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Abstract

This paper introduces GLINTS, a graphical tool for exploring variant narrowing computations

in Maude. The most recent version of Maude, version 2.7.1, provides quite sophisticated

unification features, including order-sorted equational unification for convergent theories

modulo axioms such as associativity, commutativity, and identity. This novel equational

unification relies on built-in generation of the set of variants of a term t, i.e., the canonical

form of tσ for a computed substitution σ. Variant generation relies on a novel narrowing

strategy called folding variant narrowing that opens up new applications in formal reasoning,

theorem proving, testing, protocol analysis, and model checking, especially when the theory

satisfies the finite variant property, i.e., there is a finite number of most general variants for

every term in the theory. However, variant narrowing computations can be extremely involved

and are simply presented in text format by Maude, often being too heavy to be debugged

or even understood. The GLINTS system provides support for (i) determining whether a

given theory satisfies the finite variant property, (ii) thoroughly exploring variant narrowing

computations, (iii) automatic checking of node embedding and closedness modulo axioms, and

(iv) querying and inspecting selected parts of the variant trees.

KEYWORDS: Rewriting Logic, Narrowing, Variant, Maude, Embedding, Finite Variant

Property

1 Introduction

Narrowing is a symbolic execution mechanism that generalizes term rewriting by

allowing free variables in terms (as in logic programming) and handles them by using

unification (instead of pattern matching) to non-deterministically reduce these terms.

Originally introduced in the context of theorem proving, narrowing is complete in the
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sense of logic programming (computation of answers) and functional programming

(computation of irreducible forms) so that efficient versions of narrowing have been

adopted as the operational principle of so-called multi-paradigm (functional logic)

programming languages (see, e.g., Hanus (2013)). In the last few years, there has been

a resurgence of narrowing in many application areas such as equational unification,

state-space exploration, protocol analysis, termination analysis, theorem proving,

deductive verification, model transformation, testing, constraint solving, and model

checking. To a large extent, the growing interest in narrowing is motivated by the

recent takeoff of symbolic execution applications and the availability of efficient

narrowing implementations.

Maude is a language and a system that efficiently implements Rewriting Logic

(Meseguer 1992), which is a logic of change that seamlessly unifies a wide variety

of models of concurrency. Thanks to its logical basis, Maude provides a precise

mathematical model, which allows it to be used as a declarative language and as a

formal verification system. The most recent version of Maude, version 2.7.1 (Clavel

et al. 2016), provides quite sophisticated narrowing-based features, including order-

sorted equational unification for convergent theories modulo a set of commonly

occurring axioms such as associativity, commutativity, and identity. This novel

equational unification relies on built-in generation of the set of variants of a term

t (Durán et al. 2016). A variant (Comon-Lundh and Delaune 2005) of a term t in the

theory E is the canonical (i.e., irreducible in E) form of tσ for a given substitution σ;

in symbols, (σ, tσ↓E). Variants are computed in Maude by using the folding variant

narrowing strategy (Escobar et al. 2012), which adopts from tabled logic programming

(Chen and Warren 1996) the idea of memoizing calls encountered in a query evalua-

tion (along with their answers) in a set of tables so that, if the call is re-encountered,

the information from the table is reused instead of running the call again. This is

useful in two ways: it prevents looping, which may ensure termination under suitable

conditions, and it filters out redundant derivations to a reachable expression leading

to better performance. When a convergent theory satisfies the finite variant property

(FVP) (i.e., there is a finite number of most general variants for every term in the

theory), folding variant narrowing computes a minimal and complete set of most

general variants in a finite amount of time. Many theories of interest have the FVP,

including theories that give algebraic axiomatizations of cryptographic functions

used in communication protocols, where FVP is omni-present.

Maude’s variant generation mechanism was originally designed as an aid for order-

sorted equational unification modulo axioms and related problems. It delivers the set

of most general variants of the given theory, but it does not allow the user to control

the process in any way nor does it provide the user with thorough information about

the variant computation process. Unfortunately, variant computations delivered by

Maude using the folding variant narrowing strategy can be extremely involved and

are simply presented in text format, often being too heavy to be debugged or even

understood.

Recently, the definition and inspection of equational theories for which the

variants are generated has become an interesting application on its own, which

requires enhanced support for exploring the variant narrowing computations. For

example, Yang et al. (2011) considers 20 equational theories for protocol analysis
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in the protocol analyzer Maude-NPA. These equational theories represent under-

and over-approximations of the theory of homomorphic encryption with different

variant generation behaviors (see Yang et al. (2011) for details). As another example,

Meseguer (2015) considers distinct axiomatizations of several equational theories of

interest for boolean satisfiability. Given the huge intricacy of variant computations,

in both cases, the development of all these equational theories was painful when

considering the time and effort required to analyze the different variant-based

properties for the considered versions of the theories. Often, even an ordinary

developer who uses (variant) narrowing as a functional logic program execution

mechanism needs deeper support than currently provided by Maude.

This paper describes an inspecting tool for variant computations in Maude called

GLINTS (GraphicaL Interactive Narrowing Tree Searcher) and its implementation.

GLINTS does not only visualize the variants generated by Maude; it goes beyond

that by showing internal narrowing computations in full detail, including partially

computed substitutions, Ax-matching and equational normalization steps that are

concealed within Maude’s variant narrowing and equational rewriting algorithms.

Exploration and visualization in GLINTS can be either automatic or interactive,

which allows following promising paths in the narrowing tree without exploring

irrelevant parts of it. This supports the design of efficient heuristics for some

applications. Also, the displayed view can be abstracted when its size requires it, to

avoid cluttering the display with unneeded details. Important insights regarding the

programs/theories can be gained from controlling the narrowing space exploration.

Does the theory have a finite number of variants? How many variants are there?

What do these variants look like and how do they compare to each other modulo

axioms? (For instance, is one of the nodes embedded or structurally subsumed

by one of its ancestors? Is the node closed or an equational instance of the tree

root or input expression?) What is the meta-level representation of a narrowing

computation trace? Moreover, it can also help uncover correctness bugs or even

unexpected low performance (by showing which patterns have been executed more

often or dominate the execution), which might otherwise be very difficult to identify.

As far as we know, this is the first graphical tool in the literature for visual inspection

of variant narrowing computations modulo axioms.

After introducing the basic ideas of Maude’s narrowing-based variant generation

in Section 2, we introduce a leading example for describing GLINTS equational

reasoning capabilities based on variant narrowing in Section 3. We explain the core

functionality of GLINTS and extra inspection features in Section 4. We provide a

description of the tool implementation together with some experiments that assess

its performance in Section 5. Finally, some related work and further applications

are briefly discussed in Section 6.

GLINTS is publicly available at http://safe-tools.dsic.upv.es/glints.

2 Narrowing-based variant generation in Maude

Unification is a deductive mechanism that is used in many automated deduction

tools and is essential for programming languages with logical capabilities. Although

Maude inherited many features from predecessor languages, like OBJ and Eqlog
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(Meseguer 2006), for the sake of high performance, the narrowing-based, logic

programming capabilities of the equational logic language Eqlog were left behind

since the first public release of Maude in 1999. Order-sorted unification and

narrowing modulo axioms first became available in 2009 as a part of Maude 2.4,

while variant generation, variant-based unification, and folding variant narrowing

have only been implemented 20 years later as built-in, highly efficient features in

Maude 2.7.1.

Example 1

Let us illustrate the notion of narrowing in Maude by considering the following

simple Maude1 functional module (with no axioms Ax) for addition NAT-VARIANT.

fmod NAT-VARIANT is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

vars X Y Z W : Nat .

eq [1] : 0 + Y = Y [variant] .

eq [2] : s(X) + Y = s(X + Y) [variant] .

endfm

The reducible expression, or simply redex, s(0)+0 can be simplified into the

result s(0) in two rewriting steps as follows: s(0)+0 →[2] s(0+0) →[1] s(0).

Similarly, the non-ground term s(0)+W can be simplified into the result s(W) in

two rewriting steps as follows: s(0)+W →[2] s(0+W) →[1] s(W). However, even

though the term Z+0 cannot be rewritten as it does not match the left-hand side

of any equation, it can be narrowed into s(0), with computed answer substitution

θ = {Z �→ s(0)}, in two narrowing steps as follows: Z+0
σ0
�[2] s(X+0)

σ1
�[1] s(0),

where σ0 = {Z �→ s(X), Y �→ 0} is the most general unifier of Z+0 and the left-hand

side s(X)+Y of the applied equation [2], and similarly σ1 = {X �→ 0, Y’ �→ 0} is the

most general unifier of X+0 and the (renamed-apart) left-hand side 0+Y’ of equation

[1], and θ = (σ0σ1)|̀{Z}.

For an equational theory E = (Σ, E ∪ Ax) to be executable, its equations E must

be convergent (i.e., confluent, terminating, and coherent modulo the given axioms

Ax) (Durán and Meseguer 2012). This ensures (1) that every input expression t has

one (and only one) canonical form t↓E; and (2) that the Maude interpreter can

implement conditional rewriting →E∪Ax as a much simpler relation →E,Ax (rewriting

with E modulo Ax) that uses the equations of E (oriented from left to right) as the

only simplification rules, while the equations in Ax are just encapsulated within a

powerful algorithm of pattern matching modulo Ax that is used at each rewrite step

with E.

1 Maude syntax is almost self-explanatory, using explicit keywords such as fmod, sort, and op to,
respectively, introduce a module, a sort (or type), and an operator, together with its domain → range
typing declaration that appears after the “:” symbol (e.g., op s : Nat -> Nat). The sort of a variable
can be given explicitly in any expression or within the variable declaration section. In addition, from
Maude 2.7 and later, only equations with the attribute variant are used by the folding variant
narrowing strategy, while all the others are only used for rewriting.
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Given E = (Σ, E ∪ Ax), the (E,Ax)-variants of a term t are the set of all pairs

(σ, tσ↓E), each one of which consists of a substitution σ and the (E,Ax)-canonical

form of tσ (Comon-Lundh and Delaune 2005; Escobar et al. 2012). Intuitively, the

variants of t are the “irreducible patterns” to which t can be symbolically evaluated

by applying the (implicitly oriented) equations of E modulo Ax. For instance,

there is an infinite number of variants for the term (0 + Y:Nat) in the theory

NAT-VARIANT, e.g., (id, Y:Nat), ({Y:Nat �→ 0}, 0), ({Y:Nat �→ s(Z:Nat)}, s(Z:Nat)),
({Y:Nat �→ s(0)}, s(0)), . . ..

A preorder relation of generalization between variants provides a notion of most

general variant and also a notion of completeness of a set of variants. For the term

0 + Y:Nat, the most general variant is (id, Y:Nat) since any other variant can be

obtained by equational instantiation.

Example 2

Consider the following theory that declares the two Boolean constants true and

false. The key thing to note are the special attributes assoc and comm, meaning that

the infix operators “and” and “or” obey associativity and commutativity axioms:

fmod BOOL is

sort Bool .

ops true false : -> Bool .

ops _and_ _or_ : Bool Bool -> Bool [assoc comm] .

vars X Y : Bool .

eq X and true = X [variant] .

eq X and false = false [variant] .

eq X or true = true [variant] .

eq X or false = X [variant] .

endfm

There are five most general variants modulo AC for “X and Y”, which are

{(id, X and Y), ({X �→ true}, Y), ({Y �→ true}, X), ({X �→ false}, false),
({Y �→ false}, false)}. Similarly, there are five most general variants for “X or

Y”.

An equational theory has the FVP (or it is called a finite variant theory) iff there

is a finite and complete set of most general variants for each term. The theory

BOOL is FVP, whereas the theory NAT-VARIANT does not have the FVP since there

is an infinite number of variants in NAT-VARIANT for the term X:Nat + 0. It is

generally undecidable whether an equational theory has the FVP (Bouchard et al.

2013); a semi-decision procedure is given by Meseguer (2015) that works well in

practice and another technique based on the dependency pair framework is given

by Escobar et al. (2012). The procedure by Meseguer (2015) works by computing

the variants of all flat terms f(X1, . . . , Xn) for any n-ary operator f in the theory and

pairwise-distinct variables X1, . . . , Xn (of the corresponding sort); the theory does

have the FVP iff there is a finite number of most general variants for every such

term (Meseguer 2015).

At the practical level, variants are generated by using an efficient narrowing

strategy called the (folding) variant narrowing strategy, which was proved to be
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complete for variant generation in Escobar et al. (2012) and terminates for all inputs

provided that the theory has the FVP. Variant narrowing derivations correspond

to narrowing sequences t0
σ0
�e0 ,Ax t1

σ1
�e1 ,Ax . . .

σn−1
� en−1 ,Ax tn, where t

σ
�e,Ax t′ denotes a

transition (modulo axioms in Ax) from term t to t′ via the variant equation e (i.e., an

equation e that is enabled to be used for narrowing thanks to the attribute variant)

using the equational unifier σ. Assuming that the initial term t is normalized, each

single transition t
σ
�e,Ax t

′ (or variant narrowing step) is followed by the simplification

of the term into its normal form by using all equations in the theory, which may

include not only the variant equations in the theory but also non-variant equations

(e.g., built-in equations in Maude). The composition σ0σ1σn−1 of all the unifiers along

a narrowing sequence leading to tn (restricted to the variables of t0) is the computed

variant substitution of this sequence. The folding refinement of variant narrowing that

is implemented in Maude essentially consists in “folding”, by subsumption modulo

Ax, the narrowing tree for (E,Ax), which can in practice result in a finite narrowing

graph that symbolically summarizes the, in general infinite, (E,Ax)-narrowing tree.

Maude provides the following command for variant generation:

get variants [ n ] in 〈ModId 〉 : 〈Term 〉 ,

where n is an optional argument that indicates the number of variants requested

and 〈ModId〉 is the module where the command is run. There is also a meta-level

command for variant generation, see Clavel et al. (2016).

Example 3

Consider the following equational theory (Clavel et al. 2016) for the exclusive-or

symbol * (i.e., an exclusive union operator * for sets of natural numbers, NatSet,

such that X1 ∗ X2 is the set of natural numbers appearing in X1 or X2, but not

both), where mt is the (empty set) identity element. Note that the notation [NatSet]

denotes the kind of sort NatSet that, in addition to normal data of sort NatSet, can

also contain “error expressions”.

fmod EXCLUSIVE-OR is

sorts Nat NatSet . subsort Nat < NatSet .

op 0 : -> Nat .

op s : Nat -> Nat .

op mt : -> NatSet .

op _*_ : NatSet NatSet -> NatSet [assoc comm] .

vars X Z : [NatSet] .

eq [idem] : X * X = mt [variant] .

eq [idem-Coh] : X * X * Z = Z [variant] .

eq [id] : X * mt = X [variant] .

endfm

We can check that the above theory has the FVP by asking Maude to generate all

variants for the exclusive-or symbol ∗ in the EXCLUSIVE-OR module, which delivers

seven variants:

Maude> get variants in EXCLUSIVE-OR : X * Y .

Variant 1 Variant 2 Variant 7

[NatSet]: #1:[NatSet] * #2:[NatSet] NatSet: mt ...... [NatSet]: %1:[NatSet]

X --> #1:[NatSet] X --> #1:[NatSet] X --> %1:[NatSet]

Y --> #2:[NatSet] Y --> #1:[NatSet] Y --> mt
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Observe that Maude can introduce fresh variables of two classes: (#n:Sort) or

(%n:Sort). This is because it distinguishes between variables that are generated by

the built-in unification modulo axioms (#n:Sort) and variables that are generated by

variant-based unification or variant generation (%n:Sort) (Clavel et al. 2016). Also,

note that the canonical form for any other instance of the term X * Y is subsumed

modulo the axioms by one of the seven computed variants. For instance, when the

substitution2 {X �→ 0 * s(0), Y �→ 0 * s(0)} is applied to X * Y, the canonical

form is just mt, but this is an instance of Variant 2. This is because the application

(modulo associativity and commutativity of *) of equation [idem] causes 0 and

s(0) to be cancelled. Other examples of variant generation can be found in the

Maude manual (Clavel et al. 2016). Maude can also be asked to return the sequence

of most general variants incrementally, which can be useful when a theory does not

have the FVP. For instance, the term X:Nat + s(0) has an infinite number of most

general variants in the theory of the module NAT-VARIANT. In such a case, Maude

can either output the infinite sequence of variants to the screen (and the user can

stop the process whenever she wants), or be given a bound n so that it generates

only a maximum of n variants.

Maude> get variants [10] in NAT-VARIANT : X + s(0) .

Variant 1 Variant 10

Nat: #1:Nat + s(0) ............................ Nat: s(s(s(s(s(0)))))

X --> #1:Nat X --> s(s(s(s(0))))

In the case when the bound n is reached, the user can incrementally increase the

bound so that the FVP is proved whenever the number of computed variants is

smaller than the given bound. Unfortunately, the variant generation process can be

infinitely repeated if the FVP does not hold.

In the following section, we show how proving that a theory has the FVP is much

easier and fruitful by using GLINTS. Actually, we might even know that the FVP is

not fulfilled and yet be interested in exploring the variant narrowing computation

space of a number of terms in order to gain insights on how to modify the theory

so that the FVP holds.

3 Folding variant narrowing trees in GLINTS: a running example

Let us consider again the equational specification for the exclusive-or theory above.

This theory has the FVP since only seven most general variants exist for the symbol

_*_. However, one might be interested to grasp why this specification fulfills the

FVP, whereas slightly modified specifications of the exclusive-or theory are known

to fail.

Example 4

Assume that we test the FVP after replacing the variable declaration X:[NatSet]

of the original specification with X:Nat:

2 Note that 0 * s(0) is of sort NatSet because Nat < NatSet.
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Finite number of variants Total of variants See variants
true 1

43

1

unknown 

true 
true 1

Finite Variant Property Test ×

RestartStop

Operator
op 0 : -> Nat .

op _*_ : NatSet NatSet -> NatSet [assoc comm] . 

Result of the FVP Test: uncertain!

op mt : -> NatSet .  
op s : Nat -> Nat .

Fig. 1. The FVP test for the modified non-FVP exclusive-or theory.

fmod EXCLUSIVE-OR-NOFVP is

sorts Nat NatSet . subsort Nat < NatSet .

op 0 : -> Nat .

op s : Nat -> Nat .

op mt : -> NatSet .

op _*_ : NatSet NatSet -> NatSet [assoc comm] .

var X : Nat . var Z : [NatSet] .

eq [idem] : X * X = mt [variant] .

eq [idem-Coh] : X * X * Z = Z [variant] .

eq [id] : X * mt = X [variant] .

endfm

The variant generation process in Figure 1 is stopped after computing 43 variants

for symbol _*_ due to timeout, hence the result of the FVP test is uncertain yet

this theory is known not to satisfy the FVP. One could investigate why this simple

modification destroys FVP by inspecting the folding variant narrowing tree for the

expression X:[NatSet] * Y:[NatSet] shown in Figure 2.

GLINTS can generate the folding variant narrowing tree of a given term in three

ways: (i) stepwisely, by (manually) selecting a down triangle symbol � that is

shown below each narrowable node of the tree (see Figure 2); (ii) automatically

until a fixed depth bound is reached; or (iii) automatically by using the more

sophisticated control mechanism called (equational) homeomorphic embedding that

is commonly used to ensure termination of unfolding-based program transformation

and other symbolic methods (Leuschel 2002; Alpuente et al. 2017). Informally, a

term t′ embeds3 another term t, in symbols t � t′, if t (or a term that is equal

to t modulo Ax) can be obtained from t′ by deleting some symbols of t′; e.g.,

s(s(X+Y)∗(s(X)+Y)) embeds s(Y∗(X+Y)), assuming commutativity of the _*_

symbol. Nodes in the folding variant narrowing tree that embed a previous node in

the same branch of the tree are highlighted in green and are decorated with symbol

� below the node, as shown in Figure 2 (by clicking on the symbol, its closest

embedded ancestor gets also highlighted).

In Figure 2, note that we have interactively produced variants up to V10 and could

continue generating variants indefinitely, whereas the folding variant narrowing tree

3 The order-sorted extension of homeomorphic embedding modulo equational axioms, such as
associativity, commutativity, and identity that we use for Maude can be found in Alpuente et al.
(2017).
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X:[NatSet] * Y:[NatSet]

V0
#1:[NatSet] * #2:[NatSet]

[ren]

V1
mt

[idem]

V2
%1:Nat

[id]

V3
%1:Nat

[id]

V4
%2:[NatSet] * %3:[NatSet]

[idem-Coh]

V5
%2:[NatSet]

[idem-Coh]

V6
%2:[NatSet]

[idem-Coh]

V7
mt

[idem]

V8
#3:[NatSet] * #4:[NatSet]

[idem-Coh]

V9
#3:[NatSet]

[idem-Coh]

V10
#3:[NatSet]

[idem-Coh]

Fig. 2. Inspecting variant computations of the modified non-FVP exclusive-or

theory.

Variant V
%2:[NatSet] * %3:[NatSet]

Equation applied
eq [idem-Coh] : X:Nat * X:Nat * Z:[NatSet] = Z:[NatSet] [variant] .

Equational unifier

lhs substitution input term substitution

{X:Nat  %1:Nat, Z:[NatSet]

 %2:[NatSet] * %3:
[NatSet]}

 

{#1:[NatSet]  %1:Nat * %2:

[NatSet], #2:[NatSet] 
%1:Nat * %3:[NatSet]}

Computed variant substitution

{X:[NatSet]  %1:Nat * %2:[NatSet], Y:[NatSet]  %1:Nat
* %3:[NatSet]}

4 Variant V
#3:[NatSet] * #4:[NatSet]

Equation applied
eq [idem-Coh] : X:Nat * X:Nat * Z:[NatSet] = Z:[NatSet] [variant] .

Equational unifier

lhs substitution input term substitution

{X:Nat  #2:Nat, Z:[NatSet]

 #3:[NatSet] * #4:
[NatSet]}

 

{%1:Nat  #1:Nat, %2:

[NatSet]  #2:Nat * #3:

[NatSet], %3:[NatSet] 
#2:Nat * #4:[NatSet]}

Computed variant substitution

{X:[NatSet]  #1:Nat * #2:Nat * #3:[NatSet], Y:[NatSet]

 #1:Nat * #2:Nat * #4:[NatSet]}

8

Fig. 3. Comparison of nodes V4 and V8.

for the original EXCLUSIVE-OR theory stops at node V6. Also, note that some

potential narrowing steps stemming from the nodes of Figure 2 are not produced

by the folding variant narrowing strategy as it avoids expanding nodes that are

subsumed by previous ones. For instance, for node V4, folding variant narrowing

does not compute any children nodes equivalent to children V2 and V3 of node

V0. However, the theory EXCLUSIVE-OR-NOFVP does not have the FVP because

nodes V7, V8, V9, V10 are not subsumed by their counterpart nodes V1, V4, V5, V6,

respectively, whereas they are subsumed for the theory EXCLUSIVE-OR, yielding the

seven variants V0, . . . , V6.

The fact that GLINTS automatically detects that node V0 in Figure 2 is trivially

embedded into node V4, and that V4 is embedded into node V8 (actually they

are all equal modulo variable renaming), warns about potentially infinite narrowing

computations stemming from V0 (it is said that � whistles (Leuschel 2002)). However,

note that node V8 is not a variant of V4 (nor V0). By comparing nodes V4 and

V8 (enabled by pressing Compare nodes in the top-right menu), we obtain the

information of Figure 3, which reveals that, even though V4 and V8 are equal

modulo renaming, the computed variant substitutions are different.

After considering a negative example where GLINTS could help you to understand

when and why the FVP of a theory can be lost after some changes, let us now analyze

a positive example where an equational specification can satisfy the FVP after some

changes.
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Finite number of variants stnairav eeS           stnairav fo latoT         

true 

true

true

true

Finite Variant Property Test ×

Result of FVP Test:

N Variant

1

2

Term:
#1:NatSet * #2:NatSet
Substitution:
X0:NatSet  #1:NatSet, 
X1:NatSet  #2:NatSet

Term:
%2:NatSet * %3:NatSet
Substitution:

X0:NatSet  %1:NeNatSet * %2:NatSet, 
X1:NatSet  %1:NeNatSet * %3:NatSet

Computed  variants  for the operator: _*_

Operator

op 0 : -> Nat .

op _*_ : NatSet NatSet -> NatSet [assoc comm id: mt] .

op _*_ : NeNatSet NatSet -> NeNatSet [assoc comm id: mt] .

op mt : -> NatSet

op s : Nat -> Nat .

Fig. 4. The FVP test for the newly modified exclusive-or theory with true verdict

and variants for * .

Example 5

If we make the original specification and make the _*_ symbol be associative,

commutative, and with identity empty set element mt, then the theory does have

FVP. This is shown in Figure 4; the list of computed variants for the operator

_*_ symbol is also shown, which has been retrieved by simply clicking on the

corresponding symbol of the right column.

fmod EXCLUSIVE-OR-ACU is

sorts Nat NeNatSet NatSet . subsort Nat < NeNatSet < NatSet.

op 0 : -> Nat .

op s : Nat -> Nat .

op mt : -> NatSet .

op _*_ : NatSet NatSet -> NatSet [assoc comm id: mt] .

op _*_ : NeNatSet NatSet -> NeNatSet [assoc comm id: mt] .

var X : NeNatSet . var Z : [NatSet] .

eq [idem-Coh] : X * X * Z = Z [variant] .

endfm

Note that this new specification relies on a subsort relation between sets of natural

numbers (sort NatSet) and non-empty sets of natural numbers (sort NeNatSet), and

it is simpler than the previous one because only one equation is needed.

If variable X were given, the sort Nat instead of NeNatSet, the mutated theory

would not satisfy the FVP, as the reader could easily verify in GLINTS.

Folding variant narrowing trees can also be checked in GLINTS for the (equa-

tional) closedness property, which naturally extends to order-sorted equational

theories (being executed by folding variant narrowing), the standard notion of

closedness4 of program calls that is used in the partial deduction of logic programs,

meaning that the call is an instance of one of the specialized expressions. GLINTS

implements the equational closedness check for the nodes of the deployed folding

variant narrowing tree w.r.t. the root of the tree; this transfers to our setting

the idea of regularity of a symbolic computation (in the terminology of Alpuente

et al. (1998a) and Pettorossi and Proietti (1996)). Informally, a node in the tree is

4 This notion was generalized to the narrowing-driven partial evaluation of functional-logic programs
that are modeled as (unsorted) term rewriting systems (Alpuente et al. 1997; Alpuente et al. 1998b).
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equationally closed (w.r.t. the tree root) if each narrowing redex in the term is an

equational instance of the root node of the tree. For instance, for a tree with root

(X*Y) and with one leaf node (0*X*Z), and assuming associativity of _*_, there are

three redexes (namely, (0*X), (X*Z), and (0*X*Z)) and the leaf is closed. Note that

neither closedness implies embedding nor the opposite: (0*0) is closed w.r.t. (X*Y)

yet it does not embed it, and (0*X*Y) embeds (X*X) (because X embeds Y, for any

variables X and Y) yet it is not closed w.r.t. it.

It is interesting to note that the notion of variant is closely related to the (functional

logic) notion of resultant that is used in unfolding-based symbolic transformation

techniques that rely on (some form of) narrowing, such as the narrowing-driven

partial evaluator for TRSs of Alpuente et al. (1998b) and the partial evaluator

Victoria for Maude equational theories of Alpuente et al. (2017), which is based on

folding variant narrowing: given a narrowing tree for the term t in the equational

theory E, for each (root-to-leaf ) narrowing derivation t �∗
σ s in the tree, specialized

(oriented) equations tσ = s (also called resultants) can be extracted from the tree by

piecing together the last term s of the narrowing derivation with the corresponding

instance tσ of the initial term t. Similarly to partial deduction, in the partial evaluator

of Alpuente et al. (2017), equational closedness is the key property to ensure that,

given a set Q of input expressions, the set resultants that can be extracted from a

set of folding variant narrowing trees built in E for the terms of Q (each one as

explained above) form a complete description that correctly specializes the original

theory E to the considered set Q. In other words, all calls that may occur at run-time

when any instance (modulo Ax) of a term of Q is executed in the specialized theory

S are covered by S (i.e., folding variant narrowing computes the same solutions

in S as in the original theory E). This process is being efficiently implemented in

Victoria thanks to the folding variant narrowing machinery developed in this work

for GLINTS.

Similarly to the equational embedding test, the equational axioms and the order-

sortedness information are both considered in the equational closedness test that is

implemented in GLINTS. The tool checks this property automatically at any node in

which the homeomorphic embedding whistles, and also when a node is interactively

selected. It is signaled by an extra symbol below the node (except for unnarrowable

leaves, which are always trivially closed and are simply highlighted in orange). In

Figure 2, all the nodes are equationally closed; actually, they are either unnarrowable

or a syntactic instance of the tree root.

4 GLINTS at a glimpse

In this section, the main features of the graphical explorer GLINTS are outlined.

Once a Maude module (or sequence of modules) has been input, the initial GLINTS

panel allows (1) the folding variant narrowing space to be explored for a given term;

and (2) the FVP to be checked (as explained in Section 3).

Running the graphical explorer and executing the corresponding textual narrowing

commands of Maude is essentially the same regarding the processes that are

conducted in the background (i.e., to some extent, the narrowing tree panel can
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be interpreted as the visual correspondent of the show-search-graph command

from the textual narrower). However, there is a dramatic difference in the tool

output and in the thoroughness of the reasoning support provided by GLINTS.

4.1 Interactive tree unfolding and querying

Given an input term, the graphical narrowing tree panel initially contains two nodes:

the input node and its normalized version w.r.t. the theory. Additions to the graph

will be dictated by the user’s exploration actions, which can be as follows.

Interactive exploration. GLINTS offers a graphical representation of the variant

narrowing trees, including at each step (i) the narrowing redex, (ii) the applied variant

equation, (iii) the equational unifier, and (iv) the computed variant substitution.

GLINTS allows the narrowing tree to be easily navigated while providing thorough

information regarding every node and edge in the tree. This is particular useful

for a rich language such as Maude that supports sorts, subsorts, and overloading,

and equational rewriting modulo axioms such as associativity, commutativity, and

identity, where intuition is easily lost.

Each variant node is identified with a tag Vn, where n is the variant number

assigned by Maude. When a node is selected (by a simple click), it is shaded in

yellow so that the user can be constantly aware of the current selection. Node

selection is useful for centering the node inside the tree layout and is also used for

checking the equational closedness property. Fully detailed information about each

variant can be displayed by double clicking on the corresponding node. Multiple

variant information windows can be opened without updating the current tree.

As is common in visualization tools, the search trees can be scaled and subtrees

can be hidden. This is done by pressing the � symbol that is displayed below each

node. By doing so, the entire (sub-)tree (except for its root) is removed from the

displayed view of the tree. Taking into account that the size of the tree can become

considerably large, zooming capabilities are also enabled.

Tree querying. A querying box is displayed at the bottom of the narrowing tree

panel that allows information of interest to be easily searched in huge narrowing

trees by undertaking a query that specifies a template for the search. A query is

a filtering pattern with wildcards that define irrelevant symbols by means of the

underscore character ( ) and define relevant symbols by means of the question

mark character (?). For instance, asking the query “ * ?” in the tree of Figure 2

highlights expressions #2:[NatSet], %3:[NatSet], and #4:[NatSet] in nodes V0, V4,

and V8, respectively, as shown in Figure 5.

4.2 Automated tree unfolding, enriched views, and exporting

By using GLINTS, variant generation can be easily automated in multiple ways.

Specifically, the user can ask the searcher to do one of the following: (i) deliver the

first n variants of the considered initial term, (ii) compute the entire narrowing tree

up to a given depth, or (iii) compute the entire narrowing tree until the embedding
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Fig. 5. Result of the query “ * ?” for the VNT of the non-FVP exclusive-or theory.

whistles along all branches. In all cases, exploration of the tree stops whenever the

corresponding termination criterion is met, namely (i) no more variants exist, (ii)

bound is reached, (iii) embedding whistles, or (iv) timeout is surpassed.

By clicking the ≡ symbol that appears in the right corner of the window, a

command menu is displayed that automates these capabilities by means of the

following accessible buttons.

Depth-k (resp. N-variants) expansion. It unfolds the tree automatically down to its

depth-k frontier (resp. until the nth variant has been computed). An input box allows

one to fix the desired upper bound in the depth of the tree or in the number of

solutions.

Embedding-based expansion. It automatically unfolds the variant narrowing tree by

relying on equational homeomorphic embedding to ensuring finiteness. Roughly

speaking, whenever a new node tn+1 is to be added to a branch, GLINTS checks

whether tn+1 embeds any of the terms already in the sequence. If that is the case,

potential non-termination is detected and the computation is stopped. Otherwise,

tn+1 is safely added to the branch and the computation proceeds.

The key to successfully debugging complex applications is to restrict the displayed

information to sensitive parts of the tree. In GLINTS, it is possible to tune the

information displayed by the explorer by using enriched views and reporting facilities

as follows.

Enriched views. GLINTS supports two distinct views, namely the standard view and

the instrumented view. The standard view (which is the default mode of GLINTS)

focuses on the narrowing steps, whereas the instrumented view completes the picture

with all the internal reduction steps that are performed up to reaching the canonical

form of each variant. That is, the instrumented view reaps every single application of

an equation, algebraic axiom, or built-in operation. This view is enabled by pressing

the button Show normalization. The options to show/hide the equation labels and to

show/hide the unifiers that enable each narrowing step of the tree (restricted to the
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X:[NatSet] * Y:[NatSet]

V0

{X:[NatSet]  #1:[NatSet], Y:[NatSet]  #2:
[NatSet]}

#1:[NatSet] * #2:[NatSet]

[ren]

V3

{#1:[NatSet]  %1:[NatSet], #2:[NatSet]  mt}

%1:[NatSet]

[id]

V4

{#1:[NatSet]  %1:[NatSet] * %2:[NatSet], #2:

[NatSet]  %3:[NatSet] * %2:[NatSet]}

%3:[NatSet] * %1:[NatSet]

[idem-Coh]

Fig. 6. Enriched view showing equational unifiers for the original exclusive-or theory

(fragment).

variables of the term, as shown in Figure 6) are also available by two corresponding

buttons.

Comparing and exporting. Given the currently deployed narrowing tree, the complete

list of computed variants can be shown and exported by clicking the option Export

variants. In order to easily discern the differences between two variants, a Compare

variants button is also provided that confronts two variant nodes (selected by just

two consecutive clicks) in a new window where they are displayed next to each

other, one on the left half of the window and the other one on the right half.

GLINTS can export both the entire narrowing tree or any of its branches in two

different formats, namely as an object in JSON format and as a term in Maude’s

meta-level representation, both of which are suitable for automated processing. This

allows other tools that use GLINTS for narrowing execution to implement their own

analysis on the trees delivered by GLINTS. The meta-representation of terms can

be visually displayed, which is particularly useful for the analysis of object-oriented

computations where object attributes can only be unambiguously visualized in the

meta-level (desugared) terms.

A starting guide that contains a complete description of all the settings and de-

tailed sessions can be found at http://safe-tools.dsic.upv.es/glints/

download/quickstart.pdf.

5 Implementation

In this section, we discuss some relevant implementation details of the variant

explorer GLINTS.

5.1 Architecture of GLINTS

GLINTS has the classical architecture of a web application, which consists of two

main components (the front-end and the back-end), as depicted in Figure 7. The

two components are connected via a JSP-based layer that is implemented in Java

(450 lines of Java source code). The front-end (or presentation layer) consists of
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Fig. 7. Architecture of GLINTS.

3K lines of Javascript, HTML5, and CSS source code, and provides GLINTS with

an intuitive Web user interface. The back-end (or core engine) supports GLINTS

services and consists of 200 function definitions (2K lines of Maude source code).

5.2 Extending Maude’s variant meta-operations

One of the main challenges in the implementation of a trace-based Maude tool

such as GLINTS is to make explicit the concrete sequence of internal term trans-

formations occurring in a specific Maude computation, which is generally hidden

and inaccessible within Maude’s rewriting and narrowing machineries. For the case

of variant narrowing computation traces, the basic information that is necessary to

visually deploy the variant narrowing trees can be essentially obtained by invoking

the metaGetVariant and metaGetIrredundantVariant meta-operations. That is

the only way to retrieve the precise information that makes the structure of the tree

explicit. Specifically, what Maude outputs is the following (in this order): (i) the

computed variant term, (ii) the computed variant substitution, (iii) the largest index

n of any fresh variable appearing in the solutions, (iv) the identifier of the parent

variant, and (v) a boolean flag that indicates whether or not there are more variants

in the current tree level.

However, for the sake of efficiency, other relevant information that is key for vari-

ant narrowing debugging and understanding is not disclosed by Maude, either at the

meta-level (as returned by the metaGetVariant and metaGetIrredundantVariant

operations themselves) or at the source-level (as delivered in raw text format by the

standard Maude interactive debugger, which furthermore cannot be manipulated as

a meta-level expression by Maude). To provide the user with a deeper and more

agile debugging experience, we have enriched the highly efficient developer version

of Maude that we implemented in previous work, Mau-Dev5 (Alpuente et al. 2016;

Mau-Dev 2016), with two new meta-operations, namely metaGetVariantsExt and

metaGetIrredundantVariantExt that have been implemented in C++. By doing

this, besides piecing everything together and giving a graphical reconstruction of

5 Mau-Dev has been developed under the GPLv2 license (which is the one enforced by Maude) and is
fully compatible with Maude while preserving the efficiency of all standard (meta-level) operations and
commands.
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Table 1. Execution results of the metaGetVariant and metaGetVariantExt operations

metaGetVariant metaGetVariantExt
Number of

variants size (kB) time (s) size (kB) time (s)

Exclusive-or 40 7.37 2.49 12.34 2.48

45 8.81 24.82 14.42 24.56

50 10.37 302.18 16.62 299.29

Fibonacci 40 520.23 3.51 1,417.26 3.59

45 2,198.07 20.52 5,151.39 20.94

50 5,751.55 406.59 15,675.13 415.14

Flip-graph 500 4,804.66 3.05 7,259.92 3.09

1,000 19,520.91 30.33 29,387.01 30.93

2,000 80,372.41 360.29 120,769.01 361.54

Parser 2,500 1,961.51 3.91 3,067.46 3.92

5,000 5,027.82 16.88 7,238.53 17.37

10,000 13,178.03 81.64 17,598.87 81.99

the variant narrowing tree, GLINTS also distills the equations, axioms, and built-

in operators applied in (simplification and) narrowing steps, together with the

equational unifier that enables each step.

Table 1 provides some figures regarding the execution of the new

metaGetVariantExt operation in comparison with the standard metaGetVariant

operation. We have tested both implementations on a 3.3 GHz Intel Xeon E5-1660

with 64 GB of RAM by generating a number of variants for a collection of Maude

programs that are all available at the GLINTS website: Exclusive-or, the classical

specification of the boolean XOR; Fibonacci, a Maude specification that computes

the Fibonacci sequence (Clavel et al. 2016); Flip-graph, a variant of the classical flip

function for binary graphs (instead of trees) taken from Alpuente et al. (2017); and

Parser, a generic parser for languages generated by simple, right regular grammars

also from Alpuente et al. (2017). Specifically, for each Maude program, we have

asked GLINTS to compute three different numbers of variants, which takes from a

few seconds to a few minutes to generate. We have measured the metaGetVariant

invocations on a statically compiled version of the last alpha release of Maude

(alpha 111a), whereas the metaGetVariantExt invocations have been benchmarked

on a Mau-Dev executable that is based on the same alpha version.

The two size columns correspond to the size (in kilobytes) of the generated

narrowing tree (up to the requested variant), whereas the two time columns

show the average of five different measures of the computation time (in sec-

onds). As our experiments show, the incurred overheads w.r.t. the original meta-

operation are almost negligible. Note that even for extremely huge narrowing trees,

the amount of data handled is much higher w.r.t. the original meta-operation

(with an average increasement factor of 1.8), yet the execution time is practi-

cally identical. Actually, some executions are even faster in the extended ver-

sion (e.g., computing the 50th variant of the exclusive-or example), which can

be explained by the known side-effects of Maude’s garbage collector and cache
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memory hits and misses. Further details and runnable code are available at

http://safe-tools.dsic.upv.es/glints/pages/experiments.jsp

6 Concluding remarks

Visualization of program executions has received much attention for program

debugging, optimization, profiling, and understanding in symbolic execution frame-

works such as (Concurrent) Constraint Logic Programming (Deransart et al. 2006).

However, with the exception of GLINTS, no such visualization tool exists for variant

narrowing computations in Maude, let alone one with the capability to reason about

equational properties such as embedding and closedness modulo axioms and the

FVP.

Besides the applications outlined in this article, further applications could benefit

from variant generation in GLINTS. Actually, an important number of applications

(and tools) are currently based on variant generation: for instance, the protocol

analyzers Maude-NPA (Escobar et al. 2009) and Tamarin (Meier et al. 2013),

proofs of coherence and local confluence (Durán and Meseguer 2012), termination

provers (Durán et al. 2009), variant-based satisfiability checkers (Meseguer 2015),

the partial evaluator Victoria (Alpuente et al. 2017), and different applications of

symbolic reachability analyses (Bae et al. 2013). As an application example, protocol

analysis tools that rely on variant computation could identify all the intermediate

variant states that are associated to a concrete protocol state and how one is

generated from the other (which is convoluted in the output provided by Maude),

thereby allowing deep optimizations to cut down the search space. Indeed, many

protocol analysis tools suffer from huge memory problems due to complex equational

theories that generate lots of variants.

As future work, we plan to address several extensions of GLINTS, such as

computing constructor variants (Meseguer 2015) and irredundant variants (Clavel

et al. 2016), and supporting irreducibility constraints (Erbatur et al. 2012).
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