
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 This document is the Accepted Manuscript version of a Published Work that appeared in
final form in
 The Journal of Physical Chemistry B, copyright © American Chemical Society after peer
review and technical editing by the publisher.
 To access the final edited and published work see http://doi.org/10.1021/jp071301z

http://doi.org/10.1021/jp071301z

http://hdl.handle.net/10251/101707

American Chemical Society



 

1 

 

Excited State Interactions in Flurbiprofen-Tryptophan Dyads 

 

Ignacio Vayá, M. Consuelo Jiménez* and Miguel A. Miranda*  

 

Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica 

de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain. Tel. (+34)-963873440,  Fax: (+34)-

963879349. E-mail: mcjimene@qim.upv.es ; mmiranda@qim.upv.es . 

 

 

 
RECEIVED DATE: 

 

 

Abstract 

Fluorescence and laser flash photolysis measurements have been performed on two pairs of 

diastereomeric dyads containing the nonsteroidal anti-inflammatory drug (S)- or (R)-flurbiprofen 

(FBP) and (S)-tryptophan (Trp), a relevant amino acid present in site I of human serum albumin. 

The fluorescence spectra were obtained upon excitation at 266 nm, where nearly 60% of the light 

is absorbed by FBP and 40% by Trp; the most remarkable feature observed in all dyads was a 

dramatic fluorescence quenching, and the residual emission was assigned to the Trp 

chromophore. Besides, an exciplex emission was observed as a broad band between 380-500 nm, 

specially in the case of the (R,S)- diastereomers. The fluorescence lifetimes (τF) at λem = 340 nm 

were clearly shorter in the dyads than in Trp-derived model compounds; by contrast, the values 

of τF at λem = 440 nm (exciplex) were much longer. On the other hand, the typical FBP triplet-

triplet transient absorption spectrum was obtained upon laser flash photolysis, although the 
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signals were less intense than when FBP was directly excited under the same conditions. The 

main photophysical events in FBP-Trp dyads can be summarized as follows: 1) most of the 

energy provided by the incident radiation at 266 nm reaches the excited singlet state of Trp ( 

1Trp*), either via direct absorption by this chromophore or by singlet singlet energy transfer from  

excited FBP (1FBP*); 2) a minor, yet stereoselective deactivation of 1FBP* leads to detectable 

exciplexes and/or radical ion pairs; 3) the main process observed is intramolecular 1Trp* 

quenching and 4) the first triplet excited state of FBP can be populated by triplet-triplet energy 

transfer from excited Trp or by back electron transfer within the charge separated states. 

 

 

Keywords: Electron transfer, Exciplex, Fluorescence, Laser flash photolysis, 

Stereodifferentiation. 
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Introduction 

 The biological role of proteins frequently involves selective binding to relevant substrates. 

This is the case of transport proteins that upon binding provide a carrier system for xenobiotics, 

either in the plasma or across membranes. The most important soluble carrier of drugs in blood is 

human serum albumin (HSA),1 a globular protein which accounts for about 60% of the total 

protein in blood serum. It contains 585 amino acids, in a sequence displaying a total of 17 

disulphide bridges, one free thiol and a single tryptophan (Trp) unit.2-5 The exceptional binding 

capacity of HSA for a wide range of endogenous and exogenous ligands, together with its 

abundance, are determining for the pharmacokinetic behavior of drugs. Thus, a detailed 

knowledge of drug-HSA interactions is essential for the rational design of pharmaceuticals.  The 

pioneering work performed by Sudlow and coworkers three decades ago revealed that there are 

two major and structurally selective binding sites in HSA, namely site I and site II.6,7 Although 

more recent studies have found evidence supporting the existence of several subdomains, 

consensus still exists that there are basically two high affinity binding sites for small heterocyclic 

or aromatic compounds in this protein. Site I is also known as the warfarin binding site and 

contains the only Trp unit, while site II is known as the benzodiazepine binding site and contains 

Tyr residues.8,9 

 Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely used 

therapeutic agents. They are prescribed for the treatment of a broad spectrum of 

pathophysiological conditions including headache, pain caused by degenerative diseases (such as 

osteo and rheumatoid arthritis) and fever.10 The main group of NSAIDs are the 2-arylpropionic 

acid derivatives, such as ibuprofen, naproxen, ketoprofen or flurbiprofen; although they are 

currently marketed as racemic mixtures (with few exceptions such as naproxen), their anti-

inflammatory activity is mainly attributed to the (S)-enantiomer.11 Such drugs bind preferentially 

(and often stereoselectively) to site II of HSA by means of hydrogen bonding and electrostatic 

interactions. However, site I is also populated to some extent.12  
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Fluorescence techniques have been employed in the past to gain insight into the interactions 

between drugs and proteins,13 with special attention to transport proteins (for example HSA). An 

interesting feature of intrinsic protein fluorescence is the high sensitivity of tryptophan to its 

local environment. Thus, changes in Trp emission spectra can be observed in response to protein 

conformational transitions, ligand binding or subunit association; all these factors can affect the 

local environment of the indole chromophore. Moreover, Trp is sensitive to collisional 

quenching, probably due to a tendency of the excited state of indole to act as electron-donor.14  

Among the NSAIDs, the lowest singlet and triplet excited states of flurbiprofen (FBP) have 

recently been characterized, and the fluorescence and triplet lifetimes (τF and τT) have shown to 

be highly sensitive to the medium.15 In previous work, we have used FBP triplet excited states to 

study drug distribution among the solution and the different HSA binding sites.16,17 On the other 

hand, the fluorescence behavior of HSA/racemic FBP systems has also been reported.18 

The aim of the present work has been to undertake a systematic fluorescence and laser flash 

photolysis study on several model dyads containing the chromophores of FBP and Trp, the 

relevant amino acid present in site I of HSA. This should give information about the operating 

mechanisms in the excited state interactions using chemically well-defined systems, where the 

non-covalent supramolecular drug-protein interactions are modeled by the analogous 

intramolecular processes in covalently linked dyads (Scheme 1and Chart 1). Moreover, a 

comparison between the behavior of the diastereomeric dyads synthesized from the two FBP 

enantiomers and the (S)-amino acid would provide valuable indications related to the 

stereodifferentiating interactions with the transport proteins. 

 

 

 

Scheme 1 
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Chart 1 

Experimental Section 

 Materials and solvents. (S)- and (R)-Flurbiprofen, (S)-tryptophan methyl ester 

hydrochloride, (S)-tryptophanol, EDC (1-(3-dimethylaminopropyl)-N-ethylcarbodiimide 

hydrochloride) and BtOH (1-hydroxybenzotriazole) were commercially available. Their purity 

was checked by 1H NMR and HPLC analysis. The reagent grade solvents (methanol, dioxane, 

ethyl acetate, acetonitrile) were used without further purification. Solutions of PBS 0.01 M (pH = 

7.4) were prepared by dissolving phosphate buffered saline tablets in deionized water. 

General. IR Spectra were obtained with a FTIR instrument; νmax (cm-1) is given for the 

main absorption bands. 1H NMR Spectra were measured in CDCl3 (or, when indicated, in 

CD3OD) using a 300 MHz apparatus; chemical shifts are reported in δ (ppm) values, using TMS 

as internal standard. Combustion analyses were performed at the Instituto de Química Bio-

Orgánica of the CSIC in Barcelona. Isolation and purification were done by preparative layer 

chromatography on silica gel Merck, using hexane/ethyl acetate as eluent.  

Synthesis of the substrates. To a solution of 0.8 mmol of (S)- or (R)- flurbiprofen, in 

acetonitrile (20 mL), 0.8 mmol of EDC and 0.8 mmol of BtOH were added as solids. The 

mixture was maintained under stirring, and then 0.8 mmol of (S)-TrpMe or (S)-TrpOH in 2 mL 

OF
NH

N
H

(S,R)

OF
NH

N
H

O
O

(S,R)

(S)(S)

OH

(S,S)-1
(R,S)-1

(S,S)-2
(R,S)-2

OF

(S,R)
OH

(S)- or (R)- Flurbiprofen

H2N

N
H

(S)

OH

H2N

N
H

O
O (S)

(S)-Tryptophan methyl ester (S)-Tryptophanol

H H

H H

 



 

6 

of acetonitrile were added. After three hours the solvent was removed under vacuum; the crude 

solid was dissolved in methylene chloride, washed consecutively with diluted NaHCO3, 1 M HCl 

and brine. Final purification was done by preparative layer chromatography followed by 

recrystallization.  

  Fluorescence measurements. Emission spectra were recorded on a spectrofluorometer 

system, provided with a monochromator in the wavelength range 200-900 nm. The solutions 

were placed into 10 x 10 mm2 quartz cells with a septum cap and were purged with nitrogen for 

at least 15 min before the measurements. The absorbance of the samples at the excitation 

wavelength was kept lower than 0.1. For time resolved fluorescence decay measurements, the 

conventional single photon counting technique was used. All the experiments were carried out at 

room temperature (22 ºC). 

  Laser flash photolysis experiments. Laser flash photolysis experiments were performed 

by using a Q-switched Nd:YAG laser (266 nm, 4 mJ per pulse, 5 ns fwhm) coupled to a mLFP- 

miniaturized equipment. All transient spectra were recorded employing 10 x 10 mm2 quartz cells 

with 4 mL capacity and were bubbled during 30 min with N2 before acquisition. The absorbance 

of the samples was 0.2 at the laser wavelength. All the experiments were carried out at room 

temperature. 

N-[2-(S)-(2-Fluoro[1,1'-biphenyl]-4-yl)-propanoyl]-(S)-tryptophan methyl ester, (S,S)-

1;  73 %; white crystals; UV λmax (log ε): 222 (4.5), 248 (4.2), 280 sh (3.9), 290 sh (3.7);  FTIR 

ν: 3408, 3059, 2976, 2951, 2922, 1736, 1653, 1543, 1282, 1219, 744, 698. 1H NMR δ: 8.02 (s, 

1H), 7.54-6.99 (m, 12H), 6.83 (d, 1H, J = 2.4 Hz), 5.95 (d, 1H, J = 7.8 Hz), 4.93-4.87 (m, 1H), 

3.67 (s, 3H), 3.51 (q, 1H, J = 7.2 Hz), 3.38-3.24 (m, 2H), 1.51 (d, 3H, J = 7.2 Hz); 13C NMR 

δ: 173.4, 172.4, 161.6, 158.3, 142.5, 142.4, 136.3, 135.7, 131.2, 129.2, 128.8, 128.0, 127.9, 

123.9, 122.8, 122.6, 120.0, 118.8, 115.8, 115.4, 111.6, 110.2, 53.3, 52.6, 46.8, 27.6, 18.5; Anal. 

Calcd. for C27H25FN2O3: C 72.96; H 5.67; N 6.30. Found: C 72.62; H 5.73; N 6.10. 
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 N-[2-(R)-(2-Fluoro[1,1'-biphenyl]-4-yl)-1-propanoyl]-(S)-tryptophan methyl ester, 

(R,S)-1 : 75 %; white crystals; UV λmax (log ε): 222 (4.5), 248 (4.2), 280 sh (3.9), 290 sh (3.7);  

FTIR ν: 3406, 3055, 3002, 2976, 2952, 2935, 1722, 1651, 1523, 1211, 764, 737, 700. 1H NMR 

δ: 7.95 (s, 1H), 7.58-7.01 (m, 12H), 6.62 (d, 1H, J = 2.1 Hz), 5.96 (d, 1H, J = 7.8 Hz), 4.98-4.92 

(m, 1H), 3.70 (s, 3H), 3.51 (q, 1H, J = 7.2 Hz), 3.31-3.18 (m, 2H), 1.48 (d, 3H, J = 7.2 Hz). 13C 

NMR δ: 172.8, 172.3, 161.3, 158.0, 142.6, 142.5, 136.0, 135.4, 130.9, 129.0, 128.9, 128.5, 

127.7, 123.6, 122.6, 122.3, 119.7, 118.4, 115.5, 115.2, 111.2, 109.7, 52.7, 52.4, 46.5, 27.4, 18.4; 

Anal. Calcd. for C27H25FN2O3: C 72.96; H 5.67; N 6.30. Found: C 72.60; H 5.70; N 6.13. 

 N-[2-(S)-(2-Fluoro[1,1'-biphenyl]-4-yl)-propanoyl]-(S)-tryptophanol, (S,S)-2: 75 %; 

white crystals; UV λmax (log ε): 223 (4.4), 248 (4.1), 280 sh (3.8), 290 sh (3.6);  FTIR ν: 3411, 

1645, 1556, 1457, 1414, 742, 698. 1H NMR (CD3OD) δ: 7.64-6.97 (m, 13H), 4.25-4.16 (m, 1H), 

3.62 (q, 1H, J = 7.2 Hz), 3.53 (d, 2H, J = 5.4 Hz), 3.07 (dd, 1H, J1 = 14.5 Hz, J2 = 6.0 Hz), 2.92 

(dd, 1H, J1 = 14.5 Hz, J2 = 6.9 Hz), 1.34 (d, 3H, J = 7.2 Hz). 13C NMR δ: 175.2, 161.4, 158.1, 

143.7, 143.6, 137.0, 135.9, 130.6, 130.4, 130.5, 128.8, 128.3, 127.5, 123.6, 122.9, 121.2, 118.5, 

118.4, 115.1, 111.2, 111.1, 63.2, 52.5, 45.9, 26.5, 17.7; Anal. Calcd. for C27H25FN2O3: C 72.96; 

H 5.67; N 6.30. Found: C 72.62; H 5.73; N 6.10. 

 N-[2-(R)-(2-Fluoro[1,1'-biphenyl]-4-yl)-propanoyl]-(S)-tryptophanol, (R,S)-2: 73 %; 

white crystals; UV λmax (log ε): 223 (4.4), 248 (4.1), 280 sh (3.8), 290 sh (3.6);  FTIR ν: 3367, 

3051, 1633, 1529, 1485, 1419, 766, 741, 702. 1H NMR (CD3OD) δ: 7.53-6.89 (m, 13H), 4.29-

4.21 (m, 1H), 3.67-3.53 (m, 3H), 2.97 (dd, 1H, J1 = 15.0 Hz, J2 = 6.3 Hz), 2.85 (dd, 1H, J1 = 15.0 

Hz, J2 = 7.8 Hz), 1.42 (d, 3H, J = 7.2 Hz); 13C NMR δ: 176.6, 162.9, 159.6, 145.1, 145.0, 138.4, 

137.4, 132.1, 132.0, 130.4, 129.8, 129.4, 129.0, 125.0, 124.5, 122.6, 119.9, 119.8, 116.4, 116.1, 

112.5, 64.9, 53.8, 47.3, 27.9, 19.1;  Anal. Calcd. for C27H25FN2O3: C 72.96; H 5.67; N 6.30. 

Found: C 72.62; H 5.73; N 6.10. 
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Results and Discussion 

 Fluorescence measurements on FBP/HSA supramolecular systems 

 In the absence of protein, the fluorescence spectra of (S)- or (R)- FBP in phosphate buffer 

(PBS)/air at λexc = 266 nm were expectedly identical (λmax = 310 nm);15 they are shown in Figure 

1A. The emission of HSA alone was also recorded; it displayed the typical maximum due to the 

Trp residue (λmax = 340 nm).14 As shown in Figure 1A, the spectra recorded for equimolar 

mixtures of (S)- or (R)- FBP and HSA were less intense and contained the contributions of both 

drug and protein (Trp) emissions, although the latter was clearly predominating. The dual 

fluorescence from two distinct excited species is in good agreement with the fact that the decays 

measured at 310 nm (maximum of FBP emission) and 340 nm (due to the Trp chromophore of 

HSA) are clearly different, as it can be seen in Figure 1B. 

 

 

 

 

 

 

 

 

Figure 1 A. Fluorescence emission (λexc= 266 nm) of (S)- or (R)- FBP (    ), HSA (      ), (S)-

FBP/HSA 1:1 (     ) and (R)-FBP/HSA 1:1 (      ) in 0.01 M PBS. B. Decay of (S)-FBP/HSA 1:1 

(      ) and (R)-FBP/HSA 1:1 (       ) in 0.01 M PBS at λem = 310 and 340 nm, respectively. Lamp 

emission (          ). FBP and HSA concentration were 1.0· 10-5 M. 
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Photophysical studies on FBP-Trp dyads in acetonitrile 

In order to obtain further information on the excited state interactions between FBP and 

Trp, several model dyads containing (S)- or (R)-FBP and the main fluorophore of HSA (Trp) 

were synthesized by conventional methods and studied by fluorescence (steady-state and time 

resolved) and laser flash photolysis. In these well defined systems, the two chromophores are 

covalently linked through an amide bridge. The chemical structures of the parent compounds, 

together with those of the dyads are presented in Chart 1. Due to their poor solubility in aqueous 

media, the experiments were carried out in acetonitrile. 

 The first selected dyads were (S,S)-1 and (R,S)-1, two diastereomeric amides obtained by 

condensation of (S)- or (R)- flurbiprofen and (S)-tryptophan methyl ester (TrpMe). Their UV-

absorption spectra are shown in Figure 2; they were identical to the added spectra of the 

corresponding isolated FBP and Trp units, at the same concentrations. This reveals the absence 

of any significant ground-state intramolecular interactions between the two moieties. 

 

 

 

 

 

 

 

Figure 2 A. UV-absorption spectra of (S)-FBP (      ), (S)-TrpMe (      ), (S,S)-1 (     ) and (R,S)-1  

 (       ) in acetonitrile at 2.5 10-5 M concentration. B UV-absorption spectra of (S)-FBP (      ),  

(S)-TrpOH (      ), (S,S)-2 (      ) and (R,S)-2 (       ) in acetonitrile at 2.5 10-5 M concentration. 
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using isoabsorptive solutions (A266 = 0.08) of (S)-FBP and (S)-TrpMe as models for comparison. 

The most remarkable feature observed in both dyads was a dramatic quenching (see Figure 3A); 

the residual emission was assigned to the Trp chromophore (λem= 340 nm)14 rather than to FBP. 

Moreover, a possible exciplex emission was observed as a broad band between 380-500 nm 

(Figure 3B), specially in the case of (R,S)-1. The fluorescence lifetimes at λem = 340 nm were 

clearly shorter in the dyads (ca. 0.9 ns) than in (S)-TrpMe (6.4 ns), indicating a dynamic 

quenching. By contrast, the values of τF at λem = 440 nm were much longer (7.6 and 5.1 ns for 

(S,S)-1 and (R,S)-1, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A Fluorescence spectra of (S)-FBP (      ), (S)-TrpMe (      ), (S,S)-1 (      ) and (R,S)-1 

 (       ). B Normalized fluorescence spectra of (S)-FBP (      ), (S)-TrpMe (       ), (S,S)-1 (       ) 

and (R,S)-1 (      ). C Fluorescence spectra of (S)-FBP (      ), (S)-TrpOH (      ), (S,S)-2 (       ) and 

(R,S)-2 (       ). D Normalized fluorescence spectra of (S)-FBP (       ), (S)-TrpOH (       ), (S,S)-2 

 (       ) and (R,S)-2 (       ). All the experiments were carried out in deaerated acetonitrile, at 1.0· 

10-5 M concentration, using 266 nm as the excitation wavelength. 
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 On the other hand, the typical FBP T-T transient absorption spectrum was obtained upon 

LFP of (S,S)- and (R,S)-1 at 266 nm, although the signals were less intense than when FBP was 

directly excited under the same conditions (Figure 4A). The triplet lifetimes (decays at 360 nm 

shown in Figure 4B) were the same in the dyads as in FBP (ca. 24 µs for the three compounds), 

indicating the lack of intramolecular interaction in the excited triplet state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A Laser flash photolysis of (S)-FBP (      ), (S,S)-1 (      ) and (R,S)-1 (     ) in 

MeCN/N2.: Transient spectra obtained  6µs after the laser pulse. B: Decays monitored at 360 nm. 

C: Laser flash photolysis of (S)-FBP (       ), (S,S)-2 (      ) and (R,S)-2 (     ) in MeCN/N2. 

Transient spectra obtained 6 µs after the laser pulse. D: Decays monitored at 360 nm. 
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diastereomeric dyads were synthesized starting from (S)-tryptophanol ((S)-TrpOH), a Trp analog 

with a longer lived singlet excited state (8.1 ns).  

 The fluorescence spectra of solutions of (S)-FBP, (S)-TrpOH, (S,S)-2 and (R,S)-2 in 

acetonitrile are shown in Figure 3C. Again, a strong quenching was observed for both dyads, and 

the remaining emission was attributed to the Trp chromophore. The fluorescence lifetimes were 

shorter in the dyads (ca. 1.1 ns in both cases) than in the model (S)-TrpOH, indicating 

intramolecular dynamic quenching. After normalization of the three emissions, the exciplex was 

observed as a broad band of low intensity in the interval between 380 and 500 nm (Figure 3D); a 

significant stereodifferentiation in the exciplex lifetimes (measured at 440 nm) was observed, 

with values of 6.7 ns for the (S,S)- and 5.0 ns for the (R,S-) isomer, respectively. 

 As regards the laser flash photolysis studies on (S,S)-2 and (R,S)-2 in acetonitrile, the only 

signal observed was the typical FBP T-T absorption spectrum (Figure 4C). The triplet lifetimes 

were the same in the dyads as in FBP (ca. 24 µs for the five compounds); thus, no intramolecular 

interaction appeared to take place in the excited triplet state.  

 The main deactivation processes that can take place upon excitation of a dyad containing 

covalently linked FBP and Trp subunits are indicated in Scheme 2 and can be summarized as 

follows.  Initial excitation at 266 nm (i) could lead to the first singlet excited state of either FBP 

or Trp, as determined from the UV absorption spectra (Figure 2). Singlet-singlet energy transfer 

(SSET) from 1FBP* (Es = 99 kcal mol-1)15 to the Trp moiety (Es = 96 kcal mol-1)19 would be 

thermodynamically allowed (ii). Radiative deactivation from 1Trp* or 1FBP* is represented in 

(iii) and (iv), respectively. Routes (v) and (vi) correspond to intersystem crossing (ISC) 

processes. Intramolecular quenching (Q) of the first excited singlet state of FBP or Trp, to give 

exciplexes or radical ion pairs, is illustrated by processes (vii) and (viii). Back electron transfer 

(BET) from the radical ion pairs could afford the FBP and/or Trp first triplet excited state (ix). 

Finally, triplet-triplet energy transfer (TTET) from Trp (ET = 71 kcal mol-1)20 to FBP (ET = 65 

kcal mol-1)15 would also be possible (x).  
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 (i)  h 1 1FBP-Trp FBP*-Trp + FBP- Trp*ν→   

 (ii)  SSET1 1FBP*-Trp   FBP- Trp*→  

 (iii)  -h '1FBP- Trp*   FBP-Trpν→  

 (iv)  -h ''1FBP*-Trp   FBP-Trpν→  

 (v)  TrpISC1 3FBP- Trp*   FBP- Trp*→  

 (vi)  FBPISC1 3FBP*-Trp   FBP*-Trp→  

 (vii)  FBPQ1 1 +. -.FBP*-Trp   (FBP-Trp)* and/or FBP -Trp→  

 (viii)  TrpQ1 1 +. -.FBP- Trp*   (FBP-Trp)* and/or FBP -Trp→  

 (ix)  BET+. -. 3 3FBP -Trp   FBP*-Trp and/or FBP- Trp*→  

 (x)  TTET3 3FBP- Trp*   FBP*-Trp→  

Scheme 2 

 

The relative energies of the different excited states of FBP-Trp dyads are shown in Figure 

5, together with the most relevant excited state processes. The fluorescence quantum yields 

obtained using the free amino acid Trp as standard  (φF = 0.13 in water)19 together with the 

corresponding rate constants for the models ((S)-FBP, (S)-TrpMe, (S)-TrpOH) and for 

compounds (S,S)-1, (R,S)-1,  (S,S)-2 and (R,S)-2 are given in Table 1. 
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Figure 5. Qualitative energetic diagram for the different excited states and reactive intermediates 

generated upon excitation of FBP-Trp dyads. 

 

The fluorescence spectra of (S,S)-1, (R,S)-1, (S,S)-2 and (R,S)-2 (Figure 3) show that 

emission occurs exclusively from the Trp chromophore (λmax = 340 nm).14 Then, kQ for the Trp 

unit (step (viii) in Scheme 2) was determined by means of equation 1: 

Q
F F

1 1k = -
τ τ (model)

               equation 1 

where τF is the fluorescence lifetime in the dyad and τF (model) is that of the model (S)-TrpMe or 

(S)-TrpOH. Thus, kQ was found to be 9.54 × 108 s-1 for both diastereomers of 1 and 7.86 × 108 s-1 

in the case of dyads 2.  From the experimental  φF and τF values, the kF corresponding to process 

(iii) was obtained using equation 2: 

F F F k  = /τφ         equation 2 

Taking into account the above data, the quantum yield for intramolecular dynamic 

quenching (φQ(dyn)) was estimated through equation 3: 

E 1FBP*-Trp 

FBP-1Trp* 

FBP-3Trp* 

Ground  state

(i)

(ii)

(iv)

(iii)

3FBP*-Trp

(x)

(viii)

(ix)

(v)
1(FBP-Trp)*

and/or
FBP-.-Trp+. 

≈

(vii)

E 1FBP*-Trp 

FBP-1Trp* 

FBP-3Trp* 

Ground  state

(i)

(ii)

(iv)

(iii)

3FBP*-Trp

(x)

(viii)

(ix)

(v)
1(FBP-Trp)*

and/or
FBP-.-Trp+. 

≈

(vii)
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Q
Q (dyn) F

F

k
=

k
φ × φ       equation 3 

These φQ values were identical for all dyads (0.87). As the Trp chromophore is absorbing 

only ca. 40% of the incident photons at 266 nm (see Figures 2A and 2B), the obtained  φQ clearly 

confirm an efficient singlet-singlet energy transfer from FBP to Trp (process (ii) in Scheme 2), 

which should be thermodynamically favored in view of the relative singlet energies of the 

isolated chromophores (see above). In spite of the lack of stereodifferentiation in the quenching 

of 1Trp*, the spectra shown in Figures 3A and 3C were clearly different for each pair of 

diastereomers. From the area under the emission curves, the values obtained for overall 

quenching (φQ (ov)) were 0.88 and 0.94 (for (S,S)-1 and  (R,S)-1) and 0.89 and 0.95 (for (S,S)-2 

and (R,S)-2). Thus, the “dynamic” and the “overall” fluorescence quenching have ca. the same 

values for the (S,S)-dyads, but they were somewhat different for the (R,S)-diastereomers. This 

can be due to a minor, yet stereoselective deactivation of 1FBP* leading to exciplexes and/or 

radical ion pairs (route (vii) in Scheme 2), which is more important for the (R,S)-diastereomers 

than for the corresponding (S,S)-dyads. The exciplexes were actually observed after 

magnification of the emission spectra between 380-500 nm as a broad band of low intensity 

(Figures 3B and 3D); they were expectedly much more intense in the case of the (R,S)-

diastereomers. 

As regards the Trp fluorescence quenching mechanism, it could involve in principle 

either electron transfer or exciplex formation. Application of the Weller equation21 taking into 

account the Trp singlet energy20 and the relevant redox potentials,22 allowed us to estimate the 

∆G values corresponding to the two possible pathways; both were found to be exergonic (∆GET = 

-15 kcal mol-1 and ∆GEXC = –10 kcal mol-1). All values would be ca. 3 kcal mol-1 more negative 

for FBP quenching, due to the higher singlet energy of this chromophore. 

Another point of interest was the origin of the FBP triplet. Its quantum yield (φT) was 

determined from the LFP experiments and found to be in the range 0.1-0.3. Triplet generation 
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could in principle occur through several pathways: a) intersystem crossing from 1FBP (Scheme 2, 

process (vi)), which can be safely ruled out, since no fluorescence from this chromophore was 

detected; b) triplet-triplet energy transfer from 3TrpMe (process (x) in Scheme 2). Although this 

process is exergonic (∆G ca. -4 kcal mol-1), its contribution must be minor, since the intersystem 

crossing quantum yield for conversion of 1Trp* to 3Trp* in the dyads (process (v) in Scheme 2) 

has to be in the same order as φF; c) back electron transfer in the radical ion pairs (Scheme 2, 

process (ix)) resulting from quenching of the excited singlets (∆G ca. -12 kcal mol-1). This is 

indeed the most feasible pathway, as the added φQ (ov) and φT clearly exceed the unity. 

Table 1. Photophysical properties of (S)-FBP, (S)-TrpMe, (S)-TrpOH and the dyads in 

acetonitrile or 1,4-dioxane, in deaerated media.a  

Compound Conditionsb φF τF c (ns) kF · 10-8(s-1) kQ · 10-8 (s-1) φQ(dyn)  φQ(ov) 

 

φTd τT 
(µs) 

(S)-FBP 1 0.21 1.7 1.24 - - - 0.71 24 

(S)-TrpMe 1 0.34 6.4 0.53 - - - n.d. - 

(S,S)-1 1 0.04 0.9 0.44 9.54 0.87 0.88 0.26 24 

(R,S)-1 1 0.02 0.9 0.22 9.54 0.87 0.94 0.22 24 

(S)-TrpOH 1 0.38 8.1 0.47 - - - n.d. - 

(S,S)-2 1 0.04 1.1 0.36 7.86 0.87 0.89 0.19 24 

(R,S)-2 1 0.02 1.1 0.18 7.86 0.87 0.95 0.10 24 

(S)-FBP 2 0.25 1.8 1.38 - - - 0.70 26 

(S)-TrpMe 2 0.31 4.2 0.74 - - - n.d. - 

(S,S)-1 2 0.08 1.2 0.67 5.95 0.71 0.74 0.15 14 

(R,S)-1 2 0.03 1.2 0.25 5.95 0.71 0.88 0.13 14 

(S)-TrpOH 2 0.35 5.4 0.64 - - - n.d. - 

(S,S)-2 2 0.08 1.5 0.53 4.82 0.73 0.77 0.19 17 

(R,S)-2 2 0.05 1.5 0.33 4.82 0.73 0.86 0.13 17 

a In general, errors were lower than 5% of the stated values; b Conditions 1: Acetonitrile, 

λexc = 266 nm; conditions 2: 1,4-dioxane, λexc = 266 nm; c Measured at 310 nm for (S)-FBP and 

at 340 nm for the other compounds; d n.d.: non detected. 
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Photophysical studies on FBP-Trp dyads in 1,4-dioxane 

 In order to disfavor the occurrence of intramolecular electron transfer, fluorescence 

measurements were also performed in 1,4-dioxane, whose dielectric constant is lower than that 

of acetonitrile (2.2 vs 37.5).23 The UV-absorption spectra of (S,S)-1 and (R,S)-1, (Figure 6A) 

were identical to the added spectra of the isolated FBP and Trp units, at the same concentrations, 

in accordance with the lack of any significant ground-state intramolecular interactions between 

the two moieties. 

 

 

 

 

 

 

 

 

Figure 6 A. UV-absorption spectra of (S)-FBP (      ), (S)-TrpMe (      ), (S,S)-1 (     ) and (R,S)-1  

(      ) in 1,4-dioxane at 2.5 10-5 M concentration. B UV-absorption spectra of (S)-FBP (      ), 

 (S)-TrpOH (      ), (S,S)-2 (      ) and (R,S)-2 (       ) in 1,4-dioxane at 2.5 10-5 M concentration. 

 

The most remarkable feature in the fluorescence spectra of (S,S)-1, (R,S)-1, (S,S)-2 and 

(R,S)-2 upon excitation at 266 nm was a dramatic quenching (see Figures 7A,C). The remaining 

emission was assigned to the Trp chromophore. By contrast, the possible exciplex emission 

(band between 380-500 nm, Figures 7B,D) was less intense in 1,4-dioxane. The fluorescence 

lifetimes at λem = 340 nm were clearly shorter in the dyads (between 1.2 and 1.5 ns) than in (S)-

TrpMe (4.2 ns) or in (S)-TrpOH (5.4 ns), indicative of a dynamic quenching; at λem = 440 nm, τF 

was the same for both diastereomers of each pair (1.9 ns for 1 and 3.0 ns for 2). 
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 Concerning the LFP experiments, the typical FBP T-T transient absorption spectrum was 

obtained upon excitation at 266 nm;15 the signals were less intense than when FBP was directly 

excited under the same conditions (Figure 8A,C). The triplet lifetimes (decays at 360 nm shown 

in Figure 8B,D) were shorter in the dyads (14 µs) than in FBP, indicating some degree of 

intramolecular interaction (may be exciplex formation) in the excited triplet state. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. A Fluorescence spectra in deaerated 1,4-dioxane of (S)-FBP (       ), (S)-TrpMe (       ), 

(S,S)-1   (       ) and (R,S)-1 (        ); B Normalized fluorescence spectra in deaerated 1,4-dioxane 

of (S)-FBP (      ), (S)-TrpMe (       ), (S,S)-1 (      ) and (R,S)-1 (      ); C Fluorescence spectra in 

deaerated 1,4-dioxane of (S)-FBP (      ), (S)-TrpOH (      ), (S,S)-2 (      ) and (R,S)-2 (      ); D 

Normalized fluorescence spectra in deaerated 1,4-dioxane of  (S)-FBP (       ) , (S)-TrpOH (       ), 

(S,S)-2 (       ) and (R,S)-2 (       ). 
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Figure 8. Laser flash photolysis of (S)-FBP (      ), (S,S)-1 (      ) and (R,S)-1 (      ) in 1,4-

dioxane/N2. A: Transient spectra obtained 3 µs after the laser pulse. B: Decays monitored at 360 

nm. Laser flash photolysis of (S)-FBP (      ), (S,S)-2 (      ) and (R,S)-2 (       ) in 1,4-

dioxane/N2.C: Transient spectra obtained 3 µs after the laser pulse. D: Decays monitored at 360 

nm. 

 

The relevant quantum yields and rate constants (obtained as detailed above for the 

corresponding data in acetonitrile) are given in Table 1. 

Also in this solvent, emission occurs exclusively from the Trp chromophore (λmax = 340 

nm). The kQ for the Trp unit (step (viii) in Scheme 2), using equation 1, was found to be 5.95 × 

108 s-1 for dyads 1 and 4.82 × 108 s-1 in the case of 2.  From  φF and τ, and using equation 2, the kF 
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dynamic quenching (φQ(dyn)), estimated through equation 3, were identical for each couple of 

dyads (0.87 for 1 and 0.73 for 2). Again, as the Trp chromophore is not absorbing all the incident 

light (only ca. 40% of the photons at 266 nm, see Figures 6A and 6B), the obtained  φQ 

corroborate an efficient singlet-singlet energy transfer from FBP to Trp (process (ii) in Scheme 

2). The spectra shown in Figures 7A and 7C were clearly different for each pair of diastereomers, 

in spite of the lack of stereodifferentiation in dynamic quenching of 1Trp*. The overall quenching 

data (φQ (ov)) were 0.74 and 0.88 (for (S,S)-1 and  (R,S)-1) and 0.77 and 0.86 (for (S,S)-2 and 

(R,S)-2). Thus, the “dynamic” and the “overall” fluorescence quenching are substantially 

different for the (R,S)-diastereomers. Such stereodifferentiation process is attributed to 

deactivation of 1FBP* leading to exciplexes and/or ion pairs (route (vii) in Scheme 2). 

Application of the Weller equation21 taking into account the Trp singlet energy19 and the 

relevant redox potentials,22 allowed us to estimate the ∆G values corresponding to the two 

possible pathways (∆GET = +10 kcal mol-1 and ∆GEXC = -6 kcal mol-1). Thus, 

stereodifferentiation can be made higher in dioxane by slowing down the electron transfer 

process and increasing the exciplex involvement. 

 Finally, it must be noted that the triplet quantum yields (φT) determined from the LFP 

experiments are between 0.1 and 0.2, and that the overall quenching quantum yields (φQ (ov)) fall 

in the range 0.7-0.9. As the added φT + φQ (ov) values do not exceed the unity, there is no need to 

invoke in this case back electron transfer in the radical ion pair as the origin of triplet formation. 

This agrees well with the fact that electron transfer quenching would be endergonic in 1,4-

dioxane, as stated in the above paragraph. 
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Conclusions 

In summary, for the FBP-Trp dyads studied, the main photophysical events can be 

summarized as follows: 1) most of the energy provided by the incident radiation at 266 nm 

reaches the 1Trp*, either via direct absorption by this chromophore or by SSET from 1FBP*; 2) a 

minor, yet stereoselective deactivation of 1FBP* leads to detectable exciplexes and/or radical ion 

pairs; 3) the main process observed is intramolecular 1Trp* quenching of and 4) the first triplet 

excited state of FBP can be populated by TTET from 3Trp* or by BET from the charge separated 

states. The singlet excited state processes observed in the dyads explain the fluorescence 

quenching and the predominating Trp-like emission of HSA/FBP supramolecular systems. By 

contrast, the lack of relevant interactions in the excited triplet states of the dyads can not be  

correlated with the laser flash photolysis studies on HSA/FBPMe conjugates,16 where the 

dramatic lengthening of the triplet lifetimes within the protein binding sites has to be attributed to 

the particular properties of the microenvironment provided by the tertiary structure of these 

biomolecules (i. e. conformational restrictions, inhibition of self-quenching or triplet-triplet 

annihilation, protection from attack by oxygen or other reagents, etc). 
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