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Abstract

This thesis considers a Lyapunov-based approach for analysis and control of non-
linear systems whose dynamical equations are rewritten as a Takagi-Sugeno model
or a convex polynomial one. These structures allow solving control problems via
convex optimisation techniques, more specifically linear matrix inequalities and
sum-of-squares, which are efficient tools from the computational point of view.
After providing a basic overview of the state of the art in the field of Takagi-
Sugeno models, this thesis address issues on piecewise, parameter-dependent and
line-integral Lyapunov functions, with the following contributions:

An improved algorithm to estimate the domain of attraction of nonlinear sys-
tems for continuous-time systems. The results are based on piecewise Lyapunov
functions, linear matrix inequalities, and geometrical argumentations; level-set
approaches in prior literature are significantly improved.

A generalised parameter-dependent Lyapunov function for synthesis of controllers
for Takagi-Sugeno systems. The approach proposed a multi-index control law that
feeds back the time derivative of the membership function of the Takagi-Sugeno
model to cancel out the terms that cause a priori locality in the Lyapunov analysis.

A new integral Lyapunov function for stability analysis of nonlinear systems.
These results generalise those based on line-integral Lyapunov functions to the
polynomial framework; it turns out path-independency requirements can be over-
riden by an adequate definition of a Lyapunov function with integral terms.







Resumen

Esta tesis considera un enfoque basado en Lyapunov para el anélisis y control
de sistemas no lineales cuyas ecuaciones dindmicas son reescritas como un mod-
elo Takagi-Sugeno o uno polinomial convexo. Estas estructuras permiten resolver
problemas de control mediante técnicas de optimizaciéon convexa, mas concreta-
mente desigualdades matriciales lineales y suma de cuadrados, que son eficientes
herramientas desde un punto de vista computacional. Después de proporcionar
una visién general basica del estado actual en el campo de los modelos Takagi-
Sugeno, esta tesis aborda cuestiones sobre las funciones de Lyapunov por trozos,
dependiente de pardmetros e integral de linea, con las siguientes contribuciones:

Un algoritmo mejorado para estimaciones del dominio de atraccion de sistemas no
lineales para sistemas de tiempo continuo. Los resultados se basan en funciones
de Lyapunov por trozos, desigualdades matriciales lineales y argumentaciones ge-
ométricas; enfoques basados en conjuntos de nivel en la literatura previa se han
mejorado significativamente.

Una funcion Lyapunov generalizada dependiente de pardmetros para la sintesis
de controladores para sistemas Takagi-Sugeno. El enfoque propone una ley de
control multi-indice que retroalimenta la derivada del tiempo de las funciones
de membresia del modelo Takagi-Sugeno para anular los términos que causan
localidad a priori en el analisis de Lyapunov.

Una nueva funcion integral de Lyapunov parae el andlisis de estabilidad de sis-
temas no lineales. Estos resultados generalizan aquellos basados en funciones de
Lyapunov integral de linea al marco polinomial; resulta que los requisitos de in-
dependencia del camino pueden ser anulados por una definiciéon adecuada de una
funcién Lyapunov con términos integrales.
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Resum

Aquesta tesi considera un enfocament basat en Lyapunov per a I’analisi i control
de sistemes no lineals les equacions dinamiques dels quals séon reescrites com un
model Takagi-Sugeno o un de polinomial convex. Aquestes estructures permeten
resoldre problemes de control mitjancant técniques d’optimitzacié convexa, més
concretament desigualtats matricials lineals i suma de quadrats, que sén eines
eficients des d’un punt de vista computacional. Després de proporcionar una visié
general basica de l'estat actual en el camp dels models Takagi-Sugeno, aquesta
tesi aborda qiiestions sobre les funcions de Lyapunov per trossos, dependent de
parametres i integral de linia, amb les segilients contribucions:

Un algoritme millorat per a estimar el domini d’atraccio de sistemes no lineals
per a sistemes de temps continu. Els resultats es basen en funcions de Lyapunov
per trossos, desigualtats matricials lineals i argumentacions geomeétriques; enfoca-
ments basats en conjunts de nivell en la literatura prévia s’han millorat significa-
tivament.

Una funcio Lyapunov generalitzada dependent de parametres per a la sintesi de
controladors per a sistemes Takagi-Sugeno. L’enfocament proposa una llei de
control multi-index que retroalimenta la derivada del temps de les funcions de
membres del model Takagi-Sugeno per anul-lar els termes que causen localitat a
priori en ’analisi de Lyapunov.

Una nova funcio integral de Lyapunov per a l'analisi d’estabilitat de sistemes no
lineals. Aquests resultats generalitzen aquells basats en funcions de Lyapunov
integral de linia al marc polinomial; resulta que els requisits d’independéncia del
cami poden ser anul-lats per una definicié adequada d’una funcié Lyapunov amb
termes integrals.
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Chapter 1

Introduction

This chapter introduces the main ideas of the thesis, which is con-
cerned with the generalisation of previous results on stability analysis
and controller design of nonlinear systems based on convex optimisa-
tion techniques. In order to motivate this study, we begin with a brief
historical review on some closely related conver structures such as
linear parameter varying systems, Takagi-Sugeno models, and conver
polynomaal models. While these structures have certain advantages
when used for nonlinear control schemes, they present a number of
limitations; some of them are presented in the second section, which
will be helpful for understanding the main results of this work. The
chapter concludes with a brief overview of the contents and the publi-
cations derived from this research.

1.1 Motivation and background

A mathematical model of a dynamical system describes its behaviour along time.
Within the field of control systems, it usually adopts a state-space representation,
which is a set of multivariable differential equations (or difference equations for
the case of discrete-time systems) which contains the states (minimal information
to determine the future behavior of the dynamical system) obtained through cer-
tain known physical laws. Usually, the equations that represent the dynamics are
nonlinear functions (polynomial, exponential, logarithmic, sinusoidal, etc), which
induce a variety of phenomena which is hard to analyse. Some examples of nonlin-
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ear phenomena are finite-escape time, multiple isolated equilibrium points, limit
cycles, chaos, etc (Khalil 2002).

Analysis and control of linear time-invariant (LTT) systems has been well developed
long ago (Kailath 1980). Some of these developments can be straightforwardly ex-
tended to the linear time-varying (LTV) case (C. T. Chen 2012). Nevertheless,
if approaches based on linearisation are put aside, nonlinear systems cannot be
treated with linear techniques, which has motivated a variety of frameworks such
as backstepping for strict feedback systems (Khalil 2002), sliding modes which
eliminate matched disturbances via discontinuous terms (Utkin 1992), geometric
control for exact feedback linearization (Isidori 1995), and passivity-based design
which relies on the ability of finding an energy-like Lyapunov function (Ortega
et al. 1998), etc. Nonlinear methods remain thus limited to a number of sys-
tems with low dimension and special structures, lacking the level of generality
and systematicity linear methods have, let alone its numerical computability and
implementation.

A different route for analysis and control of nonlinear systems has been developed
from the field of linear parameter varying (LPV) systems, first introduced in
the Ph.D. thesis of Shamma (J. Shamma 1988). The origins of LPV systems
can be traced back to (classical) gain scheduling control (Safonov 1980), which
consists in a collection of linear controllers, each of them “stabilising" at different
operation points and indexed by a measurable parameter or “scheduling variable”
(J. Shamma 1999). Likewise, an LPV model consists on a family of linear systems
blended together by a scheduling parameter; this parameter is unknown a priori,
but it is available to be measured online or, at least, bounded. Whereas the
scheduling parameter in gain-scheduling is a function of the states, in the LPV
framework, the scheduling parameter is independent of the states, i.e., its possible
explicit dependence on the system states or time is neglected. Usually, functions
of the scheduling variables were defined to hold the convex sum property, so the
model could be subsumed into a linear polytope, i.e., a convex sum of linear
systems (Apkarian and Gahinet 1995).

The resemblance between LPV systems @ = A(f)z and nonlinear ones & = A(x)z,
as well as the concurrent appearance of Takagi-Sugeno (TS) models which al-
ready have a polytopic form depending on time, states, or parameters (Takagi
and Sugeno 1985), encouraged researchers to go further in using the direct Lya-
punov method and the convex sum property to formally derive analysis and de-
sign conditions based on some convex representation of such systems (Tanaka
and H. Wang 2001). In recent years, such convex form has become known as a
quasi-LPV system, as its scheduling variables may contain states, parameters, or
uncertainties (J. S. Shamma and Cloutier 1992). Obtaining a convex model from
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a nonlinear one can be done by approximation (Ohtake, Tanaka, and H. Wang
2001) or exact rewriting (Taniguchi, Tanaka, and H. Wang 2001); such represen-
tation is not unique (Sala 2009). It turns out, convexity plays a great deal in
adapting linear techniques to the nonlinear context, although mild assumptions
and slight modifications need to be made: necessity is lost, which implies some
level of conservativeness is introduced (Z. Lendek, T.M Guerra, et al. 2010).

Besides aiding the designer to mimic linear approaches in nonlinear contexts, sub-
suming a nonlinear model into a TS one has a very important advantage: condi-
tions thus derived usually lead to linear matrix inequalities (LMIs), which belong
to the realm of semidefinite programming (SDP). SDP problems are solved in
polynomial time via convex optimisation techniques (Boyd et al. 1994); a variety
of commercial software tools are available that can be readily used to solve them:
the LMI Toolbox (Gahinet et al. 1995), the SeDuMi (Sturm 1999), and the Mosek
solver (E. D. Andersen and K. D. Andersen 2000), the latter two usually used
along with the Yalmip interface (Loofberg 2004). Thus, thanks to convexity, TS
models along with LMIs gave birth to new control techniques such as parallel dis-
tributed compensation (PDC) (H. Wang, Tanaka, and Griffin 1996) and a variety
of solutions for observation (Tanaka, Ikeda, and H. Wang 1998), delay systems
(Y. Cao and Frank 2000), output feedback (Yoneyama et al. 2000), generalisa-
tions for descriptor forms (Taniguchi, Tanaka, Yamafuji, et al. 1999), etc. Note
that there exist multiple practical application of the TS-LMI framework, for in-
stance, (Garcia-Nieto et al. 2009; Precup and Hellendoorn 2011; Cazarez-Castro
et al. 2017). Similarly, nonlinear generalisations of TS systems known as convex
or fuzzy polynomial models (Sala and C. Arifio 2009) have been successfully used
along with sum-of-squares (SOS) tools (Prajna, Papachristodoulou, Seiler, et al.
2004) which, happily, also belong to the SDP sort of optimization problems.

Although the sector nonlinearity methodology facilitates the analysis of nonlinear
systems via the direct Lyapunov Methods and LMIs (conclusions drawn on the TS
model are directly valid for the nonlinear one), there are problems for which the
standard TS-LMI framework is not able to find a solution, i.e., it is conservative
(Sala, T.M. Guerra, and Babuska 2005; Sala 2009; L.A. Mozelli et al. 2009).

This conservatism comes from three main sources:

1. The way MFs are taken into account in nested convexr sums.

In order to obtain LMI conditions, the MFs should be dropped off from signed
nested convex sums. Since the MFs are all positive within the modelling area,
an easy way to do so is to ask every term in the sum to have the desired sign
(Tanaka and H. Wang 2001), but of course that might be quite conservative.
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For that reason, a variety of results —referred as “sum relaxations”- have
been proposed in order to tackle this problem. For example, in (Tanaka and
Sugeno 1992), they take into account that there are terms in a nested convex
sum that share the same MFs; in (Tuan et al. 2001) a partial solution of the
co-positivity problem was proposed; in (Liu and Zhang 2003), slack matrices
are added in the LMI conditions to relax the results; whereas in (Sala and
Arifio 2007; Kruszewski et al. 2009) asymptotically necessary and sufficient
conditions are proposed through a complexity parameter.

Since the T'S models have all the nonlinearities grouped together in the MFs,
only the vertex (linear) models are considered in the LMI conditions. This
is to say, the MFs are considered as independent variables that only hold
the convex sum property and their dependence on the states is neglected,
introducing the so called shape-independent conservatism. Thus, a nested
convex sum may be positive even if some of its terms are not (Sala and
Arifio 2007), a condition that has been tackled with some shape-dependent
results such as (Bernal, T. M. Guerra, and Kruszewski 2009).

2. The non-uniqueness of the TS model.

The sector-nonlinearity approach provides a methodology to rewrite a non-
linear system into a convex model. Nevertheless, this representation is not
unique (Sala, T.M. Guerra, and Babuska 2005; Feng 2006), i.e., depending
on the chosen TS model, different conclusions can be reached with shape-
independent LMIs for the same nonlinear system. In (Robles et al. 2017,
Robles et al. 2016) different approaches were proposed to obtain an “opti-
mal” TS model with respect to some performance measure. The same goes
for polynomials fuzzy models which can be differently chosen. Moreover,
if the original nonlinear model is considered, it might be better expressed
(with less number of vertexes, for instance) if a descriptor form is adopted
(T. M. Guerra, Estrada-Manzo, and Zs. Lendek 2015).

3. The family of Lyapunov function which is employed.

The standard TS-LMI framework is based on quadratic Lyapunov functions,
thus neglecting the fact that a system may be stable but not quadratically
stable (Khalil 2002). Thus, larger classes of Lyapunov functions have been
proposed, all of which include the quadratic one as a particular case. Some
of them are: piecewise (PWLFs) continuous (Johansson, Rantzer, and Arzen
1999) and discrete (Feng 2004), where the state space is partitioned accord-
ing to the activation of the linear or piecewise models, allowing the Lya-
punov function to change from one region to another; parameter-dependent
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(PDLF), also known as non-quadratic, fuzzy, or convex, first appeared in
(Blanco, Perruqueti, and Borne 2001), makes use of the MFs of the TS
model in order to share the flexibility and structure of the latter, also avail-
able in continuous (Tanaka, Hori, and H. Wang 2003; Bernal and T. M.
Guerra 2010) and discrete versions (T.M. Guerra and Vermeiren 2004; T.M.
Guerra, Kruszewski, and Bernal 2009); the fuzzy line-integral (LILF) first
proposed in (Rhee and Won 2006) and refined in (Marquez, T.M. Guerra,
et al. 2014), which employs line integrals to avoid dealing with the time
derivative of the MFs in the continuous-time context. Similarly to the clas-
sical TS arena, that of polynomial /sum-of-squares (SOS) have enriched its
set of Lyapunov functions by employing polynomial ones (Tanaka, Ohtake,
and H. Wang 2009).

As it can be concluded from the discussion above, a system may be proven stable
if more information on the MFs is taken into account and more general classes
of Lyapunov functions are used (Z. Lendek, T.M Guerra, et al. 2010). Several
results have achieved the so-called asymptotical exactness, i.e., the conservatism
is reduced as the computational resources increase (conditions depend on a com-
plexity parameter); in theory, when the complexity parameter increase to infinity,
conservatism (from that source) is reduced to zero. For instance, the use of mul-
tiple nested convex structures in the Lyapunov function have provided a way
to simultaneously tackle the co-positivity problem and the use of more general
Lyapunov functions, namely the homogenous polynomially parameter-dependent
(HPPD) Lyapunov functions (Chesi et al. 2007; R.C.L. Oliveira and P.L. Peres
2007; R.C.L.F Oliveira, C. de Oliveira, and P.L. Peres 2008; Chesi 2010; Ding
2010); nonetheless, most of these results are shape-independent. In the case of
polynomial Lyapunov functions, if the degree of the polynomial is increased at
will, the results become asymptotically exact (up to the gap between positive and
SOS polynomials (Chesi 2007)). Nevertheless, the increase of the complexity pa-
rameter, usually leads to an exponential increase of the computational resources;
in other words, these approaches quickly reach their computational limits. Addi-
tionally, the use of PWLFs for the analysis of nonlinear systems is still conservative
and there is room for improvement; the time derivatives of the MFs when PDLFs
are employed is still a problem that needs refinement; in (Rhee and Won 2006)
the problem of the time derivative of the MFs is avoided only for a limited class
of TS models. This thesis provides some answers to these questions that actually
improve over existing results.
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1.2 Objectives

The main objective of this thesis is to reduce conservatism when convex optimi-
sation techniques are applied for the analysis and control of nonlinear systems. In
particular, the use of different classes of Lyapunov functions is explored, all within
an LMI framework.

The Lyapunov function studied in this work are:

1. Piecewise Lyapunov Function:

In the piecewise framework, this thesis provides three results on the use
of piecewise Lyapunov functions for the stability analysis of nonlinear sys-
tems: (a) an affine piecewise modelling techniques that generalise the sector-
nonlinearity methodology via easily implementable optimisation-based affine
modelling which produces ordinary TS models if the modelling region con-
tains the origin; (b) some geometric properties of the state space are taking
into account via Positivstellensatz (S-procedure) argumentations; (c) a new
methodology to determine the “largest” estimate of the domain of attraction
of the origin of a nonlinear system, within an LMI framework.

2. Parameter-dependent Lyapunov Functions

As mentioned before, there has been a number of works tackling the prob-
lem of the time derivative of the MFs when continuous-time TS models are
analysed or synthesised with PDLFs. Some of them simply assume that the
time derivative has a known bound (Blanco, Perruqueti, and Borne 2001;
Tanaka, Hori, and H. Wang 2003); others relate this time derivative with
the information arising from the modeling area (T.M. Guerra and Bernal
2009; Bernal and T. M. Guerra 2010; T.M. Guerra, Bernal, et al. 2012;
T.M. Guerra and Bernal 2012); some others provide LMIs to guarantee the
time derivative to be bounded under certain assumptions (Pan et al. 2012;
Jaadari et al. 2012). In this thesis, a new generalised PDLF is proposed
along with a generalised multi-index control law that cancels out the terms
that cause a prior: locality in the Lyapunov analysis; moreover, the resulting
conditions are purely LMI.

3. Integral Lyapunov Functions

The widely-cited work (Rhee and Won 2006) proposed an interesting fuzzy
line-integral Lyapunov function, presenting global LMI stability conditions
that avoided involving the time derivatives of the MFs. This thesis shows a
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new polynomial Lyapunov function with integral terms that generalise the
work in (Rhee and Won 2006) for cases on which the later cannot be directly
applied; it also goes beyond the TS framework including the polynomial
one: it turns out that path independency conditions for line integrals are
automatically verified if the integral is expressed as a sum of single-variable
terms.

1.3 Structure of the thesis
This thesis is divided in two parts:

e Part I summarises the most relevant results in the literature related to the
objectives of this thesis. In Chapter 2, some stability concepts are reviewed
to correctly understand the direct Lyapunov method. In the same Chapter,
an overview of the concept of an LMI and its use for the stability analysis of
linear models is conducted. Additionally, some common matrix properties
to transform matrix inequalities into LMIs are given in Chapter 2.

Chapter 3 presents the sector nonlinearity methodology to rewrite a nonlin-
ear model as a TS one in order to perform stability analysis and controller
design. It shows how the direct Lyapunov method is employed altogether
with the convex structure of the TS model to express stability and stabili-
sation conditions in terms of LMIs. This chapter concludes by introducing
the use of convex Lyapunov functions (PDLF and LILF) as well as PWLF;
some problems related with these Lyapunov functions are commented.

Chapter 4 presents a review on the standard polynomial fuzzy framework. It
begins by explaining what are SOS polynomials and their relationship with
LMIs. It then follows with the presentation of a systematic methodology
to obtain an exact convex polynomial model of a nonlinear model via the
Taylor-series approach (generalisation of the sector nonlinearity approach);
these models can reduce conservatism with respect to the TS approach. At
the end of the chapter, the dynamical extension approach is presented as
an alternative to the convex polynomial models. This approach allows to
model a nonlinear non-polynomial system as a polynomial one with algebraic
restrictions.

e Part II contains the contributions of this work. The first contribution is
presented in Chapter 5, where a new procedure for an exact piecewise affine
Takagi-Sugeno modelling is explained. This models will later prove to be
useful for stability analysis when some geometric restrictions are added in
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the LMI conditions. With both results, an iterative LMI-based algorithm is
proposed for the estimation of the Domain of Attraction (DA) of a nonlinear
system. Putting all these results together, Chapter 5 conclude with the
important subject of asymptotic exactness for the proposed procedure.

Chapter 6 deals with the design of feedback control. The proposed approach
makes use of a generalised PDLF and a generalised multi-index control law
that employs the time derivative of the MFs, avoiding the problem of dealing
with the time derivatives of the MFs and providing a simplified and easier al-
ternative to recent results on this matter; moreover, the resulting conditions
are purely LMI.

Chapter 7 presents a new Polynomial-Integral Lyapunov Function (PILF)
for the stability analysis of nonlinear systems. This new PILF generalise
earlier results in the LMI/Line-integral framework (Rhee and Won 2006)
to the polynomial case. Additionally, the new approach allows using the
line-integral approach to a larger class of nonlinear systems.

e This thesis ends in Chapter 8, drawing some concluding remarks and pro-
viding some ideas for future work.

Note that most of the content of part II is a verbatim copy of published material
(indicated at the beginning of each chapter). Thus, there may be repetitions of
preliminary material and notation changes. On page 165, a full list of publications
by the PhD candidate is presented.
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Chapter 2

Lyapunov stability and linear
matrix inequalities

This chapter presents an overview on the indirect Lyapunov
method for stability analysis and controller design of nonlinear sys-
tems. Such method is based on the linearisation of a nonlinear sys-
tem on an equilibrium point, conveniently placed at the origin via
a straightforward transformation. It is shown that the linearisation
method leads to conditions in the form of linear matriz inequalities
(LMIs), which are efficiently solved via convex optimisation tech-
niques. LMIs are discussed in some detail since they are the main
computational tool used in this thesis.

2.1 Lyapunov stability

One of the most important results in the analysis of control systems was the
theory proposed by the Russian mathematician Aleksandr Lyapunov at the end
of the 19th century. In his original thesis “The General Problem of Stability of
Motion” (1892), Lyapunov proposed two methods to establish the stability of
an equilibrium point of a dynamical system. The first method says that if the
linearisation on such point is stable, there exists a ‘“neighborhood” around the
equilibrium point where all the trajectories of the nonlinear system go to zero as
time tends to infinity, i.e., the equilibrium point is asymptotically stable. The
second method (also known as Lyapunov’s direct method) basically says that the

11
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stability of a nonlinear system could be proved if there exists a positive energy-like
function of the state which monotonically decreases over time.

The following definitions introduce different types of stability:

Definition 2.1.1. (Haddad and Chellaboina 2008) Consider an autonomous non-
linear dynamical system

z(t) = f(xz(t)) with x(0) = xo, (2.1)

where z(t) € R™ denotes the state space vector and f(-) : Q& — R™ is a locally
Lipschitz map from a domain Q@ C R™ into R™. The solution of (2.1) for initial
condition xo will be denoted as V(t,xq).

e An isolated equilibrium point T is a state value such that f(Z) = 0 and
f(x) # 0 for some neighbourhood of Z, i.e., the system will remain on it for
all future time once it happens to be there.

e The equilibrium point T is said to be Lyapunov stable, if, for every e > 0,
there exists a 6 = §(g) such that, if ||x(0) — Z|| < 6, then for every t > 0 we
have ||x(t) — z| < e.

o The equilibrium point T is said to be asymptotically stable if it is Lyapunov
stable and there exists 6 > 0 such that if || z(0) —Z| < 0, then limy_, » ||z(t) —
z|| =0.

o The equilibrium point T is said to be exponentially stable if it is asymptot-
ically stable and there exist o > 0, >0, 6 > 0 such that if ||x(0) — z| < 4,
then ||z(t) — z|| < af|=(0) — z||leP*, fort > 0.

o An equilibrium point T is unstable if it is not Lyapunov stable.

Basically, Lyapunov stability means that solutions starting “close enough” of the
equilibrium (with a distance ¢) remain “close enough” forever (within a distance
e from it). Asymptotic stability in the sense of Lyapunov means that solutions
starting close enough to an equilibrium point will eventually converge to it. Ex-
ponential stability is asymptotic stability with the extra property of having its
solutions bounded by an exponential decay rate af|z(0) — Z|[e™#*. For further
explanation the reader is referred to (Khalil 2002).

Whereas linear systems of the form & = Az can have only one isolated equilibrium
point at the origin « = 0, nonlinear systems may have multiple equilibria as well
as a number of exclusively nonlinear phenomena such as limit cycles, finite-time

12



2.1 Lyapunov stability

escape, chaos, etc. Therefore, the definitions above provide a formal framework to
attach stability concepts to the properties of isolated equilibrium points. Without
loss of generality, in the sequel we assume that the equilibrium point under analysis
is at the origin, i.e., z = 0.

2.1.1 Lyapunov’s direct method

Stability of an equilibrium point z = 0 of a nonlinear system & = f(x) can be
established via a Lyapunov function candidate, i.e., a positive-definite function
of the state, V(x), which is often related to the energy of the system. If the
time derivative of such function monotonically decreases to zero along time, it
implies that the total “energy” of the system goes to zero and that the referred
equilibrium point is therefore asymptotically stable. In other words, if V(z) is a
negative-definite function, the Lyapunov function candidate V(x) becomes a Lya-
punov function for this system, a sufficient condition for establishing the stability
properties of the origin. The usefulness of the method relies on the fact that
no solution of the differential or difference equations needs to be known. The
Lyapunov’s stability theorem can be stated as follows:

Theorem 2.1.1. (Lyapunov 1992) Consider the system (2.1) having the origin
as equilibrium point, i.e. x(0) = 0 < f(0) = 0, and let Q@ C R™ be a domain
containing the origin. Let V :  — R be a continuously differentiable function in
Q such that the following conditions are fulfilled:

V(0) =0 (2.2)
V(i) >0 VeeQ, z#0 (2.3)
V) = Y@ o veea a0 (2.4)

dt

then the origin is asymptotically stable in the sense of Lyapunov. If 2 = R"™ and
V(z) being radially unbounded, i.e., ||z|| — oo = V(z) — oo, then the origin is
globally asymptotically stable.

This method is called “direct” because it does not require the system to be trans-
formed in any way: it is supposed that the time derivative of the Lyapunov
function will eventually involve the system equations. The existence of a Lya-
punov function is a sufficient condition for the stability of an equilibrium point;
conversely, for every stable equilibrium point there must exist a Lyapunov func-
tion (W. Hahn 1967). Despite its power and generality, this result has a major
drawback: there is no general methodology for searching Lyapunov functions for
nonlinear systems. Some forms, such as the quadratic one, have been used for
simplicity because they work fine in the linear case.

13



Chapter 2. Lyapunov stability and linear matriz inequalities

Indeed, in the case of linear time-invariant (LTI) systems, the existence of a
quadratic Lyapunov function V(z) = 27 Pz is a sufficient and necessary condition
for the global asymptotic stability of © = Az. In particular, to apply theorem
2.1.1 to & = Az, consider the Lyapunov function candidate V (x) = 27 Pz, where
P = PT > 0 to satisfy condition (2.3). The time derivative of V() is given by:

V(z) = 2" Pi + i7" Pr = 27 (PA+ ATP) x. (2.5)

Now, (2.4) is guaranteed if and only if PA + ATP < 0 as it coincides with the
definition of a negative-definite matrix. The inequalities P > 0 and PA+ATP < 0
are linear matrix expressions; determining whether or not there is an instance of
P such that the inequalities hold is an LMI problem. As we will see in Section 2.2,
LMIs can be efficiently computationally solved, i.e, if an optimal solution exists it
will be found.

The set of all initial conditions from which the trajectories of a system converge
to a given equilibrium point is called its domain of attraction (DA). Clearly, given
multiple equilibrium points, their respective DAs must be disjoint; moreover, if
a an equilibrium point is unstable its DA reduces to itself. More formally, a
definition of the DA of an equilibrium point at the origin = = 0 is the following:

Definition 2.1.2. (Khalil 2002) The domain of attraction of the system (2.1),
denoted as D, is the set of points belonging to the state space whose trajectory
x(t) = Y(t, zo) ends in the asymptotically stable equilibrium point x(t) = 0.

D= {:v eR" 1 ¢(t,x) € QVEt >0, tlg& P(t,x) = 0} : (2.6)

In general, computing the domain of attraction is extremely difficult. Nevertheless,
Lyapunov functions can be used to estimate the region of attraction. From 2.1.1,
if there exist a Lyapunov function V' (z) that satisfies the conditions of asymptotic
stability over a domain 2 and, & := {x € R" : V(x) < ¢} being a bounded
set such that & C (2, then every trajectory staring in &. remains in £, and
approaches the origin as ¢ — oco. Therefore, &. is an estimate of the DA, i.e,
E. C D. Nevertheless, this estimate may be much smaller than the actual DA.
In Chapter 5, a new methodology for asymptotically estimate the DA will be
presented.
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2.1 Lyapunov stability

2.1.2 Comments on nonautonomous and time-delay systems

Lyapunov theory for autonomous systems can be extended to nonautonmous sys-
tems, i.e, systems in the form:

T = f(x,t), (2.7)

where f:[0,00) x  — R™ is piecewise continuous in ¢ and locally Lipschitz in z
on [0,00) x ©, and © C R"™ is a domain that contains the origin x = 0. In this
class of systems, the expressions for the time dependence in f are assumed to be
known beforehand. There are plenty of extensions for this class of systems, for
more details see (Khalil 2002; Malisoff and Mazenc 2009).

Beside the autonomous and nonautonomous systems, Lyapunov function theory
can also be develop for retarded functional differential equations, which have the
form

&= f(t,z(t),z(t — h)), z(to + 0) = ¢(0), 0 € [-h,0], (2.8)

where z(t) € R™, f is continuous in all arguments and locally satisfies Lips-
chitz condition with respecto to the second argument, where ¢ is a continuous
vector-valued initial function. Equations of thus type are also called time delayed
differential equations.

Lyapunov related functions are key for the stability analysis and control design
for systems with time-delay. Two importan theorems for delayed systems are
the Razumikhin Theorem and the Lyapunov-Krasovski Theorem. Both rely on
delayed Lyapunov functions or functionals, which are often constructed by first
building Lyapunov functions for the corresponding undelayed systems, i.e., setting
the delayed equal to zero. For a more detailed background of the stability of time-
delay systems see for instance (Gu, Kharitonov, and J. Chen 2003).

Over the last two decades, Lyapunov-Krasovski functionals have been used exten-
sively for the analysis of linear systems. For linear systems, Lyapunov- Krasovski
functionals give stability criteria in terms of linear matrix inequalities, which
can be analyzed through numerical methods; see for instance (Fridman 2014).
Mostly, delay analysis involves use of Lyapunov-Krasovskii functionals in the form
V =aTPr+ [}a7Qu+ ['iTRi+ [! ["&Si + - for some delay-bound re-
lated integration limits. Nevertheless, the motivation of this thesis is focus on
autonomous systems without delays, although all the results presented can also
be extended to the nonautonomous or time-delay case.
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Chapter 2. Lyapunov stability and linear matriz inequalities

2.1.3 Lyapunov’s indirect method

The Lyapunov’s indirect method establishes the properties of an equilibrium point
by studying the behaviour of the linearised system which, under certain condi-
tions, locally preserves the stability properties of the original nonlinear system.
Since the method requires transforming the nonlinear equations and examining
the eigenvalues of the linearised system matrix instead of looking for a Lyapunov
function, it is referred to as indirect. Nevertheless, it should be kept in mind that
the proof of the criteria in the following theorem is based on a quadratic Lyapunov
function associated to the linearised system:

Theorem 2.1.2. (Khalil 2002) Let x = 0 be an equilibrium point for the nonlinear
system (t) = f(x(t)), where f(-) : @ — R™ is continuously differentiable and Q
is a neighborhood of the origin. Let

0f(x)

or |,_,

be the Jacobian matrix of f(z) at x = 0. Then,

1. The origin is asymptotically stable if Re()\;) < 0 for all eigenvalues of A.

2. The origin is unstable if Re(\;) > 0 for one or more of the eigenvalues of
A.

3. if Re(\;) <0 Vi with Re(\;) =0 for some i, linearisation fails to determine
the stability of the equilibrium point.

Xi, i €{1,2,...,n} are the eigenvalues of the matriz A.

Theorem 2.1.2 provides a simple procedure to analyse the stability of an equilib-
rium point at the origin of a nonlinear system. Moreover, the quadratic Lyapunov
function V(x) = 27 Px with P > 0, PA+ ATP < 0, is also a Lyapunov func-
tion for the nonlinear system in some neighborhood of the origin. The Lyapunov
function is the quadratic form as in the linear case shown in the previous section.

2.1.4 Stabilisation via linearisation

The linearisation method can also be used to “solve” the stabilisation problem.
This method allow us to obtain a local control law for a nonlinear model; local
in the sense of that the feedback control law stabilize in a neighborhood of the
origin. To this end, consider the system

@(t) = f(x(t), u), (2.9)
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2.2 Linear matriz inequalities

where f(0,0) = 0 and f(z,u) is continuously differentiable function in a domain
Qg x Q, C R™ x R™ that contains the origin (z = 0, u = 0). Linearisation of the
(2.9) at the origin (z = 0, u = 0) results in the linear system

& = Az + Bu (2.10)

where
of (z,u)

ox

5 Of@u)

A= ou

r=0,u=0 x=0,u=0 '

If the pair (A, B) is controllable, or at least stabilisable, we can continue with
the control design. Consider a linear state feedback control u(z) = Kz, where
K € R™*™, The closed-loop system yields as:

& = f(z,Kz). (2.11)

Since the origin remains an equilibrium point, it follows from theorem 2.1.2 that
the origin is locally asymptotically stable if the linearisation of the closed-loop
system (2.11) is stable. If a gain K is given, the linearised closed-loop system is
stable if and only if there exist P > 0 such that

P(A+BK)+ (A+ BK)TP <. (2.12)

Thanks to the Lyapunov’s methods, a Lyapunov function can always be found for
the closed-loop system. Thus, the quadratic Lyapunov function V(z) = 2 Pz is
a Lyapunov function for the closed-loop nonlinear system in the neighborhood of
the origin.

Again, the inequality (2.12) is a matrix one, but it seems nonlinear as the variables
K and P appeared multiplied. Nevertheless, straightforward matrix manipula-
tions and properties can be used to show that the previous conditions are indeed
convex, i.e., LMIs. Some of these properties are shown in the following section.

2.2 Linear matrix inequalities

As mentioned in the sections above, this thesis pursue LMI conditions for the
analysis and synthesis of controllers for nonlinear systems via exact convex rep-
resentations. Thus, a brief introduction on the LMI theory is presented in this
section. LMIs are a fundamental tool for analysis and synthesis of convex non-
linear control systems and can be easily implemented with convex optimisation
techniques. More details can be found in (Boyd et al. 1994; Gahinet et al. 1995;
C. Scherer 2004).
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Chapter 2. Lyapunov stability and linear matriz inequalities

Before going any further, some definitions follow concerning signed matrix expres-
sions:

Definition 2.2.1. Consider two symmetric matrices My, My € R™*™ j.e., My =
M{ and My = MJ. Then:

1. o(My) denotes the spectrum of My, i.e., the set of all its eigenvalues.

2. M, is positive semidefinite (M; > 0) if z'Mz > 0 Vo € R", i.e.,
Re(o(M7)) > 0.

3. M, is positive definite (M, > 0) if 2T Mz > 0, Vo € R", x # 0, i.e.,
Re(a(My)) > 0.

4. My > My means that each entry in matriz M, is greater than its correspond-
mg one in Mg, i.e., {Ml]ij > {Mg]ij, VZ,]

5. My > Ms means that My — Mo > 0.

Similar definitions can be made for M; < 0, My <0, My < Ms, and My < M.

Since the appearance of semidefinite programming (SDP), a number of problems
from control theory has been solved numerically by expressing them as convex
optimisation tasks with a linear objective function subject to a constraint that is
an affine combination of symmetric matrices (Vandenberghe and Boyd 1996). In
practice, SDP is typically expressed using LMI notation. Reiterating, it is conve-
nient expressing a result as an LMI because it can be efficiently solved numerically
using interior-point methods; moreover, an optimal solution is guaranteed. Several
software toolboxes are available today that implement interior-point algorithms
to solve LMIs; for instance, the LMI Toolbox for MATLAB (Gahinet et al. 1995),
the solver SeDuMi (Sturm 1999), and the solver MOSEK (ApS 2015), the later
two are usually employed along with the YALMIP interface (Loofberg 2004). A
formal definition follows.

Definition 2.2.2. A linear matriz inequality (Boyd et al. 1994) has the fol-
lowing form

F(z)=Fo+ Y x:F; >0, (2.13)
i=1
where x € R™ is a vector of m real numbers called as decision variables; F; =
FI' e R 4 € {0,1,...,m} are given real symmetric matrices; the inequality
> means that F(x) is positive-definite, or equivalently, Re(\(F(x))) > 0 where
A(F(x)) denotes the spectrum of F(x), i.e., the set of all its eigenvalues. Thereby,
(2.13) is called an LMI for x.
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2.2 Linear matriz inequalities

Generally, the variables in an LMI are matrices, for example, the Lyapunov in-
equality PA + ATP < 0 where A is given and P = P7 is the decision variable.
In this case the LMI is not written explicitly in the form (2.13) above, but the
equivalence become clear by taking Fo = 0, F; = —AT — A, and x;,i € {1,...,m}
as each unknown entry of P € R"*™ finally m = n(n+ 1) /2. The definition
in (2.13) is closer to the spirit of the LMI toolboxes as they search for a feasible
instance of the decision vector with entries x;.

The following three standard problems are relevant in the LMI framework (Boyd
et al. 1994; C. Scherer 2004):

1. Feasibility problem (FP): Consists in finding a solution instance = to the LMI
system F(x) > 0. If = exists, the LMI F(z) > 0 is called feasible, otherwise
it is said to be infeasible.

2. Figenvalues problem (EVP): Consists in minimising the maximum eigenvalue
of a matrix that depends affinely on a variable, subject to an LMI constraint
(or determine that the constraint is infeasible), i.e.,

minimize A
subject to A — F(z) >0, G(z)>0

where F' and G are symmetric matrices that depend affinely on the optimi-
sation variable x.

3. Generalised eigenvalue problem (GEVP): Consists in minimising the eigen-
values of a pair of matrices which depend affinely on a variable, subject to a
set of LMI-constraints. The general form of a GEVP is:

minimize A
subject to AG(x) — F(z) >0, F(x)>0, H(z)>0

where F, G, and H are symmetric matrices that are affine functions of .
The problem can be rewritten as

minimize  Apax (F (), G(z))
subject to G(z) >0, H(z)>0

where A\pax(F, G) denotes the largest generalised eigenvalue of \G — F' with
G > 0, i.e., the largest eigenvalue of the matrix G—1/2FG~1/2.

The examples and results in this thesis were obtained using MOSEK as the LMI/-
SOS solver with YALMIP interface.

19
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It can be noted that GEVP is a quasiconvex optimisation problem (Boyd et al.
1994) because the constrains are convex but the objective is not. Nevertheless,
the minimum objective can be obtained by Iterative LMI (ILMI) methods, for
example, bisection search.

Recalling the conditions in equation (2.12) (stability of the closed-loop system)
are not expressed as LMIs. Nevertheless, there are some properties which are
commonly used to transform matrix expressions into LMIs. Some of these are
summarised below.

Property 2.2.1 (System of LMIs). A set of LMIs Fy; > 0,--- | F, > 0 is equiva-
lent to the single LMI:

FF 0 -+ 0
F= 0 }?2 >0
: : 0
0 - 0 F

Property 2.2.2 (Congruence). Let P = PT > 0 and Q be a full-column rank
matriz, the expression QT PQ is also positive-definite. Indeed, if P > 0 then
2T Px > 0 hold for all x # 0. In particular, if v = Qu and vI QT PQu > 0, hence
QTPQ > 0.

Property 2.2.3 (Schur Complement). Consider the LMI

A BT
B C

where A € R™*™ > (0, B € R™*" qand C € R"™"™ > 0 are full-rank matrices.
Thus, M is equivalent to

M = { } >0 (2.14)

A—-BTC7'B >0, (2.15)
C—-BT'A™'B>0 (2.16)

Property 2.2.4 (S-procedure). Let F; = F' € R"™*" z € R", being such that
2TFz>0,i€{1,...,p}, and the quadratic inequality condition

zt Fox >0 (2.17)
x # 0. There exist positive real scalars s1,...,s, such that
P
=1

20



2.2 Linear matriz inequalities

Property 2.2.5 (Finsler’s Lemma). Let + € R®, Q = QT € R™" and R €
R™*™ such that rank(R) < n; the following expressions are equivalent:

e 27Qr <0,V e {x eR" : 2 # 0, Rx = 0}.
e AIXcR™™:Q+XR+RTXT <0.

Resuming conditions in equation (2.12), they can be expressed as LMIs in order
to find the gain K and the Lyapunov matrix P by applying some of the previous
properties.

Consider again the expression (2.12), to which the property of congruence with
X = P! is applied to obtain:

AX + XAT + BKX + XKTBT <. (2.19)

Thus, taking the change of variable M = K X, the following equivalent inequality
is obtained:
AX + XAT + BM + MTBT <. (2.20)

Note that a solution of X and M to the previous inequality guarantees a unique
pair P and K; the state-feedback gain K is recovered as K = M P. This means
that the expression was an LMI all along and underlines the fact that an LMI is
such because of its feasibility set and may lie hidden within an apparently non-
convex problem. Now, we can investigate the stability of nonlinear systems and
design controllers for the stabilisation problem, although only locally. Consider
the following examples:

EXAMPLE 2.2.1. The ball and beamn system is one of the most popular and im-
portant laboratory models for studying control system engineering, which control
goal is calculated the torque u at the pivot of the beam, such that the ball can roll
moving towards the center of the beam. For this sake, consider the following state
space representation of the ball and beam system shown schematically in Fig. 2.1.

x2
T —ma3(2x4we — g cos (21)) u
L2 ma3 + I mai + I (2.21)
€3 X4 ’

{ )
- —2(gsin(x1) — a23)

with x1 being the beam angle with respect to the horizontal line (rad), xo being the
velocity of the beam angle (rad/s), xs being the distance of the ball from the beam
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u

Figure 2.1: The ball and beam system.

center (m), x4 being the linear velocity of the ball (m/s), u being the torque applied

to the beam (N-m), I, = ]V{g? 1s beam’s moment of inertia, M = 1kg is the mass

of beam, a = 1m 1s the length of the beam, and m = 0.05kg s the mass of the ball.

We are interesting in study the equilibrium point at (x = 0, u = 0), which is the
point when the ball is static at the center of the beam. Linearisation of the system
at the origin results in:

& = Ax + Bu (2.22)
where
0 1 0 0 0
0 0 58860 0 12
A= 0 0 0 1’ B 0
-0 0 0 0

The eigenvalues of A are A\ 234 = £1.79195 £ 1.79194i. Hence, the origin is
unstable. Additionally, via Lyapunov’s method and LMIs we can look for a Lya-
punov function for the linearised system. If we programm the LMI conditions for
stability (P > 0 such that PA+ ATP < 0), the LMI solver will tell us that the
problem is infeasible and therefore the system is unstable.

Nevertheless, we can design a linear feedback control in the form uw = Kx using
conditions in (2.20). If we use the solver MOSEK (ApS 2015) in MATLAB, the
following Lyapunov matriz P and control gain K is obtained:

41.1430 54698 —16.1926 —15.9487
p_ 5.4698 1.0783  —2.0526 —2.1632
- |—16.1926 —2.0526  9.1622 7.5583 |’

—15.9487 —2.1632  7.5583 7.2815
K= [—5.3692 —0.8037 1.2713 1.8018] .
Note that the quadratic Lyapunov function V(x) = 2T Px prove asymptotical sta-

bility for the closed-loop nonlinear system with w = Kx. However, since it is local
stability, the DA of the origin is unknown.
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Figure 2.2: Time evolution of the states of the ball and beam model under the control law

u= Kx.

In Fig. 2.2, some trajectories of the closed-loop system are shown from the initial
condition x(0) = [0 0 0.1 0] which converge to the origin.

The following is the MATLAB code for solving the current example.

% Defi ne decision vari abl es:

X=sdpvar ({);

N=sdpvar (1,4);

% Define the know matrices:

4=[0 1 0 0; 0 0 5.8860 0; 0 0 0 1; -9.81/1.4 0 0 0];
B=[0; 12; 0; 0];

eps=0.0001;

% Define LM constraints:

LNI=[X>=eps*eye ({) A*X+X*A"T+B*N+N’*B’<=-eps*eye (4{)];
% Call the solver:

sol=optimize (LNI);

Notice that in the example above, we just guaranteed that there exist a neigh-
borhood of the origin where the nonlinear model (2.21) is stabilisable. How large
is this neighbourhood? This of course an important question as we would like to
know which initial conditions lead to stable solutions and how far we can go from
the origin without losing stability. In other words, an estimation of the DA of the
closed-loop system would come at hand, but provided linearisation is a result of
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existence, we are unable to use it for this purpose. The direct Lyapunov method
and the original nonlinear setup should be used to fulfill this requirement. But can
we preserve the LMI approach we just presented? Indeed, we can: in the following
section, stability analysis and controller design with a estimation of DA will be
proven in an LMI framework via exact convex representations of the nonlinear
model, namely, Takagi-Sugeno models.
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Chapter 3

Takagi-Sugeno models

This chapter gives a brief overview on the analysis and synthe-
sis of mnonlinear systems via Takagi-Sugeno (TS) models. First, it is
shown how a TS model can be obtained from a nonlinear one via the
sector nonlinearity approach. If the convez structure of the T'S model
and the Lyapunov’s direct method are combined, we can obtain suffi-
cient LMI conditions both for stability analysis and controller design.
The gap between sufficiency and necessity of conditions, i.e., conser-
vativeness, arise, among other factors, from the choice of Lyapunov
function, which is quadratic in the standard TS-LMI framework. Since
the contributions in this thests are focused on richer classes of Lya-
punov functions —parameter-dependent, line-integral, and piecewise—,
this chapter concludes presenting them as well as discussing unsolved
1ssues which will be the subject of the improvements later proposed in
this work.

3.1 Takagi-Sugeno modelling

Takagi-Sugeno (TS) models have attracted the interest of researchers in the field
of control systems because they are able to exactly represent a large class of
nonlinear systems in a compact set of their state space by means of a convex
structure which proves useful when combined with the direct Lyapunov method.
A TS model is a convex blending of linear models weighted by nonlinear mem-
bership functions (MFs); these models arise from linearisation (approximate ap-
proach) (Ohtake, Tanaka, and H. Wang 2001) or from sector nonlinearity (exact
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approach) (Taniguchi, Tanaka, and H. Wang 2001). Since this thesis is focused
on the latter, a procedure to construct a TS model from a nonlinear one using
the sector nonlinearity approach is presented in the following. The idea of using
sector-nonlinearity in fuzzy model construction first appeared in (Kawamoto et al.
1992): it allows obtaining an exact representation of a nonlinear model in a TS
form inside a compact set of the state space.

3.1.1 Sector nonlinearity

Consider an affine in-control continuous-time nonlinear system of the form

#(t) = A(z)z(t) + B(z)u(t), (3.1)

where z(t) € R™ is the state vector, u(t) € R™ is the input vector, A(-) and
B(+) are smooth matrix possibly nonlinear functions of appropriate dimensions.
Assume there are p different non-constant terms z;(z), i € {1,2,...,p}, in A(z)
and B(x) which are bounded in a compact set Q C R™ such that 0 € Q; they will
be the entries of the so-called premise vector z(x) € RP.

Let zj(z) € [z;,%;], 7 € {1,2,...,p} be the set of bounded non-constant terms
in A(z) and B(z) belonging to . Clearly, each of these terms can be written as
a convex sum of its bounds, i.e., z;(z) = wé(m)gj + w)(x)z; with w)(z), w](z),
je{l,2,...,p}, weighting functions (WFs) of the form:

wi(e) = L wl(m) = 1-uf(z), JE{L2p) ()

Convex sums can be stacked together as nested ones at the leftmost side of expres-
sions, which implies that (3.1) can be exactly rewritten as the following tensor-
product Takagi-Sugeno model:

1 1
Z Z w w .o wipp (A(Z-l,i%”’ip)x(t) —|— B(i17l‘2"”7ip)u(t)) (33)

"
MH

1120 1220 ip:O
= wi (Aiz(t) + Bju(t)) = Ayx(t) + Byu(t), (3.4)
icBr
where i = (i1, i2,...,ip), B € {0,1}, w; = w] w}, - -wfp, A; = A(x)|wy=1, Bi =

B(x)

wie1, 1=(1,1,...,1).
| ——

p ones
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More classically and attending their fuzzy origins, TS models used to be written
in terms of membership functions (MFs):

p

hi = Py piyrigxattipxav-t = | @ (29); (3.5)
j=1

with ¢ € {1,2,...,r}, r = 2P, i; € {0,1}. As the WFs, MFs (3.5) hold the
convex-sum property in €

ihi(~):17 hi()>0,ie{1,2,...,r}. (3.6)

Based on the previous definitions, an exact representation of (3.1) in £ is given
by the following classical Tukagi-Sugeno model:

(t) = Z hi (2(x)) (Aiz(t) + Biu(t)) = Apz(t) + Bru(t), (3.7)

with (A;, B;) = (A(x), B(x)) |h:1, i€{1,2,...,r}. Importantly, this model is an
exact rewriting of the nonlinear model (3.1); so it is the equivalent tensor-product
model (3.3): they are not approximations.

The next example illustrates how to build a TS model from a given nonlinear
dynamical system by the sector nonlinearity methodology.

ExaMPLE 3.1.1. Consider the nonlinear model of an inverted pendulum on a
cart (Tanaka and H. Wang 2001)(cf. Fig. 3.1):

. 0 1
[?22] = gsinz B amlxs sin(2z1) [?g;]
2 x1 (1.331 — alm cos?(x1)) 2 (1.331 — alm cos?(x1)) 2
0
+ @ Cos T u(t), (3.8)
1.331 — alm cos?(x1)

where x1(t) denotes the angle of the pendulum measured from the vertical upward
position, x2(t) the angular velocity, m = 2 the mass of the pendulum, M = 8 the
mass of the cart, g = 9.81 the acceleration due to gravity, | = 0.5 the length of the
pendulum, and a = (m + M)~! a parameter. From the physical setup, it is clear
that a realistic assumption is that x1(t) € [—0.257,0.257] and z4(t) € [—1,1].
Nonlinearities can be chosen in a variety of ways; a natural choice is:

sin xq

() = 1.33lz1 — almzy cos?(z1)’
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U——>»

Figure 3.1: Inverted pendulum.

xo sin(2z1)
1.331 — alm cos?(x1)’
cos 1

1.331 — alm cos?(x1) "

z9(x) =

z3(x) =

Then, the nonlinearities belong to the following intervals:
z1(x) € [1.46,1.7647], 29(x) € [-1.6216,1.6216], z3(x) € [1.1467,1.7647].

1.7647 — z1(z) 1.6216 — zo(x)
The WFs are: wg(z) = o030 wi(z) = 39133 wy(z) =

1.7647 — z3(x
EIOT 200 wh(a) = 1 - wi(a), wide) = 1 - ud(@), wile) = 1 - wi(a).

Thus, we get can rewrite (3.8) as the following tensor-product TS model:

g.c(w:[ 0 1

g (w(l)(zl)gl + w}(zl)fl) —0.5aml (w3(22)§2 + w%(zg)fg) z(t)

+[ 0 _}u(t).

—a (w(23)z3 + wi(23)73)
1 1 1
=22 Z (z1)wf, (22)w}; (28) (Agiy i i) (1) + Beiy iy i) u(t)), (3.9)

where

0 1 A — A 0 1
14.3226 0.0811]" 010 = <2011 114 3226  —0.0811]"°

0 1 A — Aer — 0 1
17.3117 0.0811|> 10—~ L= 173117 —0.0811|’

AOOO = AOOl = |:

AlOO = AlOl = |:
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3.1 Takagi-Sugeno modelling

0 0
BOOO:B01O:B100:B110: |:_01147:| ) B0012B011:B101:B111: |:—01765:| '

Using the same WFs as above, the following MF's are obtained:
ha(2(x)) =wowiws, ha(z(w)) =wewiwy, ha(z(z)) =wywiwg, ha(z(x)) =wpwiwy,
hs (2 (@) =wiwiwg, he(z(2)) =wiwgwi, hr(z(2)) =wjwiwg, hs(z(2))=wiwiw],
based on which, the following classical TS model can be found:

8

o(t) = Z hi(z(z)) (Aiz(t) + Biu(t)), (3.10)

i=1

where the corresponding matrices of the linear local models are:

0 1 0 1
A=A = [14.3226 0.0811:| , Az=Ag= [14.3226 —0.0811:| ’
0 1 0 1
As = As = [17.3117 0.0811} , Ar=As= [17.3117 —0.0811] ’
0 0
By =B3=DBs=Br= |:_01147:| , B2=DBys=DBs=DBs= |:—01765:| '

Obviously, the two TS models above are equivalent to (3.8); moreover, note that
they have the same vertexr models. Nevertheless, they may serve differently de-
pending on the contezt as nested convex sums may lead to polynomial expressions
of WFs or MFs, which by assoctation may produce different sets of LMIs. These
characteristics are exploited in this work, but keep in mind that sometimes the
choice of TS model is only made to keep up with the historical background: for
instance, piecewise contexts have usually recurred to classical representations (Jo-
hansson, Rantzer, and Arzen 1999) while parameter-dependent Lyapunov func-
tions are usually associated with tensor-product-related relazations (D. Lee and D.
Kim 2014).

Note that while the righthand side of the TS models above are algebraically equiva-
lent to the original nonlinear setup, the convex sum property only holds within the
compact set Q = {x : |z1| < 0.257, |z2(t)| < 1}; outside it, some MFs h;(-) become
negative or greater than one, which will turn relevant for stability analysis.
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3.2 Quadratic Lyapunov function

Stability analysis of nonlinear systems can be performed via any of their exact
TS representations. For the latter, stability is traditionally investigated using a
quadratic Lyapunov function, which is among the reasons why conditions thus
obtained are only sufficient, i.e., if they fail nothing can be concluded. It turns
out that quadratic Lyapunov functions can be appropriately combined with the
convex structure of TS models to produce conditions that mimic the linear case
presented before; such conditions are in the form of linear matrix inequalities
(LMIs) (Boyd et al. 1994; Tanaka and H. Wang 2001).

3.2.1 Stability analysis of TS models
Consider the following quadratic Lyapunov function candidate
V(z) = 2T (t)Px(t), P=PT >0 (3.11)

along with the continuous-time autonomous TS model (which corresponds to TS
model (3.7) with u(t) = 0):

i(t) = Z hi (2(z)) Asz(t) = Apx(t), (3.12)

where A; € R™ "™ and h;, i € {1,2,...,7}, have the usual meanings, the latter
being MFs that hold the convex sum property in a compact set 2. As shown in
section 3.1.1, this TS model may be the result of applying the sector nonlinearity
approach to a continuous-time nonlinear model to obtain an equivalent convex
representation.

This TS model is quadratically stable if there exists a quadratic Lyapunov function
(3.11) such that its time-derivative is negative definite. The derivative of (3.11)
is given by:

V() = &T@t)Px(t) + 2T (t)Pi(t)
™ T s
= (Zhi(z)Aix(t)> Px(t) + 27 (t) Px(t) (Zhi(z)Aix(t)>(3.13)

r

= Y hi(2)a”(t) (PA; + AT P) a(t),

i=1

where the fact that Y ;_, h;(-) = 1 has been used to put this sum at the leftmost
side of the expression above. Now, since h;(:) > 0, ¢ € {1,2,...,r}, a sufficient
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3.2 Quadratic Lyapunov function

condition to guarantee V(z) < 0 is PA; + AT P < 0. Thus, this reasoning just
proved the following:

Theorem 3.2.1. (Tanakae and H. Wang 2001) The origin x = 0 of the au-
tonomous model (3.12) is asymptotically stable if there exists a matriz P = PT > 0
such that the following LMIs are satisfied:

PA; + ATP <0

forie{1,2,...,r}.

Since the convex sum property holds only in the compact set 2, any trajectory
starting in the outermost Lyapunov level V(z) = x(t)T Px(t) = k, k € R within
Q goes to zero. Note that if 2 = R", i.e., if the convex sum property of the MFs
hold everywhere, the origin is globally asymptotically stable; this is the case of
the TS models in the fuzzy context Tanaka and H. Wang 2001.

EXAMPLE 3.2.1. Consider the following continuous-time nonlinear model
. _ 2 _
[731} - { 2+ 1] {‘””1] , (3.14)
To sin o —2| |zo

which is assumed to operate within the compact set Q = {z : |z1(t)] < 1,|z2(t)| <
0.57}. The following T'S model can be constructed from (3.14):

i(t) = D hi2(x) (As(t) + Bu(t), (3.15)
i=1
. -2 -1 -2 -1 -1 -1 -1 -1
with A, = {_1 _2],142: [1 _2],143: {_1 _2},144: [1 _2]:
21(x) = 23(t), z2(x) = sinza(t), wy = 1 — 23(t), wg = 0.5 — 0.5sinza(t), wi =

1—wg, wi = 1—wj, hi(2(x)) = wiw, ha(2(z)) = wiw?, hs(2(z)) = wiwg, and

ha(z(z)) = wiw?. Recall that TS model (3.15) is an exact representation of the
nonlinear model (3.14) in the compact set 2, whose boundaries are shown in Fig.
3.2 with a solid borderline rectangle. For this example, the following P satisfies

theorem 38.2.1:

(3.16)

p_ 0.4076  —0.0985
~|—0.0985 0.3232 |’

i.e., it satisfies the inequalities:

P=P' >0, PA +ATP <0,
PAy + ATP <0, PA; + ATP <0, PA,+ ATP <.
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—%.5 -1 -05 0 0.5 1 15
Figure 3.2: Lyapunov levels and model states trajectories (Theorem 3.2.1)

As mentioned before, trajectories starting in the outermost Lyapunov level V () =
x(t)T Px(t) = k, k € R within Q are guaranteed to converge to the origin since the
conver sum property on which the Lyapunov analysis is based only holds within Q.
Fig. 8.2 shows in dashed lines some Lyapunov levels corresponding to (3.11); four
system trajectories are also shown from different initial conditions: as expected,
they all converge to the origin.

It is important to notice that having all local matrices Hurwitz (i.e. matrices
whose eigenvalues have strictly negative real parts) is not enough for ensuring the
stability of a TS model, because the domain of Hurwitz matrices is non-convex.
Consider the following example:

EXAMPLE 3.2.2. Consider the matrices:
-2 30 -2 0
Al_[o —1}"42_[30 —1]'

These matrices are Hurwitz stable, and they have the eigenvalues at —2 and —1.
Now, consider the convexr combination:

A=05% A +0.5x Ay — {155 ﬂ

whose eigenvalues are —16.5083 and 13.5083, therefore A is non-Hurwitz.
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3.2 Quadratic Lyapunov function

Due to the fact that the Lyapunov function (3.11) is quadratic in z, we speak
of quadratic stability; similarly, when a system is quadratically stable, it implies
that it is stable via a quadratic Lyapunov function. Nevertheless, if a system is
stable, it is not necessarily quadratically stable. Hence, conditions obtained using
the Lyapunov function (3.11) are only sufficient from the point of view of choice
of Lyapunov function. There are of course other sources of conservatism when
TS models and LMIs are employed for establishing the stability properties of an
equilibrium point of a nonlinear system. Such conservativeness means that failure
to meet the conditions above does not establish stability nor instability of the TS
model (Z. Lendek, T.M Guerra, et al. 2010). A test of non-existence of a common
matrix P = PT is given in (Johansson, Rantzer, and Arzen 1999); it excludes
quadratic stability of a given TS model:

Proposition 3.2.1. If there exists positive definite matrices R; satisfying

R,=RI'>0, ie{1,2,...,7}
=1

then there is no matric P = PT > 0 such that LMIs conditions in theorem 3.2.1
hold.

3.2.2 Stabilisation

To perform controller synthesis for a TS model using state feedback, several con-
trol laws can be used. Besides ordinary state feedback u(t) = Fz(t), a common
solution which includes it as a particular case is the parallel distributed compensa-
tion (PDC), first appeared in (Sugeno and Kang 1988) without stability analysis
as a simple convex blending of local feedback gains. The LMI stability analysis was
done and the corresponding control law named PDC in (H. Wang, Tanaka, and
Griffin 1995). The PDC controller is composed of linear state feedbacks blended
together using the same MFs h;(z(z)) as the TS model, which assumes that the
state and the MFs are available:

u(t) = Z hi(z(z)) Kz (t) = Kpz(t), (3.17)

with K, being gains of adequate size to be determined.
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Substituting the control law (3.17) in the TS model (3.7) gives the following
closed-loop system:

(t) =Zhi(2($))AifC(t) + (Z hi(Z(%))Bi> Z hj (z(2)) K (t)

= hi(z(@)| > hi(z(x)) Aix<t>+<2hi<z<x>>&> > hy(z(x)Kja(t)
i=1 j=1 i=1 j=1

=1

and finally, it is clear that the closed-loop model is composed of 72 linear models:

B(t) =D Y hi(2(@))hi(2(2)) (Ai + BiK;) a(t) = (A + BrEp)x(t),  (3.18)

i=1 j=1

where, again, the fact that Y_._; h;(-) = 1 has been taken into account. The next
result considers that the gains are already given; a good initial guess is to stabilise
each pair (A;, B;) via gain K.

Theorem 3.2.2. (Tanaka and H. Wang 2001) The origin x = 0 of the T'S model
(3.18) is asymptotically stable if IP = PT > 0 such that:
PA;+ AP+ PB;K;+ KBl P <0, (3.19)

hold fori,j € {1,2,...,r}. The Lyapunov function is given by V(z) = 27 Px and
any trajectory starting in the outermost Lyapunov level inside ) goes asymptoti-
cally to zero.

Proof. Consider a quadratic Lyapunov function candidate V(x) = 27 Pz, V(0) =
0 and V(z) > 0, Vo # 0 with P = PT > 0, then,

V(z) = 2T Px+ 2T Pi (3.20)
=7 ((Ah +BLK) P+ P (A + BhKh)) T (3.21)
= i i hi(z(z))h;(z(z))x” ((A, + Bin)T P+P(A + B,»Kj)) z < 0.
o (3.22)
Sufficient conditions to guarantee V (z) < 0 are thus
PA;+ AlP+PB;K;+ K/ B/ P <0, Vije{l,2,....r}. (3.23)
O
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3.2 Quadratic Lyapunov function

Recall that we are concerned with analysis and synthesis of nonlinear systems
via TS models. Since the latter is an exact rewriting of the former, the control
feedback (3.17) stabilizes the original nonlinear system with TS model (3.7) within
the outermost Lyapunov level in the modeling region 2.

There are two issues in the previous result:

1. Convex sum relaxations: The use of the same MFs both in the control law
and the system produces, once the direct Lyapunov method is applied, a
signed double convex sum; getting LMIs from it can be done in a variety
of ways, each of them called a sum relazation and associated with the co-
positivity problem (Murty and Kabadi 1987). The set of inequalities (3.19) is
not the only way to guarantee the double convex sum in V(x) to be negative.
In the next section, other ways to drop off the MFs involved in double convex
sums will be given.

2. LMI synthesis: Given a set of control gains K, j € {1,2,...,r}, the model
(3.18) is (quadratically) stable if the conditions on theorem 3.2.2 are feasible.
However, these conditions assume the set of gains is already given; i.e., they
are in fact a stability test. In order to provide LMI conditions for controller
design (synthesis), i.e., to determine gains K, j € {1,2,...,r}, along with
the Lyapunov matrix P it is necessary to apply some of the LMI properties
in section 2.2.

The first issue is now considered in some detail before proceeding with the second
one.

Convex sum relaxation

As seen above, when the direct Lyapunov method is applied to closed-loop TS
models, it leads to expressions containing double convex sums, from which MFs
should be removed in order to obtain LMIs. There are several ways to perform
this task, some more or less conservative, some more or less complex. The scheme
employed to perform this task is called sum relazation. Relaxations help reducing
the gap that separates sufficient LMI conditions from the convex expressions they
guarantee. The fact that there is room for improvement comes from the absence of
the MFs in the LMI conditions used for analysis and control design of TS models,
let alone their shape (C. Arifio and Sala 2007). Some relaxation lemmas follow:
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LemMA 3.2.1. (Tanaka and Sano 1994) Let Y;;, 1,7 € {1,...,7} being a collection
of matrices of the same size; then, the double conver-sum

Z Z h; (Z(il))) hj (Z(:E)) Tij <0 (3.24)

i=1 j=1
is verified if

T <0, Vi€{1,2,...,7"},
Tij + Tji <0, V(Z,]) S {1,2, .. .,7"}2, 1< J. (325)

LEMMA 3.2.2. (Tuan et al. 2001) Let Y;;, 4,5 € {1,2,...,r} being a collection of
matrices of proper size. The inequality (3.24) is verified if the following conditions
hold:

T <0, Vi€{1,2,...,7"},
2T+ T+ Y5 <0, V(i,j) €{1,2,...,r}%, i#j (3.26)

Notice that these conditions are only sufficient; however, there are other relax-
ations that become necessary through a complexity parameter (Sala and Arifio
2007; Kruszewski et al. 2009). Despite the fact that these approaches “close” the
relaxation issue, they quickly become intractable for the actual LMI solvers due
to the enormous growth in the number of LMIs which is a function of the system
order and the desired closeness to the necessity. The relaxations here presented are
considered more convenient since they make a good compromise between numeri-
cal complexity and quality of solutions; moreover: they do not add slack matrices
(E. Kim and H. Lee 2000).

LMI synthesis

Resuming conditions in theorem 3.2.2, we are now ready to prove that they can
actually be expressed as LMIs in order to find the gains K, j € {1,2...,r} of
the PDC-control law (3.17) instead of “guessing” them and verifying a posteriori
if they produced a stabilised system. This is called synthesis as we intend to
synthesise a controller via an LMI which will be obtained by applying some of the
properties listed in section 2.2.

Consider again the expression (3.21), to which the property of congruence with
X = P! is applied to obtain:

ApX + XAT + BLK, X + XK!'B <. (3.27)
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Thus, taking the change of variable Mj; = K; X, the following equivalent inequal-
ity is obtained.

Thn = AnX + XA} + ByM;, + M/ BiL <0. (3.28)

Note that having a solution X, M} guarantees a unique pair P and K} as Kj =
M, X ~L; therefore, the solution space has not been altered by the transformations
above, yet, the result is ready to be cast as an LMI once a relaxation scheme is
applied. Indeed, to guarantee the double convex sum in (3.28) to be negative-
definite, a sum relaxation allows us establishing the following theorem.

Theorem 3.2.3. The origin x = 0 of the T'S model (3.18) is asymptotically stable
if there exist matrices X = X7 >0 and M;, i € {1,2,...,7} such that conditions
(3.25) or (3.26) hold with

T = AiX + XA} + BiM; + M B, (3.29)

fori,j €{1,2,...,r}. In such case, the control gains are given by K; = M; X1,
the Lyapunov function is 7 Px with P = X', and every trajectory of the system
within the outermost Lyapunov level inside Q) goes asymptotically to zero.

ExAMPLE 3.2.3. Consider the TS model (3.10) of an inverted pendulum on a
cart obtained in the example 3.1.1, reproduced here for convenience:

8

#(t) =Y hi(2(x)) (Aiz(t) + Byu(t)), (3.30)
=1
where
A=Az = [14.2(3)226 0.0;11} o As=Aa= [14.2(3)226 —O.(1)811] ’
As = Ag = [17;117 0.0211} , Ar=As= [17;117 —O.(1)811] ’
Bi=B3=DBs =B = {_0'(1)147} » Ba=DBi=DBs=Bs = {—0.(1]765} '

Using theorem 3.2.3 with conditions (3.26) the following results are obtained using
the solver MOSEK and the YALMIP interface:

p_ [0-5139 0.1206
~[0.1206 0.0438
K3=[406.7666 69.5068], K, =[271.4284 46.7314], K5=[423.7512 70.1878],

K= [293.6729 48.1255|, K;=[423.0828 69.0443], Kg=[294.2176 47.1462].

], K = [407.4190 70.6658], Ko = [270.7068 47.7490],
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-1 -0.5 0 0.5 1
Figure 3.3: Lyapunov levels and model states trajectories (Theorem 3.2.3).

Figure 8.8 shows with a solid borderline rectangle the boundaries of the compact
where the conver sum property holds, and due to the fact that TS model (3.10) is
an exact representation of the nonlinear model (3.8), this model under the PDC
control law (3.17) is asymptotically stable inside the outermost Lyapunov curve
level V(z) = x(t)T Px(t) = k, k € R within Q. Figure 3.3 shows in dashed lines
some Lyapunov curve levels; it also shows two state trajectories from different
initial conditions which converge to the origin as it was expected.

Note that the outermost Lyapunov level within the modeling region ) gives an
estimate of the DA. Nevertheless, determining the maximum & such that {V(z) <
k} C Q is a task that require additional LMIs. Suppose that the region Q is a
symmetric polytope containing the origin x = 0:

Q={zcR":|alz| <1, i€ {1,2,...,n,}}

LEMMA 3.2.3. (S. Cao, Rees, and Feng 1999) © = {z € R"2TPz < 1}, P =
PT >0 is an ellipsoid contlamed in Q which itself contains the mazrimum volume
sphere centered of radius A2 at x = 0 if the following LMI problem s feasible:

minimaize A
subject to \I > P > 0,
HT ﬂ >0,i€{1,2,...,m,}.

Then, no other ellipsoid in ) contains a larger centered sphere.

38



3.3 Parameter-dependent Lyapunov functions

Notice that adding LMIs to former results does not require any adaptation as they
appear as further convex constraints on convex solution sets. This “modularity”
of LMI results is one of their most valuable characteristics.

As mentioned in the introduction, the results above are conservative, i.e., (a) the
origin of a nonlinear system with a T'S model (3.12) might be asymptotically stable
while theorem 3.2.1 fails to establish this fact, (b) there exists a PDC control
law of the form (3.17) that makes the origin of the closed-loop system (3.18)
asymptotically stable while theorem 3.2.3 fails to provide it. Conditions are only
sufficient, not necessary, due to several reasons, some of which have already been
listed in the introduction: the sum relaxation, the choice of TS model, and the
kind of Lyapunov function. The following sections explore some of the answers
researchers have provided to tackle the latter source of conservativeness.

3.3 Parameter-dependent Lyapunov functions

In general, there is no systematic method to find a Lyapunov function associated
to a stable equilibrium point of a system. Specifically, when a TS model is under
consideration, it is apparent that quadratic stability does not involve information
of the MFs; therefore, including somehow the MFs can eliminate some drawbacks.
Pursing this idea, the TS-LMI framework has been expanded by using parameter-
dependent Lyapunov function (PDLF) candidates (Blanco, Perruqueti, and Borne
2001; Tanaka, Hori, and H. Wang 2003), which share the structure of the T'S model
they are applied to:

V(z(t) = Z hi(2(2)2T (t) Pz (t) = 2T (t) Pax(t) (3.31)

where P; = PT > 0 and h;(z(z)) are the same MFs of the associated TS model,
for i € {1,2,...,r}. PDLFs are also known as non-quadratic Lyapunov functions
(which, of course, is quite an unspecific name), convex Lyapunov functions (which,
again, may refer to a larger family of Lyapunov functions involving, for instance,
convex sums of polynomials), and fuzzy Lyapunov functions (which is outmoded
and misleading, as we focus on nonlinear systems with known model, not a fuzzy
one). PDLFs are not quadratic since the MFs h;(z(x)) depend on the states.

PDLFs accomplish the task of including the MFs in their definition. Nonetheless,
this inclusion leads to some problems in the continuous-time case. To see this,
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consider the following continuous-time T'S model:

Z hi( z(t) = Apa(t), (3.32)

which is asymptotically stable if there exists a PDLF (3.31) such that its time
derivative is negative in some vicinity of z = 0. The time derivative of (3.31) is
calculated as

. dPp,
V(l‘) = ZET PLA, + Az:Ph + d—th
S~~~
Py
S hilz(@)hy(2(2)2” (A;‘-FPZ- +PA+ Y hi(z(:v))Pi> z
i=1 j=1 i=1

The term P, involves the time derivatives of the MFs hi(z), which, by the chain
rule have the form:

dh;  Oh; (0.

dt 0z
Although 0h;(z)/0z can be easily calculated and bounded, 2(t) is a priori unknown
and may depend on the states or exogenous signals (Blanco, Perruqueti, and Borne
2001). A first solution to overcome this problem for stability purposes has been to

directly bound the time derivative of the MFs, i.e., ’h@’ < ¢; (Blanco, Perruqueti,

and Borne 2001; Tanaka, Hori, and H. Wang 2001; Tanaka, Hori, and H. Wang
2003; L.A. Mozelli et al. 2009), something customary in the LPV field (F. Wu
and Dong 2006), but of little realism when a nonlinear system with the full state
available is concerned. The main drawback of doing this is the need of verifying a
posteriori that the system trajectories do not escape from the specified boundaries.

Theorem 3.3.1. (Tanaka, Hori, and H. Wang 20038) Assume that ‘hp(z(x))’ <

¢, where ¢, > 0. The TS model (3.32) is stable if there exist ¢1, ¢, ..., ¢, such
that

P, >0, i€{12... r}

Z¢pp + (PA; + PjA; + (%)), i<j

The corresponding PDLF is thus given by (3.31).
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0.2
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Figure 3.4: Outermost Lyapunov level and system trajectories (Example 3.3.1)

ExXAMPLE 3.3.1. Consider a continuous-time TS system with two local models

-2 104 ]

—-0.23  0.30
} Az = {1.3 —14.3

A= [ -2 —0.75

Quadratic stability of this system cannot be proven, as the LMIs from theorem
3.2.1 are infeasible. However, we can prove asymptotic stability by using theorem
3.8.1 with ¢1 = ¢o = 0.3279, which produces the following feasible solution:

p _ [578285 61677 p, _ 984874 73.4775
L= 161677 18.7128|° 2 7 [73.4775 55.5888] "

As mentioned before, directly bounding the time-derivative of the MFs may have
a very negative effect: in figure 3.4, bounds hy = ¢1 and ho = ¢o are shown with
dotted lines. Note that the local stability result is only valid for the outermost
Lyapunov level shown in this figure inside h; < ¢;, i« = 1,2. This outermost
Lyapunov level is the solid ellipsoid in the same figure. System trajectories from
two different initial conditions are also included for illustration purposes.

Another approach based on further analysis of the properties of the time-derivative
of the MFs h; appeared in (T.M. Guerra and Bernal 2009); it is based on the
following fact (T.M. Guerra and Bernal 2009; Bernal and T. M. Guerra 2010):

Theorem 3.3.2. The TS model (3.32) is asymptotically stable if there exist P; =
PF'>0,ie{1,2,...,r}, such that P,A, + AF P, < 0.
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What does this result mean? It states a sufficient condition for local stability of a
TS model by means of a PDLF; it does not guarantee global stability nor stability
in the outermost Lyapunov level inside the modeling area . It simply states
that there exists a vicinity of the origin for which all trajectories converge to the
origin, making it locally asymptotically stable. It is a result of existence which
does not provide any constructive method to know the size of such vicinity, let
alone the biggest one. Nevertheless, this result is the departure point for several
algorithms that employ PDLFs to get successively better estimates of the region
of attraction for TS models whose origin is locally asymptotically stable (T.M.
Guerra and Bernal 2009; Bernal and T. M. Guerra 2010; T.M. Guerra, Bernal,
et al. 2012).

Theorem 3.3.3. (T.M. Guerra and Bernal 2009) If there erist matrices P; =
PI'>0,i€e{1,2,...,7}, such that LMIs
2 m m m
m’raa + Tocﬁ + Tﬁa < 07 (333)

hold for (o, ) € {1,...,7}2, m € {1,2,...,2P*"} with

P n
Yo = Padp + AFPa+ ) Y (=15 X (LAg), (Pos(a) = Pastat)) »
k=1u=1
z = Lz, di;, defined from the binary representation of m — 1 = dj, + d;%n_l) X
24 dt x 2P0 and g1 (a, k), go(a, k) defined as:
g1 (a,k) = [(a—1)/2PT17F] x 2Pt 1=k L 1 4 (o — 1) mod 2P7F,
92 (a’7 k) =0 (a7 k) + 2p_k7

then x(t) tends to zero exponentially for any trajectory satisfying (3.32) in the

o k
outermost Lyapunov level contained in R = [ {:U : %xu < )\ku}.
k,u <k

A more recent alternative to deal with the time-derivatives of the MFs when
PDLFs are used, consists in mixing the previous methodologies by bounding the
terms w’g that appear after developing Py, i.e., the expression

P
By =Y i (Pyy (=) = Poa(zy)
k=1

is replaced by

p

Py = (-1)% By (P, 20y — Poae)
k=1
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3.4 Line-integral Lyapunov functions

in the inequality P, Ay + A,{Ph + P, < 0 in order to guarantee it, where g;(-, ")
and go(-,-) are defined as above, m —1 = d' +d" | x 24 --- +df* x 271,
m € {1,2,...,2P}, and |wf| < By, k € {1,2,...,p} is guaranteed by some extra-
LMIs, i.e., these bounds are not assumed a priori as in the first approach presented.

PDLFs have succeeded noticeably in the discrete-time framework as they are not
faced with the problem of the time derivative of the MFs (T.M. Guerra and Ver-
meiren 2004; T.M Guerra, Kruszewski, and Lauber 2009). In the continuous
framework, with the limitations described above, they have produced controllers
(T.M. Guerra, Bernal, et al. 2012; Pan et al. 2012; Nachidi, Tadeo, and Benzaouia
2012), observers (Aguiar, Méarquez, and Bernal 2016), descriptors, etc. In this the-
sis, the contributions on this area are focused on stability and stabilisation, so the
previous references are only given out of completeness.

3.4 Line-integral Lyapunov functions

Although originally considered as a parameter-dependent Lyapunov function
(fuzzy in the context of its original appearance), the proposal in (Rhee and Won
2006) constituted a breakthrough as it employed the MFs without dealing with
their time derivatives. The proposed line-integral Lyapunov function is:

V(z) = /F o T, (3.34)

with I'(0, z) being a path from the origin 0 to the current state x, ¢ as a dummy
vector for the integral, and f(z) = Y.._; hi(z(x))Pix = Pyz. Calculating the time
derivative of (3.34) as:

V(z) = 2T (PyAL + AL Py) =, (3.35)

we can see that the time derivative of the MFs does not appear, unlike the previous
approaches using a PDLF; this idea will be resumed later for one of the main
contributions of this thesis.

Nevertheless, to be a Lyapunov function candidate, V(x), has to satisfy necessary
path independent conditions. These path-independent conditions are presented in
the following lemma.

LEMMA 3.4.1. Let f(z) = [fi(x), fa(@), ..., fn(x)]". A necessary and sufficient
conditions for V(z) to be path-independent function is
Ofi(z) _ 0fj(x)

5o = om (3.36)

fori,j,€{1,2,...,n}.
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Chapter 3. Takagi-Sugeno models

Due to the these necessary conditions in (3.34), the approach in (Rhee and Won
2006) was only applicable to a specify class of TS models where the number of
MFs were at most n and each of them depends exactly on one state variable.

In the previous results some sum relaxation schemes have been chosen, but the
reader should keep in mind that any sum relaxation scheme can be used instead of
those hereby proposed, for instance lemma 3.2.1 (Tanaka and Sano 1994), lemma
3.2.2 (Tuan et al. 2001), or the asymptotically sufficient and necessary conditions
in (Sala and Arino 2007; Kruszewski et al. 2009).

3.5 Piecewise Lyapunov function

Yet another way of involving the MFs into the LMI conditions for stability and
stabilisation of nonlinear systems via TS models, consists in dividing the state
space in regions within which the MFs induce a different —perhaps simplified—
convex model of the system. If the Lyapunov function candidate is allowed to
change according to this partition, it may increase the chances of becoming an
actual Lyapunov function not only because it will provide more flexibility (different
Lyapunov matrices per partition (Johansson, Rantzer, and Arzen 1999)), but
also because there are several ways of including the geometric information of the
partition (Yakubovich 1977). To illustrate these points, consider the following
example adapted from (Johansson and Rantzer 1998):

ExAMPLE 3.5.1. Consider the system:

o Arz(t), ifx <0
“"”(”_{A;i(t), z'fiizO (3.37)

. —-10 -8 -1 =2
thhA1:|:_2 _4:|,A2: |:10 _1:|

Quadratic stability reduces to finding P = PT > 0 such that ATP+ PA; <0 and
AT P+ PAy; < 0. Nevertheless, if

085 —0.7 2.62 1.01
Rl_[—m 0.67]’ RQ_L.OI 0.57]’

then

0.04 0.53

2
1=

(ATR, + R,A,) = {0.74 0.04] 0

1

which, according to property 3.2.1, proves that no such P exists. Hence, quadratic
stability fails to demonstrate the stability of (3.37).
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3.5 Piecewise Lyapunov function

Figure 3.5: Trajectories in the phase plane of the model states (3.37).

Now consider the piecewise Lyapunov function:

T .
V(m):{x Pz, ifx1 <0

3.38
zT (P + nCTC') x, ifxry >0 ( )

with C' = [1 0], the LMI problem for stability is find P = PT > 0 and n such
that:

P+nCTC >0, PA, + ATP <0,
(P+nCTC)Ay + Ay (P +nCTC) <0,

0.06 —-0.01

with P = {—0.01 0.20
obtained, since

] and 1 = 0.89 a solution to the previous inequalities is

PA; + AT — [—0.95 —0.68} 0,

—-0.68 —1.5

—2.04 0.16
T T T —
(P+nC*CYAs + A5 (P+nC*C) = { 0.16 _0'37} 0.
Thus, the origin of (3.37) is an asymptotically stable equilibrium point. The level
surfaces of the computed Lyapunov function are indicated in figure 3.5 along with
some system trajectories.
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Chapter 3. Takagi-Sugeno models

The previous example shows that although quadratic stability cannot be proven,
introducing some “knowledge” into the Lyapunov function can eliminate some
drawbacks. An approach for systematically using the MFs to induce a state space
partition according to the scheduling variables for continuous-time Takagi-Sugeno
models first appeared in (Johansson and Rantzer 1998). In a subsequent work, the
same authors provided piecewise analysis of Takagi-Sugeno models with polyhedral
partitions; piecewise Lyapunov functions (PWLFs) were naturally incorporated
(Johansson, Rantzer, and Arzen 1999). Discrete-time counterparts can be found
in (Feng 2003; Feng et al. 2005).

This subsection is based on (Johansson, Rantzer, and Arzen 1999), where MF-
induced polyhedral partitions of the state space where used to define a PWLF for
affine TS models, i.e., models of the form

B(t) = hi(z(@)) (A(t) + ar) (3.39)
=1

where 4; € R™*" and a; € R™*! are the local matrices and affine terms, respec-
tively, and MFs hy, I € {1,2,..., r} depend on the premise vector z(-), which in
turn is assumed to depend linearly on the system state z(t), i.e., z(z) = Cz, with
C e RP*™,

Regions where h;(x) = 1 for some [ will be called operating regimes since only the I-
th subsystem & (t) = A;z(t)+a; is active on them. Otherwise, in between operating
regimes, regions will be called interpolation regimes. Both these regions have also
a geometrical interpretation, provided that the premise vector z(x(t)) depends
linearly on the states x(¢): they form a polyhedral collection {X;};c; C R™, where
I is the set of cell indices. It is important to underline that this specifications
restrict the class of TS models to which this approach can be applied to those
whose linear consequents are not simultaneously activated; this impedes applying
this methodology to TS models which are obtained via sector nonlinearity.

For each cell X; a set K (i) will be defined as the set of indices of the system ma-
trices used in the interpolation within that cell. Naturally, for operating regimes,
K (i) contains only a single element. Since this approach investigates exponential
stability of the origin, I will be divided in two sets: Iy which will contain the
indices of cells that contain the origin and I; which will have the indices of cells
that do not contain the origin.

Defining

I
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3.5 Piecewise Lyapunov function

where it is assumed that a; = 0 for all k € K(i) with ¢ € Iy, the system (3.39)
can be rewritten as

Traditionally, this approach partitions the state space according to the activation
of the linear models, allowing the Lyapunov function to change from one region
to another, for instance

2T () Px(t), ze€X;, i€l

V(z) = H]Tﬁi {ﬂ Ceex. icl (3.41)

The above partition is natural for those T'S models that do not have all their linear
models activated at once. Nevertheless, we insist that this assumption does not
hold for TS models built by using the sector nonlinearity approach, which are our
focus in this thesis.

In order to guarantee continuity of the PWLEF across the borders between regimes,
this function is parameterised by matrices F; = [F; f;], i € I, with F; € R"*",
fi € Rn*1 f; =0 for i € Iy, such that:

Fl[lf:|:?]|:€f:|, I‘E{Xiij}a i,7 € 1. (342)

A systematic procedure for constructing these matrices is given in (Johansson,

Rantzer, and Arzen 1999). Then, P; and P; in (3.41) are parameterised as follows:
P, = FZTTFZ', i€l (3 43)
?i = F?TFZ, i€l '

with T being a symmetric matrix of appropriate dimensions which collects the free
parameters of the Lyapunov function. Note that this arrangement is a compromise
between continuity and LMI formulation of the results, which is hereby possible.

Since matrices P; or P; are only used to describe the Lyapunov function in cell X,
it is possible to use the S-procedure in property 2.2.4 to reduce conservativeness
by constructing matrices E; = [E; e;] with E; € R™*" ¢; € R"*! ¢; = 0 for
i € Iy, that satisfy

E; m =0, zeX;iel (3.44)
where for every matrix W, with nonnegative entries W; > 0, condition (3.44)
implies that

T
m Bl W,E; m >0, VoeX; iel.
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Chapter 3. Takagi-Sugeno models

As with matrices F;, these E; can also be systematically constructed (Johansson,
Rantzer, and Arzen 1999). Moreover, there is a toolbox for MATLAB that auto-
matically produces the set of matrices F; and E; for a given partition (Hedlund
and Johansson 1999).

Then, we have the following result on piecewise quadratic stability of continuous-
time affine TS models:

Theorem 3.5.1. (Johansson, Rantzer, and Arzen 1999) If there exist symmetric
matrices T, U; = 0 and Wy, = 0 such that

P, = FlTTFl, 1 € I

O 3.45
P,=F.TF;, icl (349)
satisfy
P, — E;-TUZ'EZ' >0 (3 46)
AT P + P, Ay, + ETWi, E; < 0 '
foriely, ke K(i), and
P,—E,UE; >0
i B Uik (3.47)

A, P, + PiA, +E, Wy E: < 0

forie I, ke K(i), then x(t) tends to zero exponentially for every continuous
piecewise C trajectory in U;c1 X; satisfying (3.39).

We do not intend to reproduce the details given in (Johansson, Rantzer, and
Arzen 1999), but it is important to notice that LMIs (3.46) and (3.47) guarantee
the PWLF candidate (3.41) to be positive everywhere and its time derivative
negative in every state-space partition. Auxiliary matrices F; and F; guarantee
continuity of the PWLF as well as the inclusion of specific partition information via
an adaptation of the S-procedure, respectively. Once the system trajectory enters
the regions containing the origin, the following theorem guarantee exponential
convergence to the origin.

Theorem 3.5.2. Piecewise exponential stability: Let V(t) be decreasing and
piecewise C. If there exist positive scalars o, 3, and v > 0 such that

aflz(t)|* < V(t) < Bllzt)| (3.48)
%V(t) < [z ae. (3.49)

then ||z (t)[|* < Ba~e™ "/ ||x(0)||*.
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3.5 Piecewise Lyapunov function

The above partition is natural for those T'S models that do not have all their linear
models activated at once. Unfortunately, this assumption does not hold for TS
models built by using the sector nonlinearity approach. In (Gonzalez and Bernal
2016) a first step towards this adaptation has been made; we revisit it in chapter
5 where it is generalised to piecewise affine TS models. Stabilisation based on
PWLFs remains unfortunately a BMI problem as shown in (Feng et al. 2005);
other tasks such as observer design (Qiu, Feng, and Gao 2012) or output feedback
(Qiu, Feng, and Gao 2013) also remain open as they face the philosophical problem
of depending on where an estimated state lies.

Comments on other developments

Although out of the scope of this thesis, it is important to know that, based
on quadratic Lyapunov functions and TS models, a whole framework has been
developed that goes beyond stability analysis and controller design of nonlinear
systems: it covers observers (Tanaka, Ikeda, and H. Wang 1998), output feedback
(Yoneyama et al. 2000; Nachidi, Benzaouia, et al. 2008), descriptors (Taniguchi,
Tanaka, Yamafuji, et al. 1999), delay systems (Y. Cao and Frank 2000), etc.
Perhaps because the original results happened to be LMIs, researchers in this
area have always been concerned about expressing their results in this numerically
efficient form, a fact that became a distinctive feature of the field.

One additional advantage on the use of TS-LMI framework for the analysis of
nonlinear systems is that via LMI we can impose some performance criterios for
the dynamical system. For example, decay-rate (Taniguchi, Tanaka, and H. Wang
2001), H2 guarantee cost (H. Wu and Cai 2006), H ., robust stabilization (K. Lee,
Jeung, and H. Park 2001), etc. Additionally, apart from stability or H,, bounds,
there are other problems of interest, such as bounding the deviations from the
origin under disturbances (Salcedo, Martinez, and Garcia-Nieto 2008; Pitarch,
Sala, and C.V. Arino 2015). Moreover, the use of TS-LMI can be applied to solve
two or more different control objectives at the same time, i.e., a set of the LMI can
solve two or more problems, for example: output feedback robust for time-delay
TS systems (K. Lee, J. Kim, and Jeung 2001), robust control for TS systems with
time-delay (Zaidi et al. 2016), etc.

49






Chapter 4

Convex-polynomial models

This chapter surveys results on stability analysis and stabilisation
of nonlinear systems by using polynomial models and sum-of-squares
(SOS) techniques. It begins with by introducing the SOS conditions
and their relations with the LMI framework; then, the fuzzy polyno-
mial modelling methodology is presented. Similarly to the TS-LMI
approach, it is shown that polynomial models and SOS tools can be
combined for analysis and design of nonlinear control systems. More-
over, as an alternative to the fuzzy polynomsials models, the dynamical
extension approach is briefly introduced at the end of the chapter.

4.1 Introduction

The sum-of-squares (SOS) technique was introduced by Parrilo in his thesis (Par-
rilo 2000), allowing an algorithmic analysis of polynomial nonlinear systems (i.e.,
systems consisting on polynomials of the states on its righthand side) using Lya-
punov methods (Papachristodoulou and Prajna 2002). As its name suggests, sum
of squares is another way to imply that an expression is positive, though a positive
expression may not be SOS (Chesi 2007). The SOS approach is a generalisation
of the LMI framework as, in fact, proving that a polynomial has a SOS decom-
position (i.e., that it can be written as a sum of squares) is a convex problem; in
other words, polynomial positivity can be tested via LMIs. As products of polyno-
mials are also polynomials, Lyapunov stability analysis of a polynomial nonlinear
system can be performed via a polynomial Lyapunov function candidate (i.e., a
positive polynomial of the states amenable to SOS) and SOS techniques.
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Chapter 4. Convez-polynomial models

Convex polynomial models were first introduced as a direct generalisation of clas-
sical TS ones, i.e., no attention was paid to the origin of the MFs as they were
assumed to hold the convex sum property everywhere; they were referred to as
fuzzy polynomial models. Since they came from the fuzzy framework, the con-
sequents in each fuzzy rule, i.e., the righthand side of the model, was a matrix
of polynomials multiplied by the state (Tanaka, Yoshida, et al. 2007a; Tanaka,
Ohtake, and H. Wang 2007) or a polynomial vector field (Sala 2007). Clearly,
via the SOS approach, these fuzzy polynomial models could be systematically
analysed in a similar way as with the TS-LMI framework.

If a TS model is to be obtained as an exact representation of a given nonlinear
system, the sector nonlinearity approach comes at hand; similarly, the generalisa-
tion in (Sala and C. Arifio 2009), based on the Taylor series, allows rewriting a
given system as a convex sum of polynomials of arbitrary order within a compact
set of the state space: they are referred in this work as convex polynomial mod-
els. These models can reduce the conservatism —both in analysis and synthesis—
caused by convex model construction with respect to TS approaches. The SOS-
fuzzy polynomial approach has given some successfully results for the stability and
stabilisation of nonlinear models (Sala and C. Arifio 2009; Tanaka, Yoshida, et al.
2007b; Tanaka, Ohtake, and H. Wang 2009; Tanaka, Yoshida, et al. 2009); all of
them as an extension of the seminal methodologies in (Prajna, Papachristodoulou,
and F. Wu 2004).

The SOS-convex polynomial framework have also achieved the so-called asymp-
totical exactness for smooth nonlinear systems: if there exists a smooth Lyapunov
function (so that its Taylor series converges to it), there will exist a polynomial
Lyapunov function and a fuzzy polynomial model with a finite degree, which will
allow proving stability of the original system with some extra assumptions (Sala
and C. Arino 2009).

Although the SOS-convex polynomial framework is a powerful tool for the analysis
and control of nonlinear systems, it has some limitations, not only from the fact
that there are positive polynomials that are not SOS, but also from the compu-
tational point of view which rapidly exhausts the available resources; moreover,
control synthesis requires an affine-in-control structure as well as some additional
artificial variables, which introduce some conservativeness (Sala 2009).
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4.2 Sum-of-square decomposition

4.2 Sum-of-square decomposition

The SOS framework is based on the idea that any 2d-degree polynomial p(z) :
R"™ — R, d € N, can be written in the form Z7 (2)QZ(x) with Z(x) being a vector
of all the monomials up to degree d and ) a non unique matrix built from the
polynomial coefficients. If @ > 0 then the Cholesky factor of it (Q = LT L), allows
expressing p(x) = ZT (z) LT LZ(z), i.e., a sum of squares. Note that the problem of
finding a @ > 0 can be cast as a LMI problem, so finding SOS decompositions of a
polynomial is a convex problem and LMI Lyapunov results (degree 2 polynomials)
can be easily extended to higher degree polynomials in both Lyapunov functions
and nonlinear models. The basic ideas of the SOS approach are summarized in
this section.

Definition 4.2.1. The set of SOS polynomials in the variables x is the set defined
by

Y, = {p(m) eR"—=R

M

plx) =Y fi(x) } : (4.1)
i—1

with M € Z%.

An equivalent characterisation of SOS polynomials is given in the following propo-
sition.
Proposition 4.2.1. (Parrilo 2000) A polynomial p(x) of degree 2d is a SOS if

and only if there exists a positive semidefinite matriz QQ and a vector of monomials
Z(x) containing monomials in x of degree less or equal to d such that

p(x) = Z"(2)QZ(x). (4.2)

In general, the monomials in Z(z) are not algebraically independent. Expanding
Z(2)TQZ(x) and equating the coefficients of the resulting monomials to the ones
in p(x), we obtain a set of affine constraints in the elements of Q. Since p(z) being
SOS is equivalent to @ > 0, the problem of finding a ) which proves that p(x) is
SOS can be cast as an LMI problem. For the sake of clarity, consider the following
example:

EXAMPLE 4.2.1. Suppose that we want to know if the following polynomial is
SOS:
p(x1,20) = 2] + 225 — 2.50222

For this purpose, define Z(x) = [JJ% x3 xlxg]T and consider the following form:

p(w1, ) = 2 + 225 — 2.503 73
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Chapter 4. Convez-polynomial models

g1 q12 413
=7Z"2) g2 qo2 qe3| Z(z)
413 4§23 (433

= U125 + q222] + 24237502 + 2q1021 75 + (2q12 + g33) T3,
from which we obtained the constraints:
Q11 =2, 2q12+ @33 = —2.5, 13 =0, g22 = 1, q23 = 0.

Then, p(x) is SOS if and only if there exist Q@ > 0 satisfying the last equations.
The following matriz QQ satisfy the above equations and it is positive definite:

2 —14 0
Q=|-14 1 of,
0 0 3

which Cholesky decomposition Q = LT L with

1.4
V2 ——= 0
I— V2
o V002 o |°
0 0 03

yields the following SOS decomposition:
2 14, ? 22
p(z) = (2;62 - ﬁ%) + (\/0.02x1) + (\/0.3x1x2> .

The following lines of code present an implementation in MATLAB/YALMIP to
check if a polynomial is SOS.

% Define problem variables and the polynom al p(x):
sdpvar zl 2
p=wl ~4+2*%x2 "4 -2.5%xc]l "2*x2°2;

% Call the solver to check if p(x) is SCS:
[sol,z,§]=solvesos (sos(p));

There are instances where p(x) being SOS is equivalent to p(z) > 0: (i) when
n = 2; (ii) when d = 2; (iii) when n = 3 and d = 4. Checking if a polynomial
p(z) is nonnegative is an NP-hard problem when the degree of p(x) is at least 4
(Murty and Kabadi 1987). On the other hand, checking whether a polynomial
p(zx) is SOS is computationally tractable; indeed, it is a LMI problem, which has
worst-case polynomial time complexity.
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4.2 Sum-of-square decomposition

For the case of Lyapunov’s stability, one can only be interested in proving local
positivity of a polynomial Lyapunov function. Since, SOS polynomials are globally
nonnegative (p(z) € X, = p(z) > 0,Vz), the Positivstellensatz theorem comes in
handy, which is recalled in the next subsection.

4.2.1 Positivstellensatz

As originally explained in (Parrilo 2000), the Positivstellensatz argumentation
extends the use of Lagrange multipliers and S-procedure in the LMI framework
to the polynomial-SOS case, thus allowing local information to be included as
constraints in SOS conditions.

Consider a region 2 defined by known polynomials restrictions as follows:

Q={zeR":g1(x) >0, g2(x) >0, ...,94(x) >0, hi1(x)=0, ho(z) =0,. ..,hr(m)z(O}.)
4.3

Then, a sufficient condition for a polynomial p(x) being positive in Q is stated in
the following theorem.

Theorem 4.2.1. If SOS polynomials s;(x) € ¥, and arbitrary ones t;(x) can be
found fulfilling:

p(z) —e(x) = Y sil)gi(z) + Z tj(x)h;(z) € X, (4.4)

=1

then p(x) is locally greater than or equal to €(x) in the region Q.

Proof. For all x € Q, the term > 7 ; s;(z)g;(x) > 0 (it is nonnegative) and
Y= ti(@)hi(z) = 0 (it is zero), so p(x) —e(z) > Y70, si(x)gi(x) > 0 for all
x e . O

The polynomials s;(x) and t;(x) are denoted as Positivstellensatz multipliers, anal-
ogous to Lagrange and Karush-Kuhn-Tucker (KKT) multipliers in constrained
optimisation (Bertsekas 1999).

Theorem 4.2.1 is a simplified version of the original Positivstellensatz result, in
which less conservative expression can be stated by setting higher degree multipli-
ers (si(x),t;(x)), products of p(z) with new multipliers or by adding more terms
involving products of the p(z), g;(z), and hj(x) belonging to the respective cone
and ideal. However, more complex statements are avoided in practice because
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some of them lead to nonconvex problems and also the computational complex-
ity increase considerably. For more details, refer to (Jarvis-Wloszek et al. 2005;
Stengle 1974).

4.2.2 S0OS matrices

Via SOS techniques, we can also solve state dependent LMIs which will appear in
Subsection 4.5 for nonlinear control synthesis.

A state-dependent LMI is an infinite dimensional convex optimisation problem of
the form

minimize Z a;c; (4.5)
=1
subject to Fy(x) + Z c;Fi(xz) >0, (4.6)
i=1

where a; are some fixed real coefficients, ¢; are the decision variables, and F;(x)
are some symmetric matrix functions of the indeterminate x € R". The matrix
inequality (4.6) basically means that the left hand side of the inequality is posi-
tive semidefinite for all x € R™. Solving the above optimisation problem amounts
to solving an infinite set of LMIs and hence is computationally hard. However,
when all F;(z) are symmetric polynomial matrices in z, the sum of squares de-
composition can provide a computational relaxation for the conditions (4.6). This
relaxation is stated in the following proposition.

Proposition 4.2.2. (Prajna, Papachristodoulou, and F. Wu 2004) Let F(x) €
RNXN be a symmetric polynomial matriz of degree 2d in x € R™. Furthermore,
let Z(x) be a column vector whose entries are all monomials in x with degree no
greater than d, and consider the following conditions.

1. F(z) > 0 for all z € R™.

2. v F(x)v is a sum of squares, where v € RY,

3. There exists a positive semidefinite matriz Q such that
vIF(z)v = (ve Z(2)"Qv ® Z(x)),

where ® denotes the Kronecker product.

Then (1) < (2) and (2) < (3).
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The proof of this proposition is based on the Cholesky decomposition (Higham
1990) and the eigenvalue decomposition (Parrilo 2000). In this way, the classi-
cal LMI-framework (positive-definiteness of matrices with linear expressions as
elements (Boyd et al. 1994)) is extended to the polynomial case.

It can be noticed that the above proposition increase the complexity due to the
introduction of the auxiliary variables v. However, there exist another equivalent
ways to deal with polynomials SOS matrices with less computational cost, for
instance:

Proposition 4.2.3. (C.W. Scherer and Hol 2006) Let F(z) € RN*N q symmetric
polynomial matriz of degree 2d in x € R™. F(x) is a SOS polynomial matriz if
and only if there exist a constant matriz QQ > 0 satisfying

F(z)= (I ®z22)TQ( ® z(z)), Vx € R", (4.7)

with z(x) being a column vector whose entries are all monomials in x with degree
no greater than d.

4.3 Convex-polynomial modelling

The Taylor-based modelling techniques is a generalisation of the well-know T'S
sector nonlinearity methodology, but on this new case each non-polynomial ex-
pression is rewritten as a convex sum of polynomials (TS models are convex sums
of linear terms). Furthermore, this convex polynomial modelling techniques al-
lows us to progressively obtain more precise models as the degrees of the involved
polynomials increase; they are precise in the sense of the polynomial vertexes will
fit more closely the nonlinearity being modelled. This methodology is detailed in
this section.

Consider the following dynamical system:

#(t) = f(z(t) + g(@)u(t), (4.8)

with € R being the state vector, u(t) is the input vector, and z = 0, u = 0
being an equilibrium point, i.e., f(0) = 0. Assume that f(-) can be expressed in
the form:

i(t) = f(n(x), ) + §(n(x), 2)u(t), (4.9)

being n(z) = [m(x) na(z) --- np(:v)]T a set of continuous functions which
collects all non-polynomial nonlinearities present in f(-) and ¢(-) in (4.8). Thus,
once all the nonpolynomials functions n;(x), j € {1,2,...,p} have been identified,
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they will be rewritten as a convex sums of polynomials of arbitrary order, following
a Taylor-series approach first described in (Sala and C. Arino 2009) and detailed
below.

LEMMA 4.3.1. (Sala and C. Arino 2009; Chesi 2009) Consider a sufficiently
smooth function of one real variable, n(x), so that its Taylor expansion of de-
gree N exists (Apostol 1967), i.e., there exists an intermediate point (x) € [0, ],

so that:
N1 li] , INT (o (2
n(z) = E n Z'(O) v+ 1 ]%Z]'( >>xN, (4.10)

=0

where nlll(x) denotes the i-th derivative of n(-) and 10 (x) is defined, plainly,
as n(z). Additionally, assume that n'N)(z) is continuous in a compact region of
interest ). Denoting the Taylor approzimation of order N of the function n(x)
by:

N—-1 [4] 0
Z n i
i=0 ’

and let
T () = n(@) —nn(x)
v '

In the region Q, Tn(x) is bounded; therefore, the following bounds are well defined:

Yo :=sup Ty(x), 1 := inf Ty (z),
reQ zeQ

based on which the following conver rewriting of Ty (x) arises:

Tn(x) = wo(z) - Yo +wi(z) - ¢1, (4.11)
with weighting functions (WFs) defined as:
wo(z) = % wi(z) = 1 — wo(z). (4.12)

Then, an equivalent convez representation of (4.10) exists in the form:

1

n(z) = wo(x) - po(z) + w1 (z) - pi(x) = Zwl(m) -pi(x) = pw(x), Vo € Q, (4.13)
=0

where po(z) = Ny (z) + oz and pi(x) = nn(x)+v12N are polynomials of degree
N, and wo(x), wi(x) are weighting functions which hold the convexr sum property
in the compact region Q.
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4.3 Convez-polynomial modelling

If every n;(z) in (4.9) is rewritten as in (4.13), then (4.9) can be rewritten as the
following tensor product convex polynomial model:

||
MH

1 1
Z Z w} w, wi (Flir iz i) (@) + By g, i) (@)u(t))

Qo= 14=0

=0
wi (Fi(z) + Bi(2)) = Fou() + Bu(z)u(?), (4.14)

Il
=

i1

&
=

ic

where i = (i1,42,...,i¢),B € {0,1}, w; = wlw? ---w! , Fi(z) = f(n(2), 2)|wi=1,

1q’

Bi(z) = g(n(z),z)|w;=1, 1 = (1,1,...,1). As in the TS models, the classical
N—_———

p ones
representation used to be written in terms of membership functions (MFs):

q

hi = Mgy pigxatotigeao = | [ @] (2), (4.15)
j=1

with ¢ € {1,2,...,7}, r =29, 4; € {0,1}. As in the TS case, each of the » MFs
h; represents a combination instance of extreme values of the nonpolynomials
expressions 7;; the full polynomial convex model stems from evaluating the state
functions f(-) and g¢(-) in each of these combinations i.e: Fj(z) = f(-)|n,=1 and
Bi(z) = g(-)|n,=1, Then, a polynomial convex representation of (4.8) is given by:

Zh (z) + Bi(2)u(t)) , (4.16)

= Fh(m) + Bp(z)u(t).

Owing to the way this model is constructed, the functions F;(z) B;(z) are vectors
of polynomials resulting from polynomials already present in f(-) as well as from
products of polynomials p%, p{, j€{1,2,...,q} produced by the convex rewritten
of nonpolynomials terms. Furthermore, all the nonlinearities, which cannot be
described as polynomials of a prescribed degree, are captured in the MFs (h;, ¢ €
{1,2,...,r}) with convex structures, a key property for Lyapunov-based stability
analysis and design.

Remark 4.3.1. If f(0) = 0, setting N = 1 in the developments in lemma 4.3.1 we
obtain the usual sector-nonlinearity methodology that bounds a function between
two first degree polynomials.
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ExXAMPLE 4.3.1. Consider again the ball and beam system in Ezample 2.2.1
whose model is reproduce here for convenience:

T2
—max3(2x429 — gcosTy) i
0= ma3 + I ma3+ 1, | (4.17)
T4

5, .
—?(g sinxy — x373)

with the variables in the compact set Q = {x : |x1]| < 2, |x3] < 0.5, x2, 24 € R},
and m = 0.05, I, = 1/12, and g = 9.81. The objective of this example is to
tllustrate the Taylor-series modelling approach for a nonlinear model. For this
sake, consider three nonpolynomial nonlinearities in (4.17) and their Taylor series
around x = 0:

W S
sinz; = 21 §+§—?+
A et et
cosT) = o1 + TR
2 2,.4 3,.6
2 11 mxz mfrs mzy
(mag+ 1) =+ -5 5 1 T
Iy I; I; I

If only the first-degree terms from the Taylor-series expansion are used to rewrite
n'(z1) = sinzy, n*(z1) = coszy, and n*(x3) = (maj +Ib)_1 as conver expres-
stons, we will obtain the same outcome as if sector nonlinearity were used, i.e.,
based on the terms ni(z1) =0, n3(z1) = 1, and n3(x3) = 12, the following expres-
stons and their bounds are found:
sinxzy — 0
TH(z)) = ===, 0.04546 = o} < Tl (x) <l =1,
T
coszy — 1

T?(21) = T —0.7081 = 17 < T?(x;) < b3 = 0.7081,

(ma3 + Ib)_l — It

T3 (x3) = b 31304 = ¢ < TP (x3) <9 = 3.1304.

T3
Thus, we can construct bounds the nonlinearities by linear (TS) terms:

0.4546x1 < sinzy < x7,
1—0.7081x7 < cosz; <1+ 0.7081x4, (4.18)

12 — 3.1304z3 < (ma? +1,) " < 12+ 3.1304a3,
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4.3 Convez-polynomial modelling

If now we use the cubic term in the Taylor series, another polynomials bounds
would be obtained by constdering

sinxr] — a1
n(z1) = 21, T3 (21) = ——5——,
Ty
coszy — 1+ 0.527
ni(ar) =1 - 050, T3 (1) = ——— iy (419)
1
-1
0.052% 4+ 1/12)  — 12+ 7.223
77;:3))(133) =12- 7.23}%, T:’?(xS) = ( 3 / 0)33 3
3

Thus, T4 (z1) € [—0.1667,—0.1363], T%(z1) € [—0.0730,0.0730], and T3(x3) €
[—1.8783,1.8783] are bounded in Q. Hence, now the nonlinearities are bounded
by:

r1 — 0.1667x32; < sinz; < 2y — 0.136327,
1 —0.527 — 0.073027 < coszy < 1 —0.5z7 + 0.073023 (4.20)
12— 7.222 — 1.878323 < (ma? + 1,) ' < 12— 7.243 + 1.8783z5.

If we proceed to fifth order:

3
. Ty
) :v? . sinx; —x1 + F
ns5(21) = 1 — G T5 (1) = x? )
2 4
ry X
2 4 cosr]; — 14+ — — —
2 _ ) _ 2 24
775(351)—1—74‘%7%(151)— 7 )
0.0522 + L)' — 12 4 7.202 — 4.324%
3 (ws) = 12 — 7.20% + 4.3223, T3 (3) = (0.0505 + 75) — 3 3,
3

we found the following bounds:

.’E? 5 .’E? 5
- +0.0076x7 <sinz; < x1 — 5 + 0.0083z7,

£E2 £E4 £E2 I4
1= 5+ 5; — 0:002627 < cosay < 1— T+ 57 4 0.002627,

12—7.2024+4.3224— 112702 < (mal + I,) ' < 12—7.223+4.3204+1.127023.

Once we have the polynomials vertexes of a desired degree, we can rewrite (4.17)
as a convex polynomial model, for example, if we desire an exact 3-th degree poly-
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1 L
0.8
0.6
0.4+
-7 —sin
0.2 /,/ - - Degree 11
- - - Degree 3
0 - - Degree 5|
0 0.5 1 15 2
Iy

Figure 4.1: Polynomial bounds of sinz; for z; € [—2,2].

nomial convex rewriting of (4.17) comes as:

1 1 1
&= Z > Z w;, (x0)w?, (@0)w] (23) (Flay ig.5) (€) + By in i) (@)u(t))

11:0 12:0 13:0

(4.21)
where
T4 (1) + 0.1667
T%(z1) +0.0730
2 = 3 2 — 1 _ 2
Wy (xl) 0.0730 T 007307 w1 (xl) w0($1>7
T3 (x3) + 1.8783
3 = 3 3 — 1 _ 3
UJO ($3) 18783 T 187837 wl (xg) w0($3>7
3 2 2 0
—Pi, (3)mrs (2472 — 9Py, (21)) 3 (x
F(il’iQ’iS)(:E> = Ty ) B(i1,i2,i3)('r) = ZS(O 3> )
5
—5(920}1 (z1) — 323) 0

with i; € 0,1, j € {1,2,3}, and pZ]() are the polynomials bounds in (4.20). The
same procedure 1s applicable for any desired degree of the convex polynomial.
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15

—Cos ]
- - Degree 1
- - Degree 3|
- - Degree 5

Figure 4.2: Polynomial bounds of cosz; for z1 € [—2,2].

125

12

115

11

10.5

10

— (ma3 + 1) -
- - Degree 1
- - Degree 3
- - Degree 5

L L \

0.1 0.2
€3

0.3 0.4 0.5

Figure 4.3: Polynomial bounds of (ma3 + I,) " for z3 € [-0.5,0.5].

Figures 4.1, 4.2, and 4.3 illustrate the fact that the bounding polynomials get
progressively closer to the nonlinearity as their degree increases.
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Chapter 4. Convez-polynomial models

The Taylor-series approach can also be applied to multivariable functions that can
be written as an expression tree with functions of one variable, i.e., addition and
multiplication. This idea is illustrated in the following example.

ExAMPLE 4.3.2. Consider the function

f(x1,29) = sin (%) (4.22)
to be modeled in the region Q = {x : |x;| < 1,i € {1,2}}. In Q, the argument of

the sinusoid v = satisfy v € [—1,1]. Thus, sinv may be modeled with the

T2
241
following third-order convex polynomial model:
sinv = w (v — 0.15850%) + w] (v —0.16670°) (4.23)

where
,  sinv—v+0.16670°

o= 0.00820°
Additionally, (JJ% + 1)_1 may be modeled in € as:

wi =1 —wp.

(22 +1)" = wd (1+0.521) + w? (1 — 0.527) (4.24)

with wd = —z1/ (2} +1)+0.5, wi = 1—w3. Now, replacing in (4.22) the sinusoid
by (4.23), v = zo/ (:v% + 1), and later using (4.24), we get a convezr polynomial
model in the form:

f(@1, 22) =22 (w§ (14 0.521) + wi (1 — 0.521))
— (0.1585wg + 0.1667wi ) 3 (wg (1 + 0.521) + w? (1 — 0.5:c1))3 .

4.4 Stability analysis via SOS

Once we have a polynomial nonlinear model, either by a already polynomial one
or a convex polynomial representation, we can apply SOS techniques for the sta-
bility analysis of nonlinear systems. For this sake, consider the convex polynomial
system of the form:

i = Z hi(z)Fy(x), (4.25)

the following well-known results are derived from stability theory.
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4.4 Stability analysis via SOS

Theorem 4.4.1. (Prajna, Papachristodoulou, Seiler, et al. 2005; Sala and C. Ar-
ino 2009; Tanaka, Yoshida, et al. 2009) The origin x = 0 of the convez polynomial

model (4.25) is asymptotically stable if there exists polynomial Lyapunov function
V(z) such that V(0) =0, and

V(z) —e(z) € &, (4.26)
ov
forie{1,2,...,r}. e(x) is a radially unbounded positive polynomial.

Since V (z) needs to be positive definite, not just positive semidefinite, the follow-
ing proposition will help to chose ().

Proposition 4.4.1. Given a polynomial V (x) of degree 2d, lete(x)="> eijmfj
i=15=1
such that:

d
> ey >avie{1,2,...,n},

Jj=1

with v being a positive number, and £, > 0 for all ¢ and j. Then the condition
V(z) —e(x) € ¥y (4.28)

guarantees the positive definiteness of V (x).

Proof. The function (z) as defined above is positive definite if ¢; ;’s satisfy the

conditions mentioned in the proposition. Then V(z) — e(x) being SOS implies
that V(z) > e(x), and therefore V' (z) is positive definite. O

As in the TS case, the Taylor-series convex polynomial models are only valid
locally in most cases, i.e., stability is not proved in the whole state space where
the SOS conditions hold (unless Q@ = R™). Due to the WFs only hold the convex
sum property in the compact set 2, the actually proven DA is the largest invariant
set V(z) <k, k € R contained in €.

4.4.1 Local stability via SOS

Due to the fact that many nonlinear systems of interest are not globally stable, or
proving global stability would require high-degree polynomial Lyapunov function

65



Chapter 4. Convez-polynomial models

exhausting the available computational resources, some refinements to the above
stability conditions are need in order to obtain a DA estimate.

If condition in theorem 4.4.1 fails to prove global stability, the Positivstellensatz
theorem 4.2.1 allow us to posed local stability conditions. For this sake, consider
a region of the state space €) defined by:

Q={zeR":g1(x) >0, g2(x)>0,...,9,(x) >0, hi(z) =0, ho(z)=0,..., h,(z) =0},

(4.29)
where g;(z) and hj a set of v and ¢ known polynomials respectively. Then, the
following results is derived for local stability in €.

LEMMA 4.4.1. If a polynomial function V (x) such that V(0) = 0, SOS polynomials
sjl(x) € Em,s?(:v) € X, and arbitrary ones ti.(z), t2(z), can be found fulfilling:

Vi) —e(x) =Y si(x)gi(z) + Y th(z)he(z) € T, (4.30)
k=1

j=1

<
Il

——5, Fi—elw) - > 3 (2)gi(@) + > () hi(x) € S, (4.31)
k=1

for i € {1,2,...,7}, begin e(x) defined as in proposition 4.4.1, then the origin
x = 0 of the convex polynomial model (4.25) is asymptotically stable. Furthermore,
an estimate for the DA of the origin x = 0 is D = {x € R" : V(z) < a}, where
a = mingepn V(x) and O is the boundary of Q.

In order to obtain the Lyapunov function level set containing the largest region
with a particular predefined shape, i.e., an sphere or an hypercube, additional
SOS constrains may be added.

EXAMPLE 4.4.1. Consider the polynomial system:

. . —X2
For the above system, linearisation shows that the origin is stable: there is a neigh-
borhood of it belonging to its DA provable with a Lyapunov function. However,
phase plane simulation shows that it has an unstable limit cycle so there is not a
global Lyapunov function for the system.

Let us consider a region of interest characterised as Q = {z € R?|a — 2%, a—a3 >
0 > 0. Applying lemma 4.4.1 with a quadratic Lyapunov function and proposition
4.4.1 with v = 0.0001, the mazimum « feasible is less to one, i.e., a < 1. If lemma
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4.4 Stability analysis via SOS

4.4.1 is applied with a polynomial Lyapunov function of degree 4, we can get an
a = 1.8610. For different degrees polynomial Lyapunov functions are summarized
in the following table. The lines of code below show an tmplementation of the

degree V(x) | 2 4 6 8 12
«o 0.99 | 1.8610 | 2.3121 | 2.5483 | 2.6201

current example if « = 1.8610 with a polynomial Lyapunov function of degree 4.

% Define independet vari abl es
sdpvar =zl z2
% Define the system equation
de=[-z2; zl1+(xl1°~2-1)*z2];
% Tol erance epsilon (Proposition 4.4.1)
epsi1=0; epsi2=0;
CX=[1; or=4; w=[=zl;z2];
for 1=1:2
epsuml{i}=0; epsum{i}=0;
for j=1:o07/2
epl{t,j}=sdpvar(1); ep2{i,jl=sdpvar(1);
epsuml{i}=epsuml{ittepl{i,j};
epsum2{i}t=epsum2{it+ep2{i, j};
epsil=epsil+epl{i,jl*z (i) (2%7);
epsi2=epsi2+tep2{i,jl*z (i) (2%7);
CX=[CX ep1{i,j}>=0 ep2{s,j}>=0];
end
CX=[CX epsumi{i}>=10"(-4) epsum{i}>=10"(-4)1;
end
% Lyapuno function degree 4 and partial derivative
[V,cp,vpl=polynomial ([z1,22],4,2);
dV=jacobian (V,[z1,22]);
% Create the Positivstellensatz nultiplier degree 4
coef=cp’;
for 1=1:4
for 3=1:2
[s{i,j},cs{i,j},vs{i,5}]=polynomial ([z1,22],4,2);
coef=[coef cs{i,5}°];
CX=[CX sos(s{i,j})];
end
end
alp=1.8610"2; %
% Define SOS constraints
CX=[CX sos(V-epsil-s{1,1}*(alp-z1-2)-s5{1,2}*(alp-22°2))];
CX=[CX sos(-dV*dz-epsi2-s{2,1}*(alp-wl1-2)-s{2,2}*(alp-22°-2))];
% Sol ve SOS probl em
sol=solvesos (CX,[],[], coef);
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4.5 Stabilisation via SOS

Consider the following affine-in-control convex polynomial model:
#(t) = Y hi(@)(Ai(2)Z(2) + Bi(2)u(t)) = Ap(z)Z(x) + Bu(e)ult), (4.33)
=1

where Z(z) € RY is a vector of monomials in z such that Z(z) = 0 if and only if
x = 0. Let M(z) € R¥*" be a polynomial matrix whose (i, j)-th entry is given
by
0Z(x)

a$]‘ ’

fori € {1,2,...,N}, j € {1,2,...,n}. Finally, let A;(x) denotes the j-th row of

A(x), J = {j1,J2,---,Jm} denotes the row indices of B(x) whose corresponding
}T

M;j(x) =

row is equal to zero, and define & = [xj,,x;,, -+ ,2j,,

A first approach to design a stabilizing control law could be extending the
well-known ideas of parallel-distributed compensator (PDC) to the polynomial
framework (Tanaka, Yoshida, et al. 2007b) (which it adaptation of (Prajna,
Papachristodoulou, and F. Wu 2004) to the fuzzy case):

u=>Y hiKix)Z(x) = Kp(z)Z(x), (4.34)
i=0
where K;, i € {1,2,...,r} are polynomial matrices to be found.

Define a polynomial candidate Lyapunov function in the form:
V(z) = Z(2)"P(3)Z(), (4.35)
then, the following theorem can be used to design a polynomial PDC control law.

Theorem 4.5.1. The origin x = 0 of the system (4.33) is asymptotically stable,
if there exist symmetric polynomial matriz P(Z) € R™ "™ and polynomial matrices
K; e RN e {1,2,...,r}, a constant &1 > 0, and ea(x) > 0 for x # 0, such
that:

vl (P(%) —erl)v € Xy, (4.36)
0T (M(2)An(2)P(#) + M(2) B(2)K(2) + P(&)A] (x)M" (2)
T @M (@)~ 3 2 (4,0 200) + ) o € B (430

jedJ
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for (i,7) € {1,2,...,72}, v € RN. Then, the controller (4.34) stabilizes the
system (4.33) in a region of the state space V. C Q) begin 2 the modelling region
and V. = {x : V(x) = ZT(2)P~1 (%) Z(x) < c}. Controllers gains can be obtained
by Kp,(z) = My (x)P~(2).

It can be notice that conditions above are shown in their most general form: any
sum relaxation scheme can be applied to them in order to obtain SOS conditions.

4.5.1 Dynamical Extension

Another approach to obtain a pure polynomial model from a nonlinear one is
recasting the non polynomial nonlinearities to new auxiliary state variables.

The following algorithm is an adaptation from the one explained in (Savageau and
Voit 1987), and it is applicable to a very large class of nonpolynomial systems,
namely those whose vector field is composed of sums and productos of elementary
functions, or nested elementary functions of elementary function (exponential (e*),
logarithm (Inz), power (z%), trigonometric (sinz, ,cosz, etc.), etc).

Consider the nonpolynomial system in the form & = f(x), which has an equilib-
rium at the origin.

1. Create new state variables z,4; for each elemental nonpolynomial nonlinear
function (sinus, cosines, logarithm, exponential, etc.) f;(z), or combination
of them, and assign z,; = f;(z).

2. Compute, using the chain rule, the derivative of the new state variables

Tpti = df;—(tx) and replace each f;(z) by the new xz,; in the whole system’s

model.

3. As a results of the above step, new nonlinearities might appear in @yy,.
Then, repeat the above steps with the new extended dynamical equations
until obtaining a totally polynomial model.

4. Additional information, if provided, can be added as algebraic constraints
over the new variables x,4;.

The following extended polynomial model is obtained:

i = fi(F1,%2),
iy = fo(#1, ), (4.38)
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where &1 =[z1, x2, ..., z,] are the original sate variables and Zo=[zp+1, Tnt2,- - -,
Zn+m) are the new variables introduced in the recasting process. Additionally,
some constraints will aries directly from the recasting process, denoted by:

G1(Z1,22) = 0, (4.39)
Go(d1,72) > 0. (4.40)

It is best to illustrate the application of the above algorithm by an example.

EXAMPLE 4.5.1. Consider a reaction wheel pendulum (Spong, Corke, and Lozano
2001), whose dynamics are given by:

T2
()= | DI (mgsinz; —u(t)) |, (4.41)
D71, (—mgsinzy + au(t))

being x1 the pendulum angle, xo the pendulum velocity, x3 the disk velocity, u
motor torque input applied on the disk, my = 0.02 mass of the pendulum, ms = 0.3
mass of the wheel, 11 = 0.125 length of the pendulum, l.;1 = 0.063 distances to the
center of mass of the pendulum, Ty = 47x10~% moment of inertia of the pendulum,
Ty = 32 x 1075 moment of inertia of the wheel, a = mllgl + mgl% + Ty + 15,
D =aly — I2, and m = mql. + maly.

We want to recast as a system with polynomial vector field. Define x4 = sinx;
and compute its dertvative by the chain rule 4 = cosx121. Notice that 4 is not
yet in a polynomial form, thus we need to define another new variable x5 = cosx1.
Using the chain rule of differentiation again, we obtain:

T2
DI (mgxy — u(t))
i(t) = | D71y (—mgxy + au(t))
—X2T5
XXy

At this point, we terminate the recasting process, since the equations are in a
polynomial form. In addition, the trigonometric constrain sin®xzq + cos?z, = 1
can be added by the algebraic constraint: z3 + 22 — 1 = 0. A more detailed
description can be found in (Papachristodoulou and Prajna 2005).

The extended model (4.38) is not a convex model. Nonetheless, this technique of
recasting can be used as an alternative or can be combined with the sector non-
linearity (4.3) in order to obtain a convex representation of a new non-polynomial
nonlinearity involving any ,4;. This avoids the introduction of a new variable
ZTn44 With its corresponding dynamical equation. In this way, an extended convex
polynomial model is obtained.
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4.6 Polynomial parameter-dependent Lyapunov function

The SOS approach has been explored along with a polynomial parameter-
dependent Lyapunov function (PPDLF). Following the same ideas as in the
TS-PDLF case, a PPDLF share the structure of the convex polynomial model
applied:

1 1 1
— E E E 1,2 q E
- e wilwiz U wiqp(ilﬂéa . 7’Lq) Wlpl 4 42)
11=01i2=0 1q=0

icBa

wherei = (i1,42,...,1,),B € {0,1}, Wi = wi, wi - -w?q, pi(z) € R are polynomials
to be determined, and the MFs w] are those in the convex polynomial model
(4.14). This function is a generahsatlon of the PDLF in section 3.3 where p;(z)
are restricted to be homogeneous quadratic polynomials in the states. However,
the inclusion of the MFs in their definition leads to the same problems as in the T'S-
PDLF case. A solution of the time-derivative of the MFs was proposed in (Bernal,
Sala, et al. 2011) via incorporating locality and membership-shape information

(bounds on the partial derivatives). For this sake, consider the time-derivative of
w; in (4.42):

ow; . 4 aw 4 ; )
77 Zan Tk —Z Hw ) k=Y _ 11wl @) [

k=1 an’“ j=1
i#k
Multiplying by wf + (1 —wf ) =1 gives
1. 0wk . . q
wi= ol wb ]l ) + (U= wh) [T wl () i
O J
k=1 j=1 j=1
J#k Jj#k
7 awfk )
= Z (Wi + Wi(k)) Nk, (4.43)
=1 O

where i(k) is defined as the g-bit binary index resulting from changing the kth bit
of i to its complement. This form allows to recover convex expressions form the
Lyapunov analysis.

Continuing with the Lyapunov method, consider the time-derivative of the PPDLF
(4.42) along the trajectories of the polynomial convex model (4.14) and taking
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Chapter 4. Convez-polynomial models

(4.43) into account gives:

V(z)=_ (wipi(x) + wipi(z))= ) | (Wlpl B

ieBe i€Ba k=1

-3 w (w3 G

icBa

w

Tk

(wl + W,(k)) nepi(T ))

(1 ) = p?(k)<$>)>7 (4.44)

where the identity » ;. WigPi = D_jepe Wibj(r) has been used to obtain the
above expression. Since 7, and p; are polynomials and % is taken from its convex

0
polynomial representation in (4.14), substituting the expressions 7 = ﬂfv and

9 Ox
i = az;iﬁe in (4.44), yields:
_ Opi awzk O
x)_igzwi ox j%le Z one Ox %}WJ ( ) = piry (@ )) )
owk 9
_Z]B Z]B WiW;j <_ Z 81;]: 125 ) ( i(z) — pi(m(ﬁ@)) .
icB4 jeBy
(4.45)

Note that all the terms in the above expression are MFs or polynomials, except

8 k
for 8— which can be rewritten as a convex sum of polynomials in the same way
Mk
as the convex polynomial model (4.14) was obtained. For this sake, consider the
a k
polynomial vector il € R™*! and the convex polynomial representation of —=

ox oy’
ie.,
owk oy,
MM v EBk
wk
with s; being the number of possible nonpolynomial nonlinearities in 8—’ and
Mk

,uf,k = ,uf)}c,ufi . -,uf}Zk, Zi;:o ’u];i() =1, iji“ > 0 being the MFs associated

with each modeled nonlinearity, and r’f,k (x) € R™*! being the resulting polynomial
vector.
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4.6 Polynomial parameter-dependent Lyapunov function

Substituting (4.46) in (4.45) yields

ZZWWJ <% "‘Z Z py, v, Fi(x ( ()_p}(k)<$>)>v

i€Be jeB4 k=1viEB3k

:ZZ Z Z Z WinN‘IHM%,Q“'N%q

iEBY jEBY v1€B1 voeB2 v, EB%

X (8]), erkF ( ) — Py (@ )))

Defining the polynomial vector

pi = , e R, (4.47)

the polynomial matrix

R,=| . | eR", (4.48)

and the multi-index v = (v, Vs, ..., Vvp), the previous expression can be rewritten

as
-2 Y Y won (AW RER). (109

i€Be jeBY veBe
with 0 = s1 + s2 + - - - + 54. Then, the result can be summarized in the following
theorem.

Theorem 4.6.1. The convex polynomial model (4.14) with MF-derivatives as in
(4.46) is asymptotically stable if there exist polynomials pi(z), and non-negative,
radially unbounded polynomials £1(x),e2(x) > 0 such that:
pi(z) —e1(z) € Xy
Op; T
_%Fi(x) . RvFi<$> - 52<$> € Yy,
for alli,j € B, v € B with p; and Ry defined as in (4.47)-(4.48).

Note that this class of Lyapunov functions can reduce conservatism for the stability
analysis of nonlinear systems. Nevertheless, as in the TS-LMI case, the MFs need
to be a priori bounded, but in this case, by polynomials of the state.
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Chapter 5

Piecewise Lyapunov function

This chapter generalises recent results on stability analysis and
estimation of the domain of attraction of nonlinear systems via ex-
act piecewise affine Takagi-Sugeno models. Algorithms in the form
of linear matrix inequalities are proposed that produce progressively
better estimates which are proved to asymptotically render the actual
domain of attraction; regions already proven to belong to such domain
of attraction can be removed and the estimate can contain significant
portions of the modelling region boundary; in this way, level-set ap-
proaches in prior literature can be significantly improved. Ilustrative
examples and comparisons are provided.

The contents of this chapter appeared in the journal article:

e T. Gonzalez, A. Sala, and M. Bernal (2017). “Piecewise-Takagi-Sugeno
asymptotically exact estimation of the domain of attraction of nonlinear
systems”. In: Journal of the Franklin Institute 354.3, pp. 1514-1541.

5.1 Introduction
Takagi-Sugeno (TS) models, systematically obtained via the sector nonlinearity
approach (Taniguchi, Tanaka, and H. Wang 2001), have proved to be suitable

for generalisation of linear techniques to handle nonlinear stability issues (H.
Wang, Tanaka, and Griffin 1996), since they are convex sums of linear systems

7



Chapter 5. Piecewise Lyapunov function

weighted by membership functions (MFs). When combined with the direct Lya-
punov method, TS models naturally lead to linear matrix inequalities (LMIs)
(Boyd et al. 1994), which can be efficiently solved via convex optimization tech-
niques already implemented in commercially available software (Sturm 1999). The
TS modelling approach has been also extended to distributed-parameter systems
governed by partial differential equations (F. Wu and H. Li 2008; Qiu, Feng, and
Gao 2016); nevertheless, this class of systems are out of the scope of this work.

Though the TS and nonlinear models are locally equivalent in some compact €2,
also known as the modelling region, the LMI stability analysis is conservative (Sala
2009; J. Chen et al. 2016; Marquez, T.M Guerra, et al. 2016). This is mainly due
to the fact that only vertex (linear) models are considered, i.e., MFs are ignored,
thus introducing the so called shape-independent conservatism (Sala 2009).

Within shape-independent approaches, piecewise analysis is known for reducing
conservatism by lowering the separation among the vertex models via a partition
of Q. Moreover, affine terms can be introduced in TS models if the region un-
der consideration does not include the origin (Gonzalez, Sala, Bernal, and Robles
2015). This allows considering more general piecewise-quadratic Lyapunov func-
tions (PWQLF) (Johansson, Rantzer, and Arzen 1999); other piecewise options
are considered in (C. Arifio, Perez, et al. 2014; Guo et al. 2014; Y. Chen et al.
2015) for stability analysis. Piecewise TS approaches for control design have also
been reported but they usually are in BMI form (Hu and Blanchini 2010); the
work (Qiu, Feng, and Gao 2013) presents a piecewise control synthesis procedure
keeping the LMI structure, at the cost of conservatism in some steps; as we dis-
cuss a non-conservative stability-analysis setup, the issues in (Qiu, Feng, and Gao
2013) will not be considered here. Practical applications of affine TS models ap-
pear in, for instance, (Schulte and H. Hahn 2004), and those of piecewise models
have been reported in (Cuesta and Ollero 2004).

The problem to be addressed in this chapter is the determination of the “largest”
estimate of the domain of attraction (DA) of the origin of a nonlinear system
# = f(x) in a modelling region Q2. To be precise, considering every conceivable
%? Lyapunov function which might exist for a system with continuous f(-), with
enough computational resources, the proposal will prove any point in the interior
of the union of all level sets (see below) in €2 to be part of the DA.

The problem of estimating the DA has been partially addressed in prior literature.
Indeed, if 0 € €, level sets of Lyapunov functions for which V' < —yz%xz, v > 0, for
all z € Q, = # 0, belong to the DA; this is the approach pursued in most stability
analysis proposals in literature (Khalil 2002); these level sets are usually “tan-
gent” to the boundary of Q2 and have been already extended to the piecewise case
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(Gonzalez and Bernal 2016). However, the DA can contain significant portions of
the boundary of €2 if the trajectories “point” towards its interior; hence, standard
level-set results can be expanded (Pitarch, Sala, C.V. Arino, and Bedate 2012).
Also, a related approach was pursued in (Pitarch, Sala, and C.V. Arifio 2014) in
the polynomial-fuzzy arena, introducing the idea of getting progressively better
estimates of the domain of attraction by subtracting already-proven estimates.
More recently, with non-piecewise models but piecewise Lyapunov functions, a
shape-independent approach for maximal DA computation for TS systems has
been presented in (C. Arino, Perez, et al. 2014); in (Hu and Blanchini 2010; Y.
Chen et al. 2015) a piecewise Lyapunov function defined by the minimum or max-
imum of quadratics (or higher-order polynomials) is considered. However, in such
cases the delimitation of the regions is not fixed a priori and the problem ends up
being a bilinear matrix inequality (BMI).

The most related prior-literature work on the ideas here is (Gonzalez and Bernal
2016), based on exact piecewise affine TS models (PWATS) and iteratively chang-
ing the modelling region €2. The work here presented generalises (Gonzalez and
Bernal 2016), by considering the fact that level sets can exit €2, introducing more
general multipliers, exploiting previously proven DA estimates (lifting decrescence
and continuity constraints inside them), and modifying the above-mentioned it-
erations on the modelling region shape accounting for the more powerful results,
within an LMI framework. The proposal in this investigation, based on the Farkas
lemma, is asymptotically exact; hence, if a particular point belongs to the interior

of the “true” DA, a suitable fine enough partition will prove it to belong to the
DA.

This work is organized as follows: extensive preliminaries are introduced in section
5.2, covering the definition of DA, the different TS piecewise modelling options,
basic results on piecewise stability, and the relevance of the Positivstellensatz (S-
procedure) argumentation; in section 5.3 new results and algorithms are inferred
that generalise previous approaches for estimation of the DA; the important sub-
ject of asymptotic exactness of the proposed results is treated in section 5.4;
illustrative examples are given along the contents of the chapter. Conclusions in
section 5.5 gather some final remarks, and an appendix collects the proofs of the
main results.
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Chapter 5. Piecewise Lyapunov function

5.2 Preliminaries

Consider an autonomous nonlinear model
i(t) = f(z(t)) (5.1)

with z(t) € R™ as the state vector and f(-) : R® — R™ being a ¢ nonlinear
vector field, i.e., with continuous second partial derivatives. By assumption, the
origin will be an equilibrium point, i.e., f(0) = 0. The solution of (5.1) for initial
condition xy will be denoted as ¢(t, xg).

The domain of attraction (Khalil 2002) of z = 0 for (5.1) is the set
D:={zxeR": tli}m o(t,z) = 0}. (5.2)

5.2.1 Affine Fuzzy Modelling

The well-known sector nonlinearity technique (Taniguchi, Tanaka, and H. Wang
2001) allows finding an equivalent Takagi-Sugeno model in a compact set € of
the state space including the origin. This work considers regions which do not
contain the origin; the sector-nonlinearity ideas can be generalised to such a case,
following (Gonzalez, Sala, Bernal, and Robles 2015).

Indeed, as f is linearisable at the origin, denoting as A its Jacobian, we can rewrite
fin (5.1) as

p
fla) = Az +_ Mjp;(z) (53)
j=1
with p; : R" — R, for j = {1,2,...,p}, being some nonlinearities whose linearisa-

tion is zero', and M; being column vectors indicating how nonlinearity p; enters
in each of the equations of (5.1). As Q is compact and f is €2, each p; can be
bounded in Q by two affine functions:

2;(2) < py(2) < 2(2) (5.4)

where: . . ) )
Zj(x) = ey Hyx + by, z;(x) = ayHjz + by, (5.5)

being ag , bf scalars, and H; row vectors, configuring arbitrarily tight linear bounds
on pj(x). Once the bound (5.4) is available, we can express:

pj(x) = iwf (z) (agHjl’ + bf) (5.6)
1=0

IThere is no loss of generality, as the Jacobian (first-derivatives) can be embeeded in A; for
instance, sin (z) = = + g(x), with g(z) = sin (z) — z, dg/0x = 0.
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being the memberships given by the well-known interpolation expression:
e L R ™ (0} (5.7)

Operating with all p;, for j € {1,2,...,p}, then r = 27 membership functions can
be defined as

hi(x) := H wfj (2), (5.8)

with i € {1,2,...,r}, building a binary-digit expression of i as i = i, x 2P~! +
.. Figx 2414141, 4; € {0,1}. Obviously, the MFs hold the convex sum property,
ie, > hi(z) =1, hy(z) > 0. Using such memberships, (5.1) can be expressed
as:

T P

T = Zhi(:t) A:L’+ZMj (angj:v—i—bfj) (5.9)
i=1 j=1

If the standard shorthand notation Yj = >._; h; (2(¢)) Y; is adopted, from

(5.9), denoting A; :== A + 377, Mjaj Hj and b; := 37, M;b, the nonlinear

model (5.1) in © can be compactly written as the following affine-T'S model:

i(t) = Apz (t) + by, x(t) € Q, (5.10)

Several options for affine piecewise TS modelling are available; the examples
worked out in this chapter used the minimum-weighted area approach in described
in the following subsection.

5.2.2 Minimum- Weighted Area Piecewise Affine Takagi-Sugeno
Models

Sector-nonlinearity TS models come from bounding a single-variable nonlinearity
p(z) between two sectors defined by lines crossing the origin y = a1z and y = asz,
in such a way that

a1z < p(z) <asx, >0 (5.11)
asr < p(x) <arx, <0 (5.12)
Given that different inequalities hold for either side of the origin, as we are con-
sidering “piecewise” models, we will restrict our modelling proposal to regions in

which the origin is not in their interior, in order to propose affine modelling with
just one of the conditions above, i.e., either (5.11) or (5.12) but not both.
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Chapter 5. Piecewise Lyapunov function

In contrast with ordinary PWTS models, affine modelling is based on bounding
nonlinearities between hyperplanes that do not necessarily pass by the origin. In
the above scalar case, affine modelling will require bounding the nonlinearity as:

a1z + b1 < p(x) < agx + be (5.13)
for some a1, ag, by, be, for all x € Qy, generalising (5.11).

Obviously, any two linear functions bounding the nonlinearity as (5.13) cannot
intersect within the 2D region

R={(z,y): 2 €Q, y=px)} (5.14)

so, given that the bounding is made with straight lines, evidently, such bounds
cannot intersect with co(R) where co(-) denotes the convex hull of an arbitrary
set. Hence, for the PWATS model to be non-conservative, the lines a1z + b; and
asx + by should be chosen between those delimiting the convex hull of R.

However, there are many of those possible lines. So, in order to generate a sys-
tematic way of obtaining them, an optimisation criteria should be chosen. One
possible option would be to choose the two lines in which the covered area is
smallest. However, given that LMIs are somehow using “linear” system results
implicitly, a “weighted area” is proposed as:

A(aq, b1, az,bs) =/

Tmin

Tmaw (GQ — al) x + (b2 — bl)

1
. dz (5.15)

because in this way, the closer we are to the origin, the more important the
accuracy of the model is. So, the “optimal” piecewise affine TS model proposed

is the one that minimises A(aq, b1, ag, b2) subject to constraints (5.13). Actually,
the integral above can be easily carried out, resulting in:

A(ah bla asg, b2> = (a2 - al) ('rmaz - xmzn) + (b2 - bl) (ln |xmaz| —In |xmzn|) .

Note that the formula (5.15) is undefined if i < 0 < Zyqq, S0 the modelled
region cannot contain the origin. However, the following result gives an interesting
insight on the proposed affine modelling criterion:

LEMMA 5.2.1. If 0 < Zpmin < Tmaz, then, if Tpyin — 0, the obtained PWATS
model tends to the piecewise sector-nonlinearity T'S model.

Proof outline. As the weight of the points close to the origin tends to infinity
(in fact, the integral does not converge for z,,;, — 0, —this is intentional-), the
optimal model tends to the one closing the sector the most possible, i.e., the sector
nonlinearity one. |
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Figure 5.1: Sine bounded by two sectors in [1,2].

Once we have the optimal parameters, the PWATS is the one given by:
p(x) = wia(z) + (1 — wy)as(x) (5.16)

where
wy = a22 + by — pl2) wy=1—w
! a2$+b2—(a1$+b1>7 2 !

dl(.’E) = a1 + bl, dQ(.’E) = asx + bg

EXAMPLE 5.2.1. Consider the nonlinearity p(x) = sin(z), which must be modeled
by an affine TS model in Q = [1,2]. The Figure 5.1 depicts the nonlinearity (in
black solid line), i.e. the region R, as well as the convez hull of R in red filling.
Bounding the set by two lines is, of course, not unique. For instance, if we selected
two lines intersecting at the origin we would get a TS model, whose bounding
vertices would be given by the equations of the blue lines:

ai(x) =sin(l) -z, az(z) =sin(2)/2 -z

If we select the “mintmum weighted area” affine model, we would get the two bounds
depicted with red lines, given by:

ai(z) = 0.0678 - x + 0.7736, ay(z) = 0.1255 - = + 0.8108,

as in (5.16).
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Figure 5.2: Sine bounded by two sectors in [0.05,1].

For comparison, if the modelling region were closer to the origin, for instance
Q2 = [0.05,1], then the T'S model and the optimal weighted-area affine one would
be much closer (see Figure 5.2), as expected by Lemma 5.2.1: the red lines would
match the blue ones when the lower bound of 2 tends to zero.

Of course, while getting an n-th order PWATS model with p nonlinearities, each
of them should be rewritten as in (5.16). Once this is done for each nonlinearity
and each region, an structure of the sort (5.10) arises, whose validity will hold for
a partitioned region of interest 2. The number of rules will be a power of two, as
usual in standard TS modelling, too.

Piecewise Affine TS models

Consider a connected modelling region €2, which is partitioned into ¢ subregions
with disjoint interiors, Q, k € {1,2,...,¢}, i.e.,

q
U Q. =Q, int(Qk) N int(Ql> = (.
k=1
If the above-discussed affine fuzzy modelling techniques are used, we can express

the original nonlinear dynamics as a piecewise affine TS model (PWATS) (Johans-
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son, Rantzer, and Arzen 1999) in the form?:

i(t) = AFz(t), =x(t) € W, ke Ko, (5.17)
i(t) = Akz(t) +bF, x(t) € Q, ke Ky, ’
where Ky := {k : 0 € Q} is the set of indexes of those regions € that include
the origin and K7 := {k: 0 & Qy} is the set of indexes of the remaining ones (not
containing the origin).

For later analysis, each of the regions 2, will be described by a set of constraints
Qp = {Uf(x) >0, je{l,2,...;n5}}. If 0;?(30) are affine functions of z, the
partition of 2 is a so-called polyhedral partition; these polyhedral partitions are
the ones appearing in the seminal literature (Johansson, Rantzer, and Arzen 1999);
non-polyhedral partitions with circular boundaries are considered in (Gonzalez,
Bernal, and Marquez 2014). Polyhedral partitions of the state space have the
form oy(z) = Exz = 0, where B, = [ By, e |, x € Qi, k € {1,2,...,q}. A
systematic procedure for their construction is described in (Johansson, Rantzer,
and Arzen 1999; Hedlund and Johansson 1999). Note that if e, = 0 the inequality
Erx = 0 defines a polyhedral cone with its vertex at the origin.

For each region €2, all constraints can be joined in a vector of functions o(-) :=
[of() ... ok (-)]T; thus, we could define Q; = {z : ox(x) > 0}, where “> 07

nk
stands for element-wise “greater than 0.

5.2.3 Lyapunov-based domain of attraction estimation for PWATS

Classical estimates of the domain of attraction of the origin resort to well-known
invariant set ideas such as Lyapunov level sets (Khalil 2002). The Lyapunov level-
set concept can be generalised including prior estimates of the DA. In particular,
the following result will be later exploited:

Theorem 5.2.1 ((Pitarch, Sala, and C.V. Arifio 2014)). Consider two sets A, B,
such that B C A. If A is invariant and there exist v > 0 and V(x), bounded in
A, such that V(x) < —vy for all z € (A — B), where A — B := {z|z € A,z & B},
then all trajectories starting in A enter B in finite time.

LMIs in stability analysis of TS systems usually resort to expressions of the form
ATP + PA; <0. Let us review some already-known stability results for PWATS
systems.

2In this work, as in (Johansson, Rantzer, and Arzen 1999), upper indexes of matrix expressions
such as k in AIfL are not powers, but only for indexation purposes.
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Defining an augmented state and augmented matrices:

- k pk

7= 7|, AF = |AT O e 12, n), ke K. (5.18)
1 t 0 0

The PWATS stability analysis in (Johansson, Rantzer, and Arzen 1999) can be

straightforwardly applied if 2, conform to a polyhedral partition of the operating

region in the state space.

To see this, consider PWQLFs of the form
V(z) =2" Pz, z €, (5.19)

so that V'(0) = 0, with continuity of the Lyapunov function across the boundaries,
Le., Vi(z(t)) =Vi(z(t)), Va(t) € (% N€Y), guaranteed by parameterising Py, as

pk = F];FTF]C, (520)

where T is a symmetric matrix of adequate dimensions, F}, = [ Fe  fr } with
fx = 0 for k € Ky, satisfying Fpz = F;Z for © € (Q, NQy), k, 1 € {1,2,...,q}.
Partition information can be systematically incorporated into the analysis via
the S-procedure (Boyd et al. 1994). Notation I, := blkdiag(y/,0), and 0, :=
diag(0,0,...,0,v) will be later used. “blkdiag(-)” stands for a square block-
diagonal matrix in which the diagonal elements are the matrices in the argument.
Thus, the following slight generalisations of (Johansson, Rantzer, and Arzen 1999;
Gonzalez and Bernal 2016) are given:

Theorem 5.2.2. If there exist symmetric matrices T, U, = 0, and Wy; = 0 such
that, for a given small v > 0, the LMIs

P~ ETULE, > 1, 5o
(A5)" By + P AY + Ef Wi, By < —oF '
hold for i € {1,2,...,r}, being ® = 1, if k € Ko, and ®% = 0, if k € K,
then :t(t) tends to zero exponentially for every continuous differentiable piecewise
trajectory in Q = |Ji_, Qi satisfying the model equations (5.17) with initial con-
ditions xoy € Vg, where Vg := {z : V(x) < B} is any level set of the piecewise V (z)
defined in (5.19) such that Vg C Q.

Proof outline. First condition proves V(z) > ~vxTz in region (2, and second one
proves V(z) < —yxTx in regions Q, k € Ko, and V(z) < —~ in regions (2,
ke K;. O
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Remark 5.2.1. From (5.19), in regions containing the origin (k € Ky), V(x) is a
standard quadratic form without constant or linear terms. As quadratic forms are
positive in cones, only the set of conditions with E), = [ Er 0 ] are relevant if k €
Kq. In the original reference (Johansson, Rantzer, and Arzen 1999), conditions
(5.21) were separated in two groups according to k € Ky or k € K;; however,
such separation is implicitly considered in ®. above. In fact, in a region where
er = 0 and the model is given by TS representation flf = blkdiag(Af,O), LMIs
(5.21) would entail the Lyapunov function to be forcedly homogeneous quadratic if
V(0) = 0 were enforced. Due to this reason, such separation between Ky and K,
will be no longer pursued in this work.

Theorem 5.2.2 has been extended to the case of non-polyhedral partitions with
circular boundaries in the conference paper (Gonzalez, Bernal, and Marquez 2014).
For brevity, it will not be discussed here as it will be a particular case of the
proposal in this work.

5.2.4 Farkas Lemma and Positivstellensatz

The above-reviewed prior results can be understood as proving positiveness of
quadratic functions in regions with affine/quadratic boundaries; they are instances
of the Positivstellensatz argumentation (Jarvis-Wloszek et al. 2005, Theorem 1),
which in the quadratic-only case amount to the S-procedure (Boyd et al. 1994), and
in the affine-only case are a version of Farkas lemma (J6nsson 2001). Computa-
tionally, conditions are posed as linear programming (affine case), LMIs (quadratic
case) or generic sum-of-squares constraints (Jarvis-Wloszek et al. 2005). However,
the latter exacerbates the computational cost, so it is intentionally left out of the
scope of this thesis.

Decision variables Uy, and Wy; are generically known as multipliers. In general, the
above multiplier-based conditions are only sufficient for emptiness of semialgebraic
sets or for sign-definiteness of some polynomial functions of the state in particular
regions?.

However, there are a few well-known situations in which ezact results can be
asserted with few computational resources. These situations are: the S-procedure
with a single quadratic constraint, and the Farkas Lemma for affine constraints
(in linear programming setups). The latter can be stated as:

3More general conditions may be obtained by transforming the multipliers into polynomials of
arbitrary degree; however, as pointed out at the introduction, it is at the expense of a heavy com-
putational cost (Pitarch, Sala, and C.V. Arifio 2014).
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LEMMA 5.2.2 ((ansson 2001)). Consider an affine function V(x) = pTz + 6,
where p € R™! and § € R, and a polyhedral region Q = {o(z) = 0} being
o(z) = [E e]z, where E € RN*" and e € RV*1. Let oy(x) be the I-th element
of vector o(x). Then, the following expressions are equivalent:

a) V(z)=pTz+3>0 for all x €
b) There exist ; > 0,1 € {1,2,...,N} such that

- Znal(:v) >0, VreR" (5.22)

Corollary 5.2.2.1. Under the same settings, the following expressions are equiv-
alent:

a) V(zg)=pTz+6=0 for all z € Q, and QL # 0.

b) There exist arbitrary 7, 1 € {1,2,..., N} such that

— Z no(z) =0, VreR" (5.23)

Proof. The result can be proved considering V(z) =0 as V(z) > 0, =V (z) > 0,
and applying twice the above lemma, i.e., for V(z) = 0, Vz € €, there exist ¢; > 0
and co > 0 such that:

N
— > roz) =1 20, V(@)=Y rfoi(w) =2 >0
=1

where linearity of V forces ¢; and ¢y being constants. Adding, we would have:

N

- Z(Tl’ + 7)o =1+ o
=1

but, if we assume the region 2 is not empty, the above cannot happen unless
¢1 = ¢o = 0 (standard Positivstellensatz). Now, subtracting and dividing by 2, we

obtain: N
V-2 30
I=1

so 7 = 0.5(1) — 7). 0

7/ — 7)o, =0

N)I)—t
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In the next sections, earlier results will be generalised using the ideas in Sections
5.2.4 and 5.2.3; asymptotical exactness of the proposed approach will be estab-
lished via universal-approximation argumentations.

5.3 Main Results

Let us consider a connected modelling region €2 partitioned into ¢ subregions €2y,
with disjoint interiors where each region is defined* as:

Qu={z:Ez>=0,2"Quz >0,l€{1,2,...,04}} (5.24)

where Z is obtained from z using (5.18). The j-th affine constraint, corresponding
to the j-th row of Fj will be denoted as Ejk5. The “faces” of Q. will be defined
by changing just one of the affine or quadratic inequalities to equality.

If Qi = 0, or, equivalently, £, = 0, the partition will be said to be polyhedral.
Given that the regions have disjoint interior by assumption, the intersection of
two regions 2 and §2; must be a subset of a face in each of them. The region
will have a number of vertices located at the intersection of n faces.

5.3.1 Continuity in the Piecewise Lyapunov Function

Continuity of the piecewise Lyapunov function was enforced via (5.20) in prior
works. A more flexible alternative will be proposed next. Consider a non-empty

set
X = {.f N E.f = Oﬂ‘fTQl‘,f — 07'fTQ2.'E — 07 . ’ETQZE — 0}7

such that QN Q,, C X, for some k, m.

LEMMA 5.3.1. The piecewise quadratic function

T P,Z for x € Q,
Vix) = { ZT P, % for v € Q,,

18 continuous in the “face” Qp N Q, if, given X in the above form such that
QN Qy,, C X, there exists an arbitrary multiplier matrix U and arbitrary scalars

4For notational simplicity, denoting constraints associated to regions containing the origin with
E, and those where 0 ¢ Q, with Ej, (established in (Johansson, Rantzer, and Arzen 1999)), will
no longer be used. All matrices in (5.24) will be assumed to apply on the extended state z. In
this way cluttering all matrices with barred notation is avoided while leaving E available for future
definitions.

5Following notation in (Johansson, Rantzer, and Arzen 1999), indexes will be stacked together in
order to avoid long expressions; system matrices will use upper and lower ones.
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T; such that:

0
Py—Pp+UE+E"U+Y 7,Q;=0 (5.25)
j=1

Proof. Since 0 = 7 (P, — P,, + UE + ETU + Zf-:l 7;Q;)% = 2T (P, — P,,)T for
T € X, then the result is trivial. [l

In this way, matrices F' and decision variables T' parameterising the sought Lya-
punov functions, used in prior literature, are not needed in this proposal, giving
more clarity and flexibility, in exchange for additional multipliers.

Remark 5.3.1. Note that, from analytical prolongation (or Taylor series), if two
functions coincide on an infinitesimal fragment of a face (i.e., a small lower-
dimensional affine or quadratic region), they do on all prolongations. This is the
reason of considering the above set X which disregards inequalities in Q0 MYy, (for
instance, with Q; = {9—2T2 > 0,270 —-1> 0,20 >0}, Qo = {1 —2T2 > 0,25 >
0}, we would have that Ny = {1 —zTx = 0,29 > 0}, and X = {1 — 2Tz = 0};
adding a multiplier associated to constraint xo > 0 would be useless).

5.3.2 Extension of piecewise quadratic stability analysis

In Theorem 5.2.2, taken from (Johansson, Rantzer, and Arzen 1999), only mul-
tipliers Uy in E,?UkEk (and Wy;, with the same role) appeared to enforce local
positiveness (negativeness) of the Lyapunov function (and its derivative).

However, we can state a more general condition.

LEMMA 5.3.2. Consider the set

Ex >0
2TQux >0,1€{1,2,...,¢}
Rz =0
#7Q;z=0,j€{1,2...,0}

X:=<zxeR":

Consider, too, a quadratic polynomial 2'Zz. Then, TT2% > 0 for all x € X
if there exist arbitrary scalars &;, j € {1,2,.. .0}, arbitrary matriz Z, positive
scalars 7, 1 € {1,2,...,4}, and element-wise positive matriz U such that the
following matriz inequality holds:

0 l
—E4+Y nQ+EUE+) Q;+Z"R+R"Z <0 (5.26)
=1

j=1
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where’
E = [[O OE" 1]} . (5.27)

Proof. Indeed, for any z € X, we have

¢ ;
Y nQ+E'UE+Y ¢Q;+ Z"R+ R'Z > 0.
=1 j=1
Hence, if (5.26) holds, it proves that —z7 =z < 0 in X, i.e., 212z > 0. O

Corollary 5.3.0.1. Letting = = diag(0,0,...,0,—1), if there exists the above-
mentioned multipliers then X is empty.

Proof. Indeed, we proved 0 > 1 on X so forcefully X should be empty. O

Corollary 5.3.0.2. If 227 is a degree-1 polynomial, and X is a full-dimensional
polyhedron (Q; = Q; =0, R =0), then conditions in Lemma 5.3.2 are necessary
and sufficient.

Proof. 1t can be shown that the choice of multipliers encompasses those in Farkas
lemma, i.e., the multipliers 7; in (5.22) from Lemma 5.2.2. Details omitted for
brevity. O

Remark 5.3.2. The fact that the last element of T is equal to 1, as well as the
seemingly “trivial” addition of 1 > 0 in the construction of E, introduces additional
multipliers, which were not considered in prior literature; this enables the above
generalisation and ezactness in the affine case (Corollary 5.8.0.2). Without E,
(5.26) cannot be written as (5.22) in the polyhedral case (Q; = Q; = 0). Apart,
combined affine/quadratic boundaries are considered, as well as equalities which do
not appear in (5.24), but will be relevant when geometric conditions are pursued.

Consider now a PWATS model (5.17) defined over a quadratic/polyhedral par-
tition of a region Q with sets @ = {x : o¥(z) > 0,5 € {1,2,...,m}}, k €
{1,2,...,q} defined as (5.24), i.e. being each of the constraints 0§(~) either affine
or quadratic.

The following definition will single out constraints which take part in the shape
of the overall modelling region 2 = U ) defining its outer boundary:

6Recall E carrying the meaning in (Johansson, Rantzer, and Arzen 1999) is henceforth no longer
in use.
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Definition 5.3.1. The face generated by constraint a;-“(-) will be denoted as:

Fro={a:of(z) =0} N (5.28)

J

Such face (and the constraint 0;? itself) is called “outer” if:

FFe o (5.29)
£k

An illustration of the meaning of the above definition appears on Figure 5.3, where
outer faces are labelled with F* ., k = {1,2,3,4}.

out»

s

is outer ¥ j

Obviously, the boundary 09, fulfills 02 C |z«
J

Let us denote as Q' as the set of points in the boundary of Q such that system
trajectories which contain them “enter” €2, i.e., in formal terms:

OV = {r cdN:Fw>0st ¢le,z) €AV <e<w}

Let us denote as Q' the complementary of 9Q' in 99, i.e., the points in the
boundary of €2 such that trajectories do not immediately enter the interior of €.

For later use, we will denote the set of all outer constraints as:
T :={j: (7;?(-) is outer}

Given an arbitrary point x € 0, let us denote as I'y(x) the set of outer con-
straints in 2 which are active at x, i.e., the ones associated to the outer faces =
belongs to:

Ty(z) == {j € Tp : o} (x) = 0}

Proposition 5.3.1. Given x € 0Q; N 09, if ('ff(x) > 0 for all j € T'y(x), then
T € 0NV,

Proof. First, note that, for the active constraints of(z) = 0, c'rf(:c) > 0 entails
o(é(e,z)) > 0 for all € such that 0 < € < w for small enough w. Given that
o(z) > 0 for inactive constraints, then for small enough w, o(¢(e,x)) > 0 will still
hold for such constraints for all 0 < ¢ < w. Hence, no other constraint will be

active and all active ones will render inactive: ¢(e,x) will belong to the interior
of Q. O
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T2
0
Ey 1 Euiy
T i
l— >
Fgut Fgut
Eqo Q, Q4 Eoy
————————————————— > X1
Esy Ql {23 Ess
le— ‘F;ut ]:gut —>
v {
Eynw | Egs

Figure 5.3: Bounding hyperplanes F%,, delimiting Q.

Consider, given x and the constraints indexed in I'y(x), that a particular active

constraint is either affine af(x) = E;,z, being Ej; a row vector, or quadratic

of(x) = z7Q;xZ, being Q, a matrix of adequate size.

Corollary 5.3.0.3. Given © € 0, N O, if, for all i € {1,2,...r}, for all
Jj € Tx(z) either:

o B, Az >0, ifaf(-) is affine, or

o 77 (ijflf + (ANT ;Fk) T >0 if of(-) is quadratic,

then © € 9.

Proof. The conditions on the vertices of the PWATS model are sufficient to ensure
that conditions in Proposition 5.3.1 hold, as 7 belongs to the convex hull of the
vertex derivative estimates AFz. O

Now, we are in conditions to state the main result of the chapter.
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Theorem 5.3.1. Consider a nonlinear system (5.1), and a PWATS model (5.17)
of it, defined over a partition of a compact region Q0 with sets Q, k € {1,2,...,q}
defined as in (5.24). Consider, too, a collection of ellipsoids EF = {z : = Gksx >
0} for s € {1,2,...,5,}, such that E¥ N Q. belongs to the DA of x = 0 for the

nonlinear system (5.1), and a second collection of ellzpsozds ={z:z ijsx >
0}, se{1,2,...,5k;}, associated to each face .7-"]’-C such that Ef .7-"]'-“, too, belongs
to the DA of x = 0. Then, if there exist symmetric matrices Py, satisfying the

continuity conditions”
' Pz = #7 Pz, Vo € (N Q) (5.30)

symmetric matrices U}, = 0, Uk = 0, arbitrary row vectors Zjy, posztzve scalars
Ths Ther Tits Thss Thyir Thysr @ € {1,2,...,7}, and arbitrary scalars 7[5, j € I,
m € {1,2,...,q}, yielding a feasible solution for the following inequalities, given
v >0, first:

Ly

Py AR+ (AF) Pk+E,C€FU,“Ek—|—ZTlelk—ZTkS o < —0F; (5.31)
=1 s=1

being <I)§ =1L, if k € Koy, and <I>,’j =0, ifkec Ky
and, second, either, if 0;“ = Ej1Z (affine constraints):

Skj

Z]kE]k+( )+P]€ Ek]zUk]zEkjl Z Tlelk+ZTks sk +ZTk]sGk]S >0 (5 32)
=1 s=1 s=1
where _
_ B .

or, if of = 27Q;xZ (quadratic constraints):

4 Qik +Pue— EL UL By + 1 (ijAk (Ak) Jk>
Skj

—ZszHZmS ok +Z%SGW>0 (5.34)

then, {x : 2T Pyx < 0} N Qy, belongs to the DA of x = O for every k, for the
nonlinear system under study.

"Which can be enforced via LMI conditions (5.25) on all shared faces.
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Proof. Consider the regions &, := U, (Uz’;l é’fs N Ff) and & = QN EF.
Consider, too, the regions £ := Uzzl &, and € = UZ:I Ep. Then, by assumption,

each &, &, and, evidently, the whole &, and & belong to the DA of the origin.

Using the argumentations in Lemma 5.3.2 with E = Vi (z) 4 v||z||? and Vi (z) :=
zT Py, we can state that (5.31) ensures that the time derivative of Vi () is strictly
negative for nonzero x (lower or equal than —v||x||?), in Q) — &, because such set
is given by:

Qp— &L = {.’E Eyx =0, fTQlkf >0, fTéskf < 0},

forl € {1,2,...,0;}and s € {1,2,..., 5}, so suitable multipliers U}, = 0, 7}, > 0,

72, > 0 are introduced.

Let us discuss now inequality (5.32). In this case, we want to show that the level
set {Vi(z) < 0} N (Q — E — &) does not intersect ONT, as ONT is the subset of
09, where the trajectories of the system do not immediately enter 2.

In order to show that, we will combine Corollary 5.3.0.3 with Lemma 5.3.2, posing
the conditions of P > 0 for all  in the set 9Q" N (Q — & — &r).

As 00T C Ujez {7 : 6F(x) < 0} we can assert that, if the following assertion
holds for all j € Zy: B
P>0vVzexh (5.35)

where 8 := {2 : 6% (x) < 0}N(Qk —Ex —Ex), then P > 0 on 9QT N (Q — &, —Ex).

Now, we replace E? by the larger (shape-independent) set on which at least one

of the vertices of the PWATS model proves d;-“(x) <0, as discussed on Corollary
5.3.0.3. Then, application of Lemma 5.3.2 for each of the outer constraints in
(5.35) and model vertices yields conditions (5.32) if the constraint in consideration
is affine, and (5.34) if it were quadratic.

Now, by considering all regions we have:
1. a continuous piecewise quadratic function V(z), defined as Vi (z) = 7 P,z
in Qk;

2. V(x) is non-increasing, i.e., for a sufficiently small €, V(z(t +¢€)) < V(z(t));
actually V(z(t +¢)) < V(x(t)) if () # 0. Indeed, along the trajectories of
the nonlinear system (5.1), V' < 0 if 2:(¢) is in the interior of any Q; if ()
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is in the boundary of several regions, we can ensure that:

< max Vi <0 (5.36)

3. V(x) has a level-zero set V := {V () < 0} that verifies

Vo (am N (% — & — é’k)) =0

Denoting £ :=E U &, Let us define the following sets:

Vi={V(z)<0}nQ, W:=V-E, (5.37)
Woei={xeW:¢o(t,x) EVL>0}, We =W —W_. (5.38)

With the above definition, W is the set of points who have not (yet) been proven
to belong to the DA. Such set is partitioned in two: W_., i.e., the set of points of
W which do not enter £ in finite time, and We.

Now, note that when starting in W, it is impossible to abandon W without en-
tering £, due to:

e As V(z) is non-increasing in time in W, the boundary V(z) = 0 will never
be reached.

e As g¥(x) > 0 for all z lying both in the outer faces and in V() < 0 (proven
due to the third of the above-enumerated conditions), trajectories cannot
exit {2 through such outer faces.

Thus, all points in W either enter £ in finite time or remain indefinitely in W. As
the latter points are, by definition, those in W-., forcedly W, is the set of points
who do enter € in finite time.

Obviously, all x € W, belong to the DA of the origin, because they enter £ in
finite time without leaving €2, so they converge to the origin later on.

Let us prove that all z € W_. belong, too, to the DA of the origin. Indeed, W_. is
invariant, because trajectories always remain inside it in future time: they do not
enter £ and, due to the above reasons, they do not exit V, and they do not enter
We because in such a case they would eventually enter £, which cannot happen
by definition.
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OO o0

Q, L 90T

Ex

Figure 5.4: Subsets Qi, &, £k, 09, and Q.

As V(z) is continuous, piecewise polynomial, it is bounded on W-, i.e., there
exist
Vinin :=  inf  V(2), Viax:= sup V().
TEW-¢ TEW ¢

Given any © € W-., as V(¢(t,z)) is nonincreasing and bounded from below at
all times, there must exist a limit a := lim; o V(¢(t,2)), so, as a consequence
limy_oo DTV (4(t,2)) = 0. As Vi(z) < —v in regions Qi not containing the
origin, and Vi(x) < —vl|z||* if the region contains the origin, the only point in
which such situation (DTV = max;, 4. z(t)eQ, Ve = 0) can happen is the origin.
So, all initial conditions x € W_. tend to the origin, i.e., belong to the DA of the
origin®. Given that both W, and W-. belong to the DA of the origin, so does
their union W. O

Remark 5.3.3. Theorem 5.3.1 requires a prior estimate of the DA of the origin
E. In order to apply the above result to prove stability of a PWATS model without
such “initialisation” (to get results with the same a priori assumptions as usual
literature), the theorem should be modified by setting Grs = 0, thus initialising the
ellipsoids EF to empty sets (equivalently, forgetting about the terms with G in the
LMIs, letting 5, = 0). The result is as follows.

8Note that, if 0 € &, forcefully W-e = 0; this is in accordance with Theorem 5.2.1.
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1P o

(P1) (P2) (P3)

Figure 5.5: Example partitions: (P1) is not a honeycomb; (P2,P3) are.

Corollary 5.3.1.1. A PWATS model (5.17), defined over a partition of a region
Q with sets Qi, k € {1,2,...,q} defined as in (5.24), is locally stable if there exist
decision variables fulfilling Theorem 5.3.1 with 55, = 0 and 5y;, such that the set
V in (5.37) is not empty.

Proof. Indeed, applying the prior theorem, {x : 27 Pz < 0} N Q belongs to the
DA of x = 0 and, by assumptions in the corollary statement, it is not empty.
In this particular situation, contrarily to footnote 8, the set W. would be empty,
and W = V = W_., actually containing the origin, deduced with an identical
argumentation to the one in the theorem’s proof for this particular case £ = ). O

Note that non-emptiness of V can be enforced in the LMI conditions with some
geometric conditions. This is the objective of next subsection.

In order to avoid conservatism, we will assume that the chosen partition conforms
a honeycomb (Coexeter 1973), defined as a partition where vertices of the regions
are common to neighboring ones (a region €2; will be understood to be neighboring
to Q, if Q; NQy # 0, int(;) Nint(Qy) = 0; vertices will be the points formed by
intersection of n faces).

For instance, Figure 5.5 shows a partition (P1) which does not fulfill the hon-
eycomb assumption, and a pair of another ones which do. The reason of such
assumption is that the faces of the central region in partition (P1) (marked as
a thick blue line) are outer, so the theorem would preclude a level set including
the subset of the face where trajectories enter the neighboring regions, which is
clearly undesired. The second partition (P2) is a honeycomb and such issue does
not appear. Partition (P3) is, too, a honeycomb with quadratic boundaries.
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5.3.3 Geometric optimisation

In order for the theorem to be useful, some additions enforcing how to obtain
the “largest” estimate of the domain of attraction should be added, for instance,
maximising the size of some prefixed-shape set which can be fit inside the obtained
DA estimate (via maximisation of scaling factors).

Cousider a prefixed-shape region in the form:
Q:={z:Ex>0,77Q,2 >0,...,27Q;7 > 0}

where some affine inequalities (rows of E) and ¢ quadratic ones hold. Let us define
the geometric transformation below:

et N N =) AT e — AT (2]
T 1 1o 1 1| =A%

being A a “scaling factor” and x. a “scaling centroid”, both parameters assumed
known. The scaled region 2 by factor A around z. is defined as:

Q) :={z:EAz = 0,27 ATQ1A% > 0,...,zT ATQ4AZ > 0}. (5.39)

Note that setting z. = 0 reduces the scaling to the standard scaling around the
origin.

Theorem 5.3.2. Consider a PWATS model (5.17) defined over a partition of a
region Q with sets Qk, k € {1,2,. ..,q} defined as in (5.24). Consider, too, a
collection of ellipsoids E¥ = {x : 2T Ggyx > 0} for s € {1,2,...,5,}, such that
EF N Q. belongs to the DA of t =0 for the nonlinear system (5 1), and a second
collection of ellipsoids EF, = {x : TTG;sT > 0}, s € {1,2,...,541;}, associated

to each face .7-"]’-C such that 55 N ]—']k, too, belongs to the DA of x = 0. Then, if

there exist symmetric matrices Py, U,ii >0, U,fji >0, U,? =0, U,j = 0, arbitrary

; 7 o 1 .2 .3 _4
column vectors Zjy, arbztmry scalars Ty;, and positive scalars Ty, Tis, Tips Ths,

T,?]Z, 7',?]5, T Torms Tacss @ € {1,2,...,1}, j € Ty, m € {1,2,...,4}, yielding a
feasible solution for the inequalities (5.30), either (5.31) or (5.32), (5.34), and,

for a given k', and v > 0:

L1
pk/ —'— EIZ—;US/Ek/ + ATEIZ—;U]?/Ek/A _'_ ZTE/lQlk/
=1
Sk/
Z Tk/ A QmA ZTk/ sk’ < 07, (540)
m=1 s=1

then, the region Q(\) N Qy belongs to the DA of x = 0.
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Proof. In this case, we want to show that Q()\) belongs to the domain of attraction
of z = 0, by showing that it is included in the subset of the DA proven in Theorem
5.3.1, where constraints for the level set V for being part of the DA are enforced
((5.30), (5.31), (5.32), (5.34)).

We want to enforce that the region & U {Z7 Pz < 0} N, contains Q(X) N Q.
We will do that by proving that z7Ppz < —vy in (Q — &) NQ(N). Indeed, if
that holds, all points of Q(A) N either lie in & or in {27 Py < 0} N Qy, both
belonging to the DA of the origin.

Thus, conditions for inclusion of Z7 P2 < —v in the required set are written
as (5.40) by using the S-procedure argumentation and positive multipliers 75,
associated to the quadratic constraints in Q()\), U}, associated to the linear in-
equalities in Q(A), U,f’, and T,Z,l associated to the corresponding region 2k, and
positive constants 77, associated to ellipsoids EF. O

Note that £ has not been used in conditions (5.40); indeed, such £ is formed by
fragments of outer faces with no volume, but Q(\) N Qs will have nonzero volume

except in degenerate cases, so behaviour at the faces is irrelevant for the level sets
of Pk/ in Qk

Remark 5.3.4. The above theorem can be extended to forcing shape constraints
in several regions, by repeating (5.40) for different k' in a selected set (or even all
of them). The fized-shape conditions above can be particularised to spherical re-
gions, polytopes (boxes), or intersections thereof, extending analogous geometrical
conditions in LMI setups for classical (non-affine) TS systems (Boyd et al. 1994;
Tanaka and H. Wang 2001).

Remark 5.3.5. Theorem 5.3.2 provides only feasibility conditions. Trivially, they
can be converted to optimisation ones on the centroid/size “shape” parameters (z.,
A). If only one of them is to be optimised (either scale or translation), such op-
timisation setups can be cast as bisection problems and, in some particular cases
as GEVP ones or even LMI ones in Lyapunov and shape parameters. Such devel-
opments are transcriptions to the affine case of well-studied geometric problems’
and are omitted for brevity, leaving details to particular examples later.

The following corollary shows that our result extends prior literature.

9For instance, the smallest or largest circle inside an ellipsoid, the largest ellipsoid inside a poly-
tope, etc. in (Boyd et al. 1994).
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Corollary 5.3.2.1. In the polyhedral partition case, if LMIs in Theorem 5.2.2 are
feasible, and 2 contains a neighborhood of the origin, then conditions on Corollary
5.3.1.1 hold for some non-empty domain of attraction.

Proof. Suppose that a feasible solution {P/°" U/°" W/°"} for (5.21) has been
obtained, i.e.:

Ploh — BTU{M By > 1, -
(A%)T Blon 4 BJoAF 4 ETWINE, < —®F. (5.41)
We will prove that there exist some 8 > 0 such that V3 in Theorem 5.2.2 belongs to
the DA of the origin, provable with Theorem 5.3.1. As the level set considered in
the latter theorem is in the form {ZT PyZ < 0}, whereas the condition 27 P/°"z >
I, in Theorem 5.2.2 would need level sets in the form {z7P/°"z < B}, we will
consider P, = 15,;7 oh _ 03, without loss of generality, for some 5. In this way,
{zT P/ohz < B} = {27 Pyz < 0}.

Consider inequality (5.31). As partition is polyhedral then £ = 0 and if the prior
estimates of the DA are empty, then 5, = 0 and 5, = 0. Furthermore if only the
rows Ej, are considered from Ejy, the result is the second LMI in (5.41), with the
notational changes in footnote 4. As subtracting a constant from the Lyapunov
function does not influence its derivative (algebraically, it can be proved from the
fact that the last row of A¥ is zero), Johansson’s multipliers W/°" would render

(5.31) feasible (padded with zeros to conform the larger size of E}).

Consider now that the first inequality in (5.41) holds. Then, we will prove that
there exists 8 > 0 and arbitrary row-vector multipliers Z;; such that

Z 5 B+ (%) +( P —05)—EFU!*"E), >0, (5.42)

where the above expression has been obtained from (5.32) removing the absent
elements Qq, Gsk, Gijs, and also setting the multiplier for the term E;,A¥ in
Ui;; equal to zero (hence, the original multiplier U7;; no longer depends on 4, j),
setting the remaining terms equal to the corresponding ones in U ,;7 oh,

Indeed, consider the problem of finding £}, such that the following expression is
feasible for all outer constraints F,:

Z1Eje+(x)+ blkdiag(vI, —3) >0, (5.43)

The above problem is feasible if the circle yz72 < 3 is inside €. So, if there exists
a circle around the origin which is contained in €, true by assumption, a feasible
solution for (5.43) exists. Now, adding the first matrix inequality of (5.41) and
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(5.43) results in (5.42), proving that (5.32) was feasible in Theorem 5.3.1 with the
choice of multipliers in (5.42).

In summary, the above argumentation proves that if (5.41) are feasible, so they
are (5.31) and (5.32). Continuity is also enforced in Johansson’s result, so we
proved that Theorem 5.3.1 is feasible in all cases (5.41) is, for suitable . 0

Our proposal, apart from giving the same (or better) solutions as Theorem 5.2.2
in an identical setting, improving over (Johansson, Rantzer, and Arzen 1999;
Gonzalez and Bernal 2016), applies to regions with quadratic boundaries, it is
less conservative (due to E, and to the fact that the level set can get “out” of Q)
and, last, 2 can even not contain the origin as long as a fraction of it is proven
(elsewhere) to belong to the DA of the origin.

EXAMPLE 5.3.1. (Pitarch, Sala, and C.V. Arino 2014) Consider the following
nonlinear system:

.fl = 05.’E2 — 3%1, $'2 = (3 sin Ir1 — 2) i) (544)

where the state is assumed to lie in the compact set Q@ = {x : |z;| < 1.2,i =
1,2}. Consider a partition of the compact set Q2 in q = 16 subsets, as it is shown
in Figure 5.6. An initial estimation of the DA was obtained using a quadratic
Lyapunov function and a standard 2-rule T'S model resulting from choosing p(x) =
3sin(zq)xe, computed in a smaller modelling region Qrs = {x : |z;] < 0.72,i =
1,2}. The resulting largest level set in Qg is given by Vg = {x : LL‘TPQJJ < 0},
with:

B 1.9104 —-0.2365 0

Py =|-0.2365 1.9104 0 |.

0 0 -1

Such level set is depicted in red in the referred figure.

Now, a PWATS model has been generated with the same choice of p(x) applying the
optimisation setup discussed in (Gonzalez, Sala, Bernal, and Robles 2015). Theo-
rem 5.3.2 was applied in order to find the largest circle Q(\) = {z : —A"1aTz+1 >
0} inside the proven domain of attraction, minimising A\~ by bisection, stating
conditions (5.40) for all the regions. The knowledge that the red region already
belonged to the DA has been exploited in the LMI conditions. In Figure 5.6, the
larger resulting level-set V is shown in green. The level set intersects with the
frontier of 2, as the theorem allows for it; the only regions out of it are the top
and bottom right white zones.

For comparison, a estimation of the DA using classical Theorem 5.2.2 for the same
PWATS model is shown in blue. In this case, level sets from earlier results cannot
exit €.
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Figure 5.6: Estimation of the DA for example 5.3.1: quadratic TS case (region in red,
(Tanaka and H. Wang 2001)), Thm. 5.2.2 (region in blue, (Gonzalez and Bernal 2016)), and
Thm. 5.3.2 (region in green). Yellow region also depicts the result of a second execution of
Theorem 5.3.2 only on the squares at the right of the magenta boundary, seeding it with the
prior green region.

Last, the 8 squares containing the yellow regions in the figure are used in a new es-
timation of the DA with a partition which does not contain the origin but contains
as initial DA estimates both the prior green piecewise-ellipsoidal fragments con-
forming € and the magenta lines conforming £. With the same geometric objective,
the referred yellow region can be proved to belong to the domain of attraction'C.
Some simulated trajectories show that, indeed, the DA estimate is correct.

5.3.4 Iterative Enlargement of the Domain of Attraction

The basic idea in this section is proving a large DA estimate by modifying €2
as the region proved with Theorem 5.3.2 grows larger, removing “empty” regions
(in order to be less conservative at next iteration), and adding new neighboring
regions around the ones that contain any points in the proven DA, i.e. around
those in which there exists an ellipsoid £ such that ¥ N Q; # (. In order to
carry out such operation, the following result will be used:

10 Actually, as complete faces are in the DA, instead of being considered in &, they can be equiv-
alently removed from the set of outer faces, details omitted for brevity.
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LeEMMA 5.3.3. Consider a region (. defined as in (5.24) and a collection of el-
lipsoids EF = {x : #7Gpsx > 0} for s € {1,2,...,5,}. Then, the two assertions
below are true:

a) if Irt > 0,72 >0,U =UT = 0 such that

Sk Lk
01— Y 7iGhs + ELUE+ ) 77Qu. <0,
=1 =1

then Q) C USHEF.
b) if 3rk > O,TfS >0, Us = UL =0 such that, for all s,

Lk
0, + Tsléks + EgUsEk + Zle,sQlk <0,
=1

then Q NUSKER = ().

Proof. The first condition a) proves that Qx N (ﬂi’;l{x 2T G < 0}) is empty
from Corollary 5.3.0.1, and therefore Qy C U3+EF because N2, {z : 2T Gz < 0}

S

is the set of Z lying outside the union of the ellipsoids .

The second condition b) proves that Q2 N EX = @ for every s, from Corollary
5.3.0.1, and, hence, so it is 2 NUEF = ). O

If the ellipsoids are those in Theorem 5.3.1, Lemma 5.3.3 ensures that regions
fulfilling the first LMI have been totally proven to belong to the DA, and regions
fulfilling the second set of LMIs (one for each s) have no point in them proven to
belong to the DA. The former ones will be labelled as “full” and the latter ones,
as “empty”.

Algorithm

Based on Theorem 5.3.1 and the discussed idea above, Algorithm 1 on top of next
page is proposed, initialising on a prior feasible solution and iteratively improv-
ing the DA estimate by suitably modifying the partition (adding, removing and
dividing regions). Some remarks are presented below detailing the ideas in some
of its steps.
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Algorithm 1. Start from a compact set Q% defined by a list of sets from a associated partition
Qk, k€ {1,2,...,q}. Consider a previous estimate of the DA, see Remark 5.3.6, as a list of sets
in the form S,EO] ={z:2TGY% > 0} N Q. Set ¢ =1 and perform the following steps:

1. Test Lemma 5.3.3 for each region Q; € Q1.

(a) If a) is feasible, set full(k) = 1 else full(k) = 0.
(b) If b) is feasible, set empty(k) = 1 else empty(k) = 0.

2. Generate the list of sets for a new partition (), as follows:

(a) If empty(k) = 1, then reject 4, do not add it to Q!;

(b) Else, add € to the list QI, and enlarge the region of study adding to QI a
neighbouring region ', see Remark 5.3.7.

(c) if full(k) = 1, Q4 can be taken out, if so wished, from Q)| if the steps in Remark
5.3.8 are taken.

3. Obtain a new PWATS model from the new region.

4. Obtain a PWQLF from Theorem 5.3.2 under some chosen geometric performance max-
imisation, see Remark 5.3.9.

5. If Theorem 5.3.2 is feasible, then add {x : 7 PZ < 0} N2 to the list of sets conforming
the current DA estimate, and set ¢ = c + 1.

6. If Theorem 5.3.2 is not feasible, then subdivide some of the regions where empty(k) = 0
and full(k) = 0. See Remark 5.3.10.

7. Check a suitable termination criteria (see Remark 5.3.11), and if it not satisfied, go to
Step 1.

Remark 5.3.6. [Initialization/ The algorithm will be initialised with any piecewise
partition of an initial compact set Q) where a PWQLF has been obtained via a
feasible solution of any LMI in literature, for instance:

e q single region with a TS model, as done in FExample 5.3.1,

e a feasible piecewise-quadratic DA estimate from Johansson’s Theorem 5.2.2
or, better,

e q solution from Corollary 5.3.1.1 (with some geometric optimisation, Theo-
rem 5.8.2) with initial empty DA estimate, proved to be more general than
Theorem 5.2.2.

Remark 5.3.7. [Neighbouring region generation/ Depending on the geometry of
the chosen partition (simplicial, parallelotopic, etc.), generating these new neigh-
bouring regions might require different code implementations; in later examples,
a particular hyper-cube-based setting will be explained, based on the fact that a
space-filling tessellation is possible with congruent copies of any parallelotope.
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Remark 5.3.8. [Removing fully covered regions/ If full(k)=1, as the whole region
is proved to belong to the DA of the origin, such a region can be actually removed
from QU in step 2 of Algorithm 1; in order to keep this information, the faces
of neighboring regions can be “marked” to belong to the DA wvia suitable set up of
ellipsoids é’k

Remark 5.3.9. [Geometric optimisation goal/ In general, there are no LMI con-
ditions to mazximise the volume of a piecewise estimation of the DA. An indirect
way to achieve this goal is to mazximise the radius of a sphere centered at the origin
(Gonzalez, Sala, Bernal, and Robles 2015), but it may be inadequate for nonconvez
regions. An alternative to the sphere-based maximisation is trying to mazximise in
a region the scaling (5.39) of a degenerate ellipsoid (with very small azis length in
all directions but a random one) with a random center point.

Remark 5.3.10. [Finer partition granularity/ As expected, there are several ways
of dwviding regions as to apply the algorithm above; in later examples in this work,
the regions have been split into 2™ equal smaller parallelotopes. Obuviously, other
implementations may be conceivable, such as generating a random splitting direc-
tion for some regions.

Remark 5.3.11. [Termination] There might be different options to be used as
termination criteria: (a) some geometric goal reached, or slow progress of it, (b)
number of regions or computation time at step 4 above a predefined limit.

Comparative analysis with other DA analysis proposals

In (Gonzalez and Bernal 2016), an algorithm to get progressively better estimates
of the DA was given. Nevertheless, in contrast with Algorithm 1 above, the
proposal in (Gonzalez and Bernal 2016) (a) is unable to establish asymptotical
exactness (see next section); (b) it includes no geometrical optimisation conditions,
thus stopping when any arbitrary piecewise Lyapunov set which fits the DA is
found; (c) it is computationally over-demanding since at each step the whole region
is reconsidered in the new partition. All these issues make the prior algorithm
provide worse numerical results than the one here presented (see example below).

EXAMPLE 5.3.2. Consider the following nonlinear system

.fl = —X9, (545)

.C.UQ =21 — g+ .CUQ.CU%. (546)

The system has one equilibrium point at the origin and one unstable limit cycle,
which implies the DA is bounded by the latter. In order to obtain the largest
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2|
1
g 0
1t
2t
2 0 i 2
x1

Figure 5.7: Estimation of the DA for Example 5.3.2.

possible estimate of the DA, Algorithm 1 comes at hand. We started it with the
region Q) = {z € R? : |z;] < 0.99}, i € {1,2}, on which a quadratic Lyapunov
function has been used as an initial estimate of the DA.

Figure 5.7 plots the limit cycle (the outermost blue closed curve was obtained with
backwards-in-time simulation) and compares it with different estimates of the DA
obtained by the iterations of Algorithm 1. The figure shows, in different colors, the
estimate of DA for each iteration of Algorithm 1. Note that, in this example, the
chosen geometry partition is based on a square tessellation, and we mazximised the
radius of a sphere center at the origin as the geometric optimisation goal. A colored
square means that the entire region belongs to the DA. The different sizes of the
regions are caused by the splitting into smaller squares at step 6 of the Algorithm.
The region proven to belong to the DA is the union of all colored regions.

Figure 5.8 shows the DA estimate in Figure 5.7 as a red line, very close to the
actual exact limit cycle (black line). For comparison, it also shows the result
applying the approach in (Gonzalez and Bernal 2016) with a blue closed solid line.
The approach in (Gonzalez and Bernal 2016) does not incorporate the geometric
border conditions neither previous estimates, reaching a high computational cost
with slow progress, obtaining inferior results. Both algorithms were stopped when
4 GB of memory were exhausted in the computations.

As the algorithm progresses, it gets progressively closer to the actual domain of
attraction of the origin (the open set inside the limit circle). However, as the
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-2 -1 0 1 2

Figure 5.8: Estimation of the DA for Example 5.3.2 (Black: exact Limit Cycle; red:
proposal here; blue: estimate in (Gonzalez and Bernal 2016)).

boundary of the limit cycle is not quadratic, we would, in theory, need an infinite
amount of piecewise-quadratic fragments to approzimate it, this is why the number
of regions ends up increasing greatly.

Next section analysis in depth the algorithm behaviour when the number of regions
increases: it can be proved that, under some assumptions, as the partitions get
finer, the accuracy of the DA estimate improves, reaching asymptotical exactness
i.e., limited only by finite computational resources in DA estimation (disturbances
and controller design induce other limitations as more complex/BMI problems
arise, out of the scope of this work).

5.4 Asymptotical exactness

In this section, Farkas Lemma (here recalled as Lemma 5.2.2) will allow to prove
asymptotical exactness of the above algorithm: with enough computational re-
sources, the algorithm is non-conservative in the precise sense to be discussed
next.
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Indeed, Theorems 5.3.1 and 5.3.2, obviously, apply to the particular case in which
the Lyapunov function has the form

0 0 .- 0.5p%
0 0 - 0.5p _

Vi(z) =T | . L Mz =T P (5.47)
0.5p; 0.5p7 -+ pptt

n .
These Lyapunov functions are piecewise-affine, as Vi (z) = Y piz; + pZH, short-

handed to PWALF. In this way, piecewise-polyhedral level:sets could be proven
to belong to the DA of the origin.

The key fact about the use of the above class of functions is that, due to Lemma
5.2.2, the proposed conditions in Theorem 5.3.1 are necessary and sufficient in the
sense that, if conditions in the referred theorem with the above Lyapunov function
structure (5.47) are not feasible then there is no PWALF for the set partition
fulfilling the needed Lyapunov condition'! with a single affine expression for the
PWALF in each Q. So, forcedly, the partition must be changed, because no other
theorem would find a PWALF on it if Theorem 5.3.1 does not work.

The above idea, jointly with universal-approximation capabilities of PWALF and
PWATS models as regions get smaller, allow to prove the following key result,
which states that if there exists any smooth Lyapunov function proving that a
particular point z* belongs to the DA of the origin, a PWALF will also prove that
2* belongs to such DA for a fine enough partition.

LEMMA 5.4.1. For any e1 > 0, eo > 0, there exist a fine enough partition of
a compact set Q such that a PWALF in the form (5.47), Vpw(x) = Vi(x) for
x € Q, approzimates any function V of class €2 and its gradient as follows, for
all x € Q:

[Vew (z) = V()] < e, (5.48)
||VVPw(£L‘> - VV(I‘)H S £9. (549)

1l Contrarily, in the quadratic case, such a Lyapunov function might exist but might be only
provable to be so with higher-degree Positivstellensatz multipliers, requiring a Sum-of-Squares version
of the theorems; anyway, there are also positive polynomials which are not SOS (Jarvis-Wloszek et
al. 2005) so these conservatism sources cannot be removed in general, except in the above-referred
affine case.
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Proof. First, note that the gradient of a PWALF is a piecewise-constant function'2
If a function V(z) is of class 42, then its partial derivative VV is of class €7,
meaning that VV is bounded in © and can be approximated by a piecewise con-
stant function VVpy to any arbitrary error €3, as piecewise constant functions are
universal function approximators, as long as the partition is fine enough, so there
exists ¢ (z) such that ||[¢(z)|| < e3 for all z € Q and VV(z) = VVpw () + ().

Integrating the gradient, we get:
1 1
V() = [ TVOa)Tedr = [ (T () + 0(00) (5.50)
0 0

where ¢ (Az) is the approximation error, which verifies ||¢)(Az)|| < 3. Hence,

qu):‘Alvv>w4medi+:AIwcx@Tdi (5.51)

SO we can assert:

HW@—%w@NSAHMMWWWMS%MH (5.52)

Choosing €3 such that €1 > max,cq 3|z, and €3 < €9, we can prove (5.48) and
(5.49). As a result, we can approximate both VV and V as closely as desired by
increasing the partition granularity. (|

LEMMA 5.4.2. For any € > 0, there exist a fine enough partition of a compact set
Q such that, given a continuous function f(xz), a PWATS model can be obtained

fulfilling:

[(Afz +b7) = f)]| <e, (5.53)
Vie{1,2,...,r},Vo € Qp

Proof. Consider the 2-rule PWATS model given by A¥ := 0, b¥ := min,cq, f(z),
bk := max,cq, f(z), where maximum and minimum have been considered to
be computed element-wise (b¥ and b5 are vectors) on a compact set . As
f(x) is continuous, by assumption, there exists a fine enough partition such that
0¥ — f(z)|| < ||b5 — b'|| < e for any arbitrary choice of e. O

12Understanding the gradient at faces common to several regions to be defined as the average of
the different piecewise gradients. As such faces are zero-measure sets, such formal definition will not
have any influence in the integral-based results in the remaining of the proof.
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Now, we can state the key result of this chapter, proving that we can be at least
as good as any conceivable algorithm based on Lyapunov level-sets.

Theorem 5.4.1. Let x = 0 be an asymptotically stable equilibrium point for the
nonlinear system

i = f(x) (5.54)

where f : Q — R™ is locally Lipschitz, Q2 C D is compact. Assume that a (possibly
small) polyhedron B containing the origin has been proved to belong to the DA,
and define a compact set © := Q — int(B). If there exists a function V : © — R,
and € > 0 such that:

1. V(x) is of class €2 in an open set including 2.
v
- Oz

3. There exists a level set in the form V,, = {z : V(z) < as}, for some ag >0
such that V,, C Q.

2. V(x) flx) < —¢, for all x € O.

Then, there exist a fine enough partition of © such that any PWATS model fulfill-
ing conditions in Lemma 5.4.2 allows finding a PWQLF (Vpw (x)) which fulfills
conditions in Theorem 5.8.1, and a level set of the PWQLF allowing to prove that
any point in the interior of V,, belongs to the DA of the origin.

Proof. By Lemma 5.4.1, there exists a fine enough partition such that there exists
a PWA function fulfilling: VVpw (z) + ¢(x) = VV(z), ||¢(x)] < e3, and, by
Lemma 5.4.2, that for all vertices, for all regions there exists ¢¥(z) such that
Az 4 b+ oF = f(x), |¢F(2)|| < e4, for any £4 > 0. Then, we can state, denoting
fF(x) := A¥z + bF, by continuity of f(x) that there exists f := maxgeq ||f(2)],
and by continuity of VV/, that there exists V := max,cq ||VV (z)||. Now, we have:

VVew (2) ff (x) = (VV = (@) (f(x) — ¢} (x))
=VV - f(z) = ¢(x)- f(x) = VV - 6} (2) + ¢ (2)¢] (2)
< —edey-fHes-V+egen

So, for any 0 < 7’ < ¢, a suitable choice of small enough 5 and €4 can prove that
there exists a fine enough partition so that:

VVpw (@) fF(z) < =" (5.55)
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Now, from Farkas Lemma, the existence of the multipliers U}, in (5.31) in the
affine case (I = 0, 5, = 0) are a necessary and sufficient condition for (5.55) to
hold, as the region €2 does not contain the origin by assumption. Regarding the
multiplier-based continuity conditions (5.25), Corollary 5.2.2.1 ensures that they
are also necessary and sufficient for the PWA case.

Last, regarding geometric conditions (level set), any point in the interior of V,, is
in the (closed) level set ay for some a1 < .

Consider now &1 < 0.5(ag — o). Then, select any choice of « such that a; +¢1 <
a < az —€1. In this way, given the above 1, there exists a fine enough partition
so that (5.48) holds; hence, the level set of Vpy, denoted as Vpw (o) = {x :
Vew (x) < a}, fulfills .

Vo, C pr(Oé) C Va, (5.56)

because all x € V,,, will belong to the level set of Vpy, given by Vew (o1 + €1),
and also, all elements of the level set Vpy (ae — €1) will be included in V,,.

If a fine enough partition is chosen such that both (5.55) and (5.56) hold, we have
found a PWALF fulfilling the required derivative conditions and including in a
level set any desired point in the interior of the level set of the “true” Lyapunov
function. If we consider that piecewise-affine Lyapunov functions are a particular
case of piecewise-quadratic ones, the theorem is proved. O

Remark 5.4.1. Note that, by Theorem 5.2.1, all trajectories of the nonlinear
system inside the level set Vo, will enter B, because forcedly Vo, N B # 0, as
the trajectories should abandon V,, in at most as/e time units, and they cannot
abandon Q if they start in the interior of V,,. For any of such interior initial
conditions, a PWQLF proving that it belongs to the DA of the origin can be found
because of the same argumentations.

EXAMPLE 5.4.1. As a last example, for the sake of comparison, consider the
system in (Y. Chen et al. 2015, Example 3):

. 2 3 2 2 . .
TG =—x1+2]+2x]+2]T2 — 125 + T2, T2 = —SINT| — T2,

altogether with a PWATS model of it, (Gonzalez, Sala, Bernal, and Robles 2015),
as an input to Algorithm 1. Figure 5.9 shows the DA estimate in the referred
work (obtained via BMIs and SOS tools) with a red closed solid line whereas our
estimate is shown with a green-coloured area. Clearly, our proposal reaches much
better estimations than (Y. Chen et al. 2015), as expected due to the asymptotical
exactness; however, region size needs to be decreased as the border of the “true”
domain of attraction is approached, as discussed in earlier examples.
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-2 —1 0 1 2
Z1

Figure 5.9: Estimation of the DA for Example 5.4.1. (Red: estimate in (Y. Chen et
al. 2015); Green: proposal here; magenta: some trajectories inside the DA; blue: some
trajectories outside DA.

Remark 5.4.2. With prefized regions, our proposal renders LMI conditions (even
linear programming ones, in some cases) so the computational cost is basically
identical to prior PWATS literature (increasing just a small amount due to the
handful of extra multipliers proposed here). However, the actual DA of nonlinear
systems s, in general, not piecewise quadratic, so the exact domain of attraction
cannot be obtained with finite computational resources with our approach'?.: as the
required estimation accuracy increases, the number of regions must increase (with
decreasing size). Hence, Theorem 5.4.1 can only prove that finite computational
resources are needed to find a particular point in the interior of the “true” DA.

5.5 Conclusion

In this chapter, an iterative linear matrix inequality methodology has been pre-
sented for estimation of the domain of attraction of a nonlinear model. The
proposal, based on a systematic exploitation of geometrical and stability facts via
piecewise affine Takagi-Sugeno models and piecewise Lyapunov functions, has been

131n fact, neither with any alternative conceivable approach: it is well known that nonlinear
differential equations rarely admit explicit solutions (or DA expressions) in closed form, requiring
numerical simulation (Slotine and W. Li 1991)
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shown to outperform the most relevant works on the subject. Estimates of the
domain of attraction have been increased by “emptying” previously proven regions
and extending the modelling region in “promising” neighboring areas. Moreover,
based on universal-approximation properties of TS models, it has been proved that
the estimate of the domain of attraction approaches the level set of any existing
¢? Lyapunov function of the original nonlinear system, as the partition where
the piecewise TS model is obtained gets finer (smaller regions): the proposed
procedures are asymptotically exact.
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Chapter 6

Parameter-dependent Lyapunov
function

This chapter is concerned with nonquadratic conditions for stabi-
lization of continuous-time nonlinear systems via exact Takagi-Sugeno
models and generalized parameter-dependent Lyapunov function. The
approach hereby proposed feeds back the time derivatives of the mem-
bership functions through a multi-index control law that cancels out
the terms responsible of former a priort local conditions. Thus, a
nonquadratic controller design in the form of linear matriz inequali-
ties is achieved; it does not require bounds on the time derivatives nor
any extra parameters. The examples included are shown to outperform
former approaches.

The contents of this chapter appeared in the journal article:

e (02017 IEEE. Reprinted, with permission, from T. Gonzalez, M. Bernal, A.
Sala, and B. Aguiar (2017). “Cancellation-Based Nonquadratic Controller
Design for Nonlinear Systems via Takagi-Sugeno Models”. In: IEEE Trans-
actions on Cybernetics 47.9, pp. 2628-2638.
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6.1 Introduction

Among the variety of nonlinear control techniques, those based on exact convex
representations have progressively gained the attention of the control community,
due to their combination of mathematical formality and numerical applicability
(T.M. Guerra, Sala, and Tanaka 2015). The simplest of these representations is
the Takagi-Sugeno (TS) model (Takagi and Sugeno 1985), originally appeared in
the fuzzy context for practical engineering problems (L. Wang 1997), later cast as a
rewriting of nonlinearities into convex forms within a compact subset of the state
space, a methodology referred to as the sector nonlinearity approach (Ohtake,
Tanaka, and H. Wang 2001; Taniguchi, Tanaka, and H. Wang 2001). The convex
structure allows the direct Lyapunov method to be applied (Tanaka and H. Wang
2001), which usually leads to conditions in the form of linear matrix inequalities
(LMIs): these exhibit numerical advantages because they are efficiently solved via
convex optimization techniques (Boyd et al. 1994), which are already implemented
in commercially available software (Gahinet et al. 1995; Sturm 1999). Moreover,
due to their exactness, conclusions drawn on the TS model of a nonlinear one, are
directly valid for the latter (Z. Lendek, T.M Guerra, et al. 2010).

As in many other areas of control theory, quadratic Lyapunov functions V =
2T (t) Pz(t) were originally used because of their simplicity: results thus obtained
remained sufficient, this is to say, with a certain degree of conservativeness (H.
Wang, Tanaka, and Griffin 1996). Therefore, larger classes of Lyapunov functions
that include the quadratic one as a particular case were tried: piecewise (Jo-
hansson, Rantzer, and Arzen 1999; Campos et al. 2013), line-integral (Rhee and
Won 2006; Marquez, T.M. Guerra, et al. 2013), and parameter-dependent (also
known as nonquadratic or fuzzy) (Blanco, Perruqueti, and Borne 2001). The latter
class replaces the common positive-definite matrix P by a convex sum of positive-
definite matrices P;, weighted by the membership functions (MFs) in the TS model
(those that capture the system nonlinearities and hold the convex sum property).
While results in the discrete-time case made an impressive progress (T.M. Guerra
and Vermeiren 2004; T.M. Guerra, Kruszewski, and Bernal 2009; Ding 2010; Z.
Lendek, T.M. Guerra, and Lauber 2015), the use of parameter-dependent Lya-
punov functions (PDLFs) in the continuous-time case was restrained.

The reason behind the stagnation of the nonquadratic continuous-time framework
has been the appearance of the time derivatives of the MFs when a PDLF is in-
volved (Tanaka, Hori, Taniguchi, et al. 2001): these derivatives cannot be directly
cast as convex expressions and, when controller design is under consideration, they
lead to algebraic loops, making it difficult to obtain LMI expressions. A way out
of these issues has been found in the introduction of artificial a-priori bounds on
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the time derivatives of the MFs (D. Lee and D. Kim 2014) or in the LMI-imposed
bounds on partial derivatives (Pan et al. 2012): both solutions are local.

Contribution: This chapter is concerned with nonquadratic controller design of
nonlinear systems via exact TS representations, based on which a multi-index con-
trol law is proposed that feeds back the time derivatives of the MFs. In contrast
with former approaches, it does not require a priori bounds on the derivatives
(Tanaka, Hori, and H. Wang 2003; L. Mozelli, Palhares, and Avellar 2009; D. Lee
and D. Kim 2014) nor in their partial form (T.M. Guerra, Bernal, et al. 2012;
Pan et al. 2012); this is achieved via a suitable control law instead of restric-
tive path-independent conditions (Rhee and Won 2006). The proposal employs:
(a) a generalized parameter-dependent Lyapunov function (GPDLF) (Bernal and
T. M. Guerra 2010) along with a tensor-product notation in order to fully exploit
Polya-like relaxations, which are asymptotically sufficient and necessary (Sala and
Arino 2007); (b) a generalized multi-index control law that cancels out the terms
that cause a priori locality in the Lyapunov analysis; moreover, the resulting
conditions are purely LMI. A preliminary version of this work has appeared in
(Aguiar, Méarquez, and Bernal 2015). Some conditions for regularity of the pos-
sible algebraic loops arising from derivative-feedback are proposed, as well as a
robust-observer based implementation (following (Levant 1998)) for environments
with bounded disturbances or modelling errors.

The contents in this chapter are now described. Section II introduces a multi-
index notation for exact TS models and GPDLFs: the issues raised by former
nonquadratic schemes are discussed in order to naturally lead the reader to the
problem statement. In Section III a generalized multi-index control law that
employs the time derivatives of the MFs is proposed: it is shown that, thanks to the
control law structure, these derivatives can be directly obtained from the closed-
loop model. Section IV provides examples on how the proposed methodology
improves both the feasibility set of former approaches as well as the quality of
solutions. This report concludes in Section V where final remarks and future
work are discussed.

6.2 Preliminaries

A well-established procedure for convex rewriting of nonlinear systems within a
compact set C D {0} of the state space, called the sector nonlinearity methodology
(Taniguchi, Tanaka, and H. Wang 2001), is available; it considers nonlinear models
of the form

#(t) = f(2(2))x(t) + g(=(x))u(t), (6.1)
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with f(-) and g(-) being nonlinear vector functions of the state z(t) € R", u(t) €
R™ being the input vector, and z(z) € RP the premise vector:

22) = [a(2) 2@ - @),

which collects nonlinearities z;(-), j € {1,2,...,p} in (6.1), which are assumed to
be continuous in C and chosen in such a way so that f(z) and g(z) are multilinear
in z.

Since, by continuity and compactness, the premise vector z(x) is bounded, as-
sume z;(-) € [gj,zj] , 7 €{1,2,...,p} in C. By defining the following weighting
functions (WFs):

) = L2 ) =1 uf). g € 1.2k

each premise variable is written as z;(z) = wggj + w{?j, with 0 < wf <1,
w) + w] = 1. Thus, grouping all of them leads to a TS model with p nested
convex sums:

x(t) = Apx(t) + Byu(t), (6.2)

11 1
_ 1,2 P
Ay = E E E wi1w¢2"'wz‘pA(il,izw,ip)a

1 1 1
T 5D SHD DU X SRR
A(i17i27~-~7ip) = f(z('r)”wlll :w?zz---:wfp:h
(

By in,..ip) = 9(2(2)) [t —w2 ==t =1,

with Ag, iy, € R™™, By ig,.i,) € RP™ ;€ {0,1}, 5 € {1,2,...,p}. This
sort of notation for TS models corresponds to the tensor-product approach (C.
Arifio and Sala 2007; Campos et al. 2013).

The following adaptation of the standard multi-index notation will be used (Sala
and Arino 2007), being a and b p-dimensional multi-indexes (p-tuples):

wg = (w))™ (W)™ (wh)™ witha = (a1,a2,...,a,), a; € {0UN},

wP = ()™ (@)™ (w?)’ withb = (by,ba,...,by), b € {OUN},
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from which it is clear that nested convex sums A,, and B,, in (6.2) can be com-
pactly rewritten as:

_ JO 1x 1 _ JO o 1
w = E W-(l)wloAiov B, = E :W-(l)wloBiov

Jo+ip=1 jo+ip=1
with jo +1i0 = (J§ +140,43 +3,....j5 +i5,) being the element-wise sum of p-
tuples, 1 = (1,1,...,1).
e —

p ones

The previous notation will be key for the following developments and the reason
behind the appearance of multi-indexes a and b will be the possibility of using a
higher number of convex sums to relax the results'. Traditionally, 2P composite
MFs of the form h; = Hé’:lng have been often used; in contrast, this chapter has

privileged the use of the so called WFs wfj due to the fact that (a) they lead to
better relaxations with a fewer number of LMIs due to the tensor-product structure
(C. Arino and Sala 2007; Campos et al. 2013), and (b) only p time derivatives wj
will be required, instead of 2P which would be the case if composite functions h
are used (Aguiar, Marquez, and Bernal 2015).

Consider a GPDLF candidate of the form
V(z)=a2TP 'z (6.3)

where P, is a convex summation with tensor-product structure, as follows: for
a given degree vector ¢ = (c1, ¢a,...,¢p), ¢; € N, where ¢; is the degree of V() in
(wh, w}), Py is defined as:

1 1 1 1

_ 1 2 P P

P, = g w1+ E wh i g w . E Wiea |- g W E Wy Pyiby-b,
P P

i1=0 i1 =0 i3=0 i52=0 il=0 ipP =0

= 3 ()"l DD () (wh)

a1+bi=cy az+ba=cz

a;_(wﬁ)a(wf)b <Zi> (gz) (Z) Py,
_ Y Wowl< )z»b, (6.4)

a+b=c

INote that f(z(z)) can be a polynomial of z(x). For instance, if z1(x) = sinz and z2(x) = cosz,
then f(z) = sin?(z) + 3 cos(z) sin(z) = 27 + 32122, which corresponds to jo +ip = (2, 1).
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. _ pT ol a2 i\ _ ¢!
with Pp = Py > 0,0 =d;+i5+---+14/, j € {1,2,...,p}, <bj) = 5 b
and <E> = ?:1 <ZJ> Notice that each P is a single variable grouping all

j

the terms that share the same membership monomial wiw®. The addition of the
combinatorial number will be convenient later on, as

1 1 1 K
> wiwp <E) = (Z w111> Y wl ] =1

a+b=c i1=0 ip=0

Example: In order to illustrate the notation just introduced, consider a TS model

with p = 2 nonlinearities. By the sector nonlinearity methodology described

above, only functions w}, wi =1 —wl, w3, and w? = 1 — wi arise. Therefore, if

¢ = (e1,c2) =(1,1) then

P(]o + wéwam + w%wgplo + w}w%Pn
=3 (wh)™ ()™ 37 (wh)® (w?)"™ Py,
ar1+bi1=1 az+bz=1

with bl = ’L%, bg = Z%, and b = (bl,bg).

I
S
O =
S
oN

If ¢ = (¢1,¢2) = (2,2) then

11 11
_ 1,1 2 2

Py=Y Y whwp Y > whwhPs,

i =0 i1=0i2=0
(1 22P 12222P 1\2 22P
= (wp) “(wg) "Poo + (wp) wywi2Po1 + (wg) (wi) Pos

1,12 2 1,1/, 2\2
) 2P0 + wywywywi4 Py + wywy wl) 2P2

“Pao + (w}) wiw?2Pyy + (wh)*(w?) Py

)
(W) ) )" (51 (52) P

a1+b1=2 as+by=2

with by = Z% —Q—Z%, by = Z% +i§, b = (bl,bg).

This form includes Lyapunov functions previously appeared in non-quadratic
schemes; for instance, those in (Blanco, Perruqueti, and Borne 2001; T.M. Guerra

120



6.2 Preliminaries

and Vermeiren 2004; Tanaka, Hori, and H. Wang 2003) have the form
Vi) =a" ()P a(t): Po=_ hi(2(t)P;, (6.5)
=1

with P, = PT > 0,4 € {1,2,...,r}. But, since every h; = H?zlng, it is clear
that the latter is equivalent to (6.3) with ¢ = 1.

Generalizations of the sort appeared in (D. Lee and D. Kim 2014; Bernal and T. M.
Guerra 2010), which use multiple convex sums on MFs h;, are also described by
the GFLF presented above, since

V(z) = 2"0)Py'a(t) + Pa o= > Y Y hihiy-o-hi Piiyei,, (6.6)

i1=lis=1  ig=1

with P iy.i, = P;lpig._iq > 0,4 € {1,2,...,r}. Expressions like (6.6), which
is a homogenous polynomial in h; of degree ¢, can be trivially transformed in a
tensor-product expression by replacing h; as the product of p 2-rule individual
weighting functions and reordering the factors. The resulting degree vector is

c=1(q,q,...,q). Details are omitted for brevity.
N——
pq’s
The following notation will be used in the sequel:

Tw = dth (TW)7 Tv_vl = % (T\;l) s

[é %)]:Lé y;y At (x)= A+ AT,

Arguments will be omitted when convenient.

The Lyapunov function (6.5) has been usually combined with a control law u(t) =
Fthl, where F; € R™*" 4 € {1,2,...,r} are gains to be determined. Anal-
ogously, when Lyapunov function (6.6) is used, a generalization of the previous
control law is used, i.e., u(t) = Fp Py, ! with h standing for multi-indexes associ-
ated with nested convex sums. Naturally, these control laws can be generalized
as the ones in the tensor-product form below:

u(t) = FuPyla(t), Fy = Z wawP <](;> By,

with Fp, € R™*™ grouping all the terms that share the same membership monomial
wawP, and P, as in (6.3), both for a given ¢ = (¢, ca,...,¢p), ¢; € N.
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These control schemes lead to local stability conditions because a priori bounds
(D. Lee and D. Kim 2014) or LMI-imposed ones (T.M. Guerra, Bernal, et al. 2012)
on the time derivatives of the membership functions have to be employed. The
reason behind locality is the fact that the term Py appears when investigating
the stability of the closed-loop model &(t) = (Ay + ByFwPgt) x(t), since the
time-derivative of the corresponding Lyapunov function (6.3) is:

V=iTPte+2TP i 4+ 2T P
= 2T P! (A + BuFwPy') 2+ () + 27 Pyla < 0
= AyPu + ByFy + (%) + Py Py Py,
= Ay Py + ByFy + (¥) — Py < 0.
It turns out that the term Pw is hard to cast as a convex sum without conservative
steps (Tanaka, Hori, and H. Wang 2003; Rhee and Won 2006; T.M. Guerra, Bernal,

et al. 2012; D. Lee and D. Kim 2014) and cannot be therefore associated with the
rest of convex expressions in order to obtain LMIs.

Problem statement: The objective of this work is providing suitable elements in
the feedback controller able to cancel out the effect of the time derivative of the
WFs in Py, in order to achieve stability up to the modeling area C, assuming
absence of control saturation.

6.3 Main Results

Consider the TS model (6.2) altogether with the multi-index control law with
derivative feedback given by:

u(t) = (Fw + Gw) Pola(t), (6.7)

with Py as in (6.4), Fy, and G, defined as follows?

Fe, = Z wowP <]§> F,,
a+b=c

. d

Gw = Z 7 (wgw‘f) <E> Gbp,
a+b=c

2For simplicity, it has been assumed that the number of nested convex sums in Fy is the same as
that of the Lyapunov function (6.3), i.e., “c”, but of course it can be chosen independently as a new
index “d” with straightforward modifications. For G, such an adaptation will be more involved.
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with Fp,Gp € R™*"™ and P, € R™ ", being matrices to be found, all of them
sharing a given degree vector ¢ = (¢1,¢2,...,¢p), ¢;j € N as in (6.3) and (6.4).

In the next subsection, stability of the corresponding closed-loop TS model
(1) = (Aw + By FWPot + Bw(';wpv;l) () (6.8)

is analyzed via the GFLF candidate (6.3). It will be assumed that the time
derivatives W), [ € {1,2,...,p} in (6.7) are well defined and available, so they will
appear in the control law. Computation of these derivatives will be discussed in
more detail in subsection 6.3.2.

6.3.1 Lyapunov analysis

Lyapunov analysis of the previous system involves the time derivatives Py, and
Gw; they come from the time derivative of nested convex sums such as Py, in
(6.4) and have to be therefore analyzed under the same notation searching for
(a) maximum relaxation (algebraic association of similar terms) and (b) a way to
cancel out the effects of Py through the terms in Gy,. We begin by noticing that

o0 = g ((w é)““-<w8>“"):;al“’é(wérlws,

d d b b ST
= (wh) = = ()™ D)) = 3 b (w) "L,
di dt £
which, considering the identity w} = —), leads to
d
pr (Waw?) = wpwd + wiwb
P P
=wP Z apih (w(l) Z lwo wP
=1 =1
- -1
= Zwéwgw? (awh — bwp) (whwl) . (6.9)

But, since wé +w} =1, we have that
! l l l ! !
aqwi — bwy = (qw) — bwg) (wh + w})
1,1 L, i, 1,1
= —wywyb — wywi by + wiwya + wiwya;

S (wh)? (wh)® (sgn(e)a — sgn(d)br).

d+e=2

123



Chapter 6. Parameter-dependent Lyapunov function

where d,e € {0UN} and sgn(-) stands for the sign function with sgn(0) = 0.
Therefore, < (wgw?) in (6.9) can be rewritten as

P

. a d—1 e—1

Zwéwow‘f Z (wh)" (wh)" (sgn(e)ar—sgn(d)by),
=1 d+te=2

which can be now substituted in P, in order to get

D> (WhwP + wiwD) <§> Py

a+b=c

— Z Z wéwgwi’ Z (wé)dfl(wi)&l (sgn(e)a;—sgn(d)b;) <E> by

at+b=c l=1 d+e=2

ng Z ng_w?_ Z (sgn(e)a; — sgn(d)b;) <]§l> Py,  (6.10)
1=1

5+E:cl+2 (al,bl7d,e)EP(C_Ll,l_717cl)

Py

under the following definitions:

ﬁl_:(617627...,dl—1,...,dp),flj E{OUN}7

Bli - (617625"'7bl_15"'76p)’
B! = (Bisbase s b By) 1By € {OUNY,

cl+2:(01,027...,Cl+27~-~acp)7CJ' €N
ap +d=_C_Lla
Pla ) = | (s bid,e): 050"
d+e=2

Similarly to (6.10), Gy in (6.7) can be expressed as:

Gw = Z’wé Z ng*w?l* Z (sgn(e)a; — sgn(d)b;) <]—§l> Gy (6.11)
=1

5+E:CH’2 (al,bl,d,e)ep(ﬁl,gl,cl)

Theorem 6.3.1. The origin x = 0 of the nonlinear system (6.1) under the con-
trol law (6.7) is asymptotically stable for any trajectory starting in the outermost
Lyapunov level within the modeling area C where (6.2) is a valid TS model of
the system and (6.3) an associated valid GFLF, if there exist matrices Fy, Gy,
and P, € R"™"™ B, = Pg > 0, all of them sharing a given degree wvector
c = (c1,¢2,...,¢p), ¢j € N as in (6.4), such that the following conditions hold
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forallb; <cj,bj<c;+1,a+b=(c+1)+2%
3 (g) (Aiy Po + Big By + (%)) < 0, (6.12)
ig+bj:i7j

S Y ol sonlam) () (BuGa + () - Fa) =0,

(8,b.jo.i0) €Q(a,b,c!+2) (ar,b1,d,e)€P(ar,bi,c1)

(6.13)
with
a+jo=a,
= =, b+iy=b
Q(a,b,c+2) = (aaba.]0710): a_|_]:)0_cl+2’
j0+i0:1

Proof. Condition P, = Pl > 0 guarantees (6.3) is a valid Lyapunov function
candidate. Taking into account the closed-loop system in (6.8), the time derivative
of V(x) is

V=iTPle+ 2T P e+ 2T P
Y (Aw + ByFyPot + BwGWPv;l) x4+ () +2TPlr <0
= APy + ByFy 4+ ByGuw + () — Py <0,
which can be guaranteed if

AwPy 4 ByFy + (%) <0, (6.14)
ByGw + (%) — Py = 0. (6.15)

Condition (6.14) can be rewritten as:

APy + By Fy + (*)

:ZW_(]')O 101410 Z WOW1 < > b

jot+io=1 a+b=c
—|—ZW%° 1 Bi, Z wawP < )Fb—|—( )
Jjo+ip=1 at+b=c

=Y wiwp > <E> (Aig Po + Biy b + (%)) < 0.

at+b=c+1 ) +b;=b,
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Thus, LMIs (6.12) guarantee the previous inequality, i.e., (6.14). Condition (6.15)
is developed as follows:

P
B,Gy + ( Z wi'wlo By Z wh Z wgl7w§l7 Z (sgn(e)a; — sgn(d)b;)

Jo+io=1 =1 a4+b=c'*? (ai,bi,d,e)EP(as,bi,c1)

><< )Gbl+ ZwOZWO wP > (sgu(e)a; — sgn(d)b) <]§l> P

=1 a+b=c!t? (ai,bi,d,e)€P(a,bi,c;)

= Zw(jf io Zwo Zwo wP' Z (sgn(e)a; — sgn(d)b;)

Jo+io=1 =1 a4+b=c'*? (ai,bi,d,e)EP(a;,bi,c1)

< () (B + () - Fy)
= Z W) ~l_wllc’l_ Z Z (sgn(e)a; — sgn(d)by)

=1 a4+b=(c+1)!+2 (a,bdo,io)EQ(E,&C"”)(M,bz,d7€)€7’(&z,51,61)

< (1) (BG4 = Piy) (6.16)

Q(5~7B7Cl+2) = {(5757j07i0) :5-+j0 = 5~7]?)_|_i0 = B,ﬁ—Fb = Cl+27j0+i0 = 1} ’

Thus, equation (6.16) can be seen as a sum of p terms, each of them multiplied
by its corresponding ). Clearly, if the matrix equalities (6.13) hold, the corre-
sponding term in the p-term sum (6.16) is zero, thus concluding the proof. O

Remark 6.3.1. In order to reduce conservatism, apart from increasing the com-
plexity of ¢ in conditions (6.12) and (6.13), relazations of convexr summations
as those in (Tuan et al. 2001) or (Peaucelle et al. 2000) may be used to slightly
increase the number of decision variables striking a reasonable tradeoff between
accuracy and computational resource requirements (see, for instance, the related
work (Aguiar, Mdrquez, and Bernal 2015)). These ideas have been used quite a
few times in numerical examples in TS literature, but they will be intentionally left
out as computational efficiency issues are out of the scope of this thesis.

Ezample: Consider a 2-rule TS system & = wq(Aox + Bou) + w1 (A12 + Byu), and
a GFLF Py = w3 Py + 2wow; Py +w? P2. Then, condition (6.12) would amount to
enumerating the degree-3 monomials:

(w0)3 :AgPy + BoFy + (*) <0
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(wo)*wy :2(AgP1 + BoF1) + (A1 Py + B1Fp) + (%) < 0
wo(w1)? :2(A1 Py + B1Fy) + (Ao Py + BoFy) + () <0
(w1)? : A1 Py + B1F> + (x) <0
and condition (6.13) would amount to:
o (wo)? :2ByGo — 2BoGy + (%) + 2P, — 2Py =0
o (wo)wy :2BoGo + 2B1Go — 2BoGa — 2B1G1) + (%) + 2P, + 2Py — 4Py = 0
1/:10’(110(’(1/1)2 :2BoG1 +2B1Gy — 2ByGy — 2B1Go + (*) + 4P, —2P; — 2P, =0
o (wy)? :2B1Gy — 2B1Ga + (x) + 2P, — 2P, =0

Should the degrees of Py, Fy, and Gy, increase, conditions would be more relaxed.
The theorem statement provides the expression for such general case, contemplat-
ing, too, the general power-of-two tensor-product case in the problem statement.

Now, consider a 4-rule TS system & = wiwd (Agox + Boou) +wiw? (Agrz + Boru) +
wiwi(Ar0z + Biou) + wiw?(A11z + Biiu). Then, some of the conditions in 6.13
corresponding to 1y} are:
3, o2
(wg) (w§) s 2BooGoo —2BooG1o+ (%) +2P1o— 2Py =0

3
(w(l)) w%wf 2BO0G01+2B01G00—2B()0G11—2B01G10+(*)
+2P10—2P01—2P00+2P11:0

3 2
(w§)(w?)™: 2By1Go1 —2Bo1 G11 + (%) +2P11 — 2Py =0

2 2
(w(l)) wi(wg) :2Bo0Goo+2B10Go0—2BooGao—2B10G10+ (*)
+2P1g—4Py+2P2p=0

3 2
(w%) (w%) : 2311G11 —2311G21 +(*>+2P21 —2P11 =0

6.3.2 Computation of Time Derivatives of the WFs

Once the previous theorem finds a feasible solution, feeding back the time deriva-
tives of the WFs i}, [ € {1,2,...,p} needs a way of obtaining it from measure-
ments. Several situations arise:
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Undisturbed-case, model-based approach

In the undisturbed case, if memberships’ arguments have relative degree greater
or equal to one with respect to the input, then state measurement is enough, i.e.,
if z is such that
0z 0 (0
~ Ou  Ou (8:6
e., (0z/0x)B,, = 0, then the terms

(Ayz + Bwu)> (6.17)

T

wl0 <a(‘;;)0> 'éla l€{1a27"'7p}a

will all depend exclusively on the states. This fact was used in prior literature,
such as (Tanaka, Hori, and H. Wang 2003), in order to feed back such derivatives
to the control law without extra measurements, though they were remodelled as
convex expressions in order to obtain LMI conditions. However, if relative degree
of z; with respect to the input is zero, i.e., Z; explicitly depends on u so (6.17) does
not hold, then an algebraic loop appears: the control depends on the derivatives
of z; but, these derivatives depend on the control. Thus, such loop must be
algebraically solved at each sample. As x is measurable, such step can be easily
done, as follows.

First, note that the time derivatives of the WFs can be directly solved from the p

equations below:

Z' T
= <%> (Auw+ BuFuw Pyt + BuGuPyt ) . (6.18)

for i € {1,2,...,p}, where Gy must be substituted by (6.11). For a given mea-
sured z, the above results in a linear system of equations to be solved at each
sample. Indeed, defining G;, [ € {1,2,...,p}, as

~ a3~ Bl— C
G :Z wi  wb Z (sgn(e)a; — sgn(d)by) <l_)l> Ggr,
5+E:Cl+2 (al,bl,d,E)GP(&L,Bl,cl)

the term Gy in (6.11) can be written as Gy = > b, whG), from which, each of
the p equations (6.18) becomes:

- dwy = A -1 - awo
wp|1=( - ) BuGiPy e = i o B WGPy e

I=1,1#i

iNT
- <aw0)(,4w + By, FyPy)z, i€ {1,2,...,p}. (6.19)
€T
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These p equations can be grouped as:

Wy Wi - =Wy, wé X1
~War 1-Way - =Wy, | |w Xo
. T Bl el I (6.20)
“Wpr =W - 1-Wpy | [ Xp
K~ =
-w b X

where expressions W;; (elements of a block-matrix W) and X; (elements of a
block-matrix X), 4,1 € {1,2,...,p}, are given by

Owé ’ 5 p—1
Wi = 8£E BwGle X

dwp ’ —1
X = (5 (Aw + BuFwPy')

Therefore, v = (I — W)~ X is a vector whose entries are the desired time deriva-
tives of the WFs, where both W and X are functions of state x.

Remark 6.3.2. In general, solving nonlinear algebraic loops during on-line op-
eration would require iterative approaches (Kelley 1995) without a guarantee of
termination time: such approach would pose severe drawbacks regarding real-time
controller implementation. However, given the explicit expressions in TS form,
the computational cost of the proposed derivatives is small and predictable (non-
iterative): it requires computing the weighting functions, carrying out the summa-
tions, evaluating some gradients and tnverting a small p X p matriz.

Regularity conditions

Though the inclusion of the term Gw was key in solving the algebraic loop, ob-
taining the time derivatives of the WFs depends on whether the inverse of matrix
I — W exists or not, i.e., there might be points of x(t) where I — W is singular.
To guarantee regularity of I — W, (conservative) LMI conditions can be imposed
based on small-gain argumentations.

From the knowledge of the explicit expressions of WEF’s, a bound on the maximum

singular value of
- dwg T owp ok
T, (z) = (8_) (81,) (6.21)

will be assumed, in the form (J,,(z)) < & for all = in a circular region of a
prefixed radius p. Then, we can assert:
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Theorem 6.3.2. The largest spherical region where I — W is regular inside C
has radius greater or equal to p if, given bound k, there exist matrices M;,...;, €
RP =" for g given ¢ = (c1,¢2,...,¢,), ¢; € N as in (6.4), such that the
following optimization problem is feasible:

max p subject to

Py > p*I (6.22)
1 -
MWI+(*)+?PW (%) >0, (6.23)
[HY, HZ ... HE] I
with Py = Puw ® block-diag[I I ... I], H,, = B,Gy, 1 € {1,2,...,p}, and
N——
p times
I I 0 --- 0 0
0 I -1 --- 0 0
7= ,
0 0 0 I —I

Proof. We will prove that inequalities (6.22) and (6.23), along with the LMI ob-
jective, maximize the radius of the quadratically invariant sphere contained in C,
while keeping wo bounded and allowing to W to be regular inside the sphere. Let
us verify first inequality (6.22). We are looking to:

ala Tp-1
7<1 C{V(JJ)Z:E Pw:v<1}, (6.24)
where p is the radius of the largest sphere inside V(z) < 1. Hence, expressing
the initial ellipsoid and the sphere on this way, the S-procedure comes at hand to
obtain:

£ETI‘

I
F_ZUTP‘;l.T>O<:>?—P‘;1<:>PWZPQI,

where condition (6.22) guarantees that Py, > p*I.

Let us now discuss the second condition (6.23). In this case, we want to guarantee
regularity of I — W inside the Lyapunov level set at the right-hand side of (6.24).
Following (6.20), the matrix I — W will be invertible if W has a maximum singular
value lower than one. Rewriting W as:

W = Jo, (2) [Bwé‘lP‘;lx, BuGoP3la,..., Bwéppv;lx}
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where J,, () is the Jacobian matrix of the vector wy, see (6.21), and since J,, ()
is known, we can bound its worst-case gain, by assumption, as 7 (J,(z)) < k.
Note that, with n = Pglz, the level set 27 Ptz < 1is nT Pyn < 1. Extracting
P,z as common factor, we obtain:

W = Ju, (2)[Hy, Hy, - HRJ = Juy () Ho]
where 7 = [T o7 ... nT]".
A sufficient condition I —W being invertible is the small-gain one 6(WW) < 1. From

the assumption 7 (J,,(x)) < k, such small-gain condition holds if:

1
T HI Hyn < = (6.25)

So, (6.25) should hold in V(z) < 1, i.e., in nTPyn < 1. From n?' Pyn < 1, we

have 7 Py 7 < p; then, along with the S-procedure, Finsler’s lemma, and Z5 = 0,
we obtain the following inequalities

1 _
MwZI + (*) + — Py — HyHy > 0 &
PR
L 5 T
Mo+ (425 Pe Hal 5,
H,, I

Clearly, if condition (6.23) holds, the last inequality is greater or equal to zero,
thus concluding the proof. O

LMIs can be obtained from (6.22) and (6.23) by simply dropping off the WFs (since
they hold the convex sum property), and testing inequalities for each vertex model
(polynomial coefficient), as usual, replacing w by the each multi-index b, b < c.

Robust differentiators (disturbed/modelling error cases)

In the presence of disturbances or modelling errors, the algebraic solution of (6.18)
or, equivalently (6.20) would give a “biased” estimate of the true membership
derivatives, as the closed-loop equation in the “real” controlled system is not the
one at the right-hand side of (6.18). This, hence, would introduce an additional
error in the controller implementation.

To address this problem, a proposal based on an s-th order Levant’s robust differ-
entiator, s > 1, can be employed (Levant 1998; Levant 2003); it ensures finite-time
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convergence to ), j € {1,2,... in the undisturbed case; its structure is:
0 )< 9 9
s
20 _ 0,0 __ _ glsFtl . 0_ ,.J 1
v =— A ‘vj wy sign (v; — wp | + v,
—1
b — AL ol — 09 g 1,0 2
Uj ==\ ‘vj v; sign (vj v]) +vj
(6.26)
1
.s—1 s—1 s—1 s—2|32 s—1 s—2 s
0; A |v] v; | sign (vj v; ) +v
S __ _ )\S4d s __ .51
v = — Ajsign (vj ; ),

where A} > 0 and X! > L;, i € {1,2,...,s} are tuning parameters with L; > 0
being a Lipschitz constant for .

Should the parameters be properly chosen, i)? = wg after a finite time of a transient

process in the absence of input noises. In (Aguiar, Marquez, and Bernal 2015),
1st-order Levant’s robust differentiators were employed to provide estimates of the
WFs derivatives; this solution can still be used.

An important property of the above differentiators is that, in the disturbed case,
any sth-order Levant’s robust differentiator, s > 1, can be employed to estimate
the required time derivatives in finite-time with an accuracy of € ~2¢, where € is the
maximal (possibly unknown) measurement-noise magnitude, which implies that
convergence time as well as accuracy can be improved as the differentiator order s
goes higher. Once the order s is fixed, the differentiator performance only improves
with the sampling step reduction (Levant 2003), even in the presence of exploding
signals and feedback setups (Levant and Livne 2012). The above differentiators
are employed in many real-time applications of contemporary sliding mode control
(Shtessel et al. 2013), and its computational cost is just the one of integrating an
s-th order ODE which, of course, depends on sampling rate and desired accuracy;
most applications just use s = 2 whose computing cost per sample is negligible.

Note that finite-time convergence to zero error allows proving a separation-like
stability result with the observer in the undisturbed case: indeed, as a T'S system
cannot have finite escape time®, forcedly state trajectories will converge to zero
from bounded initial conditions once the observer has converged, if they do not
leave the region where (I — W) is regular during such transient.

3TS systems are, trivially, globally Lipschitz with Lipschitz constant max,, &(A4 ) so their solution
is defined for every positive time.
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6.4 Examples

EXAMPLE 6.4.1. Consider the 2nd-order 2-rule T'S model in (D. Lee and D. Kim
2014), ©(t) = Apx(t) + Byu(t), with z(t) and u(t) as the state and input vector,
respectively, WFs wg = 0.5(1 +sinz1) and wy = 1 — wq, and system matrices Ay,
and B, being convex sums of the following matrices:

4 —4 2 4 1 1
O R e R R

Note that the WFs hold the conver sum property everywhere in the state space R?.
Quadratic stabilization of this model is not possible (D. Lee, J. Park, and Joo
2012). Thus, four approaches will be tested:

1. Conditions in (Aguiar, Mdrquez, and Bernal 2015) along with Theorem 6.3.1
with ¢ = 2. Time derivatives of the WFs are obtained from a 1st-order
Levant’s robust differentiator®.

2. Theorem 6.3.1 with ¢ = 2 where the time derivatives of the WFs are also
obtained from a 1st-order differentiator.

3. Theorem 6.3.1 with ¢ = 2 where the time derivatives of the WFs are alge-
braically solved from (6.20).

4. Theorem 6.3.1 and Theorem 6.3.2 with ¢ = 2.

For the second and third cases, the matrices in the Lyapunov function as well as
the set of gains for the control law are the same, since they come from the same
LMI conditions. The first ones are:

po_ [03811 05957) o, [0.5880 0.2732) , _ [0.2077 0.0675
07105957 1.5697| "1 T 10.2732 2.1096]° "2~ |0.0675 1.0033|"

Notice that not all of them are obliged to be positive definite.

The controller gains are the following:

Fy =[0.5107 0.3237], Fy = [0.9204 —0.5108], F, = [0.1375 0.0840] ,

4The preliminary version (Aguiar, Marquez, and Bernal 2015) considered inequality constraints
in (6.16) depending on the sign of the derivatives. Although that idea was considered of interest at
the time of writing (Aguiar, Marquez, and Bernal 2015), subsequent analysis showed that there was
no loss in generality considering just equality when global cancellation was pursued. Anyway, the
inequality-based version of (6.16) might be worthwhile in local/saturated control extensions to the
ideas presented here, which will be pursued in further research.
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15

10F ...

Figure 6.1: Lyapunov level sets (dashed lines), system trajectories (solid lines), and det(/ —
W) = 0 (dotted lines) for Example 6.4.1.

Go = [0.0175 0.0502], G1 = [-0.0517 0.0488], Go = [-0.0692 —0.0013].

The resulting Lyapunov level sets are shown in Fig. 6.1 with dashed lines; the
solid ones are the system trajectories. Clearly, the system has been stabilized,
but how far can this be guaranteed? Dotted lines correspond to the places where
det(I — W) = 0: obviously, trajectories crossing these lines whose control laws get
the time derivatives of the MFs from (6.20), may diverge. This is the case of the
divergent trajectory beginning at x1(0) = 6.5, x2(0) = —3. On the other hand, if
the time derivatives of the MF's are obtained from the Levant’s robust differentiator,
a stable trajectory starting at the same point is obtained. This behaviour outside
the guaranteed regqularity region is left for further research. Inside the reqularity
region, there is no substantial difference between the observer-based simulations
and the algebraic-solution ones.

The similarity of results among 1) those obtained with the enhanced version of the
switching control in (Aguiar, Mdrquez, and Bernal 2015), 2) conditions in Theo-
rem 6.3.1 with the time derivatives of the WFs coming from a 1st-order Levant’s
robust differentiator, and 8) those in Theorem 6.8.1 whose time derivatives are
algebraically solved, is explained by the fact that gains Gil1 and Gi21 in (Aguiar,
Marquez, and Bernal 2015) tend to be the same, i.e., a single set of gains Gy
along with the multi-index nature of the controller design, is enough to guarantee
equality (6.13).
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30

-20 -10 0 10 20
x1

Figure 6.2: Lyapunov level sets (dashed lines), system trajectories (solid lines), and maxi-
mum guaranteed circle with det(I — W) # 0 (dotted lines in red) for Example 6.4.1

Now, consider the case 4) where LMIs in Theorem 6.3.2 are tested along with those
in Theorem 6.3.1. We can guarantee the existence of (I — W)~! in a circle of
radius p = 1.9096 which is shown in dashed lines at the center of Fig. 6.2. This is
certainly a conservative estimate as can be easily proved by plotting det(I—W) = 0,
which is far beyond the limits of this figure. Lyapunov sets are shown also in dashed
lines, while trajectories are shown in solid lines. It is important to notice that the
local estimations of the domain of attraction in (D. Lee and D. Kim 2014) are all
subsets of those hereby provided. Note also that, as the stabilising controller is not
unique, the geometry of the level sets obtained in case 4) is quite different from
that in cases 1)-3).

EXAMPLE 6.4.2. The 2-nd-order 2-rule TS model ©(t) = Ayx(t) + Byu(t) in
(Pan et al. 2012) has WFs wg, w1 as in example 6.4.1, and system matrices

-5 2 10 b 1
AO:|:(; 2:|7A1:|:2 O:|7B0:|:2:|7B1:|:1:|7

with parameters a € [—20,11] and b € [0,25]. Within these ranges, it is tested
under the quadratic case (Tanaka and H. Wang 2001), conditions in (Rhee and
Won 2006), and those of Theorem 6.3.1 with ¢ = 2 and ¢ = 3. Clearly, the
proposed approach overcomes the feasibility set of former approaches, as shown
i Fig. 6.3; increasing the Polya degree ¢ from 2 to 8 achieves a handful of
additional feasible points. The feasibility set reported in (Pan et al. 2012), though
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Figure 6.3: Feasibility sets for Example 6.4.2: (+) for quadratic (Tanaka and H. Wang
2001); (x) for line-integral (Rhee and Won 2006); (o) for Th. 6.3.1, ¢ = 2; (O) for Th. 6.3.1,
c=3.

not included because of its use of a priori bounds, is smaller than those obtained
with the proposed approach.

It is important to underline the fact that the proposed improvements are compatible
with further relaxations such as those based on matrix transformations, which may
improve numerical efficiency.

In order to illustrate the quality of a particular solution, consider the case a = 11,
b = 0, which has no solution in the quadratic framework (Tanaka and H. Wang
2001) nor in the line-integral approach of (Rhee and Won 2006) nor with Th. 6.3.1
with ¢ < 3. For ¢ = 3 a controller has been found: due to this number of sum
relazations, 8 triplets of matrices Py, , Fp,, and Gy, were found; they are omitted
for brevity.

The time evolution of the control signal u(t), the states x(t), and the Lyapunov
function V(t) is shown in Fig. 6.4, all of them corresponding to a simulation
of the system under the initial condition z(0) = [1 —Q]T Clearly, the control
task has been achieved as expected: states are driven to zero and V (t) is indeed a

Lyapunov function.
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Figure 6.4: From left to right: time evolution of the control signal u(t), states z(t), and
Lyapunov function V(z(t)) for Example 6.4.2.

EXAMPLE 6.4.3. Consider the 4-rule, 2-nd order TS model (t) = Ayx(t) +
Byu(t), with

1.59 —-7.29 0.02 —-4.64
AOO - |:001 O :| ) AOl - |: :| )

0.35 0.21
0 —4.33 0.89 —5.29
Alo_[o 0.05}”4“_[0.1 0 }

1 8 6 1
Boo = [O] , Bor = {0} , Bio = [_1] , B = {0} )

and WFs wgy = 0.5 (1 + sinxy), woz = 0.25 (4 — x%), wy1 = 1 —wo1, and wis =
1—woa, within the compact set C = {(x1,x2) : 21 € R,xo € [—2,2]}. This example
is a 4-rule extension of a system shown in (Sala and Arinio 2007; Fang et al. 2006;
Marquez, T.M Guerra, et al. 2016); it produces a feasible solution of conditions
in Theorem 6.3.1.

In this example, Polya relazations can prove that the system has a quadratic LF.
If we seek to optimize the guaranteed radius in our approach, the found radius can
be increased to arbitrarily large values, and the LMIs find, of course, the quadratic
solution. This shows that there is no loss in the presented proposal with respect to
quadratically-feasible solutions.
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-5 -2.5 0 2.5 5
€

Figure 6.5: Lyapunov sets (dashed lines), modelling border (dotted lines), and trajectories
(solid lines) for Example 6.4.3. As conditions were quadratically feasible, such solution is
also obtained by the here presented approach.

6.5 Conclusion

A novel solution for nonquadratic stabilization of continuous-time nonlinear sys-
tems via exact Takagi-Sugeno models and generalized parameter-dependent Lya-
punov functions has been presented. The main contribution of this work has been
a multi-index control law that cancels out the terms that cause a priori locality
of former approaches, by using the time derivatives of the membership functions
obtained from the closed loop expression of the system. The resulting LMI con-
ditions have outperformed well-known examples taken from the literature on the
subject. Levant’s robust observer-based implementations are suggested in appli-
cations where noise or modelling error is present.

As for future work, it is worth exploring how to overcome the current limitations on
the regularity of (I —W)~!, by finding either less conservative LMIs guaranteeing
it or new control schemes which naturally avoid such terms. Global nonquadratic
stabilization seems possible if a suitable combination of such improvements and
input saturation is explored.
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Chapter 7

Polynomial-Integral Lyapunov
Function

In this chapter, a new integral Lyapunov Function is presented,
which generalises the line-integral Lyapunov function in Rhee and
Won 2006 for stability analysis of continuous-time nonlinear models
expressed as fuzzy systems. The referred result applied only to Takagi-
Sugeno representations, and required memberships to be a tensor-
product of functions of a single state; these are generalised here so that
membership arguments can be arbitrary polynomials of the state vari-
ables; in this way, systems for which earlier results cannot be applied
are now covered. Both the modelling and the integral terms appear-
ing in the Lyapunov functions are generalised to a fuzzy polynomial
case. Illustrative examples show the advantage of the proposed method
against previous literature, even in the TS case.

The contents of this chapter appeared in the journal article:

e T. Gonzalez, A. Sala, and M. Bernal (2018). “A Generalised Integral Polyno-
mial Lyapunov Function for Nonlinear Systems”. In: Fuzzy Sets and Systems.
In press.
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7.1 Introduction

Stability analysis of nonlinear systems has benefited in the last twenty years from
a representation as a combination of linear models, denoted as Takagi-Sugeno
(TS) (Takagi and Sugeno 1985) or quasi-LPV (J. S. Shamma and Cloutier 1992)
representations. Obtaining such models via the sector nonlinearity approach
(Taniguchi, Tanaka, and H. Wang 2001) allows to exactly rewrite a nonlinear
system as a convex sum of linear models within a compact set of the state space
(modeling region), the nonlinearities being captured in so-called membership func-
tions (MFs) which are in general state-dependent and hold the convex sum prop-
erty (Tanaka and H. Wang 2001). Later on, in (Sala and C. Arifio 2009; Chesi
2009), via the Taylor-series approach, the sector nonlinearity idea was extended
to polynomial fuzzy models: this representation expresses non-polynomial nonlin-
earities as an equivalent convex sum of polynomial consequents, blended together
by MFs.

When a TS model is available, stability analysis and controller design are usually
performed via the direct Lyapunov method, which usually leads to conditions in
the form of linear matrix inequalities (LMIs) (Tanaka and H. Wang 2001). LMI
conditions are highly appreciated as their feasibility can be decided via convex
optimization techniques (Boyd et al. 1994). Different classes of Lyapunov func-
tions have been used to overcome the conservatism of the common quadratic one,
first proposed in (Tanaka and Sugeno 1990): piecewise (Johansson, Rantzer, and
Arzen 1999; Gonzalez, Sala, and Bernal 2017), parameter-dependent (also un-
specifically known as “non-quadratic” or “fuzzy”) (T.M. Guerra and Vermeiren
2004; T.M. Guerra and Bernal 2012), and fuzzy line-integral (LI) (Rhee and Won
2006). Other recent proposals, intentionally left out of this quest, are based on
polyhedron manipulations and set-invariance considerations (C. Arifio, Sala, et al.
2017); these proposals avoid the need of fixing a structure of a Lyapunov function
and, importantly, are asymptotically exact (under some conditions) for the TS
case; however, they cannot be extended to the fuzzy-polynomial setup below.

In (F. Wu and Prajna 2005; Tanaka, Yoshida, et al. 2007a), the quadratic LMI/TS
framework was extended to the sum-of-squares (SOS) approach (Prajna, Pa-
pachristodoulou, Seiler, et al. 2004; Prajna, Papachristodoulou, Seiler, et al. 2005),
which use polynomial Lyapunov functions for stability analysis of nonlinear sys-
tems in fuzzy-polynomial form, posing SOS conditions which are actually reducible
to LMIs. Later on, a fuzzy polynomial Lyapunov function was employed to gener-
alize results for fuzzy polynomial models (Bernal, Sala, et al. 2011). In that work,
the time-derivative of the MFs is a priori bounded by polynomials of the state,
thus obtaining a fuzzy polynomial model of the time derivative of the MFs. As a
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last option on these issues, (Y. Chen et al. 2015) presented a piecewise Lyapunov
function defined by the minimum or maximum of polynomials.

The widely-cited work (Rhee and Won 2006) proposed an interesting fuzzy line-
integral Lyapunov function, presenting LMI stability conditions which are global
and avoided the time derivative of the MFs. The goal of this chapter is generalising
the fuzzy LI approach in the above-referred work to the polynomial case: it turns
out that path independency conditions for line integrals are automatically verified
if the integral can be expressed as a sum of single-variable terms. Let us, next,
discuss in detail the motivation behind our proposal.

In (Rhee and Won 2006), a Lyapunov function with integral terms was pursued.
However, since such Lyapunov function depended on necessary path-independence
conditions, the approach was only applicable to a specific class of T'S models where
the MFs are a tensor-product expression (C. Arino and Sala 2007) of at most n
nonlinear components where each of them depends exactly on one state variable.
For this class of models, only the “diagonal” terms of the Lyapunov function were
actually using fuzzy summations and, moreover, if the MFs depend on multiple
variables and cannot be factorised, e.g., w;(z1 + x2) # a(x1)B(z2), the approach
in (Rhee and Won 2006) cannot be directly applied.

In order to generalize the class of T'S model on where the LI approach can be ap-
plied, the LF in (Rhee and Won 2006) is expressed as a sum of single-variable inte-
grals, as above mentioned. Resorting to such parametrisation, path-independence
conditions are automatically fulfilled. This was the idea behind a preliminary re-
sult presented in (Gonzalez, Sala, Bernal, and Robles 2017), introducing a larger
class of path-independent line-integral Lyapunov functions whenever the MFs de-
pended on an arbitrary set of linear functions of the system states. Other re-
finements on the work of (Rhee and Won 2006) can be found in (Marquez, T.M.
Guerra, et al. 2013; Marquez, T.M. Guerra, et al. 2014); they exploit a relaxation
from a determinant formula which applies only to second-order TS systems, but
do not correspond to the point of view hereby adopted (pursuing results applicable
to higher-order systems).

Motivated by the ideas above, this chapter presents a Polynomial Lyapunov func-
tion including integral terms, for the stability analysis of a class of nonlinear
models so the results in (Rhee and Won 2006; Gonzalez, Sala, Bernal, and Robles
2017) are a particular case. The results in this manuscript apply to nonlinear
systems that can be expressed in terms of single-variable non-polynomial nonlin-
earities with a polynomial argument.
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The chapter is organized as follows: section 7.2 presents the classical sector non-
linearity approach to obtain TS models, previous results about the line-integral
Lyapunov approach, and a review on the standard polynomial fuzzy framework;
section 7.3 develops the main result, where a new Polynomial+Integral Lyapunov
function is built; section 7.4 gives some examples to illustrate the effectiveness
of the proposed approach; finally, discussion, concluding remarks and ideas for
future work are given in sections 7.5 and 7.6.

7.2 Preliminaries and problem statement

7.2.1 Takagi-Sugeno models

Consider a nonlinear system:

z(t) = h(z(t)), (7.1)

with z € R™ being the state vector, and x = 0 being an equilibrium point, i.e.,
h(0) = 0. Let us assume that h(-) can be expressed in the form:

@(t) = h(n(z), ), (7.2)

where h(-) is linear in #(t) and multiaffine in n(z) € R?, where

n(x) = [m(z) na(z) - me(2)]”

is a set of continuous functions which collects all nonlinearities present in A(-) in
(7.1). Then, the above model can be written as (Robles et al. 2017):

i(t) = f(n(x))a(t), (7.3)

with f(-) : RY — R™ being a multiaffine function in its arguments.

A well-established procedure for convex rewriting of such nonlinear systems within
a compact set Q D {0} of the state space, called the sector nonlinearity methodol-
ogy (Taniguchi, Tanaka, and H. Wang 2001), is available. Let us outline the main
ideas of it in order to introduce notation which will be used in later developments
in the chapter.

Since, by continuity and compactness, the components of vector n(z) are bounded
in Q, assume n;(z) € [Qj,ﬁ]} , 7 €{1,2,...,q} in Q. By defining the following
weighting functions (WFs):

wi () = ﬁ%%%n(m), wl(z) =1—w)(z), j€{1,2,...,q}, (7.4)
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each nonlinearity is written as n;(z) = wg(x)ﬂj + w{(z)ﬁj, with 0 < w! < 1,

wé + w{ = 1. On the sequel, dependence of wf on the state x will be omitted for
notational brevity if clear from the context.

As f is multiaffine, straightforward manipulations lead to a TS model with ¢
nested convex sums:

(1) = Apz(t), (7.5)

1 1 1
Aw = Z Z o Z willwlzz o wqu(ilvin“'viq)’ (76)

A(ilvi%mviq) = f(n .T))|w_1 :w22=---:wgq:17

i1 i

with Ag, 4,0, € R™™ 45 € {0,1}, j € {1,2,...,q}. This sort of notation for
TS models corresponds to the tensor-product modelling approach (C. Arifio and
Sala 2007; Campos et al. 2013). The reader is referred to these works for further
details on the above fuzzy modelling steps, which routinely appear in systems with
several nonlinearities.

EXAMPLE 7.2.1. Consider the following nonlinear system:

P b(1 4 cospe) +0.2cosps —3+ cosps — Hsinpy | |21
o —0.5a + 0.2b(1 + cos p3) —4.6 + cos p3 + sinpy | |z2

where m (x) = sin(p1(z)) with pi(z) := @2, M2(x) = cos(pz(x)) with pz(z) =
223 — 1122, and n3(z) := cos(ps(x)) with p3(z) := xo — 423, If we independently
model sin(p1), cos(p2), and cos(ps) in the previous system via standard sector
nonlinearity, we get the following tensor-product T'S model with 23 vertices:

1 1 1

=YY > w) (p0)wd (p2)w (p3) Ay in.iy) T (7.7)

i1=0 i5=0i5=0

with
[(—a—02 1 ] [ 02—a 3 ]
Avoo= | —05a  —6.6] Aoor = 0.4b—0.5a —4.6]
A _[ra-2-02 1 4 _[02-26-a 3
010 —0.5a —6.6]" ML 1 04b—0.50 —-4.6]"
[—a—02 —9] [ 0.2.a -7
Ar00= | —0.5a  —4.6] Aro1= 0.4b—0.5a —2.6]’
A _[a—26-02 -9 A _[02=2b—a -7
o= —0.5a —4.6| M= 0.4b— 0.5 —2.6|
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and WFs w(p1) = 0.5(1 — sin(py)), wi(p1) = 1 — wi(p1), wi(p2) = 0.5(1 —
cos(p)), wh(p2) = 1 — wl(pa), wi(ps) = 0.5(1 — cos(ps), wh(ps) = 1 — wf(ps)

In order to get a more compact notation, the multi-index shorthand notation
from, for instance, (Tognetti, R.C.L.F. Oliveira, and P.L.D. Peres 2011; Gonzalez,
Bernal, Sala, et al. 2017), will be used with a := (a1, a2,...,aq), a; € {0UN},
and b := (b1, b2,...,by), b; € {0 UN}, ¢g-dimensional multi-indices (g-tuples):

a a b b b b
wo = (wp) ™ (wd)™ - (wi)™ Wy = (wi)” (w]) e (w)™
Then, the nested convex sum A,, in (7.6) can be equivalently rewritten as:

Ay =) wiwiA;, (7.8)

j+i=1

with j+1i:= (j1 + i1, J2 +i2,...,Jq + iq, ) being the element-wise sum of g-tuples,
and 1:=(1,1,...,1). For instance, in the above example ¢ = 3.

Well-known conditions for quadratic stability, with Lyapunov function V(x) =
2T Pz, of the above model are (Tanaka and H. Wang 2001):

P>0, PA+AlP<o.

However, these conditions are known to be conservative. Other options, called
non-quadratic LF, have appeared in literature (see, for instance, (Blanco, Per-
ruqueti, and Borne 2001; Tanaka, Hori, and H. Wang 2003; T.M. Guerra and
Vermeiren 2004)), in which the LF is in the form:

V(z) = 2T Pyx =27 wa)wiPi x. (7.9)
jrim1

However, as V (z) depends on P, time-derivative bounds on the WFs are needed
(Tanaka, Hori, and H. Wang 2003; L. Mozelli, Palhares, and Avellar 2009) or, via
chain-rule argumentations, bounds on the partial derivatives of them (T.M. Guerra
and Bernal 2009; Bernal and T. M. Guerra 2010). In some cases, a cancellation-
based controller design approach can be crafted to avoid the WF derivative bounds
(Gonzalez, Bernal, Sala, et al. 2017) in the resulting closed-loop expressions.
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7.2.2 Line-integral fuzzy Lyapunov Functions in prior literature

Consider the particular case of a model (7.2) with 7;(z) depending only on x;(t)
and ¢ < n. Then, from (7.4), each wi (-) only depends on z;. On the sequel, given
f :R™ = R" notation V f denotes the Jacobian matrix of size h x n.

In the work (Rhee and Won 2006), based on line-integral considerations, the fol-
lowing line-integral fuzzy Lyapunov function was proposed:

Ve = [ s (7.10)
I'(0,z)
where I'(0, ) was any one-dimensional path betwen 0 and z, 1) € R" is a dummy

vector for the integral argument, and dy € R” is an infinitesimal displacement
vector along the path, and f(v) was given by:

f@)=yptP | 2=t (7.11)

S (WY (wp)in sy

Lin+in=1
being P a constant, symmetrical matrix with null diagonal in the said reference.

Expression (7.10) was proved path-independent (proving that df;/0¢; = pi; =
pji = 0f;/0;), so the integral is identical for any I". Choosing the particular
path formed by the 1-dimensional segments going from (0, ...,0) to (z1,0,...,0),
then to (z1,%2,0,...), then to (x1,22,23,0,...) and so on until (z1,...,z,) is
reached!, the integral (7.10) results in the actual explicit expression:

Vi =aTro+ Y [ (whw)” whe)” sheas, (112
k=1

Jretig=1

where ¢ € R is now a one-dimensional dummy variable and P is a matrix (without
loss of generality, with null diagonal). Conversely, its gradient VV(x) is f(z)
being f(-) defined in (7.11). Such a fact can be proven from path-independence
considerations, as originally done in (Rhee and Won 2006), or, alternatively, by
explicitly carrying out the straightforward differentiation of (7.12).

Then, a reformulation of the main result of (Rhee and Won 2006), adapted to our
notation, is the following theorem:

Lor, evidently, any other path, if desired.
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Theorem 7.2.1. The system (7.5) with w¥(zx(t)), k € {1,2,...,n} is asymptot-
wcally stable of the following conditions hold:

T Pr + Z(ka —e)ri >0 (7.13)

- Y weewht > 2T (BAi+ AT P+el)z > 0. (7.14)
ko+k;=2 i+j=k;1, i<1, j<1

where P; = P + dmg(
constant.

) Jk € B, B =0,1 and € is a small positive

J1? J27‘ o J

The reader is referred to the cited references for further details and proofs of
the above-presented results. Trivially, by removing 27 and x and using Polya
relaxations (C. Arifio and Sala 2007), the above scalar inequalities get converted
into standard LMIs:

Pc—el>0 Vk<1 (7.15)

> PA+AP+eI<0  Vk<2 (7.16)
i+j=k, i<1, j<1

7.2.83 Polynomial fuzzy models

Consider now a more general case where h in (7.2) is a polynomial in nonlinearities
7, say, of degree ¢ in ny for k € {1,2,...,¢}. Then, the model can be expressed
as the multi-dimensional TS one below where memberships have degree greater
than 1 in the summations:

t) = anw%wilAix(t), (7.17)
j+i=c
being ¢ := (c1, 2, ..., ¢q) a degree vector where ¢, k = {1,2,...,q} is the degree

each nonlinearity 7 has in the polynomial & in (7.2), and nf =i, Zk,(Ck T

The combinatorial number nf{ is the number of similar terms sharing a specific

combination W(ijil, which allows writing > nwaow‘1 = 1, a property that
1=C

proves to be useful in the quest for less conse;:/rative conditions derived from convex

sums (Sala and Arino 2007). Note that the previously-considered tensor-product

TS case in (7.2) is the particular case of ¢ = (1,...,1).
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Actually, if h were a polynomial in both 7 and z, then a so-called fuzzy-polynomial
model? would have been obtained in the form:

i(t) = 3 newiwi Fi(a(t)) = Fu(a(t)), (7.18)

j+i=c

where Fj(x(t)) are vertex polynomial models (Sala and C. Arifio 2009). These
general fuzzy polynomial models will, thus, be the subject of inquiry in the sequel.

The sum-of-squares (SOS) paradigm is widely used to prove stability of the above
models. Indeed, a polynomial p(z) is SOS (to be denoted by p(z) € X,) if it
can be decomposed as (T (x)['¢(z) where ((x) is a vector of monomials and the
so-called Gram-matrix I' is a positive semi-definite matrix, I' > 0. Obviously, all
SOS polynomials are non-negative, although the converse is not true (Chesi 2007).

Theorem 7.2.2 ((Sala and C. Arifio 2009; Tanaka, Yoshida, et al. 2009; Prajna,
Papachristodoulou, Seiler, et al. 2005)). The polynomial fuzzy model (7.18) is
asymptotically stable if a polynomial Lyapunov function V(x) = P(z) can be found
verifying

P(z) —e(x) € Xy, (7.19)
—VP(x)Fi(z) —e(x) € ¥, Vi<e, (7.20)

where €(x) is a radially unbounded positive polynomial.

For a high-enough degree of P(x) and Fj(z) if the nonlinear system admits a
smooth Lyapunov function, the polynomial approach will eventually succeed, up
to the gap of positive polynomials which are not SOS (Chesi 2007), if sufficient
computational resources were available.

Fuzzy-polynomial Lyapunov functions

In (Bernal, Sala, et al. 2011), a fuzzy-polynomial LF was proposed P, (x), im-
proving over Theorem 7.2.2 due to its larger representation capabilities. However,
there was the need of explicitly bounding ‘g—: by, for instance, other polynomials
of the state (the authors proposed carrying out a fuzzy-polynomial model of the
mentioned partial derivatives). This is an extension of the idea of bounding the
value or w in (Tanaka, Hori, and H. Wang 2003) or bounding the gradient of the
membership functions in (Bernal and T. M. Guerra 2010). Notwithstanding, as
the goal of this work is enhancing the integral terms in Lyapunov functions, no

2 As discussed in (Sala and C. Arifio 2009), if & in (7.1) is of class CP, a Taylor-series argumentation
can prove the existence of such a fuzzy-polynomial model of degree p.
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further discussion of gradient/time-derivative bounding will be considered in the
sequel (actually, combination of approaches is possible, see discussion in Section
7.5).

7.2.4 Problem statement

The objective of this chapter is generalising the LI Lyapunov function proposal
in (Rhee and Won 2006; Gonzalez, Sala, Bernal, and Robles 2017) to a class of
fuzzy-polynomial models in the form (7.18). Specifically, we will assume that the
nonlinear model, written as expression (7.2), has the particular form:

@(t) = h(m(p1(2)), - - -, g (pg (), ) (7.21)

where h is a polynomial in its arguments (n,z), with each n; : R — R being
a real function of one variable, and being p; : R™ — R the argument to 7;;
furthermore, p;(x) which will be assumed to be a polynomial in the state. Then,
sector-nonlinearity modelling of 7, allows building membership functions in (7.18)
which depend on p;(x):
o) = ) =1 - up), g€ 1.2 a) (12D
i~

Thus, in the case under study, we will consider w; : R — R, having the polyno-
mial p; as argument, instead of the “generic” dependence wf (x) considered in the
original expression (7.4). Actually, it can be easily shown that the cases in (Rhee
and Won 2006; Gonzalez, Sala, Bernal, and Robles 2017) are a particular case of
the above setup, details left to the reader. For instance, in (Rhee and Won 2006),
condition p; = x; was needed, as well as ¢ < n. These assumptions are no longer
needed in the present work, as discussed below.

The main goal of this chapter is generalising p; to arbitrary polynomials, and to
also consider the case in which the number of nonlinearities ¢ can be larger than
the system’s order n. Given that polynomials appear, the generalisation of (Rhee
and Won 2006) to the polynomial case (from LMI to SOS) comes as a side result
but, importantly, advantages of the ideas here proposed can be achieved even in
an LMTI-only setup, as discussed in our conference paper (Gonzalez, Sala, Bernal,
and Robles 2017). Hence, the LMIs in the cited works will be a particular case of
our SOS approach.

Note that we do not need to model the gradient of the memberships because of
the integral nature of the LF (following the main idea in the seminal work (Rhee
and Won 2006)), thus obtaining simpler conditions than (Bernal, Sala, et al.
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2011) (which require such gradient model), but more powerful than standard SOS
conditions (Theorem 7.2.2), due to the incorporation of w(-) in the LI Lyapunov
function.

ExAMPLE 7.2.1 (Continued). Considering the model in (7.7), the approach in
(Rhee and Won 2006) cannot be “directly” applied to the above model using all three
weighting functions: Theorem 7.2.1 can be applied by considering only fuzziness in
the WFs wjl() in the Lyapunov function (7.12), because it is the only one which
depends on ezactly a single state variable. Thus, Theorem 7.2.1 can consider the
following integral form for V(x):

V(z) =27 Pz + /0 " S (wh@)' (wi()) sk v dy. (7.23)

i+5=1

The above example motivates the need for extending the Lyapunov function with
further integral terms depending on w32, w?, wi and w3$, to be dealt with in our
proposals in next section. Note that a fuzzy-polynomial model (7.18) may be
obtained for the model in example 7.2.1, if so wished; anyway, as the goal of
this chapter is comparing the flexibility of the more general Lyapunov function
proposals, we intentionally restrain ourselves to just the TS model (7.7) in the
later numerical computations over the nonlinear system in this example, in order
to suitably compare with prior literature; such further improvements from more

general polynomial modelling are left to the reader.

7.3 Main Result

Let us first consider a generic integral expression, motivated by (7.12), in the form:

q Ak
V(uN) = P V) + Y [ wlil, ) v (7.24)
k=170

where A € R?, v € R?, for some s to be later specified, are symbolic arguments
(which will be later on replaced by state-dependent expressions), P(u,\) is an
arbitrary polynomial function (depending on some decision variables), 1) € R is a
uni-dimensional dummy integral variable, and M (,7) : R®*! 5 R are given by
the fuzzy summations

()= > nif(wh () (wh () st (1, ¥) (7.25)

149



Chapter 7. Polynomial-Integral Lyapunov Function

where dj, is a Polya complexity parameter (Sala and Arino 2007), nld: is a combi-
dy,!

di k k . . .

e = m, and s7, (11,9) is a polynomial parameterised,

too, with some decision variables. As before, the Polya complexity parameters will

be arranged into a “Polya degree vector”, to be denoted as d := (d,...,d,) € N9.

natorial number n

In order to be used as a Lyapunov function, the gradient of V needs to be com-
puted. Instead of line-integral argumentations, we will use explicit differentiation,
as justified earlier on. Thus, the components of the gradient of V' are given by:

oV op 1. Ak glkl
_ ) / ) d 7.26
o (M(u ) 2 )y o (11, 9) dip (7.26)
and ov. 9P
I = oo N () (7.27)

The above structure (7.24) will be used to build Lyapunov functions in Section
7.3.1, once relevant positiveness conditions formulated below do hold.

Theorem 7.3.1. If P(u,\) € £, and sfk (1, ) € B4, for all 0 < 1, < di,
then V(u, \) > 0.

Proof. Condition sfk (e, )Y € ¥, implies that sfk has the same sign as 1. As m[]f}
is a sum of s{“k multiplied by positive coefficients, we can assert that M () >0
and, for any 7 > 0, we have M (u, 1) /T > 0. Hence,

Ak 1

/ () dip = lim | 7 (A0 Adr >0
0 h—0t Jp

where the rightmost integral comes from the change v» = 7\, hence 7 should range

from zero to 1, and the last inequality comes from the fact that 7TLI;€] (b, TAR) A =

M (1, 9)1/T > 0. Note that the limit in the above expression exists from conti-

nuity of w{f ! Therefore, V is expressed as the sum of two non-negative quantities
if conditions in the theorem statement hold. |

The above theorem can be made less conservative, introducing some additional
decision variables (non-fuzzy polynomials s;) which “link” the non-integral and
integral parts, as follows:
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Theorem 7.3.2. If there exist polynomials s, (u,v), for k € {1,2,...,q}, such
that

(s, (s ) — 55 (1, 9)) ¥ € By (7.28)
and
q Ak
Vi A) = P A) + 3 /O s (10s ) dip € 5y (7.29)
k=1

then V (i, A) > 0 for all i, \.

Proof. We can express:

Vi(ps A) = Valp, A) + Va(p, A) (7.30)

where V; is the polynomial defined in (7.29) and
q Ak
Vel ) = Y [ (mw) syl ) o (7.31)
k=170

and Theorem 7.3.1 can now be applied changing the original V(-) by V;(-), and
changing sf’ in the referred theorem for s; — s, as stated in (7.28). O

Next section will apply the above results to building Lyapunov functions. In order
to avoid integral terms in the gradient of V, the restriction sfk (1, 1) being only

dependent on ) will be enforced in the sequel, i.e., we will only consider s;“k ().

7.3.1 Stability

Consider now a Lyapunov function, using the structure (7.24), defined as:

Vi) = V(Bep(o) = P(Eap@)+ Y- [ allw)aw (2
k=170

where Fx selects only the components of the state which do not explicitly appear
in p(z) (thus, avoiding repeated arguments): for instance, in the original setting
in (Rhee and Won 2006), E would be zero as p(xz) = x; in the 2nd-order system
in Example 7.2.1, we would set E := (1 0), so Ex = x1 because p1(x) = x3.

Using positiveness results in Theorem 7.3.2 and adding derivative-related decres-
cence conditions allows to state the main result below:
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Theorem 7.3.3. Consider a polynomial fuzzy model (7.18), with degree vector c,
with the membership function structure w; ¥(pr()), arising from (7.21) and (7.22).
Consider, too, a given degree vector d = (dl, do,...,dy), see (7.25), and the Lya-
punov function structure (7.32) and an arbitrary radially unbounded polynomial
e(z), such that (0) = 0 and e(x) > 0 elsewhere. Then, the origin x(t) = 0 of such
system 1is asymptotically stable if there exist polynomial functions P(Ezx, p(x)),
sfk (¥), and s, (1), such that the following SOS conditions hold for all 0 < [}, < dj,
0 S b] S €5, jak € {1727"'7(]}; €= (C1+d1762+d27...,0q+dq>5

(st () — s,(0))0 € By, (7.33)
P(Ex, p(a) + 3 / " () dv— e(x) € o, (7.34)
k=170

_an (VP (Ez, p(x)) [E Vp]+z sfk(pk)Vpk> Fi(zx)—e(x)eX,. (7.35)

1j+i;=b; k=1

Proof. Conditions (7.33) and (7.34) are the translation® to the current notation
of conditions (7.28) and (7.29). Thus, application of Theorem 7.3.2 ensures that
V(z) in (7.32) fulfills V(x) > e(x).

Now, the derivative of the Lyapunov function can be expressed as:

. OV o OVor
Vi A) = <a oz T ox a:c) ()

so, with the choice of arguments to V(-) being u := Ex and X := p(z), we have
that the time derivative above (corresponding to the time derivative of (7.32))
becomes:

V(z) = VP(Bz, p(x)) [E Vp|i(t) + [r (p1(2) - mf (pg ()] Vpla)i(t) < 0.
Replacing #(t) by its model (7.18), and i by its definition (7.25), we get:

> nfwWiwiVP(Ez, p(x))[E Vp|Fi(x)

j+i=c
q
+> > (whlpr) ™ (wh (o) ki sp, (or) Vo > nfwywi Fi(x) <0,
k=14 +lp=dp jti=c

3 Actually, note that (7.29) poses SOS conditions on two variables (1, ) so applicability of Theo-
rem 7.3.2 would hold even if the explicit relationship between these variables were unknown. However,
as p; are known polynomials in (7.32), substitution of these polynomials by their explicit expressions
renders an easier SOS problem only in variables z in (7.34).
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which is equivalent to the homogeneous summation of degree vector e := (¢ +
di,co+da, ..., cq+ dg) below:

> owiwh > nfn (W (Ex, p(x))[E VplFi(x)

a+b=e lj+i;=b;
+ (Zsfk (pk)Vpk> Fi(x)> +e(z) <0,  (7.36)
k=1

Carrying out fuzzy-summation manipulations as to isolate each of the summation
coefficients, we get the sufficient condition (7.35), which guarantees V(x) < 0,
thus concluding the proof. O

Note that Polya relaxations of the fuzzy summations (7.36) may be carried out to
further reduce conservatism, but details on them are omitted for brevity.

In the particular case where py(x) is an arbitrary linear function of the state x(t),
ie., pr(x) = i (t) + Bao(t) + -+ 1Fx,(t) = LM (t), Vk € {1,2,...,q}, if the
Lyapunov function is also chosen to be quadratic, then Theorem 7.3.3 reduces to
the stability conditions in (Gonzalez, Sala, Bernal, and Robles 2017, Thm. 4), as
stated next:

Corollary 7.3.3.1. The origz'n x(t) = 0 of the TS model (7.17) with the mem-
bership function structure w} ¥(pp(x)) and pi(z) being an arbitrary linear func-

tion of the state x(t), i.e., pk( ) = oy (t) + Bao(t) + -+ + 1k, (t) = LF2(t),
Vk € {1,2,...,q}, is asymptotically stable if the following conditions hold:

d T
TPz + Z S?kLIJT (L[k]> LWg(t) — exTa > 0,7, €{0,1} (7.37)
Z weewst Y 2T (P + APy el) x> 0, (7.38)
ko+k;=2 i+j=k1, i<1, j<1

where P P+ dzag( CH SJQ,. 5 Sy ) being P = PT € R™*™ with null diagonal,
and € is a small positive constant. Obvzously the above quadratic SOS conditions
can be, trivially, considered to be an LMI.

Proof. Considering the Lyapunov function candidate (7.32) with

P(Ez,p(z)) = 2T Pz,

4See conditions (11) and (12) in (Gonzalez, Sala, Bernal, and Robles 2017).
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P defined as above with null diagonal, and
o, I
i) =2 Y (w§®)" (wiw)" siv.
lp+1l=1
Rewriting (7.32), we get the following function:
L[k]xk

V() _xTP$+Z/ ) di. (7.39)

By Theorem 7.3.2, expression (7.39) is positive if there exists s;, such that:
Pi? — 50 € By

TP + Z / s dip = TPz + Z SkT (L[k])T LMz (t) - ex”z € T,

Since P is null diagonal, setting s;, = min(s§, s¥), then (7.37) implies the previous
condition.

The following condition on the time derivative of the Lyapunov function (7.39)

V(z) =27 (PA, + AL P) m+227r[k] )Apz < 0,

k=1

is equivalent to that in (7.38) as can be seen performing similar steps as those in
proof of Theorem 7.3.3. |

7.4 Examples

EXAMPLE 7.2.1 (Continued). The motivating example considering the model in
(7.7) will be now numerically solved with the proposed results, and compared with
alternative prior approaches. In particular, stability of the system (7.7) will be
studied for different values of constant parameters a € [10,13] and b € [50, 60].

First, recall that the results in (Rhee and Won 2006), i.e., Theorem 7.2.1 can be
applied only with the Lyapunov function (7.23), with integral terms only depending
on x2, as previously discussed on page 149.

However, our proposal in Theorem 7.3.8 can consider all three nonlinearities. If we
apply Theorem 7.8.3 with e(x) = 10~ 42Tz and the following polynomial Lyapunov

154



7.4 Ezamples

60

54,

52|

[o)e]

Q000

000000

00000000
/BIR®OO0OOOOOOOO0
/VBRIV®®OOO0OO0O0O0
/RIVRIFIR®RIOCOOOOO00O0

PRAIRARARRRARRR®ROOOOOOO

PRIRRRIRARARBRO®ARRIROOOOOO(
PRABRBRBIAIRIARRAIIIAIRIOCOO
PRADRBRRRBRAIRRRIRIAIRIRR® O
PRABDBRBRBIBBIBRBRRIIIAIIOVAR®

POOOOOOOOOO

500 ‘
10 105

U000 8R8Q8Q0QQ0QQARAIRIRRR

12 12

=
=
=
St
o

Figure 7.1: Feasibility sets for Example 7.2.1: (o) for Theorem 7.3.3; (x) for Theorem
7.2.1; (+) for Quadratic Lyapunov function.

function with integral terms
2 2 Lo k k k k
V(z) =p127 + pax122 + psxs; + Z/ (wg () sgp + wi (¢)sia) dy
k=1 0

where p1, p2, p3, and S? are deciston variables, the obtained feasible set of solutions
is marked with (o) in Figure 7.1, within the ranges of a and b above mentioned.
For the sake the comparison, in Figure 7.1 the feasible set of solutions obtained if
the classical quadratic approach V = xT Px is applied is marked with a (+); last,
(x) points out the feasible set of solutions obtained if the approach in (Rhee and
Won 2006) is applied considering only the WFs wjl() in the Lyapunov function
(7.23) with, too ¢ = 10~%. As expected, (Rhee and Won 2006) improves over
the plain quadratic case, but our new approach produces the largest feasible set of
solutions® due to the two additional integral terms apart from the one in (7.23).

EXAMPLE 7.4.2. In this example, we will compare our proposal with a “standard”
sum-of-squares approach (recalled here as Theorem 7.2.2), i.e., with a polynomial
non-fuzzy Lyapunov function (without integral terms). In order to carry out such

5Note that, although this example has detailed the developments for polynomial arguments to p,
similar improvements occur even if the arguments of p were just linear functions, as discussed earlier
in this work (Corollary 7.3.3.1, taken from our conference paper (Gonzalez, Sala, Bernal, and Robles
2017)).
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a comparison, we will consider the following nonlinear model:

$'1 = T2 (740)
o = —2w1 —x2 — 0.5 K21 (1 +sin (p1(x))), (7.41)
where p1(x) = —4x9 — bxoxy + 2 — 223 and Kk is a non-negative parameter,

so the objective is finding the largest possible k such that several sets of SOS
conditions (corresponding to different LF proposals) render feasible, to compare
them. Applying the sector nonlinearity approach to sin(pi(x)), we obtained the
following TS model:

1
i=Y_w} (p)A;z,

i1=0

0 1 0 1
AO:[—2 —1]7 A1:|:—2—KJ —1}7

and wj(pr) = 0.5(1 —sin(p1)), wi(pr) = 1 —wg(pr).

where

Note that, as p1 is neither a state nor a linear function of the state variables,
integral LF terms from the proposals in (Rhee and Won 2006) or (Gonzalez, Sala,
Bernal, and Robles 2017) cannot be applied.

Following the approach in this chapter, if Theorem 7.5.8 is applied with d =
(1), e(z) = 107" (2% + 23), and the following Polynomial Line-Integral Lyapunov
function, which incorporates degree-4 monomials:

V(z) = p1$% + D212 +p3$§ +p4$? +p5$%$2 +P6$1l€§ +p7$§ 4—]9896‘11
P1

+poxiTs + proxias + pr1z1al + prazy + / (wh () s + wy (¥)s11)) dp
0

such that (8]11/) —§1’(/J) € Xy, j€{0,1} where p;, i € {1,2,...,12}, s;, 51, and
sp are decision variables, our approach can guarantee stability for k = 6.5046. The
resulting Lyapunov function for k = 6.5046 is

V() =266.108427 + 91.8725x3 x5 + 54.6768x% + 116.435x3x3 + 10.7059x7 7,
+76.960123 + 11.1967x 125 — 38.9486x1 22 + 12.3850x 25 + 5.644225

P1
—20.2489z5 — 3.8261x3 + / (wi ()3.2041¢) + w1 (1)1.9146) dp,
0

with s, = 1.391. In Figure 7.2 some level sets of V (x) and some system trajectories
are shown for illustration purposes.

156



7.4 Ezamples

10

Figure 7.2: Lyapunov sets (dashed lines) and some trajectories (solid lines) for Example 2.

For the sake of comparison, Table 7.1 presents the maximum value of the parame-
ter k keeping conditions in Theorem 7.3.3 feasibleS for several degrees of the clas-
sical polynomial LF component P(Ex,p1(x)) (left column) and the integral ones
(middle column) with d = (2). Thus, the standard SOS approach corresponds to
the rows where deg(sfk (1)) is empty (labelled with a dash). For instance, a 4th-
degree non-integral term plus a degree 1 integral term achieves better results than
a non-integral LF of degree 12. From the numerical figures in the table, either
increasing the non-integral polynomial degree or that of the integral term seem to
improve results, however the incorporation of integral terms seems very effective
with significantly less decision variables than the high-degree non-integral options,
while achieving better performance.

For information, the used solver in the numerical examples in this chapter was
Mosek 7.1 (E. D. Andersen and K. D. Andersen 2000), under the programming
language YALMIP 20150919 (Loofberg 2004), and running on Matlab R2015a with
default tolerances.

6The function e(z) was chosen, following (Papachristodoulou and Prajna 2005), asie(z) =
" f.l: ei;227 where d is the degree of P(Ez,p(x)) and the €’s satisfy d: €; >, Vi€
=1 =11 J=1"-%]

{1,2,...,n} with v a positive number (1 x 10~%), and €;; > 0 for all ¢ and j.
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Table 7.1: Maximum & for polynomial line-integral LF with Theorem 7.3.3, and standard
SOS Theorem 7.2.2.

Decision Average Solver
deg(P(Ex, p(x))) deg(sﬁc (1)) K variables in i &

V(z) ime (s)
2 - 3.8284 3 0.1660
4 - 0.7393 12 0.1740
8 - 6.3981 42 0.1960
12 - 6.6537 88 0.3440
4 1 7.0880 16 0.1840
4 3 7.1018 24 0.1960
8 1 7.2990 46 0.1940
8 3 7.6879 o4 0.2160
12 1 8.3010 92 0.4760
12 3 8.9234 100 0.4920

7.5 Discussion

In this section, once the results and example have been presented, a brief discussion
on the advantages provided and room for further enhancements will be provided
next.

Regarding the chosen nonlinear model for the examples, note that they have been
intentionally written as T'S models in order to compare with prior literature, but
other polynomial models for the same nonlinear systems may be amenable to our
proposal (such as the Taylor-series approach (Sala and C. Arino 2009)), details
left to the reader.

Also, for simplicity, global bounds on the nonlinearities have been considered (they
are trigonometric functions). Nevertheless, the approach would equally work on
compact modelling regions where suitable bounds for  and p would be available.
Obviously, the advantages of non-quadratic/fuzzy-LF-SOS approaches would van-
ish for very small modelling regions, as the resulting model would equal the lin-
earisation (in a TS case) or the truncated Taylor series (in the generic polynomial
setup). Nevertheless, comparison of results with different sizes of modelling region
has not been considered of interest, for brevity.

Apart from the concrete example, in a generic case, our approach has advantages
if the nonlinearities can be expressed as a single-variable real function composed
with a polynomial one; in this case, the polynomial nature of the arguments to
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nonlinearities is duly exploited. It would not apply to, for instance to p(z) =
cos(e® — arctan z3).

Note, too, that further relaxation of the result would be obtained by combining it
with a variety of approaches in fuzzy control literature, which relax conservatism
based on other ideas unrelated to our integral Lyapunov function proposal:

1. Increasing the degree of the polynomial term of the Lyapunov function P(-, )
in (7.32).

2. Get a less conservative model via increasing the degree of the polynomial
consequents, (Sala and C. Arino 2009).

3. Use a standard ‘“fuzzy”-polynomial Lyapunov function in the non-integral
part of (7.32) replacing P(Ex, p) by P(Ez, p, w) with expressions similar to
(7.9), incorporating information on the time-derivatives or the gradient of
the memberships (Bernal, Sala, et al. 2011).

4. Use other results depending on membership shape. For instance, in Example
7.2.1, based on the actual nonlinearities, we could assert expressions such as
y(w) = (w})? = 0.5wiwi —1 < 0 or/and y(w) := wiw — pa(x)?p3(x)? <0,
a restriction that can be included via a suitable Positivstellensatz multiplier
R(z, p)y(w) in the SOS conditions (C. Arifio and Sala 2007; Lam 2012).

7.6 Conclusion

This chapter presents a general SOS condition for the stability analysis of a class
of nonlinear models via a polynomial Lyapunov function with integral terms which
has been suitably parameterised. Compared to prior literature, two improvements
are presented: first, the generalisation to a polynomial case of earlier LMI line-
integral results; second, the new approach allows the line-integral approach to
be applied to a larger class of TS models, where their WFs arguments can be
arbitrary sets of polynomial functions of the system states, instead of only each of
the states being the argument to a single WF considered in (Rhee and Won 2006).
Unfortunately, as in the original reference, controller design problems cannot be
cast as convex optimisation ones.

159






Chapter 8

Conclusions

In this thesis, solutions to some drawbacks in the T'S/LMI/SOS-framework for
analysis and control of nonlinear systems were proposed; namely, problems arising
from the use of different classes of Lyapunov functions were addressed: handling
of exact representations of nonlinear systems (affine Takagi-Sugeno models) al-
lowing the inclusion of geometrical restrictions for piecewise analysis, a solution
to the algebraic loops appearing when parameter-dependent Lyapunov functions
are employed for control purposes, and enlarging of the class of systems that can
be treated with line-integral Lyapunov functions.

A summary of the thesis contributions addressing the aforementioned problems
follows:

o The use of piecewise Lyapunov functions for the estimation of the domain of
attraction of nonlinear systems.

The approach presented on chapter 5 allows obtaining asymptotically exact
estimation of the DA of nonlinear systems. The algorithm therein presented
is based on getting finer piecewise TS model and taking into account previ-
ously proven regions and “promising” neighboring areas, all within the LMI
framework.
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Nonetheless, the procedure has its own limitations. One of them, is the
fact that the actual DA of a nonlinear system is, in general, not piecewise
quadratic, so the exact domain of attraction cannot be obtained with finite
computational resources. Hence, our proposal can only prove that finite com-
putational resources are needed to find if a particular point in the state space
belong to the interior of the “true” DA. Additionally, as the required esti-
mation accuracy increases, the number of regions must accordingly increase
(with decreasing size). Very small sizes would need heavy memory and pro-
cessing requirements and an accurate handling of tolerances and numerical
precision issues to obtain meaningful results.

o A multi-index control law for stabilisation of nonlinear systems that feeds
back the time derivatives of the membership functions.

In chapter 6, a new generalised PDLF is proposed along with a generalised
multi-index control law that cancels out the terms that cause a priori locality
in the Lyapunov analysis; moreover, the resulting conditions are purely LMI.
For this sake, the control law uses the time derivative of the MFs obtained
from the closed-loop expression of the system. The examples show that
results in previous literature on the subject has been outperformed.

Due to the inclusion of the time derivative of the MFs, a possible algebraic
loops may arise. Thus, some additional LMI conditions are proposed to
guarantee regularity of the control. Nevertheless, these LMI conditions are
conservative and could lead to locality in the control law.

e The use of the polynomial Lyapunov functions with integral terms is gener-
alised for a larger class of nonlinear models.

This thesis shows a new polynomial Lyapunov function with integral terms
that generalise works in prior literature for cases on which the later cannot
be directly applied. It also goes beyond the TS framework including the
polynomial one: it turns out that path independency conditions for line
integrals are automatically verified if the integral is expressed as a sum of
single-variable terms.
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A word on future work

The main advantage of the convex approach is the fact that there exists a sys-
tematic methodology to model a smooth nonlinear system as a convex-linear one
(sector-nonlinearity approach) or as a convex polynomial one (Taylor series ap-
proach, being the sector-nonlinearity generalisation), and then, via convex opti-
misation techniques, search for Lyapunov functions and controllers. For stability
analysis this search can be conducted in terms of LMIs or SOS; several approaches
are even asymptotically exact, though computationally demanding.

This is not, in general, the case of controller synthesis. As soon as the quadratic
framework is left, a number of problems arise besides the loss of necessity of
results; among them, the emergence of conditions not amenable to LMIs or SOS
problems is a major obstacle. Usually, further assumptions and change of variables
are performed on these problems to yield a convex formulation (see, for instance,
the proposal in chapter 6), but of course these solutions lack generality. If, as
many authors did in the past, conditions are left as BMI problems, the spirit of
the whole methodology is lost, as BMIs cannot be optimally solved. A growing
misunderstanding of this point seems to be motivated by the availability of hit-
and-miss BMI solvers.

More specifically, since the power of piecewise methodologies lies in incorporat-
ing local information about a number of regions of interest where the system is
supposed to operate, controller design cannot simultaneously preserve this infor-
mation and modify the system trajectories through control; thus, the BMI nature
of the problem. Mathematically, since most of the LMIs involving synthesis in-
volve an inversion of the Lyapunov function, such transformation implies a change
of variables which destroys the convex formulation of local restrictions.

In the case of parameter-dependent Lyapunov functions, well-posedness of the
problem is an issue as results in this thesis show: a matrix inversion prevents
controller design from being global. A non-conservative solution to ensure regu-
larity of the control law is BMI, which obliged us to adopt an LMI conservative
reduction of the problem. It is clear that feeding back the time derivatives of the
MFs is both related with descriptor forms (as the left-hand time derivative of the
state gets enriched by right-hand terms) and dynamical controllers (as the time
derivative of the MFs might be subsumed in a chain of integrators). In the TS
context, this might translate into non-affine in control systems, i.e., models that
include x and u in their MFs.

Ag shown in this thesis, line-integral Lyapunov functions had no need to be path-
independent if properly defined. While enriching the solution set for stability
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purposes, controller design shares the BMI nature of the problems above. In this
case, the reason lies on the imposed structure of the Lyapunov function that does

not allow the inversion already discussed.
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