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ABSTRACT 18 

Development of non-destructive tools for determining mango ripeness would improve the 19 

quality of industrial production of the postharvest processes. This study addresses the 20 

creation of a new sensor that combines the capability of obtaining simultaneously both 21 

mechanical and optical properties of the fruit. It has been integrated in a robot gripper that 22 

can handle the fruit obtaining non-destructive measurements of firmness, incorporating 23 

two spectrometer probes to simultaneously obtain reflectance properties of the visible and 24 

near-infrared, and two accelerometers attached to the rear side of two fingers. Partial least 25 

square regression was applied to different combinations of the spectra data obtained from 26 

mailto:pautalens@tal.upv.es


the different sensors to determine the combination that provides the best results. Best 27 

prediction of ripening index was achieved using both spectral measurements and two 28 

finger accelerometers signals, with R2
p = 0.832 and RMSEP of 0.520. These results 29 

demonstrate that simultaneous measurement and analysis of the data fusion set improve 30 

the robot gripper features, allowing to assess the quality of the mangoes during pick and 31 

place processes.  32 

 33 

Keywords: spectrometry; chemometrics; non-destructive sensor; tactile sensor; 34 

accelerometer 35 

 36 

1. INTRODUCTION 37 

Mango (Mangifera indica L.) is a tropical fruit marketed throughout the world with a very 38 

high economic importance (Luke, 2013; Calatrava, 2014) that is generally harvested a 39 

little earlier than the fully mature stage to avoid the onset of climacteric respiration during 40 

transportation to distant markets (Jha et al., 2007). Therefore, mango requires a ripening 41 

period before it achieves the taste and texture desired at the time of consumption (Cortés 42 

et al., 2016). The ripening process, and hence the organoleptic quality, is regulated by 43 

genetic and biochemical events that result in biochemical changes such as the 44 

biosynthesis of carotenoids (Mercadante & Rodriguez-Amaya, 1998), loss of ascorbic 45 

acid (Hernández et al., 2006), increase in total soluble solids (Padda et al., 2011); physical 46 

changes such as weight, size, shape, firmness and colour (Ornelas-Paz et al., 2008; 47 

Kienzle et al., 2011); and changes in aroma, nutritional content and flavour of the fruit 48 

(Giovannoni, 2004). The evaluation of these changes plays an important role for 49 

determining the ripening level of harvesting, which will decide the market (i.e. domestic, 50 

exportation) and/or price of the product. Traditional determination of these changes has 51 



required a destructive methodology using specialised equipment, procedures and trained 52 

personnel, which results in high analysis costs (Torres et al., 2013). In addition, 53 

destructive methods allow to analyse only a few set of samples trying to represent the 54 

variability of the whole production, but this desirable situation can be only achieved if all 55 

fruits are inspected in automated lines (Kondo, 2010). Traditionally, electronic sorters 56 

based on computer vision, used in postharvest to inspect the quality of the fruit, work at 57 

a very high speed, analysing the surface of the fruits not being possible any internal 58 

inspection. The most advanced and innovative sorters can incorporate NIR technology 59 

for testing the internal properties of the produces but light is projected to the fruit at a 60 

fixed distance and later, the reflected or transmitted light, is also measured at a certain 61 

fixed distance. However, as the fruits have different sizes and shapes, the measurements 62 

can be strongly influenced by these features. For instance Velez-Rivera et al. (2014a) and 63 

(2014b) developed computer vision techniques to determine damages and ripeness of 64 

mango ‘Manila’ trough colour measurements. 65 

Robots have enormous potential to automate production in the food sector (Blasco et al., 66 

2003; Wilson, 2010). Their main current function is to transport and manipulate objects 67 

but they have clear difficulties for handling soft and variable products (Bogue, 2009). 68 

Advances in new robot grippers are allowing their introduction in industrial and 69 

manufacturing systems for monitoring and controlling production (Tai et al., 2016). 70 

Automation with robots, in primary packaging operations, makes possible to incorporate 71 

different sensors that can be used to assess fruits quality. Tactile sensors added to gripper 72 

fingers provide the capability to evaluate a product through physical contact (Lee, 1999) 73 

and have been used for classifying eggplants (Blanes et al., 2015a) and to assess cv. 74 

'Osteen' mangoes firmness (Blanes et al., 2015b) with a good prediction performance of 75 

the PLS model (R2
P = 0.760 and RMSEP = 17.989).  76 



Visible and near-infrared spectroscopy combined with multivariate analysis has been 77 

widely used for quantitative determination of several internal properties or compounds, 78 

to determine ripeness, and to measure quality indices in fruits in general and in mango in 79 

particular (Schmilovitch et al., 2000; Theanjumpol et al., 2013; Jha et al., 2013; Cortés 80 

et al., 2016).  Cortés et al. (2016) predicted, in a laboratory, the internal quality index for 81 

cv. ‘Osteen’ mangoes using visible and near-infrared spectrometry (VIS-NIR) obtaining 82 

good results with the full spectral range and some selected wavelengths (R2
p = 0.833 and 83 

R2
p = 0.815, respectively). Thus, incorporating the capability of performing spectral 84 

measurements to gripper fingers in combination with other sensors would multiply the 85 

possibilities of measuring internal fruit quality when the fruit is handled. However, this 86 

would require to develop sensor fusion techniques to obtain the maximum of the 87 

combined information of all the sensors avoiding redundancy (Cimander et al., 2002). 88 

Furthermore, sensor fusion enables rapid and economical in-line implementation for fruit 89 

quality assessment (Ignat et al., 2015). Multiple sensors have been widely used in a 90 

variety of fields. Steintmetz et al., (1999) developed a robotic quality inspection system 91 

for apples that included a colour camera and NIR spectroscopy to predict sugar content 92 

using sensor fusion techniques. Since then, significant food advances in the field of sensor 93 

fusion have been developed among computer vision and near-infrared spectroscopy to 94 

assess fish freshness (Huang et al., 2016), fusion of impedance e-tongue and optical 95 

spectroscopy to determine the botanical origin of honey (Ulloa et al., 2013), sensor fusion 96 

of electronic nose and acoustic sensor to improve the mango ripeness classification 97 

(Zakaria et al., 2012) or fusion of electronic nose, near-infrared spectrometer and standard 98 

bioreactor probes to monitor yoghurt fermentation (Cimander et al., 2002). Hitherto, 99 

examples of combination of signals from visible and near-infrared spectroscopy spectral 100 

data and tactile sensors in a robot gripper are inexistent. Therefore, getting a sensor fusion 101 



system integrating tactile and spectral properties of the fruit would be a key advance for 102 

the post-harvest industry.  103 

Thus, the aim of this study is to develop a novel robotic gripper that incorporates 104 

accelerometers and fibre-optic probes coupled to a spectrometer to analyse the mango 105 

ripening state by simultaneously measuring firmness and visible and near-infrared 106 

reflectance when the fruit is handled in the packing house during postharvest operations.  107 

 108 

2. MATERIALS AND METHODS 109 

2.1. Experimental procedure 110 

A batch of 275 unripe mangoes (Mangifera indica L., cv ‘Tommy Atkins’) were selected 111 

with similar size and colour and free of external damage. During the experiments, fruits 112 

were ripened in a storage chamber at 20.0 ± 2.1 ºC and 67.6 ± 3.3 % RH and fruits were 113 

divided in sets of 45 fruits each (sets marked as M1, M2, M3, M4, M5 and M6). Every 2-114 

3 days one set was analysed starting with set M1 until the last set M6 reached senescence 115 

(18 days). All the mangoes in each set were handled by the robotic gripper to obtain non-116 

destructive measurements and later their physicochemical properties (total soluble solids, 117 

titratable acidity and destructive firmness) were evaluated. Prior the measurements, the 118 

temperature of the mangoes was stabilised at 24 ± 1 ºC. 119 

2.2. Reference analysis 120 

Routine methods were used to determine the quality attributes of the mangoes. Mango 121 

firmness was measured using a Universal Testing Machine (TextureAnalyser-XT2, 122 

Stable MicroSystems (SMS) Haslemere, England) through a puncture tests using a 6 mm 123 

diameter cylindrical probe (P/15ANAMEsignature) until a relative deformation of 30 %, 124 

at a speed of 1 mm s -1. Two measurements were performed per fruit, on opposite sides 125 



along the equator. The fracture strength (Fmax) expressed in Newtons was also obtained 126 

for all samples.  127 

The total soluble solids (TSS) content was determined by refractometry (%) with a digital 128 

refractometer (set RFM330+, VWR International Eurolab S.L Barcelona, Spain) at 20 ºC 129 

with a sensitivity of ± 0.1 ºBrix. Samples were analysed by triplicate.  130 

The analysis of the titratable acidity (TA) was performed with an automatic titrator 131 

(CRISON, pH-burette 24, Barcelona, Spain) with 0.5 N NaOH until a pH of 8.1 132 

(UNE34211:1981), using 15 g of crushed mango which was diluted in 60 mL of distilled 133 

water. The TA was determined based on the percentage of citric acid that was calculated 134 

using Eq. (1). 135 

 
𝑇𝑇𝑇𝑇 [𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎 100⁄ 𝑔𝑔 𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜] = ��(𝑇𝑇 × 𝐵𝐵 × 𝐶𝐶) · 𝐷𝐷−1� × 100� · 𝐸𝐸−1 (1) 136 

where A is the volume of NaOH consumed in the titration (in L), B is the normality of 137 

NaOH (0.5 N), C is the molecular weight of citric acid (192.1 g·mol-1), D is the weight 138 

of the sample (15 g) and E is the valence of citric acid (E = 3). 139 

 140 

A multi-parameter ripening index (RPI) was calculated by Eq. (2) which was described 141 

previously by Vásquez-Caicedo et al. (2005) and Vélez-Rivera et al. (2014b). This index 142 

was then used as reference to test the measurements obtained by the robot gripper: 143 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑜𝑜𝑙𝑙 (100 · 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 · 𝑇𝑇𝑇𝑇 · 𝑇𝑇𝑇𝑇𝑇𝑇−1)     (2) 144 

where Fmax is the fracture strength (Newton), TSS is the total soluble solids (g soluble 145 

solids per 100 g of sample) and TA is the titratable acidity (g citric acid equivalent per 146 

100 g of sample). 147 

 148 

2.3. Robot gripper 149 



A robot gripper has been specifically developed to handle quasi spherical fruit and 150 

programmed in these experiments to work with mango fruits. The gripper has four 151 

fingers: FA1, FA2, FB1 and FB2 (Fig. 1). The design of the gripper fingers and its 152 

mechanical configuration adapt to a wide range of varied shapes while are handled, and 153 

provide a good performance of the accelerometers as intrinsic tactile sensors (Blanes et 154 

al., 2016). The FA2 has hemispherical concave shape, is attached to the chassis of the 155 

gripper and is linked by a ball joint. The FA1 is linked to a pneumatic cylinder (DSN 10-156 

80P, Festo, Germany) with a float joint and has straight motion that is aligned with the 157 

FA2. The FB1 and FB2 are linked to their respective pneumatic cylinders (CD85N10-158 

50B, SMC, Japan) with two float joints and move following parallel paths. FA1, FB1 and 159 

FB2 have pads of a latex membrane filled with sesame seeds. Each pad is soft when its 160 

internal pressure is atmospheric or slightly higher and tough when its internal pressure is 161 

lower than atmospheric. The design of these fingers allows the gripper adapting to every 162 

mango shape while it is grasped. The gripper was attached to a delta robot (IRB 340, 163 

Flexpicker, ABB, Switzerland).  164 

 165 

In addition, the gripper was equipped with two types of sensors, two accelerometers 166 

(ACC1 and ACC2) and two reflectance probes (P1 and P2). The signals captured by the 167 

sensors were recorded in a laptop by means of a data acquisition module (USB 6210, 168 

National Instruments, USA) in the case of accelerometers, and a multichannel VIS-NIR 169 

spectrometer platform (AVS-DESKTOP-USB2, Avantes BV, The Netherlands) for the 170 

reflectance probes (Fig. 2).. 171 

Accelerometers ACC1 and ACC2 were joined to the rear side of the FA1 and FA2 172 

respectively. They are intrinsic tactile sensors because they are not in direct contact to 173 

every manipulated mango. P2 was attached to the FA2 through a hole performed in this 174 



finger. It was able to collect data as soon as both FA1 and FA2 were closed. Once FA1 175 

and FA2 grasp a mango, P1 approximates by means of the pneumatic cylinder action 176 

(C85E10-40, SMC, Japan). This probe was linked to the pneumatic cylinder rod by means 177 

of a ball joint. Ball joints allowed the probes adapting to the shape of every different 178 

mango since they can rotate freely around three rotation axes. 179 

Due to the mechanical configuration of the gripper, the sensors took measurements at 180 

different points over the surface of every mango (Fig. 3).  181 

 182 

2.3.1. VIS-NIR reflectance signals 183 

Each reflectance probe consisting of seven fibres with a diameter of 200 µm, delivered 184 

the light to the sample through a bundle of six fibres, collecting the reflected light trough 185 

the seventh one. The probe tip was designed to provide reflectance measurements at an 186 

angle of 45° so as to avoid specular reflectance from the surface of the fruit. 187 

The spectra of mango samples were collected in reflectance mode using the multichannel 188 

spectrometer platform equipped with two detectors and a quartz beam splitter (BSC-DA, 189 

Avantes BV, The Netherlands). The first detector (AvaSpec-ULS2048 StarLine, Avantes 190 

BV, The Netherlands) included a 2048-pixel charge-coupled device (CCD) sensor 191 

(SONY ILX554, SONY Corp., Japan), 50 µm entrance slit and a 600 lines mm-1 192 

diffraction grating covering the working visible and near-infrared (VNIR) range from 600 193 

nm to 1100 nm with a spectral FWHM (full width at half maximum) resolution of 1.15 194 

nm. The spectral sampling interval was 0.255 nm. The second detector (AvaSpec-195 

NIR256-1.7 NIRLine, Avantes BV, The Netherlands) was equipped with a 256 pixel non-196 

cooled InGaAs (Indium Gallium Arsenide) sensor (Hamamatsu 92xx, Hamamatsu 197 

Photonics K.K., Japan), a 100 µm entrance slit and a 200 lines mm-1 diffraction grating 198 

covering the working NIR range from 900 nm to 1750 nm and a spectral FWHM 199 



resolution of 12 nm. The spectral sampling interval was 3.535 nm. Two Y-shaped fibre-200 

optic reflectance probes (P1 and P2) (FCR-7IR200-2-45-ME, Avantes BV, The 201 

Netherlands) were configured each with an illumination leg which connects the fibre-202 

optic probe coupled to stabilised 10 W tungsten halogen light sources (AvaLight-HAL-203 

S, Avantes BV, The Netherlands). The light sources ensure a permanent light intensity 204 

over the whole measurement range. The other leg of the Y-fibre-optic probe was 205 

connected to a beam combiner (BSC-DA, Avantes BV, The Netherlands) which 206 

converted the two light beams into one light beam. This only light beam was transmitted 207 

through another Y-shaped fibre-optic probe to both detectors for simultaneous 208 

measurement. 209 

The calibration was performed using a 99 % reflective white reference tile (WS-2, 210 

Avantes BV, The Netherlands) so that the maximum reflectance value over the range of 211 

wavelengths was around 90 % of saturation. The integration time was set to 240 ms for 212 

the VNIR detector and to 4200 ms for the NIR detector due the different features of both 213 

detectors. For both detectors, each spectrum was obtained as the average of five scans to 214 

reduce the thermal noise of the detector (Nicolaï et al., 2007). The average reflectance 215 

measurements of each sample (S) were then converted into relative reflectance values (R) 216 

with respect to the white reference using dark reflectance values (D) and the reflectance 217 

values of the white reference (W), as shown in Eq. (3): 218 

𝑅𝑅 = 𝑆𝑆−𝐷𝐷
𝑊𝑊−𝐷𝐷

     (3) 219 

The dark spectrum was obtained by turning off the light source and completely covering 220 

the tip of the reflectance probe.  221 

2.3.2. Accelerometers signals  222 

The accelerometers used (ADXL278, Analog Devices, USA) have a measurement range 223 

of +/- 50 g. They are capable of sensing collisions and, motoring and control vibration. 224 



Only the deceleration signals of the normal axes to the fingers were collected. They were 225 

sampled during approximately 0.27 s at 30 kHz and low-pass filtered (Fig. 4a), but only 226 

less than 0.1 s were used for analysing the tactile sensor responses. These signals were 227 

only processed between t0 (0.0366 s) and t1 (0.08 s) (Fig. 4b) to capture the first contacts 228 

of the gripper fingers with every mango. Signals were rearranged using the maximum 229 

values as reference, for hence always maximum values will be at 0.0125 s. Signals also 230 

were cut to collect 0.0315 s (Fig. 4c) and were transformed by Fast Fourier Transform 231 

using LabVIEW 11.0 (National Instruments, USA), with the option measurement 232 

magnitude root main square with Hanning window, in order to get energy spreading into 233 

frequencies (Fig. 4d). 234 

 235 

2.4. Robot gripper process and signals acquisition 236 

A robot program controls every grasping and sensing operation of the gripper. Three 237 

electrovalves (SY3120, SMC, Japan) were used, one for the motion of FA1, one the 238 

motion of FB1 and FB2 and other for moving the P2. Two adjustable flowmeter control 239 

valves (AS2201F-01-04S, SMC, Japan) were used to adjust the speed of FA1 and P2. A 240 

vacuum generator with blow function (VN-07-H-T3-PQ2-VQ2-RO1-B, Festo, Germany) 241 

provides the possibility of controlling the hardness of FA1 by means of its internal valves 242 

2 and 4. The data acquisition device used to collect the accelerometer signals starts to 243 

collect data when the robot sends the signal to close FA1. 244 

When the gripper is at the approach position to grasp a mango, valve 1 is activated for 245 

closing FA1. After 0.3 s, the valve 2 is activated during 0.05 s for changing the pad of 246 

FA1 to a softer state. During this time, valve 1 is deactivated for opening FA1. Then, the 247 

signals of the valves 1 and 3 are activated for closing the FA1, FB1 and FB2 during 0.3 s 248 

and the pad of FA1 changes to a tougher state (valve 4 activated) and waits for 0.5 s. This 249 



process adapts the pad of the FA1 to every mango shape. The P2 starts to collect data. 250 

The robot moves the gripper up. The pad of the FA1 is at tough state and starts an 251 

open/close loop (open during 0.05 s, close for 1 s). During this loop, the signals of ACC1 252 

and ACC2 are collected. Then, valve 5 is activated, P1 is approached to the mango surface 253 

and starts to collect data. The whole process is shown in figure 5. 254 

 255 

2.5. Signal pre-processing and statistical analysis  256 

The raw spectra from the spectrometer were transformed to apparent absorbance (log 257 

(1/R)) values using The Unscrambler Version 10.2 software package (CAMO Software 258 

AS, Oslo, Norway) to obtain linear correlations of the NIR values with the concentration 259 

of the estimated constituents (Shao et al., 2007; Liu et al., 2009) and centred by 260 

subtracting their averages in order to ensure that all results will be interpretable in terms 261 

of variation around the mean.  262 

Figure 6 shows raw VNIR and NIR spectra and its correction after the application of the 263 

pre-processing methods. Savitzky-Golay smoothing (the segment size is 15) was applied 264 

to improve the signal-to-noise ratio in order to reduce the effects caused by the 265 

physiological variability of samples (Carr et al., 2005; Beghi et al., 2017). Due to the fruit 266 

fresh light scattering (Santos et al., 2013), the light does not always travel the same 267 

distance in the sample before it is detected. A longer light traveling path corresponds to a 268 

lower relative reflectance value, since more light is absorbed. This causes a parallel 269 

translation of the spectra. This kind of variation is not useful for the calibration models 270 

and need to be eliminated by the EMSC technique (He et al., 2007; Martens et al., 2003; 271 

Bruun et al., 2007). In addition to those three pre-processing, the second derivate with 272 

Gap-Segment (2.3) were the best results for the NIR spectra because it allowed the 273 

extraction of useful information (Rodriguez-Saona et al., 2001). The different pre-274 



treatments were applied in the sequence explained, specifying that the first two pre-275 

treatments (smoothing and EMSC) were only applied to the VNIR spectra and those two 276 

with the third (second derivate) applied to the NIR spectra (Cortés et al., 2016). Finally, 277 

the adjustment to the spectral intensities from each sensor ACC1, ACC2, P1 and P2 was 278 

range-normalised so the data from all samples were directly comparable to each other 279 

(Andrés & Bona, 2005; Blanco et al., 2006). 280 

The different sensor signals were combined through a ‘low-level’ fusion procedure 281 

(Roussel et al., 2003) by concatenating the pre-processed sensor signals - appending one 282 

to another- to create a single matrix with a total of 5516 variables, which was processed 283 

using The Unscrambler. Data were organised in a matrix where the rows represent the 284 

number of samples (#N = 275 samples) and the columns represent the variables (X-285 

variables and Y-variables). The X-variables, or predictors, were the signals obtained by 286 

the data fusion between the two fibre-optic probes of the spectrometer and the 287 

accelerometers. The Y-variable, or response, was the RPI of each sample. In order to 288 

correct the relative influences of the different instrumental responses on model, 289 

standardisation technique was used, where the weight of each X-variable was the standard 290 

deviation of the variable (Bouveresse et al., 1996). Then, fifteen regression models for 291 

each combination of the spectra data from the different sensors were developed by partial 292 

least squares (PLS) to predict RPI. Samples were randomly separated into two groups, 75 293 

% of the samples were used to develop the model that was validated by cross validation, 294 

while the remaining samples (25 %) were used as the prediction set. The root mean square 295 

error of calibration (RMSEC), root mean squared error of cross validation (RMSECV), 296 

the root mean square error of prediction (RMSEP), the coefficient of determination for 297 

calibration (R2
C), for prediction (R2

P) and for cross validation (R2
CV), and the required 298 

number of latent variables (LV) were used to judge the accuracy of the PLS model. 299 



 300 

3. RESULTS AND DISCUSSION  301 

3.1. Changes in mango quality during ripening 302 

The changes observed in the physicochemical characteristics (Fmax, TSS and TA) of 303 

mangoes during postharvest storage are shown in Table 1.  304 

For all sets of mangoes there was a steady decrease in fruit firmness over time starting 305 

around 137 N to fell to 28 N. These changes are due to significant changes in the 306 

composition and structure of cell walls and middle lamella due to the solubilisation, de-307 

esterification and de-polymerisation of the middle lamella (Singh et al., 2013), and the 308 

enzymatic activity (Prasanna et al., 2007; Yashoda et al., 2007). A similar behaviour has 309 

been reported for other mango varieties such as ‘Alphonso’ (Yashoda et al., 2005), 310 

‘Ataulfo’ (Palafox-Carlos et al., 2012), ‘Keitt’ (Ibarra-Garza et al., 2015) or ‘Osteen’ 311 

(Cortés et al., 2016). Similarly, the TA tends to decrease due to the cell metabolisation of 312 

volatile organic acids and non-volatile constituents (Padda et al., 2011), and in addition 313 

acids can be used as substrates for respiration when sugars have been consumed or 314 

participated in the synthesis of phenolic compounds, lipids and volatile aromas (Abu-315 

Goukh et al., 2010). In contrast, the TSS increased continuously during postharvest 316 

storage due to the conversion of starch to glucose and fructose, which are used as 317 

substrates during fruit respiration (Eskin et al., 2013). Similar results were observed by 318 

Quintana et al. (1984) who reported that TSS of mango increased gradually up to ripeness.  319 

RPI was calculated for every day of storage. Figure 7 shows the evolution of the RPI 320 

through median plots with 95 % confidence intervals during the storage. It can be 321 

observed that the values of the index clearly decreased during ripening. Initially, the RPI 322 

declines sharply when the fruits ripen to achieve their optimum organoleptic properties, 323 

and then, fruit reaches the stage of over ripeness where the curve follows a constant trend 324 



because the product reaches a maximum content of TSS and minimum firmness and TA. 325 

 326 

3.2. Non-destructive prediction of mango ripening 327 

The data was concatenated (accelerometers and VIS-NIR spectra) (Decruyenaere et al., 328 

2009; Roussel et al., 2003) to form a representative complex spectrum with a total of 329 

5516 variables. Table 2 shows the results of the validation and prediction results of the 330 

PLS models built for the data obtained by every single sensor and for the data fusion (due 331 

to the concatenation of wavenumber) performed among all possible combinations of 332 

spectral data. 333 

The best PLS model for prediction of RPI is presented in the Fig. 8. Figure 9 shows the 334 

regression coefficients of the best developed model and the PRESS plot for identifying 335 

the optimum number of LVs. The results for this model were obtained using VIS-NIR 336 

fibre-optic probes and the two accelerometer signals. The calibration model for predicting 337 

the RPI has an R2
c = 0.945 and RMSEC = 0.235, and the validation of the calibration 338 

model has an R2
cv = 0.0.804 and RMSECV = 0.447. The prediction model indicates a 339 

good prediction performance, and obtained values of R2
p = 0.832 and RMSEP = 0.520.  340 

 341 

3.3 Integration of tactile sensing and reflectance data in the robot gripper 342 

This novel gripper presents an important evolution from other previous grippers for 343 

sensing and handling the firmness of eggplants and mangoes by using accelerometers as 344 

tactile sensors (Blanes et al., 2015a and 2015b). Unlike these previous grippers that 345 

caused damages in some over-ripe mangoes due to the action of a suction cup needed for 346 

holding the fruits, this new gripper incorporates four fingers and intrinsic sensors that 347 

avoid the need of such suction cup when holding the fruit for measurement and placing. 348 



Besides, the combination of the two probes achieved better results than P2 or P1 349 

standalone, having an R2
p of 0.802 compared to those obtained of 0.732 and 0.632, 350 

respectively. In the same way, ACC1 together with ACC2 had better result than ACC1 or 351 

ACC2 alone with an R2
p of 0.655 compared to 0.444 and 0.300, respectively. It is 352 

important to remark that the composition of a fruit is not uniform and hence some parts 353 

of the mango may have different ripeness than others. Therefore, it is necessary to take 354 

simultaneous measurements at least in the three points studied to obtain reliable and 355 

robust results. Blanes et al. (2015b) developed a gripper with three accelerometers to 356 

estimate the ripeness of mangoes cv. ‘Osteen’ achieving a R2
P = 0.760 which is lower 357 

than the current robot gripper (R2
P = 0.832). This highlights the important contribution of 358 

the integration of both tactile sensors and VNIR reflectance measurements in the robotic 359 

gripper to assess the quality of the mangos during fruit handling.  360 

A handicap of this system in the current version is the long time needed to process every 361 

mango. The incorporation of two spectrometer probes increases the processing time of 362 

every mango up to 9 s. However, experiments have been done in a first prototype for 363 

testing, where the algorithms, hardware and processes were not optimised for working at 364 

high speed. Integrating better the hardware, optimising algorithms and parallelising some 365 

processes, the whole process could experience a dramatic reduction of the operation 366 

speed. On the other hand, the combination of sensors of different nature provides the 367 

capability of obtaining simultaneously both mechanical and optical properties of the fruit. 368 

This innovative approach is highly interesting in the emerging competitive food sector 369 

where monitoring of product quality reproducibility and traceability is decisive in the 370 

manufacture (Kondo, 2010). 371 

 372 

4. CONCLUSIONS 373 



A novel sensorised robot gripper with two accelerometers and two VIS-NIR reflectance 374 

probes, has been developed and tested for fruit handling. The design uses sensors that do 375 

not need direct contact, are intrinsic tactile sensors, and can take the measurements 376 

simultaneously during the mango handling which is an important advantage over the state 377 

of the art. The results show the prediction of the quality of the fruit using the RPI through 378 

the information given by VIS-NIR spectra and non-destructive impact obtained during 379 

handling, achieving an R2
p of 0.832 and RMSEP of 0.520. This innovative prototype 380 

integrates different types of sensors of different nature, whose data information is 381 

combined to obtain better prediction. The fusion of different types of sensors like 382 

spectrometry (electromagnetic) and accelerometers (vibrational) achieved better results 383 

that using only the accelerometers, or similar results than using spectroscopy, but in this 384 

case, the measurements were made while the fruit was handled. In this way, results show 385 

the potential and advantages of performing simultaneous operations of sensors of 386 

different nature integrated on a robot gripper that can inspect and classify the mangoes 387 

by their ripeness during a pick and place robot process. 388 
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Table 1. Descriptive statistics for the quality parameters analysed in mango samples 

during the storage period.

Set A Set B Set C Set D Set E Set F

M
ec

ha
ni

ca
l

pr
op

er
tie

s

Fmax
 (N) 137±18a 62±16b 45±16c 34±11d 35±8d 28±8e

TSS (%) 10.4±0.9a 12±1b,c 12±1c,d 12±1d 12±1b 12±2b,c

In
te

rn
al

co
m

po
sit

io
n

TA (%) 0.8±0.2a 0.62±0.15b 0.41±0.08c 0.30±0.06d 0.29±0.06d 0.19±0.05e

Values are mean ± SD.
a–e Different superscripts in the same row indicate significant difference among sets (p < 0.05).



Table 2. Comparison of the prediction of mango ripening provided by different possible 

combination of sensor fusion to the two fibre-optic probes of VIS-NIR spectrometer and 

two accelerometers located at the fingers of the robot gripper.

Calibration set Prediction set

Sensors #LV R2
C RMSEC R2

CV RMECV R2
P RMSEP

P2 1 0.769 0.506 0.742 0.537 0.732 0.663

P1 3 0.895 0.323 0.739 0.512 0.632 0.727

P2+ P1 3 0.933 0.268 0.782 0.487 0.802 0.554

ACC1 6 0.677 0.574 0.575 0.663 0.444 0.871

ACC2 4 0.611 0.626 0.48 0.727 0.300 1.020

ACC1 + ACC2 4 0.758 0.758 0.595 0.595 0.655 0.737

P2+ ACC1 2 0.854 0.373 0.77 0.471 0.778 0.613

P2+ ACC2 1 0.695 0.586 0.649 0.632 0.733 0.665

P1 + ACC1 4 0.940 0.251 0.753 0.513 0.662 0.698

P1 + ACC2 5 0.971 0.175 0.776 0.493 0.662 0.742

P2 + P1 + ACC1 4 0.973 0.166 0.786 0.467 0.797 0.550

P2 + P1 + ACC2 2 0.867 0.379 0.777 0.494 0.784 0.595

P2 + ACC1 + ACC2 2 0.813 0.460 0.705 0.580 0.813 0.567

P1 + ACC1 + ACC2 5 0.971 0.176 0.779 0.490 0.733 0.642

P2 + P1 + ACC1 + ACC2 3 0.945 0.235 0.804 0.447 0.832 0.520


