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Abstract

In this work an accurate and efficient method based on matrix splines for
computing matrix exponential is given. An algorithm and a MATLAB im-
plementation have been developed and compared with the state-of-the-art
algorithms for computing the matrix exponential. We also developed a par-
allel implementation for large scale problems. This implementation allowed
us to get a much better performance when working with this kind of prob-
lems.

Keywords: Matrix exponential, Scaling and squaring method, Taylor
series, Matrix splines, NVIDIA, GPGPU, Parallel Computing.

1. Introduction

Matrix exponential computation has received remarkable attention in the
last decades due to its usefulness in the solution of systems of linear differ-
ential equations. Moreover, in many cases, the resolution of these systems
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involve large or perturbed matrices [1]. Thus, the use of not only accurate,
but also efficient methods becomes absolutely necessary. All the usual meth-
ods proposed for matrix exponential computation [2, 3] use the squaring and
scaling techniques, and the most accurate and efficient methods are based on
Taylor series expansion [4, 5] and on the Padé rational approximation [6].

In this work, we propose an accurate and efficient method to obtain the
exponential of a matrix which is based on matrix splines [7]. The algorithm
has been implemented in MATLAB and compared with other state-of-the-art
existing algorithms for computing the matrix exponential.

In addition, we have also developed a high performance implementation
with the aim of addressing large scale problems. This implementation uses
a GPU (Graphics Processor Unit) which is, in particular, an NVIDIA GPU.
The GPU is used by the MATLAB algorithm through the specific instructions
provided by the Parallel MATLAB Toolbox.

All along this paper we will adopt the following notation. We denote by
Cn×n the set of complex matrices of size n × n, and I denotes the identity
matrix. Symbol N denotes the set of positive integers. The matrix norm ∥·∥
denotes any subordinate matrix norm, in particular ∥·∥1 is the 1-norm. The
least integer not less than x is denoted by⌈x⌉, ⌊x⌋ denotes the greatest integer
not exceeding x, and ρ (X) is the spectral radius of matrix X. Function log
is the principal logarithm defined as the complex logarithm whose imaginary
part is in (−π,π].

The paper is organized as follows. Section 2 presents the proposed Taylor-
Spline method. Section 3 deals with algorithms for computing the exponen-
tial matrix. Section 4 describes the sequential numerical experiments. In
Section 5, we show the implementations proposed with the Parallel MATLAB
Toolkit and also the experiments results using the GPU. The conclusions are
given in last section.

2. Taylor-Spline method

The matrix exponential for a matrix A ∈ Cn×n can be defined as

eA =
∞∑

i=0

Ai

k!
,
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and

Tm(A) =
m∑

i=0

Ai

i!
, (1)

is the Taylor approximation of order m of eA. The Taylor approxima-
tion Tm(A) can be computed efficiently by using the Paterson-Stockmeyer’s
method [8][9, p.574][3, 72–74], by using the following expression:

Tm(A) =

((
· · ·

(
Aq

m!
+

Aq−1

(m − 1)!
+ · · · + A

(m − q + 1)!
+

I

(m − q)!

)

× Aq +
Aq−1

(m − q − 1)!
+

Aq−2

(m − q − 2)!
+ · · · + A

(m − 2q + 1)!
+

I

(m − 2q)!

)

× Aq +
Aq−1

(m − 2q − 1)!
+

Aq−2

(m − 2q − 2)!
+ · · · + A

(m − 3q + 1)!
+

I

(m − 3q)!

)

· · ·

× Aq +
Aq−1

(q − 1)!
+

Aq−2

(q − 2)!
+ · · · + A + I. (2)

In [10, p. 6455][3, p. 74] it is shown that, in order to compute more
efficiently the Taylor approximation (1) through the Paterson-Stockmeyer’s
method, the optimal values for the polynomial degree m of (2) must belong
to the set:

M = {2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, . . .} . (3)

Let’s denote as m1,m2,m3, . . . ,mk, . . . the elements of setM, for k = 1, 2, . . .,
then the optimal values of q (2) for a given mk can be either qk =

⌈√
mk

⌉

or qk = ⌊√mk⌋. The two values are integer divisors of mk and the cost of
evaluating (2) is the same for the two degrees. Table 1 shows the values for
qk =

⌈√
mk

⌉
which are the actual selected.

k 1 2 3 4 5 6 7 8 9 10 11 12 . . .
mk 2 4 6 9 12 16 20 25 30 36 42 49 . . .
qk 2 2 3 3 4 4 5 5 6 6 7 7 . . .

Table 1: Values of mk and qk for the first 12 elements of M.
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Taking into account Table 1, the cost of evaluating Tmk
(A) in terms of

matrix products, which we denote by Πmk
, is

Πmk
= k. (4)

The problem of applying algorithms based on the Taylor expression (1)
is that this approximation is accurate only near the origin, hence the norm
of matrix A must be reduced by using techniques based on the scaling an
squaring method [11, p. 241]. The idea is to use the identity

eA =
(
eA/2s)2s

, (5)

where s is a positive integer, and to apply the following approximation:

eA ∼= (Tm(A/2s))2s

.

In the next two subsections we derive expressions for the backward and
forward errors, respectively, of computing the matrix exponential through
the evaluation of a Taylor series like (1).

2.1. Backward error analysis
The backward error, ∆A, of computing eA by means of Tm(A) verifies

eA+∆A = Tm(A).

If we assume that ∆A and A conmute, and ρ
(
e−ATm(A) + I

)
< 1 (see [4]),

then
eAe∆A = Tm(A),
e∆A = e−ATm(A),
∆A = log

(
e−ATm(A)

)
= log (Tm(A)) − A.

Developing the above expression in Taylor series, it is obtained

∆A =
∞∑

i=m+1

piA
i,

and applying now Theorem 1.1 from [6], the relative backward error eb verifies
then that

eb =
∥∆A∥
∥A∥ =

∥∥∥∥
∞∑

i=m+1
piAi

∥∥∥∥

∥A∥ ≤

∞∑
i=m+1

|pi| ∥Ai∥

∥A∥ ≤
∞∑

i=m

|pi+1|
∥∥Ai

∥∥

≤
∞∑

i=m

|pi+1|
(∥∥Ai

∥∥1/i
)i

≤
∞∑

i=m

|pi+1|αi
m,
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where
αm = max

{
||Ai||1/i : i ≥ m and pi+1 ̸= 0

}
,

and, using Theorem 2 from [12], we obtain

αm = max
{
||Ai||1/i : m ≤ i ≤ 2m − 1 and pi+1 ̸= 0

}
. (6)

Let

Θ(0)
m = max

{
θ ≥ 0 :

∞∑

i=m

|pi+1|θi ≤ u

}
,

be a threshold value for the backward error used in the algorithms, where
u = 2−53 is the unit roundoff in the double precision floating-point. In order
to compute Θ(0)

m , we can use a symbolic calculation tool like Mathematica.
For the particular case of the first 9 elements of M, i.e. mk for i = 1, . . . , 9,
the values of Θ(0)

mk are those shown in the second column of Table 2.

2.2. Forward error analysis

Applying Theorem 1.1 of [6] and Theorem 2 of [12] as it has been previ-
ously done, the forward relative error ef can be computed as follows:

ef =
∥∥e−A

(
eA − Tm(A)

)∥∥ =
∥∥I − e−ATm(A)

∥∥ =

∥∥∥∥
∞∑

i=m+1
|p̄i|Ai

∥∥∥∥ ≤

≤
∞∑

i=m+1
|p̄i| ∥Ai∥ ≤

∞∑
i=m+1

|p̄i|
(
∥Ai∥1/i

)i

≤
∞∑

i=m+1
|p̄i|ᾱi

m,

where
ᾱm = max

{
||Ai||1/i : m + 1 ≤ i ≤ 2m and p̄i ̸= 0

}
. (7)

The threshold value used now for the forward error is

Θ(1)
m = max

{
θ ≥ 0 :

∞∑

i=m+1

|p̄i|θi ≤ u

}
,

and it can also be computed using Mathematica. As before, the values of
Θ(1)

mk , for k = 1, . . . , 9, are shown in the second column of Table 2.
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mk Θ(0)
mk Θ(1)

mk

2 2.675298260329713e-8 8.733457635286420e-6
4 3.397168839977002e-4 1.678018844321752e-3
6 9.065656407595296e-3 1.773082199654024e-2
9 8.957760203223343e-2 1.137689245787824e-1
12 2.996158913811581e-1 3.280542018037261e-1
16 7.802874256626574e-1 7.912740176600239e-1
20 1.438252596804337 1.415070447561532
25 2.428582524442827 2.353642766989427
30 3.539666348743690 3.411877172556770

Table 2: Values of Θ(0)
mk and Θ(1)

mk .

2.3. Determination of the Taylor order and the scaling factor

In this subsection we show how to properly obtain the Taylor approxima-
tion order m (1) and the scaling factor s introduced in (5).

Let Θm be defined as Θm = max
{

Θ(0)
m , Θ(1)

m

}
(Θm = Θ(1)

m for m ≥ 16, or

Θm = Θ(0)
m otherwise). We denote by mM the maximum Taylor approxima-

tion order allowed, and select a value for it such that mM ≥ 20. Then there
exist two possibilities:

• αm ≤ Θm, for some m ≤ mM . In this case, ef < u or eb < u:

– If m ≥ 16, ᾱm ≤ αm ≤ Θm = Θ(1)
m , hence ef < u.

– If m ≥ 20, αm ≤ Θm = Θ(0)
m , hence eb < u.

• αmM > ΘmM = Θ(0)
mM . In this case, we select the first positive integer s

that verifies
2−sαmM ≤ ΘmM ,

that is

s =

⌈
log2

(
αmM

ΘmM

)⌉
,

and then the relative backward error to compute e2−sA is lower than u,
i.e.

∥∆2−sA∥
∥2−sA∥ ≤ u.
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Instead of using (6) and (7) to compute αm and ᾱm, respectively, we
perform the computation of ||Am||1/m only. Since this may adversely affect
the accuracy of the resulting factor eA, we indeed calculate

T̄m(A) =
m−1∑

i=0

Ai

i!
+ Φ,

instead of Tm(A) (1), being Φ ∈ Cn×n an unknown matrix that must be
previously calculated. To compute matrix Φ we require

T̄m(x) =
m−1∑

i=0

Ai

i!
xi + Φxm (8)

to be the solution, at x = 1, of the Cauchy problem

Y ′(x) = AY (x)

Y (0) = I

⎫
⎬

⎭ , x ∈ [0, 1]. (9)

Using (8) and (9) we obtain

A
m−2∑

i=0

Ai

i!
xi + mΦxm−1 = A

m−1∑

i=0

Ai

i!
xi + AΦxm,

mΦxm−1 = A
Am−1

(m − 1)!
xm−1 + AΦxm,

and assuming that x = 1 in the above expression, matrix Φ is obtained by
solving the linear matrix equation:

(mI − A) Φ =
Am

(m − 1)!
. (10)

If we apply (2) to T̄m(A) so that

T̄m(A) =

((
· · ·

(
Φ̄ +

Aq−1

(m − 1)!
+ · · · + A

(m − q + 1)!
+

I

(m − q)!

)

× Aq +
Aq−1

(m − q − 1)!
+

Aq−2

(m − q − 2)!
+ · · · + A

(m − 2q + 1)!
+

I

(m − 2q)!

)

× Aq +
Aq−1

(m − 2q − 1)!
+

Aq−2

(m − 2q − 2)!
+ · · · + A

(m − 3q + 1)!
+

I

(m − 3q)!

)

· · ·

× Aq +
Aq−1

(q − 1)!
+

Aq−2

(q − 2)!
+ · · · + A + I, (11)
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we have that Φ̄ is the solution to the equation

(mI − A) Φ̄ =
Aq

(m − 1)!
. (12)

3. Algorithms for computing the matrix exponential

Algorithm 1 computes the matrix exponential based on the method de-
scribed above for a maximum order of mM = 30. To compute the Taylor
approximation we use (11) if the condition number of mI − A is lower than
100, or using (2) otherwise. Of course, the value 100 can be replaced by
another one in order to increase the accuracy of the solution of the linear
matrix equation (12). The idea is to avoid solving a possible ill-conditioned
system.

Algorithm 1 E=expmspl(A)

Given a matrix A ∈ Cn×n, this algorithm computes E = eA by a Taylor-spline
approximation of order mk to eA.

1: [mk, s, pA] = select m s(A) or [mk, s, pA] = select m s w(A)
2: B = mkI − A
3: if cond(B) < 100 then ◃ cond(B) returns the condition number of B
4: Compute E = T̄mM (pA,mk, s) from (11)
5: else
6: Compute E = TmM (pA,mk, s) from (2)
7: end if
8: for i = 1 : s do
9: E ⇐ E2

10: end for

In order to get the optimal values of m and s, we propose the following
algorithms:

• Algorithm 2. This algorithm estimates ||Am|| from matrices Aq pre-
viously computed, using the block 1–norm estimation algorithm of
Higham and Tisseur [13]. For instance, in the case m = 30, then
q = 6 (see Table 1) so matrices A1 = A, A2 = A2, A3 = A3, A4 = A4,
A5 = A5, A6 = A6 have to be computed and then ||A30|| can be esti-
mated by estimating ||A5

6||.
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• Algorithm 3. In this algorithm we bound ||Am|| from the products of
bounds or norms of matrices that have been previously computed. For
instance, in the case m = 16 we use the bound min {a3a9, a4a2a6, a3

4},
where a2 = ∥A2∥, a3 = ∥A3∥, a4 = ∥A4∥, being a6 and a9 bounds of
∥A6∥ and ∥A9∥, respectively.
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Algorithm 2 [m, s, A1, A2, A3, · · · , Aq ] = select m s(A)

Given a matrix A ∈ Cn×n and maximum order mM = 30, this function returns the optimal values of m
and s, and computes the powers

{
A1 = A, A2 = A2, A3 = A3, · · · , Aq = Aq

}
.

s = 0
A1 = A, a1 = ∥A1∥1, A2 = AA, a1 = ∥A2∥1
if a1 ≤ θ1 then

m = 2 return
end if
A2 = A1A1, a2 = ∥A2∥1, estimate a4 = ∥A2∥2 , α = 4√a4

if α ≤ θ2 then
m = 4 return

end if
A3 = A2A1, estimate a6 = ∥A3∥2

1 , α = 6√a6

if α ≤ θ3 then
m = 6 return

end if
Estimate a9 = ∥A3∥3

1 , α = 9√a9

if α ≤ θ4 then
m = 9 return

end if
A4 = A2A2, estimate a12 = ∥A3∥4

1 , α = 12√a12

if α ≤ θ5 then
m = 12 return

end if
Estimate a16 = ∥A4∥4

1 , α = 16√a16

if α ≤ θ6 then
m = 16 return

end if
A5 = A4A1, estimate a20 = ∥A5∥4

1 , α = 20√a20

if α ≤ θ7 then
m = 20 return

end if
Estimate a25 = ∥A5∥5

1 , α = 25√a25

if α ≤ θ8 then
m = 25 return

end if
A6 = A5A1, estimate a30 = ∥A6∥5

1, α = 30√a30

if α ≤ θ9 then
m = 30 return

end if
s =
⌈
log2

(
αm9
Θm9

)⌉
.

s25 =
⌈
log2

(
αm8
Θm8

)⌉
.

if s25 ≤ s then
m = 25; s = s25

else
m = 30

end if
for i=1:q do

Ai = Ai/2si

end for
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Algorithm 3 [m, s, A1, A2, A3, · · · , Aq ] = select m s w(A)

Given a matrix A ∈ Cn×n and maximum order mM = 30, this function returns the optimal values of m
and s, and computes the powers

{
A1 = A, A2 = A2, A3 = A3, · · · , Aq = Aq

}
.

s = 0
A1 = A, a1 = ∥A1∥1, A2 = AA, a1 = ∥A2∥1
if a1 ≤ θ1 then

m = 2 return
end if
A2 = A1A1, a2 = ∥A2∥1, a4 = a2

2, α = 4√a4

if α ≤ θ2 then
m = 4 return

end if
A3 = A2A1, a6 = min

{
a3
2, a2

3

}
, α = 6√a6

if α ≤ θ3 then
m = 6 return

end if
a9 = a3a6 , α = 9√a9

if α ≤ θ4 then
m = 9 return

end if
A4 = A2A2, a12 = min

{
a3a9, a4a2a6, a3

4

}
, α = 12√a12

if α ≤ θ5 then
m = 12 return

end if
a16 = a4a12, α = 16√a16

if α ≤ θ6 then
m = 16 return

end if
A5 = A4A1, a30 = min

{
a4
5, a2

5a9a1, a2
5a2

4a2, a5a12a3, a4a16
}
, α = 20√a20

if α ≤ θ7 then
m = 20 return

end if
Estimate a25 = a5a20 , α = 25√a25

if α ≤ θ8 then
m = 25 return

end if
A6 = A5A1, a20 = min

{
a5
6, a3

6a12, a3
6a2

5a2, a2
6a16a2, a2

6a3
5a3, a2

6a2
5a2

4, a6a20a4, a5a25
}
, α = 30√a30

if α ≤ θ9 then
m = 30 return

end if
s =
⌈
log2

(
αm9
Θm9

)⌉
.

s25 =
⌈
log2

(
αm8
Θm8

)⌉
.

if s25 + 1 < s then
m = 25; s = s25

else
m = 30

end if
for i=1:q do

Ai = Ai/2si

end for
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4. Numerical experiments

In a preliminar analysis, we tested the performance of Algorithm 2 and
Algorithm 3 to get m and s. We found that the errors obtained with each
one are very similar but the execution time, however, is greater when Al-
gorithm 2 is used. Hence, in the following, we will only use Algorithm 1 in
combination with Algorithm 3 and this algorithm will be denoted as expmspl.
We compare our algorithm expmspl with the following two legacy MATLAB
implementations for the computation of matrix exponential:

• expm new: MATLAB implementation based on Padé approximation
from [6].

• exptayns: MATLAB implementation of exptaynsv3 from [12].

MATLAB1 implementations were tested on an Intel Core 2 Duo processor
at 3.00 GHz with 4 GB main memory. The description of the tests carried
out is the following:

• Test 1: This test is composed by a set of fifty 128 × 128 diagonalizable
real random matrices. The 1-norm of these matrices vary between 2 .502
and 132.76.

• Test 2: This test is composed by a set of fifty 128×128 non diagonaliz-
able real random matrices with eigenvalues whose algebraic multiplicity
vary between 1 and 10. The 1-norm of these matrices vary between 1
and 74.24.

• Test 3: This test is composed by a set of thirty one 128 × 128 real
matrices obtained from the function matrix of the Matrix Computa-
tion Toolbox [14]. Some matrices were excluded because their matrix
exponential can not be computed in double precision due to overflow
errors. The 1-norm of these matrices vary between 1 and 129.

The algorithm accuracy was tested by computing the relative error

E =
∥eA − Ỹ ∥1

∥eA∥1

,

1MATLAB version 8.4 (R2014b).
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by using the MATLAB Symbolic Math Toolbox, where Ỹ is the computed
solution, and eA is the exact solution (Test 1 and Test 2). When it was
not possible to compute analytically, Taylor approximations were used by
varying the order and the scaling factor in an iterative process until the
norm of the relative difference between the approximations has lower than
the unit roundoff in the double precision floating-point u.

Figures 1, 2 and 3 show the normwise relative errors, the performances,
the ratio of relative errors and the ratio of execution times for each test.
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Figure 1: Experimental results with Test 1.

The normwise relative errors show the numerical stability of functions
expm new, exptayns, and expmspl. Subfigures 1a, 2a and 3a show the rel-
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Figure 2: Experimental results with Test 2.

ative errors of all implementations, and a solid line that represents the unit
roundoff multiplied by the relative condition number of the exponential func-
tion at X [3, p. 55]. The relative condition number was computed using the
MATLAB function funm condest1 from the Matrix Function Toolbox [3,
Appendix D]2. For a method to perform in a backward and forward stable
manner, its error should lie not far above this line on the graph [15, p. 1188].
The normwise subfigures show that all functions performed in a numerically

2http://www.maths.manchester.ac.uk/~higham/mftoolbox
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Figure 3: Experimental results with Test 3.

stable way for all matrices.
Subfigures 1b, 2b and 3b show the performances of the functions [16].

The α value varies between 1 and 5 with a step size equal to 0.1. Value p is
the probability that the considered algorithm has a relative error lower than
or equal to α-times the smallest error over all the methods.

Subfigures 1c, 2c and 3c show the ratios of errors of expm new and exptayns
with respect to expmspl. Subfigures 1d, 2d and 3d show the ratios of execu-
tion times of expm new and exptayns with respect to expmspl.

According to the results shown in the above figures we can outline the
following conclusions:
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• The implementations based on Taylor series are more accurate than the
implementation based on Padé series (Figures 1b, 1c, 2b, 2c, 3b, and
3c). The implementations based on the Taylor method practically have
a similar precision, but the new implementation expmspl is slightly
more accurate than the implementation exptayns, as it can be seen in
Tables 3 and 4.

• In general, the implementations based on Taylor series have lower ex-
ecution times than the implementation based on Padé series (Subfig-
ures 1d, 2d, and 3d). In general, the execution time of expmspl is lower
than the execution time of exptayns.

• Subfigures 1a, 2a and 3a show that the three implementations are nu-
merically stable.

Table 3: Relative error comparative between exptayns(E2) and expmspl(E3)
with estimations.

E3 ≤ 0.1E2 0.5E2 ≤ E3 < E2 E2 ≤ E3 < 2E2 2E2 ≤ E3 < 5E2

Test 1 0% 66% 34% 0%
Test 2 0% 62% 36% 2%
Test 3 3.7% 51.86% 44.44% 0%

Table 4: Relative error comparative between exptayns(E2) and expmspl(E3)
without estimations.

E3 ≤ 0.1E2 0.5E2 ≤ E3 < E2 E2 ≤ E3 < 2E2 2E2 ≤ E3 < 5E2

Test 1 0% 59% 41% 0%
Test 2 2% 58% 38% 2%
Test 3 7.41% 48.15% 44.44% 0%

5. A high performance solution for the matrix exponential compu-
tation

The computational cost of matrix multiplication is O(n3) flops with a very
regular operation pattern whose throughput per data read from memory is
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very high. This fact makes matrix multiplication an operation very prone
to be improved on manycore processor architectures like are the accelerators
we can find attached to computers. For instance, the NVIDIA company de-
livers, contained in its Software Development Kit, the CUBLAS [17] library,
which is an implementation of BLAS routines featuring a very optimized ma-
trix multiplication for NVIDIA GPUs. This way, one of the most important
avails of the Taylor series approach for the computation of a matrix expo-
nential is the intensive use of matrix multiplications, an operation that can
clearly benefit from the presence of accelerators in the host computer, which
is, in turn, a very common situation in current workstations devoted to sci-
entific computing. Thus, a solution that uses GPU can be used to address
the computation of matrix exponential of large scale problems and in high
performance workstations with a GPU attached. Moreover, also small per-
sonal computers or even laptops featuring a GPU can benefit from a solution
that uses a GPU to accelerate computations.

We have developed a solution that improves the performance of the com-
putation by using our GPU through the MATLAB Parallel Computing Tool-
box (PCT). The MATLAB PCT provides a straightforward way to speed up
MATLAB code by driving some computations to an NVIDIA GPU. To this
end, the original MATLAB code is slightly modified with the PCT command
extensions to MATLAB that allow to upload/download matrices to/from the
GPU. The PCT point of view is straightforward, all operations carried out
on objects (matrices) uploaded to the GPU are carried out into the GPU.
The time needed for data racking between Host and GPU is the downside
of this solution, so care must be taken of minimizing the total amount of
matrices traveling to the GPU for computation.

The experimental results have been carried out on an NVIDIA K20 (Ke-
pler generation card) [18] (routine expmsplc gpu). The results, in execution
time, obtained with the GPU are compared with the MATLAB code (rou-
tine expmsplc) running on an Intel QuadCore i7-3820 @3.6 GHz CPU, where
the GPU is attached (Table 5). For the tests, we used several random ma-
trices (MATLAB randn matrices [14]) with sizes N = 1024, . . . , 7168.

A downside of using GPUs to accelerate general purpose computations
is the memory limitation, 6GB in the case of our GPU, which means that
we can not get the matrix exponential of matrices larger than N = 7168.
This problem can be solved by using out-of-core algorithms [19], however, a
solution based on this type of algorithms can not be implemented in the en-
vironment of the PCT, it would need C programming through MEX files [20]
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Table 5: Time (in seconds) of the MATLAB routine expmsplc using the
CPU and the MATLAB implementation based on the PCT using the GPU
(expmsplc gpu). The table also shows the speed up.

Size Speedup Time CPU Time GPU
1024 2.43 0.46 0.19
2048 3.58 2.85 0.79
4096 4.43 21.88 4.93
5120 4.27 40.03 9.36
6144 4.31 67.78 15.72
7168 4.34 106.65 24.53
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Figure 4: Performance in Gflops of the CPU version (expmsplc) and the
GPU version (expmsplc gpu) with regard to the problem size.

and this issue falls beyond the scope of this paper. Table 5 shows, in the
second column, the speedup of the GPU version with regard to the CPU
one. The performance in Gflops of both versions of the routine is shown in
Figure 4.

6. Conclusions

In this work an accurate Taylor algorithm has been proposed to compute
the exponential matrix. The algorithm uses the scaling technique based on
the double angle formula, the Horner and Paterson-Stockmeyer’s method for
computing the Taylor approximation, and a spline method. A MATLAB
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implementation of this (expmspl) has been compared with other state of the
art MATLAB implementations.

Numerical experiments show that in general the new algorithm has a
higher accuracy than expm new and exptayns functions in the majority of
the tests, with a lower execution time than the implementation based on
Padé series (expm new) and similar execution times that the other Taylor
implementation (exptayns).

With our parallel implementation, we get good results. This implemen-
tation is useful when working with large scale problems. We used MATLAB
and the PCT environment. The advantages of the PCT are that it is very
versatile and it is relatively easy to configure and to use for non experts
in parallel engineering. The downside is that probably the benefits are not
as good as those that could be achieved with a CUDA+OPENMP+MEX
based implementation (due to two K20 cards are used). For example, in
[21, 22] the program yields 650 Gigaflops. While here, barely, we reached
450 Gflops. Anyway the GPU implementation (expmspl gpu) is much faster
than the implementation expmspl.
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[12] P. Ruiz, J. Sastre, J. Ibáñez, E. Defez, High perfomance computing of
the matrix exponential, J. Comput. Appl. Math. 291 (2016) 370–379.

[13] N. J. Higham, F. Tisseur, A block algorithm for matrix 1-norm esti-
mation, with an application to 1-norm pseudospectra, SIAM J. Matrix
Anal. Appl. 21 (2000) 1185–1201.

[14] N. J. Higham, The Test Matrix Toolbox for MATLAB, Numerical Anal-
ysis Report No. 237, Manchester, England (Dec. 1993).

[15] N. J. Higham, The scaling and squaring method for the matrix expo-
nential revisited, SIAM J. Matrix Anal. Appl. 26 (4) (2005) 1179–1193.
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