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ARTICLE INFO ABSTRACT

Background: The QT interval is a phase of the cardiac cycle that corresponds to action potential duration (APD)
including cellular repolarization (T-wave). In both clinical and experimental settings, prolongation of the QT
interval of the electrocardiogram (ECG) and related proarrhythmia have been so strongly associated that a
prolonged QT interval is largely accepted as surrogate marker for proarrhythmia. Accordingly, drugs that prolong
the QT interval are not considered for further preclinical development resulting in removal of many promising
drugs from development. While reduction of drug interactions with hERG is an important goal, there are prom-
ising means to mitigate hERG block. Here, we examine one possibility and test the hypothesis that selective
inhibition of the cardiac late Na current (Iy,.) by the novel compound GS-458967 can suppress proarrhythmic
markers.
Methods and results: New experimental data has been used to calibrate Iy, in the Soltis-Saucerman computation-
ally based model of the rabbit ventricular action potential to study effects of GS-458967 on Iy, during the rabbit
ventricular AP. We have also carried out systematic in silico tests to determine if targeted block of Iy, would
suppress proarrhythmia markers in ventricular myocytes described by TRIaD: Triangulation, Reverse use
dependence, beat-to-beat Instability of action potential duration, and temporal and spatial action potential
duration Dispersion.
Conclusions: Our computer modeling approach based on experimental data, yields results that suggest that selec-
tive inhibition of Iy, modifies all TRIaD related parameters arising from acquired Long-QT Syndrome, and there-
by reduced arrhythmia risk. This study reveals the potential for adjunctive pharmacotherapy via targeted block of
Inar to mitigate proarrhythmia risk for drugs with significant but unintended off-target hERG blocking effects.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction with potential for high therapeutic value never make it to the market

because of their hERG positive signal. Here we consider an alternative

Cardiotoxicity is a common risk for drugs in development, often
manifesting as prolongation of the QT interval in the ECG and an in-
creased likelihood for life-threatening ventricular arrhythmias [1,2,3].
QT interval prolongation typically arises from hERG block in ventricular
myocytes and hERG interaction must be analyzed for all drug candidates
to determine their potential for proarrhythmia [4]. A limitation of this
approach is that many potentially useful drugs are eliminated early in
the drug discovery process and development because they block hERG
and thereby may cause acquired Long-QT Syndrome. Numerous drugs
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approach that involves addition of an additional drug that selectively
blocks late Na current (Iy,.) in order to “cancel” the hERG blocking ef-
fect. This approach, if useful, may be warranted in instances where a
hERG positive therapy is uniquely indicated for disease and no alterna-
tive therapies exist.

The exploration of adjunctive therapy to mitigate drug side effects is
with strong precedent [5-7]. A longstanding example can be found in
effective antiarrhythmic drugs, which while categorized by their prima-
ry mechanism of action, exhibit off-target effects that apparently miti-
gate proarrhythmia risk. Included in this group is the most effective
therapeutic for treating cardiac ventricular arrhythmias, amiodarone, a
dirty drug whose multiple off-target effects likely underlie its efficacy.
Here we try to extend this idea to adjunctive therapy design to promote
the concept of “virtuous promiscuity” [8].

0022-2828/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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In this study we explore the basis for a novel adjunctive therapy
aimed at mitigating acquired Long-QT as associated arrhythmia risk by
pharmacological targeting of late Na current (Ina.) using GS-458967, a
potent and selective inhibitor of this current [9]. The first studies on
the preclinical compound GS-458967 in 2013 showed potent selective
targeting of Iy, (GS-458967, ICsq for Iy, = 130 nM, compared to Kd
for tonic block of peak Iy, = 1500 pM [9]) allowing for specific thera-
peutic inhibition and study of the physiological and pathological role
for Inac in the heart.

We evaluated arrhythmia vulnerability by integrating data-based
drug channel models into virtual ventricular myocyte and tissue
models. On this basis we can provide predictions of emergent drug ef-
fects that modify individual elements of the TRIaD. This approach
yielded novel and potentially important insights into the proarrhythmia
markers at the myocyte and/or tissue scales. Thus, it is based on the
fundamental biophysical and molecular pharmacological mechanisms
underlying drug induced arrhythmia and their influence on electro-
physiological parameters. Gaining reliable insights that inform arrhyth-
mia risk is the first necessary step that must be taken to ultimately lead
to development of specific in silico screening test for both assessing risk
and then implementing practical risk reduction measures.

Our model predictions illustrate that selective pharmacological
targeting of Iy, by inhibiting this current using GS-458967 improves
all TRIaD related parameters in acquired Long-QT syndrome and conse-
quently reduces arrhythmia risk.

2. Methods
2.1. Experimental methods

2.1.1. Recordings of late Iy, and action potentials using whole-cell patch-
clamp technique

The conventional whole-cell configuration of patch clamp technique
was used to record late Iy, in voltage-clamp mode and action potentials
(APs) in the current-clamp mode. All whole-cell data were acquired
using a Multiclamp 700B amplifier with pClamp 10.2 software (Molec-
ular Devices, Sunnyvale, CA). Data was analyzed using pClampfit 10,
Microcal Origin 8 (OriginLab Corporation, Northampton, MA), and
GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA) software pro-
grams. Patch pipettes were pulled from borosilicate glass (World Preci-
sion Instruments, Sarasota, FL) using a DMZ Universal Puller (Dagan
Corporation, Minneapolis, MN). Current-clamp experiments were per-
formed at 36 + 1 °C using a temperature controlling system (TC-334B,
Warner Instruments, Hamden, CT), whereas, the voltage-clamp experi-
ments were done at 22 4+ 1 °C. In all experiments, after a gigaseal was
established in the whole-cell configuration, 5-10 min was allowed for
stabilization before the experimental protocol was started.

In recordings of Iy, myocytes were superfused with bath solution
containing (in mM): 135 NaCl, 4.6 CsCl, 1.8 CaCl,, 1.1 MgSO,4, 10
HEPES and 10 glucose supplemented with nitrendipine at a final con-
centration of 10 uM. The pH was adjusted to 7.4 with NaOH. The patch
pipette resistances varied from 1.5-2 MQ when they were filled with
an internal solution containing (in mM): 120 aspartic acid, 20 CsCl, 1
MgS0,, 4 ATPNay, 0.1 GTPNa3z and 10 HEPES. The pH was adjusted to
7.3 with CsOH. Late Iy, was recorded during a 1500 msec ramp volt-
age-clamp command starting from —90 mV and depolarizing to 0 mV
once every 20 s. Late Iy, was measured as the maximum inward current
during each ramp depolarization.

For microelectrode intracellular recordings of action potentials (APs),
myocytes were superfused with bath solution containing (in mM): 140
Nadl, 4 KCl, 1.8 CaCl,, 1 MgCl,, 0.33 NaH,PO,, 5 HEPES and 7.5 glucose.
The pH was adjusted to 7.4 with NaOH. Pipette resistances were in the
range of 2-2.5 MQ when using an internal solution containing (in
mM) the following: 60 K aspartate, 80 KCl, 8 NaCl, 5 Mg-ATP, 0.25
Tris-GTP, and 5 HEPES was used. The pH was adjusted to 7.3 with
KOH. APs were elicited by 3-3.5 ms depolarizing current pulses

adjusted to approximately 1.5 time the threshold and applied every
55 (0.2 Hz). The APD was measured at 90% (APDg) of full repolariza-
tion. Ten consecutive AP recordings were averaged for each experimen-
tal condition.

2.2. Simulation methods

2.2.1. Cellular simulations

A rabbit cardiac myocyte model was chosen in this study to align
with the rabbit ventricular myocytes experimental data - unpublished
and from [9]. The Soltis-Saucerman cardiac cell model [28] was
modified as follows: The Iy, channel was replaced with Markov model
described below and with full parameters in the accompanying supple-
ment. The Na channel model structure was based on previously pub-
lished models [11,12]. Recognizing that cardiac myocytes exhibit
substantial variability in both current and action potential amplitudes
and morphologies [ 13], we then empirically tuned the Ca?>* and K* cur-
rent amplitudes to simultaneously recapitulate a representative rabbit
experimental current data [14-16] and action potential duration in ex-
periments [9] are shown in Table 1.

2.3. Optimization procedure for rabbit sodium channel

A computational Markov model of the drug-free (control) and GS-
458967 drug channel interaction was formulated via numerical optimi-
zation from experimentally derived rate constants as previously de-
scribed [11,17]. Five pacing protocols were optimized: steady state
availability at test potentials from — 130 mV to — 50 mV followed by de-
polarization to — 35 mV, steady state activation (the holding potential
was — 120 mV and the testing potentials ranged from — 60 to 20 mV
in 5-mV steps) [18], recovery from inactivation at a holding potential
of —100 mV [18], Iy, time course current [9], and ramp pulses from Gil-
ead Sciences, Inc. (Please see the section above on Recordings of late I,
and action potentials using whole cell patch-clamp technique).

A cost function for each protocol was defined as the sum of squared
differences between experiment and simulation. The total cost function
(sum of the individual protocol errors) was then minimized and con-
verged when a tolerance of 0.01 for the change of the cost function
and 0.01 for the change in parameters was achieved.

All rate constants were allowed to change during the optimization.
Post-optimization and Initial values are shown in Online Tables I and
II, respectively.

2.4. Parameter optimization for drug-bound model

Simulations of GS-458967 dose-dependent effects on late Na current
were optimized to fit the experimentally measured late Na™ current
with GS-458967 concentrations of 0.03, 0.1, 0.3 and 1 uM. The drug-
bound rate constants (ax2, a13n, a_22, P_33, Kon, Kinactives Kclosed)
were optimized to fit the experimentally measured late Na™ current
with GS-458967 concentrations of 0.03, 0.1, 0.3, 1 pM and 10 pM, and
the peak Na™ value at 10 uM (Fig. 3A). The optimized rate constants
are shown in Online Table IV. Because GS-458967 is highly non-basic
and cannot be protonated at physiological pH, the post-optimization

Table 1

Current density changes in cardiac ventricular cell model: the max-
imum conductances were tuned to approximate the experimental-
ly measured current amplitudes during the action potential. An
action potential duration that was within the experimental range
was determined.

Ionic parameters Scaling factors

pCa 0.7
GtOsiow 13
GtOgast 1.3
G1 0.5
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values (ax2, a13n, a_22, B_33, Ko, Kinactive Kciosed) are shown in On-
line Tables III, and initial guesses are shown in Online Tables IV.

2.5. Introduction of variability in the cellular model to create cell
populations

Simulated single action potentials (APs) were recorded at the 500th
paced beat (BCL = 1000 ms). We have also simulated a cell ‘population’
by randomly varying the amplitude of maximal conductances for Iyg, Icar,
Ixs, Iicer Iic1s Lo, INak, Inaca to within 10% (Fig. 3B) of their nominal values in
the rabbit ventricular myocyte model, as is done in standard sensitivity
analysis ([19-21]). This approach allowed for efficient analysis of 100
distinct cell action potentials. APDgy was calculated at 1 Hz for each case.
These simulated myocyte properties were compared to distinct experimen-
tal data sets #1 (blue asterisks) and #2 (red circles) as shown in Fig. 3.

Experiments
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The numerical method used for updating the voltage was forward
Euler. All the simulations were encoded in C/C++ and run on Mac
Pro 3.06 GHz 12-Core computers. Numerical results were visualized
using MATLAB R2014a by The Math Works, Inc.

2.6. Simulated effects of ATX-II

We have also simulated a ‘population’ of 100 cells by randomly vary-
ing the amplitude of maximal conductances as in Fig. 3B. APDgo was cal-
culated at 0.2 Hz for each case in Fig. 5.

In Fig. 6B and C, 1D cables were first paced at 1 Hz for 200 beats with
simulated ATX-II effects only, added GS-458967 for next 10 beats at 1 Hz
(s1) followed by a pause (3000 ms), and then applied a premature beat
(s2).
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Fig. 1. A comparison of experimentally recorded and model generated transmembrane ion cur
Ic1 (lower) [14]. (B)
rabbit ventricular myocyte [56]. (D) Simulated rabbit ventricular myocyte action potential
during the AP [15]. (F) Corresponding simulated Ca?* transient.

B) Simulated I, (upper) and Ig; (lower) compared. (C) Experimental action potential clamp waveform (upper) and corresponding L-type Ca®*

rents from rabbit ventricular myocytes. (A) Experimentally measured Iy, (upper) [55], and
current (lower) from

and model generated L-type Ca®* current. (E) Experimentally recorded Ca®* transient
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2.7. Simulation of TRIaD in dofetilide and drug-free models

To simulate effects of dofetilide, we replaced the I, channel with our
previously published Markov model [22]. For the TRIaD simulations,
simulations were conducted as follows: First, Triangulation was calculat-
ed as the repolarization time from APDsq to APDgg from 1000 simulated
cell with noise currents. Reverse-use-dependence was measured APDgg
at steady state for each pacing cycle length (from 3 Hz to 0.5 Hz) and
APD adaptation curves were constructed. Instability was simulated by
applying small amplitude inward currents randomly between —0.1 to
— 0.2 pA/pF for 50 ms over the course of the action potential plateau
at a pacing cycle length = 1000 ms. A small inward current was also ap-
plied randomly in time between 10 to 210 ms on the plateau phase for
1000 beats. We modeled beat-to-beat APD variability by adding noise
currents into membrane potential calculations, and simulated 1000
cells action potentials. Using the equation from [23],

I(Vy)A
Viear = Vt—%JrgnVAt
m

Where nis N(0,1) is a random number from a Gaussian distribution,
and At is the time step. § is the diffusion coefficient, which is the ampli-
tude of noise. In Fig. 7, § was set to 0.32 based on [23]. The noise current
was generated and applied to membrane potential V; throughout the
whole simulated time course.

2.8. Transmural fiber simulations

The in silico transmural fiber was composed of 165 ventricular cells
(Ax = Ay = 100 um) connected by resistances to simulate gap junc-
tions [28]. The fiber contains an endocardial region and epicardial re-
gion, which shown a linear decreased in APDs [24,25]. In the model,
Groslow Was monotonically increased from 0.0615 to 0.078, and Giopast
was linearly increased from 0.0095 to 0.026. The fiber was paced at
BCL = 1000 ms for 200 beats. The stimulus is applied to the first cell.

2.9. ECG computation

Extracellular unipolar potentials (d.) generated by the fiber in an
extensive medium of conductivity ., were computed from the trans-
membrane potential V,,, using the integral expression as in Gima and
Rudy [26]:

In one-dimension:
De(X,y') = G2 [(—VV ) [V Hdxdy
r=[x—x)"2

In two-dimension:
De(X,') = G2 (= V)V Hdxdy

r=[(x—x")2+ (y—y")]"”> where VVis the spatial gradient of V,,,, a is
the radius of the fiber, 0 is the intracellular conductivity, o, is the extra-
cellular conductivity, and r is the distance from a source point (x,y, z) to
a field point (x',y’, z’). @, was computed at an “electrode” site 2.0 cm
away from the distal end along the fiber axis.

2.10. Transmural tissue simulations

We simulated a heterogeneous cardiac tissue assuming a 500 by 500
component grid Ax = Ay = 100 pm. This tissue was assumed to contain
an endocardial region and epicardial region, with a linear decrease in
APDs [24,25]. All ion channel conductances and gap-junctions parame-
ters are same as in the one-dimensional simulations. Current flow is de-
scribed by the following equation:
av<xauv.r> - D, az\%%y,r) 4D, az\/ﬁ(yxz.,m _ lon—lyin

m

Where Vis the membrane potential, x and y are distances in the lon-
gitudinal and transverse directions, respectively, Dy and Dy, are diffusion
coefficients in the x and y directions. Iy;n is 500 mA/cm? for 1 ms. We
also incorporated anisotropic effects by setting Dy and Dy, such that
the ratio of conduction velocity is 1:2 [27].

This ventricular tissue segment was first paced for 200 beats (S1) at
BCL = 1000 ms on the entire length of one side of tissue. A premature
stimulus (S2) was then delivered at 330 ms in control case (A) after
S1ina 2.5 cm x 2.5 cm area on the top edge of the endocardial region.
(B) In ATX-II case, S2 paced at 450 ms, and at 465 ms in Dofetilide
case (C) after S1in a 2.5 cm x 2.5 cm area on the top edge of the endo-
cardial region. With GS-458967 applications, S2 was applied at 420 ms
in ATX-II (D) and at 430 ms (E) in Dofetilide cases (Fig. S2).

3. Results

The starting point for this study compared the simulated main
currents and Ca?™ transient in the Soltis-Saucerman rabbit ventricular
action potential model [28] during the AP to those recorded experimen-
tally from individual rabbit ventricular myocytes (Fig. 1A-F). Next the
Soltis-Saucerman model parameters for the maximum conductances
for Ca?>* and K™ currents were tuned to match the experimental data
from rabbit ventricular myocytes [14-16] including action potential du-
rations [9]. Following these minor adjustments, the output of the model
showed good agreement with the experimentally recorded currents.

We next modeled the rabbit ventricular Na* current by re-optimiz-
ing the model parameters described in Moreno et al. [11] to reproduce
the time-course and kinetics of Iy, that were experimentally recorded
in rabbit ventricular myocytes patch clamping experiments. Fig. 2
shows the adjusted, post-optimized, model-generated Iy, (blue lines)
superimposed on experimental records (black symbols). Fig. 2A shows
the superimposition of model and experimentally generated voltage de-
pendent activation curves. Panel (B) shows the steady-state Na™ chan-
nel availability (inactivation) relationship. Panel (C) shows the recovery
time course of current (or reactivation) at — 100 mV generated using a
standard double pulse voltage clamp protocol. The time-course of Iy, is
depicted in at low and high gain normalized to the peak Iy, value
(panels D and E, respectfully). Panel F shows Iy, generated in response
to a slow depolarizing voltage clamp ramp protocol. All protocols that
are illustrated in the figure panels are described in detail in the
Methods and Simulation methods section. It is interesting to note that
rabbit ventricular myocytes exhibit a much smaller late Iy, component
measured during a square wave voltage depolarizing pulse, when com-
pared to the current measured in guinea pig ventricular myocytes [12].

3.1. Concentration-dependent reduction in Iy, and APD by GS-458967

GS-458967 selectively inhibits endogenous Iy, and causes concen-
tration-dependent shortening of APD in ventricular myocytes [9,29,
30]. Two independent experimental data sets from rabbit ventricular
myocytes have been used as the basis for our model optimization to
simulate the effects of GS-458967 on experimental data for rabbit Iy,
during the AP and on APD. The blue asterisks indicate previously pub-
lished experimental data set #1 [9], and red circles are from our new
(unpublished) experimental data set #2. We incorporated our calibrat-
ed rabbit ventricular Na* channel model from Fig. 2 into the Soltis-
Saucerman rabbit ventricular model of the cardiac ventricular action po-
tential and then optimized the drug model parameters to fall within the
independent experimental data sets. The results are shown in Fig. 3.
Panel 3A shows the simulated effects of a 10-fold changes in concentra-
tions of GS-458967 and selective Iy, block during the rabbit AP. The
model accurately predicts the marked concentration-dependent short-
ening of the APD observed experimentally. Note that reduction of the
large transient endogenous Inapeak in the optimized model simulations
is minimal even after a very high concentration of GS-458967
(10 uM). This was also observed experimentally in rabbit ventricular
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Fig. 2. Experimental (symbols) and model optimized (lines) drug free Na™ current parameters in a rabbit ventricular myocyte. (A) Na* current activation curve derived from data
generated in response to depolarizing voltage clamp pulses [18]. (B) Steady-state inactivation [18]. (C) Recovery from inactivation at —100 mV [18]. (D) In, waveform in drug free
conditions at low gain normalized to peak current [9]. (E) Drug free Iy, at high gain [9]. (F) Superimposition of model predicted and experimentally recorded drug free or baseline Iy,

in response to a slow depolarizing ramp voltage protocol.

myocytes (compare blue open square to black open triangle). The selec-
tivity for block of I, compared to Inapeak Was a key goal in the drug dis-
covery process that resulted in selection of GS-458967 as a potential
candidate compound.

Fig. 3B shows a model prediction of the concentration dependence of
the simulated effects of GS-458967 on the APDs in a rabbit ventricular
myocyte population. These data were tracked in a population of 100 vir-
tual myocytes generated by randomly varying the amplitude of maxi-
mal conductances for Ina, Icar, Iks, Ikr Ik1s Tto, INax, INaca (to within (4)
10% of their nominal values in the rabbit ventricular myocyte model)
prior to the upstroke of each action potential. APDgg was calculated for
each AP at a steady pacing frequency of 1 Hz. Note that the simulated
APDgg variability falls well within the range of experimentally recorded
APDgq from both data set #1 (blue asterisks) and data #2 (red circles).

Fig. 4A shows the simulated time-course of the rabbit AP waveform.
These results reveal the concentration-dependent effects of GS-458967
on rabbit ventricular repolarization. Panel B shows the corresponding
dose-dependent effects of GS-458967 on the time-course of the endog-
enous Iy,.. It is notable that although Iy, in the rabbit ventricular
myocyte is very small in response to voltage clamp square wave
depolarizing pulses (Fig. 2E), there is a detectable Iy, throughout the
plateau of the AP. Note also that Iy, slowly increases during repolariza-
tion as expected from the progressively increasing electrochemical driv-
ing force.

3.2. GS-458967 normalizes drug induced APD prolongation

Our experimental data show that GS-458967 is very effective in re-
versing APD prolongation by agents/toxins that selectively enhance
InaL (e.g. ATX-II). We used these data as a basis for comparisons for
the computational model predictions. Specifically, we tested whether

the selected drug concentrations would have similar effects when ex-
perimental data was compared to the model predictions, thereby acting
as a model validation test and providing a basis for using the model for
predictive testing. In Fig. 5 panel (A), experimental data from two differ-
ent data sets from rabbit ventricular myocytes are shown in drug free
conditions (left), and also following the application of 3 nM ATX-II
(middle) as well as with combined 3 nM ATX-II with 0.3 uM GS-
458967 application (right). Panel (B) shows the predicted effects of
these same conditions in the virtual rabbit ventricular myocyte popula-
tion constructed by randomly vary the amplitude of maximal conduc-
tances for Inas Icar, 11(5' Ike, Ix1s Ito, lNaK, Inaca tO within (:l’:) 10% of their
nominal values in the rabbit ventricular myocyte model at a steady pac-
ing frequency of 0.2 Hz with drug free (left), simulated effect of ATX-II
(middle) and combined application of GS-458967 0.3 uM with ATX-II
(right). This pattern of results clearly shows the same low concentration
of GS-458967 is predicted to normalize the potent effect of ATX-II to
prolong APD in the experiment and simulation (Table 2).

Having established that a reduction of Iy, (by GS-458967) can be
protective against APD prolongation during exposure to ATX-II, we fo-
cused on the effect of GS-458967 to normalize QT interval prolongation
and reduce spatial dispersion of repolarization following application of
ATX-IL Fig. 6 shows membrane potential space-time plots and simulat-
ed electrograms (lower) computed using a one-dimensional 165-rabbit
ventricular myocyte transmural cardiac strand preparation. Panel A
shows the effect of application of ATX-II alone during a short-long-
short (S1-S2-S1) pacing protocol. Notice that ATX-II causes high ampli-
tude T-waves on the computed electrograms following application of
the S2. This is an indication of spatial APD dispersion. In (B), the effects
of 0.03 UM GS-458967 both reduces QT interval prolongation and di-
minishes spatial APD dispersion as indicated by the marked reduction
in T-wave amplitude. Panel (C) shows that an increase in GS-458967
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Fig. 3. Experimentally measured and model predicted effect of GS-458967 on Iy, in rabbit
ventricle. (A) Optimized model generated concentration-dependent data for GS-458967
on late Na current compared to two separate sets of experimental data - Blue asterisks
indicate experimental data set #1 (n = 4) [9], and red circles are from experimental
data set #2 (For 0 uM and 0.03 pM, n = 3. For 0.1 pM and 0.3 pM, n = 4. For 1 uM, n =
6. For 3 uM, n = 2). The effect of high concentration GS-458967 on peak Iy, is indicated
for experiments (blue square), and simulated Iy, peak (black triangle). (B) Behavior of a
myocyte ‘population’ was simulated by randomly varying the amplitude of maximal
conductances for Ina, Icar, Iks, Ikr, Ik1, Ito, INak, INaca (to within 10% of their nominal values
in the rabbit ventricular myocyte model). This approach allowed for efficient analysis of
100 distinct cell action potentials. APDgy was calculated at 1 Hz for each case. These
simulated myocyte properties were compared to experimental data set #1 (blue
asterisks) and experimental data set #2 (red circles).

concentration to 0.1 uM further reduced QT interval prolongation. The
higher concentration of GS-458967 also reversed the repolarization gra-
dient. This is illustrated by inversion of the T-wave. This effect is a result
of repolarization of the endocardial myocytes before the epicardial
myocytes. This is due to the larger effect of block of Iy, on the back-
ground of smaller repolarizing currents intrinsic to the endocardial cells.

3.3. Reduction of Inq by GS-458967 reduces all proarrhythmia-linked pa-
rameters in the TRIaD

Detailed assessment of the effects of GS-458967 on the
proarrhythmia parameters that form the TRIaD, systematic simulations
to track each parameter were done (i) in the drug free control condi-
tions, (ii) in the presence of dofetilide and (iii) with a combination of
dofetilide and GS-458967. The results are shown in Fig. 7.

The effects of GS-458967 to improve temporal action potential du-
ration dispersion were assessed first. We conducted a “computational
experiment” using a myocyte sample consisting of 1000 action poten-
tials generated after incorporating physiological noise [31] [23,32].
This produces quite pronounced beat-to-beat variability at 1 Hz pacing
rate as shown in Fig. 7 (A) the drug-free control case (mean =
214.76 ms, standard deviation = 4.17 ms), (B) following simulated ap-
plication of the I, blocker dofetilide (16 nM) (mean = 256.27 ms, stan-
dard deviation = 6.89 ms) and (C) predicted effects of 0.3 uM GS-
458967 with dofetilide 16 nM (mean = 236.87 ms, standard

50,
GS-485967 | APD,,
(uM) (ms)
<0 drug free 214.1
= 0.03 209.3
£
> =50 0.1 202.2
0.3 193.4
— 1.0 186.1
100 0 50 100 150 200 250
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uﬁ_ 0.4 drug free -0.49
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_is =09 0.1 -0.35
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Fig. 4. In silico prediction of GS-458967 induced reduction of Iy, and concentration-
dependent shortening of APD in rabbit ventricular myocytes. (A) Simulated effects of
GS-458967 on rabbit ventricular myocyte AP and (B) the corresponding effects of GS-
458967 on late Iy..

deviation = 5.24 ms). The noisy current was generated as described
in [23] and in the Methods. Following pacing to steady-state at a stimu-
lation frequency of 1 Hz, the physiological noise was applied throughout
the duration of the ensuing simulation of 1000 paced beats. The action
potentials for each beat during this noise protocol were recorded.

We next predicted the extent of action potential triangulation in
silico as a function of APD prolongation in the myocyte population as de-
scribed above for Fig. 7A-C. In Fig. 7 control (slope = 0.37) is shown in
panel D. Panel E shows the effect of dofetilide 16 nM (slope = 0.52) and
in (F) dofetilide 16 nM in combination with GS-458967 0.3 UM (slope =
0.35) is shown. Dofetilide increased both the APDg, as indicated by the
right shift and increase in area of the APD prolongation “cloud” (indicat-
ing more APD dispersion). In addition, dofetilide increased the triangu-
lation slope, defined as APDgo — APD3o. When dofetilide was applied in
combination with GS-458967, the model predicted a return to baseline
as measured by the APDgyg “cloud” and a reduction in triangulation.

The effect of the drugs on instability of APD (Fig. 7G) was detected
and quantified as the difference between the maximum and minimum
of 1000 individual cells with physiological noise current as a function
of prolongation of APD shown in Fig. 7 panels A-C.

The beat-to-beat instability of rabbit ventricular myocyte action
potential duration was assessed based on the sensitivity of virtual
myocytes to small electrical perturbations before and after the applica-
tion of drugs. A small inward current (between 0.1 and 0.2 pA/pF for
50 ms) was applied randomly during the AP plateau between 10-
210 ms after AP initiation. Fig. 7H are Poincaré plots of sequential APD
pairs indicating the beat-to-beat instability for each case. For the control
case, shown in black, the mean APDgg was 219.17 ms and the standard
deviation was 4.75 ms, whereas the max and min APDgg was 231.17 ms
and 213.49 ms, respectively. The case for dofetilide 16 nM is shown in
red with (mean = 263.31 ms, standard deviation = 7.67 ms, max
APDgg = 282.25 ms, min APDgy = 252.37 ms). The case for dofetilide
16 nM in combination with 0.1 uM GS-458967 is shown in green and
has APDgg values as follows: mean = 242.91 ms, standard deviation =
6.12, max = 257.92 ms, min APDgy = 232.33 ms. In blue is the effect of
a higher concentration of GS-458967 (0.3 uM) in combination with
16 nM dofetilide resulting in a mean APDgy, of 230.41 ms, standard
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Fig. 5. GS-458967 can effectively attenuate APD prolongation by ATX-II in rabbit ventricular myocytes. (A) Experimental data from two distinct data sets from rabbit ventricular myocytes
showing drug free conditions (left), the effect of 3 nM ATX-II (middle) and the combination of 3 nM ATX-II with 0.3 pM GS-458967 (right). (B) Simulated effects on virtual rabbit

ventricular myocyte showing drug free (left), simulated effect of ATX-II (middle) and ATX-II with co-treatment with GS-458967 0.3 pM (right).

deviation of 4.84, max and min APDgg = 242.76 ms and 222.47 ms,
respectively.

Lastly, as shown in Fig. 71, the potential for GS-458967 to decrease
reverse use dependence induced by dofetilide was evaluated. The action
potential adaptation curves were generated using APDgq values from
myocytes at steady-state at the indicated pacing frequencies. When
dofetilide (red) was applied, there was a clear steepening of the APD ad-
aptation curve compared to the baseline drug-free case (black). GS-
458967 at 0.1 uM (green) flattened the curve, and the application of
the higher dose of 0.3 UM of GS-458967 (blue) had a marked effect
caused mainly by reducing the slow rate dependent APD prolongation.

Arrhythmia can be considered a fundamental emergent spatial phe-
nomenon. Accordingly, simulations to determine whether GS-458967
could prevent reentrant arrhythmias in the setting of an in silico ac-
quired Long-QT Syndrome were performed. In this study a two-dimen-
sional heterogeneous anisotropic rabbit ventricular in silico tissue
composed of (5 cm x 5 cm) myocytes was employed (Fig. 8). Simula-
tions were conducted using a paired stimulus (S1-S2) protocol where
the S2 was applied (following 200 paced beats initiated along the left

Table 2

endocardial edge of the tissue) following the preceding S1 in the com-
puted vulnerable window for reentry. Time snapshots are shown on
the left for phase maps [33]. These maps were constructed following
the last planar wave (S1) (first panel) and throughout termination of
the most persistent wave after S2 (last panel). Membrane voltages are
indicated by the color gradient. The corresponding pseudo-ECGs are
shown in the right panels. Panel A in Fig. 8 illustrates the control or
drug-free baseline condition. In the absence of any drug, there was no
persistent reentry. In panel (B) the effect of ATX-II is shown, which pro-
moted a persistent reentrant arrhythmia. Panel (C) shows that ATX-II
combined with 0.3 uM GS-458967 prevented the persistent reentry ob-
served with ATX-II alone. When 16 nM dofetilide was applied (panel D),
persistent reentry was induced, but this was prevented by co-treatment
with 0.3 pM GS-458967 (panel E).

4. Discussion

Recently, new chemical entities (NCEs) have been developed that
specifically target the slowly inactivating component of the cardiac Na

Simulated and experimental measured APDgq: To simulate enhancement of late Iy, with ATX-II, rate constant, p2, was reduced by 40%.

BCL = 5000 ms Fig. 5 Experimental APDgq (ms)

(mean values)

Simulated APDg (ms)
(mean values from 1000 APs)

Cell 1 Cell 2
Control 2588 (n=11) 522 (n=6) 240.91
ATX-II 625.2 (n = 10) 2305.2 (n = 12) 497.02
Relative change to ATX-II 58.6% 77.3% 51.53%
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Fig. 6. Simulations showing that GS-458967 can effectively reduce spatial APD dispersion caused by ATX-II (A) Space-time plots of membrane potential (top) and pseudo ECGs (lower)
computed from a 165-rabbit myocyte transmural cardiac preparation in the presence of ATX-II during a “short-long-short” pacing protocol. (B) 0.03 uM GS-458967 markedly diminishes
QT interval prolongation and APD dispersion as indicated by reduced T-wave amplitude. (C) 0.1 uM GS-458967 further reduced QT interval prolongation and reversed the repolarization
gradient as demonstrated by inversion of the T-wave.
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Fig. 7. In silico pharmacological results suggesting that GS-458967 can reduce all proarrhythmia-linked parameters set out in the TRIaD approach: Triangulation, reverse use dependence,
beat-to-beat instability of action potential duration, as well as temporal and spatial action potential duration dispersion. Predicted temporal action potential duration dispersion of 1000
simulated myocyte action potentials generated after incorporating physiological noise to induce beat-to-beat variability at 1 Hz in (A) the drug-free control case, (B) effects of simulated
application of the Iy, blocker Dofetilide (16 nM) and (C) predicted effects of 0.3 uM GS-458967 with Dofetilide 16 nM. Action potential triangulation as a function of APD prolongation for
individual myocytes for (D) control (slope = 0.37), (E) Dofetilide 16 nM (slope = 0.52) and (F) Dofetilide 16 nM + GS-458967 0.3 uM (slope = 0.35). (G) Instability of APD was
quantified as the difference between the maximum and minimum of 1000 individual myocytes in the presence of physiological noise current as a function of prolongation of APD
(shown in panels A-C). (H) Simulated beat-to-beat instability of rabbit ventricular myocyte action potentials to small perturbations before and after application of drugs. Poincaré
plots of sequential APD pairs indicating beat-to-beat instability are shown for each case. (I) GS-458967 improved dofetilide induced reverse use dependence: Action potential
adaptation curves show APDgq at various pacing frequencies in the presence or absence of drugs.
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Fig. 8. GS-458967 can prevent spiral wave reentry in the setting of acquired Long-QT Syndrome. A two-dimensional simulated heterogeneous anisotropic rabbit ventricular tissue was
activated using a paired stimulus (S1-S2) protocol. (A) Shows the control or drug-free case, (B) with ATX-II, (C) with ATX-Il and 0.3 uM GS-4589677, (D) 16 nM Dofetilide, or (E) 16 nM

Dofetilide and 0.3 uM GS-458967. Tissues (5 cm x 5 cm) were stimulated (S1) along left edge

(endocardium) and this followed by a premature stimulus (S2) applied in the vulnerable

window (see Methods). Six snapshots obtained following application of GS-458967, dofetilide or both at selected time points. Corresponding pseudo-ECGs are in the right panels.

Membrane voltage values are indicated by the color gradient.

current, that is, the late Na current (Iy,). Such compounds are now
being evaluated as therapeutics in inherited and acquired cardiac dis-
eases [34-40]. One promising preclinical candidate first described in
2013 is GS-458967. GS-458967 specifically and potently inhibits Iy,
(ICSO for Inaw = 130 HM) [9]

In order to begin to understand the potential for selective inhibition
of Iy, to mitigate arrhythmia risk associated with acquired Long-QT
Syndrome, we have utilized experimental data describing the kinetics
of the cardiac Na™ channel in rabbit ventricular cells models in order
to modify the Soltis-Saucerman model of the rabbit ventricular myocyte
action potential model. We then modeled the interaction of GS-458967
with the rabbit Na™ channel and the concentration-dependent effect of
this novel preclinical compound to affect electrophysiological parame-
ters in rabbit cells. Results of the simulations were in good agreement
with experimental findings with both approaches showing potent con-
centration-dependent reduction in Iy, and action potential duration. In
these experiments and model simulations, GS-458967 did net affect
myocyte excitability or conduction velocity in ventricular tissues, re-
spectively [9]. Although Iy, is small compared to peak (Inapeak) (~1-
3%), the magnitude of this current is similar to that of other currents
that are active during the action potential plateau phase, including Iy,
the rapidly activated component of the delayed rectifier K™ current.

Abnormal cardiac electrophysiological activity is a common effect
caused by block of hERG, the alpha subunit of Ik Block of hERG leads
to prolongation of the QT interval on the ECG, a phase of the cardiac
cycle that corresponds to ventricular cell repolarization. Prolongation
of the QT interval and proarrhythmia have been so strongly associated
that the QT interval has become widely used as a surrogate marker for
arrhythmia risk. Since 2005, the regulatory process for clinical drug

candidates includes a dedicated clinical study in healthy volunteers,
the so-called “Thorough QT Study”. A drug that causes greater than
5 ms QT prolongation above normal in healthy humans triggers a “reg-
ulatory concern”. In the present work, we asked the question, “Can we
mitigate the risk of QT prolonging proarrhythmic drugs with targeted ad-
junctive therapy by the Iyq inhibitor GS-458967”. In the current study,
we undertook a combined modeling and experimental approach in an
attempt to improve the rationale for predictive Cardiac Safety
Pharmacology.

One way to prevent acquired Long-QT based arrhythmias is to
screen and eliminate compounds that fail the Thorough QT test. An al-
ternative solution is to identify derivative analogs of promising drugs
that can retain therapeutic efficacy with reduced hERG block [41-44].
Another approach is to capitalize on the well-known fact that most ef-
fective antiarrhythmic drugs are “dirty” - they exhibit multiple channel
effects [8]. By co-administering or co-formulating a specific Iy, blocker
in the setting of unintended hERG block, it may be possible to create a
situation of “virtuous promiscuity”, where the two drug effects counter
each and thus reduced or eliminate electrophysiological abnormalities,
including prolongation of the action potential duration (APD) and
lengthening of the QT interval [8,45].

There is substantial precedent for the empirical mixing and
matching of drugs to mitigate risk or reduce side effects [45,7]. More-
over, it is notable that the most successful on-market antiarrhythmic
drugs exhibit multiple off-target or “dirty” effects. Examples include
amiodarone, dronedarone and verapamil [1,2]. Here, we have expanded
this concept in an attempt to develop a way to inform and predict the
therapeutic benefit of mixing drugs to mitigate cardiotoxic side effects.
We have focused on the common example of unintended hERG based


Image of Fig. 8

160 P.-C. Yang et al. / Journal of Molecular and Cellular Cardiology 99 (2016) 151-161

cardiotoxicity. Our model predicts substantial reduction of all acquired
Long-QT proarrhythmia-linked parameters through adjunctive admin-
istration using GS-458967 to specifically inhibit In,. and “cancel” or di-
minish the effect of hERG block.

We tested the potential for targeted inhibition of Iy, by GS-458967
to improve cardiac safety in the setting of acquired long-QT Syndrome
induced by dofetilide. Dofetilide is a prototype of the proarrhythmic
class - associated with hERG block, QT prolongation and TdP [46]. We
recently developed a detailed kinetically based model of the hERG
blocker dofetilide by extending the consensus five-state Markov chain
model that includes three closed states (Cs, C; and Cy), a conducting
open state and (O) an inactivation state (I) [22,47,48,49]. This expanded
I model that includes dofetilide interactions was incorporated into the
Soltis-Saucerman rabbit ventricular action potential (AP) models [28].
Dofetilide has a distinct structure activity relationship that underlies
drug-channel interaction kinetics that promotes the TRIaD: Triangula-
tion, reverse use dependence, beat-to-beat instability of action potential
duration, temporal and spatial action potential duration dispersion.
Thus, we simulated the effects of dofetilide as a “positive control”
against which we could systematically predict effects of GS-458967 on
each parameter of the TRIaD linked proarrhythmia.

In our previous study [13], we carried out a simulation showing the
effects of GS-458967 application on Na loading at different frequencies.
We also showed the effect of the nominal changes to intracellular Na
concentration on the amplitudes of the NCX and NaK currents during
the action potential. These effects were minimal. Our results are not sur-
prising. Previous studies have suggested that even pathological in-
creases in late Iy, are not sufficient to account for substantial Na
loading and that other mechanisms must also be contributing to Na
loading during pathological states like heart failure [50,51,11].

There is a critical need to identify a more efficient and better approach
for preclinical drug screening that is both specific and sensitive, and that
also identifies actual “proarrhythmia”, rather than surrogate markers
[52]. Here, we applied a multiscale modeling approach based on experi-
mentally determined drug-channel interactions and kinetics intended to
predict drug safety or electro-toxicity in the heart. Electrophysiological
measurements were used to inform the kinetic parameters for functional
scale Markov models of drug interactions with cardiac ion channels.
Drug-channel models were then integrated into virtual cardiac cell and
tissue level models to predict emergent drug effects to promote specific
elements of the TRIaD, comprising the proarrhythmia markers that
emerge at cell and tissue levels. Experiments were then used to test and
validate the predictions of the model. Such a combined analysis could
be used along with the proposed early QT assessment [53] in order to re-
place the so-called thorough QT study.

We suggest that the in silico TRIaD analysis performed here may be
useful to finally remove some of the “art” that has been implicit in defin-
ing experimental conditions and ensuing tests that have been used to
provoke arrhythmic responses [54]. Not only does the systematic appli-
cation of the TRIaD tests allow the tracking of numerous proarrhythmic
parameters, this approach also accounted for cell-to-cell variability and
physiological noise that likely contribute to the random and rare amal-
gam of conditions that must be concomitantly present to allow a rare ar-
rhythmia event to occur. The in silico screen presented in this study can
be readily expanded with low cost and high efficiency to comprehen-
sively examine any number of arrhythmia provoking conditions or ad-
ditional electrophysiological parameters for preclinical drug testing.
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