄T (P̄k − P̄m + UE + ETU +
∑ℓ̄
j=1 τjQj)x̄ = x̄T (P̄k − P̄m)x̄ for

x̄ ∈ X , then the result is trivial.

In this way, matri
es F and de
ision variables T parameterising the sought Lya-

punov fun
tions, used in prior literature, are not needed in this proposal, giving

more 
larity and �exibility, in ex
hange for additional multipliers.

Remark 5.3.1. Note that, from analyti
al prolongation (or Taylor series), if two

fun
tions 
oin
ide on an in�nitesimal fragment of a fa
e (i.e., a small lower-

dimensional a�ne or quadrati
 region), they do on all prolongations. This is the

reason of 
onsidering the above set X whi
h disregards inequalities in Ωk∩Ωm (for

instan
e, with Ω1 = {9−xTx ≥ 0, xTx− 1 ≥ 0, x2 ≥ 0}, Ω2 = {1−xTx ≥ 0, x2 ≥
0}, we would have that Ω1∩Ω2 = {1−xTx = 0, x2 ≥ 0}, and X = {1−xTx = 0};
adding a multiplier asso
iated to 
onstraint x2 ≥ 0 would be useless).

5.3.2 Extension of pie
ewise quadrati
 stability analysis

In Theorem 5.2.2, taken from (Johansson, Rantzer, and Arzen 1999), only mul-

tipliers Uk in ETk UkEk (and Wki, with the same role) appeared to enfor
e lo
al

positiveness (negativeness) of the Lyapunov fun
tion (and its derivative).

However, we 
an state a more general 
ondition.

Lemma 5.3.2. Consider the set

X :=







x ∈ R
n :

Ex̄ � 0
x̄TQlx̄ ≥ 0, l ∈ {1, 2, . . . , ℓ}

Rx̄ = 0
x̄TQj x̄ = 0, j ∈ {1, 2 . . . , ℓ̄}







Consider, too, a quadrati
 polynomial x̄TΞx̄. Then, x̄TΞx̄ ≥ 0 for all x ∈ X
if there exist arbitrary s
alars ξj, j ∈ {1, 2, . . . , ℓ̄}, arbitrary matrix Z, positive
s
alars τl, l ∈ {1, 2, . . . , ℓ}, and element-wise positive matrix U su
h that the

following matrix inequality holds:

− Ξ +

ℓ∑

l=1

τlQl + ĒTUĒ +

ℓ̄∑

j=1

ξjQj + ZTR+RTZ ≤ 0 (5.26)
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where

6

Ē :=

[
[0 0 · · · 1]

E

]

. (5.27)

Proof. Indeed, for any x ∈ X, we have

ℓ∑

l=1

τlQl + ĒTUĒ +

ℓ̄∑

j=1

ξjQj + ZTR+RTZ ≥ 0.

Hen
e, if (5.26) holds, it proves that −x̄TΞx̄ ≤ 0 in X, i.e., x̄TΞx̄ ≥ 0.

Corollary 5.3.0.1. Letting Ξ = diag(0, 0,..., 0,−1), if there exists the above-

mentioned multipliers then X is empty.

Proof. Indeed, we proved 0 ≥ 1 on X so for
efully X should be empty.

Corollary 5.3.0.2. If x̄TΞx̄ is a degree-1 polynomial, and X is a full-dimensional

polyhedron (Ql = Qj = 0, R = 0), then 
onditions in Lemma 5.3.2 are ne
essary

and su�
ient.

Proof. It 
an be shown that the 
hoi
e of multipliers en
ompasses those in Farkas

lemma, i.e., the multipliers τl in (5.22) from Lemma 5.2.2. Details omitted for

brevity.

Remark 5.3.2. The fa
t that the last element of x̄ is equal to 1, as well as the

seemingly �trivial� addition of 1 ≥ 0 in the 
onstru
tion of Ē, introdu
es additional
multipliers, whi
h were not 
onsidered in prior literature; this enables the above

generalisation and exa
tness in the a�ne 
ase (Corollary 5.3.0.2). Without Ē,
(5.26) 
annot be written as (5.22) in the polyhedral 
ase (Ql = Qj = 0). Apart,


ombined a�ne/quadrati
 boundaries are 
onsidered, as well as equalities whi
h do

not appear in (5.24), but will be relevant when geometri
 
onditions are pursued.

Consider now a PWATS model (5.17) de�ned over a quadrati
/polyhedral par-

tition of a region Ω with sets Ωk = {x : σkj (x) ≥ 0, j ∈ {1, 2, . . . , nk}}, k ∈
{1, 2, . . . , q} de�ned as (5.24), i.e. being ea
h of the 
onstraints σkj (·) either a�ne

or quadrati
.

The following de�nition will single out 
onstraints whi
h take part in the shape

of the overall modelling region Ω = ∪kΩk de�ning its outer boundary:

6

Re
all Ē 
arrying the meaning in (Johansson, Rantzer, and Arzen 1999) is hen
eforth no longer

in use.
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De�nition 5.3.1. The fa
e generated by 
onstraint σkj (·) will be denoted as:

Fk
j := {x : σkj (x) = 0} ∩ Ωk (5.28)

Su
h fa
e (and the 
onstraint σkj itself) is 
alled �outer� if:

Fk
j 6⊂

⋃

l6=k

Ωl (5.29)

An illustration of the meaning of the above de�nition appears on Figure 5.3, where

outer fa
es are labelled with Fk
out, k = {1, 2, 3, 4}.

Obviously, the boundary ∂Ω, ful�lls ∂Ω ⊂ ⋃Fk
j

is outer

Fk
j .

Let us denote as ∂Ω↓
as the set of points in the boundary of Ω su
h that system

traje
tories whi
h 
ontain them �enter� Ω, i.e., in formal terms:

∂Ω↓ := {x ∈ ∂Ω : ∃ω > 0 s.t. φ(ǫ, x) ∈ Ω ∀0 < ǫ < ω}

Let us denote as ∂Ω↑
the 
omplementary of ∂Ω↓

in ∂Ω, i.e., the points in the

boundary of Ω su
h that traje
tories do not immediately enter the interior of Ω.

For later use, we will denote the set of all outer 
onstraints as:

Ik := {j : σkj (·) is outer}

Given an arbitrary point x ∈ ∂Ωk, let us denote as Γk(x) the set of outer 
on-

straints in Ωk whi
h are a
tive at x, i.e., the ones asso
iated to the outer fa
es x
belongs to:

Γk(x) := {j ∈ Ik : σkj (x) = 0}

Proposition 5.3.1. Given x ∈ ∂Ωk ∩ ∂Ω, if σ̇kj (x) > 0 for all j ∈ Γk(x), then

x ∈ ∂Ω↓
.

Proof. First, note that, for the a
tive 
onstraints σkk(x) = 0, σ̇kj (x) > 0 entails

σ(φ(ǫ, x)) > 0 for all ǫ su
h that 0 < ǫ < ω for small enough ω. Given that

σ(x) > 0 for ina
tive 
onstraints, then for small enough ω, σ(φ(ǫ, x)) > 0 will still
hold for su
h 
onstraints for all 0 < ǫ < ω. Hen
e, no other 
onstraint will be

a
tive and all a
tive ones will render ina
tive: φ(ǫ, x) will belong to the interior

of Ω.
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Figure 5.3: Bounding hyperplanes Fk
out delimiting Ω.

Consider, given x and the 
onstraints indexed in Γk(x), that a parti
ular a
tive


onstraint is either a�ne σkj (x) = Ejkx̄, being Ejk a row ve
tor, or quadrati


σkj (x) = x̄TQjkx̄, being Qjk a matrix of adequate size.

Corollary 5.3.0.3. Given x ∈ ∂Ωk ∩ ∂Ω, if, for all i ∈ {1, 2, . . . r}, for all

j ∈ Γk(x) either:

• EjkĀ
k
i x̄ > 0, if σkj (·) is a�ne, or

• x̄T
(

QjkĀ
k
i + (Āki )

TQTjk

)

x̄ > 0 if σkj (·) is quadrati
,

then x ∈ ∂Ω↓
.

Proof. The 
onditions on the verti
es of the PWATS model are su�
ient to ensure

that 
onditions in Proposition 5.3.1 hold, as

˙̄x belongs to the 
onvex hull of the

vertex derivative estimates Āki x̄.

Now, we are in 
onditions to state the main result of the 
hapter.
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Theorem 5.3.1. Consider a nonlinear system (5.1), and a PWATS model (5.17)

of it, de�ned over a partition of a 
ompa
t region Ω with sets Ωk, k ∈ {1, 2, . . . , q}
de�ned as in (5.24). Consider, too, a 
olle
tion of ellipsoids Eks = {x : x̄T Ḡksx̄ >
0} for s ∈ {1, 2, . . . , s̄k}, su
h that Eks ∩ Ωk belongs to the DA of x = 0 for the

nonlinear system (5.1), and a se
ond 
olle
tion of ellipsoids Êkjs = {x : x̄T Ĝkjsx̄ >

0}, s ∈ {1, 2, . . . , ŝkj}, asso
iated to ea
h fa
e Fk
j su
h that Êks ∩ Fk

j , too, belongs

to the DA of x = 0. Then, if there exist symmetri
 matri
es P̄k satisfying the


ontinuity 
onditions

7

x̄T P̄kx̄ = x̄T P̄mx̄, ∀x ∈ (Ωk ∩ Ωm) , (5.30)

symmetri
 matri
es U 1
ki � 0, U 2

kji � 0, arbitrary row ve
tors Zjk, positive s
alars

τ1kl, τ
2
ks, τ

3
kl, τ

4
ks, τ

5
kji, τ

6
kjs, i ∈ {1, 2, . . . , r}, and arbitrary s
alars τ7kj , j ∈ Ik,

m ∈ {1, 2, . . . , q}, yielding a feasible solution for the following inequalities, given

γ > 0, �rst:

P̄kĀ
k
i +
(
Āki
)T
P̄k+Ē

T
k U

1
kiĒk+

ℓk∑

l=1

τ1klQlk−
s̄k∑

s=1

τ2ksḠsk ≤ −Φkγ ; (5.31)

being Φkγ = Iγ if k ∈ K0, and Φkγ = 0γ if k ∈ K1;

and, se
ond, either, if σkj = Ejkx̄ (a�ne 
onstraints):

ZTjkEjk+(∗)+P̄k−ETkjiU
2
kjiEkji−

ℓk∑

l=1

τ3klQlk+

s̄k∑

s=1

τ4ksḠsk+

ŝkj∑

s=1

τ6kjsĜkjs≥0, (5.32)

where

Ekij =

[
Ēk

−EjkĀki

]

; (5.33)

or, if σkj = x̄TQjkx̄ (quadrati
 
onstraints):

τ7kjQjk +P̄k−ĒTk U 2
kjiĒk + τ5kji

(

QjkĀ
k
i +

(
Āki
)T
QTjk

)

−
ℓk∑

l=1

τ3klQlk+

s̄k∑

s=1

τ4ksḠsk +

ŝkj∑

s=1

τ6kjsĜkjs≥0, (5.34)

then, {x : x̄T P̄kx̄ < 0} ∩ Ωk belongs to the DA of x = 0 for every k, for the

nonlinear system under study.

7

Whi
h 
an be enfor
ed via LMI 
onditions (5.25) on all shared fa
es.
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Proof. Consider the regions Êk :=
⋃nk

j=1

(
⋃ŝk
s=1 Êkjs ∩ Fk

j

)

and Ek := Ωk∩
⋃s̄k
s=1 Eks .

Consider, too, the regions E :=
⋃q
k=1 Ek and Ê :=

⋃q
k=1 Êk. Then, by assumption,

ea
h Ek, Êk, and, evidently, the whole Ê, and E belong to the DA of the origin.

Using the argumentations in Lemma 5.3.2 with Ξ = V̇k(x) + γ‖x‖2 and Vk(x) :=
x̄T P̄kx̄, we 
an state that (5.31) ensures that the time derivative of Vk(x) is stri
tly
negative for nonzero x (lower or equal than −γ‖x‖2), in Ωk−Ek, be
ause su
h set

is given by:

Ωk − Ek = {x : Ekx̄ � 0, x̄TQlkx̄ ≥ 0, x̄T Ḡskx̄ ≤ 0},

for l ∈ {1, 2, . . . , ℓk} and s ∈ {1, 2, . . . , s̄k}, so suitable multipliersU 1
ki � 0, τ1kl ≥ 0,

τ2ks ≥ 0 are introdu
ed.

Let us dis
uss now inequality (5.32). In this 
ase, we want to show that the level

set {Vk(x) < 0} ∩ (Ωk − Ek − Êk) does not interse
t ∂Ω↑
, as ∂Ω↑

is the subset of

∂Ωk where the traje
tories of the system do not immediately enter Ω.

In order to show that, we will 
ombine Corollary 5.3.0.3 with Lemma 5.3.2, posing

the 
onditions of P̄ ≥ 0 for all x in the set ∂Ω↑ ∩ (Ωk − Ek − Êk).

As ∂Ω↑ ⊂ ⋃

j∈Ik
{x : σ̇kj (x) ≤ 0} we 
an assert that, if the following assertion

holds for all j ∈ Ik:
P̄ ≥ 0 ∀x ∈ Σkj (5.35)

where Σkj := {x : σ̇kj (x) ≤ 0}∩(Ωk−Ek−Êk), then P̄ ≥ 0 on ∂Ω↑∩(Ωk−Ek−Êk).

Now, we repla
e Σkj by the larger (shape-independent) set on whi
h at least one

of the verti
es of the PWATS model proves σ̇kj (x) ≤ 0, as dis
ussed on Corollary

5.3.0.3. Then, appli
ation of Lemma 5.3.2 for ea
h of the outer 
onstraints in

(5.35) and model verti
es yields 
onditions (5.32) if the 
onstraint in 
onsideration

is a�ne, and (5.34) if it were quadrati
.

Now, by 
onsidering all regions we have:

1. a 
ontinuous pie
ewise quadrati
 fun
tion V (x), de�ned as Vk(x) = x̄T P̄kx̄
in Ωk;

2. V (x) is non-in
reasing, i.e., for a su�
iently small ǫ, V (x(t+ ǫ)) ≤ V (x(t));
a
tually V (x(t+ ǫ)) < V (x(t)) if x(t) 6= 0. Indeed, along the traje
tories of

the nonlinear system (5.1), V̇ ≤ 0 if x(t) is in the interior of any Ωk; if x(t)
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is in the boundary of several regions, we 
an ensure that:

D+V (t) := lim
ǫ→0+

V (x(t+ ǫ))− V (x(t))

ǫ
≤ max
k s.t. x(t)∈Ωk

V̇k ≤ 0 (5.36)

3. V (x) has a level-zero set V0 := {V (x) < 0} that veri�es

V0 ∩
(

∂Ω↑ ∩ (Ωk − Ek − Êk)
)

= ∅.

Denoting E := E ∪ Ê , Let us de�ne the following sets:

V := {V (x) < 0} ∩ Ω, W := V − E, (5.37)

W¬ε := {x ∈ W : φ(t, x) 6∈ E ∀t ≥ 0}, Wε := W −W¬ε. (5.38)

With the above de�nition, W is the set of points who have not (yet) been proven

to belong to the DA. Su
h set is partitioned in two: W¬ε, i.e., the set of points of

W whi
h do not enter E in �nite time, and Wε.

Now, note that when starting in W, it is impossible to abandon W without en-

tering E, due to:

• As V (x) is non-in
reasing in time in W, the boundary V (x) = 0 will never

be rea
hed.

• As σ̇kj (x) > 0 for all x lying both in the outer fa
es and in V (x) < 0 (proven

due to the third of the above-enumerated 
onditions), traje
tories 
annot

exit Ω through su
h outer fa
es.

Thus, all points in W either enter E in �nite time or remain inde�nitely in W. As

the latter points are, by de�nition, those in W¬ε, for
edly Wε is the set of points

who do enter E in �nite time.

Obviously, all x ∈ Wε belong to the DA of the origin, be
ause they enter E in

�nite time without leaving Ω, so they 
onverge to the origin later on.

Let us prove that all x ∈ W¬ε belong, too, to the DA of the origin. Indeed, W¬ε is

invariant, be
ause traje
tories always remain inside it in future time: they do not

enter E and, due to the above reasons, they do not exit V, and they do not enter

Wε be
ause in su
h a 
ase they would eventually enter E, whi
h 
annot happen

by de�nition.
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x1

x2

∂Ω

Ωk

Êk ∂Ω↓

∂Ω↑

Ek

Figure 5.4: Subsets Ωk, Ek, Êk, ∂Ω, and ∂Ω↓
.

As V (x) is 
ontinuous, pie
ewise polynomial, it is bounded on W¬ε, i.e., there

exist

Vmin := inf
x∈W¬ε

V (x), Vmax := sup
x∈W¬ε

V (x).

Given any x ∈ W¬ε, as V (φ(t, x)) is nonin
reasing and bounded from below at

all times, there must exist a limit a := limt→∞ V (φ(t, x)), so, as a 
onsequen
e

limt→∞D+V (φ(t, x)) = 0. As V̇k(x) ≤ −γ in regions Ωk not 
ontaining the

origin, and V̇k(x) ≤ −γ‖x‖2 if the region 
ontains the origin, the only point in

whi
h su
h situation (D+V = maxk s.t. x(t)∈Ωk
V̇k = 0) 
an happen is the origin.

So, all initial 
onditions x ∈ W¬ε tend to the origin, i.e., belong to the DA of the

origin

8

. Given that both Wε and W¬ε belong to the DA of the origin, so does

their union W.

Remark 5.3.3. Theorem 5.3.1 requires a prior estimate of the DA of the origin

E. In order to apply the above result to prove stability of a PWATS model without

su
h �initialisation� (to get results with the same a priori assumptions as usual

literature), the theorem should be modi�ed by setting Ḡks = 0, thus initialising the
ellipsoids Eks to empty sets (equivalently, forgetting about the terms with G in the

LMIs, letting s̄k = 0). The result is as follows.

8

Note that, if 0 ∈ E, for
efully W¬ε = ∅; this is in a

ordan
e with Theorem 5.2.1.
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(P1) (P2) (P3)

Figure 5.5: Example partitions: (P1) is not a honey
omb; (P2,P3) are.

Corollary 5.3.1.1. A PWATS model (5.17), de�ned over a partition of a region

Ω with sets Ωk, k ∈ {1, 2, . . . , q} de�ned as in (5.24), is lo
ally stable if there exist

de
ision variables ful�lling Theorem 5.3.1 with s̄k = 0 and ŝkj , su
h that the set

V in (5.37) is not empty.

Proof. Indeed, applying the prior theorem, {x : x̄T P̄ x̄ < 0} ∩ Ω belongs to the

DA of x = 0 and, by assumptions in the 
orollary statement, it is not empty.

In this parti
ular situation, 
ontrarily to footnote 8, the set Wε would be empty,

and W = V = W¬ε, a
tually 
ontaining the origin, dedu
ed with an identi
al

argumentation to the one in the theorem's proof for this parti
ular 
ase E = ∅.

Note that non-emptiness of V 
an be enfor
ed in the LMI 
onditions with some

geometri
 
onditions. This is the obje
tive of next subse
tion.

In order to avoid 
onservatism, we will assume that the 
hosen partition 
onforms

a honey
omb (Coexeter 1973), de�ned as a partition where verti
es of the regions

are 
ommon to neighboring ones (a region Ωj will be understood to be neighboring

to Ωk if Ωj ∩Ωk 6= ∅, int(Ωj) ∩ int(Ωk) = ∅; verti
es will be the points formed by

interse
tion of n fa
es).

For instan
e, Figure 5.5 shows a partition (P1) whi
h does not ful�ll the hon-

ey
omb assumption, and a pair of another ones whi
h do. The reason of su
h

assumption is that the fa
es of the 
entral region in partition (P1) (marked as

a thi
k blue line) are outer, so the theorem would pre
lude a level set in
luding

the subset of the fa
e where traje
tories enter the neighboring regions, whi
h is


learly undesired. The se
ond partition (P2) is a honey
omb and su
h issue does

not appear. Partition (P3) is, too, a honey
omb with quadrati
 boundaries.

98



5.3 Main Results

5.3.3 Geometri
 optimisation

In order for the theorem to be useful, some additions enfor
ing how to obtain

the �largest� estimate of the domain of attra
tion should be added, for instan
e,

maximising the size of some pre�xed-shape set whi
h 
an be �t inside the obtained

DA estimate (via maximisation of s
aling fa
tors).

Consider a pre�xed-shape region in the form:

Ω̂ := {x : Ẽx̄ � 0, x̄T Q̃1x̄ ≥ 0, . . . , x̄T Q̃q̃x̄ ≥ 0}

where some a�ne inequalities (rows of Ẽ) and q̃ quadrati
 ones hold. Let us de�ne
the geometri
 transformation below:

x̄λ :=

[
xc + λ−1(x− xc)

1

]

=

[
λ−1I xc − λ−1xc
0 1

] [
x
1

]

= Λx̄,

being λ a �s
aling fa
tor� and xc a �s
aling 
entroid�, both parameters assumed

known. The s
aled region Ω̃ by fa
tor λ around xc is de�ned as:

Ω̃(λ) :={x : ẼΛx̄ � 0, x̄TΛT Q̃1Λx̄ ≥ 0,...,x̄TΛT Q̃q̃Λx̄ ≥ 0}. (5.39)

Note that setting xc = 0 redu
es the s
aling to the standard s
aling around the

origin.

Theorem 5.3.2. Consider a PWATS model (5.17) de�ned over a partition of a

region Ω with sets Ωk, k ∈ {1, 2, . . . , q} de�ned as in (5.24). Consider, too, a


olle
tion of ellipsoids Eks = {x : x̄T Ḡskx̄ > 0} for s ∈ {1, 2, . . . , s̄k}, su
h that

Eks ∩ Ωk belongs to the DA of x = 0 for the nonlinear system (5.1), and a se
ond


olle
tion of ellipsoids Êkjs = {x : x̄T Ĝkjsx̄ > 0}, s ∈ {1, 2, . . . , ŝkj}, asso
iated
to ea
h fa
e Fk

j su
h that Êks ∩ Fk
j , too, belongs to the DA of x = 0. Then, if

there exist symmetri
 matri
es P̄k, U
1
ki � 0, U 2

kji � 0, U 3
k � 0, U 4

k � 0, arbitrary


olumn ve
tors Zjk, arbitrary s
alars τ7kj , and positive s
alars τ1kl, τ
2
ks, τ

3
kl, τ

4
ks,

τ5kji, τ
6
kjs, τ

8
k′l, τ

9
k′m, τ

10
k′s, i ∈ {1, 2, . . . , r}, j ∈ Ik, m ∈ {1, 2, . . . , q̂}, yielding a

feasible solution for the inequalities (5.30), either (5.31) or (5.32), (5.34), and,

for a given k′, and γ > 0:

P̄k′ + ĒTk′U
3
k′Ēk′ + ΛT ẼTk′U

4
k′Ẽk′Λ +

ℓk′

∑

l=1

τ8k′lQlk′

+

q̂
∑

m=1

τ9k′mΛ
T Q̃mΛ−

s̄k′

∑

s=1

τ10k′sḠsk′ ≤ −0γ , (5.40)

then, the region Ω̂(λ) ∩ Ωk′ belongs to the DA of x = 0.
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Proof. In this 
ase, we want to show that Ω̂(λ) belongs to the domain of attra
tion

of x = 0, by showing that it is in
luded in the subset of the DA proven in Theorem

5.3.1, where 
onstraints for the level set V for being part of the DA are enfor
ed

((5.30), (5.31), (5.32), (5.34)).

We want to enfor
e that the region Ek′ ∪ {x̄T P̄k′ x̄ < 0} ∩Ωk 
ontains Ω̂(λ)∩Ωk′ .

We will do that by proving that x̄T P̄k′ x̄ ≤ −γ in (Ωk′ − Ek′) ∩ Ω̂(λ). Indeed, if

that holds, all points of Ω̂(λ)∩Ωk′ either lie in Ek′ or in {x̄T P̄k′ x̄ < 0}∩Ωk, both
belonging to the DA of the origin.

Thus, 
onditions for in
lusion of x̄T P̄k′ x̄ ≤ −γ in the required set are written

as (5.40) by using the S-pro
edure argumentation and positive multipliers τ8k′m
asso
iated to the quadrati
 
onstraints in Ω̂(λ), U 4

k′ asso
iated to the linear in-

equalities in Ω̂(λ), U 3
k′ and τ7k′l asso
iated to the 
orresponding region Ωk, and

positive 
onstants τ9k′s asso
iated to ellipsoids Eks .

Note that Ê has not been used in 
onditions (5.40); indeed, su
h Ê is formed by

fragments of outer fa
es with no volume, but Ω̂(λ)∩Ωk′ will have nonzero volume

ex
ept in degenerate 
ases, so behaviour at the fa
es is irrelevant for the level sets

of P̄k′ in Ωk.

Remark 5.3.4. The above theorem 
an be extended to for
ing shape 
onstraints

in several regions, by repeating (5.40) for di�erent k′ in a sele
ted set (or even all

of them). The �xed-shape 
onditions above 
an be parti
ularised to spheri
al re-

gions, polytopes (boxes), or interse
tions thereof, extending analogous geometri
al


onditions in LMI setups for 
lassi
al (non-a�ne) TS systems (Boyd et al. 1994;

Tanaka and H. Wang 2001).

Remark 5.3.5. Theorem 5.3.2 provides only feasibility 
onditions. Trivially, they


an be 
onverted to optimisation ones on the 
entroid/size �shape� parameters (xc,
λ). If only one of them is to be optimised (either s
ale or translation), su
h op-

timisation setups 
an be 
ast as bise
tion problems and, in some parti
ular 
ases

as GEVP ones or even LMI ones in Lyapunov and shape parameters. Su
h devel-

opments are trans
riptions to the a�ne 
ase of well-studied geometri
 problems

9

and are omitted for brevity, leaving details to parti
ular examples later.

The following 
orollary shows that our result extends prior literature.

9

For instan
e, the smallest or largest 
ir
le inside an ellipsoid, the largest ellipsoid inside a poly-

tope, et
. in (Boyd et al. 1994).
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Corollary 5.3.2.1. In the polyhedral partition 
ase, if LMIs in Theorem 5.2.2 are

feasible, and Ω 
ontains a neighborhood of the origin, then 
onditions on Corollary

5.3.1.1 hold for some non-empty domain of attra
tion.

Proof. Suppose that a feasible solution {P Johk , UJohk , W Joh
ki } for (5.21) has been

obtained, i.e.:

P̄ Johk − ĒTk U
Joh
k Ēk ≥ Iγ ,

(
Āki
)T
P̄ Johk + P̄ Johk Āki + ĒTkW

Joh
ki Ēk ≤ −Φkγ .

(5.41)

We will prove that there exist some β > 0 su
h that Vβ in Theorem 5.2.2 belongs to

the DA of the origin, provable with Theorem 5.3.1. As the level set 
onsidered in

the latter theorem is in the form {x̄T P̄kx̄ < 0}, whereas the 
ondition xT P̄ Johk x̄ ≥
Iγ in Theorem 5.2.2 would need level sets in the form {x̄T P̄ Johk x̄ < β}, we will


onsider P̄k = P̄ Johk − 0β , without loss of generality, for some β. In this way,

{x̄T P̄ Johk x̄ < β} ≡ {x̄T P̄kx̄ < 0}.

Consider inequality (5.31). As partition is polyhedral then ℓk = 0 and if the prior

estimates of the DA are empty, then s̄k = 0 and ŝjk = 0. Furthermore if only the

rows Ek are 
onsidered from Ēk, the result is the se
ond LMI in (5.41), with the

notational 
hanges in footnote 4. As subtra
ting a 
onstant from the Lyapunov

fun
tion does not in�uen
e its derivative (algebrai
ally, it 
an be proved from the

fa
t that the last row of Āki is zero), Johansson's multipliers W Joh
ki would render

(5.31) feasible (padded with zeros to 
onform the larger size of Ēk).

Consider now that the �rst inequality in (5.41) holds. Then, we will prove that

there exists β > 0 and arbitrary row-ve
tor multipliers Zjk su
h that

ZTjkEjk+(∗)+(P̄ Johk − 0β)−ETk UJohk Ek≥0, (5.42)

where the above expression has been obtained from (5.32) removing the absent

elements Qlk, Ḡsk, Ĝkjs, and also setting the multiplier for the term EjkĀ
k
i in

U 2
kji equal to zero (hen
e, the original multiplier U 2

kji no longer depends on i, j),

setting the remaining terms equal to the 
orresponding ones in UJohk .

Indeed, 
onsider the problem of �nding Ejk su
h that the following expression is

feasible for all outer 
onstraints Ejk:

ZTjkEjk+(∗)+ blkdiag(γI,−β)≥0, (5.43)

The above problem is feasible if the 
ir
le γxTx ≤ β is inside Ω. So, if there exists
a 
ir
le around the origin whi
h is 
ontained in Ω, true by assumption, a feasible

solution for (5.43) exists. Now, adding the �rst matrix inequality of (5.41) and
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(5.43) results in (5.42), proving that (5.32) was feasible in Theorem 5.3.1 with the


hoi
e of multipliers in (5.42).

In summary, the above argumentation proves that if (5.41) are feasible, so they

are (5.31) and (5.32). Continuity is also enfor
ed in Johansson's result, so we

proved that Theorem 5.3.1 is feasible in all 
ases (5.41) is, for suitable Ω.

Our proposal, apart from giving the same (or better) solutions as Theorem 5.2.2

in an identi
al setting, improving over (Johansson, Rantzer, and Arzen 1999;

Gonzalez and Bernal 2016), applies to regions with quadrati
 boundaries, it is

less 
onservative (due to Ē, and to the fa
t that the level set 
an get �out� of Ω)
and, last, Ω 
an even not 
ontain the origin as long as a fra
tion of it is proven

(elsewhere) to belong to the DA of the origin.

Example 5.3.1. (Pitar
h, Sala, and C.V. Ariño 2014) Consider the following

nonlinear system:

ẋ1 = 0.5x2 − 3x1, ẋ2 = (3 sinx1 − 2)x2 (5.44)

where the state is assumed to lie in the 
ompa
t set Ω = {x : |xi| ≤ 1.2, i =
1, 2}. Consider a partition of the 
ompa
t set Ω in q = 16 subsets, as it is shown

in Figure 5.6. An initial estimation of the DA was obtained using a quadrati


Lyapunov fun
tion and a standard 2-rule TS model resulting from 
hoosing ρ(x) =
3 sin(x1)x2, 
omputed in a smaller modelling region ΩTS = {x : |xi| ≤ 0.72, i =
1, 2}. The resulting largest level set in ΩTS is given by VQ = {x : xT P̄Qx < 0},
with:

P̄Q =

[
1.9104 −0.2365 0
−0.2365 1.9104 0

0 0 −1

]

.

Su
h level set is depi
ted in red in the referred �gure.

Now, a PWATS model has been generated with the same 
hoi
e of ρ(x) applying the
optimisation setup dis
ussed in (Gonzalez, Sala, Bernal, and Robles 2015). Theo-

rem 5.3.2 was applied in order to �nd the largest 
ir
le Ω̃(λ) = {x : −λ−1xTx+1 ≥
0} inside the proven domain of attra
tion, minimising λ−1

by bise
tion, stating


onditions (5.40) for all the regions. The knowledge that the red region already

belonged to the DA has been exploited in the LMI 
onditions. In Figure 5.6, the

larger resulting level-set V is shown in green. The level set interse
ts with the

frontier of Ω, as the theorem allows for it; the only regions out of it are the top

and bottom right white zones.

For 
omparison, a estimation of the DA using 
lassi
al Theorem 5.2.2 for the same

PWATS model is shown in blue. In this 
ase, level sets from earlier results 
annot

exit Ω.
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Figure 5.6: Estimation of the DA for example 5.3.1: quadrati
 TS 
ase (region in red,

(Tanaka and H. Wang 2001)), Thm. 5.2.2 (region in blue, (Gonzalez and Bernal 2016)), and

Thm. 5.3.2 (region in green). Yellow region also depi
ts the result of a se
ond exe
ution of

Theorem 5.3.2 only on the squares at the right of the magenta boundary, seeding it with the

prior green region.

Last, the 8 squares 
ontaining the yellow regions in the �gure are used in a new es-

timation of the DA with a partition whi
h does not 
ontain the origin but 
ontains

as initial DA estimates both the prior green pie
ewise-ellipsoidal fragments 
on-

forming E and the magenta lines 
onforming Ê. With the same geometri
 obje
tive,

the referred yellow region 
an be proved to belong to the domain of attra
tion

10

.

Some simulated traje
tories show that, indeed, the DA estimate is 
orre
t.

5.3.4 Iterative Enlargement of the Domain of Attra
tion

The basi
 idea in this se
tion is proving a large DA estimate by modifying Ω
as the region proved with Theorem 5.3.2 grows larger, removing �empty� regions

(in order to be less 
onservative at next iteration), and adding new neighboring

regions around the ones that 
ontain any points in the proven DA, i.e. around

those in whi
h there exists an ellipsoid Eks su
h that Eks ∩ Ωk 6= ∅. In order to


arry out su
h operation, the following result will be used:

10

A
tually, as 
omplete fa
es are in the DA, instead of being 
onsidered in Êk , they 
an be equiv-

alently removed from the set of outer fa
es, details omitted for brevity.
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Lemma 5.3.3. Consider a region Ωk de�ned as in (5.24) and a 
olle
tion of el-

lipsoids Eks = {x : x̄T Ḡksx̄ > 0} for s ∈ {1, 2, . . . , s̄k}. Then, the two assertions

below are true:

a) if ∃τ1s ≥ 0, τ2l ≥ 0, U = UT � 0 su
h that

01 −
s̄k∑

l=1

τ1s Ḡks + ÊTk UÊk +

ℓk∑

l=1

τ2l Qlk ≤ 0,

then Ωk ⊂ ∪s̄ks Eks .

b) if ∃τ1s ≥ 0, τ2l,s ≥ 0, Us = UTs � 0 su
h that, for all s,

01 + τ1s Ḡks + ÊTk UsÊk +

ℓk∑

l=1

τ2l,sQlk ≤ 0,

then Ωk ∩ ∪s̄ks Eks = ∅.

Proof. The �rst 
ondition a) proves that Ωk ∩
(
∩s̄ks=1{x : x̄T Ḡksx̄ ≤ 0}

)
is empty

from Corollary 5.3.0.1, and therefore Ωk ⊂ ∪s̄ks Eks , be
ause ∩s̄ks=1{x : x̄T Ḡksx̄ ≤ 0}
is the set of x̄ lying outside the union of the ellipsoids Eks .

The se
ond 
ondition b) proves that Ωk ∩ Eks = ∅ for every s, from Corollary

5.3.0.1, and, hen
e, so it is Ωk ∩ ∪s̄ks Eks = ∅.

If the ellipsoids are those in Theorem 5.3.1, Lemma 5.3.3 ensures that regions

ful�lling the �rst LMI have been totally proven to belong to the DA, and regions

ful�lling the se
ond set of LMIs (one for ea
h s) have no point in them proven to

belong to the DA. The former ones will be labelled as �full� and the latter ones,

as �empty�.

Algorithm

Based on Theorem 5.3.1 and the dis
ussed idea above, Algorithm 1 on top of next

page is proposed, initialising on a prior feasible solution and iteratively improv-

ing the DA estimate by suitably modifying the partition (adding, removing and

dividing regions). Some remarks are presented below detailing the ideas in some

of its steps.
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Algorithm 1. Start from a 
ompa
t set Ω[0]
de�ned by a list of sets from a asso
iated partition

Ωk, k ∈ {1, 2, . . . , q}. Consider a previous estimate of the DA, see Remark 5.3.6, as a list of sets

in the form E
[0]
k = {x : x̄T Ḡ0

kx̄ > 0} ∩ Ωk. Set c = 1 and perform the following steps:

1. Test Lemma 5.3.3 for ea
h region Ωk ∈ Ω[c−1]
.

(a) If a) is feasible, set full(k) = 1 else full(k) = 0.
(b) If b) is feasible, set empty(k) = 1 else empty(k) = 0.

2. Generate the list of sets for a new partition Ω[c]
, as follows:

(a) If empty(k) = 1, then reje
t Ωk, do not add it to Ω[c]
;

(b) Else, add Ωk to the list Ω[c]
, and enlarge the region of study adding to Ω[c]

a

neighbouring region Ω′
, see Remark 5.3.7.

(
) if full(k) = 1, Ωk 
an be taken out, if so wished, from Ω[c]
, if the steps in Remark

5.3.8 are taken.

3. Obtain a new PWATS model from the new region.

4. Obtain a PWQLF from Theorem 5.3.2 under some 
hosen geometri
 performan
e max-

imisation, see Remark 5.3.9.

5. If Theorem 5.3.2 is feasible, then add {x : x̄T P̄ c
k x̄ < 0}∩Ωk to the list of sets 
onforming

the 
urrent DA estimate, and set c = c+ 1.
6. If Theorem 5.3.2 is not feasible, then subdivide some of the regions where empty(k) = 0

and full(k) = 0. See Remark 5.3.10.

7. Che
k a suitable termination 
riteria (see Remark 5.3.11), and if it not satis�ed, go to

Step 1.

Remark 5.3.6. [ Initialization℄ The algorithm will be initialised with any pie
ewise

partition of an initial 
ompa
t set Ω[0]
where a PWQLF has been obtained via a

feasible solution of any LMI in literature, for instan
e:

• a single region with a TS model, as done in Example 5.3.1,

• a feasible pie
ewise-quadrati
 DA estimate from Johansson's Theorem 5.2.2

or, better,

• a solution from Corollary 5.3.1.1 (with some geometri
 optimisation, Theo-

rem 5.3.2) with initial empty DA estimate, proved to be more general than

Theorem 5.2.2.

Remark 5.3.7. [Neighbouring region generation℄ Depending on the geometry of

the 
hosen partition (simpli
ial, parallelotopi
, et
.), generating these new neigh-

bouring regions might require di�erent 
ode implementations; in later examples,

a parti
ular hyper-
ube-based setting will be explained, based on the fa
t that a

spa
e-�lling tessellation is possible with 
ongruent 
opies of any parallelotope.
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Remark 5.3.8. [Removing fully 
overed regions℄ If full(k)=1, as the whole region
is proved to belong to the DA of the origin, su
h a region 
an be a
tually removed

from Ω[c]
in step 2 of Algorithm 1; in order to keep this information, the fa
es

of neighboring regions 
an be �marked� to belong to the DA via suitable set up of

ellipsoids Êk.
Remark 5.3.9. [Geometri
 optimisation goal℄ In general, there are no LMI 
on-

ditions to maximise the volume of a pie
ewise estimation of the DA. An indire
t

way to a
hieve this goal is to maximise the radius of a sphere 
entered at the origin

(Gonzalez, Sala, Bernal, and Robles 2015), but it may be inadequate for non
onvex

regions. An alternative to the sphere-based maximisation is trying to maximise in

a region the s
aling (5.39) of a degenerate ellipsoid (with very small axis length in

all dire
tions but a random one) with a random 
enter point.

Remark 5.3.10. [Finer partition granularity℄ As expe
ted, there are several ways

of dividing regions as to apply the algorithm above; in later examples in this work,

the regions have been split into 2n equal smaller parallelotopes. Obviously, other

implementations may be 
on
eivable, su
h as generating a random splitting dire
-

tion for some regions.

Remark 5.3.11. [Termination℄ There might be di�erent options to be used as

termination 
riteria: (a) some geometri
 goal rea
hed, or slow progress of it, (b)

number of regions or 
omputation time at step 4 above a prede�ned limit.

Comparative analysis with other DA analysis proposals

In (Gonzalez and Bernal 2016), an algorithm to get progressively better estimates

of the DA was given. Nevertheless, in 
ontrast with Algorithm 1 above, the

proposal in (Gonzalez and Bernal 2016) (a) is unable to establish asymptoti
al

exa
tness (see next se
tion); (b) it in
ludes no geometri
al optimisation 
onditions,

thus stopping when any arbitrary pie
ewise Lyapunov set whi
h �ts the DA is

found; (
) it is 
omputationally over-demanding sin
e at ea
h step the whole region

is re
onsidered in the new partition. All these issues make the prior algorithm

provide worse numeri
al results than the one here presented (see example below).

Example 5.3.2. Consider the following nonlinear system

ẋ1 = −x2, (5.45)

ẋ2 = x1 − x2 + x2x
2
1. (5.46)

The system has one equilibrium point at the origin and one unstable limit 
y
le,

whi
h implies the DA is bounded by the latter. In order to obtain the largest
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Figure 5.7: Estimation of the DA for Example 5.3.2.

possible estimate of the DA, Algorithm 1 
omes at hand. We started it with the

region Ω[0] = {x ∈ R
2 : |xi| ≤ 0.99}, i ∈ {1, 2}, on whi
h a quadrati
 Lyapunov

fun
tion has been used as an initial estimate of the DA.

Figure 5.7 plots the limit 
y
le (the outermost blue 
losed 
urve was obtained with

ba
kwards-in-time simulation) and 
ompares it with di�erent estimates of the DA

obtained by the iterations of Algorithm 1. The �gure shows, in di�erent 
olors, the

estimate of DA for ea
h iteration of Algorithm 1. Note that, in this example, the


hosen geometry partition is based on a square tessellation, and we maximised the

radius of a sphere 
enter at the origin as the geometri
 optimisation goal. A 
olored

square means that the entire region belongs to the DA. The di�erent sizes of the

regions are 
aused by the splitting into smaller squares at step 6 of the Algorithm.

The region proven to belong to the DA is the union of all 
olored regions.

Figure 5.8 shows the DA estimate in Figure 5.7 as a red line, very 
lose to the

a
tual exa
t limit 
y
le (bla
k line). For 
omparison, it also shows the result

applying the approa
h in (Gonzalez and Bernal 2016) with a blue 
losed solid line.

The approa
h in (Gonzalez and Bernal 2016) does not in
orporate the geometri


border 
onditions neither previous estimates, rea
hing a high 
omputational 
ost

with slow progress, obtaining inferior results. Both algorithms were stopped when

4 GB of memory were exhausted in the 
omputations.

As the algorithm progresses, it gets progressively 
loser to the a
tual domain of

attra
tion of the origin (the open set inside the limit 
ir
le). However, as the
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Figure 5.8: Estimation of the DA for Example 5.3.2 (Bla
k: exa
t Limit Cy
le; red:

proposal here; blue: estimate in (Gonzalez and Bernal 2016)).

boundary of the limit 
y
le is not quadrati
, we would, in theory, need an in�nite

amount of pie
ewise-quadrati
 fragments to approximate it, this is why the number

of regions ends up in
reasing greatly.

Next se
tion analysis in depth the algorithm behaviour when the number of regions

in
reases: it 
an be proved that, under some assumptions, as the partitions get

�ner, the a

ura
y of the DA estimate improves, rea
hing asymptoti
al exa
tness

i.e., limited only by �nite 
omputational resour
es in DA estimation (disturban
es

and 
ontroller design indu
e other limitations as more 
omplex/BMI problems

arise, out of the s
ope of this work).

5.4 Asymptoti
al exa
tness

In this se
tion, Farkas Lemma (here re
alled as Lemma 5.2.2) will allow to prove

asymptoti
al exa
tness of the above algorithm: with enough 
omputational re-

sour
es, the algorithm is non-
onservative in the pre
ise sense to be dis
ussed

next.
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al exa
tness

Indeed, Theorems 5.3.1 and 5.3.2, obviously, apply to the parti
ular 
ase in whi
h

the Lyapunov fun
tion has the form

Vk(x) = x̄T








0 0 · · · 0.5p1k
0 0 · · · 0.5p2k
.

.

.

.

.

.

.

.

.

.

.

.

0.5p1k 0.5p2k · · · pn+1
k







x̄ = x̄T P̄kx̄ (5.47)

These Lyapunov fun
tions are pie
ewise-a�ne, as Vk(x) =
n∑

i=1
pikxi + pn+1

k , short-

handed to PWALF. In this way, pie
ewise-polyhedral level sets 
ould be proven

to belong to the DA of the origin.

The key fa
t about the use of the above 
lass of fun
tions is that, due to Lemma

5.2.2, the proposed 
onditions in Theorem 5.3.1 are ne
essary and su�
ient in the

sense that, if 
onditions in the referred theorem with the above Lyapunov fun
tion

stru
ture (5.47) are not feasible then there is no PWALF for the set partition

ful�lling the needed Lyapunov 
ondition

11

with a single a�ne expression for the

PWALF in ea
h Ωk. So, for
edly, the partition must be 
hanged, be
ause no other

theorem would �nd a PWALF on it if Theorem 5.3.1 does not work.

The above idea, jointly with universal-approximation 
apabilities of PWALF and

PWATS models as regions get smaller, allow to prove the following key result,

whi
h states that if there exists any smooth Lyapunov fun
tion proving that a

parti
ular point x∗ belongs to the DA of the origin, a PWALF will also prove that

x∗ belongs to su
h DA for a �ne enough partition.

Lemma 5.4.1. For any ε1 > 0, ε2 > 0, there exist a �ne enough partition of

a 
ompa
t set Ω su
h that a PWALF in the form (5.47), VPW (x) := Vk(x) for

x ∈ Ωk, approximates any fun
tion V of 
lass C 2
and its gradient as follows, for

all x ∈ Ω:

‖VPW (x)− V (x)‖ ≤ ε1, (5.48)

‖∇VPW (x)−∇V (x)‖ ≤ ε2. (5.49)

11

Contrarily, in the quadrati
 
ase, su
h a Lyapunov fun
tion might exist but might be only

provable to be so with higher-degree Positivstellensatz multipliers, requiring a Sum-of-Squares version

of the theorems; anyway, there are also positive polynomials whi
h are not SOS (Jarvis-Wloszek et

al. 2005) so these 
onservatism sour
es 
annot be removed in general, ex
ept in the above-referred

a�ne 
ase.

109



Chapter 5. Pie
ewise Lyapunov fun
tion

Proof. First, note that the gradient of a PWALF is a pie
ewise-
onstant fun
tion

12

.

If a fun
tion V (x) is of 
lass C
2
, then its partial derivative ∇V is of 
lass C

1
,

meaning that ∇V is bounded in Ω and 
an be approximated by a pie
ewise 
on-

stant fun
tion ∇VPW to any arbitrary error ε3, as pie
ewise 
onstant fun
tions are
universal fun
tion approximators, as long as the partition is �ne enough, so there

exists ψ(x) su
h that ‖ψ(x)‖ ≤ ε3 for all x ∈ Ω and ∇V (x) = ∇VPW (x) + ψ(x).

Integrating the gradient, we get:

V (x) =

∫ 1

0

∇V (λx)Tx dλ =

∫ 1

0

(∇VPW (λx) + ψ(λx))
T
xdλ (5.50)

where ψ(λx) is the approximation error, whi
h veri�es ‖ψ(λx)‖ ≤ ε3. Hen
e,

V (x) =

∫ 1

0

∇VPW (λx)Tx dλ+

∫ 1

0

ψ(λx)Tx dλ (5.51)

so we 
an assert:

‖V (x)− VPW (x)‖ ≤
∫ 1

0

‖ψ(λx)‖ · ‖x‖ dλ ≤ ε3‖x‖ (5.52)

Choosing ε3 su
h that ε1 ≥ maxx∈Ω ε3‖x‖, and ε3 ≤ ε2, we 
an prove (5.48) and

(5.49). As a result, we 
an approximate both ∇V and V as 
losely as desired by

in
reasing the partition granularity.

Lemma 5.4.2. For any ε > 0, there exist a �ne enough partition of a 
ompa
t set

Ω su
h that, given a 
ontinuous fun
tion f(x), a PWATS model 
an be obtained

ful�lling:

∥
∥
(
Aki x+ bki

)
− f(x)

∥
∥ ≤ ε, (5.53)

∀ i ∈ {1, 2, . . . , r}, ∀x ∈ Ωk

Proof. Consider the 2-rule PWATS model given by Aki := 0, bk1 := minx∈Ωk
f(x),

bk2 := maxx∈Ωk
f(x), where maximum and minimum have been 
onsidered to

be 
omputed element-wise (bk1 and bk2 are ve
tors) on a 
ompa
t set Ωk. As

f(x) is 
ontinuous, by assumption, there exists a �ne enough partition su
h that

‖bki − f(x)‖ ≤ ‖bk2 − bl1‖ ≤ ε for any arbitrary 
hoi
e of ε.

12

Understanding the gradient at fa
es 
ommon to several regions to be de�ned as the average of

the di�erent pie
ewise gradients. As su
h fa
es are zero-measure sets, su
h formal de�nition will not

have any in�uen
e in the integral-based results in the remaining of the proof.
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al exa
tness

Now, we 
an state the key result of this 
hapter, proving that we 
an be at least

as good as any 
on
eivable algorithm based on Lyapunov level-sets.

Theorem 5.4.1. Let x = 0 be an asymptoti
ally stable equilibrium point for the

nonlinear system

ẋ = f(x) (5.54)

where f : Ω → R
n
is lo
ally Lips
hitz, Ω ⊂ D is 
ompa
t. Assume that a (possibly

small) polyhedron B 
ontaining the origin has been proved to belong to the DA,

and de�ne a 
ompa
t set Θ := Ω − int(B). If there exists a fun
tion V : Θ → R,

and ε > 0 su
h that:

1. V (x) is of 
lass C
2
in an open set in
luding Ω.

2. V̇ (x) =
∂V

∂x
· f(x) ≤ −ε, for all x ∈ Θ.

3. There exists a level set in the form Vα2
:= {x : V (x) ≤ α2}, for some α2 > 0

su
h that Vα2
⊂ Ω.

Then, there exist a �ne enough partition of Θ su
h that any PWATS model ful�ll-

ing 
onditions in Lemma 5.4.2 allows �nding a PWQLF (VPW (x)) whi
h ful�lls


onditions in Theorem 5.3.1, and a level set of the PWQLF allowing to prove that

any point in the interior of Vα2
belongs to the DA of the origin.

Proof. By Lemma 5.4.1, there exists a �ne enough partition su
h that there exists

a PWA fun
tion ful�lling: ∇VPW (x) + ψ(x) = ∇V (x), ‖ψ(x)‖ ≤ ε3, and, by
Lemma 5.4.2, that for all verti
es, for all regions there exists φki (x) su
h that

Aki x+ b
k
i +φ

k
i = f(x), ‖φki (x)‖ ≤ ε4, for any ε4 > 0. Then, we 
an state, denoting

fki (x) := Aki x + bki , by 
ontinuity of f(x) that there exists f̂ := maxx∈Ω ‖f(x)‖,
and by 
ontinuity of ∇V , that there exists V̂ := maxx∈Ω ‖∇V (x)‖. Now, we have:

∇VPW (x)fki (x) = (∇V − ψ(x))(f(x)− φki (x))

= ∇V · f(x)− ψ(x) · f(x)−∇V · φki (x) + ψ(x)φki (x)

≤ −ε+ ε2 · f̂ + ε4 · V̂ + ε4ε2.

So, for any 0 < γ′ < ε, a suitable 
hoi
e of small enough ε2 and ε4 
an prove that

there exists a �ne enough partition so that:

∇VPW (x)fki (x) ≤ −γ′. (5.55)
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Now, from Farkas Lemma, the existen
e of the multipliers U 1
ki in (5.31) in the

a�ne 
ase (lk = 0, s̄k = 0) are a ne
essary and su�
ient 
ondition for (5.55) to

hold, as the region Ωk does not 
ontain the origin by assumption. Regarding the

multiplier-based 
ontinuity 
onditions (5.25), Corollary 5.2.2.1 ensures that they

are also ne
essary and su�
ient for the PWA 
ase.

Last, regarding geometri
 
onditions (level set), any point in the interior of Vα2
is

in the (
losed) level set α1 for some α1 < α2.

Consider now ε1 < 0.5(α2−α1). Then, sele
t any 
hoi
e of α su
h that α1+ ε1 <
α < α2 − ε1. In this way, given the above ε1, there exists a �ne enough partition

so that (5.48) holds; hen
e, the level set of VPW , denoted as ṼPW (α) := {x :
VPW (x) ≤ α}, ful�lls

Vα1
⊂ ṼPW (α) ⊂ Vα2

(5.56)

be
ause all x ∈ Vα1
will belong to the level set of VPW given by ṼPW (α1 + ε1),

and also, all elements of the level set ṼPW (α2 − ε1) will be in
luded in Vα2
.

If a �ne enough partition is 
hosen su
h that both (5.55) and (5.56) hold, we have

found a PWALF ful�lling the required derivative 
onditions and in
luding in a

level set any desired point in the interior of the level set of the �true� Lyapunov

fun
tion. If we 
onsider that pie
ewise-a�ne Lyapunov fun
tions are a parti
ular


ase of pie
ewise-quadrati
 ones, the theorem is proved.

Remark 5.4.1. Note that, by Theorem 5.2.1, all traje
tories of the nonlinear

system inside the level set Vα2
will enter B, be
ause for
edly Vα2

∩ B 6= ∅, as

the traje
tories should abandon Vα2
in at most α2/ε time units, and they 
annot

abandon Ω if they start in the interior of Vα2
. For any of su
h interior initial


onditions, a PWQLF proving that it belongs to the DA of the origin 
an be found

be
ause of the same argumentations.

Example 5.4.1. As a last example, for the sake of 
omparison, 
onsider the

system in (Y. Chen et al. 2015, Example 3):

ẋ1 = −x1 + x21 + x31 + x21x2 − x1x
2
2 + x2, ẋ2 = − sinx1 − x2,

altogether with a PWATS model of it, (Gonzalez, Sala, Bernal, and Robles 2015),

as an input to Algorithm 1. Figure 5.9 shows the DA estimate in the referred

work (obtained via BMIs and SOS tools) with a red 
losed solid line whereas our

estimate is shown with a green-
oloured area. Clearly, our proposal rea
hes mu
h

better estimations than (Y. Chen et al. 2015), as expe
ted due to the asymptoti
al

exa
tness; however, region size needs to be de
reased as the border of the �true�

domain of attra
tion is approa
hed, as dis
ussed in earlier examples.
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Figure 5.9: Estimation of the DA for Example 5.4.1. (Red: estimate in (Y. Chen et

al. 2015); Green: proposal here; magenta: some traje
tories inside the DA; blue: some

traje
tories outside DA.

Remark 5.4.2. With pre�xed regions, our proposal renders LMI 
onditions (even

linear programming ones, in some 
ases) so the 
omputational 
ost is basi
ally

identi
al to prior PWATS literature (in
reasing just a small amount due to the

handful of extra multipliers proposed here). However, the a
tual DA of nonlinear

systems is, in general, not pie
ewise quadrati
, so the exa
t domain of attra
tion


annot be obtained with �nite 
omputational resour
es with our approa
h

13

.: as the

required estimation a

ura
y in
reases, the number of regions must in
rease (with

de
reasing size). Hen
e, Theorem 5.4.1 
an only prove that �nite 
omputational

resour
es are needed to �nd a parti
ular point in the interior of the �true� DA.

5.5 Con
lusion

In this 
hapter, an iterative linear matrix inequality methodology has been pre-

sented for estimation of the domain of attra
tion of a nonlinear model. The

proposal, based on a systemati
 exploitation of geometri
al and stability fa
ts via

pie
ewise a�ne Takagi-Sugeno models and pie
ewise Lyapunov fun
tions, has been

13

In fa
t, neither with any alternative 
on
eivable approa
h: it is well known that nonlinear

di�erential equations rarely admit expli
it solutions (or DA expressions) in 
losed form, requiring

numeri
al simulation (Slotine and W. Li 1991)
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shown to outperform the most relevant works on the subje
t. Estimates of the

domain of attra
tion have been in
reased by �emptying� previously proven regions

and extending the modelling region in �promising� neighboring areas. Moreover,

based on universal-approximation properties of TS models, it has been proved that

the estimate of the domain of attra
tion approa
hes the level set of any existing

C
2
Lyapunov fun
tion of the original nonlinear system, as the partition where

the pie
ewise TS model is obtained gets �ner (smaller regions): the proposed

pro
edures are asymptoti
ally exa
t.
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Parameter-dependent Lyapunov

fun
tion

This 
hapter is 
on
erned with nonquadrati
 
onditions for stabi-

lization of 
ontinuous-time nonlinear systems via exa
t Takagi-Sugeno

models and generalized parameter-dependent Lyapunov fun
tion. The

approa
h hereby proposed feeds ba
k the time derivatives of the mem-

bership fun
tions through a multi-index 
ontrol law that 
an
els out

the terms responsible of former a priori lo
al 
onditions. Thus, a

nonquadrati
 
ontroller design in the form of linear matrix inequali-

ties is a
hieved; it does not require bounds on the time derivatives nor

any extra parameters. The examples in
luded are shown to outperform

former approa
hes.

The 
ontents of this 
hapter appeared in the journal arti
le:

• 
©2017 IEEE. Reprinted, with permission, from T. Gonzalez, M. Bernal, A.

Sala, and B. Aguiar (2017). �Can
ellation-Based Nonquadrati
 Controller

Design for Nonlinear Systems via Takagi-Sugeno Models�. In: IEEE Trans-

a
tions on Cyberneti
s 47.9, pp. 2628�2638.

115



Chapter 6. Parameter-dependent Lyapunov fun
tion

6.1 Introdu
tion

Among the variety of nonlinear 
ontrol te
hniques, those based on exa
t 
onvex

representations have progressively gained the attention of the 
ontrol 
ommunity,

due to their 
ombination of mathemati
al formality and numeri
al appli
ability

(T.M. Guerra, Sala, and Tanaka 2015). The simplest of these representations is

the Takagi-Sugeno (TS) model (Takagi and Sugeno 1985), originally appeared in

the fuzzy 
ontext for pra
ti
al engineering problems (L. Wang 1997), later 
ast as a

rewriting of nonlinearities into 
onvex forms within a 
ompa
t subset of the state

spa
e, a methodology referred to as the se
tor nonlinearity approa
h (Ohtake,

Tanaka, and H. Wang 2001; Tanigu
hi, Tanaka, and H. Wang 2001). The 
onvex

stru
ture allows the dire
t Lyapunov method to be applied (Tanaka and H. Wang

2001), whi
h usually leads to 
onditions in the form of linear matrix inequalities

(LMIs): these exhibit numeri
al advantages be
ause they are e�
iently solved via


onvex optimization te
hniques (Boyd et al. 1994), whi
h are already implemented

in 
ommer
ially available software (Gahinet et al. 1995; Sturm 1999). Moreover,

due to their exa
tness, 
on
lusions drawn on the TS model of a nonlinear one, are

dire
tly valid for the latter (Z. Lendek, T.M Guerra, et al. 2010).

As in many other areas of 
ontrol theory, quadrati
 Lyapunov fun
tions V =
xT (t)Px(t) were originally used be
ause of their simpli
ity: results thus obtained

remained su�
ient, this is to say, with a 
ertain degree of 
onservativeness (H.

Wang, Tanaka, and Gri�n 1996). Therefore, larger 
lasses of Lyapunov fun
tions

that in
lude the quadrati
 one as a parti
ular 
ase were tried: pie
ewise (Jo-

hansson, Rantzer, and Arzen 1999; Campos et al. 2013), line-integral (Rhee and

Won 2006; Marquez, T.M. Guerra, et al. 2013), and parameter-dependent (also

known as nonquadrati
 or fuzzy) (Blan
o, Perruqueti, and Borne 2001). The latter


lass repla
es the 
ommon positive-de�nite matrix P by a 
onvex sum of positive-

de�nite matri
es Pi, weighted by the membership fun
tions (MFs) in the TS model

(those that 
apture the system nonlinearities and hold the 
onvex sum property).

While results in the dis
rete-time 
ase made an impressive progress (T.M. Guerra

and Vermeiren 2004; T.M. Guerra, Kruszewski, and Bernal 2009; Ding 2010; Z.

Lendek, T.M. Guerra, and Lauber 2015), the use of parameter-dependent Lya-

punov fun
tions (PDLFs) in the 
ontinuous-time 
ase was restrained.

The reason behind the stagnation of the nonquadrati
 
ontinuous-time framework

has been the appearan
e of the time derivatives of the MFs when a PDLF is in-

volved (Tanaka, Hori, Tanigu
hi, et al. 2001): these derivatives 
annot be dire
tly


ast as 
onvex expressions and, when 
ontroller design is under 
onsideration, they

lead to algebrai
 loops, making it di�
ult to obtain LMI expressions. A way out

of these issues has been found in the introdu
tion of arti�
ial a-priori bounds on
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the time derivatives of the MFs (D. Lee and D. Kim 2014) or in the LMI-imposed

bounds on partial derivatives (Pan et al. 2012): both solutions are lo
al.

Contribution: This 
hapter is 
on
erned with nonquadrati
 
ontroller design of

nonlinear systems via exa
t TS representations, based on whi
h a multi-index 
on-

trol law is proposed that feeds ba
k the time derivatives of the MFs. In 
ontrast

with former approa
hes, it does not require a priori bounds on the derivatives

(Tanaka, Hori, and H. Wang 2003; L. Mozelli, Palhares, and Avellar 2009; D. Lee

and D. Kim 2014) nor in their partial form (T.M. Guerra, Bernal, et al. 2012;

Pan et al. 2012); this is a
hieved via a suitable 
ontrol law instead of restri
-

tive path-independent 
onditions (Rhee and Won 2006). The proposal employs:

(a) a generalized parameter-dependent Lyapunov fun
tion (GPDLF) (Bernal and

T. M. Guerra 2010) along with a tensor-produ
t notation in order to fully exploit

Polya-like relaxations, whi
h are asymptoti
ally su�
ient and ne
essary (Sala and

Ariño 2007); (b) a generalized multi-index 
ontrol law that 
an
els out the terms

that 
ause a priori lo
ality in the Lyapunov analysis; moreover, the resulting


onditions are purely LMI. A preliminary version of this work has appeared in

(Aguiar, Márquez, and Bernal 2015). Some 
onditions for regularity of the pos-

sible algebrai
 loops arising from derivative-feedba
k are proposed, as well as a

robust-observer based implementation (following (Levant 1998)) for environments

with bounded disturban
es or modelling errors.

The 
ontents in this 
hapter are now des
ribed. Se
tion II introdu
es a multi-

index notation for exa
t TS models and GPDLFs: the issues raised by former

nonquadrati
 s
hemes are dis
ussed in order to naturally lead the reader to the

problem statement. In Se
tion III a generalized multi-index 
ontrol law that

employs the time derivatives of the MFs is proposed: it is shown that, thanks to the


ontrol law stru
ture, these derivatives 
an be dire
tly obtained from the 
losed-

loop model. Se
tion IV provides examples on how the proposed methodology

improves both the feasibility set of former approa
hes as well as the quality of

solutions. This report 
on
ludes in Se
tion V where �nal remarks and future

work are dis
ussed.

6.2 Preliminaries

A well-established pro
edure for 
onvex rewriting of nonlinear systems within a


ompa
t set C ⊃ {0} of the state spa
e, 
alled the se
tor nonlinearity methodology

(Tanigu
hi, Tanaka, and H. Wang 2001), is available; it 
onsiders nonlinear models

of the form

ẋ(t) = f(z(x))x(t) + g(z(x))u(t), (6.1)
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with f(·) and g(·) being nonlinear ve
tor fun
tions of the state x(t) ∈ R
n
, u(t) ∈

R
m

being the input ve
tor, and z(x) ∈ R
p
the premise ve
tor:

z(x) =
[
z1(x) z2(x) · · · zp(x)

]T
,

whi
h 
olle
ts nonlinearities zj(·), j ∈ {1, 2, . . . , p} in (6.1), whi
h are assumed to

be 
ontinuous in C and 
hosen in su
h a way so that f(z) and g(z) are multilinear

in z.

Sin
e, by 
ontinuity and 
ompa
tness, the premise ve
tor z(x) is bounded, as-

sume zj(·) ∈
[
zj, zj

]
, j ∈ {1, 2, . . . , p} in C. By de�ning the following weighting

fun
tions (WFs):

wj0(·) =
zj − zj(·)
zj − zj

, wj1(·) = 1− wj0(·), j ∈ {1, 2, . . . , p},

ea
h premise variable is written as zj(x) = wj0zj + wj1zj, with 0 ≤ wji ≤ 1,

wj0 + wj1 = 1. Thus, grouping all of them leads to a TS model with p nested


onvex sums:

ẋ(t) = Awx(t) +Bwu(t), (6.2)

Aw =

1∑

i1=0

1∑

i2=0

· · ·
1∑

ip=0

w1
i1
w2
i2
· · ·wpipA(i1,i2,...,ip),

Bw =

1∑

i1=0

1∑

i2=0

· · ·
1∑

ip=0

w1
i1
w2
i2
· · ·wpipB(i1,i2,...,ip),

A(i1,i2,...,ip) = f(z(x))|w1
i1
=w2

i2
=···=wp

ip
=1,

B(i1,i2,...,ip) = g(z(x))|w1
i1
=w2

i2
=···=wp

ip
=1,

with A(i1,i2,...,ip) ∈ R
n×n

, B(i1,i2,...,ip) ∈ R
n×m

, ij ∈ {0, 1}, j ∈ {1, 2, . . . , p}. This
sort of notation for TS models 
orresponds to the tensor-produ
t approa
h (C.

Ariño and Sala 2007; Campos et al. 2013).

The following adaptation of the standard multi-index notation will be used (Sala

and Ariño 2007), being a and b p-dimensional multi-indexes (p-tuples):

wa
0 =

(
w1

0

)a1 (
w2

0

)a2 · · · (wp0)
ap

witha = (a1, a2, . . . , ap) , aj ∈ {0 ∪ N} ,
wb

1 =
(
w1

1

)b1 (
w2

1

)b2 · · · (wp1)
bp

withb = (b1, b2, . . . , bp) , bj ∈ {0 ∪ N} ,
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from whi
h it is 
lear that nested 
onvex sums Aw and Bw in (6.2) 
an be 
om-

pa
tly rewritten as:

Aw =
∑

j0+i0=1

w
j0
0 wi0

1 Ai0 , Bw =
∑

j0+i0=1

w
j0
0 wi0

1 Bi0 ,

with j0 + i0 =
(
j10 + i10, j

2
0 + i20, . . . , j

p
0 + ip0,

)
being the element-wise sum of p-

tuples, 1 = (1, 1, . . . , 1)
︸ ︷︷ ︸

p ones

.

The previous notation will be key for the following developments and the reason

behind the appearan
e of multi-indexes a and b will be the possibility of using a

higher number of 
onvex sums to relax the results

1

. Traditionally, 2p 
omposite

MFs of the form hi = Πpj=1w
j
ij
have been often used; in 
ontrast, this 
hapter has

privileged the use of the so 
alled WFs wjij due to the fa
t that (a) they lead to

better relaxations with a fewer number of LMIs due to the tensor-produ
t stru
ture

(C. Ariño and Sala 2007; Campos et al. 2013), and (b) only p time derivatives ẇjij
will be required, instead of 2p whi
h would be the 
ase if 
omposite fun
tions hi
are used (Aguiar, Márquez, and Bernal 2015).

Consider a GPDLF 
andidate of the form

V (x) = xTP−1
w x (6.3)

where Pw is a 
onvex summation with tensor-produ
t stru
ture, as follows: for

a given degree ve
tor c=(c1, c2,..., cp), cj ∈ N, where ci is the degree of V (x) in
(wi0, w

i
1), Pw is de�ned as:

Pw =





1∑

i11=0

w1
i11
· · ·

1∑

i
c1
1 =0

w1
i
c1
1









1∑

i12=0

w2
i12
· · ·

1∑

i
c2
2 =0

w2
i
c2
2



· · ·





1∑

i1p=0

wpi1p
· · ·

1∑

i
cp
p =0

wp
i
cp
p



Pb1b2···bp

=
∑

a1+b1=c1

(
w1

0

)a1(
w1

1

)b1
∑

a2+b2=c2

(
w2

0

)a2(
w2

1

)b2 · · ·

· · ·
∑

ap+bp=cp

(wp0)
ap(wp1)

bp

(
c1
b1

)(
c2
b2

)

· · ·
(
cp
bp

)

Pb1b2···bp

=
∑

a+b=c

wa
0w

b
1

(
c

b

)

Pb, (6.4)

1

Note that f(z(x)) 
an be a polynomial of z(x). For instan
e, if z1(x) = sinx and z2(x) = cos x,
then f(x) = sin2(x) + 3 cos(x) sin(x) = z21 + 3z1z2, whi
h 
orresponds to j0 + i0 = (2, 1).
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with Pb = PTb > 0, bj = i1j + i
2
j + · · ·+ icjj , j ∈ {1, 2, . . . , p},

(
cj
bj

)

=
cj!

bj ! (cj − bj)!
,

and

(
c

b

)

=
∏p
j=1

(
cj
bj

)

. Noti
e that ea
h Pb is a single variable grouping all

the terms that share the same membership monomial wa
0w

b
1 . The addition of the


ombinatorial number will be 
onvenient later on, as

∑

a+b=c

wa
0w

b
1

(
c

b

)

=

(
1∑

i1=0

w1
i1

)c1

· · ·





1∑

ip=0

w1
ip





cp

= 1.

Example: In order to illustrate the notation just introdu
ed, 
onsider a TS model

with p = 2 nonlinearities. By the se
tor nonlinearity methodology des
ribed

above, only fun
tions w1
0 , w

1
1 = 1 − w1

0, w
2
0, and w

2
1 = 1 − w2

0 arise. Therefore, if

c = (c1, c2) = (1, 1) then

Pw =

1∑

i11=0

w1
i11

1∑

i12=0

w2
i12
Pb1b2

= w1
0w

2
0P00 + w1

0w
2
1P01 + w1

1w
2
0P10 + w1

1w
2
1P11

=
∑

a1+b1=1

(
w1

0

)a1 (
w1

1

)b1
∑

a2+b2=1

(
w2

0

)a2 (
w2

1

)b2
Pb,

with b1 = i11, b2 = i12, and b = (b1, b2).

If c = (c1, c2) = (2, 2) then

Pw =

1∑

i11=0

1∑

i21=0

w1
i11
w1
i21

1∑

i12=0

1∑

i22=0

w2
i12
w2
i22
Pb1b2

=
(
w1

0

)2(
w2

0

)2
P00 +

(
w1

0

)2
w2

0w
2
12P01 +

(
w1

0

)2(
w2

1

)2
P02

+ w1
0w

1
1

(
w2

0

)2
2P10 + w1

0w
1
1w

2
0w

2
14P11 + w1

0w
1
1

(
w2

1

)2
2P12

+
(
w1

1

)2(
w2

0

)2
P20 +

(
w1

1

)2
w2

0w
2
12P21 +

(
w1

1

)2(
w2

1

)2
P22

=
∑

a1+b1=2

(
w1

0

)a1(
w1

1

)b1
∑

a2+b2=2

(
w2

0

)a2(
w2

1

)b2

(
c1
b1

)(
c2
b2

)

Pb,

with b1 = i11 + i21, b2 = i12 + i22, b = (b1, b2).

This form in
ludes Lyapunov fun
tions previously appeared in non-quadrati


s
hemes; for instan
e, those in (Blan
o, Perruqueti, and Borne 2001; T.M. Guerra
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and Vermeiren 2004; Tanaka, Hori, and H. Wang 2003) have the form

V (x) = xT (t)P−1
h x(t) : Ph =

r∑

i=1

hi(z(t))Pi, (6.5)

with Pi = PTi > 0, i ∈ {1, 2, . . . , r}. But, sin
e every hi = Πpj=1w
j
ij
, it is 
lear

that the latter is equivalent to (6.3) with c = 1.

Generalizations of the sort appeared in (D. Lee and D. Kim 2014; Bernal and T. M.

Guerra 2010), whi
h use multiple 
onvex sums on MFs hi, are also des
ribed by

the GFLF presented above, sin
e

V (x) = xT (t)P−1
h x(t) : Ph =

r∑

i1=1

r∑

i2=1

· · ·
r∑

iq=1

hi1hi2 · · ·hiqPi1i2···iq , (6.6)

with Pi1i2···iq = PTi1i2···iq > 0, ij ∈ {1, 2, . . . , r}. Expressions like (6.6), whi
h

is a homogenous polynomial in hi of degree q, 
an be trivially transformed in a

tensor-produ
t expression by repla
ing hi as the produ
t of p 2-rule individual

weighting fun
tions and reordering the fa
tors. The resulting degree ve
tor is

c = (q, q, . . . , q)
︸ ︷︷ ︸

p q's

. Details are omitted for brevity.

The following notation will be used in the sequel:

Υ̇w = d
dt (Υw) , Υ̇−1

w = d
dt

(
Υ−1

w

)
,

[
A (∗)
Y B

]

=

[
A Y T

Y B

]

, A+ (∗) = A+AT .

Arguments will be omitted when 
onvenient.

The Lyapunov fun
tion (6.5) has been usually 
ombined with a 
ontrol law u(t) =
FhP

−1
h , where Fi ∈ R

m×n
, i ∈ {1, 2, . . . , r} are gains to be determined. Anal-

ogously, when Lyapunov fun
tion (6.6) is used, a generalization of the previous


ontrol law is used, i.e., u(t) = FhP
−1
h , with h standing for multi-indexes asso
i-

ated with nested 
onvex sums. Naturally, these 
ontrol laws 
an be generalized

as the ones in the tensor-produ
t form below:

u(t) = FwP
−1
w x(t), Fw =

∑

a+b=c

wa
0w

b
1

(
c

b

)

Fb,

with Fb ∈ R
m×n

grouping all the terms that share the same membershipmonomial

wa
0w

b
1 , and Pw as in (6.3), both for a given c = (c1, c2, . . . , cp), cj ∈ N.
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These 
ontrol s
hemes lead to lo
al stability 
onditions be
ause a priori bounds

(D. Lee and D. Kim 2014) or LMI-imposed ones (T.M. Guerra, Bernal, et al. 2012)

on the time derivatives of the membership fun
tions have to be employed. The

reason behind lo
ality is the fa
t that the term Ṗw appears when investigating

the stability of the 
losed-loop model ẋ(t) =
(
Aw +BwFwP

−1
w

)
x(t), sin
e the

time-derivative of the 
orresponding Lyapunov fun
tion (6.3) is:

V̇ = ẋTP−1
w x+ xTP−1

w ẋ+ xT Ṗ−1
w x

= xTP−1
w

(
Aw +BwFwP

−1
w

)
x+ (∗) + xT Ṗ−1

w x < 0

⇐ AwPw +BwFw + (∗) + PwṖ
−1
w Pw

= AwPw +BwFw + (∗)− Ṗw < 0.

It turns out that the term Ṗw is hard to 
ast as a 
onvex sum without 
onservative

steps (Tanaka, Hori, and H.Wang 2003; Rhee andWon 2006; T.M. Guerra, Bernal,

et al. 2012; D. Lee and D. Kim 2014) and 
annot be therefore asso
iated with the

rest of 
onvex expressions in order to obtain LMIs.

Problem statement: The obje
tive of this work is providing suitable elements in

the feedba
k 
ontroller able to 
an
el out the e�e
t of the time derivative of the

WFs in Ṗw, in order to a
hieve stability up to the modeling area C, assuming

absen
e of 
ontrol saturation.

6.3 Main Results

Consider the TS model (6.2) altogether with the multi-index 
ontrol law with

derivative feedba
k given by:

u(t) =
(

Fw + Ġw

)

P−1
w x(t), (6.7)

with Pw as in (6.4), Fw and Ġw de�ned as follows

2

Fw =
∑

a+b=c

wa
0w

b
1

(
c

b

)

Fb,

Ġw =
∑

a+b=c

d

dt

(
wa

0w
b
1

)
(
c

b

)

Gb,

2

For simpli
ity, it has been assumed that the number of nested 
onvex sums in Fw is the same as

that of the Lyapunov fun
tion (6.3), i.e., �c�, but of 
ourse it 
an be 
hosen independently as a new

index �d� with straightforward modi�
ations. For Ġw, su
h an adaptation will be more involved.
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with Fb, Gb ∈ R
m×n

, and Pb ∈ R
n×n

, being matri
es to be found, all of them

sharing a given degree ve
tor c = (c1, c2, . . . , cp), cj ∈ N as in (6.3) and (6.4).

In the next subse
tion, stability of the 
orresponding 
losed-loop TS model

ẋ(t) =
(

Aw +BwFwP
−1
w +BwĠwP

−1
w

)

x(t) (6.8)

is analyzed via the GFLF 
andidate (6.3). It will be assumed that the time

derivatives ẇl0, l ∈ {1, 2, . . . , p} in (6.7) are well de�ned and available, so they will

appear in the 
ontrol law. Computation of these derivatives will be dis
ussed in

more detail in subse
tion 6.3.2.

6.3.1 Lyapunov analysis

Lyapunov analysis of the previous system involves the time derivatives Ṗw and

Ġw; they 
ome from the time derivative of nested 
onvex sums su
h as Pw in

(6.4) and have to be therefore analyzed under the same notation sear
hing for

(a) maximum relaxation (algebrai
 asso
iation of similar terms) and (b) a way to


an
el out the e�e
ts of Ṗw through the terms in Ġw. We begin by noti
ing that

d

dt
(wa

0) =
d

dt

((
w1

0

)a1 · · · (wp0)
ap
)

=

p
∑

l=1

alẇ
l
0(w

l
0)

−1wa
0 ,

d

dt

(
wb

1

)
=

d

dt

((
w1

1

)b1 · · · (wp1)
bp
)

=

p
∑

l=1

blẇ
l
1(w

l
1)

−1wb
1 ,

whi
h, 
onsidering the identity ẇl1 = −ẇl0, leads to
d

dt

(
wa

0w
b
1

)
= wb

1 ẇ
a
0 +wa

0ẇ
b
1

= wb
1

p
∑

l=1

alẇ
l
0

(
wl0
)−1

wa
0 −wa

0

p
∑

l=1

blẇ
l
0

(
wl1
)−1

wb
1

=

p
∑

l=1

ẇl0w
a
0w

b
1

(
alw

l
1 − blw

l
0

) (
wl0w

l
1

)−1
. (6.9)

But, sin
e wl0 + wl1 = 1, we have that

alw
l
1 − blw

l
0 =

(
alw

l
1 − blw

l
0

) (
wl0 + wl1

)

= −wl0wl0bl − wl0w
l
1bl + wl1w

l
0al + wl1w

l
1al

=
∑

d+e=2

(
wl0
)d (

wl1
)e

(sgn(e)al − sgn(d)bl) ,

123



Chapter 6. Parameter-dependent Lyapunov fun
tion

where d, e ∈ {0 ∪ N} and sgn(·) stands for the sign fun
tion with sgn(0) = 0.
Therefore,

d
dt

(
wa

0w
b
1

)
in (6.9) 
an be rewritten as

p
∑

l=1

ẇl0w
a
0w

b
1

∑

d+e=2

(
wl0
)d−1(

wl1
)e−1

(sgn(e)al−sgn(d)bl),

whi
h 
an be now substituted in Ṗw in order to get

Ṗw =
∑

a+b=c

(
ẇa

0w
b
1 +wa

0ẇ
b
1

)
(
c

b

)

Pb

=
∑

a+b=c

p
∑

l=1

ẇl0w
a
0w

b
1

∑

d+e=2

(
wl0
)d−1(

wl1
)e−1

(sgn(e)al−sgn(d)bl)

(
c

b

)

Pb

=

p
∑

l=1

ẇl0
∑

ā+b̄=cl+2

wāl−

0 wb̄l−

1

∑

(al,bl,d,e)∈P(āl,b̄l,cl)

(sgn(e)al − sgn(d)bl)

(
c

b̄l

)

Pb̄l , (6.10)

under the following de�nitions:

āl− = (ā1, ā2, . . . , āl − 1, . . . , āp) , āj ∈ {0 ∪ N} ,
b̄l− =

(
b̄1, b̄2, . . . , b̄l − 1, . . . , b̄p

)
,

b̄l =
(
b̄1, b̄2, . . . , bl, . . . , b̄p

)
, b̄j ∈ {0 ∪ N} ,

cl+2 = (c1, c2, . . . , cl + 2, . . . , cp) , cj ∈ N

P(āl, b̄l, cl) =







(al, bl, d, e) :

al + d = āl,
bl + e = b̄l,
al + bl = cl,
d+ e = 2







.

Similarly to (6.10), Ġw in (6.7) 
an be expressed as:

Ġw =

p
∑

l=1

ẇl0
∑

ā+b̄=cl+2

wāl−

0 wb̄l−

1

∑

(al,bl,d,e)∈P(āl,b̄l,cl)

(sgn(e)al − sgn(d)bl)

(
c

b̄l

)

Gb̄l (6.11)

Theorem 6.3.1. The origin x = 0 of the nonlinear system (6.1) under the 
on-

trol law (6.7) is asymptoti
ally stable for any traje
tory starting in the outermost

Lyapunov level within the modeling area C where (6.2) is a valid TS model of

the system and (6.3) an asso
iated valid GFLF, if there exist matri
es Fb, Gb,

and Pb ∈ R
n×n

, Pb = PTb > 0, all of them sharing a given degree ve
tor

c = (c1, c2, . . . , cp), cj ∈ N as in (6.4), su
h that the following 
onditions hold
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for all bj ≤ cj, b̄j ≤ cj + 1, ã+ b̃ = (c+ 1)l+2
:

∑

ij0+bj=b̄j

(
c

b

)

(Ai0Pb +Bi0Fb + (∗)) < 0, (6.12)

∑

(ā,b̄,j0,i0)∈Q(ã,b̃,cl+2)

∑

(al,bl,d,e)∈P(āl,b̄l,cl)

(sgn(e)al − sgn(d)bl)

(
c

b̄l

)

(Bi0Gb̄l + (∗)− Pb̄l) = 0,

(6.13)

with

Q(ã, b̃, cl+2) =







(ā, b̄, j0, i0) :

ā+ j0 = ã,

b̄+ i0 = b̃,
ā+ b̄ = cl+2,
j0 + i0 = 1







.

Proof. Condition Pb = PTb > 0 guarantees (6.3) is a valid Lyapunov fun
tion


andidate. Taking into a

ount the 
losed-loop system in (6.8), the time derivative

of V (x) is:

V̇ = ẋTP−1
w x+ xTP−1

w ẋ+ xT Ṗ−1
w x

= xTP−1
w

(

Aw +BwFwP
−1
w +BwĠwP

−1
w

)

x+ (∗) + xT Ṗ−1
w x < 0

⇐ AwPw +BwFw +BwĠw + (∗)− Ṗw < 0,

whi
h 
an be guaranteed if

AwPw +BwFw + (∗) < 0, (6.14)

BwĠw + (∗)− Ṗw = 0. (6.15)

Condition (6.14) 
an be rewritten as:

AwPw +BwFw + (∗)

=
∑

j0+i0=1

w
j0
0 wi0

1 Ai0

∑

a+b=c

wa
0w

b
1

(
c

b

)

Pb

+
∑

j0+i0=1

w
j0
0 wi0

1 Bi0

∑

a+b=c

wa
0w

b
1

(
c

b

)

Fb + (∗)

=
∑

ā+b̄=c+1

wā
0w

b̄
1

∑

ij0+bj=b̄j

(
c

b

)

(Ai0Pb +Bi0Fb + (∗)) < 0.
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Thus, LMIs (6.12) guarantee the previous inequality, i.e., (6.14). Condition (6.15)

is developed as follows:

BwĠw + (∗)− Ṗw =
∑

j0+i0=1

w
j0
0 wi0

1 Bi0

p
∑

l=1

ẇl0
∑

ā+b̄=cl+2

wāl−

0 wb̄l−

1

∑

(al,bl,d,e)∈P(āl,b̄l,cl)

(sgn(e)al − sgn(d)bl)

×
(
c

b̄l

)

Gb̄l + (∗)−
p
∑

l=1

ẇl0
∑

ā+b̄=cl+2

wāl−

0 wb̄l−

1

∑

(al,bl,d,e)∈P(āl,b̄l,cl)

(sgn(e)al − sgn(d)bl)

(
c

b̄l

)

Pb̄l

=
∑

j0+i0=1

w
j0
0 wi0

1

p
∑

l=1

ẇl0
∑

ā+b̄=cl+2

wāl−

0 wb̄l−

1

∑

(al,bl,d,e)∈P(āl,b̄l,cl)

(sgn(e)al − sgn(d)bl)

×
(
c

b̄l

)

(Bi0Gb̄l + (∗)− Pb̄l)

=

p
∑

l=1

ẇl0
∑

ã+b̃=(c+1)l+2

wãl−

0 wb̃l−

1

∑

(ā,b̄,j0,i0)∈Q(ã,b̃,cl+2)

∑

(al,bl,d,e)∈P(āl,b̄l,cl)

(sgn(e)al − sgn(d)bl)

×
(
c

b̄l

)

(Bi0Gb̄l + (∗)− Pb̄l) (6.16)

with

Q(ã, b̃, cl+2) =
{

(ā, b̄, j0, i0) : ā+ j0 = ã, b̄+ i0 = b̃, ā+ b̄ = cl+2, j0 + i0 = 1
}

.

Thus, equation (6.16) 
an be seen as a sum of p terms, ea
h of them multiplied

by its 
orresponding ẇl0. Clearly, if the matrix equalities (6.13) hold, the 
orre-

sponding term in the p-term sum (6.16) is zero, thus 
on
luding the proof.

Remark 6.3.1. In order to redu
e 
onservatism, apart from in
reasing the 
om-

plexity of c in 
onditions (6.12) and (6.13), relaxations of 
onvex summations

as those in (Tuan et al. 2001) or (Peau
elle et al. 2000) may be used to slightly

in
rease the number of de
ision variables striking a reasonable tradeo� between

a

ura
y and 
omputational resour
e requirements (see, for instan
e, the related

work (Aguiar, Márquez, and Bernal 2015)). These ideas have been used quite a

few times in numeri
al examples in TS literature, but they will be intentionally left

out as 
omputational e�
ien
y issues are out of the s
ope of this thesis.

Example: Consider a 2-rule TS system ẋ = w0(A0x+B0u)+w1(A1x+B1u), and
a GFLF Pw = w2

0P0+2w0w1P1+w2
1P2. Then, 
ondition (6.12) would amount to

enumerating the degree-3 monomials:

(w0)
3 :A0P0 +B0F0 + (∗) < 0
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(w0)
2w1 : 2(A0P1 +B0F1) + (A1P0 +B1F0) + (∗) < 0

w0(w1)
2 : 2(A1P1 +B1F1) + (A0P2 +B0F1) + (∗) < 0

(w1)
3 :A1P2 +B1F2 + (∗) < 0

and 
ondition (6.13) would amount to:

ẇ0(w0)
3 : 2B0G0 − 2B0G1 + (∗) + 2P1 − 2P0 = 0

ẇ0(w0)
2w1 : 2B0G0 + 2B1G0 − 2B0G2 − 2B1G1) + (∗) + 2P1 + 2P2 − 4P0 = 0

ẇ0w0(w1)
2 : 2B0G1 + 2B1G0 − 2B0G2 − 2B1G2 + (∗) + 4P2 − 2P1 − 2P0 = 0

ẇ0(w1)
3 : 2B1G1 − 2B1G2 + (∗) + 2P2 − 2P1 = 0

Should the degrees of Pw, Fw, and Gw in
rease, 
onditions would be more relaxed.

The theorem statement provides the expression for su
h general 
ase, 
ontemplat-

ing, too, the general power-of-two tensor-produ
t 
ase in the problem statement.

Now, 
onsider a 4-rule TS system ẋ = w1
0w

2
0(A00x+B00u)+w

1
0w

2
1(A01x+B01u)+

w2
0w

1
1(A10x+B10u) +w1

1w
2
1(A11x+B11u). Then, some of the 
onditions in 6.13


orresponding to ẇ1
0 are:

(
w1

0

)3(
w2

0

)2
: 2B00G00−2B00G10+(∗)+2P10−2P00=0

(
w1

0

)3
w2

0w
2
1: 2B00G01+2B01G00−2B00G11−2B01G10+(∗)

+2P10−2P01−2P00+2P11=0
(
w1

0

)3(
w2

1

)2
: 2B01G01−2B01G11+(∗)+2P11−2P01=0

(
w1

0

)2
w1

1

(
w2

0

)2
: 2B00G00+2B10G00−2B00G20−2B10G10+(∗)
+2P10−4P00+2P20=0

.

.

.

(
w1

1

)3(
w2

1

)2
: 2B11G11−2B11G21+(∗)+2P21−2P11=0

6.3.2 Computation of Time Derivatives of the WFs

On
e the previous theorem �nds a feasible solution, feeding ba
k the time deriva-

tives of the WFs ẇl0, l ∈ {1, 2, . . . , p} needs a way of obtaining it from measure-

ments. Several situations arise:
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Undisturbed-
ase, model-based approa
h

In the undisturbed 
ase, if memberships' arguments have relative degree greater

or equal to one with respe
t to the input, then state measurement is enough, i.e.,

if z is su
h that

0 =
∂żl
∂u

=
∂

∂u

(
∂zl
∂x

(Awx+Bwu)

)

(6.17)

i.e., (∂zl/∂x)Bw = 0, then the terms

ẇl0 =

(
∂wl0
∂zl

)T

żl, l ∈ {1, 2, . . . , p},

will all depend ex
lusively on the states. This fa
t was used in prior literature,

su
h as (Tanaka, Hori, and H. Wang 2003), in order to feed ba
k su
h derivatives

to the 
ontrol law without extra measurements, though they were remodelled as


onvex expressions in order to obtain LMI 
onditions. However, if relative degree

of zl with respe
t to the input is zero, i.e., żl expli
itly depends on u so (6.17) does
not hold, then an algebrai
 loop appears: the 
ontrol depends on the derivatives

of zl but, these derivatives depend on the 
ontrol. Thus, su
h loop must be

algebrai
ally solved at ea
h sample. As x is measurable, su
h step 
an be easily

done, as follows.

First, note that the time derivatives of the WFs 
an be dire
tly solved from the p
equations below:

ẇi0 =

(
∂wi0
∂x

)T (

Aw +BwFwP
−1
w +BwĠwP

−1
w

)

x, (6.18)

for i ∈ {1, 2, . . . , p}, where Ġw must be substituted by (6.11). For a given mea-

sured x, the above results in a linear system of equations to be solved at ea
h

sample. Indeed, de�ning G̃l, l ∈ {1, 2, . . . , p}, as

G̃l =
∑

ā+b̄=cl+2

wāl−

0 wb̄l−

1

∑

(al,bl,d,e)∈P(āl,b̄l,cl)

(sgn(e)al − sgn(d)bl)

(
c

b̄l

)

Gb̄l,

the term Ġw in (6.11) 
an be written as Ġw =
∑p
l=1 ẇ

l
0G̃l, from whi
h, ea
h of

the p equations (6.18) be
omes:

ẇi0

(

1−
(
∂wi0
∂x

)T

BwG̃iP
−1
w x

)

−
p
∑

l=1,l6=i

ẇl0

(
∂wi0
∂x

)T

BwG̃lP
−1
w x

=

(
∂wi0
∂x

)T
(
Aw +BwFwP

−1
w

)
x, i ∈ {1, 2, . . . , p}. (6.19)
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These p equations 
an be grouped as:








1−W11 −W12 · · · −W1p

−W21 1−W22 · · · −W2p

.

.

.

.

.

.

.

.

.

.

.

.

−Wp1 −Wp2 · · · 1−Wpp








︸ ︷︷ ︸

I−W








ẇ1
0

ẇ2
0
.

.

.

ẇp0








︸ ︷︷ ︸

ẇ

=








X1

X2

.

.

.

Xp








︸ ︷︷ ︸

X

, (6.20)

where expressions Wil (elements of a blo
k-matrix W ) and Xi (elements of a

blo
k-matrix X), i, l ∈ {1, 2, . . . , p}, are given by

Wil =

(
∂wi0
∂x

)T

BwG̃lP
−1
w x

Xi =

(
∂wi0
∂x

)T
(
Aw + BwFwP

−1
w

)
x

Therefore, ẇ = (I −W )−1X is a ve
tor whose entries are the desired time deriva-

tives of the WFs, where both W and X are fun
tions of state x.

Remark 6.3.2. In general, solving nonlinear algebrai
 loops during on-line op-

eration would require iterative approa
hes (Kelley 1995) without a guarantee of

termination time: su
h approa
h would pose severe drawba
ks regarding real-time


ontroller implementation. However, given the expli
it expressions in TS form,

the 
omputational 
ost of the proposed derivatives is small and predi
table (non-

iterative): it requires 
omputing the weighting fun
tions, 
arrying out the summa-

tions, evaluating some gradients and inverting a small p× p matrix.

Regularity 
onditions

Though the in
lusion of the term Ġw was key in solving the algebrai
 loop, ob-

taining the time derivatives of the WFs depends on whether the inverse of matrix

I −W exists or not, i.e., there might be points of x(t) where I −W is singular.

To guarantee regularity of I −W , (
onservative) LMI 
onditions 
an be imposed

based on small-gain argumentations.

From the knowledge of the expli
it expressions of WF's, a bound on the maximum

singular value of

Jw0
(x) :=

[
(
∂w1

0

∂x

)T

· · ·
(
∂wp

0

∂x

)T
]T

(6.21)

will be assumed, in the form σ̄(Jw0
(x)) ≤ κ for all x in a 
ir
ular region of a

pre�xed radius ρ. Then, we 
an assert:
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Theorem 6.3.2. The largest spheri
al region where I − W is regular inside C
has radius greater or equal to ρ if, given bound κ, there exist matri
es Mi1i2···ip ∈
R
p·n×(p−1)·n

for a given c = (c1, c2, . . . , cp), cj ∈ N as in (6.4), su
h that the

following optimization problem is feasible:

max ρ subje
t to

Pw ≥ ρ2I (6.22)




MwI + (∗) + 1

pκ2
P̄w (∗)

[
H1

w H2
w . . . Hp

w

]
I



 ≥ 0, (6.23)

with P̄w = Pw ⊗ blo
k-diag

[
I I . . . I

]

︸ ︷︷ ︸

p times

, Hl
w = BwG̃l, l ∈ {1, 2, . . . , p}, and

I =








I −I 0 · · · 0 0
0 I −I · · · 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · I −I







.

Proof. We will prove that inequalities (6.22) and (6.23), along with the LMI ob-

je
tive, maximize the radius of the quadrati
ally invariant sphere 
ontained in C,
while keeping ẇ0 bounded and allowing to W to be regular inside the sphere. Let

us verify �rst inequality (6.22). We are looking to:

{
xTx

ρ2
< 1

}

⊂
{
V (x) = xTP−1

w x < 1
}
, (6.24)

where ρ is the radius of the largest sphere inside V (x) < 1. Hen
e, expressing

the initial ellipsoid and the sphere on this way, the S-pro
edure 
omes at hand to

obtain:

xTx

ρ2
− xTP−1

w x > 0 ⇔ I

ρ2
− P−1

w ⇔ Pw ≥ ρ2I,

where 
ondition (6.22) guarantees that Pw ≥ ρ2I.

Let us now dis
uss the se
ond 
ondition (6.23). In this 
ase, we want to guarantee

regularity of I −W inside the Lyapunov level set at the right-hand side of (6.24).

Following (6.20), the matrix I−W will be invertible ifW has a maximum singular

value lower than one. Rewriting W as:

W = Jw0
(x)
[

BwG̃1P
−1
w x,BwG̃2P

−1
w x,..., BwG̃pP

−1
w x

]
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where Jw0
(x) is the Ja
obian matrix of the ve
tor w0, see (6.21), and sin
e Jw0

(x)
is known, we 
an bound its worst-
ase gain, by assumption, as σ̄(Jw0

(x)) ≤ κ.
Note that, with η = P−1

w x, the level set xTP−1
w x ≤ 1 is ηTPwη ≤ 1. Extra
ting

P−1
w x as 
ommon fa
tor, we obtain:

W = Jw0
(x)[H1

wH
2
w . . . H

p
w]η̄ = Jw0

(x)Hwη̄

where η̄ = [ηT ηT . . . ηT ]
T
.

A su�
ient 
ondition I−W being invertible is the small-gain one σ̄(W )< 1. From
the assumption σ̄(Jw0

(x)) ≤ κ, su
h small-gain 
ondition holds if:

η̄THT
wHwη̄ <

1

κ2
. (6.25)

So, (6.25) should hold in V (x) ≤ 1, i.e., in ηTPwη < 1. From ηTPwη < 1, we
have η̄T P̄wη̄ < p; then, along with the S-pro
edure, Finsler's lemma, and Iη̄ = 0,
we obtain the following inequalities

MwI + (∗) + 1

pκ2
P̄w −HT

wHw ≥ 0 ⇔



MwI + (∗) + 1

pκ2
P̄w HT

w

Hw I



 ≥ 0.

Clearly, if 
ondition (6.23) holds, the last inequality is greater or equal to zero,

thus 
on
luding the proof.

LMIs 
an be obtained from (6.22) and (6.23) by simply dropping o� the WFs (sin
e

they hold the 
onvex sum property), and testing inequalities for ea
h vertex model

(polynomial 
oe�
ient), as usual, repla
ing w by the ea
h multi-index b, b ≤ c.

Robust di�erentiators (disturbed/modelling error 
ases)

In the presen
e of disturban
es or modelling errors, the algebrai
 solution of (6.18)

or, equivalently (6.20) would give a �biased� estimate of the true membership

derivatives, as the 
losed-loop equation in the �real� 
ontrolled system is not the

one at the right-hand side of (6.18). This, hen
e, would introdu
e an additional

error in the 
ontroller implementation.

To address this problem, a proposal based on an s-th order Levant's robust di�er-

entiator, s ≥ 1, 
an be employed (Levant 1998; Levant 2003); it ensures �nite-time
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onvergen
e to ẇj0, j ∈ {1, 2, . . . , p} in the undisturbed 
ase; its stru
ture is:

v̇0j =− λ0j

∣
∣
∣v0j − wj0

∣
∣
∣

s
s+1

sign

(

v0j − wj0

)

+ v1j

v̇1j =− λ1j
∣
∣v1j − v0j

∣
∣
s−1
s

sign

(
v1j − v0j

)
+ v2j

.

.

. (6.26)

v̇s−1
j =− λs−1

j

∣
∣vs−1
j − vs−2

j

∣
∣
1
2
sign

(
vs−1
j − vs−2

j

)
+ vsj

v̇sj =− λsjsign
(
vsj − vs−1

j

)
,

where λ0j > 0 and λij > Lj , i ∈ {1, 2, . . . , s} are tuning parameters with Lj > 0

being a Lips
hitz 
onstant for ẇj0.

Should the parameters be properly 
hosen, v̇0j = ẇj0 after a �nite time of a transient

pro
ess in the absen
e of input noises. In (Aguiar, Márquez, and Bernal 2015),

1st-order Levant's robust di�erentiators were employed to provide estimates of the

WFs derivatives; this solution 
an still be used.

An important property of the above di�erentiators is that, in the disturbed 
ase,

any sth-order Levant's robust di�erentiator, s ≥ 1, 
an be employed to estimate

the required time derivatives in �nite-time with an a

ura
y of ǫ−2s
, where ǫ is the

maximal (possibly unknown) measurement-noise magnitude, whi
h implies that


onvergen
e time as well as a

ura
y 
an be improved as the di�erentiator order s
goes higher. On
e the order s is �xed, the di�erentiator performan
e only improves

with the sampling step redu
tion (Levant 2003), even in the presen
e of exploding

signals and feedba
k setups (Levant and Livne 2012). The above di�erentiators

are employed in many real-time appli
ations of 
ontemporary sliding mode 
ontrol

(Shtessel et al. 2013), and its 
omputational 
ost is just the one of integrating an

s-th order ODE whi
h, of 
ourse, depends on sampling rate and desired a

ura
y;

most appli
ations just use s = 2 whose 
omputing 
ost per sample is negligible.

Note that �nite-time 
onvergen
e to zero error allows proving a separation-like

stability result with the observer in the undisturbed 
ase: indeed, as a TS system


annot have �nite es
ape time

3

, for
edly state traje
tories will 
onverge to zero

from bounded initial 
onditions on
e the observer has 
onverged, if they do not

leave the region where (I −W ) is regular during su
h transient.

3

TS systems are, trivially, globally Lips
hitz with Lips
hitz 
onstant maxw σ̄(Aw) so their solution
is de�ned for every positive time.
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6.4 Examples

Example 6.4.1. Consider the 2nd-order 2-rule TS model in (D. Lee and D. Kim

2014), ẋ(t) = Awx(t) + Bwu(t), with x(t) and u(t) as the state and input ve
tor,

respe
tively, WFs w0 = 0.5(1+ sinx1) and w1 = 1−w0, and system matri
es Aw
and Bw being 
onvex sums of the following matri
es:

A0 =

[
4 −4
−1 −2

]

, A1 =

[
−2 −4
20 −2

]

, B0 =

[
1
10

]

, B1 =

[
1
1

]

.

Note that the WFs hold the 
onvex sum property everywhere in the state spa
e R
2
.

Quadrati
 stabilization of this model is not possible (D. Lee, J. Park, and Joo

2012). Thus, four approa
hes will be tested:

1. Conditions in (Aguiar, Márquez, and Bernal 2015) along with Theorem 6.3.1

with c = 2. Time derivatives of the WFs are obtained from a 1st-order

Levant's robust di�erentiator

4

.

2. Theorem 6.3.1 with c = 2 where the time derivatives of the WFs are also

obtained from a 1st-order di�erentiator.

3. Theorem 6.3.1 with c = 2 where the time derivatives of the WFs are alge-

brai
ally solved from (6.20).

4. Theorem 6.3.1 and Theorem 6.3.2 with c = 2.

For the se
ond and third 
ases, the matri
es in the Lyapunov fun
tion as well as

the set of gains for the 
ontrol law are the same, sin
e they 
ome from the same

LMI 
onditions. The �rst ones are:

P0 =

[
0.3811 0.5957
0.5957 1.5697

]

, P1 =

[
0.5889 0.2732
0.2732 2.1096

]

, P2 =

[
0.2077 0.0675
0.0675 1.0033

]

.

Noti
e that not all of them are obliged to be positive de�nite.

The 
ontroller gains are the following:

F0 =
[
0.5107 0.3237

]
, F1 =

[
0.9204 −0.5108

]
, F2 =

[
0.1375 0.0840

]
,

4

The preliminary version (Aguiar, Márquez, and Bernal 2015) 
onsidered inequality 
onstraints

in (6.16) depending on the sign of the derivatives. Although that idea was 
onsidered of interest at

the time of writing (Aguiar, Márquez, and Bernal 2015), subsequent analysis showed that there was

no loss in generality 
onsidering just equality when global 
an
ellation was pursued. Anyway, the

inequality-based version of (6.16) might be worthwhile in lo
al/saturated 
ontrol extensions to the

ideas presented here, whi
h will be pursued in further resear
h.
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Figure 6.1: Lyapunov level sets (dashed lines), system traje
tories (solid lines), and det(I−
W ) = 0 (dotted lines) for Example 6.4.1.

G0 =
[
0.0175 0.0502

]
, G1 =

[
−0.0517 0.0488

]
, G2 =

[
−0.0692 −0.0013

]
.

The resulting Lyapunov level sets are shown in Fig. 6.1 with dashed lines; the

solid ones are the system traje
tories. Clearly, the system has been stabilized,

but how far 
an this be guaranteed? Dotted lines 
orrespond to the pla
es where

det(I −W ) = 0: obviously, traje
tories 
rossing these lines whose 
ontrol laws get

the time derivatives of the MFs from (6.20), may diverge. This is the 
ase of the

divergent traje
tory beginning at x1(0) = 6.5, x2(0) = −3. On the other hand, if

the time derivatives of the MFs are obtained from the Levant's robust di�erentiator,

a stable traje
tory starting at the same point is obtained. This behaviour outside

the guaranteed regularity region is left for further resear
h. Inside the regularity

region, there is no substantial di�eren
e between the observer-based simulations

and the algebrai
-solution ones.

The similarity of results among 1) those obtained with the enhan
ed version of the

swit
hing 
ontrol in (Aguiar, Márquez, and Bernal 2015), 2) 
onditions in Theo-

rem 6.3.1 with the time derivatives of the WFs 
oming from a 1st-order Levant's

robust di�erentiator, and 3) those in Theorem 6.3.1 whose time derivatives are

algebrai
ally solved, is explained by the fa
t that gains G1
i1

and G2
i1

in (Aguiar,

Márquez, and Bernal 2015) tend to be the same, i.e., a single set of gains Gb

along with the multi-index nature of the 
ontroller design, is enough to guarantee

equality (6.13).
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Figure 6.2: Lyapunov level sets (dashed lines), system traje
tories (solid lines), and maxi-

mum guaranteed 
ir
le with det(I −W ) 6= 0 (dotted lines in red) for Example 6.4.1

Now, 
onsider the 
ase 4) where LMIs in Theorem 6.3.2 are tested along with those

in Theorem 6.3.1. We 
an guarantee the existen
e of (I − W )−1
in a 
ir
le of

radius ρ = 1.9096 whi
h is shown in dashed lines at the 
enter of Fig. 6.2. This is


ertainly a 
onservative estimate as 
an be easily proved by plotting det(I−W ) = 0,
whi
h is far beyond the limits of this �gure. Lyapunov sets are shown also in dashed

lines, while traje
tories are shown in solid lines. It is important to noti
e that the

lo
al estimations of the domain of attra
tion in (D. Lee and D. Kim 2014) are all

subsets of those hereby provided. Note also that, as the stabilising 
ontroller is not

unique, the geometry of the level sets obtained in 
ase 4) is quite di�erent from

that in 
ases 1)-3).

Example 6.4.2. The 2-nd-order 2-rule TS model ẋ(t) = Awx(t) + Bwu(t) in

(Pan et al. 2012) has WFs w0, w1 as in example 6.4.1, and system matri
es

A0 =

[
a −5
1 2

]

, A1 =

[
2 −10
2 0

]

, B0 =

[
b
2

]

, B1 =

[
1
1

]

,

with parameters a ∈ [−20, 11] and b ∈ [0, 25]. Within these ranges, it is tested

under the quadrati
 
ase (Tanaka and H. Wang 2001), 
onditions in (Rhee and

Won 2006), and those of Theorem 6.3.1 with c = 2 and c = 3. Clearly, the

proposed approa
h over
omes the feasibility set of former approa
hes, as shown

in Fig. 6.3; in
reasing the Polya degree c from 2 to 3 a
hieves a handful of

additional feasible points. The feasibility set reported in (Pan et al. 2012), though

135



Chapter 6. Parameter-dependent Lyapunov fun
tion
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Figure 6.3: Feasibility sets for Example 6.4.2: (+) for quadrati
 (Tanaka and H. Wang

2001); (×) for line-integral (Rhee and Won 2006); (◦) for Th. 6.3.1, c = 2; (�) for Th. 6.3.1,
c = 3.

not in
luded be
ause of its use of a priori bounds, is smaller than those obtained

with the proposed approa
h.

It is important to underline the fa
t that the proposed improvements are 
ompatible

with further relaxations su
h as those based on matrix transformations, whi
h may

improve numeri
al e�
ien
y.

In order to illustrate the quality of a parti
ular solution, 
onsider the 
ase a = 11,
b = 0, whi
h has no solution in the quadrati
 framework (Tanaka and H. Wang

2001) nor in the line-integral approa
h of (Rhee and Won 2006) nor with Th. 6.3.1

with c < 3. For c = 3 a 
ontroller has been found: due to this number of sum

relaxations, 8 triplets of matri
es Pb1 , Fb1 , and Gb1 were found; they are omitted

for brevity.

The time evolution of the 
ontrol signal u(t), the states x(t), and the Lyapunov

fun
tion V (t) is shown in Fig. 6.4, all of them 
orresponding to a simulation

of the system under the initial 
ondition x(0) =
[
1 −2

]T
. Clearly, the 
ontrol

task has been a
hieved as expe
ted: states are driven to zero and V (t) is indeed a

Lyapunov fun
tion.
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Figure 6.4: From left to right: time evolution of the 
ontrol signal u(t), states x(t), and
Lyapunov fun
tion V (x(t)) for Example 6.4.2.

Example 6.4.3. Consider the 4-rule, 2-nd order TS model ẋ(t) = Awx(t) +
Bwu(t), with

A00 =

[
1.59 −7.29
0.01 0

]

, A01 =

[
0.02 −4.64
0.35 0.21

]

,

A10 =

[
0 −4.33
0 0.05

]

, A11 =

[
0.89 −5.29
0.1 0

]

,

B00 =

[
1
0

]

, B01 =

[
8
0

]

, B10 =

[
6
−1

]

, B11 =

[
1
0

]

,

and WFs w01 = 0.5 (1 + sinx1), w02 = 0.25
(
4− x22

)
, w11 = 1 − w01, and w12 =

1−w02, within the 
ompa
t set C = {(x1, x2) : x1 ∈ R, x2 ∈ [−2, 2]}. This example

is a 4-rule extension of a system shown in (Sala and Ariño 2007; Fang et al. 2006;

Marquez, T.M Guerra, et al. 2016); it produ
es a feasible solution of 
onditions

in Theorem 6.3.1.

In this example, Polya relaxations 
an prove that the system has a quadrati
 LF.

If we seek to optimize the guaranteed radius in our approa
h, the found radius 
an

be in
reased to arbitrarily large values, and the LMIs �nd, of 
ourse, the quadrati


solution. This shows that there is no loss in the presented proposal with respe
t to

quadrati
ally-feasible solutions.
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Figure 6.5: Lyapunov sets (dashed lines), modelling border (dotted lines), and traje
tories

(solid lines) for Example 6.4.3. As 
onditions were quadrati
ally feasible, su
h solution is

also obtained by the here presented approa
h.

6.5 Con
lusion

A novel solution for nonquadrati
 stabilization of 
ontinuous-time nonlinear sys-

tems via exa
t Takagi-Sugeno models and generalized parameter-dependent Lya-

punov fun
tions has been presented. The main 
ontribution of this work has been

a multi-index 
ontrol law that 
an
els out the terms that 
ause a priori lo
ality

of former approa
hes, by using the time derivatives of the membership fun
tions

obtained from the 
losed loop expression of the system. The resulting LMI 
on-

ditions have outperformed well-known examples taken from the literature on the

subje
t. Levant's robust observer-based implementations are suggested in appli-


ations where noise or modelling error is present.

As for future work, it is worth exploring how to over
ome the 
urrent limitations on

the regularity of (I−W )−1
, by �nding either less 
onservative LMIs guaranteeing

it or new 
ontrol s
hemes whi
h naturally avoid su
h terms. Global nonquadrati


stabilization seems possible if a suitable 
ombination of su
h improvements and

input saturation is explored.

138



Chapter 7

Polynomial-Integral Lyapunov

Fun
tion

In this 
hapter, a new integral Lyapunov Fun
tion is presented,

whi
h generalises the line-integral Lyapunov fun
tion in Rhee and

Won 2006 for stability analysis of 
ontinuous-time nonlinear models

expressed as fuzzy systems. The referred result applied only to Takagi-

Sugeno representations, and required memberships to be a tensor-

produ
t of fun
tions of a single state; these are generalised here so that

membership arguments 
an be arbitrary polynomials of the state vari-

ables; in this way, systems for whi
h earlier results 
annot be applied

are now 
overed. Both the modelling and the integral terms appear-

ing in the Lyapunov fun
tions are generalised to a fuzzy polynomial


ase. Illustrative examples show the advantage of the proposed method

against previous literature, even in the TS 
ase.

The 
ontents of this 
hapter appeared in the journal arti
le:

• T. Gonzalez, A. Sala, and M. Bernal (2018). �A Generalised Integral Polyno-

mial Lyapunov Fun
tion for Nonlinear Systems�. In: Fuzzy Sets and Systems.

In press.
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7.1 Introdu
tion

Stability analysis of nonlinear systems has bene�ted in the last twenty years from

a representation as a 
ombination of linear models, denoted as Takagi-Sugeno

(TS) (Takagi and Sugeno 1985) or quasi-LPV (J. S. Shamma and Cloutier 1992)

representations. Obtaining su
h models via the se
tor nonlinearity approa
h

(Tanigu
hi, Tanaka, and H. Wang 2001) allows to exa
tly rewrite a nonlinear

system as a 
onvex sum of linear models within a 
ompa
t set of the state spa
e

(modeling region), the nonlinearities being 
aptured in so-
alled membership fun
-

tions (MFs) whi
h are in general state-dependent and hold the 
onvex sum prop-

erty (Tanaka and H. Wang 2001). Later on, in (Sala and C. Ariño 2009; Chesi

2009), via the Taylor-series approa
h, the se
tor nonlinearity idea was extended

to polynomial fuzzy models: this representation expresses non-polynomial nonlin-

earities as an equivalent 
onvex sum of polynomial 
onsequents, blended together

by MFs.

When a TS model is available, stability analysis and 
ontroller design are usually

performed via the dire
t Lyapunov method, whi
h usually leads to 
onditions in

the form of linear matrix inequalities (LMIs) (Tanaka and H. Wang 2001). LMI


onditions are highly appre
iated as their feasibility 
an be de
ided via 
onvex

optimization te
hniques (Boyd et al. 1994). Di�erent 
lasses of Lyapunov fun
-

tions have been used to over
ome the 
onservatism of the 
ommon quadrati
 one,

�rst proposed in (Tanaka and Sugeno 1990): pie
ewise (Johansson, Rantzer, and

Arzen 1999; Gonzalez, Sala, and Bernal 2017), parameter-dependent (also un-

spe
i�
ally known as �non-quadrati
� or �fuzzy�) (T.M. Guerra and Vermeiren

2004; T.M. Guerra and Bernal 2012), and fuzzy line-integral (LI) (Rhee and Won

2006). Other re
ent proposals, intentionally left out of this quest, are based on

polyhedron manipulations and set-invarian
e 
onsiderations (C. Ariño, Sala, et al.

2017); these proposals avoid the need of �xing a stru
ture of a Lyapunov fun
tion

and, importantly, are asymptoti
ally exa
t (under some 
onditions) for the TS


ase; however, they 
annot be extended to the fuzzy-polynomial setup below.

In (F. Wu and Prajna 2005; Tanaka, Yoshida, et al. 2007a), the quadrati
 LMI/TS

framework was extended to the sum-of-squares (SOS) approa
h (Prajna, Pa-

pa
hristodoulou, Seiler, et al. 2004; Prajna, Papa
hristodoulou, Seiler, et al. 2005),

whi
h use polynomial Lyapunov fun
tions for stability analysis of nonlinear sys-

tems in fuzzy-polynomial form, posing SOS 
onditions whi
h are a
tually redu
ible

to LMIs. Later on, a fuzzy polynomial Lyapunov fun
tion was employed to gener-

alize results for fuzzy polynomial models (Bernal, Sala, et al. 2011). In that work,

the time-derivative of the MFs is a priori bounded by polynomials of the state,

thus obtaining a fuzzy polynomial model of the time derivative of the MFs. As a
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last option on these issues, (Y. Chen et al. 2015) presented a pie
ewise Lyapunov

fun
tion de�ned by the minimum or maximum of polynomials.

The widely-
ited work (Rhee and Won 2006) proposed an interesting fuzzy line-

integral Lyapunov fun
tion, presenting LMI stability 
onditions whi
h are global

and avoided the time derivative of the MFs. The goal of this 
hapter is generalising

the fuzzy LI approa
h in the above-referred work to the polynomial 
ase: it turns

out that path independen
y 
onditions for line integrals are automati
ally veri�ed

if the integral 
an be expressed as a sum of single-variable terms. Let us, next,

dis
uss in detail the motivation behind our proposal.

In (Rhee and Won 2006), a Lyapunov fun
tion with integral terms was pursued.

However, sin
e su
h Lyapunov fun
tion depended on ne
essary path-independen
e


onditions, the approa
h was only appli
able to a spe
i�
 
lass of TS models where

the MFs are a tensor-produ
t expression (C. Ariño and Sala 2007) of at most n
nonlinear 
omponents where ea
h of them depends exa
tly on one state variable.

For this 
lass of models, only the �diagonal� terms of the Lyapunov fun
tion were

a
tually using fuzzy summations and, moreover, if the MFs depend on multiple

variables and 
annot be fa
torised, e.g., wi(x1 + x2) 6= α(x1)β(x2), the approa
h
in (Rhee and Won 2006) 
annot be dire
tly applied.

In order to generalize the 
lass of TS model on where the LI approa
h 
an be ap-

plied, the LF in (Rhee and Won 2006) is expressed as a sum of single-variable inte-

grals, as above mentioned. Resorting to su
h parametrisation, path-independen
e


onditions are automati
ally ful�lled. This was the idea behind a preliminary re-

sult presented in (Gonzalez, Sala, Bernal, and Robles 2017), introdu
ing a larger


lass of path-independent line-integral Lyapunov fun
tions whenever the MFs de-

pended on an arbitrary set of linear fun
tions of the system states. Other re-

�nements on the work of (Rhee and Won 2006) 
an be found in (Marquez, T.M.

Guerra, et al. 2013; Marquez, T.M. Guerra, et al. 2014); they exploit a relaxation

from a determinant formula whi
h applies only to se
ond-order TS systems, but

do not 
orrespond to the point of view hereby adopted (pursuing results appli
able

to higher-order systems).

Motivated by the ideas above, this 
hapter presents a Polynomial Lyapunov fun
-

tion in
luding integral terms, for the stability analysis of a 
lass of nonlinear

models so the results in (Rhee and Won 2006; Gonzalez, Sala, Bernal, and Robles

2017) are a parti
ular 
ase. The results in this manus
ript apply to nonlinear

systems that 
an be expressed in terms of single-variable non-polynomial nonlin-

earities with a polynomial argument.
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The 
hapter is organized as follows: se
tion 7.2 presents the 
lassi
al se
tor non-

linearity approa
h to obtain TS models, previous results about the line-integral

Lyapunov approa
h, and a review on the standard polynomial fuzzy framework;

se
tion 7.3 develops the main result, where a new Polynomial+Integral Lyapunov

fun
tion is built; se
tion 7.4 gives some examples to illustrate the e�e
tiveness

of the proposed approa
h; �nally, dis
ussion, 
on
luding remarks and ideas for

future work are given in se
tions 7.5 and 7.6.

7.2 Preliminaries and problem statement

7.2.1 Takagi-Sugeno models

Consider a nonlinear system:

ẋ(t) = h(x(t)), (7.1)

with x ∈ R
n
being the state ve
tor, and x = 0 being an equilibrium point, i.e.,

h(0) = 0. Let us assume that h(·) 
an be expressed in the form:

ẋ(t) = h̃(η(x), x), (7.2)

where h̃(·) is linear in x(t) and multia�ne in η(x) ∈ R
q
, where

η(x) = [η1(x) η2(x) · · · ηq(x)]T

is a set of 
ontinuous fun
tions whi
h 
olle
ts all nonlinearities present in h(·) in
(7.1). Then, the above model 
an be written as (Robles et al. 2017):

ẋ(t) = f̃(η(x))x(t), (7.3)

with f̃(·) : Rq 7→ R
n
being a multia�ne fun
tion in its arguments.

A well-established pro
edure for 
onvex rewriting of su
h nonlinear systems within

a 
ompa
t set Ω ⊃ {0} of the state spa
e, 
alled the se
tor nonlinearity methodol-

ogy (Tanigu
hi, Tanaka, and H. Wang 2001), is available. Let us outline the main

ideas of it in order to introdu
e notation whi
h will be used in later developments

in the 
hapter.

Sin
e, by 
ontinuity and 
ompa
tness, the 
omponents of ve
tor η(x) are bounded

in Ω, assume ηj(x) ∈
[

η
j
, ηj

]

, j ∈ {1, 2, . . . , q} in Ω. By de�ning the following

weighting fun
tions (WFs):

wj0(x) :=
ηj − ηj(x)

ηj − η
j

, wj1(x) = 1− wj0(x), j ∈ {1, 2, . . . , q}, (7.4)
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ea
h nonlinearity is written as ηj(x) = wj0(x)ηj + wj1(x)ηj , with 0 ≤ wji ≤ 1,

wj0 + wj1 = 1. On the sequel, dependen
e of wji on the state x will be omitted for

notational brevity if 
lear from the 
ontext.

As f̃ is multia�ne, straightforward manipulations lead to a TS model with q
nested 
onvex sums:

ẋ(t) = Awx(t), (7.5)

Aw :=

1∑

i1=0

1∑

i2=0

· · ·
1∑

iq=0

w1
i1w

2
i2 · · ·w

q
iq
A(i1,i2,...,iq), (7.6)

A(i1,i2,...,iq) = f̃(η(x))|w1
i1

=w2
i2
=···=wq

iq
=1,

with A(i1,i2,...,iq) ∈ R
n×n

, ij ∈ {0, 1}, j ∈ {1, 2, . . . , q}. This sort of notation for

TS models 
orresponds to the tensor-produ
t modelling approa
h (C. Ariño and

Sala 2007; Campos et al. 2013). The reader is referred to these works for further

details on the above fuzzy modelling steps, whi
h routinely appear in systems with

several nonlinearities.

Example 7.2.1. Consider the following nonlinear system:

ẋ =

[
−a− b(1 + cos ρ2) + 0.2 cosρ3 −3 + cos ρ3 − 5 sin ρ1

−0.5a+ 0.2b(1 + cos ρ3) −4.6 + cos ρ3 + sin ρ1

] [
x1
x2

]

where η1(x) := sin(ρ1(x)) with ρ1(x) := x2, η2(x) := cos(ρ2(x)) with ρ2(x) :=
2x22 − x1x2, and η3(x) := cos(ρ3(x)) with ρ3(x) := x2 − 4x21. If we independently

model sin(ρ1), cos(ρ2), and cos(ρ3) in the previous system via standard se
tor

nonlinearity, we get the following tensor-produ
t TS model with 23 verti
es:

ẋ=

1∑

i1=0

1∑

i2=0

1∑

i3=0

w1
i1
(ρ1)w

2
i2
(ρ2)w

3
i3
(ρ3)A(i1,i2,i3)x, (7.7)

with

A000=

[
−a− 0.2 1
−0.5a −6.6

]

, A001=

[
0.2− a 3

0.4b− 0.5a −4.6

]

,

A010=

[
−a− 2b− 0.2 1

−0.5a −6.6

]

, A011=

[
0.2− 2b− a 3
0.4b− 0.5a −4.6

]

,

A100=

[
−a− 0.2 −9
−0.5a −4.6

]

, A101=

[
0.2.a −7

0.4b− 0.5a −2.6

]

,

A110=

[
−a− 2b− 0.2 −9

−0.5a −4.6

]

, A111=

[
0.2− 2b− a −7
0.4b− 0.5a −2.6

]

,
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and WFs w1
0(ρ1) = 0.5(1 − sin(ρ1)), w

1
1(ρ1) = 1 − w1

0(ρ1), w
2
0(ρ2) = 0.5(1 −

cos(ρ2)), w
2
1(ρ2) = 1− w2

0(ρ2), w
3
0(ρ3) = 0.5(1− cos(ρ3)), w

3
1(ρ3) = 1− w3

0(ρ3).

In order to get a more 
ompa
t notation, the multi-index shorthand notation

from, for instan
e, (Tognetti, R.C.L.F. Oliveira, and P.L.D. Peres 2011; Gonzalez,

Bernal, Sala, et al. 2017), will be used with a := (a1, a2, . . . , aq) , aj ∈ {0 ∪ N},
and b := (b1, b2, . . . , bq) , bj ∈ {0 ∪ N}, q-dimensional multi-indi
es (q-tuples):

wa
0 :=

(
w1

0

)a1 (
w2

0

)a2 · · · (wq0)
aq , wb

1 :=
(
w1

1

)b1 (
w2

1

)b2 · · · (wq1)
bq .

Then, the nested 
onvex sum Aw in (7.6) 
an be equivalently rewritten as:

Aw =
∑

j+i=1

w
j
0w

i
1Ai, (7.8)

with j+ i := (j1 + i1, j2 + i2, . . . , jq + iq, ) being the element-wise sum of q-tuples,
and 1 := (1, 1, . . . , 1). For instan
e, in the above example q = 3.

Well-known 
onditions for quadrati
 stability, with Lyapunov fun
tion V (x) =
xTPx, of the above model are (Tanaka and H. Wang 2001):

P > 0, PAi +ATi P ≤ 0.

However, these 
onditions are known to be 
onservative. Other options, 
alled

non-quadrati
 LF, have appeared in literature (see, for instan
e, (Blan
o, Per-

ruqueti, and Borne 2001; Tanaka, Hori, and H. Wang 2003; T.M. Guerra and

Vermeiren 2004)), in whi
h the LF is in the form:

V (x) = xTPwx = xT




∑

j+i=1

w
j
0w

i
1Pi



x. (7.9)

However, as V̇ (x) depends on Ṗw, time-derivative bounds on the WFs are needed

(Tanaka, Hori, and H. Wang 2003; L. Mozelli, Palhares, and Avellar 2009) or, via


hain-rule argumentations, bounds on the partial derivatives of them (T.M. Guerra

and Bernal 2009; Bernal and T. M. Guerra 2010). In some 
ases, a 
an
ellation-

based 
ontroller design approa
h 
an be 
rafted to avoid the WF derivative bounds

(Gonzalez, Bernal, Sala, et al. 2017) in the resulting 
losed-loop expressions.
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7.2.2 Line-integral fuzzy Lyapunov Fun
tions in prior literature

Consider the parti
ular 
ase of a model (7.2) with ηj(x) depending only on xj(t)

and q ≤ n. Then, from (7.4), ea
h wjk(·) only depends on xj. On the sequel, given

f : Rn 7→ R
h
notation ∇f denotes the Ja
obian matrix of size h× n.

In the work (Rhee and Won 2006), based on line-integral 
onsiderations, the fol-

lowing line-integral fuzzy Lyapunov fun
tion was proposed:

V (x) =

∫

Γ(0,x)

f(ψ) dψ (7.10)

where Γ(0, x) was any one-dimensional path betwen 0 and x, ψ ∈ R
n
is a dummy

ve
tor for the integral argument, and dψ ∈ R
n
is an in�nitesimal displa
ement

ve
tor along the path, and f(ψ) was given by:

f(ψ) = ψTP +











∑

j1+i1=1

(w1
0)
j1(w1

1)
i1s1i1ψ1

∑

j2+i2=1

(w2
0)
j2(w2

1)
i2s2i2ψ2

.

.

.

∑

jn+in=1

(wn0 )
jn(wn1 )

insninψn











T

(7.11)

being P a 
onstant, symmetri
al matrix with null diagonal in the said referen
e.

Expression (7.10) was proved path-independent (proving that ∂fi/∂ψj = pij =
pji = ∂fj/∂ψi), so the integral is identi
al for any Γ. Choosing the parti
ular

path formed by the 1-dimensional segments going from (0, . . . , 0) to (x1, 0, . . . , 0),
then to (x1, x2, 0, . . . ), then to (x1, x2, x3, 0, . . . ) and so on until (x1, . . . , xn) is

rea
hed

1

, the integral (7.10) results in the a
tual expli
it expression:

V (x)=xTPx+

n∑

k=1

∫ xk

0

∑

jk+ik=1

(
wk0 (ψ)

)jk (
wk1 (ψ)

)ik
skikψ dψ, (7.12)

where ψ ∈ R is now a one-dimensional dummy variable and P is a matrix (without

loss of generality, with null diagonal). Conversely, its gradient ∇V (x) is f(x)
being f(·) de�ned in (7.11). Su
h a fa
t 
an be proven from path-independen
e


onsiderations, as originally done in (Rhee and Won 2006), or, alternatively, by

expli
itly 
arrying out the straightforward di�erentiation of (7.12).

Then, a reformulation of the main result of (Rhee and Won 2006), adapted to our

notation, is the following theorem:

1

or, evidently, any other path, if desired.
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Theorem 7.2.1. The system (7.5) with wkj (xk(t)), k ∈ {1, 2, . . . , n} is asymptot-

i
ally stable if the following 
onditions hold:

xTPx+

n∑

k=1

(skjk − ε)x2k ≥ 0 (7.13)

−
∑

k0+k1=2

wk0
0 wk1

1

∑

i+j=k1, i≤1, j≤1

xT
(
P̄jAi +ATi P̄j + εI

)
x ≥ 0. (7.14)

where P̄j = P + diag

(
s1j1 , s

2
j2
, ..., snjn

)
, jk ∈ B, B = 0, 1 and ε is a small positive


onstant.

The reader is referred to the 
ited referen
es for further details and proofs of

the above-presented results. Trivially, by removing xT and x and using Polya

relaxations (C. Ariño and Sala 2007), the above s
alar inequalities get 
onverted

into standard LMIs:

P̄k − εI ≥ 0 ∀k ≤ 1 (7.15)

∑

i+j=k, i≤1, j≤1

P̄jAi +ATi P̄j + εI ≤ 0 ∀k ≤ 2. (7.16)

7.2.3 Polynomial fuzzy models

Consider now a more general 
ase where h̃ in (7.2) is a polynomial in nonlinearities

η, say, of degree ck in ηk for k ∈ {1, 2, . . . , q}. Then, the model 
an be expressed

as the multi-dimensional TS one below where memberships have degree greater

than 1 in the summations:

ẋ(t) =
∑

j+i=c

nciw
j
0w

i
1Aix(t), (7.17)

being c := (c1, c2, . . . , cq) a degree ve
tor where ck, k = {1, 2, . . . , q} is the degree

ea
h nonlinearity η has in the polynomial h̃ in (7.2), and nci :=
∏q
k=1

ck!
ik!(ck−ik)!

.

The 
ombinatorial number nci is the number of similar terms sharing a spe
i�



ombination w
j
0w

i
1, whi
h allows writing

∑

j+i=c

nciw
j
0w

i
1 = 1, a property that

proves to be useful in the quest for less 
onservative 
onditions derived from 
onvex

sums (Sala and Ariño 2007). Note that the previously-
onsidered tensor-produ
t

TS 
ase in (7.2) is the parti
ular 
ase of c = (1, . . . , 1).
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A
tually, if h̃ were a polynomial in both η and x, then a so-
alled fuzzy-polynomial

model

2

would have been obtained in the form:

ẋ(t) =
∑

j+i=c

nciw
j
0w

i
1Fi(x(t)) := Fw(x(t)), (7.18)

where Fi(x(t)) are vertex polynomial models (Sala and C. Ariño 2009). These

general fuzzy polynomial models will, thus, be the subje
t of inquiry in the sequel.

The sum-of-squares (SOS) paradigm is widely used to prove stability of the above

models. Indeed, a polynomial p(x) is SOS (to be denoted by p(x) ∈ Σx) if it


an be de
omposed as ζT (x)Γζ(x) where ζ(x) is a ve
tor of monomials and the

so-
alled Gram-matrix Γ is a positive semi-de�nite matrix, Γ ≥ 0. Obviously, all
SOS polynomials are non-negative, although the 
onverse is not true (Chesi 2007).

Theorem 7.2.2 ((Sala and C. Ariño 2009; Tanaka, Yoshida, et al. 2009; Prajna,

Papa
hristodoulou, Seiler, et al. 2005)). The polynomial fuzzy model (7.18) is

asymptoti
ally stable if a polynomial Lyapunov fun
tion V (x) = P (x) 
an be found

verifying

P (x)− ε(x) ∈ Σx, (7.19)

−∇P (x)Fi(x)− ε(x) ∈ Σx, ∀ i ≤ c, (7.20)

where ε(x) is a radially unbounded positive polynomial.

For a high-enough degree of P (x) and Fi(x) if the nonlinear system admits a

smooth Lyapunov fun
tion, the polynomial approa
h will eventually su

eed, up

to the gap of positive polynomials whi
h are not SOS (Chesi 2007), if su�
ient


omputational resour
es were available.

Fuzzy-polynomial Lyapunov fun
tions

In (Bernal, Sala, et al. 2011), a fuzzy-polynomial LF was proposed Pw(x), im-

proving over Theorem 7.2.2 due to its larger representation 
apabilities. However,

there was the need of expli
itly bounding

∂w
∂x by, for instan
e, other polynomials

of the state (the authors proposed 
arrying out a fuzzy-polynomial model of the

mentioned partial derivatives). This is an extension of the idea of bounding the

value or ẇ in (Tanaka, Hori, and H. Wang 2003) or bounding the gradient of the

membership fun
tions in (Bernal and T. M. Guerra 2010). Notwithstanding, as

the goal of this work is enhan
ing the integral terms in Lyapunov fun
tions, no

2

As dis
ussed in (Sala and C. Ariño 2009), if h in (7.1) is of 
lass Cp
, a Taylor-series argumentation


an prove the existen
e of su
h a fuzzy-polynomial model of degree p.
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further dis
ussion of gradient/time-derivative bounding will be 
onsidered in the

sequel (a
tually, 
ombination of approa
hes is possible, see dis
ussion in Se
tion

7.5).

7.2.4 Problem statement

The obje
tive of this 
hapter is generalising the LI Lyapunov fun
tion proposal

in (Rhee and Won 2006; Gonzalez, Sala, Bernal, and Robles 2017) to a 
lass of

fuzzy-polynomial models in the form (7.18). Spe
i�
ally, we will assume that the

nonlinear model, written as expression (7.2), has the parti
ular form:

ẋ(t) = h̃(η1(ρ1(x)), . . . , ηq(ρq(x)), x) (7.21)

where h̃ is a polynomial in its arguments (η, x), with ea
h ηj : R 7→ R being

a real fun
tion of one variable, and being ρj : R
n 7→ R the argument to ηj ;

furthermore, ρj(x) whi
h will be assumed to be a polynomial in the state. Then,

se
tor-nonlinearity modelling of ηj allows building membership fun
tions in (7.18)

whi
h depend on ρj(x):

wj0(ρj)=
ηj − ηj(ρj)

ηj − η
j

, wj1(ρj)=1− wj0(ρj), j∈{1, 2, . . . , q}. (7.22)

Thus, in the 
ase under study, we will 
onsider wji : R 7→ R, having the polyno-

mial ρi as argument, instead of the �generi
� dependen
e wji (x) 
onsidered in the

original expression (7.4). A
tually, it 
an be easily shown that the 
ases in (Rhee

and Won 2006; Gonzalez, Sala, Bernal, and Robles 2017) are a parti
ular 
ase of

the above setup, details left to the reader. For instan
e, in (Rhee and Won 2006),


ondition ρi ≡ xi was needed, as well as q ≤ n. These assumptions are no longer

needed in the present work, as dis
ussed below.

The main goal of this 
hapter is generalising ρi to arbitrary polynomials, and to

also 
onsider the 
ase in whi
h the number of nonlinearities q 
an be larger than

the system's order n. Given that polynomials appear, the generalisation of (Rhee

and Won 2006) to the polynomial 
ase (from LMI to SOS) 
omes as a side result

but, importantly, advantages of the ideas here proposed 
an be a
hieved even in

an LMI-only setup, as dis
ussed in our 
onferen
e paper (Gonzalez, Sala, Bernal,

and Robles 2017). Hen
e, the LMIs in the 
ited works will be a parti
ular 
ase of

our SOS approa
h.

Note that we do not need to model the gradient of the memberships be
ause of

the integral nature of the LF (following the main idea in the seminal work (Rhee

and Won 2006)), thus obtaining simpler 
onditions than (Bernal, Sala, et al.
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2011) (whi
h require su
h gradient model), but more powerful than standard SOS


onditions (Theorem 7.2.2), due to the in
orporation of w(·) in the LI Lyapunov

fun
tion.

Example 7.2.1 (Continued). Considering the model in (7.7), the approa
h in

(Rhee and Won 2006) 
annot be �dire
tly� applied to the above model using all three

weighting fun
tions: Theorem 7.2.1 
an be applied by 
onsidering only fuzziness in

the WFs w1
j (·) in the Lyapunov fun
tion (7.12), be
ause it is the only one whi
h

depends on exa
tly a single state variable. Thus, Theorem 7.2.1 
an 
onsider the

following integral form for V (x):

V (x) = xTPx+

∫ x2

0

∑

i+j=1

(
w1

0(ψ)
)i (

w1
1(ψ)

)j
s1j1ψ dψ. (7.23)

The above example motivates the need for extending the Lyapunov fun
tion with

further integral terms depending on w2
0, w

2
1 , w

3
0 and w3

1 , to be dealt with in our

proposals in next se
tion. Note that a fuzzy-polynomial model (7.18) may be

obtained for the model in example 7.2.1, if so wished; anyway, as the goal of

this 
hapter is 
omparing the �exibility of the more general Lyapunov fun
tion

proposals, we intentionally restrain ourselves to just the TS model (7.7) in the

later numeri
al 
omputations over the nonlinear system in this example, in order

to suitably 
ompare with prior literature; su
h further improvements from more

general polynomial modelling are left to the reader.

7.3 Main Result

Let us �rst 
onsider a generi
 integral expression, motivated by (7.12), in the form:

V̄ (µ, λ) := P (µ, λ) +

q
∑

k=1

∫ λk

0

π[k]
w (µ, ψ) dψ (7.24)

where λ ∈ R
q
, µ ∈ R

s
, for some s to be later spe
i�ed, are symboli
 arguments

(whi
h will be later on repla
ed by state-dependent expressions), P (µ, λ) is an

arbitrary polynomial fun
tion (depending on some de
ision variables), ψ ∈ R is a

uni-dimensional dummy integral variable, and π
[k]
w (µ, ψ) : Rs+1 7→ R are given by

the fuzzy summations

π[k]
w (µ, ψ) =

∑

ℓk+lk=dk

ndklk (w
k
0 (ψ))

ℓk(wk1 (ψ))
lksklk(µ, ψ) (7.25)
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where dk is a Polya 
omplexity parameter (Sala and Ariño 2007), ndklk is a 
ombi-

natorial number ndklk =
dk!

lk!(dk − lk)!
, and sklk(µ, ψ) is a polynomial parameterised,

too, with some de
ision variables. As before, the Polya 
omplexity parameters will

be arranged into a �Polya degree ve
tor�, to be denoted as d := (d1, . . . , dq) ∈ N
q
.

In order to be used as a Lyapunov fun
tion, the gradient of V̄ needs to be 
om-

puted. Instead of line-integral argumentations, we will use expli
it di�erentiation,

as justi�ed earlier on. Thus, the 
omponents of the gradient of V̄ are given by:

∂V̄

∂µi
=
∂P

∂µi
(µ, λ) +

q
∑

k=1

∫ λk

0

∂π
[k]
w

∂µi
(µ, ψ) dψ (7.26)

and

∂V̄

∂λk
=

∂P

∂λk
(µ, λ) + π[k]

w (µ, λk) (7.27)

The above stru
ture (7.24) will be used to build Lyapunov fun
tions in Se
tion

7.3.1, on
e relevant positiveness 
onditions formulated below do hold.

Theorem 7.3.1. If P (µ, λ) ∈ Σµ,λ and sklk(µ, ψ)ψ ∈ Σµ,ψ, for all 0 ≤ lk ≤ dk,

then V̄ (µ, λ) ≥ 0.

Proof. Condition sklk(µ, ψ)ψ ∈ Σµ,ψ implies that sklk has the same sign as ψ. As π
[k]
w

is a sum of sklk multiplied by positive 
oe�
ients, we 
an assert that π
[k]
w (µ, ψ)ψ ≥ 0

and, for any τ > 0, we have π
[k]
w (µ, ψ)ψ/τ ≥ 0. Hen
e,

∫ λk

0

π[k]
w (µ, ψ) dψ = lim

h→0+

∫ 1

h

π[k]
w (µ, τλk)λk dτ ≥ 0

where the rightmost integral 
omes from the 
hange ψ = τλk, hen
e τ should range

from zero to 1, and the last inequality 
omes from the fa
t that π
[k]
w (µ, τλk)λk =

π
[k]
w (µ, ψ)ψ/τ ≥ 0. Note that the limit in the above expression exists from 
onti-

nuity of π
[k]
w . Therefore, V̄ is expressed as the sum of two non-negative quantities

if 
onditions in the theorem statement hold.

The above theorem 
an be made less 
onservative, introdu
ing some additional

de
ision variables (non-fuzzy polynomials sk) whi
h �link� the non-integral and

integral parts, as follows:
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Theorem 7.3.2. If there exist polynomials sk(µ, ψ), for k ∈ {1, 2, . . . , q}, su
h
that

(
sklk(µ, ψ)− sk(µ, ψ)

)
ψ ∈ Σµ,ψ (7.28)

and

V1(µ, λ) := P (µ, λ) +

q
∑

k=1

∫ λk

0

sk(µ, ψ) dψ ∈ Σµ,λ (7.29)

then V̄ (µ, λ) ≥ 0 for all µ, λ.

Proof. We 
an express:

V̄ (µ, λ) = V1(µ, λ) + V2(µ, λ) (7.30)

where V1 is the polynomial de�ned in (7.29) and

V2(µ, λ) :=

q
∑

k=1

∫ λk

0

(

π[k]
w (ψ)− sk(µ, ψ)

)

dψ (7.31)

and Theorem 7.3.1 
an now be applied 
hanging the original V̄ (·) by V1(·), and

hanging sklk in the referred theorem for sklk − sk, as stated in (7.28).

Next se
tion will apply the above results to building Lyapunov fun
tions. In order

to avoid integral terms in the gradient of V , the restri
tion sklk(µ, ψ) being only

dependent on ψ will be enfor
ed in the sequel, i.e., we will only 
onsider sklk(ψ).

7.3.1 Stability

Consider now a Lyapunov fun
tion, using the stru
ture (7.24), de�ned as:

V (x) := V̄ (Ex, ρ(x)) = P (Ex, ρ(x)) +

q
∑

k=1

∫ ρk

0

π[k]
w (ψ) dψ (7.32)

where Ex sele
ts only the 
omponents of the state whi
h do not expli
itly appear

in ρ(x) (thus, avoiding repeated arguments): for instan
e, in the original setting

in (Rhee and Won 2006), E would be zero as ρ(x) ≡ x; in the 2nd-order system

in Example 7.2.1, we would set E := (1 0), so Ex = x1 be
ause ρ1(x) = x2.

Using positiveness results in Theorem 7.3.2 and adding derivative-related de
res-


en
e 
onditions allows to state the main result below:
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Theorem 7.3.3. Consider a polynomial fuzzy model (7.18), with degree ve
tor c,

with the membership fun
tion stru
ture wkj (ρk(x)), arising from (7.21) and (7.22).

Consider, too, a given degree ve
tor d = (d1, d2, . . . , dq), see (7.25), and the Lya-

punov fun
tion stru
ture (7.32) and an arbitrary radially unbounded polynomial

ε(x), su
h that ε(0) = 0 and ε(x) > 0 elsewhere. Then, the origin x(t) = 0 of su
h

system is asymptoti
ally stable if there exist polynomial fun
tions P (Ex, ρ(x)),
sklk(ψ), and sk(ψ), su
h that the following SOS 
onditions hold for all 0 ≤ lk ≤ dk,
0 ≤ bj ≤ ej, j, k ∈ {1, 2, . . . , q}, e = (c1 + d1, c2 + d2, . . . , cq + dq):

(sklk(ψ)− sk(ψ))ψ ∈ Σψ, (7.33)

P (Ex, ρ(x)) +

q
∑

k=1

∫ ρk

0

sk(ψ) dψ − ε(x) ∈ Σx, (7.34)

−
∑

lj+ij=bj

ndl n
c
i

(

∇P (Ex, ρ(x))
[
E ∇ρ

]
+

q
∑

k=1

sklk(ρk)∇ρk
)

Fi(x)−ε(x)∈Σx. (7.35)

Proof. Conditions (7.33) and (7.34) are the translation

3

to the 
urrent notation

of 
onditions (7.28) and (7.29). Thus, appli
ation of Theorem 7.3.2 ensures that

V (x) in (7.32) ful�lls V (x) ≥ ε(x).

Now, the derivative of the Lyapunov fun
tion 
an be expressed as:

˙̄V (µ, λ) =

(
∂V̄

∂µ

∂µ

∂x
+
∂V̄

∂λ

∂λ

∂x

)

· ẋ(t)

so, with the 
hoi
e of arguments to V̄ (·) being µ := Ex and λ := ρ(x), we have
that the time derivative above (
orresponding to the time derivative of (7.32))

be
omes:

V̇ (x) = ∇P (Ex, ρ(x))
[
E ∇ρ

]
ẋ(t) + [π[1]

w (ρ1(x)) · · · π[q]
w (ρq(x))]∇ρ(x)ẋ(t) ≤ 0.

Repla
ing ẋ(t) by its model (7.18), and π
[k]
w by its de�nition (7.25), we get:

∑

j+i=c

nciw
j
0w

i
1∇P (Ex, ρ(x))[E ∇ρ]Fi(x)

+

q
∑

k=1

∑

ℓk+lk=dk

(wk0 (ρk))
ℓk(wk1 (ρk))

lkndklk s
k
lk(ρk)∇ρk

∑

j+i=c

nciw
j
0w

i
1Fi(x) ≤ 0,

3

A
tually, note that (7.29) poses SOS 
onditions on two variables (µ, λ) so appli
ability of Theo-

rem 7.3.2 would hold even if the expli
it relationship between these variables were unknown. However,

as ρi are known polynomials in (7.32), substitution of these polynomials by their expli
it expressions

renders an easier SOS problem only in variables x in (7.34).
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whi
h is equivalent to the homogeneous summation of degree ve
tor e := (c1 +
d1, c2 + d2, . . . , cq + dq) below:

∑

a+b=e

wa
0w

b
1

∑

lj+ij=bj

ndl n
c
i

(

∇P (Ex, ρ(x))[E ∇ρ]Fi(x)

+

(
q
∑

k=1

sklk(ρk)∇ρk
)

Fi(x)

)

+ ε(x) ≤ 0, (7.36)

Carrying out fuzzy-summation manipulations as to isolate ea
h of the summation


oe�
ients, we get the su�
ient 
ondition (7.35), whi
h guarantees V̇ (x) < 0,
thus 
on
luding the proof.

Note that Polya relaxations of the fuzzy summations (7.36) may be 
arried out to

further redu
e 
onservatism, but details on them are omitted for brevity.

In the parti
ular 
ase where ρk(x) is an arbitrary linear fun
tion of the state x(t),
i.e., ρk(x) = lk1x1(t) + lk2x2(t) + · · ·+ lknxn(t) = L[k]x(t), ∀k ∈ {1, 2, . . . , q}, if the
Lyapunov fun
tion is also 
hosen to be quadrati
, then Theorem 7.3.3 redu
es to

the stability 
onditions in (Gonzalez, Sala, Bernal, and Robles 2017, Thm. 4), as

stated next:

Corollary 7.3.3.1. The origin x(t) = 0 of the TS model (7.17) with the mem-

bership fun
tion stru
ture wkj (ρk(x)) and ρk(x) being an arbitrary linear fun
-

tion of the state x(t), i.e., ρk(x) = lk1x1(t) + lk2x2(t) + · · · + lknxn(t) = L[k]x(t),
∀k ∈ {1, 2, . . . , q}, is asymptoti
ally stable if the following 
onditions hold:

xTPx+

q
∑

k=1

skjkx
T
(

L[k]
)T

L[k]x(t)− εxTx ≥ 0, ∀jk∈{0, 1} (7.37)

−
∑

k0+k1=2

wk0
0 wk1

1

∑

i+j=k1, i≤1, j≤1

xT
(
P̄jAi +ATi P̄j + εI

)
x ≥ 0, (7.38)

where P̄j = P + diag

(
s1j1 , s

2
j2
, ..., snjn

)
, being P = PT ∈ R

n×n
with null diagonal,

and ε is a small positive 
onstant. Obviously the above quadrati
 SOS 
onditions


an be, trivially, 
onsidered to be an LMI

4

.

Proof. Considering the Lyapunov fun
tion 
andidate (7.32) with

P (Ex, ρ(x)) = xTPx,

4

See 
onditions (11) and (12) in (Gonzalez, Sala, Bernal, and Robles 2017).
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P de�ned as above with null diagonal, and

π[k]
w (ψ) = 2

∑

ℓk+lk=1

(
wk0 (ψ)

)ℓk (
wk1 (ψ)

)lk
sklkψ.

Rewriting (7.32), we get the following fun
tion:

V (x) = xTPx+

q
∑

k=1

∫ L[k]xk

0

π[k]
w (ψ) dψ. (7.39)

By Theorem 7.3.2, expression (7.39) is positive if there exists sk su
h that:

pklkψ
2 − skψ

2 ∈ Σψ

xTPx+

q
∑

k=1

∫ L[k]xk

0

skψ dψ = xTPx+

q
∑

k=1

skx
T
(

L[k]
)T

L[k]x(t)− εxTx ∈ Σx.

Sin
e P is null diagonal, setting sk = min(sk0 , s
k
1), then (7.37) implies the previous


ondition.

The following 
ondition on the time derivative of the Lyapunov fun
tion (7.39)

V̇ (x) = xT
(
PAw +ATwP

)
x+ 2

q
∑

k=1

π[k]
w (x)Awx < 0,

is equivalent to that in (7.38) as 
an be seen performing similar steps as those in

proof of Theorem 7.3.3.

7.4 Examples

Example 7.2.1 (Continued). The motivating example 
onsidering the model in

(7.7) will be now numeri
ally solved with the proposed results, and 
ompared with

alternative prior approa
hes. In parti
ular, stability of the system (7.7) will be

studied for di�erent values of 
onstant parameters a ∈ [10, 13] and b ∈ [50, 60].

First, re
all that the results in (Rhee and Won 2006), i.e., Theorem 7.2.1 
an be

applied only with the Lyapunov fun
tion (7.23), with integral terms only depending

on x2, as previously dis
ussed on page 149.

However, our proposal in Theorem 7.3.3 
an 
onsider all three nonlinearities. If we

apply Theorem 7.3.3 with ε(x) = 10−4xTx and the following polynomial Lyapunov
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a

10 10.5 11 11.5 12 12.5 13

b

50

52

54

56

58

60

Figure 7.1: Feasibility sets for Example 7.2.1: (◦) for Theorem 7.3.3; (×) for Theorem

7.2.1; (+) for Quadrati
 Lyapunov fun
tion.

fun
tion with integral terms

V (x) =p1x
2
1 + p2x1x2 + p3x

2
2 +

3∑

k=1

∫ ρk

0

(wk0 (ψ)s
k
0ψ + wk1 (ψ)s

k
1ψ) dψ

where p1, p2, p3, and s
k
j are de
ision variables, the obtained feasible set of solutions

is marked with (◦) in Figure 7.1, within the ranges of a and b above mentioned.

For the sake the 
omparison, in Figure 7.1 the feasible set of solutions obtained if

the 
lassi
al quadrati
 approa
h V = xTPx is applied is marked with a (+); last,
(×) points out the feasible set of solutions obtained if the approa
h in (Rhee and

Won 2006) is applied 
onsidering only the WFs w1
j (·) in the Lyapunov fun
tion

(7.23) with, too ε = 10−4
. As expe
ted, (Rhee and Won 2006) improves over

the plain quadrati
 
ase, but our new approa
h produ
es the largest feasible set of

solutions

5

due to the two additional integral terms apart from the one in (7.23).

Example 7.4.2. In this example, we will 
ompare our proposal with a �standard�

sum-of-squares approa
h (re
alled here as Theorem 7.2.2), i.e., with a polynomial

non-fuzzy Lyapunov fun
tion (without integral terms). In order to 
arry out su
h

5

Note that, although this example has detailed the developments for polynomial arguments to ρ,
similar improvements o

ur even if the arguments of ρ were just linear fun
tions, as dis
ussed earlier

in this work (Corollary 7.3.3.1, taken from our 
onferen
e paper (Gonzalez, Sala, Bernal, and Robles

2017)).
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a 
omparison, we will 
onsider the following nonlinear model:

ẋ1 = x2 (7.40)

ẋ2 = −2x1 − x2 − 0.5 κx1 (1 + sin (ρ1(x))) , (7.41)

where ρ1(x) = −4x2 − 5x2x1 + x21 − 2x22 and κ is a non-negative parameter,

so the obje
tive is �nding the largest possible κ su
h that several sets of SOS


onditions (
orresponding to di�erent LF proposals) render feasible, to 
ompare

them. Applying the se
tor nonlinearity approa
h to sin(ρ1(x)), we obtained the

following TS model:

ẋ=

1∑

i1=0

w1
i1(ρ1)Ai1x,

where

A0 =

[
0 1
−2 −1

]

, A1 =

[
0 1

−2− κ −1

]

,

and w1
0(ρ1) = 0.5(1− sin(ρ1)), w

1
1(ρ1) = 1− w1

0(ρ1).

Note that, as ρ1 is neither a state nor a linear fun
tion of the state variables,

integral LF terms from the proposals in (Rhee and Won 2006) or (Gonzalez, Sala,

Bernal, and Robles 2017) 
annot be applied.

Following the approa
h in this 
hapter, if Theorem 7.3.3 is applied with d =
(1), ε(x) = 10−4

(
x21 + x22

)
, and the following Polynomial Line-Integral Lyapunov

fun
tion, whi
h in
orporates degree-4 monomials:

V (x) = p1x
2
1 + p2x1x2 + p3x

2
2 + p4x

3
1 + p5x

2
1x2 + p6x1x

2
2 + p7x

3
2 + p8x

4
1

+p9x
3
1x2 + p10x

2
1x

2
2 + p11x1x

3
2 + p12x

4
2 +

∫ ρ1

0

(w1
0(ψ)s

1
0ψ + w1

1(ψ)s
1
1ψ) dψ

su
h that

(
s1jψ − s1ψ

)
ψ ∈ Σψ, j ∈ {0, 1} where pi, i ∈ {1, 2, . . . , 12}, s1, s11, and

s10 are de
ision variables, our approa
h 
an guarantee stability for κ = 6.5046. The
resulting Lyapunov fun
tion for κ = 6.5046 is

V (x)=266.1084x41 + 91.8725x31x2 + 54.6768x31 + 116.435x21x
2
2 + 10.7059x21x2

+76.9601x21 + 11.1967x1x
3
2 − 38.9486x1x

2
2 + 12.3850x1x2 + 5.6442x42

−20.2489x32 − 3.8261x22 +

∫ ρ1

0

(w1
0(ψ)3.2041ψ+ w1

1(ψ)1.9146ψ) dψ,

with sk = 1.391. In Figure 7.2 some level sets of V (x) and some system traje
tories

are shown for illustration purposes.
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Figure 7.2: Lyapunov sets (dashed lines) and some traje
tories (solid lines) for Example 2.

For the sake of 
omparison, Table 7.1 presents the maximum value of the parame-

ter κ keeping 
onditions in Theorem 7.3.3 feasible

6

for several degrees of the 
las-

si
al polynomial LF 
omponent P (Ex, ρ1(x)) (left 
olumn) and the integral ones

(middle 
olumn) with d = (2). Thus, the standard SOS approa
h 
orresponds to

the rows where deg(sklk(ψ)) is empty (labelled with a dash). For instan
e, a 4th-

degree non-integral term plus a degree 1 integral term a
hieves better results than

a non-integral LF of degree 12. From the numeri
al �gures in the table, either

in
reasing the non-integral polynomial degree or that of the integral term seem to

improve results, however the in
orporation of integral terms seems very e�e
tive

with signi�
antly less de
ision variables than the high-degree non-integral options,

while a
hieving better performan
e.

For information, the used solver in the numeri
al examples in this 
hapter was

Mosek 7.1 (E. D. Andersen and K. D. Andersen 2000), under the programming

language YALMIP 20150919 (Löofberg 2004), and running on Matlab R2015a with

default toleran
es.

6

The fun
tion ε(x) was 
hosen, following (Papa
hristodoulou and Prajna 2005), as:ε(x) =
∑n

i=1

∑d
j=1 ǫijx

2j
i

where d is the degree of P (Ex, ρ(x)) and the ǫ's satisfy
∑d

j=1 ǫij > γ, ∀i ∈

{1, 2, . . . , n} with γ a positive number (1 × 10−4
), and ǫij ≥ 0 for all i and j.
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Table 7.1: Maximum κ for polynomial line-integral LF with Theorem 7.3.3, and standard

SOS Theorem 7.2.2.

deg(P (Ex, ρ(x))) deg(sklk(ψ)) κ
De
ision

variables in

V (x)

Average Solver

time (s)

2 - 3.8284 3 0.1660

4 - 5.7393 12 0.1740

8 - 6.3981 42 0.1960

12 - 6.6537 88 0.3440

4 1 7.0880 16 0.1840

4 3 7.1018 24 0.1960

8 1 7.2990 46 0.1940

8 3 7.6879 54 0.2160

12 1 8.3010 92 0.4760

12 3 8.9234 100 0.4920

7.5 Dis
ussion

In this se
tion, on
e the results and example have been presented, a brief dis
ussion

on the advantages provided and room for further enhan
ements will be provided

next.

Regarding the 
hosen nonlinear model for the examples, note that they have been

intentionally written as TS models in order to 
ompare with prior literature, but

other polynomial models for the same nonlinear systems may be amenable to our

proposal (su
h as the Taylor-series approa
h (Sala and C. Ariño 2009)), details

left to the reader.

Also, for simpli
ity, global bounds on the nonlinearities have been 
onsidered (they

are trigonometri
 fun
tions). Nevertheless, the approa
h would equally work on


ompa
t modelling regions where suitable bounds for x and ρ would be available.

Obviously, the advantages of non-quadrati
/fuzzy-LF-SOS approa
hes would van-

ish for very small modelling regions, as the resulting model would equal the lin-

earisation (in a TS 
ase) or the trun
ated Taylor series (in the generi
 polynomial

setup). Nevertheless, 
omparison of results with di�erent sizes of modelling region

has not been 
onsidered of interest, for brevity.

Apart from the 
on
rete example, in a generi
 
ase, our approa
h has advantages

if the nonlinearities 
an be expressed as a single-variable real fun
tion 
omposed

with a polynomial one; in this 
ase, the polynomial nature of the arguments to
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nonlinearities is duly exploited. It would not apply to, for instan
e to ρ(x) =
cos(ex1 − arctanx22).

Note, too, that further relaxation of the result would be obtained by 
ombining it

with a variety of approa
hes in fuzzy 
ontrol literature, whi
h relax 
onservatism

based on other ideas unrelated to our integral Lyapunov fun
tion proposal:

1. In
reasing the degree of the polynomial term of the Lyapunov fun
tion P (·, ·)
in (7.32).

2. Get a less 
onservative model via in
reasing the degree of the polynomial


onsequents, (Sala and C. Ariño 2009).

3. Use a standard �fuzzy�-polynomial Lyapunov fun
tion in the non-integral

part of (7.32) repla
ing P (Ex, ρ) by P (Ex, ρ,w) with expressions similar to

(7.9), in
orporating information on the time-derivatives or the gradient of

the memberships (Bernal, Sala, et al. 2011).

4. Use other results depending on membership shape. For instan
e, in Example

7.2.1, based on the a
tual nonlinearities, we 
ould assert expressions su
h as

γ(w) := (w1
0)

2 − 0.5w2
0w

3
0 − 1 ≤ 0 or/and γ(w) := w2

0w
3
0 − ρ2(x)

2ρ3(x)
2 ≤ 0,

a restri
tion that 
an be in
luded via a suitable Positivstellensatz multiplier

R(x, ρ)γ(w) in the SOS 
onditions (C. Ariño and Sala 2007; Lam 2012).

7.6 Con
lusion

This 
hapter presents a general SOS 
ondition for the stability analysis of a 
lass

of nonlinear models via a polynomial Lyapunov fun
tion with integral terms whi
h

has been suitably parameterised. Compared to prior literature, two improvements

are presented: �rst, the generalisation to a polynomial 
ase of earlier LMI line-

integral results; se
ond, the new approa
h allows the line-integral approa
h to

be applied to a larger 
lass of TS models, where their WFs arguments 
an be

arbitrary sets of polynomial fun
tions of the system states, instead of only ea
h of

the states being the argument to a single WF 
onsidered in (Rhee and Won 2006).

Unfortunately, as in the original referen
e, 
ontroller design problems 
annot be


ast as 
onvex optimisation ones.
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In this thesis, solutions to some drawba
ks in the TS/LMI/SOS-framework for

analysis and 
ontrol of nonlinear systems were proposed; namely, problems arising

from the use of di�erent 
lasses of Lyapunov fun
tions were addressed: handling

of exa
t representations of nonlinear systems (a�ne Takagi-Sugeno models) al-

lowing the in
lusion of geometri
al restri
tions for pie
ewise analysis, a solution

to the algebrai
 loops appearing when parameter-dependent Lyapunov fun
tions

are employed for 
ontrol purposes, and enlarging of the 
lass of systems that 
an

be treated with line-integral Lyapunov fun
tions.

A summary of the thesis 
ontributions addressing the aforementioned problems

follows:

• The use of pie
ewise Lyapunov fun
tions for the estimation of the domain of

attra
tion of nonlinear systems.

The approa
h presented on 
hapter 5 allows obtaining asymptoti
ally exa
t

estimation of the DA of nonlinear systems. The algorithm therein presented

is based on getting �ner pie
ewise TS model and taking into a

ount previ-

ously proven regions and �promising� neighboring areas, all within the LMI

framework.
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Nonetheless, the pro
edure has its own limitations. One of them, is the

fa
t that the a
tual DA of a nonlinear system is, in general, not pie
ewise

quadrati
, so the exa
t domain of attra
tion 
annot be obtained with �nite


omputational resour
es. Hen
e, our proposal 
an only prove that �nite 
om-

putational resour
es are needed to �nd if a parti
ular point in the state spa
e

belong to the interior of the �true� DA. Additionally, as the required esti-

mation a

ura
y in
reases, the number of regions must a

ordingly in
rease

(with de
reasing size). Very small sizes would need heavy memory and pro-


essing requirements and an a

urate handling of toleran
es and numeri
al

pre
ision issues to obtain meaningful results.

• A multi-index 
ontrol law for stabilisation of nonlinear systems that feeds

ba
k the time derivatives of the membership fun
tions.

In 
hapter 6, a new generalised PDLF is proposed along with a generalised

multi-index 
ontrol law that 
an
els out the terms that 
ause a priori lo
ality

in the Lyapunov analysis; moreover, the resulting 
onditions are purely LMI.

For this sake, the 
ontrol law uses the time derivative of the MFs obtained

from the 
losed-loop expression of the system. The examples show that

results in previous literature on the subje
t has been outperformed.

Due to the in
lusion of the time derivative of the MFs, a possible algebrai


loops may arise. Thus, some additional LMI 
onditions are proposed to

guarantee regularity of the 
ontrol. Nevertheless, these LMI 
onditions are


onservative and 
ould lead to lo
ality in the 
ontrol law.

• The use of the polynomial Lyapunov fun
tions with integral terms is gener-

alised for a larger 
lass of nonlinear models.

This thesis shows a new polynomial Lyapunov fun
tion with integral terms

that generalise works in prior literature for 
ases on whi
h the later 
annot

be dire
tly applied. It also goes beyond the TS framework in
luding the

polynomial one: it turns out that path independen
y 
onditions for line

integrals are automati
ally veri�ed if the integral is expressed as a sum of

single-variable terms.
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A word on future work

The main advantage of the 
onvex approa
h is the fa
t that there exists a sys-

temati
 methodology to model a smooth nonlinear system as a 
onvex-linear one

(se
tor-nonlinearity approa
h) or as a 
onvex polynomial one (Taylor series ap-

proa
h, being the se
tor-nonlinearity generalisation), and then, via 
onvex opti-

misation te
hniques, sear
h for Lyapunov fun
tions and 
ontrollers. For stability

analysis this sear
h 
an be 
ondu
ted in terms of LMIs or SOS; several approa
hes

are even asymptoti
ally exa
t, though 
omputationally demanding.

This is not, in general, the 
ase of 
ontroller synthesis. As soon as the quadrati


framework is left, a number of problems arise besides the loss of ne
essity of

results; among them, the emergen
e of 
onditions not amenable to LMIs or SOS

problems is a major obsta
le. Usually, further assumptions and 
hange of variables

are performed on these problems to yield a 
onvex formulation (see, for instan
e,

the proposal in 
hapter 6), but of 
ourse these solutions la
k generality. If, as

many authors did in the past, 
onditions are left as BMI problems, the spirit of

the whole methodology is lost, as BMIs 
annot be optimally solved. A growing

misunderstanding of this point seems to be motivated by the availability of hit-

and-miss BMI solvers.

More spe
i�
ally, sin
e the power of pie
ewise methodologies lies in in
orporat-

ing lo
al information about a number of regions of interest where the system is

supposed to operate, 
ontroller design 
annot simultaneously preserve this infor-

mation and modify the system traje
tories through 
ontrol; thus, the BMI nature

of the problem. Mathemati
ally, sin
e most of the LMIs involving synthesis in-

volve an inversion of the Lyapunov fun
tion, su
h transformation implies a 
hange

of variables whi
h destroys the 
onvex formulation of lo
al restri
tions.

In the 
ase of parameter-dependent Lyapunov fun
tions, well-posedness of the

problem is an issue as results in this thesis show: a matrix inversion prevents


ontroller design from being global. A non-
onservative solution to ensure regu-

larity of the 
ontrol law is BMI, whi
h obliged us to adopt an LMI 
onservative

redu
tion of the problem. It is 
lear that feeding ba
k the time derivatives of the

MFs is both related with des
riptor forms (as the left-hand time derivative of the

state gets enri
hed by right-hand terms) and dynami
al 
ontrollers (as the time

derivative of the MFs might be subsumed in a 
hain of integrators). In the TS


ontext, this might translate into non-a�ne in 
ontrol systems, i.e., models that

in
lude x and u in their MFs.

As shown in this thesis, line-integral Lyapunov fun
tions had no need to be path-

independent if properly de�ned. While enri
hing the solution set for stability
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purposes, 
ontroller design shares the BMI nature of the problems above. In this


ase, the reason lies on the imposed stru
ture of the Lyapunov fun
tion that does

not allow the inversion already dis
ussed.
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