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Abstract
Droplet impact on porous media has a broad range of applications such as material processing, drug delivery
and ink injection etc. The simulation studies of such processes are rather limited. To represent the spreading and
absorption process of the droplet on porous materials, robust numerical schemes capable of accurately representing
wettability as well as capillary effects need to be established. The current work, presents one of the first studies
of droplet impact on a real porous media geometry model extracted from a micro-CT scan. The process involves
processing of CT image and subsequent threshold based on the structures segmentation. The porous geometry is
extracted in the form of a STL (STereoLithography) model, which, with the aid of dedicated software like ANSA and
SnappyHexMesh, is converted to an unstructured mesh for successful discretization of the flow domain. The solution
algorithm is developed within the open source CFD toolbox OpenFOAM. The numerical framework to track the
droplet interface during the impact and the absorption phases is based on previous work [1, 2]. The volume-of-fluid
(VOF) method is used to capture the location of the interface, combined with additional sharpening and smoothing
algorithms to minimise spurious velocities developed at the capillary dominated part of the phenomenon (droplet
recession and penetration). A systematic variation of the main factors that affect this process are considered, i.e.
wettability, porous size, impact velocity. To investigate the influence of porous structures on droplet spreading, the
average porosity of the media is varied between 18.5% and 23.3% . From these numerical experiments, we can
conclude that the droplet imbibition mainly depends on the porous wettability and secondly that the recoiling phase
can be observed in the hydrophobic case but not in the hydrophilic case.
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Introduction
Micro-scale fluid phenomena are involved in various applications and research areas [3]. Understanding the be-
haviour of droplet spreading on porous media is important for a variety of industrial applications, such as ink jet
printing, raindrops on textile, spray paint on wood, 3D-printing, penetration of rain drops into building walls, nee-
dle less injection, coating of porous materials, irrigation, cooling of electronic devices etc. Droplet spreading on
solid flat surfaces has been the subject of numerous experimental and numerical studies over the last few decades
[5, 6]. However, droplet impact on porous media is still far from being understood. Studies of such micro-scale
fluid phenomena need careful and combined consideration of droplet dynamics and porous media characteristics.
Generally, this phenomenon is controlled by two main counter-acting processes: droplet spreading on porous sur-
faces and imbibition inside the porous media [8]. As the droplet spreads on the surface it also fills the voids of the
porous material due to capillary action. The spreading behaviour of the impinging droplet on the surface is known
to depend on the liquid properties, i.e. density, viscosity and surface tension, impact conditions such as drop size
and impact velocity, and surface wettability [9]. Absorption, on the other hand, is governed by both, the liquid and
the porous medium properties, like porosity, pore size and pore wettability [10]. Droplet spreading on implicit or of
non-realistic shapes porous media using numerical methods has been investigated in a limited number of studies
[11, 14]. Moreover, limited CFD have been published in the literature regarding the effect of porous media hetero-
geneity on imbibition using explicit porous geometry. Davis and Hocking [15] models were developed to study the
time evolution of drop spreading, the position of contact line and liquid motion inside the porous media. In [16]
three-dimensional simulations were carried out to study the effect of impact velocity and surface roughness on the
spreading of droplets on to a substrate consisting of randomly placed and orientated freely penetrating disks using
the lattice-Boltzmann method. The same methodology was used in [17] to simulate the pore-level droplet spreading
on a porous surface and investigated the power-law time-evolution of the wetted zone radius.
The present study attempts to numerically analyse the characteristics of a droplet interacting with a real porous
surface, using a 3D porous media that is presented in [18]. A direct comparison of simulation versus experimental
results found in [19] is presented, alongside an investigation of time evolution of impinging droplet shape as well as
velocity. Finally, the effect of permeability is examined through the parametric study.

Micro-CT porous geometry
This section discusses procedure followed to extract a computational mesh from micro-CT scan data. As a non-
destructive technique, X-ray micro-CT provides the required insight into opaque objects eliminating the need of
sectioning/partitioning. A micro-CT scanner uses X-rays that penetrate a 3D object and create density-based at-
tenuated two-dimensional projections, which are collected at small angular steps, preferably, around 360 degrees.
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These projections are later synthesised, using a variety of techniques, and the complete volume of the object is re-
constructed, in terms of two-dimensional image slices. The computed stack of 2D slices usually share a resolution
of a few microns and their pixel values are inextricably bound to material density-based attenuation.

Table 1. Properties of porous stones and mesh quality.

Berea B1 Carbonate C1 Savonnières(Exp) Meule(Exp)

Size (mm) 7.43 4.53 203 203

Average Porosity 18.5% 23.3% 26.9% 16.6%
Average Pore Size (microns) 11.9 20.7 10.3 9.1

Max aspect ratio 11.9796 7.54027
Number of cells 5689735 3777008

Max non-orthogonality (degrees) 78.2862 76.1127

Segmentation of the volume stack of X-ray micro-CT slices was performed using Retomo, a new software package
from BETA CAE Systems, which is used to define the rock/air interface contours for the entire volume. The same
software was used to then export the interface iso-surface as a STereoLithography (STL) type mesh with connectiv-
ity information between the generated triangles. The latter ensures a minimum (if not zero) number of free-hanging
elements that could complicate the definition of computational domain. The generated surface mesh was of high
quality; however, further mesh operations were conducted in the ANSA pre-processor in order to ensure that the
pore and throat representations of the rock were kept intact. The produced surface was then used to define the
boundary of the flow domain, which is discretized using an unstructured type mesh. During volume mesh operation,
a coarse background Cartesian mesh is generated first, which is then refined around the surface boundary; this
approach reduces the overall number of elements. Computational domain dimensions and meshing quality param-
eters are defined in Table 1. Two different specimens were used. The average pore sizes of Berea and Carbonate
sandstone is 11.9 and 20.7 microns, respectively. In the present study, the numerical average porosity of media
is fixed (B1 = 18.5% and C1 = 23.3%) and surface porosity varies with pore size. The computational domain was
divided into two main refinement zones at the area of impact as shown in Fig. 1 (right side)

Figure 1. Numerical model for Berea (B1) and Carbonate (C1) porous media. (a,d) represent the original Mico CT for the two
different porous media. (b and c) represent the computational mesh for the Bera sandstone. (e and f) represent the Carbonate.

On the right-hand side, a section inside the porous media is taken to show the mesh refinement zones

Numerical set-up
The computational model is implemented within the open source CFD toolkit OpenFOAM and is described in this
section. An incompressible two-phase flow with constant phase densities ρ1 and ρ2 and viscosities µ1 and µ2 is
considered. A single set of governing equations are solved in the entire computational domain (shared by both
phases) in conjunction with a transport equation for the volume fraction of one of the phases −α−. In the proposed
numerical method, the Continuum Surface Force (CSF) description of Brackbill et al. [20] is used to represent the
surface tension forces in the following form:

fs = σκδs (1)
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where the term κ = −∇· (ηs) represents the interface curvature, δs is a delta function concentrated on the interface
and ηs is the normal vector to the interface that is calculated by the following equation:

ηs =
∇αsmooth
|∇αsmooth|

(2)

where αsmooth is the artificial smoothed indicator-function, δs is the sharpened indicator-function. In the VOF
method, the indicator function α represents the volume fraction of one of the fluid phases in each computational cell.
The indicator function evolves spatially and temporally according to an advection transport equation of the following
general form:

∂α

∂t
+∇ · (αu) = 0 (3)

Ideally, the interface between both phases should be massless since it represents a sharp discontinuity. However,
within VOF formulation the value of α, at the interface, varies between 0 and 1 due to numerical diffusion. The
framework described above, reflects the generalised framework of VOF methods and can be used in a large range
of two-phase flow problems with various adjustments. In the following sub-sections, an enhanced version of this
basic VOF framework that addresses the previously mentioned challenges, is presented in detail.

Adaptive Compression Scheme (Implicit)
To deal with the problem of numerical diffusion of α, an extra compression term is used in OpenFOAM to control
the thickness of the interface as shown below;

∂α

∂t
+∇ · (uα)−∇ ·

{
urα

(
(1− α)

)}
︸ ︷︷ ︸

compression term

= 0 (4)

where (ur) is the compression velocity given by Eq. 5. It represents the vector of relative velocity and is formulated
based on the maximum velocity magnitude at the interface region and its direction, which is determined from the
gradient of the phase fraction as follows:

ur = min

(
Cc
|φf |
|Sf | ,max

[
|φf |
|Sf |

])
(ηf · Sf ) (5)

The term φf is the mass flux and Sf is the cell surface area. The compressive term is taken into consideration
only at the interface region and it is calculated in the normal direction to the interface to avoid any dispersion. The
maximum operation in Eq. 5 is performed over the entire domain, while the minimum operation is done locally on
each face. The constant (Cc) is a user-specified value, which serves as a parameter to obtain different cell results
in different levels of compression. In most of the simulations presented here (Cc) is taken as unity, after initial
trial simulations. Higher values than unity in this case may lead to unphysical results. To make the compression
methodology more general and overcome the need for a priori tuning, an adaptive algorithm has been implemented
to the solver based on the following relationship:

Cadp = pos

(
− Un · ∇α
|Un||∇α|

, Cα

)
(6)

where Cadp is the adaptive compression coefficient that acts in the volume fraction field, The constant (Cα) is a
user-specified value. In our simulation (Cα) is set to be zero. The term Un represents each phase normal to the
interface velocity. It is expressed as;

Un =
(
U · ns

)
∗
(
ns
)
∗ pos(α− 0.01) ∗ pos(0.99− α) (7)

The concept of using Un is shown in Fig. 2. When the profile of the colour function becomes diffusive Cadp value
is increased in order to sharpen the interface relevant to the local diffusion field. When the profile is already sharp
and additional compression is not necessary, Cadp will go to zero.

Numerical Treatment of the Indicator Function
After solving Eq. 4 with the additional compression term, the indicator function is updated at the cell centres.
Afterwards the indicator function is obtained at the cell boundaries using a linear extrapolation from the cell centres
in order to proceed with the calculation of η and k. At this stage the value of the indicator function sharply changes
over a thin region (as a result of the compression step). This abrupt change of the indicator function creates errors
in calculating the normal vectors and the curvature of the interface, which will be used to evaluate the interfacial
forces. These errors induce non-physical parasitic currents in the interfacial region. A commonly followed approach
to the literature to suppress these artifacts is to compute the interface curvature from a smoothed function αsmooth,
which is calculated by the smoother proposed by Georgoulas et al. [22]. It should be noticed that the number of
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Figure 2. Schematic to represent the adaptive compression CAdp selection criteria

Table 2. Properties of water droplet and impact conditions for drop test.

ρ(Kg/m3) µ(Kg/ms) σ(N/m)

Water Properties at 25 °C 998 0.001 0.07

R0(mm) Vi(m/s) We Re

Impact conditions 1 0.5− 1 10− 20 498− 1000

times that the proposed filter is applied should be handled with care in the calculations since there is a fine balance
between smoothing the interface" and altering the curvature, especially in high curvature interfacial regions. For
the presented simulations based on sensitivity analysis we repeat the smoothing loop 4 times. Following, capillary
forces are calculated at the face centres based on Eq. 1. For the calculation of curvature k we used the smoothing
operation as described above. However special care needs to be taken for the calculation interface delta function
δs. In order to maintain its sharpness we also introduce a sharp function (αsharp) modelling the capillary pressure
in the case of flows through porous media. Then δs is calculated based on the αsharp rather than the αsmooth. In
the final step non-physical velocities that are parallel to the fluid interface are filtered, so that the term fc −∇pc that
appears in the Eq 8 finally converges to zero.

Capillary Pressure Jump Modelling and Filtering Numerical Errors
At the pore scale, the momentum balance equation for incompressible fluids is used to relate the pressure gradi-
ent, inertial, capillary, gravity and viscous forces. Knowing the pressure gradient, capillary and gravity forces, the
momentum balance equation can be used to update the velocity field at any time-step;

D

Dt
(ρu)−∇ · T = −∇pd + ρg + fs −∇pc (8)

where, ρg is the gravity force and fs is the capillary force. pd is the dynamic pressure and it reads: pd = p − pc.
where p is the total (physical) pressure and pc is a potential field called the microscopic capillary pressure. Pc is
obtained from the solution of the Poisson’s equation:

∇ · ∇Pc = ∇ · fs (9)

This approach includes explicitly the effect of capillary forces in the Navier-Stokes equations, and therefore allows
for the filtering of the numerical errors related to the inaccurate calculation of fc. The non-physical velocities that
are parallel to the fluid interface are filtered, so that the term fc −∇pc that appears in the Eq 8 finally converges to
zero as discussed in [2].

Wettability Modelling
For the present calculations we implemented the Kistler model [24] in the standard and developed solver in order to
be able to accurately simulate the contact line movement . The Kistler model calculates the dynamic contact angle,
using the Hoffman function, fHof , as Θdyn = fHof [Ca+ f−1

Hof (Θe)] where Θe is the equilibrium contact angle and
Ca the capillary number calculated based on an imposed spreading velocity.

Case set-up
Three-dimensional simulations were performed. The computational domain, the grid as well as the applied boundary
conditions are shown in Fig. 3. The initial conditions for the simulated geometry are illustrated in Fig. 3, while the
material properties and the initial conditions for the impacting liquid (water) are summarised in Table 2. Different
values for the wetting conditions are illustrated in Table 3, where ten numerical simulations were performed to show
the influence of wetting on spreading behaviour at different porous media. In each case, initial droplet radius is set
to R = 1 mm. At the first time step, a spherical liquid drop is patched inside the numerical domain in such a way
where the liquid phase just on top the porous surface.
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Figure 3. Three-dimensional computational domain, mesh and boundary conditions

Results and discussion
In the following sections, numerical simulations are presented for one case that assesses the performance of the
proposed model. Then the influence of porous wettability on spreading radius dynamics using two different porous
media is investigated. Also, the droplet penetration and effect of wettability on inertial spreading stage and the
viscous spreading stage are observed. Calculations with the standard VOF-based solver of OpenFOAM (interFoam)
are also included for comparison purposes. Additionally, the droplet radius at the time of impact was measured using
a custom Matlab code to enable comparison of the results to the given experimental data.

Validation of numerical method
The test case used to validate the numerical model is of a droplet impacting a Berea sandstone segment with impact
velocity Vi = 1m/s (We=20, Re=1000). The numerical simulation is compared against experiments reported in
[8, 19]. The experimental porous media namely -Meule- is described in Table 1. Although our numerical model
and the one that experimental data are taken are not the same materials (they do not share the same porous
structures) they share similar average porosity and average pore sizes. Depending on how close are predictions
with experimental data, conclusions can be extracted regarding the importance of these two parameters (porosity
and average pore sizes) to the evolution of the spreading. One Should note that careful treatment should be
taken while modelling the wetting conditions as they may dominate the spreading behaviour. As reported in the
experiments [8, 19] the advancing and receding contact angles are (125◦and25◦), which is used as initial conditions
for our Kistler wetting model in order to guarantee that the numerical and experimental model have the same wetting
behavior. Figure 4 shows the normalised time evolution (t/τ) of the droplet spreading (r/R), where R is the initial
droplet radius, and r is the calculated droplet radius over the porous media during spreading. Spreading radius (r)
over the porous media is found to be irregular compared to the normal droplet spreading over a flat surface (not a
perfect circular shape). To determine the spreading radius (r), we use our numerical data to calculate the wetted
area of the irregular spreading shape, and extract an equivalent radius based on the centre of gravity, as seen in
Fig. 4, where the black and white picture represents the droplet shape over the porous media while the blue line
represents the fitted circle determined from post-processing.The normalised time is defined as the inertial time scale

of the first stage of wetting, where τ =
(ρR3

σ

)0.5
[25]. As we can see the phenomenon -based on the experimental

data for the droplet diameter- is characterised by the following phases: Initially, the droplet diameter is increased
(spreading phase) reaching to a maximum length and then stabilises. Although for the first phase the same increase
is noticed in the phenomena of droplet spreading over solid surfaces, the second part is different. When droplet
impacts on a porous medium we can notice that the diameter remains almost constant implying that the imbibition
phase has started (for this case at (t/τ)=0.6) [26]. These phases are well captured by our new solver (interPore)
while the standard solver fails to predict the correct transition to the imbibition phase. Also, it can be seen that
for the imbibition phase our code (interPore) has a very close match with the experiments. It is also an indication
that porosity and average pore diameter are the two most important controlling parameters since as mentioned
above simulations and experimental data share porosity and average pore diameter but not pore structure. Finally,
we notice that for the spreading phase there are some differences between experimental and numerical curve
indicating a slower spreading process of the droplet of the numerical model in comparison to experimental one.
This can potentially indicate that average pore size might not be enough to describe the spreading process and
more information for the pore distribution are necessary. Using the Kistler boundary condition is a key element in
capturing the correct physical behaviour for the droplet spending. Nevertheless, by imposing the Kistler boundary
condition to the standard solver (interFoam), we noticed an overestimation for droplet size during the spreading
phase. The reason comes from the wrong calculated contact line velocity during the inertial phase caused by
the parasitic currents. The overestimated spreading is not reflected in our simulation using the modified solver
(interPore) due to the parasitic current filter used. Based on [25] we also plotted the theoretical power-law (r/R) as
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Figure 4. Comparison of drop impacts for D0 = 2.0mm and Vi = 1.0m/s on Berea stone (numerical) and Meule stone
(experimental). (a) is a normalised wetted zone width r/R evolution for water droplet at We = 28.5. Developed solver (interPore) at

wetting conditions of θA = 125◦, θR = 25◦ at the porous surface and porous media, Standard solver (interFoam) at wetting
conditions of θeq = 25◦ at the porous surface and porous media. (b) Snapshots of drop impact on porous materials at time = 1

ms

r

R
= 0.8(

t

τ
)0.5. The power law fails to estimate the correct spreading behaviour due to the unaccounted influence

of the porous structure and wettability effect.

Influence of porous wettability on radius dynamics
To provide further insight into the local phenomena which drive capillary imbibition of the droplet inside porous
media, two different material are presented here with different wetting behaviour The contact angle values used
to observe the influence of wettability and porosity are shown in Table 3. Figure (5) shows the droplet behaviour
(represented by the iso-surface of the droplet volume fraction at 0.5) at two different porous wetting conditions
(hydrophobic porous surfaces and hydrophilic porous surfaces) for two different porous media (Carbonate and
Berea). Two features can be identified in both porous cases; firstly, the droplet invasion mainly depends on the
porous wettability regardless the change of the porosity. Secondly, the recoiling phase can be observed in the
hydrophobic case but not in the hydrophilic case for both porous structures. At hydrophobic conditions of the pore
shows less liquid absorption with a recoiling phase, yet it is still characterised by pinning behaviour. At the hydrophilic
porous wetting, regardless of imposing a dynamic wetting conditions on the porous surface in our simulations,
no recoiling phase is observed. However, the droplet edge is seen to undergo same pinning with much more
absorption, behaviour which limits its spreading. Spreading on the solid surfaces between the holes depend mainly
on the pore wettability for same solid surface wetting conditions. The interface shape was captured over time as
shown in Fig. 5. The hydrophobic case shows small liquid fingers in the initial phase, which tends to be receding
from the pore space again during the recoiling phase. While for the hydrophilic cases, the fingering effect after the
invasion and during the initial phase tends to increase by time. This leads to a decrease in droplet size in the recoil
phase, yet keeping same spreading diameter. Figure 6 shows the normalised droplet spreading at two different
porosities and a wide range of pore wettability. For Figure 6a Case 1 and Case 2 undergo same surface spreading
with different penetration behaviour. While Case 3 shows mush less penetration associated with surface spreading.
While 6b Case 6 and Case 8 undergo maximum penetration duo to the high porosity value. Case 8 shows an
increase in surface spreading similar to Case 4.

Conclusions
In this work, a framework initially developed to capture droplet interface dynamics at low capillary numbers is ex-
tended in order to be used in the study of the impact of liquid droplets on a real porous material reconstructed

Case Porous model Surface contact angle Pore Contact Angle Vel (m/s)

Case 1 B1 θA = 125◦, θR = 25◦ θA = 125◦, θR = 25◦ 0.5
Case 2 B1 θA = 125◦, θR = 25◦ θeq = 0◦ 0.5
Case 3 B1 θA = 125◦, θR = 25◦ θeq = 180◦ 0.5
Case 4 B1 θA = 60◦, θR = 22◦ θA = 60◦, θR = 22◦ 0.5
Case 5 C1 θA = 125◦, θR = 25◦ θA = 125◦, θR = 25◦ 0.5
Case 6 C1 θA = 125◦, θR = 25◦ θeq = 0◦ 0.5
Case 7 C1 θA = 125◦, θR = 25◦ θeq = 180◦ 0.5
Case 8 C1 θA = 60◦, θR = 22◦ θA = 60◦, θR = 22◦ 0.5

Table 3. Imposed contact angle for porous media surface (using Kistler, dynamic contact angle model) with different assumptions
concerning the contact angle of the pore surfaces (varies from fully hydrophilic to fully hydrophobic)
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(a) Case 2 represents fully hydrophobic conditions for Berea
sandstone (B1)

(b) Case 3 represents fully hydrophilic conditions for Berea
sandstone (B1)

(c) Case 6 represents fully hydrophobic conditions for Carbon-
ate (C1)

(d) Case 7 represents fully hydrophilic conditions for Carbon-
ate (C1)

Figure 5. The early stage of capillary imbibition of pore after Droplet impacting the solid surfaces. Four views are provided at
each five-time steps. The figures show two different wetting conditions ranges from fully hydrophobic to fully hydrophilic.

from micro-CT scanned pictures. We initially test our framework against experimental data from the Meule stone.
The Meule stone and the material used for our simulations share the same porosity and average pore size but not
the same pore structure. We observe that regardless of this difference both spreading and imbibition phase are
well captured by the model which indicates a) that our framework is well suited to represent a complicated phe-
nomenon like this and b) that the phenomenon as such is governed only by the two parameters. Moreover, we
extend our study to the effect of wettability. Two different porous wetting conditions (hydrophobic porous surfaces
and hydrophilic porous surfaces) for two different porous media (Carbonate and Berea). From these numerical ex-
periments, it can be concluded that the droplet imbibition mainly depends on the porous wettability regardless the
change of the porosity and secondly that the recoiling phase can be observed in the hydrophobic case but not in
the hydrophilic case.
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