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ABSTRACT 

Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome 

diversity in response to diverse growth and stress cues. Recent work showed that AS is pervasive 

across plant species, with more than 60% of intron-containing genes producing different 

isoforms. Mammalian cell-based assays have discovered various AS inhibitors. Here, we show 

that the macrolide Pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our 

RNA-seq data revealed that PB mimics abiotic stress signals including salt, drought, and abscisic 

acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A::LUC and 

MAPKKK18::GUS in Arabidopsis thaliana and mimics the effects of ABA on stomatal aperture. 

Genome-wide analysis of AS by RNA-seq revealed that PB perturbs the splicing machinery and 

leads to a striking increase in intron retention and a reduction in other forms of AS. Interestingly, 

PB treatment activates the ABA signaling pathway by inhibiting the splicing of clade A PP2Cs 

phosphatases while still maintaining to some extent the splicing of ABA-activated SnRK2 

kinases. Taken together, our data establish PB as an inhibitor and modulator of splicing and a 

mimic of abiotic stress signals in plants. Thus, PB reveals the molecular underpinnings of the 

interplay between stress responses, ABA signaling, and post-transcriptional regulation in plants. 
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Introduction 

Plants employ intricate molecular mechanisms to respond to growth, developmental, and 

environmental cues (Zhu, 2002; Shinozaki and Yamaguchi-Shinozaki, 2007). The ability of 

plants to adapt to these ever-changing cues mainly results from the molecular plasticity of their 

genomes and epigenomes (Chinnusamy et al., 2008; Springer et al., 2016). For example, gene 

regulation plays a major role in coordinating plant responses to growth, developmental, and 

stress cues. The plasticity of the transcriptome and the diversity of the proteome are essential for 

helping plants adapt and cope with environmental stresses (Pikaard and Mittelsten Scheid, 2014). 

Gene expression involves several regulatory layers, including transcription and pre-mRNA 

processing through capping, splicing, and polyadenylation, as well as mRNA surveillance and 

export. The splicing machinery is regulated at the levels of transcription and pre-mRNA splicing 

under environmental stress conditions (Filichkin et al., 2014). 

In photosynthetic eukaryotes, the vast majority of genes (>90%) contain introns (Szarzynska et 

al., 2009; Labadorf et al., 2010). To generate the mature mRNA, these introns must be precisely 

excised and the exons joined together. This splicing of precursor mRNAs (pre-mRNAs) is 

mediated by the spliceosome, a highly dynamic, megadalton-sized, complex machinery 

composed of small nuclear ribonucleoproteins (snRNPs) and many (>200) associated proteins. 

Also, splicing is regulated by a variety of upstream effectors that feed stress and growth 

signaling information to the transcriptional and post-transcriptional regulatory machinery (Jurica 

and Moore, 2003; Will and Luhrmann, 2011; Filichkin et al., 2015). The assembly of the 

spliceosome on the pre-mRNA requires conserved sequences that determine the exon/intron 

boundaries, including a 5’ splice GU, a 3’ splice site AG, and a branch-point (BP) with a 

conserved A residue close to the 3’ SS (Will and Luhrmann, 2011). Spliceosome assembly 

requires dynamic RNA–RNA, RNA–protein, and protein–protein interactions, which are 

mediated by splicing machinery proteins and many associated and regulatory proteins, including 

the serine/arginine rich (SR) protein and heterogeneous nuclear RNP (hnRNP) families 

(Filichkin et al., 2015). 
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Alternative splicing (AS) involves the production of multiple mRNA isoforms from a single 

gene. AS expands and increases proteome diversity and the number and levels of mRNA 

isoforms. Therefore, AS constitutes an important regulatory step in post-transcriptional gene 

expression. AS is regulated in a cell type-, tissue-, and developmental stage-specific manner as 

well as by stress and growth cues. AS is predominant in humans, where more than 95% of 

intron-containing genes are alternatively spliced. The frequency of AS events in plants ranges 

from 40 to 61%, which is lower than that of mammalian systems but much higher than originally 

expected (Filichkin et al., 2010; Marquez et al., 2012). The estimate of AS in plants is likely to 

increase when mRNAs from different tissues, developmental stages, and stress conditions are 

analyzed. Different modes of AS include exon skipping, alternative 5’ or 3’ SS selection and 

intron retention. In mammals, exon skipping is the predominant mode of AS, whereas in plants, 

intron retention is predominant. Thus, AS in mammals enriches the diversity of the proteome and 

AS of some genes can be attributed to different disease states. By contrast, in plants, exon 

skipping occurs in a small fraction of AS genes. The majority of AS events in plants generate 

isoforms with intron retention and a premature termination codon (PTC) (Reddy et al., 2013; 

Staiger and Brown, 2013). The production of non-functional isoforms could be used to control 

the levels of functional isoforms and could thus play a regulatory role. PTC isoforms are 

degraded through the nonsense-mediated decay pathway (Filichkin et al., 2015). 

Several reports have implicated AS in the regulation of plant responses to environmental stresses 

(Staiger and Brown, 2013; Filichkin et al., 2014). AS modulates the expression of stress-induced 

genes, and splicing factors regulate splice site selection in response to environmental stimuli 

(Palusa et al., 2007; Duque, 2011; Ding et al., 2014; Feng et al., 2015). SR proteins play major 

roles in constitutive splicing (CS) and AS by facilitating exon identity, functioning as molecular 

adaptors linking the pre-mRNA to the splicing machinery, and affecting all forms of RNA 

metabolism including expression, processing, transport, and translation or decay (Howard and 

Sanford, 2015). Environmental and hormonal stimuli modulate the AS patterns of SR proteins in 

Arabidopsis thaliana (Tanabe et al., 2007). Under high salinity conditions, the pre-mRNA of SR 

proteins undergoes AS due to the use of alternative 5’ and 3’ splice sites, resulting in intron 

retention isoforms and the formation of a PTC (Cruz et al., 2014; Ding et al., 2014).  
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Abscisic acid (ABA), a plant stress hormone, plays major roles in abiotic stress adaptation. ABA 

binds to the PYR/PYL/RCAR family of receptors, which form ternary complexes with clade A 

protein phosphatases type 2C (PP2Cs), thereby abrogating their inhibitory effects on SNF1-

related protein kinases 2 (SnRK2.2/3/6) and leading to the activation of the ABA signaling 

pathway (Fujii and Zhu, 2009; Fujita et al., 2009; Ma et al., 2009; Park et al., 2009; Santiago et 

al., 2009; Umezawa et al., 2009; Vlad et al., 2009). Interestingly, mutations in various splicing 

factors affect plant stress and/or hormonal sensitivity. For example, sad1 mutant plants are 

hypersensitive to ABA; the sad1 mutation leads to errors in splice site selection, thereby 

increasing the frequency of AS events. These effects are particularly prominent under salt stress. 

The sad1 mutant is defective in the dynamic regulation of splicing. Moreover, SAD1 

overexpression (SAD1-OE) leads to increased splicing precision and efficiency and improves 

plant tolerance to abiotic stress (Cui et al., 2014). Moreover, nuclear cap binding complex 

subunit proteins (CBP20/80) may facilitate the co-transcriptional assembly of the spliceosome 

(Laubinger et al., 2008). Therefore, co-transcriptional splicing of select genes whose splicing 

occurs co-transcriptionally may be affected. CBP20 and CBP80 modulate the salt-stress 

response, implicating these proteins in the interplay between splicing and stress responses (Kong 

et al., 2014). Furthermore, the SR-like protein SR45 interacts with the spliceosomal proteins U1-

70K and U2AF35b, indicating that it plays a role in facilitating spliceosomal assembly or 

rearrangement (Day et al., 2012). The sr45-1 mutant is hypersensitive to ABA treatment, 

implying that SR45 functions in the interplay between ABA signaling, splicing, and stress 

responses (Carvalho et al., 2010). Another example is the spliceosomal factor SNKW/Ski-

interacting protein (SKIP), which interacts with SR45 to regulate AS in abiotic stress responses 

(Lim et al., 2010; Wang et al., 2012).  

Recent advances in RNA-sequencing technologies have revolutionized AS studies in diverse 

eukaryotic species, including plants (Reddy et al., 2013; Staiger and Brown, 2013; Conesa et al., 

2016). However, methods are needed to probe the function of a single or multiple proteins in a 

noninvasive, tunable, reversible manner to uncover the molecular underpinnings of AS 

regulation in plants at different developmental stages or in response to stress and growth cues. 

Employing AS inhibitors may help reveal the hierarchical control and coordination of the 

response of AS to different developmental and stress cues, thereby opening up the possibility of 

engineering plants to adapt to or tolerate abiotic stresses. Chemical-genetic screens aim at 
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identifying synthetic or natural chemical compounds that affect a specific response and at 

uncovering their molecular targets (McCourt and Desveaux, 2010). These compounds can be 

used as tools to dissect molecular biological functions and as agents to treat diseases. For 

example, Trichostatin A inhibits class I and II mammalian histone deacetylases and trapoxin also 

inhibits histone deacetylases. These two inhibitors have been used to elucidate the roles of 

histone acetylation and chromatin structure and function in an epigenetic context (Gray and 

Dangond, 2006). On the other hand, pyrabactin, a synthetic ABA agonist, was used to identify 

ABA receptors and signaling mechanisms in plants (Park et al., 2009). Pladienolide B (PB) is a 

naturally occurring macrolide with antitumor activity that was isolated from Streptomyces 

platensis. The potential molecular target of PB was identified as the SAP130 protein of the 

splicing factor SF3b complex (Kotake et al., 2007). The use of a fluorescently tagged PB probe 

confirmed the subnuclear localization of the drug in enriched snRNP nuclear speckles. PB 

treatment of mammalian cells leads to the accumulation of unprocessed mRNA, which is 

consistent with the direct inhibition of spliceosome assembly and/or stability and impaired U2 

snRNP function (Rymond, 2007). Binding of PB derivatives to the SF3b complex of the 

spliceosome leads to growth inhibition in cancer cells. Therefore, in mammalian cells, PB is a 

potent antitumor agent, and its synthetic derivatives are currently being tested in clinical trials as 

anticancer agents. Similarly, spliceostatin A binds to the SF3b complex and inhibits splicing 

(Kaida et al., 2007). 

In the current study, we investigated whether splicing inhibitors in mammalian cells would 

exhibit the same inhibitory effects in plant cells and could be used to probe the molecular 

functions of the splicing machinery. Subsequently, we used these splicing inhibitors to tease 

apart the interplay between splicing inhibition and AS regulation in response to abiotic stress 

conditions. Our screening identified PB as a potent inhibitor of plant growth and development 

and revealed that it exhibits selective and potent inhibitory effects on splicing in plants. Ultra-

high coverage RNA-sequencing (RNA-seq) and analysis revealed that PB treatment causes ABA 

and stress-like effects and leads to differential gene expression reminiscent of ABA and abiotic 

stress treatments. Moreover, our analysis of the effects of PB on AS revealed that PB causes 

significant intron retention and the formation of splice variants related to abiotic stress. Our in 

vivo data from plants treated with PB show that it mimics stress signals, in a manner reminiscent 

of ABA, osmotic, and drought treatments, corroborating the RNA-seq data. Furthermore, PB 
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exhibited drought- and ABA-like effects, including significant activation of the RD29A and 

MAPKKK18 stress promoters, closure of stomata, and hypersensitivity of the sr45-1 mutant. 

Therefore, our data establish PB as an effective inhibitor of splicing in plants that can be used to 

elucidate the molecular underpinnings of the interplay between abiotic stress signals, ABA 

signaling, and the regulation of splicing.  

RESULTS 

PB inhibits Arabidopsis growth and development 

Several studies have shown that small molecules, bacterial fermentation products, and their 

synthetic derivatives can target spliceosomal proteins and modulate in vivo splicing and AS in 

mammalian cells (Bonnal et al., 2012). The effects of these molecules on plant growth and 

development and their molecular functions have not yet been investigated. Therefore, we tested 

these compounds in a targeted chemical genetic screen to examine their effects on the growth 

and development of Arabidopsis and to investigate whether they affect the proteins of the 

spliceosomal machinery. We used several indole derivatives (including indole, 3-(2-

bromomethyl) indole, 6-methylindole, 2,5-dimethylindole, indole-3-carboxylic acid, 5-

bromoindole-2-carboxylic acid, and 7-bromo-6-azaindole) that were shown to selectively bind to 

SR proteins and to inhibit exon splicing of enhancer-dependent introns (Soret et al., 2005; 

Bonnal et al., 2012). Moreover, we used the bacterial fermentation product PB, which was 

previously shown to interact with the SF3b1 complex and modulate AS, TG003, a benzothiazole 

inhibitor of the SR protein kinase CLK1, and the splicing inhibitor isoginkgetin (Kotake et al., 

2007; O'Brien et al., 2008; Nishida et al., 2011). To test the effects of these compounds on 

primary root growth in Arabidopsis, we transferred Arabidopsis (Col-0) seedlings grown on MS 

medium for 5 days post germination (dpg) to control MS medium or to MS medium 

supplemented with different concentrations of indole and its derivatives, or a much lower 

concentration of PB. The transferred seedlings were allowed to grow for an additional 4 days 

post-transfer (dpt). We examined two regions of the root, region A, which grew before transfer, 

and region B, which grew after transfer; this allowed us to study the effects of the drug on 

primary root (PR) growth (Duan et al., 2013). Interestingly, PR growth was sensitive to some of 
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the indole derivatives and very sensitive to PB, indicating that these compounds may interfere 

with fundamental processes in plant growth and development (Figure 1). 

To further investigate and determine the effects of PB on PRs, we grew Arabidopsis seedlings 

for 5 days (5 dpg) and transferred them to control MS medium or MS medium supplemented 

with different concentrations of PB (0.1, 0.2, 0.5, and 1µM) (Supplementary Figure 1). Our 

results show that PR growth is sensitive to different concentrations of PB. Since PB and 

spliceostatin A (SSA) both affect AS in mammalian cells (Kaida et al., 2007; Kotake et al., 

2007), we tested whether PB and SSA have the same effects. Surprisingly, we found that PR 

growth under SSA treatment was only very slightly reduced compared to that on control 

medium, indicating that SSA does not strongly inhibit PR growth (Supplementary Figure 1). 

Next, we investigated the effects of PB on plant growth and development by examining its 

effects on Arabidopsis seed germination. Mature Arabidopsis seeds are composed of the testa, a 

dead protective outer layer, covering a single layer of endosperm cells encompassing the 

embryo. Arabidopsis seed germination begins with rupture of the testa, followed by simultaneous 

rupture of the endosperm and protrusion of the radicle. Under optimal conditions, these steps can 

be completed within 36 h (Piskurewicz et al., 2008). Therefore, we tested the effects of different 

concentrations of PB on the progression of germination via these steps. Our data reveal that PB 

treatments led to delayed germination compared to control treatments (Figure 1). 

PB perturbs splicing and causes intron retention in a select group of genes  

Since previous studies in mammalian cells demonstrated that PB can affect splicing, we set out 

to test whether PB affects CS and/or AS in plants. Therefore, we selected a group of alternatively 

spliced genes (Pandey et al., 2002; Leviatan et al., 2013; Jang et al., 2014), including the 

microsomal ascorbate peroxidase gene APX3 (AT4G35800), the histone acetyl transferase gene 

HAC04 (AT1G55970), Arabidopsis thaliana SENESCENCE1 (ATSEN1; AT4G35770), and the 

NADP-Malic enzyme gene NADP-ME2 (AT5G11670). We treated one-week-old Col-0 

Arabidopsis seedlings with 0.5, 1.0, and 5.0 µM PB for 6 or 24 h and used primers flanking 

selected introns in RT-PCR analysis to determine the levels of processed and unprocessed 

mRNA isoforms. Our data reveal that PB caused intron retention and accumulation of aberrantly 

processed pre-mRNA, interestingly, the intron retention intensity at 6h treatment was higher than 

Page 8 of 83

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

                                                                                                                                                     Yu Ling et al. 

______________________________________________________________________________ 

 9

that at 24h treatment, a plausible interpretation of these data could be that the plants adapt to the 

chemical stress after longer incubations with the PB splicing inhibitor (Figure 2). Furthermore, 

our data show that the seedlings treated with 5 µM PB recover after transferring to control media 

lacking PB indicating that the PB effects are reversible (Supplementary Figure 2). In conclusion, 

our data show that PB severely perturbs the splicing process, generating splicing stress, and that 

the PB effects are reversible. 

PB treatments produce gene expression patterns similar to abiotic stress treatments 

Our data showing that PB inhibits splicing of a set of genes in Arabidopsis prompted us to 

investigate the genome-wide effects of PB on this process. To this end, we performed RNA-seq 

using the Illumina-HiSeq platform (Illumina Inc. San Diego, CA, USA) on one-week-old Col-0 

Arabidopsis seedlings treated with 5 µM PB for 6 and 24 h. We sequenced eight libraries, 

including four libraries from 6 and 24 h DMSO-treated plants (controls) and four libraries from 6 

and 24 h PB-treated plants. Our RNA-seq generated more than 150 million reads per library, 

approximately 90% of which could be mapped to the TAIR10 reference genome (Version 

TAIR10). Mapping of reads to gene models of the TAIR10 reference genome revealed that 

approximately 88–90% mapped to exons, 4–6% mapped to introns, and 6–7% mapped to 

intergenic regions (Supplementary Figure 3). Moreover, our data indicate that as more reads 

were generated, the number of newly discovered genes plateaued, indicating that our sequencing 

reached saturation and had extensive coverage (Supplementary Figure 3). 

Next, we asked whether the PB treatments would have genome-wide effects on gene expression. 

Therefore, we performed clustering analysis of transcript levels between the 6/24 h treatments 

and the controls, finding that 806 genes were differentially expressed after 6 h of PB treatment 

and 893 genes were differentially expressed after 24 h of treatment. Furthermore, 496 genes 

showed consistent up- or downregulation after 6/24 h treatments (Supplementary Figure 4). The 

differentially expressed genes (DEGs) after 6 and 24 h of PB treatment versus the control 

overlapped with those identified as responsive to ABA and abiotic (drought and salt) stress, as 

indicated in the GENEVESTIGATOR databases, suggesting that PB treatments trigger a 

transcriptional stress response in the plant cell (Figure 3, Supplementary Figure 4). Furthermore, 

we performed functional annotation of the DEGs using DAVID software (Huang da et al., 
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2009b). Our functional analysis revealed that PB treatments trigger responses that are enriched in 

the abiotic stresses and hormonal responses categories (Figure 3). Intriguingly, differentially 

expressed genes in 6/24 h treatments were mapped onto the abscisic acid activated signaling 

network (Supplementary Figure 4). 

PB treatment results in significant global intron retention and reduces other forms of AS 

To investigate the effects of PB on AS, we used a recently developed pipeline to identify AS 

events in Arabidopsis (Cui et al., 2014). Using this pipeline, we generated high-confidence splice 

junction datasets for the eight libraries. These datasets were compared to the annotated genes and 

used to identify all AS events, including alternative 5’ splice sites, alternative 3’ splice sites, 

coordinate cassette exons, cassette exons, and intron retention. We compared the differences in 

AS patterns between the PB treatments and control samples. Surprisingly, we found that PB 

treatment significantly reduced all forms of AS, except intron retention, compared to the control. 

As indicated in Figure 4, PB treatment decreased the number of alternative 5’splice site events 

from 310 in the controls to only 35 in the PB treatment groups. Similarly, PB treatment 

decreased the number of alternative 3’ splice site events from 400 in the controls to only 48 in 

the PB treatment group. Also, the number of cassette exons was reduced from 145 in the control 

to 23 in the PB-treated groups and the number of coordinate cassette exons was reduced from 17 

in the control to only 2 in the PB-treated groups. 

To investigate the effects of PB on intron retention, we plotted the expression intensity of introns 

and exons between the PB-treated and untreated samples. As indicated in Figure 4, PB 

treatments for 6 and 24 h resulted in significant global and widespread intron retention. Next, we 

selected six different genes that showed intron retention in the 6 and 24 h datasets, respectively, 

for visualization using the Integrated Genomics Viewer (IGV, see Supplementary Figure 5). 

Furthermore, we compared the counts of exonic and intronic reads using Fisher’s Exact Test. We 

identified 21,151 introns from 8268 genes that were significantly retained at 6 h treatment and 

11,867 introns from 5483 genes that were significantly retained at 24 h treatment, indicating that 

the splicing patterns of about 37% and 25% of intron-containing genes were significantly 

inhibited at 6 h and 24 h treatments, respectively. Furthermore, 10,704 introns were significantly 

retained in 5202 genes at 6 and 24 h treatments. Our data demonstrate the widespread and global 
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increase in intron sequences in PB-treated samples at 6 and 24 h (Figure 4, Supplementary 

Figure 6). Such an increase was not observed for exons, indicating the widespread retention of 

introns in PB-treated samples. In an effort to assess if PB affects pre-mRNA splicing in general, 

i.e. constitutive splicing in addition to alternative splicing, we compared our datasets of retained 

introns in the 6 and 24h PB treatments against a high-confidence list of 110,254 CS introns 

derived from Mao et al 2014 (Mao et al., 2014). We observed that 93% (19,649) and 92% 

(10,885) of the retained introns in the 6 and 24h PB treatments overlapped with CS introns, 

respectively. This high overlap suggests that PB perturbs the splicing reaction in general and 

consequently, reduces all cases of alternative splicing. Further sequence analysis of intron-

retained transcripts revealed that most of them were predicted to generate premature stop codons 

and truncated proteins if translated (Supplementary Figure 7). Therefore, PB can significantly 

affect the ratio between functional and non-functional transcripts, thereby affecting plant 

responses to splicing stress.  

PB treatment results in aberrant splicing in stress-responsive and stress-related genes 

Next, we examined the functional categories of the genes with perturbed splicing in response to 

PB treatment. We identified more than 8000 genes with perturbed splicing after 6 h PB treatment 

and found that the majority of these genes show intron retention. We employed DAVID software 

to determine the functional categories of genes with perturbed splicing (Huang da et al., 2009b, 

a), and we found that these genes were enriched in functional categories including response to 

abiotic stress, protein localization and transport, metabolic processes, and RNA processing 

(Figure 5, Supplementary Figure 6). These findings suggest that PB perturbs the splicing 

machinery or splicing factors that control stress responses. Alternatively, inhibiting the splicing 

machinery could trigger a stress response. Further analysis using GENEVESTIGATOR revealed 

that most of the genes perturbed in splicing belong to the category abiotic stress responses 

(Zimmermann et al., 2004). For instance, we found that some stress-related genes showed 

aberrant splicing, including ABI1, ABH1, ABF3, AREB3, and SAD1. Subsequently, we used RT-

PCR analysis to validate the intron retention events of these ABA- and stress-related genes and 

found that the RT-PCR data agreed with the RNA-seq data (Figure 6). 

Differential gene expression and differential AS are regulated in response to PB treatment 
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We then investigated whether the set of genes that are differentially expressed in response to PB 

treatment are also differentially spliced. Analysis of our RNA-seq data showed that 806/893 

genes were differentially expressed after 6/24 h of treatment. Among the DEGs, 643 were 

upregulated and 163 were downregulated after 6 h of treatment, while 711 genes were 

upregulated and 182 were downregulated after 24 h of treatment. Functional categorization 

revealed that these DEGs are involved in ABA and abiotic stress responses. However, when we 

compared the DEGs with genes exhibiting differential AS, specifically IR, we found that a large 

fraction of these genes overlapped (27%), indicating that these two processes are co-regulated. 

Functional categorization of overlapping genes, which were both differentially expressed and 

exhibited differential AS in response to PB treatment, revealed that this group of genes is closely 

related to the response to abiotic stress (Supplementary Figure 8). However, it remains to be 

determined whether these overlapping genes play a major role in coordinating the PB response at 

the transcriptional and post-transcriptional levels. In the 6 h treatment group, the predominant 

functional categories that represent the DEGs include response to chitin, response to organic 

substance, and response to carbohydrate stimulus, whereas in the 24 h treatment group, the 

predominant functional categories include response to temperature stimulus, response to 

oxidative stress, and response to heat. Moreover, the predominant functional categories that 

represent the differential AS genes include responses to different abiotic stresses. Overall, these 

data indicate that PB treatment is perceived as a stress signal in plants and is regulated at the 

transcriptional and post-transcriptional levels. 

PB activates abiotic stress- and ABA-inducible genes 

Because gene expression analysis and functional annotation of DEGs revealed that PB triggers 

abiotic stress and hormonal responses, we investigated whether PB mimics stress and hormonal 

signals using Arabidopsis plants expressing the firefly luciferase (LUC) reporter gene under the 

control of a stress-responsive promoter. RD29A, a well-studied stress-responsive promoter, 

contains ABA responsive elements (ABREs) and dehydration response elements (DREs) 

(Yamaguchi-Shinozaki and Shinozaki, 1994). This promoter responds to salt, osmotic, and cold 

stress, as well as ABA treatment (Ishitani et al., 1997; Mahfouz et al., 2012). Therefore, this 

promoter contains several stress and hormonal elements that were shown to be induced by PB in 

our gene expression analysis. Subsequently, we determined whether PB would mimic a stress 
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signal and activate the RD29A promoter. For this, we used an Arabidopsis C24 line stably 

overexpressing LUC driven by the RD29A promoter (RD29A::LUC). Treatment of C24 

RD29A::LUC plants with different concentrations of PB led to significant activation of the 

RD29A promoter, as evidenced by LUC signals. Specifically, 0.5 µM PB led to activation of 

RD29A::LUC, and 5 µM PB led to significant activation compared to treatment with 100 µM 

ABA (Figure 7 and Supplementary Figure 9). These results indicate that PB mimics a stress 

signal that significantly activates the stress-responsive RD29A promoter. Because the RD29A 

promoter contains both ABREs and DREs, and the DREs can be activated by osmotic and cold 

stress independently of ABA, the PB-induced activation of RD29A could be ABA-dependent or 

ABA-independent. Therefore, we tested the effect of PB on the activation of the ABA-

responsive promoter MAPKKK18 (Okamoto et al., 2013). Our GUS staining experiment revealed 

that the MAPKKK18 promoter was induced by PB (Supplementary Figure 10). To confirm the 

LUC bioluminescence and GUS staining data, we performed quantitative RT-PCR on 

Arabidopsis seedlings treated with PB. Our data show a strong induction of RD29A, RD29B and 

MAPKKK18 genes in PB treated samples compared to the controls (Supplementary Figure 10). 

Therefore, these data corroborate our reporter assays data, and imply that PB affects the 

regulatory system that plays a role in abiotic stress and ABA responses. 

PB mimics ABA signaling and modulates stomatal aperture 

ABA is a phytohormone that regulates plant growth and adaptation to stress, with a key role in 

the control of stomatal aperture. Guard cells are capable of autonomously synthesizing ABA, 

which induces stomatal closure under low-humidity conditions (Bauer et al., 2013). Because our 

data on differential gene expression patterns and the induction of stress promoters by PB 

suggested PB triggers ABA response in plants, we further explored the effects of PB on 

regulation of stomatal aperture. We therefore incubated epidermal peels of wild-type Arabidopsis 

and fava bean (Vicia faba) leaves in opening solution under elevated light conditions to promote 

stomatal opening. Applying exogenous ABA led to stomatal closure. Similarly, PB treatment led 

to stomatal closure at a level comparable to that of ABA treatment, which helps confirm the 

finding that PB can activate the ABA signaling pathway (Figure 7).  

The effects of PB on differential AS of splicing factors 
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Because our data revealed that the macrolide PB is implicated in the inhibition of splicing and 

AS in plant cells, we attempted to investigate the effects of PB treatment on the splicing of genes 

encoding components of the splicing machinery and regulatory genes. For example, SR proteins 

are implicated in the execution and regulation of splicing reactions and are responsive to abiotic 

stresses and ABA (Barta et al., 2010; Duque, 2011; Reddy and Shad Ali, 2011). We examined 

Arabidopsis SR genes using the IGV junction browser, which revealed significant intron 

retention in these genes response to PB treatment specifically at 6 h (Supplementary Figure 11). 

We validated the RNA-seq data via RT-PCR analysis using exonic primers flanking the intronic 

sequences, which confirmed that SR genes respond to PB treatment by accumulating higher 

levels of unprocessed mRNA as evidenced by higher levels of intron retention (Supplementary 

Figure 11). Moreover, our data show that most of the SR genes retain significant levels of 

functional isoforms even at 6 h treatment, where intron retention levels are the highest. These 

data support the molecular role of SR proteins as essential players in splicing and different steps 

of RNA metabolism and regulation. Additionally, less nonfunctional levels of isoforms were 

accumulated at 24 h indicating that plants adapt to the PB effects and increase the repertoire of 

functional transcripts of essential and key genes. 

PB regulates the localization of the splicing factor SR45, and the sr45-1 mutant is highly 

sensitive to PB treatment 

SR45 interacts with the U1 snRNP 70K protein, as revealed by yeast two-hybrid analysis 

(Golovkin and Reddy, 1999). SR45 is structurally distinct from SR proteins and has two RS 

domains flanking the RRM domain. One of the most important sub-nuclear bodies is the nuclear 

speckle, which localizes to the inter-chromatin space and serves as a storage compartment for a 

variety of splicing and processing factors (Reddy et al., 2012). Therefore, nuclear speckles 

supply the needed splicing and processing factors for active transcription processes, to produce 

mature mRNAs ready for export. SR proteins are concentrated in nuclear speckles, with diffuse 

distribution in the nucleoplasm and Cajal bodies (Tillemans et al., 2006). Various experiments 

have indicated that SR proteins localize to the nucleus and target to nuclear speckles. Notably, 

the size and shape of nuclear speckles are determined by developmental, stress, metabolic state, 

transcriptional activity, and hormonal factors. SR protein localization and dynamics are affected 

by environmental stress (Duque, 2011). Since PB is a splicing inhibitor that mimics stress signals 
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and has a dramatic effect on gene expression profiles, and it regulates gene expression patterns in 

a similar manner to that of abiotic stress and ABA treatments, we investigated whether PB 

affects the sub-nuclear localization and distribution of SR45. SR45 mainly localizes to nuclear 

speckles. Abiotic stress treatments including heat and cold result in the formation of large and 

irregularly shaped speckles (Ali et al., 2003). We therefore treated the AT-GFP-SR45OE lines 

with 5 µM PB, which resulted in the redistribution and re-localization of GFP-SR45 to nuclear 

speckles, suggesting that PB plays an important role in the regulation of splicing (Figure 8).The 

sr45-1 loss-of-function mutant exhibits delayed flowering, with abnormal floral organs and 

reduced root growth (Ali et al., 2007). Interestingly, the SR genes in this mutant exhibit altered 

AS patterns, which might be the reason for these phenotypes. SR45 produces two isoforms: 

SR45.1 can complement the delayed flowering and flower defects phenotype, and SR45.2 can 

complement the reduced root growth phenotype (Zhang and Mount, 2009). The sr45-1 mutant 

also exhibits altered responses to ABA and glucose treatment. SR45 functions as a negative 

regulator of ABA signaling (Carvalho et al., 2010). Since SR45 is a negative regulator of ABA 

signaling and displays different splice variants in response to PB treatment, we investigated the 

response of the sr45-1 mutant to PB. Our data showed that the sr45-1 mutant was overly 

sensitive to PB treatment, indicating that the global PB inhibitory effect on splicing and stress 

responses is enhanced by the lack of SR45 function. Moreover, our RT-PCR data showed that 

the splicing patterns of the SR34a and HAI1 genes are different in sr45-1 and Col-0 under PB 

treatments (Supplementary Figure 12). This could explain why the sr45-1 mutant is 

hypersensitive to PB. sr45-1 is hypersensitive to PB because two inhibitory effects on splicing 

accumulate, one due to global PB-mediated inhibition and the second due to lack of SR45 

function.  

PB regulates differently the splicing of PP2C phosphatases and ABA-activated SnRK2 

kinases  

Our data reveal that PB activates ABA signaling. Such activation might result from the direct 

binding of PB to ABA receptors and subsequent inhibition of PP2C phosphatases, thereby 

relieving their inhibitory effect on ABA-activated SnRK2 kinases and leading to the activation of 

ABA signaling. Alternatively, PB could selectively and differentially regulate the splicing of the 

PP2C phosphatases and SnRK2 kinases. To investigate whether PB could bind to PYR/PYL 

receptors, we performed computational docking simulations of PB to PYR/PYL receptor 
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structures. Our molecular docking studies predict sub-micromolar binding affinity among some 

PYR/PYLs and PB in the open receptor confirmation but not in the closed receptor 

conformation. These results suggest that PB, but not Spliceostatin A, has putatively similar 

binding strengths with PYR/PYL compared to ABA (Supplementary Table 1, Supplementary 

Figure 13, and supplementary methods). However, in contrast to ABA, PB does not fit into the 

closed receptor conformation, which precludes the allosteric change induced by ABA in the 

closed receptor conformation to inhibit PP2Cs. Therefore, we tested whether such binding occurs 

in vivo using yeast two-hybrid analysis. Our data reveal that PB is incapable of mediating an 

interaction between the PYR/PYL receptors and PP2Cs (Supplementary Figure 14).  

To investigate the second possibility, we tested whether PB inhibits regulators of ABA signaling 

by performing RT-PCR on all PP2Cs and SnRK2s. Interestingly, we found that the negative 

ABA regulators PP2Cs accumulated significant levels of nonfunctional isoforms, with the 

absence of functional isoforms sufficient to inhibit the ABA signaling pathway. By contrast, 

although SnRK2.2 and 2.3 accumulated nonfunctional isoforms, a significant fraction of 

functional isoforms remained. Furthermore, SnRK2.6 did not accumulate nonfunctional isoforms 

and substantial functional isoforms remained (Supplementary Figure 15). Recently, the splice 

variant HAB1.2 was shown to function as a positive regulator of the ABA pathway (Wang et al., 

2015; Zhan et al., 2015). Therefore, we investigated the effects of PB treatment on the formation 

of this PP2C isoform. Interestingly, our data reveal the accumulation of the HAB1.2 splice 

variant, which functions as a positive regulator of the ABA pathway (Supplementary Figure 16). 

These data substantiate the selective modulation of negative regulators of the ABA pathway via 

splicing regulation. 

ABA insensitive mutants are less sensitive to PB treatments 

To investigate to what extent PB effects are mediated by ABA signaling, we tested PB sensitivity 

in several mutant impaired in ABA signaling. Interestingly, our data reveal that the abi1-1C 

mutant (Umezawa et al., 2009) exhibited partial resistance to PB treatments. We performed 

different assays including ABA-mediated inhibition of seed germination, seedling establishment 

and root growth. In the seedling establishment assay nearly 80% of abi1-1C seedlings produced 

true leaves compared to less than 20% of Col-0 seedlings, after 7 days on MS media 
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supplemented with 1µM PB (Figure 9). Similarly, the abi1-1C mutant exhibited 90% 

germination compared to less than 60% of Col-0 wt seeds on MS media supplemented with 1µM 

PB (Figure 9). Moreover, the triple snrk2.2/3/6 mutant (Fujii and Zhu, 2009) also exhibited 

higher germination rate on MS media supplemented with PB 1µM PB, when compared to the 

Col-0 wt plants (Figure 9).  Furthermore, roots of snrk2.2/3/6 and 35S:HAB1 (Saez et al., 2004) 

35S:HAB1 overexpresses HAB1 ORF, so no splicing required) seedlings grown on 1µM PB 

showed reduced inhibition of root growth than those of the Col-0 wt seedlings (Figure 9).   These 

data indicate that PB effects are mediated, at least in part, through ABA signaling, thereby 

linking the splicing stress generated by PB and abiotic stress responses. 

DISCUSSION 

Environmental stresses modulate plant AS responses (Filichkin et al., 2014). Little is known 

about the interplay between the splicing machinery, post-transcriptional regulation of gene 

expression, and stress responses. Several mutants of splicing machinery components or 

regulatory proteins have been identified and were found to be highly sensitive to environmental 

stresses and ABA. RNA-seq analyses have revealed that AS plays an important role in plant 

responses to various stress or growth conditions. Because plant cells lack an in vivo-splicing 

system, there is a pressing need to identify chemical compounds capable of manipulating the 

splicing machinery. Such compounds would have clear advantages in studies of AS, including 

the ability to be used in a dose-dependent manner, tunability, reversibility, and conditionality. In 

this study, we identified PB as a splicing inhibitor that could potentially be used to probe the 

splicing machinery in plants under a variety of cellular conditions and developmental stages. 

PB exhibited significant inhibitory effects on plant growth and development in a concentration-

dependent manner. For example, PR growth in various Arabidopsis ecotypes was significantly 

inhibited under 0.5µM PB treatment (Supplementary Figure 17). To determine whether the 

effects of PB are species-specific, we examined the effects of PB on different plant species, 

including tomato and rice, and found that PB treatments indeed led to significant inhibition of PR 

growth and affected overall plant growth and development (Supplementary Figure 17). Since the 

main function of PB in mammalian cells involves splicing inhibition, we investigated the effects 

of PB on splicing of a subset of genes that have been shown to be alternatively spliced. Our data 
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reveal that PB selectively modulates CS, AS, and a combination of both in plants. PB binds to 

the SF3B1 complex in mammalian cells, thereby inhibiting splicing. Therefore, the effects of PB 

on plants could be mediated by the targeted inhibition of the splicing machinery or the SF3B1 

complex. We did not obtain any viable mutant in Arabidopsis for the genes corresponding to 

orthologs of the SAP130, SAP145, and SAP155 proteins, which bind to PB in mammalian cells. 

Application of CRISPR/Cas9-based genome engineering should facilitate the generation of 

protein variants that are functional but incapable of binding to PB (Mahfouz et al., 2014). Such 

variants would be crucial for developing tools for targeted manipulation of the splicing 

machinery and revealing the cellular effects of PB.   

To investigate the effects of PB on CS and/or AS in plants, we performed genome-wide analysis 

of the effects of PB on gene expression patterns and on CS and AS. We observed that the 

splicing patterns of about 37% and 25% of intron-containing genes were significantly perturbed 

at 6 h and 24 h treatments, respectively. However, we can not exclude the possibility that the 

number of affected genes with splicing perturbations could be higher. This potential 

underestimation can be attributed to the inability to assess differences in splicing of lowly 

expressed genes, which have an insufficient number of reads for statistical testing. Therefore, the 

estimates of the number of intron-containing genes with aberrant splicing in the 6h and 24h PB 

treatments should be considered conservative. Notably, we found that the majority of retained 

introns (>92%) in our 6 and 24h PB treated datasets corresponded to a high-confidence dataset of 

constitutively spliced introns obtained by (Mao et al., 2014). Thus, it appears that PB acts 

predominantly to inhibit components of the basic splicing machinery, such that splice sites are no 

longer reliably recognized resulting in aberrant levels of intron retention and reduced levels of 

alternative splicing. Therefore, PB treatments would lead to general splicing stress. Interestingly, 

our gene ontology analysis revealed that PB treatment mimics a stress signal and leads to 

differential expression of genes related to abiotic stress (salt and drought) and ABA. To 

corroborate the differential gene expression data, we tested the effect of PB on the stress- and 

ABA-inducible promoters RD29A and MAPKKK18. PB activated both genes in a dose-

dependent manner, indicating that PB mimics stress or ABA signals and activates the ABA 

pathway. Subsequently, we tested the effects of PB on stomatal aperture, finding that PB 

application led to stomatal closure, mimicking an ABA signal. Therefore, PB triggers both ABA-

mediated transcriptional and stomatal responses. 
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The sr45-1 mutant is hypersensitive to ABA treatment. Recently, SR45-associated RNA species 

(SARs) were identified by RIP-seq. Interestingly, 43 SARs in the ABA signaling network (147 

genes) have been identified, indicating that SR45 plays a role in ABA signaling (Xing et al., 

2015). Therefore, we tested the effects of PB on the sr45-1 mutant, finding that this mutant is 

highly sensitive to PB treatment. Furthermore, PB treatment led to the formation of nuclear 

speckles in SR45:GFP transgenic lines. These data substantiate the link and the interplay of 

splicing regulation with PB, abiotic stress, and ABA signals. 

SR proteins are splicing regulators that function in various aspects of RNA metabolism, 

including pre-mRNA splicing. These proteins have diverse and redundant functions in both CS 

and AS. Post-translational modifications, primarily phosphorylation, determine the biological 

functions of SR proteins in the nucleus and cytoplasm. The sr45-1 mutant is hypersensitive to 

ABA, and our data show that it is also hypersensitive to PB. Interestingly, PB treatment led to 

the localization of SR45 in nuclear speckles, indicating that this macrolide perturbs splicing. We 

analyzed the effect of PB on the gene expression profiles of SR proteins, as well as AS of their 

pre-mRNAs. PB did not affect the expression profiles of these genes. However, PB treatment led 

to significant intron retention at 6 h treatment. Interestingly, substantial levels of functional 

isoforms remain under PB treatment indicating the key role SR proteins play in splicing 

regulation under abiotic stress conditions, thereby implicating SR proteins in the early phase of 

stress perception and splicing inhibition. 

PB treatment activated the ABA signaling pathway, as evidenced by the activation of ABA-

responsive promoters including RD29A and MAPKKK18 as well as the global analysis of plant 

transcriptome after PB treatment. There are two possible explanations for this activation: first, 

PB functions as an ABA agonist and mediates the binding of PYR/PYL ABA receptors to PP2Cs 

(negative regulators of ABA signaling), thereby relieving the inhibition of SnRK2 kinases, 

resulting in the activation of the ABA pathway. Second, negative regulators of ABA signaling, 

including PP2C, are selectively inhibited at the splicing level, while enough splicing of ABA-

activated SnRK2s is maintained, leading to the activation of the ABA signaling pathway. Our in 

silico molecular docking studies suggest, and yeast two hybrid analysis confirms the inability of 

PB to mediate an interaction among some PYR/PYLs receptors and PP2Cs. These data suggest 

that PB-mediated activation of ABA signaling does not require activation of ABA receptors. 
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Therefore, we investigated whether PB leads to differential splicing of negative (PP2Cs) and 

positive regulators (SnRK2s) of ABA signaling. Unexpectedly, we found a dramatic 

accumulation of nonfunctional PP2C isoforms, probably sufficient to inhibit the ABA signaling 

pathway. Therefore, PB triggers ABA signaling via differential splicing of negative and positive 

regulators respectively.  

This work highlights a strong connection between the splicing machinery and ABA signaling. 

Previous reports have indicated the involvement of RNA metabolism in the regulation of ABA 

responses, including cap binding protein 20 (CBP20), ABA hypersensitive 1, and SAD1/Lsm5 

(Kuhn et al., 2008; Cui et al., 2014). We further extend these findings because we noticed that 

splicing of PP2C transcripts can be a sensitive step to transduce splicing stress into ABA 

signaling. Therefore, abiotic stress-induced impairment of RNA splicing is efficiently linked to 

the generation of ABA responses to attenuate cellular damage. Since PP2Cs are key negative 

regulators of ABA signaling, the described mechanism might be an adaptive response to 

efficiently link the stress-induced perturbation of RNA metabolism to a major defensive 

mechanism to cope with abiotic stress. Indeed induction of RNA chaperons is a major response 

to different forms of abiotic stress and overexpression of certain splicing factors leads to an 

increase both in splicing efficiency and stress tolerance (Nakaminami et al., 2006; Cui et al., 

2014). Therefore, the availability and levels of splicing factors could affect splicing efficiency 

under stress conditions. The application of chemical genetics approaches using splicing 

inhibitors and modulators would reveal key splicing factors that sense and regulate splicing 

efficiency and accuracy under abiotic stress conditions. Unexpectedly, our work indicates that 

the ABA signaling pathway is one of the first layers that plant cells use to respond to splicing 

inhibition or defects. ABA signaling under abiotic stress conditions, as well as enhanced 

splicing, are used to establish an adaptive response to such conditions. 

 

METHODS 

Plant materials and growth conditions 

Seeds of wild-type Arabidopsis thaliana wild-type Col-0, Ler, C24 (RD29A::LUC), 35S::HAB1, 

35S::SR45.1:GFP, MAPKKK18::GUS, and the sr45-1, abi1-1C, and snrk2.2/3/6 mutants were 
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surface-sterilized with 10% bleach for 10 min and stored at 4°C for 2 days (Ali et al., 2003; 

Carvalho et al., 2010; Bardou et al., 2014). The seeds were plated on Murashige and Skoog (MS) 

medium agar plates supplemented with 1% sucrose, vitamins and the indicated chemicals. The 

plates were placed in a growth chamber (Model CU36-L5, Percival Scientific, Perry, IA, USA) 

under 16 h-white light (~75 µmol m
−2 

s
−1

) and 8 h-dark conditions at 22°C for germination and 

seedling growth.  

Chemicals 

The chemicals 3-(2-bromoethyl) indole (CAS: 3389-21-7), 6-methylindole (CAS: 3420-02-8), 

2,5-dimethylindole (CAS: 1196-79-8), indole-3-carboxylic acid (CAS: 771-50-6), 5-

bromoindole-2-carboxylic acid (CAS: 7254-19-5), TG003 (CAS: 300801-52-9), 7-bromo-6-

azaindole (CAS: 165669-35-2), and indole (CAS: 120-72-9) were purchased from Sigma Aldrich 

(St. Louis, MO, USA). Isoginkgetin (CAS: 548-19-6) was purchased from Merck KGaA 

(Darmstadt, Germany). Pladienolide B (CAS: 445493-23-2) was purchased from Bioaustralis 

(Smithfield, NSW, Australia). Spliceostatin A (CAS: 391611-36-2) was purchased from Adooq 

Bioscience (Irwin, CA, USA).  

RNA extraction and RNA-seq 

Total RNA was extracted from seedlings after the indicated treatments (DMSO and different 

concentrations of PB) for 6 or 24 h using TRIzol Reagent (Catalog No. 15596–026, Invitrogen). 

Polyadenylated RNA was isolated using an Oligotex mRNA Midi Kit (70042, Qiagen Inc., 

Valencia, CA, USA). The RNA-seq libraries were constructed using an Illumina Whole 

Transcriptome Analysis Kit following the standard protocol (Illumina, HiSeq system) and 

sequenced on the HiSeq platform to generate high-quality paired-end reads.  

RNA-sequencing data analysis and gene functional classification 

The annotated Arabidopsis gene models were downloaded from TAIR10 

(https://www.arabidopsis.org/). TopHat (Version 2.0.10) was used for alignment and to predict 

splice junctions (Trapnell et al., 2009). Gene expression levels (FPKM value) were calculated 

using Cufflinks (Version 2.0.0). The DEGs were identified using Cufflink and the limma 

package in R. Very strict criteria were used to define DEGs: DEGs must simultaneously show 
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more than 1.8-fold upregulation/downregulation in both replicates, and P-values calculated by 

limma must be less than 0.05. To filter out false positive junctions, well-studied criteria (i.e., an 

overhang size of more than 20 bp and at least two reads spanning the junctions) were set as 

cutoff values (Cui et al., 2014). JuncBASE was used to annotate all AS events based on the input 

genome coordinates of all annotated exons and all confidently identified splice junctions (Brooks 

et al., 2011). Fisher’s Exact Tests were used to identify differential representation of each type of 

AS event. For intron retention, Fisher’s Exact Tests were performed on the intron-read counts 

and the corresponding exon-read counts between control and 6 h/24 h drug treatments. The 

events with p-value < 0.001 were identified as significantly different. In addition, intron 

retentions uniquely identified in the control or treatment groups were considered significant if 

there was at least five-fold coverage of support and the p-values of these events were assigned to 

zero. For alternative 5' SSs and 3' SSs and exon skipping events, Fisher’s Exact Tests were 

performed on the comparisons of the junction-read counts and the corresponding exon-read 

counts between the control and 6 h/24 h drug treatments. The events with p-values less than 0.05 

were identified as significantly different. GO classifications were performed with DAVID 

software. GO network analysis was performed with EGAN. 

RT-PCR and RT-qPCR 

For reverse-transcription quantitative PCR (RT-qPCR), DNA digestion of total RNA samples 

was performed after RNA extraction using an RNase-Free DNase Set (Invitrogen cat. No. 

18068-015) following the manufacturer’s protocol. The total RNA was reverse transcribed using 

a SuperScript First-Strand Synthesis System for RT-qPCR (Invitrogen) to generate cDNA. The 

qPCR was performed as previously described (Wang et al., 2013) using Power SYBR Green 

PCR Master Mix (Invitrogen) under the following conditions: 95°C for 10 min, then cycles of 

95°C for 15 s, 60°C for 1 min. Primers used for RT-PCR are listed in Table S2. 

Germination rate assay 

Freshly harvested Arabidopsis Col-0 seeds were surface sterilized, plated on control or chemical-

containing MS agar plates, placed in a 22°C growth chamber, and photographed at the indicated 

time points under a stereomicroscope (Nikon, SMZ 25). According to Piskurewicz et al., seeds 

with radicle emergence were scored as germinated (Piskurewicz et al., 2008). 
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Root elongation rate assay 

Five-day-old seedlings were transferred from ½ × MS medium plates to the indicated chemical-

containing MS plates for an additional 3 days unless stated otherwise. The elongated root length 

after transfer to DMSO plates (control) was set at 1 (100%). The root elongation rates on the 

chemical-containing plates were calculated as the elongated root length on chemical/elongated 

root length on DMSO × 100%. Values are means ± SE, n = 20. Significance (P < 0.05) was 

assessed by the Student’s t-test.  

RD29A::LUC analysis 

Intact 10-day RD29A-LUC plants were treated with 0.05% DMSO, 5 µM PB, or 100 µM ABA 

for 5–6 h and transferred into 96-well plates (Nunc White polystyrene) containing 100 µl 1 mM 

D-luciferin (Gold Biotechnology, St. Louis, MO, USA). The plates were incubated for 10 min in 

the dark before luminescence imaging under a CCD camera (ANDOR) with Solis (version 4.24) 

software for relative luminous intensity measurements using a TECAN Ultra 96 microplate 

reader (Aouida et al., 2013).  

Stomatal aperture assays 

Rosette leaves from 2–3-week-old plants were floated in 50 µM CaCl2 10 mM KCl 10 mM 

MES-Tris (pH 6.15) and exposed to light (150 µmol m
-2

 sec
-l
) for at least 2.5 h. Subsequently, 

DMSO, PB, or ABA was added to the solution at 20 µM to assay for stomatal closure (Ren et al., 

2010). After treatment for 4 h, stomatal apertures in plant tissue in a microscope slide were 

photographed immediately under a light microscope (Carl Zeiss, Axio Imager.2) at a 

magnification of 400×. After image acquisition, the width of stomatal apertures was measured 

with the open access software Image J (Version 1.37) as previously described (Luo et al., 2013). 

Values are means ± SE, n = 100. Significance (P < 0.05) was assessed by the Student’s t-test. 

Subcellular localization of SR45 protein 

Five-day-old 35S:SR45.1-GFP transgenic seedlings were incubated in 0.01% DMSO with 5 µM 

PB for 6 h and viewed under a Zeiss laser-scanning microscope (Carl Zeiss Meta 710, Wetzlar, 

Germany) with a 488-nm argon laser and a long-pass 530 filter. Serial optic sections were 
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collected and projected with Zeiss LSM Image Browser software (Carl Zeiss) and Photoshop 

version 7.0 software (Adobe).  
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Short legends for supporting information 

Supplementary Figure 1. Effects of PB and SSA on root elongation rate.  

Supplementary Figure 2. Arabidopsis seedlings recovered from PB treatment.  

Supplementary Figure 3. High quality of RNA-seq data.  

Supplementary Figure 4. Gene expression changed by PB corresponding to stress responses.  

Supplementary Figure 5. RNA-seq data demonstrates PB inducing intron retention in a group of 

genes.  

Supplementary Figure 6. Genes with intron retention in PB treatments are associated with stress 

responses.  

Supplementary Figure 7. Comparison of proteins Encoded by known transcripts (top) and those 

by novel transcripts (Bottom).  

Supplementary Figure 8. Functional categorization of overlapping DE and IR genes. 

Supplementary Figure 9. Low concentration of PB induced RD29A-LUC activation in 

Arabidopsis seedlings. 

Supplementary Figure 10. PB induced RD29a, RD29b and MAKKK18 highly expression. 

Supplementary Figure 11. PB-induced intron retention in SR and SR-like subfamily proteins. 

Supplementary Figure 12. Comparison of intron retention intensity of genes in sr45 and WT 

seedlings. 

Supplementary Figure 13. in silico study showed PB binding to PYR/PYL proteins. 

Supplementary Figure 14. Yeast two hybrid assay. 

Supplementary Figure 15.  PB affected splicing of PP2C and SnRK2 genes differently. 

Supplementary Figure 16. PB treatment induced HAB1.2 isoform high expression. 

Supplementary Figure 17. Effect of PB on different ecotypes and species of plants. 

Supplementary Table 1. Docking results with AutoDock 4.2. 

Supplementary Table 2. Information for primers used in this paper.  

Materials and Methods for Supplementary Data  
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Figure Legends: 

 

 

Figure 1. Pladienolide B inhibited Arabidopsis thaliana seed germination and root 

elongation. A, Effects of different drugs on the elongation of primary root of Arabidopsis. 5-

day-old Col-0 seedlings were transferred onto ½MS medium with chemicals for additional 3 

days. Note: Concentration of PB different from others, green box stands for 0.5 µM, purple box 

stands for 1 µM, orange box stands for 5 µM. Median PR length under DMSO is indicated by the 

dotted line. “*” indicates statistically significant differences compared with DMSO treatment 

(Student’s t-test, p-value ≤ 0.05). B, Growth inhibition of Arabidopsis seedlings by PB. 5-day-

old Col-0 seedlings transferred from MS media to MS media containing DMSO, 1 and 5 µM of 

PB for additional 7 days, the root tip of the transferring time was shown by the red bar. On 

control medium, the seedlings grow well with 4 green true leaves and long roots. On 1 µM PB 

medium, the seedlings grow slowly with 2 yellow true leaves. On 5 µM PB medium, the 

seedlings totally stop growing, bar, 10 mm. C, Effects of PB on Arabidopsis seed germination. 

PB inhibit seed germination in a dose-dependent manner, less than half of seeds germinated after 

4 days (n=100). 

Figure 2. PB altered the splicing pattern of a set of genes. The cDNAs were prepared from 

one-week-old Arabidopsis seedlings that were treated with PB (0.5, 1, or 5 µM) for 6 or 24 h, as 

indicated, with DMSO as control. RT-PCR was performed using primers that flank introns. 

Arrowheads indicate splicing variants that changed following PB treatment, “*” indicates splice 

variants with unknown length. The gene structure flanking the amplified fragments and the 

structures of regulated variants are shown under the gel images (green arrows mark the positions 

of primers). Blue box, exon; line, intron; white box, 5’ or 3’ UTR; light blue; retained intron. The 

gene locus identifier is shown on the bottom. Alteration of splicing patterns in response to PB in: 

A, APX3 (AT4G35800); B, ATSEN1 (AT4G35770); C, HAC04 (AT1G55970); D, NADP-ME2 

(AT5G11670). 

Figure 3. Gene expression changed by PB corresponding to stress responses. A, A heatmap 

was generated by mapping the up-regulated genes at 6 h treatment to the microarray database 

using Genevestigator. The heatmap indicates that a great number of these genes are up-regulated 

(colored red) by ABA, drought and salt stress. B, Functional categorization (biological process) 

of differentially expressed genes at 6 h treatment. The top 25 enriched pathways are shown. 

Figure 4. PB induced intron retention. A and B, Comparison of intron retention between 

control and PB treatments. The RPKM values for the exons and introns were plotted. The 

expression of introns, but not exons, in PB 6h treatments showed a global up-regulation (A). The 

expression of introns, but not exons, in PB 6h treatments showed a global up-regulation (B). C 

and D, Intron retention events hugely increased in the PB-treated samples, while the other AS 

events (including alternative 5’SSs, 3’SSs, and exon skipping) decreased in the PB-treated 6h 

(C) and 24h (D) samples. 

Figure 5. Genes with perturbed splicing in PB treatments are associated with stress 

responses. A, A two-dimension representation of the relationship between the genes with 

perturbed splicing in PB at 6 h treatment and their corresponding functional annotation. The top 

40 functional annotations were ordered according to their enrichment scores and selected for the 

two-dimension view indicating that the significant abnormal splicing was enriched in the 

Page 32 of 83

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

                                                                                                                                                     Yu Ling et al. 

______________________________________________________________________________ 

 33 

response-to-abiotic-stress category. B, Functional category of genes with perturbed splicing in 

the 6 h treatment. Top 20 categories that were ordered by the enrichment scores were selected. 

Figure 6. Genes associated with stress responses show perturbed splicing in response to PB 

treatment. The cDNAs were prepared from one week old Arabidopsis seedlings which were 

treated by 5 µM PB for6h, DMSO as control. Gene structure and intron retention of interesting 

regions from 10 genes were shown in IGV program, validation of intron retention of each gene 

was performed by RT-PCR using intron-flanking primers, with result shown on the right. The 

red bar in the IGV program snapshot represents the target amplification region. C6, DMSO 6h 

treatment; P6, PB 6h treatment.  

Figure 7. PB induced RD29A-LUC expression and promoted stomatal aperture closure. A, 

B, Ten-day-old RD29A-LUC transgenic seedlings were treated with 5 µM PB for 6 h, then 

sprayed with D-luciferase and observed by CCD camera. DMSO was used as the negative 

control and 100 µM ABA was used as positive control. A, bioluminescence of RD29A-LUC 

transgenic plants, bright-field image is shown below.  B, bioluminescence intensities of RD29A-

LUC seedling in each well were measured by TECAN Ultra 96 microplate reader. C-I, Leaves of 

2- to 3-week-old Arabidopsis and fava bean were treated in opening solution for about 2.5 h and 

then transferred into opening solution with 20 µM PB for 4 h. DMSO and ABA were used as 

negative and positive controls, respectively. Arabidopsis stomata cells kept in opening solution 

with DMSO (C), ABA (D), and PB (E). F, Measurement of stomatal aperture in Arabidopsis 

leaves, three replicates and about 100 stomata in each replicate were measured. Stomatal cells of 

fava bean in solution with DMSO (G), ABA (H), and PB (I). J, Measurement of stomatal 

aperture in fava bean leaves, three replicates and about 100 stomata in each replicate were 

measured. Values are means ± SE, “*” indicates statistically significant differences compared 

with DMSO treatment (Student’s t-test, *P<0.05). 

Figure 8. PB induced formation of SR45:GFP nuclear speckles and sr45 mutant was 

hypersensitive to PB. A-H, One-week-old 35S:SR45:GFP and NSR:NSR:GFP transgenic 

seedlings were treated with DMSO (control) or 5 µM PB for 24 h. A, GFP signal in the 

elongation zone of a 35S:SR45:GFP root in control conditions. B, GFP signal in the elongation 

zone of a 35S:SR45:GFP root in PB treatment. C, GFP signal in the elongation zone of a 

NSR:NSR:GFP root in control conditions. B, GFP signal in the elongation zone of a 

35S:SR45:GFP root in PB treatment.  E, close up of nuclei of elongation zone cells from DMSO-

treated 35S:SR45:GFP transgenic plants. F, close up of nuclei of elongation zone cells from 5 

µM PB-treated 35S:SR45:GFP transgenic plants, nuclear speckles formed in the nuclei. G, close 

up of nuclei of elongation zone cells from DMSO-treated NSR:NSR:GFP transgenic plants. H, 

close up of nuclei elongation zone cells from 5 µM PB-treated NSR:NSR:GFP transgenic plants. 

H, close up of nuclei elongation zone cells from 5 µM PB treated NSR:NSR:GFP transgenic 

plants.  I and J, 5 day old Arabidopsis Col (0) wild type and sr45-1 mutant seedlings were 

transferred onto ½ MS medium with 0.2 µM for 4 days. I, comparison of primary root elongation 

rate of Col (0) and sr45-1 mutant on 0.2 µM PB plates, the root tip of the transferring time was 

shown by the red bar. J, Col (0) plants keep more 35% of elongation rate when compared to its 

elongation rate on DMSO plate , whereas sr45-1 almost stop growing with elongation rate less 

than 5%, compared with its elongation rate on DMSO plate. Values are means ± SE, “*” 

indicates statistically significant differences compared with DMSO treatment (Student’s t test, 

*P<0.05).  Scale bar 100 µm in A-D, 5 µm in E-H, and 10 mm in I. 

Figure 9. Plants with reduced ABA sensitivity are partially resistant to PB. A, abi1-1C 

mutant is partially resistant to PB in seedling establishment compared to wt. Quantification of 
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seedling establishment (seedlings developing a first pair of true leaves) was performed on MS 

plates supplemented with DMSO (Control, white bars), 1µM PB (black bars) or 1µM ABA (grey 

bars) 7 days after sown. Values are average of 3 independent experiments ±SD (n>100). * 

indicates a p-value≤0.05 by t-test compared to wt under the same treatment. B, Photograph of 

representative seedlings from A. C, The abi1-1C and snrk2.2/2.3/2.6 mutants are partially 

resistant to PB in seed germination. Seeds were stratified for 72h in cold and seed germination 

(radicle emergence) was calculated 48h after transfer the seeds to the growth conditions. Values 

are average of 3 independent experiments ±SD (n>100). * indicates a p-value≤0.05 by t-test 

compared to wt under the same treatment. Seeds were sown on MS plates supplemented with 

DMSO (Control, white bars), 1µM PB (black bars) and 10µM ABA (grey bars). D, Plants with 

reduced sensitivity to ABA are partially resistant to PB in root growth. Seedlings grown in 

vertical on MS plates for 3 days were transferred to MS plates containing DMSO (Control, white 

bars), 1µM PB (black bars) or 10µM ABA (grey bars). Root length was calculated with ImageJ 7 

days after the transfer.  Values are average of 3 independent experiments ±SD (n>12). * 

indicates a p-value≤0.05 by t-test compared to wt under the same treatment. E, Photograph of 

representative seedlings from D. 
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Figure 1. Pladienolide B inhibited Arabidopsis thaliana seed germination and root elongation. A, Effects of 
different drugs on the elongation of primary root of Arabidopsis. 5-day-old Col-0 seedlings were transferred 
onto ½MS medium with chemicals for additional 3 days. Note: Concentration of PB different from others, 

green box stands for 0.5 µM, purple box stands for 1 µM, orange box stands for 5 µM. Median PR length 
under DMSO is indicated by the dotted line. “*” indicates statistically significant differences compared with 
DMSO treatment (Student’s t-test, p-value ≤ 0.05). B, Growth inhibition of Arabidopsis seedlings by PB. 5-

day-old Col-0 seedlings transferred from MS media to MS media containing DMSO, 1 and 5 µM of PB for 
additional 7 days, the root tip of the transferring time was shown by the red bar. On control medium, the 

seedlings grow well with 4 green true leaves and long roots. On 1 µM PB medium, the seedlings grow slowly 
with 2 yellow true leaves. On 5 µM PB medium, the seedlings totally stop growing, bar, 10 mm. C, Effects of 
PB on Arabidopsis seed germination. PB inhibit seed germination in a dose-dependent manner, less than half 

of seeds germinated after 4 days (n=100).  
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Figure 2. PB altered the splicing pattern of a set of genes. The cDNAs were prepared from one-week-old 
Arabidopsis seedlings that were treated with PB (0.5, 1, or 5 µM) for 6 or 24 h, as indicated, with DMSO as 
control. RT-PCR was performed using primers that flank introns. Arrowheads indicate splicing variants that 

changed following PB treatment, “*” indicates splice variants with unknown length. The gene structure 
flanking the amplified fragments and the structures of regulated variants are shown under the gel images 
(green arrows mark the positions of primers). Blue box, exon; line, intron; white box, 5’ or 3’ UTR; light 
blue; retained intron. The gene locus identifier is shown on the bottom. Alteration of splicing patterns in 

response to PB in: A, APX3 (AT4G35800); B, ATSEN1 (AT4G35770); C, HAC04 (AT1G55970); D, NADP-ME2 
(AT5G11670).  
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Figure 3. Gene expression changed by PB corresponding to stress responses. A, A heatmap was generated 
by mapping the up-regulated genes at 6 h treatment to the microarray database using Genevestigator. The 
heatmap indicates that a great number of these genes are up-regulated (colored red) by ABA, drought and 

salt stress. B, Functional categorization (biological process) of differentially expressed genes at 6 h 
treatment. The top 25 enriched pathways are shown.  
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Figure 4. PB induced intron retention. A and B, Comparison of intron retention between control and PB 
treatments. The RPKM values for the exons and introns were plotted. The expression of introns, but not 
exons, in PB 6h treatments showed a global up-regulation (A). The expression of introns, but not exons, in 

PB 6h treatments showed a global up-regulation (B). C and D, Intron retention events hugely increased in 
the PB-treated samples, while the other AS events (including alternative 5’SSs, 3’SSs, and exon skipping) 

decreased in the PB-treated 6h (C) and 24h (D) samples.  
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Figure 5. Genes with perturbed splicing in PB treatments are associated with stress responses. A, A two-
dimension representation of the relationship between the genes with perturbed splicing in PB at 6 h 

treatment and their corresponding functional annotation. The top 40 functional annotations were ordered 

according to their enrichment scores and selected for the two-dimension view indicating that the significant 
abnormal splicing was enriched in the response-to-abiotic-stress category. B, Functional category of genes 
with perturbed splicing in the 6 h treatment. Top 20 categories that were ordered by the enrichment scores 

were selected.  
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Figure 6. Genes associated with stress responses show perturbed splicing in response to PB treatment. The 
cDNAs were prepared from one week old Arabidopsis seedlings which were treated by 5 µM PB for6h, DMSO 

as control. Gene structure and intron retention of interesting regions from 10 genes were shown in IGV 

program, validation of intron retention of each gene was performed by RT-PCR using intron-flanking 
primers, with result shown on the right. The red bar in the IGV program snapshot represents the target 

amplification region. C6, DMSO 6h treatment; P6, PB 6h treatment.  
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Figure 7. PB induced RD29A-LUC expression and promoted stomatal aperture closure. A, B, Ten-day-old 
RD29A-LUC transgenic seedlings were treated with 5 µM PB for 6 h, then sprayed with D-luciferase and 
observed by CCD camera. DMSO was used as the negative control and 100 µM ABA was used as positive 

control. A, bioluminescence of RD29A-LUC transgenic plants, bright-field image is shown below.  B, 
bioluminescence intensities of RD29A-LUC seedling in each well were measured by TECAN Ultra 96 

microplate reader. C-I, Leaves of 2- to 3-week-old Arabidopsis and fava bean were treated in opening 
solution for about 2.5 h and then transferred into opening solution with 20 µM PB for 4 h. DMSO and ABA 

were used as negative and positive controls, respectively. Arabidopsis stomata cells kept in opening solution 
with DMSO (C), ABA (D), and PB (E). F, Measurement of stomatal aperture in Arabidopsis leaves, three 

replicates and about 100 stomata in each replicate were measured. Stomatal cells of fava bean in solution 
with DMSO (G), ABA (H), and PB (I). J, Measurement of stomatal aperture in fava bean leaves, three 

replicates and about 100 stomata in each replicate were measured. Values are means ± SE, “*” indicates 
statistically significant differences compared with DMSO treatment (Student’s t-test, *P<0.05).  
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Figure 8. PB induced formation of SR45:GFP nuclear speckles and sr45 mutant was hypersensitive to PB. A-
H, One-week-old 35S:SR45:GFP and NSR:NSR:GFP transgenic seedlings were treated with DMSO (control) 
or 5 µM PB for 24 h. A, GFP signal in the elongation zone of a 35S:SR45:GFP root in control conditions. B, 

GFP signal in the elongation zone of a 35S:SR45:GFP root in PB treatment. C, GFP signal in the elongation 
zone of a NSR:NSR:GFP root in control conditions. B, GFP signal in the elongation zone of a 35S:SR45:GFP 

root in PB treatment.  E, close up of nuclei of elongation zone cells from DMSO-treated 35S:SR45:GFP 
transgenic plants. F, close up of nuclei of elongation zone cells from 5 µM PB-treated 35S:SR45:GFP 

transgenic plants, nuclear speckles formed in the nuclei. G, close up of nuclei of elongation zone cells from 
DMSO-treated NSR:NSR:GFP transgenic plants. H, close up of nuclei elongation zone cells from 5 µM PB-
treated NSR:NSR:GFP transgenic plants. H, close up of nuclei elongation zone cells from 5 µM PB treated 

NSR:NSR:GFP transgenic plants.  I and J, 5 day old Arabidopsis Col (0) wild type and sr45-1 mutant 
seedlings were transferred onto ½ MS medium with 0.2 µM for 4 days. I, comparison of primary root 

elongation rate of Col (0) and sr45-1 mutant on 0.2 µM PB plates, the root tip of the transferring time was 
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shown by the red bar. J, Col (0) plants keep more 35% of elongation rate when compared to its elongation 
rate on DMSO plate , whereas sr45-1 almost stop growing with elongation rate less than 5%, compared with 
its elongation rate on DMSO plate. Values are means ± SE, “*” indicates statistically significant differences 

compared with DMSO treatment (Student’s t test, *P<0.05).  Scale bar 100 µm in A-D, 5 µm in E-H, and 10 
mm in I.  
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Figure 9. Plants with reduced ABA sensitivity are partially resistant to PB. A, abi1-1C mutant is partially 
resistant to PB in seedling establishment compared to wt. Quantification of seedling establishment 

(seedlings developing a first pair of true leaves) was performed on MS plates supplemented with DMSO 
(Control, white bars), 1µM PB (black bars) or 1µM ABA (grey bars) 7 days after sown. Values are average of 
3 independent experiments ±SD (n>100). * indicates a p-value≤0.05 by t-test compared to wt under the 
same treatment. B, Photograph of representative seedlings from A. C, The abi1-1C and snrk2.2/2.3/2.6 
mutants are partially resistant to PB in seed germination. Seeds were stratified for 72h in cold and seed 
germination (radicle emergence) was calculated 48h after transfer the seeds to the growth conditions. 

Values are average of 3 independent experiments ±SD (n>100). * indicates a p-value≤0.05 by t-test 
compared to wt under the same treatment. Seeds were sown on MS plates supplemented with DMSO 

(Control, white bars), 1µM PB (black bars) and 10µM ABA (grey bars). D, Plants with reduced sensitivity to 
ABA are partially resistant to PB in root growth. Seedlings grown in vertical on MS plates for 3 days were 
transferred to MS plates containing DMSO (Control, white bars), 1µM PB (black bars) or 10µM ABA (grey 

bars). Root length was calculated with ImageJ 7 days after the transfer.  Values are average of 3 
independent experiments ±SD (n>12). * indicates a p-value≤0.05 by t-test compared to wt under the same 

treatment. E, Photograph of representative seedlings from D.  
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Supplementary Figure  1. Effects of PB and SSA  on root elongation rate. A, Col-0 
seedlings germinated on MS media containing 0, or 0.1, 0.2, 0.5, 1 μM of PB for 7 
days, PB inhibited Arabidopsis root elongation rate in a dose-dependent manner.  B, 
Primary root length of seedlings germinated on different concentrations of PB. C, 5 
day old Col-0 Arabidopsis seedlings were transferred onto ½ MS medium with 5, 10 
µM SSA for 4 days. SSA exhibited weak effect on Arabidopsis growth. 
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Supplementary Figure 2. Arabidopsis seedlings recovered from PB treatment. 
Comparison of Col-0 seedlings recover from DMSO 6h treatment (left) and 5 µM PB 
6h treatment (right).  The seedlings treated by 5 µM PB  kept growing after 
transferred onto half MS plate, though the growth rate is slower than that treated 
in DMSO. Black dots mark the positions of root tips when transferring. 
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Supplementary Figure 3. High quality of RNA-seq data. A, 
Distribution of the RNA-seq reads along annotated Arabidopsis 
genomic features. Among the mapped reads more than 80% of reads 
map to the annotated exon, about 7% to intergenic region and 4-6% 
to intron. B, Saturation curve for gene detection in Control and PB-
treated samples. Randomly sampled reads were plotted against the 
expressed genes. C, Comparison of gene expression between the two 
replicates. The FPKM values were plotted. 
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Supplementary Figure 4. Gene expression changed by PB corresponding to stress 
responses. A, The clustering of gene expression levels between control and treatments. 
By clustering, 806 significantly differentially expressed genes in 6h treatment (A) and 893 
significantly differentially expressed genes in 24h treatment (B) were detected. C, 
Functional categorization (biological process) of differentially expressed genes in 24h 
treatment. Top 25 enriched pathways were selected to be shown. D, heatmaps were 
generated by mapping the down-regulated genes in 6h/24h treatments to the 
microarray database using Genevestigator.  The heatmap indicates that a great number 
of these genes are down-regulated (colored green) by ABA, drought and salt stress. E, A 
heatmap was generated by mapping the up-regulated genes in 24h treatment to the 
microarray database using Genevestigator. The heatmap indicates that many of these 
genes are up-regulated (colored red) by ABA, drought and salt stress. F, Differentially 
expressed genes in 6h/24h treatment were mapped onto abscisic acid-activated 
signaling network. The analysis was performed using Exploratory Gene Association 
Networks (EGAN) software tool. Yellow lines show the participation of the genes in 
abscisic acid-activated signaling pathway and brown lines show known interaction 
between genes connected. Green ovals represent up-regulated genes and blue ovals 
represent down-regulated genes. 
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Supplementary Figure 5. RNA-seq data demonstrates PB incuding intron 
retention in a group of genes. IGV visualization of six representative 
intron retention events detected in 6h(A) and 24h(B) treatment. Exon-
intron structure of each gene was given at the bottom of each panel. The 
grey-color peaks indicate RNA-seq read-density across the gene. These 
intron retention events were marked by black arrows. 
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Supplementary Figure 6. Genes with intron retention in PB treatments are 
associated with stress responses. A and B, Comparison of intron retention between 
control and PB treatments. The RPKM values for the exons and introns were plotted. 
The expression of introns, but not exons, in PB 6h treatments showed a global up-
regulation (A). The expression of introns, but not exons, in PB 6h treatments showed 
a global up-regulation (B). C and D, Intron retention events hugely increased in the 
PB-treated samples, while the other AS events (including alternative 5’SSs, 3’SSs, and 
exon skipping) decreased in the PB-treated 6h (C) and 24h (D) samples. E, A two-
dimension representation of the relationship between the genes with perturbed 
splicing in PB at 24 h treatment and their corresponding functional annotation. The 
top 40 functional annotations were ordered according to their enrichment scores and 
selected for the two-dimension view indicating that the significant abnormal splicing 
was enriched in the response-to-abiotic-stress category. F, Functional category of 
genes with perturbed splicing in the 6 h treatment. Top 20 categories that were 
ordered by the enrichment scores were selected. 
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Supplementary Figure 7. Comparison of proteins Encoded by known transcripts (top) 
and those by novel transcripts (Bottom). A, AtBAM achieved S_TKc domain 
(Serine/Threonine protein kinases, catalytic domain) by intron retention. B, A presumed 
nucleic acid binding protein containing DEXDc domain, HELICc domain, ZnFC2HC domain 
may produce a truncated protein containing only DEXDc domain. C, truncated PP2C 
protein HAB1 containing PP2Cc (Serine/threonine phosphatases, family 2C, catalytic) 
domain was produced. Arrows showed the position of start code, stars showed the 
positions of stop code.  The protein domain prediction was done by online program 
SMART. 
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16 

Supplementary Figure 8. Functional categorization of overlapping DE and IR genes. 
Functional categorization (biological process) of overlapping DE and IR genes in 6h 
treatment (A) and 24h treatment (B). Top 10 enriched pathways were selected to be 
shown. 
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Supplementary Figure 9. Low concentration of PB induced RD29A-LUC activation 
in Arabidopsis seedlings.   10 days old RD29A-LUC transgenic seedlings were 
treated by different concentration of  ABA and PB for 6h (the same number of 
plants were put in each well), then sprayed with D-luciferase and observed by CCD 
camera. RD29A-LUC was activated  by low as 0.5 µM PB and 10 µM ABA,  and was 
significantly activated by 5 µM PB, when compare with 100 µM ABA.  
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Supplementary Figure 10. PB induced RD29a, RD29b and MAKKK18 highly expression. 10 day 
old MAPKKK18pro:GUS reporter transgenic plants were incubated in 20 µM PB for 6h, followed 
by GUS staining. The PB treated plants (B) showed stronger GUS signal, especially in root tip 
and shoot tip, when compared with negative control (A), ABA was used as positive control. 
Scale bars, 0.5 mm(Top); 20 µm (Middle); 0.5 µm (Bottom). D, quantative RT-PCR showed PB 
inducing endogenous RD29a, RD29b and MAKKK18 highly expression. The cDNAs were 
prepared from one week old Arabidopsis Col-0 wild type seedlings previously treated by 5 µM 
PB  and 25 µM ABA for 6h respectively, DMSO as control.  
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Supplementary Figure 11. PB-induced intron retention in SR and SR-like subfamily proteins. 
The cDNAs were prepared from one-week-old Arabidopsis seedlings that were treated with 5 
µM PB for 6 or 24 h as indicated, with DMSO as control. IGV snapshot and validation of the 
intron retention in SR/SR-like genes by RT-PCR using intron-flanking primers. A, SR subfamily 
genes, including SR30, SR34, SR34a, and SR34b underwent intron retention after PB 
treatments. B, RS subfamily genes, including RS31, RS31a, RS40, and RS41 underwent intron 
retention after PB treatments. C, SCL subfamily genes, including SCL28, SCL33, SCL30, and 
SCL30a underwent intron retention after PB treatments. D, RSZ subfamily genes, including 
RSZ21, RSZ22, and RSZ22a underwent intron retention after PB treatments. E, SR-like subfamily 
genes, including SR45 and SR45a underwent intron retention after PB treatments. F, RS2Z 
subfamily genes, including RS2Z32 and RS2Z33 underwent intron retention after PB 
treatments. G, the SC subfamily gene SC35 underwent intron retention after PB treatments. 
C6, DMSO 6-h treatment; P6, PB 6-h treatment, C24, DMSO 24-h treatment, P24, PB 24-h 
treatment. 
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Supplementary Figure 12. Comparison of intron retention intensity of genes in 
sr45 and WT seedlings. cDNA were prepared from one week old Arabidopsis sr45 
and WT seedlings which were treated by 0, 0.2, 1  and 5 µM PB for6h, 
respectively. Intron retention of a group of gene was performed by RT-PCR using 
introns-flanking primers. A, SR34a (AT3G49430) , B, HAI1 (AT5G59220).  The “*” 
represents that in our RT-PCR test, the gene contained different intron retention 
intensity in sr45, when compared with that of WT seedlings under the same 
treatment.  
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Supplementary Figure 13. in silico study showed PB binding to PYR/PYL proteins. A, 
Docking pose of top ranked binding of Pladienolide B and PYR 1 with the binding energy of 
-8.84 kcal/mol represented in Python Molecule Viewer 1.5.6.  B, Ligand Interaction Diagram 
for the interacting residues. C, Docking pose of top ranked binding of Abscisic Acid (ABA) 
and PYR 1 Closed Conformation with the binding energy of -8.22 kcal/mol represented in 
Python Molecule Viewer 1.5.6. D, Ligand Interaction Diagram for the interacting residues. 
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28 

Supplementary Figure 14. Yeast two hybrid assay. PYR1, PYL1 and PYL2 fused to the GAL-
DNA binding domain (GBD) were used as baits. HAB1, ABI2 and PP2Ca fused to the GAL4-
activating domain (GAD) were used as preys. Dilutions (1:10, 1:100, 1:1000) of cell cultures 
(OD60=2) were spotted onto the plates and photographs were taken after incubation in 28 
℃ for 4 days. Expressions of GBD-PYR/PYLs and GAD-PP2Cs were confirmed by growth 
assay on plates lacking Leu and Trp (Top panel). Induction of Interactions between PYR/PYLs 
and PP2Cs were tested by cell growth assay on plates lacking Leu, Trp, His and Ade (-Leu, -
Trp, -His, -Ade) with addition of ABA (positive control, the second panel), DMSO (negative 
control, the bottom panel), and PB (the third panel). 
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Supplementary Figure 15.  PB affected splicing of PP2C and SnRK2 genes differently. The 
cDNAs were prepared from one-week-old Arabidopsis seedlings that were treated with 5 µM 
PB or 25 µM ABA for 6 h, with DMSO as control. RT-PCR was performed using primers flanking 
the first exon and the last exon of each gene. ”C” for DMSO treatment, “PB” for 5 µM PB 
treatment and “ABA” for 25 µM ABA treatment, gene names are indicated under each panel. 
Nearly all functional transcripts of PP2C genes were removed by strong intron retention in PB-
treated plants, whereas under the same conditions, SnRK2.2, SnRK2.3, and SnRK2.6 kept 
producing functional transcripts with varying levels of intron retention. ABA induced obvious 
expression of some genes including: AHG1, HAI1, HAI2, and slightly affected the splicing 
pattern of HAB1.   
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Supplementary Figure 16. PB treatment induced HAB1.2 isoform high expression. 
The cDNAs were prepared from one week old Arabidopsis seedlings which were 
treated by 5 µM PB  and 25 µM ABA for 6/24h respectively, DMSO as control. A, 
snapshot of IGV for HAB1 (AT1G72770) from RNA-seq data, showing the gene 
structure and splicing pattern in 5 PB µM PB 6/24h treatment, DMSO as control. B, 
RT-PCR demonstrated that HAB1.2 variant is the major isoform after 5 PB µM PB 
treated for 24h. 634bp band was considered as HAB1.1 variant, and 757 bp band 
was HAB1.2 variant.  
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34 

Supplementary Figure 17. Effect of PB on different ecotypes and 
species of plants.  A, 5 day old WS-2 and C24 wild type seedlings were 
transferred onto ½ MS with different concentration of PB for 4 days, PB 
inhibited root elongation of both ecotypes, scale bar = 10 mm. B, The 
rice seeds were germinated on ½ MS plate for 3 days, then transfer 
onto ½ MS with 1 µM PB for 2 days. The red bar marks root tip of the 
transferring time. PB inhibits rice root elongation. Scale bar = 20mm. 
C, tomato seeds was incubated in water with DMSO (negative control),  
10 µM ABA (positive control), and 5 µM PB for 8 days.  
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Name PDB 

Code 

Confor- 

mation 

Pladienolide B Spliceostatin A Abscisic Acid 

∆G Ki ∆G Ki ∆G Ki 

PYR1 3K3K Open -8.29 842.8 

nM 

-5.82 53.74 

µM 

-7.63 2.56 

µM 

PYR3 3KLX Open -7.19 5.38 

µM 

-6.16 30.27 

µM 

-6.96 6.08  

µM 

PYL2 3KDH Open -8.84 333.2 

nM 

-6.40 25.45 

µM 

-8.02 2.07 

µM 

PYR1 3K3K Closed -3.65 2.10 

mM 

-3.6 2.3 

mM 

-8.22 946.46 

nM 

PYL2 3KDI Closed -2.26 12.2 

mM 

-4.07 1.02 

mM 

-7.81 1.88 

µM 

PYL3 4DSC Closed -4.88 54.3 

µM 

-5.08 48.99 

µM 

-7.73 2.17 

µM 

 

 

Supplementary Table 1. Docking results with AutoDock 4.2 where ∆G indicates the binding energy in 

kcal/mol and Ki indicates the inhibition constant. 
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Supplementary Table 2. Informations for Primers used in this paper

Primer Name Sequence 5'--3' Purpose

HAB1 F1 TGAAGGAAAAATTGGTAGAGCC isoform detection

HAB1 R1 TCAGGTTCTGGTCTTGAACTTTC isoform detection

PYL7-F CTGAGATCGGTTGTCTCAGAG isoform detection

PYL7-R CCATAGTTCCTGACCTTCCATC isoform detection

PYL8-F CCAGCAACTAGAAGCACTGAG isoform detection

PYL8-R GGTACATCAACCACAAATGACTC isoform detection

PYL9-F GTCAAACACATCAAAGCTCCTC isoform detection

PYL9-R CGATGATTTTGATACCGAGGATG isoform detection

PYL10-F AGGTGGAGAGCGAGTACATC isoform detection

PYL10-R CTTCTCTTACGCTACCAACCTC isoform detection

ABI1-F CGATTTGTGGAAGAAGACCTG isoform detection

ABI1-R GCCAAAGCCAAATGCATCCTC isoform detection

ABI2-F1 GGACGAAGTTTCTCCTGCAG isoform detection

ABI2-R1 CCATCTCTGGTCGTCTACCAC isoform detection

ABI2-F2 CTTGATGGTCGAGTCACTAATGG isoform detection

ABI2-R2 CCAACAGTTTCCGGAGCATGAG isoform detection

AHG1-F GGGAAGATCTCGTAAGATGGAG isoform detection

AHG1-R GCTTCCTTCTTCCTCCTCTTCG isoform detection

AHG3-F GATGGAGCTAGGGTTCTTGGAG isoform detection

AHG3-R GGTACAACATCCCATAGTCCATC isoform detection

HAB1-F ATTGAAGGAAAAATTGGTAGAGCC isoform detection

HAB1-R AGGTTCTGGTCTTGAACTTTCTTTG isoform detection

HAB2-F GATCATGAAGGGATGAGTCCAAG isoform detection

HAB2-R AGCTTCAAGAACCATCCTATCAG isoform detection

HAI1-F ACTATTGCGGCGTTTACGATG isoform detection

HAI1-R GTTCAACGCAACAACCTCCATG isoform detection

HAI2-F GCGGGAGAAGAAGAGATATGG isoform detection

HAI2-R CTTTCTTATCCGACAACGCTTC isoform detection

HAI3-F GCAAGTGTGATCTACAAACACCG isoform detection

HAI3-R GGACAGTCCCAATATATGACTCG isoform detection

SnRK2.2-F CACCGATTATGCCGATTGATTTAC isoform detection

SnRK2.2-R CCTAACAATATTAGGATGTCTCAATG isoform detection

SnRK2.3-F GGTTCTGGTAATTTCGGTGTTGC isoform detection

SnRK2.3-R GGATGCCTTAGTGACCTGTGG isoform detection

SnRK2.6-F CGAGATTGATGAGAGACAAGCAAAG isoform detection

SnRK2.6-R CTTTGAATCTAACGATATTGGGATG isoform detection

ABF1-F ACCCATAATAGTGAGGTAATAACGT isoform detection

ABF1-R CTTCTTACCACGGACCGGTAAG isoform detection

ABF2-F GGAGAAAGTTGTAGAGAGAAGGC isoform detection

ABF2-R GTATATTGTTTGGTCTGCCGTG isoform detection

ABF3-F1 GTTCTGGAGAAAGTGATTGAGAG isoform detection

ABF3-F2 GCTTATACGATGGAACTGGAAGC isoform detection

ABF3-R CTGATTTTTCTGCTTTTCCATGATTTC isoform detection

ABF4.1-F GCTTATACATTGGAACTGGAAGC isoform detection

ABF4.2-F gcaaagatatcttctatcccgaacc isoform detection

ABF4-R CTCATTCTTCTGCATTTCCACC isoform detection
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ABH1-F GAGCAATTGGAAAACTCTTCTCC isoform detection

ABH1-R CCATACAAAGGAATCTTATGAGGC isoform detection

ABI5-F GCATGTTTTAGCTGCGCATTC isoform detection

ABI5-R GTAGTGGAGAGAAGACAGAGGAG isoform detection

AHG2-F CGTTGGGATTCTCGTACTCAG isoform detection

AHG2-R CTTCATGTATGCAGGTGTTGA isoform detection

AREB3-R GAAGACTGTAGAGAGGAGGCAG isoform detection

AREB3-F CTTTTGCTTCCTGAGTCTTTCG isoform detection

CCR2-F GATGACAGAGCTCTTGAGACTG isoform detection

CCR2-R CATCCTTCATGGCTTTCTCATCC isoform detection

SAD1-F ATGGCGAACAATCCTTCACAG isoform detection

SAD1-R GGTGACATCTTCAAGAACCATG isoform detection

SR34-F CAAATTGATTTGAAGGTTCCTCCAAG isoform detection

SR34-R CACGAAACTCTGATCTCCTAGATGG isoform detection

SR45a-F CTCCTTATGACAAGCGTCGTG isoform detection

SR45a-R GCCCTGCAGAACAGAGTGATC isoform detection

SR30--F ATGAGTAGCCGATGGAATCGTAC isoform detection

SR30--R GTCCATAAATTGCATCGTCTGC isoform detection

SR45--F CCAAGAGGACATGGTTATGTTGAG isoform detection

SR45-R CTTGGAGGAGATCTATATCGTCTTG isoform detection

RSZ21-F CGCATTCCTCGAGTTCGATGAC isoform detection

RSZ21-R CCTTGGAGGAGATCTTCTTCCAC isoform detection

SCL33-F CAATTTATGGACCCTGCTGATG isoform detection

SCL33-R CCTCTGACTGGAGTTAAACTGC isoform detection

RSZ22a-F GCGAGTTACTGAACGTGAACTC isoform detection

RSZ22a-R CTGTATCTAGGAGGACTGCGAC isoform detection

RSZ33-F GTGCGAGATGTGGATATGAAGC isoform detection

RSZ33-R GATCTTACAGGTGACCTGGAGTAG isoform detection

RS31a-F CGCGATGCTGAAGATGCAATC isoform detection

RS31a-R GGAGATCTCCTTCTTCGACTGC isoform detection

SCL30a-F CTCATATCGTCTATCCTGAGGTGAG isoform detection

SCL30a-R CAAGGGGGTTTGGATTCATTCAG isoform detection

SR34a-F GAAAGCTCCCGATCAAGAAGC isoform detection

SR34a-R GGAGATTTGGACGGAGACCTC isoform detection

RSZ-F GTACGAGATGTGGATATGAAGCG isoform detection

RSZ-R CTGGTGACCTGGAATAGCTTCC isoform detection

SCL30-newF CCGTCAGATTCTAGAAGCAGATAC isoform detection

SCL30-newR GACCTTGAAACTGCTCTTCCAC isoform detection

SR31-F CGATACACAGGACTAAGAGACCTTC isoform detection

SR31-R GTGTACTTTGAGGATGAACGTGATG isoform detection

SR34b-F GGAGGCGTTCATCACATGATG isoform detection

SR34b-R CTCTACCATCACGAAACACTTGAG isoform detection

RS40-F GACGCAGACTTCGTGTTGAATG isoform detection

RS40-R GACTAGCTCCTCGGCCATAATC isoform detection

RSZ22-F CGAGTTACTGAGCGTGAACTTG isoform detection

RSZ22-R CTCCTTCTGTATCTTGGAGGAGTG isoform detection

SCL28-F GATCACGAATCCTCTGGTCCTTC isoform detection

Page 81 of 83

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

SCL28-R GCTGCATCTTCAGCATAACGATAC isoform detection

RS41-newF1 GGAAGATGAAAGGGATGCTGAAG isoform detection

RS41-newR CTTCTTGTGCCTCATATTGGATG isoform detection

SC35-F ATGTCGCACTTCGGAAGGTC isoform detection

SC35-R CCTTTCCACTGCTTTGTGAGC isoform detection

ABI1-nF GGAGATGAGATCAACGGCTCAG Functional transcripts detection

ABI1-nR CCGGATCAGGAATGATGGATGG Functional transcripts detection

ABI2-nF GGACGAAGTTTCTCCTGCAGTC Functional transcripts detection

ABI2-nR CGCACTGAAGTCACTTCTGGATC Functional transcripts detection

AHG1-nF GGGAAGATCTCGTAAGATGGAGG Functional transcripts detection

AHG1-nR CCCATCGCTTGCTAATACTAAGC Functional transcripts detection

AHG3-nR CCGGAATCACATACGGTTTCAAG Functional transcripts detection

AHG3-nF CATCCTTCGTTTCTTCAACGGAAC Functional transcripts detection

HAB1-nF GGAGGTTGTCATTAGATTGCCAG Functional transcripts detection

HAB2-nF GGATCATGAAGGGATGAGTCCAAG Functional transcripts detection

HAB2-nR CATAAACGTCACTTCGGGATCTG Functional transcripts detection

HAI1-nR GTCTGCTGATTACATACGGCTTC Functional transcripts detection

HAI1-nF CGTCATCAGACGGAATATTCATCC Functional transcripts detection

HAI2-nF GACGGATCTGAGGCCGAGATAC Functional transcripts detection

HAI2-nR CTTGGATTCGATCCAGCTCATC Functional transcripts detection

HAI3-nF GTCCAAGATACGGTGTTTCTTCG Functional transcripts detection

HAI3-nR GACATTGCTAAGACTCCGAGAAC Functional transcripts detection

Snrk2.2-nF GCTGTTAAATACATCGAGAGAGGAG Functional transcripts detection

Snrk2.2-nR CACCTGGTAGATTCTTCAAGAACC Functional transcripts detection

Snrk2.3-nF GCTTGTTGCTGTCAAGTACATCG Functional transcripts detection

Snrk2.3-nR1 GCAGGGAGATTCTTCAAGAACC Functional transcripts detection

Snrk2.6-nF GAACTCGTCAAGGATATTGGCTC Functional transcripts detection

Snrk2.6-nR1 CCATATCGTCATCTATGTCCAAGC Functional transcripts detection

RD29AqF1 AACGACGACAAAGGAAGTGG qPCR

RD29AqR1 CATCCTTTAATCCTCCCAACC qPCR

RD29BqF TATGAATCCTCTGCCGTGAGAGGTG qPCR

RD29BqR ACACCACTGAGATAATCCGATCCT qPCR

MAPKKK18qF AAGCGGCGCGTGGAGAGAGA qPCR

MAPKKK18qR GCTGTCCATCTCTCCGTCGC qPCR

GAPCF TTGGTGACAACAGGTCAAGCA qPCR

GAPCR AAACTTGTCGCTCAATGCAAT qPCR

AT4G35800-F ACTCACCCACATCTCCATCTTATTC isoform detection

AT4G35800-R AGATCACTTTGAAACGGTCCCT isoform detection

AT5G11670-F GTCGAGGCCATGGCTACCAACA isoform detection

AT5G11670-R CCAGGCAAGTAGGTTTTGCCATC isoform detection

AT4G35770-F GCGAGGAAAGCAACGACAAC isoform detection

AT4G35770-R CGCAGCAATGTCTGTGATCG isoform detection

AT1G55970-F CACAACCCCACTGCCCCTGC isoform detection

AT1G55970-R GGTGGCTTCAGCGGCCCTTT isoform detection

Tub-Chinu-03F GTCAAGAGGTTCTCAGCAGTA RT-PCR control

Tub-Chinu-03R TCACCTTCTTGATCCGCAGTT RT-PCR control
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Materials and Methods for Supplementary Data 

1. GUS staining 

6-10 days old seedlings were tested in separated experiments, GUS staining was performed in a 

reaction buffer of the following composition: 50 mM sodium phosphate buffer, pH 7.0, 10 mM 

EDTA, 0.1% Tween-20, 0.5 mM potassium ferrocyanide, 0.5 mM potassium ferricyanide, and 

0.1% X-gluc. The reaction buffer with seedlings was vacuum infiltrated for 5 min and then 

incubated at room temperature overnight. The reaction was stopped by washing the samples with 

70% ethanol, and chlorophyll pigments were bleached by incubation at 65 °C. 

 

2. Yeast two hybrid assay 

The yeast strain Y2H Gold was uased in our experiments. The related vectors GBD-PYR/PYLs 

and GAD-PP2Cs were kindly sent by Dr. Pedro L.Rodriguez. After co-transformation, the 

transfromants successfully co-express GBD-PYR/PYLs and GAD-PP2Cs were selected by minus 

Trp and Leu medium. Then the positive clones were culture in minus Trp and Leu medium and 

followed by the protein interaction assay. For interaction assay, media lacking the four 

supplements (minus Trp, Leu, His and Ade ) were prepared, by adding 20 µM ABA as positive 

control medium,  and adding 0.2% DMSO as negative control, 20 µM PB was used in our 

experiment to test its effect on inducing PYR/PYL and PP2C interactions. At the same time, 

media minus Trp and Leu medium was used as control to confirm co-expression of GBD-

PYR/PYLs and GAD-PP2Cs in yeast cells. 

 

3. Docking Study 

Six crystal structures of PYR and PYL in different conformations (Supplementary Table 1) were 

taken from the Protein Data Bank and used to perform molecular docking with Pladienolide B 

and Spliceostatin A. The compounds were downloaded from the ZINC chemical database in SD 

format and were converted to PDB format using Open Babel 2.3.1. [1, 2].  

Flexible docking was performed using AutoDock 4.2 with specific coordinate file types for both 

proteins and ligands, termed PDBQT files, comprising polar hydrogen atoms, partial charges, 

atom types and information on the articulation of flexible molecules. The files were prepared 

using the AutoDock Tools 4.2 user interface [3, 4]. Water molecules were removed, polar 

hydrogens were added and the structures were saved as PDBQT. The flexible ligand was 

prepared by assigning the atom types, analyzing hydrogen bond acceptors and donors with the 

aromatic and aliphatic carbon atoms. The root was defined for the torsion tree from which the 

rotatable bonds emanate and define the flexibility of the ligand. Finally the rotatable bonds and 

torsion angles were assigned and the files were saved as PDBQT [5]. The grid parameters were 

set in accordance to the binding pocket [6]. Docking was performed using Lamarckian genetic 

algorithm (LGA) with population size of 150 individuals, 2.5 million energy evaluations, 

maximum of 27000 generations, number of top individuals to automatically survive to next 

generation of 1, mutation rate of 0.02, crossover rate of 0.8, 10 docking runs, and random initial 

positions and conformations. The probability of performing local search on an individual in the 

population was set to 0.06 to get optimal results [7, 8]. The complexes were then analyzed using 

LigPlot+ v.1.4 to generate the ligand interaction diagrams [9]. 
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